Science.gov

Sample records for glial heparan sulfate

  1. Heparan Sulfate Proteoglycans

    PubMed Central

    Sarrazin, Stephane; Lamanna, William C.; Esko, Jeffrey D.

    2011-01-01

    Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein–heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level. PMID:21690215

  2. Bioengineered heparins and heparan sulfates.

    PubMed

    Fu, Li; Suflita, Matthew; Linhardt, Robert J

    2016-02-01

    Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates. PMID:26555370

  3. Biological activities of heparan sulfate.

    PubMed

    Arumugam, Muthuvel; Giji, Sadhasivam

    2014-01-01

    Heparan sulfate was isolated from two bivalve mollusks such as Tridacna maxima and Perna viridis. The isolated heparin was quantified in crude as well as purified samples and they were estimated as 2.72 and 2.2g/kg (crude) and 260 and 248 mg/g (purified) in T. maxima and P. viridis, respectively. Both the bivalves showed the anticoagulant activity of the crude and purified sample as 20,128 USP units/kg and 7.4 USP units/mg, 39,000 USP units/kg and 75 USP units/mg, 9460 USP units/kg and 4.3 USP units/mg, and 13,392 USP units/kg and 54 USP units/mg correspondingly in T. maxima and P. viridis. The antiproliferative activity that was studied with pulmonary artery smooth muscle cells using RPMI media reported that the result is in a dose-dependent manner. Among the two clams, P. viridis showed more antiproliferative activity than that of T. maxima. PMID:25081081

  4. Tetrasulfated Disaccharide Unit in Heparan Sulfate

    PubMed Central

    Mochizuki, Hideo; Yoshida, Keiichi; Shibata, Yuniko; Kimata, Koji

    2008-01-01

    We previously reported that the heparan sulfate 3-O-sulfotransferase (3OST)-5 produces a novel component of heparan sulfate, i.e. the tetrasulfated disaccharide (Di-tetraS) unit (Mochizuki, H., Yoshida, K., Gotoh, M., Sugioka, S., Kikuchi, N., Kwon, Y.-D., Tawada, A., Maeyama, K., Inaba, N., Hiruma, T., Kimata, K., and Narimatsu, H. (2003) J. Biol. Chem.278 ,26780 -2678712740361). In the present study, we investigated the potential of other 3OST isoforms to produce Di-tetraS with heparan sulfate and heparin as acceptor substrates. 3OST-2, 3OST-3, and 3OST-4 produce Di-tetraS units as a major product from both substrates. 3OST-5 showed the same specificity for heparin, but the production from heparan sulfate was very low. Di-tetraS production by 3OST-1 was negligible. We then investigated the presence of Di-tetraS units in heparan sulfates from various rat tissues. Di-tetraS was detected in all of the tissues analyzed. Liver and spleen contain relatively high levels of Di-tetraS, 1.6 and 0.95%, respectively. However, the content of this unit in heart, large intestine, ileum, and lung is low, less than 0.2%. We further determined the expression levels of 3OST transcripts by quantitative real time PCR. The 3OST-3 transcripts are highly expressed in spleen and liver. The 3OST-2 and -4 are specifically expressed in brain. These results indicate that the Di-tetraS unit is widely distributed throughout the body as a rare and unique component of heparan sulfate and is synthesized by tissue-specific 3OST isoforms specific for Di-tetraS production. PMID:18757372

  5. Divergent Synthesis of Heparan Sulfate Oligosaccharides.

    PubMed

    Dulaney, Steven B; Xu, Yongmei; Wang, Peng; Tiruchinapally, Gopinath; Wang, Zhen; Kathawa, Jolian; El-Dakdouki, Mohammad H; Yang, Bo; Liu, Jian; Huang, Xuefei

    2015-12-18

    Heparan sulfates are implicated in a wide range of biological processes. A major challenge in deciphering their structure and activity relationship is the synthetic difficulties to access diverse heparan sulfate oligosaccharides with well-defined sulfation patterns. In order to expedite the synthesis, a divergent synthetic strategy was developed. By integrating chemical synthesis and two types of O-sulfo transferases, seven different hexasaccharides were obtained from a single hexasaccharide precursor. This approach combined the flexibility of chemical synthesis with the selectivity of enzyme-catalyzed sulfations, thus simplifying the overall synthetic operations. In an attempt to establish structure activity relationships of heparan sulfate binding with its receptor, the synthesized oligosaccharides were incorporated onto a glycan microarray, and their bindings with a growth factor FGF-2 were examined. The unique combination of chemical and enzymatic approaches expanded the capability of oligosaccharide synthesis. In addition, the well-defined heparan sulfate structures helped shine light on the fine substrate specificities of biosynthetic enzymes and confirm the potential sequence of enzymatic reactions in biosynthesis. PMID:26574650

  6. Artemin Crystal Structure Reveals Insights into Heparan Sulfate Binding

    SciTech Connect

    Silvian,L.; Jin, P.; Carmillo, P.; Boriack-Sjodin, P.; Pelletier, C.; Rushe, M.; Gong, B.; Sah, D.; Pepinsky, B.; Rossomando, A.

    2006-01-01

    Artemin (ART) promotes the growth of developing peripheral neurons by signaling through a multicomponent receptor complex comprised of a transmembrane tyrosine kinase receptor (cRET) and a specific glycosylphosphatidylinositol-linked co-receptor (GFR{alpha}3). Glial cell line-derived neurotrophic factor (GDNF) signals through a similar ternary complex but requires heparan sulfate proteoglycans (HSPGs) for full activity. HSPG has not been demonstrated as a requirement for ART signaling. We crystallized ART in the presence of sulfate and solved its structure by isomorphous replacement. The structure reveals ordered sulfate anions bound to arginine residues in the pre-helix and amino-terminal regions that were organized in a triad arrangement characteristic of heparan sulfate. Three residues in the pre-helix were singly or triply substituted with glutamic acid, and the resulting proteins were shown to have reduced heparin-binding affinity that is partly reflected in their ability to activate cRET. This study suggests that ART binds HSPGs and identifies residues that may be involved in HSPG binding.

  7. Engineering sulfotransferases to modify heparan sulfate

    SciTech Connect

    Xu, Ding; Moon, Andrea F.; Song, Danyin; Pedersen, Lars C.; Liu, Jian

    2008-03-19

    The biosynthesis of heparan sulfate (HS) involves an array of specialized sulfotransferases. Here, we present a study aimed at engineering the substrate specificity of different HS 3-O-sulfotransferase isoforms. Based on the crystal structures, we identified a pair of amino acid residues responsible for selecting the substrates. Mutations of these residues altered the substrate specificities. Our results demonstrate the feasibility of tailoring the specificity of sulfotransferases to modify HS with desired functions.

  8. Heparan sulfate in skeletal muscle development

    SciTech Connect

    Noonan, D.M.

    1985-01-01

    In this study, chick breast skeletal muscle cells developing in vitro from myoblasts to myotubes were found to synthesize heparan sulfate (HS), chrondroitin-6-sulfate, chrondroitin-4-sulfate, dermatan sulfate, unsulfated chrondroitin and hyaluronic acid in both the substratum attached material (SAM) and the cellular fraction. SAM was found to contain predominantly chrondroitin-6-sulfate and relatively little HS whereas the cellular fraction contained relatively higher levels of HS and lower levels of chrondroitin-6-sulfate. Hyaluronic acid was also a major component in both fractions with the other glycosaminoglycan isomers present as minor components. Muscle derived fibroblast cultures had higher levels of dermatan sulfate in the cell layer and higher levels of HS in the SAM fraction than did muscle cultures. The structure of the proteoglycans were partially characterized in /sup 35/SO/sub 4//sup 2 -/ radio-labeled cultures which indicated an apparent increase in the hydrodynamic size of the cell fraction heparan sulfate proteoglycan (HS PG). Myotubes incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate 3 times higher than myoblasts. The turnover rate of HS in the cellular fraction was the same for myoblasts and myotubes, with a t/sub 1/2/ of approximately 5 hours. Fibroblasts in culture synthesized the smallest HS PG, and incorporated /sup 35/SO/sub 4//sup 2 -/ into HS PG at a rate lower than that of myotubes. Studies in which fusion was reversibly inhibited with decreased medium (Ca/sup + +/) closely linked the increased synthesis of cell fraction, but not SAM fraction, HS with myotube formation. However, decreasing medium calcium appeared to cause significant alterations in the metabolism of inorganic sulfate.

  9. Decreased glomerular basement membrane heparan sulfate proteoglycan in essential hypertension.

    PubMed

    Heintz, B; Stöcker, G; Mrowka, C; Rentz, U; Melzer, H; Stickeler, E; Sieberth, H G; Greiling, H; Haubeck, H D

    1995-03-01

    Heparan sulfate proteoglycans are major components of the glomerular basement membrane and play a key role in the molecular organization and function of the basement membrane. Moreover, their presence is essential for maintenance of the selective permeability of the glomerular basement membrane. Recently, we isolated and characterized a novel small basement membrane-associated heparan sulfate proteoglycan from human aorta and kidney. Partial amino acid sequence data clearly show that this heparan sulfate proteoglycan is distinct from the large basement membrane-associated heparan sulfate proteoglycan (perlecan). Using specific monoclonal antibodies, we have shown that the novel heparan sulfate proteoglycan is located predominantly in the glomerular basement membrane and, to a lesser extent, in the basement membrane of tubuli. Turnover or, in the course of kidney diseases, degradation of heparan sulfate proteoglycan from glomerular basement membranes may lead to urinary excretion of heparan sulfate proteoglycan, which can be measured by a sensitive enzyme immunoassay. The aim of the present study was to analyze whether changes in the structure and function of glomerular basement membranes can be directly detected by measurement of the excretion of a component of this basement membrane, eg, heparan sulfate proteoglycan into urine. The excretion of this small heparan sulfate proteoglycan was compared after physical exercise in normotensive and hypertensive subjects. Normotensive subjects and treated, essential hypertensive patients underwent a standardized workload on a bicycle ergometer. Biochemical characterization of the urinary proteins and heparan sulfate proteoglycan was performed before and 15 and 45 minutes after exercises.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7875766

  10. Fluorous-assisted chemoenzymatic synthesis of heparan sulfate oligosaccharides.

    PubMed

    Cai, Chao; Dickinson, Demetria M; Li, Lingyun; Masuko, Sayaka; Suflita, Matt; Schultz, Victor; Nelson, Shawn D; Bhaskar, Ujjwal; Liu, Jian; Linhardt, Robert J

    2014-04-18

    The chemoenzymatic synthesis of heparan sulfate tetrasaccharide (1) and hexasaccharide (2) with a fluorous tag attached at the reducing end is reported. The fluorous tert-butyl dicarbonate ((F)Boc) tag did not interfere with enzymatic recognition for both elongation and specific sulfation, and flash purification was performed by standard fluorous solid-phase extraction (FSPE). Based on an (F)Boc attached disaccharide as acceptor, a series of partial N-sulfated, 6-O-sulfated heparan sulfate oligosaccharides were successfully synthesized employing fluorous techniques. PMID:24697306

  11. Heparan sulfate and heparin interactions with proteins

    PubMed Central

    Meneghetti, Maria C. Z.; Hughes, Ashley J.; Rudd, Timothy R.; Nader, Helena B.; Powell, Andrew K.; Yates, Edwin A.; Lima, Marcelo A.

    2015-01-01

    Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure–activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure–activity relationships and regulation will be discussed. PMID:26289657

  12. Molecular Interplay between Endostatin, Integrins, and Heparan Sulfate*

    PubMed Central

    Faye, Clément; Moreau, Christophe; Chautard, Emilie; Jetne, Reidunn; Fukai, Naomi; Ruggiero, Florence; Humphries, Martin J.; Olsen, Bjorn R.; Ricard-Blum, Sylvie

    2009-01-01

    Endostatin is an endogenous inhibitor of angiogenesis. Although several endothelial cell surface molecules have been reported to interact with endostatin, its molecular mechanism of action is not fully elucidated. We used surface plasmon resonance assays to characterize interactions between endostatin, integrins, and heparin/heparan sulfate. α5β1 and αvβ3 integrins form stable complexes with immobilized endostatin (KD = ∼1.8 × 10−8 m, two-state model). Two arginine residues (Arg27 and Arg139) are crucial for the binding of endostatin to integrins and to heparin/heparan sulfate, suggesting that endostatin would not bind simultaneously to integrins and to heparan sulfate. Experimental data and molecular modeling support endostatin binding to the headpiece of the αvβ3 integrin at the interface between the β-propeller domain of the αv subunit and the βA domain of the β3 subunit. In addition, we report that α5β1 and αvβ3 integrins bind to heparin/heparan sulfate. The ectodomain of the α5β1 integrin binds to haparin with high affinity (KD = 15.5 nm). The direct binding between integrins and heparin/heparan sulfate might explain why both heparan sulfate and α5β1 integrin are required for the localization of endostatin in endothelial cell lipid rafts. PMID:19502598

  13. Host cell heparan sulfate glycosaminoglycans are ligands for OspF-related proteins of the Lyme disease spirochete.

    PubMed

    Lin, Yi-Pin; Bhowmick, Rudra; Coburn, Jenifer; Leong, John M

    2015-10-01

    Borrelia burgdorferi, the agent of Lyme disease, spreads from the site of the tick bite to tissues such as heart, joints and the nervous tissues. Host glycosaminoglycans, highly modified repeating disaccharides that are present on cell surfaces and in extracellular matrix, are common targets of microbial pathogens during tissue colonization. While several dermatan sulfate-binding B. burgdorferi adhesins have been identified, B. burgdorferi adhesins documented to promote spirochetal binding to heparan sulfate have not yet been identified. OspEF-related proteins (Erps), a large family of plasmid-encoded surface lipoproteins that are produced in the mammalian host, can be divided into the OspF-related, OspEF-leader peptide (Elp) and OspE-related subfamilies. We show here that a member of the OspF-related subfamily, ErpG, binds to heparan sulfate and when produced on the surface of an otherwise non-adherent B. burgdorferi strain, ErpG promotes heparan sulfate-mediated bacterial attachment to the glial but not the endothelial, synovial or respiratory epithelial cells. Six other OspF-related proteins were capable of binding heparan sulfate, whereas representative OspE-related and Elp proteins lacked this activity. These results indicate that OspF-related proteins are heparan sulfate-binding adhesins, at least one of which promotes bacterial attachment to glial cells. PMID:25864455

  14. Host cell heparan sulfate glycosaminoglycans are ligands for OspF-related proteins of the Lyme disease spirochete

    PubMed Central

    Lin, Yi-Pin; Bhowmick, Rudra; Coburn, Jenifer; Leong, John M.

    2015-01-01

    Borrelia burgdorferi , the agent of Lyme disease, spreads from the site of the tick bite to tissues such as heart, joints and the nervous system. Host glycosaminoglycans (GAGs), highly modified repeating disaccharides that are present on cell surfaces and in extracellular matrix, are common targets of microbial pathogens during tissue colonization. While several dermatan sulfate-binding B. burgdorferi adhesins have been identified, B. burgdorferi adhesins documented to promote spirochetal binding to heparan sulfate have not yet been identified. OspEF-related proteins (Erps), a large family of plasmid-encoded surface lipoproteins that are produced in the mammalian host, can be divided into the OspF-related, OspEF leader peptide (Elp), and OspE-related subfamilies. We show here that a member of the OspF-related subfamily, ErpG, binds to heparan sulfate, and when produced on the surface of an otherwise nonadherent B. burgdorferi strain, ErpG promotes heparan sulfate-mediated bacterial attachment to glial but not endothelial, synovial or respiratory epithelial cells. Six other OspF-related proteins were capable of binding heparan sulfate, whereas representative OspE-related and Elp proteins lacked this activity. These results indicate that OspF-related proteins are heparan sulfate-binding adhesins, at least one of which promotes bacterial attachment to glial cells. PMID:25864455

  15. Cooperative, Heparan Sulfate-Dependent Cellular Uptake of Dimeric Guanidinoglycosides

    PubMed Central

    Dix, Andrew V.; Fischer, Lucile; Sarrazin, Stéphane; Redgate, Christopher P. H.

    2010-01-01

    Oligoarginine and guanidinium-rich molecular transporters have been shown to facilitate the intracellular delivery of a diverse range of biologically relevant cargos. Several such transporters have been suggested to interact with cell surface heparan sulfate proteoglycans as part of their cell entry pathway. Unlike other guanidinium-rich transporters, the cellular uptake of guanidinoglycosides at nanomolar concentrations is exclusively heparan sulfate dependent. As distinct cells differ in their expression levels and/or composition of cell-surface heparan sulfate proteoglycans, one may be able to exploit such differences to selectively target certain cell types. To systematically investigate the nature of their cell surface interactions, monomeric and dimeric guanidinoglycosides were synthesized using neomycin, paromomycin, and tobramycin as scaffolds. These transporters differ in the number and 3-dimensional arrangement of guanidinium groups. Their cellular uptake was measured by flow cytometry in wild type and mutant Chinese hamster ovary cells after generating the corresponding fluorescent streptavidin-phycoerythrinCy5 conjugates. All derivatives showed negligible uptake in mutant cells lacking heparan sulfate. Decreasing the number of guanidinium groups diminished uptake, but the three dimensional arrangement of these groups was less important for cellular delivery. Whereas conjugates prepared with the monomeric carriers showed significantly reduced uptake in mutant cells expressing heparan sulfate chains with altered patterns of sulfation, conjugates prepared with the dimeric guanidinoglycosides could overcome this deficiency and maintain high levels of uptake in such deficient cells. This finding suggests that cellular uptake depends on the valency of the transporter and both the content and arrangement of the sulfate groups on the cell surface receptors. Competition studies with chemically desulfated or carboxy-reduced heparin derivatives corroborated these

  16. Inhibition of synthesis of heparan sulfate by selenate: Possible dependence on sulfation for chain polymerization

    SciTech Connect

    Dietrich, C.P.; Nader, H.B. ); Buonassisi, V.; Colburn, P. )

    1988-01-01

    Selenate, a sulfation inhibitor, blocks the synthesis of heparan sulfate and chondroitin sulfate by cultured endothelial cells. In contrast, selenate does not affect the production of hyaluronic acid, a nonsulfated glycosaminoglycan. No differences in molecular weight, ({sup 3}H)glucosamine/({sup 35}S)sulfuric acid ratios, or disaccharide composition were observed when the heparan sulfate synthesized by selenate-treated cells was compared with that of control cells. The absence of undersulfated chains in preparations from cultures exposed to selenate supports the concept that, in the intact cell, the polymerization of heparan sulfate might be dependent on the sulfation of the saccharide units added to the growing glycosaminoglycan chain.

  17. Characterizing the non-reducing end structure of heparan sulfate.

    PubMed

    Wu, Zhengliang L; Lech, Miroslaw

    2005-10-01

    The reducing end of heparan sulfate has been known for a long time, but information on the non-reducing end has been lacking. Recent studies indicate that the non-reducing end of heparan sulfate might be the place where fibroblast growth factor signaling complex forms. The non-reducing end also changes with heparanase digestion and, thus, might serve as a marker for tumor pathology. Using high performance liquid chromatography-coupled mass spectrometry, we have identified and characterized the non-reducing end of bovine kidney heparan sulfate. We find that the non-reducing end region is highly sulfated and starts with a glucuronic acid (GlcA) residue. The likely sequence of the non-reducing end hexasaccharides is GlcA-GlcNS6S-UA+/-2S-GlcNS+/-6S-Ido2S-GlcNS+/-6S (where GlcNS is N-sulfate-D-glucosamine, S is sulfate, UA is uronic acid, and Ido is iduronic acid). Our data suggests that the non-reducing end of bovine kidney heparan sulfate is not trimmed by heparanase and is capable of supporting fibroblast growth factor signaling complex formation. PMID:16079142

  18. Heparan sulfate 3-O-sulfation: A rare modification in search of a function

    PubMed Central

    Thacker, Bryan E.; Xu, Ding; Lawrence, Roger; Esko, Jeffrey D.

    2014-01-01

    Many protein ligands bind to heparan sulfate, which results in their presentation, protection, oligomerization or conformational activation. Binding depends on the pattern of sulfation and arrangement of uronic acid epimers along the chains. Sulfation at the C3 position of glucosamine is a relatively rare, yet biologically significant modification, initially described as a key determinant for binding and activation of antithrombin and later for infection by Type I Herpes Simplex virus. In mammals, a family of seven heparan sulfate 3-O-sulfotransferases installs sulfate groups at this position and constitutes the largest group of sulfotransferases involved in heparan sulfate formation. However, to date very few proteins or biological systems have been described that are influenced by 3-O-sulfation. This review describes our current understanding of the prevalence and structure of 3-O-sulfation sites, expression and substrate specificity of the 3-O-sulfotransferase family and the emerging roles of 3-O-sulfation in biology. PMID:24361527

  19. A zinc complex of heparan sulfate destabilises lysozyme and alters its conformation

    SciTech Connect

    Hughes, Ashley J.; Hussain, Rohanah; Cosentino, Cesare; Guerrini, Marco; Siligardi, Giuliano; Yates, Edwin A.; Rudd, Timothy R.

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Zinc-heparan sulfate complex destabilises lysozyme, a model amyloid protein. Black-Right-Pointing-Pointer Addition of zinc, without heparan sulfate, stabilises lysozyme. Black-Right-Pointing-Pointer Heparan sulfate cation complexes provide alternative protein folding routes. -- Abstract: The naturally occurring anionic cell surface polysaccharide heparan sulfate is involved in key biological activities and is implicated in amyloid formation. Following addition of Zn-heparan sulfate, hen lysozyme, a model amyloid forming protein, resembled {beta}-rich amyloid by far UV circular dichroism (increased {beta}-sheet: +25%), with a significantly reduced melting temperature (from 68 to 58 Degree-Sign C) by fluorescence shift assay. Secondary structure stability of the Zn-heparan sulfate complex with lysozyme was also distinct from that with heparan sulfate, under stronger denaturation conditions using synchrotron radiation circular dichroism. Changing the cation associated with heparan sulfate is sufficient to alter the conformation and stability of complexes formed between heparan sulfate and lysozyme, substantially reducing the stability of the protein. Complexes of heparan sulfate and cations, such as Zn, which are abundant in the brain, may provide alternative folding routes for proteins.

  20. Heparan sulfate mediates trastuzumab effect in breast cancer cells

    PubMed Central

    2013-01-01

    Background Trastuzumab is an antibody widely used in the treatment of breast cancer cases that test positive for the human epidermal growth factor receptor 2 (HER2). Many patients, however, become resistant to this antibody, whose resistance has become a major focus in breast cancer research. But despite this interest, there are still no reliable markers that can be used to identify resistant patients. A possible role of several extracellular matrix (ECM) components—heparan sulfate (HS), Syn-1(Syndecan-1) and heparanase (HPSE1)—in light of the influence of ECM alterations on the action of several compounds on the cells and cancer development, was therefore investigated in breast cancer cell resistance to trastuzumab. Methods The cDNA of the enzyme responsible for cleaving HS chains from proteoglycans, HPSE1, was cloned in the pEGFP-N1 plasmid and transfected into a breast cancer cell lineage. We evaluated cell viability after trastuzumab treatment using different breast cancer cell lines. Trastuzumab and HS interaction was investigated by confocal microscopy and Fluorescence Resonance Energy Transfer (FRET). The profile of sulfated glycosaminoglycans was also investigated by [35S]-sulfate incorporation. Quantitative RT-PCR and immunofluorescence were used to evaluate HPSE1, HER2 and Syn-1 mRNA expression. HPSE1 enzymatic activity was performed using biotinylated heparan sulfate. Results Breast cancer cell lines responsive to trastuzumab present higher amounts of HER2, Syn-1 and HS on the cell surface, but lower levels of secreted HS. Trastuzumab and HS interaction was proven by FRET analysis. The addition of anti-HS to the cells or heparin to the culture medium induced resistance to trastuzumab in breast cancer cells previously sensitive to this monoclonal antibody. Breast cancer cells transfected with HPSE1 became resistant to trastuzumab, showing lower levels of HER2, Syn-1 and HS on the cell surface. In addition, HS shedding was increased significantly in

  1. Heparan sulfate proteoglycans: a sugar code for vertebrate development?

    PubMed

    Poulain, Fabienne E; Yost, H Joseph

    2015-10-15

    Heparan sulfate proteoglycans (HSPGs) have long been implicated in a wide range of cell-cell signaling and cell-matrix interactions, both in vitro and in vivo in invertebrate models. Although many of the genes that encode HSPG core proteins and the biosynthetic enzymes that generate and modify HSPG sugar chains have not yet been analyzed by genetics in vertebrates, recent studies have shown that HSPGs do indeed mediate a wide range of functions in early vertebrate development, for example during left-right patterning and in cardiovascular and neural development. Here, we provide a comprehensive overview of the various roles of HSPGs in these systems and explore the concept of an instructive heparan sulfate sugar code for modulating vertebrate development. PMID:26487777

  2. Synthetic heparin and heparan sulfate oligosaccharides and their protein interactions.

    PubMed

    Zulueta, Medel Manuel L; Lin, Shu-Yi; Hu, Yu-Peng; Hung, Shang-Cheng

    2013-12-01

    Heparin and heparan sulfate bind a host of basic proteins that take advantage of the sugar's dense structural information. The significance of these interactions in various aspects of development, physiology, and disease stimulated keen interest in evaluating structure-activity relationships. The well-defined heparin and heparan sulfate oligosaccharides needed for these studies can be mainly accessed by chemical synthesis and, more recently by chemoenzymatic means. The various synthetic strategies available to chemical synthesis have recently enabled the acquisition of several regular and irregular sequences, including a number of dodecasaccharides, through improved coupling methods and judicial protecting group manipulations. Controlled chain elongation and critical application of modification enzymes allowed the generation of well-defined constructs via chemoenzymatic synthesis. Investigations of various protein interactions with the synthetic constructs delivered valuable information that could aid future drug development endeavors. PMID:24182748

  3. Heparan Sulfate Proteoglycan Metabolism and the Fate of Grafted Tissues

    PubMed Central

    Wrenshall, Lucile E.; Johnson, Geoffrey B.; Cascalho, Marilia

    2016-01-01

    Tissue and organ transplants between genetically distinct individuals are always or nearly always rejected. The universality and speed of transplant rejection distinguishes this immune response from all others. Although this distinction is incompletely understood, some efforts to shed light on transplant rejection have revealed broader insights, including a relationship between activation of complement in grafted tissues, the metabolism of heparan sulfate proteoglycan and the nature of immune and inflammatory responses that ensue. Complement activation on cell surfaces, especially on endothelial cell surfaces, causes the shedding heparan sulfate, an acidic saccharide, from the cell surface and neighboring extracellular matrix. Solubilized in this way, heparan sulfate can activate leukocytes via toll like receptor-4, triggering inflammatory responses and activating dendritic cells, which migrate to regional lymphoid organs where they spark and to some extent govern cellular immune responses. In this way local ischemia, tissue injury and infection, exert systemic impact on immunity. Whether or in what circumstances this series of events explains the distinct characteristics of the immune response to transplants is still unclear but the events offer insight into the inception of immunity under the sub-optimal conditions accompanying infection and mechanisms by which infection and tissue injury engender systemic inflammation. PMID:26306447

  4. Hyphenated techniques for the analysis of heparin and heparan sulfate

    PubMed Central

    Yang, Bo; Solakyildirim, Kemal; Chang, Yuqing

    2011-01-01

    The elucidation of the structure of glycosaminoglycan has proven to be challenging for analytical chemists. Molecules of glycosaminoglycan have a high negative charge and are polydisperse and microheterogeneous, thus requiring the application of multiple analytical techniques and methods. Heparin and heparan sulfate are the most structurally complex of the glycosaminoglycans and are widely distributed in nature. They play critical roles in physiological and pathophysiological processes through their interaction with heparin-binding proteins. Moreover, heparin and low-molecular weight heparin are currently used as pharmaceutical drugs to control blood coagulation. In 2008, the health crisis resulting from the contamination of pharmaceutical heparin led to considerable attention regarding their analysis and structural characterization. Modern analytical techniques, including high-performance liquid chromatography, capillary electrophoresis, mass spectrometry, and nuclear magnetic resonance spectroscopy, played critical roles in this effort. A successful combination of separation and spectral techniques will clearly provide a critical advantage in the future analysis of heparin and heparan sulfate. This review focuses on recent efforts to develop hyphenated techniques for the analysis of heparin and heparan sulfate. PMID:20853165

  5. Expanding the 3-O-Sulfate Proteome-Enhanced Binding of Neuropilin-1 to 3-O-Sulfated Heparan Sulfate Modulates Its Activity.

    PubMed

    Thacker, Bryan E; Seamen, Emylie; Lawrence, Roger; Parker, Matthew W; Xu, Yongmei; Liu, Jian; Vander Kooi, Craig W; Esko, Jeffrey D

    2016-04-15

    Binding of proteins to heparan sulfate is driven predominantly by electrostatic interactions between positively charged amino acid residues in the protein and negatively charged sulfate groups located at various positions along the polysaccharide chain. Although many heparin/heparan-sulfate-binding proteins have been described, few exhibit preferential binding for heparan sulfates containing relatively rare 3-O-sulfated glucosamine residues. To expand the "3-O-sulfate proteome," affinity matrices were created from Chinese hamster ovary (CHO) cell heparan sulfate engineered in vitro with and without 3-O-sulfate groups. Fractionation of different animal sera yielded several proteins that bound specifically to columns containing 3-O-sulfated heparan sulfate modified by two members of the heparan sulfate 3-O-sulfotransferase superfamily, Hs3st1 and Hs3st2. Neuropilin-1 was analyzed in detail because it has been implicated in angiogenesis and axon guidance. We show that 3-O-sulfation enhanced the binding of neuropilin-1 to heparan sulfate immobilized on plastic plates and to heparan sulfate present on cultured cells. Chemoenzymatically synthesized 3-O-sulfated heparan sulfate dodecamers protected neuropilin-1 from thermal denaturation and inhibited neuropilin-1-dependent, semaphorin-3a-induced growth cone collapse of neurons derived from murine dorsal root ganglia. The effect of 3-O-sulfation was cell autonomous and specific to Hs3st2 based on collapse assays of neurons derived from Hs3st1- and Hs3st2-deficient mice. Finally, 3-O-sulfated heparan sulfate enhanced the inhibition of endothelial cell sprouting by exogenous heparan sulfate. These findings demonstrate a reliable method to identify members of the 3-O-sulfate proteome and that 3-O-sulfation of heparan sulfate can modulate axonal growth cone collapse and endothelial cell sprouting. PMID:26731579

  6. Distinctive expression patterns of heparan sulfate O-sulfotransferases and regional differences in heparan sulfate structure in chick limb buds.

    PubMed

    Nogami, Ken; Suzuki, Hiroaki; Habuchi, Hiroko; Ishiguro, Naoki; Iwata, Hisashi; Kimata, Koji

    2004-02-27

    The skeletal tissue development and patterning in chick limb buds are known to be under the spacio-temporal control of various heparin-binding cell growth factors such as fibroblast growth factors and bone morphogenetic proteins. Different structural regions on heparan sulfate (HS) chains of proteoglycans could be implicated in regional differences in the binding capacities of these cell growth factors, by which they could selectively interact with targeted cells and regulate their signaling in those processes. In this study we first demonstrated by cDNA cloning that one heparan sulfate 2-O-sulfotransferase (HS2ST) and two isoforms of heparan sulfate 6-O-sulfotransferase (HS6ST-1 and -2) occurred in chick embryos and had different substrate specificities each other. We next showed by whole mount in situ hybridization that the HS6ST-1 and HS6ST-2 transcripts were preferentially localized to the anterior proximal region and at the posterior proximal region of the limb bud, respectively, whereas the HS2ST transcript was distributed rather uniformly throughout the bud. Analyses of the structures of HS from different regions of the wing buds have shown variation in that 6-O-sulfated residues are more abundant in the proximal than distal region, whereas iduronosyl 6-O-sulfated residues are abundant in the anterior proximal region and glucuronosyl 6-O-sulfated residues in the posterior proximal region. These results suggest that HS with different sulfation patterns created with multiple sulfotransferase activities provides an appropriate extracellular environment for morphogenetic signal transduction. PMID:14660620

  7. De Novo Sequencing of Complex Mixtures of Heparan Sulfate Oligosaccharides.

    PubMed

    Huang, Rongrong; Zong, Chengli; Venot, Andre; Chiu, Yulun; Zhou, Dandan; Boons, Geert-Jan; Sharp, Joshua S

    2016-05-17

    Here, we describe the first sequencing method of a complex mixture of heparan sulfate tetrasaccharides by LC-MS/MS. Heparin and heparan sulfate (HS) are linear polysaccharides that are modified in a complex manner by N- and O-sulfation, N-acetylation, and epimerization of the uronic acid. Heparin and HS are involved in various essential cellular communication processes. The structural analysis of these glycosaminoglycans is challenging due to the lability of their sulfate groups, the high heterogeneity of modifications, and the epimerization of the uronic acids. While advances in liquid chromatography (LC) and mass spectrometry (MS) have enabled compositional profiling of HS oligosaccharide mixtures, online separation and detailed structural analysis of isomeric and epimeric HS mixtures has not been achieved. Here, we report the development and evaluation of a chemical derivatization and tandem mass spectrometry method that can separate and identify isomeric and epimeric structures from complex mixtures. A series of well-defined synthetic HS tetrasaccharides varying in sulfation patterns and uronic acid epimerization were analyzed by chemical derivatization and LC-MS/MS. These synthetic compounds made it possible to establish relationships between HS structure, chromatographic behavior and MS/MS fragmentation characteristics. Using the analytical characteristics determined through the analysis of the synthetic HS tetrasaccharide standards, an HS tetrasacharide mixture derived from natural sources was successfully sequenced. This method represents the first sequencing of complex mixtures of HS oligosaccharides, an essential milestone in the analysis of structure-function relationships of these carbohydrates. PMID:27087275

  8. Stromal heparan sulfate differentiates neuroblasts to suppress neuroblastoma growth

    PubMed Central

    Knelson, Erik H.; Gaviglio, Angela L.; Nee, Jasmine C.; Starr, Mark D.; Nixon, Andrew B.; Marcus, Stephen G.; Blobe, Gerard C.

    2014-01-01

    Neuroblastoma prognosis is dependent on both the differentiation state and stromal content of the tumor. Neuroblastoma tumor stroma is thought to suppress neuroblast growth via release of soluble differentiating factors. Here, we identified critical growth-limiting components of the differentiating stroma secretome and designed a potential therapeutic strategy based on their central mechanism of action. We demonstrated that expression of heparan sulfate proteoglycans (HSPGs), including TβRIII, GPC1, GPC3, SDC3, and SDC4, is low in neuroblasts and high in the Schwannian stroma. Evaluation of neuroblastoma patient microarray data revealed an association between TGFBR3, GPC1, and SDC3 expression and improved prognosis. Treatment of neuroblastoma cell lines with soluble HSPGs promoted neuroblast differentiation via FGFR1 and ERK phosphorylation, leading to upregulation of the transcription factor inhibitor of DNA binding 1 (ID1). HSPGs also enhanced FGF2-dependent differentiation, and the anticoagulant heparin had a similar effect, leading to decreased neuroblast proliferation. Dissection of individual sulfation sites identified 2-O, 3-O-desulfated heparin (ODSH) as a differentiating agent, and treatment of orthotopic xenograft models with ODSH suppressed tumor growth and metastasis without anticoagulation. These studies support heparan sulfate signaling intermediates as prognostic and therapeutic neuroblastoma biomarkers and demonstrate that tumor stroma biology can inform the design of targeted molecular therapeutics. PMID:24937430

  9. Distribution of Heparan Sulfate Oligosaccharides in Murine Mucopolysaccharidosis Type IIIA

    PubMed Central

    Mason, Kerryn; Meikle, Peter; Hopwood, John; Fuller, Maria

    2014-01-01

    Heparan sulfate (HS) catabolism begins with endo-degradation of the polysaccharide to smaller HS oligosaccharides, followed by the sequential action of exo-enzymes to reduce these oligosaccharides to monosaccharides and inorganic sulfate. In mucopolysaccharidosis type IIIA (MPS IIIA) the exo-enzyme, N-sulfoglucosamine sulfohydrolase, is deficient resulting in an inability to hydrolyze non-reducing end glucosamine N-sulfate esters. Consequently, partially degraded HS oligosaccharides with non-reducing end glucosamine sulfate esters accumulate. We investigated the distribution of these HS oligosaccharides in tissues of a mouse model of MPS IIIA using high performance liquid chromatography electrospray ionization-tandem mass spectrometry. Oligosaccharide levels were compared to total uronic acid (UA), which was used as a measure of total glycosaminoglycan. Ten oligosaccharides, ranging in size from di- to hexasaccharides, were present in all the tissues examined including brain, spleen, lung, heart, liver, kidney and urine. However, the relative levels varied up to 10-fold, suggesting different levels of HS turnover and storage. The relationship between the di- and tetrasaccharides and total UA was tissue specific with spleen and kidney showing a different disaccharide:total UA ratio than the other tissues. The hexasaccharides showed a stronger correlation with total UA in all tissue types suggesting that hexasaccharides may more accurately reflect the storage burden in these tissues. PMID:25513953

  10. A role for heparan sulfate in viral surfing

    SciTech Connect

    Oh, Myung-Jin; Akhtar, Jihan; Desai, Prashant; Shukla, Deepak

    2010-01-01

    Heparan sulfate (HS) moieties on cell surfaces are known to provide attachment sites for many viruses including herpes simplex virus type-1 (HSV-1). Here, we demonstrate that cells respond to HSV-1 infection by enhancing filopodia formation. Filopodia express HS and are subsequently utilized for the transport of HSV-1 virions to cell bodies in a surfing-like phenomenon, which is facilitated by the underlying actin cytoskeleton and is regulated by transient activation of a small Rho GTPase, Cdc42. We also demonstrate that interaction between a highly conserved herpesvirus envelope glycoprotein B (gB) and HS is required for surfing. A HSV-1 mutant that lacks gB fails to surf and quantum dots conjugated with gB demonstrate surfing-like movements. Our data demonstrates a novel use of a common receptor, HS, which could also be exploited by multiple viruses and quite possibly, many additional ligands for transport along the plasma membrane.

  11. Heparan Sulfate Differences in Rheumatoid Arthritis versus Healthy Sera

    PubMed Central

    López-Hoyos, Marcos; Seo, Youjin; Andaya, Armann; Leary, Julie A.

    2015-01-01

    Heparan sulfate (HS) is a complex and highly variable polysaccharide, expressed ubiquitously on the cell surface as HS proteoglycans (HSPGs), and found in the extracellular matrix as free HS fragments. Its heterogeneity due to various acetylation and sulfation patterns endows a multitude of functions. In animal tissues, HS interacts with a wide range of proteins to mediate numerous biological activities; given its multiple roles in inflammation processes, characterization of HS in human serum has significant potential for elucidating disease mechanisms. Historically, investigation of HS was limited by its low concentration in human serum, together with the complexity of the serum matrix. In this study, we used a modified mass spectrometry method to examine HS disaccharide profiles in the serum of 50 women with rheumatoid arthritis (RA), and compared our results to 51 sera from healthy women. Using various purification methods and online LC-MS/MS, we discovered statistically significant differences in the sulfation and acetylation patterns between populations. Since early diagnosis of RA is considered important in decelerating the disease's progression, identification of specific biomolecule characterizations may provide crucial information towards developing new therapies for suppressing the disease in its early stages. This is the first report of potential glycosaminoglycan biomarkers for RA found in human sera, while acknowledging the obvious fact that a larger population set, and more stringent collection parameters, will need to be investigated in the future. PMID:25217862

  12. Heparan Sulfate Modulates Neutrophil and Endothelial Function in Antibacterial Innate Immunity

    PubMed Central

    Xu, Ding; Olson, Joshua; Cole, Jason N.; van Wijk, Xander M.; Brinkmann, Volker; Zychlinsky, Arturo; Nizet, Victor

    2015-01-01

    Recently, we showed that endothelial heparan sulfate facilitates entry of a bacterial pathogen into the central nervous system. Here, we show that normal bactericidal activity of neutrophils is influenced by the sulfation pattern of heparan sulfate. Inactivation of heparan sulfate uronyl 2-O-sulfotransferase (Hs2st) in neutrophils substantially reduced their bactericidal activity, and Hs2st deficiency rendered mice more susceptible to systemic infection with the pathogenic bacterium group B Streptococcus. Specifically, altered sulfation of heparan sulfate in mutant neutrophils affected formation of neutrophil extracellular traps while not influencing phagocytosis, production of reactive oxygen species, or secretion of granular proteases. Heparan sulfate proteoglycan(s) is present in neutrophil extracellular traps, modulates histone affinity, and modulates their microbial activity. Hs2st-deficient brain endothelial cells show enhanced binding to group B Streptococcus and are more susceptible to apoptosis, likely contributing to the observed increase in dissemination of group B Streptococcus into the brain of Hs2st-deficient mice following intravenous challenge. Taken together, our data provide strong evidence that heparan sulfate from both neutrophils and the endothelium plays important roles in modulating innate immunity. PMID:26150541

  13. Heparan Sulfate Modulates Neutrophil and Endothelial Function in Antibacterial Innate Immunity.

    PubMed

    Xu, Ding; Olson, Joshua; Cole, Jason N; van Wijk, Xander M; Brinkmann, Volker; Zychlinsky, Arturo; Nizet, Victor; Esko, Jeffrey D; Chang, Yung-Chi

    2015-09-01

    Recently, we showed that endothelial heparan sulfate facilitates entry of a bacterial pathogen into the central nervous system. Here, we show that normal bactericidal activity of neutrophils is influenced by the sulfation pattern of heparan sulfate. Inactivation of heparan sulfate uronyl 2-O-sulfotransferase (Hs2st) in neutrophils substantially reduced their bactericidal activity, and Hs2st deficiency rendered mice more susceptible to systemic infection with the pathogenic bacterium group B Streptococcus. Specifically, altered sulfation of heparan sulfate in mutant neutrophils affected formation of neutrophil extracellular traps while not influencing phagocytosis, production of reactive oxygen species, or secretion of granular proteases. Heparan sulfate proteoglycan(s) is present in neutrophil extracellular traps, modulates histone affinity, and modulates their microbial activity. Hs2st-deficient brain endothelial cells show enhanced binding to group B Streptococcus and are more susceptible to apoptosis, likely contributing to the observed increase in dissemination of group B Streptococcus into the brain of Hs2st-deficient mice following intravenous challenge. Taken together, our data provide strong evidence that heparan sulfate from both neutrophils and the endothelium plays important roles in modulating innate immunity. PMID:26150541

  14. Heparan sulfate is required for bone morphogenetic protein-7 signaling.

    PubMed

    Irie, Atsushi; Habuchi, Hiroko; Kimata, Koji; Sanai, Yutaka

    2003-09-01

    Although genetic studies have suggested that heparan sulfate (HS) is involved in bone morphogenetic protein (BMP)-mediated embryonic morphogenesis, it is unclear whether HS is directly involved in BMP-mediated signaling. Here, we investigate the involvement of HS in BMP-7 signaling. We show that HS and heparin chains specifically bind to BMP-7. Digestion of cell-surface HS with heparitinase interferes with BMP-7-mediated Smad phosphorylation in ROS 17/2.8 osteoblastic cells. Inhibiting sulfation of cell-surface HS with chlorate also causes interruption of Smad phosphorylation. Addition of exogenous heparin to ROS 17/2.8 cells prevents BMP-7-mediated Smad phosphorylation rather than enhances the BMP-7 signal, suggesting that HS should be anchored on the plasma membrane for BMP signaling. Moreover, BMP-7 binding to ROS 17/2.8 cells is inhibited by chlorate treatment and exogenous application of heparin. These results demonstrate that BMP-7 specifically binds to cell-surface HS and the BMP-7-HS interaction is required for BMP-7 signaling. PMID:12927798

  15. Sulf-2, a heparan sulfate endosulfatase, promotes human lung carcinogenesis

    PubMed Central

    Lemjabbar-Alaoui, Hassan; van Zante, Annemieke; Singer, Mark S.; Xue, Qing; Wang, Yang-Qing; Tsay, Durwin; He, Biao; Jablons, David M.; Rosen, Steven D.

    2009-01-01

    Heparan sulfate proteoglycans (HSPGs) bind to multiple growth factors/morphogens and regulate their signaling. 6-O-sulfation (6S) of glucosamine within HS-chains is critical for many of these ligand interactions. Sulf-1 and Sulf-2, which are extracellular neutral-pH sulfatases, provide a novel post-synthetic mechanism for regulation of HSPG function by removing 6S from intact HS-chains. The Sulfs can thereby modulate several signaling pathways, including the promotion of Wnt signaling. We found induction of SULF2 transcripts and Sulf-2 protein in human lung adenocarcinoma and squamous cell carcinoma, the two major classes of non-small cell lung cancers (NSCLC). We confirmed widespread Sulf-2 protein expression in tumor cells of 10/10 surgical specimens of human lung squamous carcinomas. We studied five Sulf-2+ NSCLC cell lines, including two which were derived by cigarette-smoke transformation of bronchial epithelial cells. shRNA-mediated Sulf-2 knockdown in these lines caused an increase in 6S on their cell surface and in parallel reversed their transformed phenotype in vitro, eliminated autocrine Wnt signaling, and strongly blunted xenograft tumor formation in nude mice. Conversely, forced Sulf-2 expression in non-malignant bronchial epithelial cells produced a partially transformed phenotype. Our findings support an essential role for Sulf-2 in lung cancer, the leading cancer killer. PMID:19855436

  16. Novel Heparan Sulfate-Binding Peptides for Blocking Herpesvirus Entry

    PubMed Central

    Dogra, Pranay; Martin, Emily B.; Williams, Angela; Richardson, Raphael L.; Foster, James S.; Hackenback, Nicole; Kennel, Stephen J.; Sparer, Tim E.; Wall, Jonathan S.

    2015-01-01

    Human cytomegalovirus (HCMV) infection can lead to congenital hearing loss and mental retardation. Upon immune suppression, reactivation of latent HCMV or primary infection increases morbidity in cancer, transplantation, and late stage AIDS patients. Current treatments include nucleoside analogues, which have significant toxicities limiting their usefulness. In this study we screened a panel of synthetic heparin-binding peptides for their ability to prevent CMV infection in vitro. A peptide designated, p5+14 exhibited ~ 90% reduction in murine CMV (MCMV) infection. Because negatively charged, cell-surface heparan sulfate proteoglycans (HSPGs), serve as the attachment receptor during the adsorption phase of the CMV infection cycle, we hypothesized that p5+14 effectively competes for CMV adsorption to the cell surface resulting in the reduction in infection. Positively charged Lys residues were required for peptide binding to cell-surface HSPGs and reducing viral infection. We show that this inhibition was not due to a direct neutralizing effect on the virus itself and that the peptide blocked adsorption of the virus. The peptide also inhibited infection of other herpesviruses: HCMV and herpes simplex virus 1 and 2 in vitro, demonstrating it has broad-spectrum antiviral activity. Therefore, this peptide may offer an adjunct therapy for the treatment of herpes viral infections and other viruses that use HSPGs for entry. PMID:25992785

  17. Heparan sulfate in lung morphogenesis: The elephant in the room.

    PubMed

    Thompson, Sophie M; Jesudason, Edwin C; Turnbull, Jeremy E; Fernig, David G

    2010-03-01

    Heparan sulfate (HS) is a structurally complex polysaccharide located on the cell surface and in the extracellular matrix, where it participates in numerous biological processes through interactions with a vast number of regulatory proteins such as growth factors and morphogens. HS is crucial for lung development; disruption of HS synthesis in flies and mice results in a major aberration of airway branching, and in mice, it results in neonatal death as a consequence of malformed lungs and respiratory distress. Epithelial-mesenchymal interactions governing lung morphogenesis are directed by various diffusible proteins, many of which bind to, and are regulated by HS, including fibroblast growth factors, sonic hedgehog, and bone morphogenetic proteins. The majority of research into the molecular mechanisms underlying defective lung morphogenesis and pulmonary pathologies, such as bronchopulmonary dysplasia and pulmonary hypoplasia associated with congenital diaphragmatic hernia (CDH), has focused on abnormal protein expression. The potential contribution of HS to abnormalities of lung development has yet to be explored to any significant extent, which is somewhat surprising given the abnormal lung phenotype exhibited by mutant mice synthesizing abnormal HS. This review summarizes our current understanding of the role of HS and HS-binding proteins in lung morphogenesis and will present in vitro and in vivo evidence for the fundamental importance of HS in airway development. Finally, we will discuss the future possibility of HS-based therapeutics for ameliorating insufficient lung growth associated with lung diseases such as CDH. PMID:20301217

  18. Adeno-associated virus type 2 binding study on model heparan sulfate surface

    NASA Astrophysics Data System (ADS)

    Negishi, Atsuko; Liu, Jian; McCarty, Douglas; Samulski, Jude; Superfine, Richard

    2003-11-01

    Understanding the mechanisms involved in virus infections is useful in its application in areas such as gene therapy, drug development and delivery, and biosensors. In collaboration with UNC Gene Therapy Center and School of Pharmacy, we are specifically looking at the interaction between human parvovirus adeno-associated virus type 2 (AAV2), a potential viral vector, and heparan sulfate proteoglycan (HSPG), a known cell surface receptor for AAV2. Recent development in glycobiology has shown that some protein-polysaccharide binding is sugar sequence dependent. Heparan sulfate (HS) is a polysaccharide chain of sulfated iduronic/glucuronic and sulfate glucosamine residues and can be differentiated into sequence specific structures by enzymes. These enzymatic modifications, known as heparan sulfate sulfotransferase modified modifications, have been shown to change the biological nature of heparan sulfate such as specific binding to proteins and viruses. For understanding HS-assisted viral infection mechanisms, we are interested in investigating the binding affinity and stability of AAV to different HS structures. We have developed a model heparan sulfate surface in which AAV adsorption studies are done and analyzed using the atomic force microscope (AFM). In addition, a miniArray assay has been created to facilitate to this study. Adsorption studies are done in 4 white LED wells with approximately 3 mm2 reaction areas which minimize sample use and waste.

  19. GAG-ID: Heparan Sulfate (HS) and Heparin Glycosaminoglycan High-Throughput Identification Software.

    PubMed

    Chiu, Yulun; Huang, Rongrong; Orlando, Ron; Sharp, Joshua S

    2015-06-01

    Heparin and heparan sulfate are very large linear polysaccharides that undergo a complex variety of modifications and are known to play important roles in human development, cell-cell communication and disease. Sequencing of highly sulfated glycosaminoglycan oligosaccharides like heparin and heparan sulfate by liquid chromatography-tandem mass spectrometry (LC-MS/MS) remains challenging because of the presence of multiple isomeric sequences in a complex mixture of oligosaccharides, the difficulties in separation of these isomers, and the facile loss of sulfates in MS/MS. We have previously introduced a method for structural sequencing of heparin/heparan sulfate oligosaccharides involving chemical derivatizations that replace labile sulfates with stable acetyl groups. This chemical derivatization scheme allows the use of reversed phase LC for high-resolution separation and MS/MS for sequencing of isomeric heparan sulfate oligosaccharides. However, because of the large number of analytes present in complex mixtures of heparin/HS oligosaccharides, the resulting LC-MS/MS data sets are large and cannot be annotated with existing glycomics software because of the specifically designed chemical derivatization strategy. We have developed a tool, called GAG-ID, to automate the interpretation of derivatized heparin/heparan sulfate LC-MS/MS data based on a modified multivariate hypergeometric distribution to weight the annotation of more intense peaks. The software is tested on a LC-MS/MS data set collected from a mixture of 21 synthesized heparan sulfate tetrasaccharides. By testing the discrimination of scoring with this system, we show that stratifying peaks into different intensity classes benefits the discrimination of scoring, and GAG-ID is able to properly assign all 21 synthetic tetrasaccharides in a defined mixture from a single LC-MS/MS run. PMID:25887393

  20. GAG-ID: Heparan Sulfate (HS) and Heparin Glycosaminoglycan High-Throughput Identification Software*

    PubMed Central

    Chiu, Yulun; Huang, Rongrong; Orlando, Ron; Sharp, Joshua S.

    2015-01-01

    Heparin and heparan sulfate are very large linear polysaccharides that undergo a complex variety of modifications and are known to play important roles in human development, cell–cell communication and disease. Sequencing of highly sulfated glycosaminoglycan oligosaccharides like heparin and heparan sulfate by liquid chromatography-tandem mass spectrometry (LC-MS/MS) remains challenging because of the presence of multiple isomeric sequences in a complex mixture of oligosaccharides, the difficulties in separation of these isomers, and the facile loss of sulfates in MS/MS. We have previously introduced a method for structural sequencing of heparin/heparan sulfate oligosaccharides involving chemical derivatizations that replace labile sulfates with stable acetyl groups. This chemical derivatization scheme allows the use of reversed phase LC for high-resolution separation and MS/MS for sequencing of isomeric heparan sulfate oligosaccharides. However, because of the large number of analytes present in complex mixtures of heparin/HS oligosaccharides, the resulting LC-MS/MS data sets are large and cannot be annotated with existing glycomics software because of the specifically designed chemical derivatization strategy. We have developed a tool, called GAG-ID, to automate the interpretation of derivatized heparin/heparan sulfate LC-MS/MS data based on a modified multivariate hypergeometric distribution to weight the annotation of more intense peaks. The software is tested on a LC-MS/MS data set collected from a mixture of 21 synthesized heparan sulfate tetrasaccharides. By testing the discrimination of scoring with this system, we show that stratifying peaks into different intensity classes benefits the discrimination of scoring, and GAG-ID is able to properly assign all 21 synthetic tetrasaccharides in a defined mixture from a single LC-MS/MS run. PMID:25887393

  1. Isolation of low-molecular-weight heparin/heparan sulfate from marine sources.

    PubMed

    Saravanan, Ramachandran

    2014-01-01

    The glycosaminoglycan (heparin and heparan sulfate) are polyanionic sulfated polysaccharides mostly recognized for its anticoagulant activity. In many countries, low-molecular-weight heparins have replaced the unfractionated heparin, owing to its high bioavailability, half-life, and less adverse effect. The low-molecular-weight heparins differ in mode of preparation (chemical or enzymatic synthesis and chromatography fractionations) and as a consequence in molecular weight distribution, chemical structure, and pharmacological activities. Bovine and porcine body parts are at present used for manufacturing of commercial heparins, and the appearance of mad cow disease and Creutzfeldt-Jakob disease in humans has limited the use of bovine heparin. Consequently, marine organisms come across the new resource for the production of low-molecular-weight heparin and heparan sulfate. The importance of this chapter suggests that the low-molecular-weight heparin and heparan sulfate from marine species could be alternative sources for commercial heparin. PMID:25081076

  2. Complex Cooperative Functions of Heparan Sulfate Proteoglycans Shape Nervous System Development in Caenorhabditis elegans

    PubMed Central

    Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Tecle, Eillen; Gomez, Nathali; Bülow, Hannes E.

    2014-01-01

    The development of the nervous system is a complex process requiring the integration of numerous molecular cues to form functional circuits. Many cues are regulated by heparan sulfates, a class of linear glycosaminoglycan polysaccharides. These sugars contain distinct modification patterns that regulate protein–protein interactions. Misexpressing the homolog of KAL-1/anosmin-1, a neural cell adhesion molecule mutant in Kallmann syndrome, in Caenorhabditis elegans causes a highly penetrant, heparan sulfate–dependent axonal branching phenotype in AIY interneurons. In an extended forward genetic screen for modifiers of this phenotype, we identified alleles in new as well as previously identified genes involved in HS biosynthesis and modification, namely the xylosyltransferase sqv-6, the HS-6-O-sulfotransferase hst-6, and the HS-3-O-sulfotransferase hst-3.2. Cell-specific rescue experiments showed that different HS biosynthetic and modification enzymes can be provided cell-nonautonomously by different tissues to allow kal-1-dependent branching of AIY. In addition, we show that heparan sulfate proteoglycan core proteins that carry the heparan sulfate chains act genetically in a highly redundant fashion to mediate kal-1-dependent branching in AIY neurons. Specifically, lon-2/glypican and unc-52/perlecan act in parallel genetic pathways and display synergistic interactions with sdn-1/syndecan to mediate kal-1 function. Because all of these heparan sulfate core proteins have been shown to act in different tissues, these studies indicate that KAL-1/anosmin-1 requires heparan sulfate with distinct modification patterns of different cellular origin for function. Our results support a model in which a three-dimensional scaffold of heparan sulfate mediates KAL-1/anosmin-1 and intercellular communication through complex and cooperative interactions. In addition, the genes we have identified could contribute to the etiology of Kallmann syndrome in humans. PMID:25098771

  3. Role of 6-O-Sulfated Heparan Sulfate in Chronic Renal Fibrosis*

    PubMed Central

    Alhasan, Abd A.; Spielhofer, Julia; Kusche-Gullberg, Marion; Kirby, John A.; Ali, Simi

    2014-01-01

    Heparan sulfate (HS) plays a crucial role in the fibrosis associated with chronic allograft dysfunction by binding and presenting cytokines and growth factors to their receptors. These interactions critically depend on the distribution of 6-O-sulfated glucosamine residues, which is generated by glucosaminyl-6-O-sulfotransferases (HS6STs) and selectively removed by cell surface HS-6-O-endosulfatases (SULFs). Using human renal allografts we found increased expression of 6-O-sulfated HS domains in tubular epithelial cells during chronic rejection as compared with the controls. Stimulation of renal epithelial cells with TGF-β induced SULF2 expression. To examine the role of 6-O-sulfated HS in the development of fibrosis, we generated stable HS6ST1 and SULF2 overexpressing renal epithelial cells. Compared with mock transfectants, the HS6ST1 transfectants showed significantly increased binding of FGF2 (p = 0.0086) and pERK activation. HS6ST1 transfectants displayed a relative increase in mono-6-O-sulfated disaccharides accompanied by a decrease in iduronic acid 2-O-sulfated disaccharide structures. In contrast, SULF2 transfectants showed significantly reduced FGF2 binding and phosphorylation of ERK. Structural analysis of HS showed about 40% down-regulation in 6-O-sulfation with a parallel increase in iduronic acid mono-2-O-sulfated disaccharides. To assess the relevance of these data in vivo we established a murine model of fibrosis (unilateral ureteric obstruction (UUO)). HS-specific phage display antibodies (HS3A8 and RB4EA12) showed significant increase in 6-O-sulfation in fibrotic kidney compared with the control. These results suggest an important role of 6-O-sulfation in the pathogenesis of fibrosis associated with chronic rejection. PMID:24878958

  4. Cytokines and growth factors cross-link heparan sulfate

    PubMed Central

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  5. In vitro biocompatibility and bioactivity of microencapsulated heparan sulfate.

    PubMed

    Luong-Van, Emma; Grøndahl, Lisbeth; Nurcombe, Victor; Cool, Simon

    2007-04-01

    The glycosaminoglycan sugar heparan sulfate (HS) is an attractive agent for the repair of bone defects due to its ability to regulate endogenous growth factors. The sustained delivery of HS to the localized wound site over the period of healing which can last for over 1 month may prove advantageous for its therapeutic use. In this study we investigated the encapsulation of HS by the water-in oil-in water (W(1)/O/W(2)) technique in polycaprolactone (PCL) microcapsules as a prolonged delivery device. Encapsulation efficiencies of 70% could be achieved by using a 1:1 mixture of dichloromethane (DCM) and acetone as the solvent in the organic phase, while DCM alone gave poor encapsulation. Although addition of polyvinyl alcohol (PVA) to the drug phase did not affect the size or drug loading of the microcapsules, it did however produce a large change in the morphology and drug distribution, which resulted in different release rates. Release from capsules made with PVA in the drug phase reached 60% after 40 days, while those made with water in the drug phase completed release after 20 days. In vitro biocompatibility studies were performed and detected no increase in cell death in human mesenchymal stem cells (hMSC) or induction of an inflammatory response in macrophages after exposure to release products from HS-loaded microcapsules. The released HS retained its ability to increase the proliferation of hMSC after the encapsulation process. These results indicate that encapsulation of HS by the W(1)/O/W(2) method creates a promising device for the repair of bone tissue. PMID:17257666

  6. Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin

    PubMed Central

    Bespalov, Maxim M.; Sidorova, Yulia A.; Tumova, Sarka; Ahonen-Bishopp, Anni; Magalhães, Ana Cathia; Kulesskiy, Evgeny; Paveliev, Mikhail; Rivera, Claudio; Rauvala, Heikki

    2011-01-01

    Glial cell line–derived neurotrophic factor (GDNF) family ligands (GFLs) are potent survival factors for dopaminergic neurons and motoneurons with therapeutic potential for Parkinson’s disease. Soluble GFLs bind to a ligand-specific glycosylphosphatidylinositol-anchored coreceptor (GDNF family receptor α) and signal through the receptor tyrosine kinase RET. In this paper, we show that all immobilized matrix-bound GFLs, except persephin, use a fundamentally different receptor. They interact with syndecan-3, a transmembrane heparan sulfate (HS) proteoglycan, by binding to its HS chains with high affinity. GFL–syndecan-3 interaction mediates both cell spreading and neurite outgrowth with the involvement of Src kinase activation. GDNF promotes migration of cortical neurons in a syndecan-3–dependent manner, and in agreement, mice lacking syndecan-3 or GDNF have a reduced number of cortical γ-aminobutyric acid–releasing neurons, suggesting a central role for the two molecules in cortical development. Collectively, syndecan-3 may directly transduce GFL signals or serve as a coreceptor, presenting GFLs to the signaling receptor RET. PMID:21200028

  7. Enterovirus 71 Uses Cell Surface Heparan Sulfate Glycosaminoglycan as an Attachment Receptor

    PubMed Central

    Tan, Chee Wah; Poh, Chit Laa; Sam, I-Ching

    2013-01-01

    Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor. PMID:23097443

  8. Up-Regulation of Heparan Sulfate 6-O-Sulfation in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Lu, Jingning; Auduong, Linda; White, Eric S.

    2014-01-01

    Heparan sulfate proteoglycans (HSPGs) are integral components of the lung. Changes in HSPGs have been documented in idiopathic pulmonary fibrosis (IPF). Many of the biological functions of HSPGs are mediated by heparan sulfate (HS) side chains, and little is understood about these side chains in the pathogenesis of IPF. The aims of this study were to compare HS structure between normal and IPF lungs and to examine how changes in HS regulate the fibrotic process. HS disaccharide analysis revealed that HS 6-O-sulfation was significantly increased in IPF lungs compared with normal lungs, concomitant with overexpression of HS 6-O-sulfotransferases 1 and 2 (HS6ST1/2) mRNA. Immunohistochemistry revealed that HS6ST2 was specifically expressed in bronchial epithelial cells, including those lining the honeycomb cysts in IPF lungs, whereas HS6ST1 had a broad expression pattern. Lung fibroblasts in the fibroblastic foci of IPF lungs expressed HS6ST1, and overexpression of HS6ST1 mRNA was observed in primary lung fibroblasts isolated from IPF lungs compared with those from normal lungs. In vitro, small interference RNA–mediated silencing of HS6ST1 in primary normal lung fibroblasts resulted in reduced Smad2 expression and activation and in reduced expression of collagen I and α-smooth muscle actin after TGF-β1 stimulation. Similar results were obtained in primary IPF lung fibroblasts. Furthermore, silencing of HS6ST1 in normal and IPF lung fibroblasts resulted in significant down-regulation of TβRIII (betaglycan). In summary, HS 6-O-sulfation is up-regulated in IPF with overexpression of HS6ST1 and HS6ST2, and overexpression of HS6ST1 in lung fibroblasts may regulate their fibrotic responses to TGF-β1. PMID:23962103

  9. Oligosaccharide library-based assessment of heparan sulfate 6-O-sulfotransferase substrate specificity.

    PubMed

    Jemth, Per; Smeds, Emanuel; Do, Anh-Tri; Habuchi, Hiroko; Kimata, Koji; Lindahl, Ulf; Kusche-Gullberg, Marion

    2003-07-01

    Heparan sulfate mediates numerous complex biological processes. Its action critically depends on the amount and the positions of O-sulfate groups (iduronyl 2-O-sulfates, glucosaminyl 6-O- and 3-O-sulfates) that form binding sites for proteins. The structures and distribution of these protein-binding domains are influenced by the expression and substrate specificity of heparan sulfate biosynthetic enzymes. We describe a general approach to assess substrate specificities of enzymes involved in glycosaminoglycan metabolism, here applied to 6-O-sulfotransferases involved in heparan sulfate biosynthesis. To understand how 2-O-sulfation affects subsequent 6-O-sulfation reactions, the substrate specificity of 6-O-sulfotransferase 3 was probed using substrates from a heparin-based octasaccharide library. Purified 3H-labeled N-sulfated octasaccharides from a library designed to sample 2-O-sulfated motifs were used as sulfate acceptors, 3'-phosphoadenosine 5'-phosphosulfate as sulfate donor, and cell extract from 6-O-sulfotransferase 3-overexpressing 293 cells as enzyme source in the 6-O-sulfotransferase-catalyzed reactions. The first 6-O-sulfate group was preferentially incorporated at the internal glucosamine unit of the octasaccharide substrate. As the reaction proceeded, the octasaccharides acquired three 6-O-sulfate groups. The specificities toward competing octasaccharide substrates, for 6-O-sulfotransferase 2 and 6-O-sulfotransferase 3, were determined using overexpressing 293 cell extracts and purified octasaccharides. Both 6-O-sulfotransferases showed a preference for 2-O-sulfated substrates. The specificity toward substrates with two to three 2-O-sulfate groups was three to five times higher as compared with octasaccharides with no or one 2-O-sulfate group. PMID:12702732

  10. Tetrasulfated disaccharide unit in heparan sulfate: enzymatic formation and tissue distribution.

    PubMed

    Mochizuki, Hideo; Yoshida, Keiichi; Shibata, Yuniko; Kimata, Koji

    2008-11-01

    We previously reported that the heparan sulfate 3-O-sulfotransferase (3OST)-5 produces a novel component of heparan sulfate, i.e. the tetrasulfated disaccharide (Di-tetraS) unit ( Mochizuki, H., Yoshida, K., Gotoh, M., Sugioka, S., Kikuchi, N., Kwon, Y.-D., Tawada, A., Maeyama, K., Inaba, N., Hiruma, T., Kimata, K., and Narimatsu, H. (2003) J. Biol. Chem. 278, 26780-26787 ). In the present study, we investigated the potential of other 3OST isoforms to produce Di-tetraS with heparan sulfate and heparin as acceptor substrates. 3OST-2, 3OST-3, and 3OST-4 produce Di-tetraS units as a major product from both substrates. 3OST-5 showed the same specificity for heparin, but the production from heparan sulfate was very low. Di-tetraS production by 3OST-1 was negligible. We then investigated the presence of Di-tetraS units in heparan sulfates from various rat tissues. Di-tetraS was detected in all of the tissues analyzed. Liver and spleen contain relatively high levels of Di-tetraS, 1.6 and 0.95%, respectively. However, the content of this unit in heart, large intestine, ileum, and lung is low, less than 0.2%. We further determined the expression levels of 3OST transcripts by quantitative real time PCR. The 3OST-3 transcripts are highly expressed in spleen and liver. The 3OST-2 and -4 are specifically expressed in brain. These results indicate that the Di-tetraS unit is widely distributed throughout the body as a rare and unique component of heparan sulfate and is synthesized by tissue-specific 3OST isoforms specific for Di-tetraS production. PMID:18757372

  11. Heparan sulfate 6-o-sulfotransferase is essential for muscle development in zebrafish.

    PubMed

    Bink, Robert J; Habuchi, Hiroko; Lele, Zsolt; Dolk, Edward; Joore, Jos; Rauch, Gerd-Jörg; Geisler, Robert; Wilson, Stephen W; den Hertog, Jeroen; Kimata, Koji; Zivkovic, Danica

    2003-08-15

    Heparan sulfate proteoglycans function in development and disease. They consist of a core protein with attached heparan sulfate chains that are altered by a series of carbohydrate-modifying enzymes and sulfotransferases. Here, we report on the identification and characterization of a gene encoding zebrafish heparan sulfate 6-O-sulfotransferase (hs6st) that shows high homology to other heparan sulfate 6-O-sulfotransferases. When expressed as a fusion protein in cultured cells, the protein shows specific 6-O-sulfotransferase activity and preferentially acts on the iduronosyl N-sulfoglycosamine. In the developing embryo, hs6st is expressed in the brain, the somites, and the fins; the same structures that were affected upon morpholino-mediated functional knockdown. Morpholino injections significantly inhibited 6-O- but not 2-O-sulfation as assessed by HPLC. Morphants display disturbed somite specification independent of the somite oscillator mechanism and have impaired muscle differentiation. In conclusion, our results show that transfer of sulfate to specific positions on glycosaminoglycans is essential for muscle development. PMID:12782624

  12. Heparan Sulfate Degradation: Relation to Tumor Invasive and Metastatic Properties of Mouse B16 Melanoma Sublines

    NASA Astrophysics Data System (ADS)

    Nakajima, Motowo; Irimura, Tatsuro; di Ferrante, Daniela; di Ferrante, Nicola; Nicolson, Garth L.

    1983-05-01

    After transport in the blood and implantation in the microcirculation, metastatic tumor cells must invade the vascular endothelium and underlying basal lamina. Mouse B16 melanoma sublines were used to determine the relation between metastatic properties and the ability of the sublines to degrade enzymatically the sulfated glycosaminoglycans present in the extracellular matrix of cultured vascular endothelial cells. Highly invasive and metastatic B16 sublines degraded matrix glycosaminoglycans faster than did sublines of lower metastatic potential. The main products of this matrix degradation were heparan sulfate fragments. Intact B16 cells (or their cell-free homogenates) with a high potential for lung colonization degraded purified heparan sulfate from bovine lung at higher rates than did B16 cells with a poor potential for lung colonization. Analysis of the degradation fragments indicated that B16 cells have a heparan sulfate endoglycosidase. Thus the abilities of B16 melanoma cells to extravasate and successfully colonize the lung may be related to their capacities to degrade heparan sulfate in the walls of pulmonary blood vessels.

  13. Inactivation of heparan sulfate 2-O-sulfotransferase accentuates neutrophil infiltration during acute inflammation in mice

    PubMed Central

    Axelsson, Jakob; Xu, Ding; Na Kang, Bit; Nussbacher, Julia K.; Handel, Tracy M.; Ley, Klaus; Sriramarao, P.

    2012-01-01

    Neutrophil recruitment and extravasation at sites of inflammation provide a mechanism for host defense. We showed previously that heparan sulfate, a type of sulfated glycosaminoglycan, facilitates neutrophil recruitment based on the reduction of neutrophil infiltration in mice in which the overall sulfation of the chains was reduced by selective inactivation of N-acetylglucosamine N-deacetylase-N-sulfotransferase (Ndst1) in endothelial cells. Here we show that inactivation of uronyl 2-O-sulfotransferase in endothelial cells (Hs2st), an enzyme that acts downstream from Ndst1, results in enhanced neutrophil recruitment in several models of acute inflammation. Enhanced neutrophil infiltration resulted in part from reduced rolling velocity under flow both in vivo and in vitro, which correlated with stronger binding of neutrophil L-selectin to mutant endothelial cells. Hs2st-deficient endothelial cells also displayed a striking increase in binding of IL-8 and macrophage inflammatory protein-2. The enhanced binding of these mediators of neutrophil recruitment resulted from a change in heparan sulfate structure caused by increased N-sulfation and 6-O-sulfation of glucosamine units in response to the decrease in 2-O-sulfation of uronic acid residues. This gain-of-function phenotype provides formidable evidence demonstrating the importance of endothelial heparan sulfate in inflammation and suggests a novel enzyme target for enhancing the innate immune response. PMID:22791291

  14. Characterization of a heparan sulfate 3-O-sulfotransferase-5, an enzyme synthesizing a tetrasulfated disaccharide.

    PubMed

    Mochizuki, Hideo; Yoshida, Keiichi; Gotoh, Masanori; Sugioka, Shigemi; Kikuchi, Norihiro; Kwon, Yeon-Dae; Tawada, Akira; Maeyama, Kennichi; Inaba, Niro; Hiruma, Toru; Kimata, Koji; Narimatsu, Hisashi

    2003-07-18

    Heparan sulfate d-glucosaminyl 3-O-sulfotransferases (3-OSTs) catalyze the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 3 of the glucosamine residue of heparan sulfate and heparin. A sixth member of the human 3-OST family, named 3-OST-5, was recently reported (Xia, G., Chen, J., Tiwari, V., Ju, W., Li, J.-P., Malmstrom, A., Shukla, D., and Liu, J. (2002) J. Biol. Chem. 277, 37912-37919). In the present study, we cloned putative catalytic domain of the human 3-OST-5 and expressed it in insect cells as a soluble enzyme. Recombinant 3-OST-5 only exhibited sulfotransferase activity toward heparan sulfate and heparin. When incubated heparan sulfate with [35S]PAPS, the highest incorporation of35S was observed, and digestion of the product with a mixture of heparin lyases yielded two major35S-labeled disaccharides, which were determined as DeltaHexA-GlcN(NS,3S,6S) and DeltaHexA(2S)-GlcN(NS,3S) by further digestion with 2-sulfatase and degradation with mercuric acetate. However, when used heparin as acceptor, we identified a highly sulfated disaccharide unit as a major product. This had a structure of DeltaHexA(2S)-GlcN(NS,3S,6S). Quantitative real-time PCR analysis revealed that 3-OST-5 was highly expressed in fetal brain, followed by adult brain and spinal cord, and at very low or undetectable levels in the other tissues. Finally, we detected a tetrasulfated disaccharide unit in bovine intestinal heparan sulfate. To our knowledge, this is the first report to describe not only the natural occurrence of tetrasulfated disaccharide unit but also the enzymatic formation of this novel structure. PMID:12740361

  15. Heparan sulfate deficiency disrupts developmental angiogenesis and causes congenital diaphragmatic hernia

    PubMed Central

    Zhang, Bing; Xiao, Wenyuan; Qiu, Hong; Zhang, Fuming; Moniz, Heather A.; Jaworski, Alexander; Condac, Eduard; Gutierrez-Sanchez, Gerardo; Heiss, Christian; Clugston, Robin D.; Azadi, Parastoo; Greer, John J.; Bergmann, Carl; Moremen, Kelley W.; Li, Dean; Linhardt, Robert J.; Esko, Jeffrey D.; Wang, Lianchun

    2013-01-01

    Congenital diaphragmatic hernia (CDH) is a common birth malformation with a heterogeneous etiology. In this study, we report that ablation of the heparan sulfate biosynthetic enzyme NDST1 in murine endothelium (Ndst1ECKO mice) disrupted vascular development in the diaphragm, which led to hypoxia as well as subsequent diaphragm hypoplasia and CDH. Intriguingly, the phenotypes displayed in Ndst1ECKO mice resembled the developmental defects observed in slit homolog 3 (Slit3) knockout mice. Furthermore, introduction of a heterozygous mutation in roundabout homolog 4 (Robo4), the gene encoding the cognate receptor of SLIT3, aggravated the defect in vascular development in the diaphragm and CDH. NDST1 deficiency diminished SLIT3, but not ROBO4, binding to endothelial heparan sulfate and attenuated EC migration and in vivo neovascularization normally elicited by SLIT3-ROBO4 signaling. Together, these data suggest that heparan sulfate presentation of SLIT3 to ROBO4 facilitates initiation of this signaling cascade. Thus, our results demonstrate that loss of NDST1 causes defective diaphragm vascular development and CDH and that heparan sulfate facilitates angiogenic SLIT3-ROBO4 signaling during vascular development. PMID:24355925

  16. Chemoenzymatic synthesis and structural characterization of 2-O-sulfated glucuronic acid-containing heparan sulfate hexasaccharides

    PubMed Central

    Hsieh, Po-Hung; Xu, Yongmei; Keire, David A; Liu, Jian

    2014-01-01

    Heparan sulfate and heparin are highly sulfated polysaccharides that consist of a repeating disaccharide unit of glucosamine and glucuronic or iduronic acid. The 2-O-sulfated iduronic acid (IdoA2S) residue is commonly found in heparan sulfate and heparin; however, 2-O-sulfated glucuronic acid (GlcA2S) is a less abundant monosaccharide (∼<5% of total saccharides). Here, we report the synthesis of three GlcA2S-containing hexasaccharides using a chemoenzymatic approach. For comparison purposes, additional IdoA2S-containing hexasaccharides were synthesized. Nuclear magnetic resonance analyses were performed to obtain full chemical shift assignments for the GlcA2S- and IdoA2S-hexasaccharides. These data show that GlcA2S is a more structurally rigid saccharide residue than IdoA2S. The antithrombin (AT) binding affinities of a GlcA2S- and an IdoA2S-hexasaccharide were determined by affinity co-electrophoresis. In contrast to IdoA2S-hexasaccharides, the GlcA2S-hexasaccharide does not bind to AT, confirming that the presence of IdoA2S is critically important for the anticoagulant activity. The availability of pure synthetic GlcA2S-containing oligosaccharides will allow the investigation of the structure and activity relationships of individual sites in heparin or heparan sulfate. PMID:24770491

  17. Expanding the role of 3-O sulfated heparan sulfate in herpes simplex virus type-1 entry

    SciTech Connect

    O'Donnell, Christopher D.; Kovacs, Maria; Akhtar, Jihan; Valyi-Nagy, Tibor; Shukla, Deepak

    2010-02-20

    Heparan sulfate (HS) proteoglycans are commonly exploited by multiple viruses for initial attachment to host cells. Herpes simplex virus-1 (HSV-1) is unique because it can use HS for both attachment and penetration, provided specific binding sites for HSV-1 envelope glycoprotein gD are present. The interaction with gD is mediated by specific HS moieties or 3-O sulfated HS (3-OS HS), which are generated by all but one of the seven isoforms of 3-O sulfotransferases (3-OSTs). Here we demonstrate that several common experimental cell lines express unique sets of 3-OST isoforms. While the isoforms 3-OST-3, -5 and -6 were most commonly expressed, isoforms 3-OST-2 and -4 were undetectable in the cell lines examined. Since most cell lines expressed multiple 3-OST isoforms, we addressed the significance of 3-OS HS in HSV-1 entry by down-regulating 2-O-sulfation, a prerequisite for 3-OS HS formation, by knocking down 2-OST expression by RNA interference (RNAi). 2-OST knockdown was verified by reverse-transcriptase PCR and Western blot analysis, while 3-OS HS knockdown was verified by immunofluorescence. Cells showed a significant decrease in viral entry, suggesting an important role for 3-OS HS. Implicating 3-OS HS further, cells knocked down for 2-OST expression also demonstrated decreased cell-cell fusion when cocultivated with effector cells transfected with HSV-1 glycoproteins. Our findings suggest that 3-OS HS may play an important role in HSV-1 entry into many different cell lines.

  18. Determining the extent of heparan sulfate depolymerisation following heparin lyase treatment.

    PubMed

    Carnachan, Susan M; Bell, Tracey J; Sims, Ian M; Smith, Raymond A A; Nurcombe, Victor; Cool, Simon M; Hinkley, Simon F R

    2016-11-01

    The depolymerisation of porcine mucosal heparan sulfate under the action of heparin lyases and analysis by size-exclusion chromatography (SEC) is described. Heparan sulfate treated to enzymic bond scission producing a Δ4,5 double-bond and quantified by SEC with ultraviolet-visible (UV) spectroscopic detection (230nm) indicated that the majority of the biopolymer (>85%) was reduced to disaccharides (degree of polymerisation (DP)=2). However, analysis of the SEC eluant using refractive index (RI), which reflects the mass contribution of the oligosaccharides rather than the molar response of a UV chromophore, indicated that a considerable proportion of the digested HS, up to 43%, was present with DP >2. This was supported by a mass balance analysis. These results contradict the accepted literature where "complete digestion" is routinely reported. Herein we report on the composition and methodology utilised to ascertain the extent of depolymerization and disaccharide composition of this important biopolymer. PMID:27516308

  19. A Small Molecule Inhibits Virion Attachment to Heparan Sulfate- or Sialic Acid-Containing Glycans

    PubMed Central

    Colpitts, Che C.

    2014-01-01

    ABSTRACT Primary attachment to cellular glycans is a critical entry step for most human viruses. Some viruses, such as herpes simplex virus type 1 (HSV-1) and hepatitis C virus (HCV), bind to heparan sulfate, whereas others, such as influenza A virus (IAV), bind to sialic acid. Receptor mimetics that interfere with these interactions are active against viruses that bind to either heparan sulfate or to sialic acid. However, no molecule that inhibits the attachment of viruses in both groups has yet been identified. Epigallocatechin gallate (EGCG), a green tea catechin, is active against many unrelated viruses, including several that bind to heparan sulfate or to sialic acid. We sought to identify the basis for the broad-spectrum activity of EGCG. Here, we show that EGCG inhibits the infectivity of a diverse group of enveloped and nonenveloped human viruses. EGCG acts directly on the virions, without affecting the fluidity or integrity of the virion envelopes. Instead, EGCG interacts with virion surface proteins to inhibit the attachment of HSV-1, HCV, IAV, vaccinia virus, adenovirus, reovirus, and vesicular stomatitis virus (VSV) virions. We further show that EGCG competes with heparan sulfate for binding of HSV-1 and HCV virions and with sialic acid for binding of IAV virions. Therefore, EGCG inhibits unrelated viruses by a common mechanism. Most importantly, we have identified EGCG as the first broad-spectrum attachment inhibitor. Our results open the possibility for the development of small molecule broad-spectrum antivirals targeting virion attachment. IMPORTANCE This study shows that it is possible to develop a small molecule antiviral or microbicide active against the two largest groups of human viruses: those that bind to glycosaminoglycans and those that bind to sialoglycans. This group includes the vast majority of human viruses, including herpes simplex viruses, cytomegalovirus, influenza virus, poxvirus, hepatitis C virus, HIV, and many others. PMID

  20. Myeloperoxidase-derived oxidants selectively disrupt the protein core of the heparan sulfate proteoglycan perlecan

    PubMed Central

    Rees, Martin D.; Whitelock, John M.; Malle, Ernst; Chuang, Christine Y.; Iozzo, Renato V.; Nilasaroya, Anastasia; Davies, Michael J.

    2009-01-01

    The potent oxidants hypochlorous acid (HOCl) and hypobromous acid (HOBr) are produced extracellularly by myeloperoxidase, following release of this enzyme from activated leukocytes. The subendothelial extracellular matrix is a key site for deposition of myeloperoxidase and damage by myeloperoxidase-derived oxidants, with this damage implicated in the impairment of vascular cell function during acute inflammatory responses and chronic inflammatory diseases such as atherosclerosis. The heparan sulfate proteoglycan perlecan, a key component of the subendothelial extracellular matrix, regulates important cellular processes and is a potential target for HOCl and HOBr. It is shown here that perlecan binds myeloperoxidase via its heparan sulfate side chains and that this enhances oxidative damage by myeloperoxidase-derived HOCl and HOBr. This damage involved selective degradation of the perlecan protein core without detectable alteration of its heparan sulfate side chains, despite the presence of reactive GlcNH2 resides within this glycosaminoglycan. Modification of the protein core by HOCl and HOBr (measured by loss of immunological recognition of native protein epitopes and the appearance of oxidatively-modified protein epitopes) was associated with an impairment of its ability to support endothelial cell adhesion, with this observed at a pathologically-achievable oxidant dose of 425 nmol oxidant/mg protein. In contrast, the heparan sulfate chains of HOCl/HOBr-modified perlecan retained their ability to bind FGF-2 and collagen V and were able to promote FGF-2-dependent cellular proliferation. Collectively, these data highlight the potential role of perlecan oxidation, and consequent deregulation of cell function, in vascular injuries by myeloperoxidase-derived HOCl and HOBr. PMID:19788922

  1. Heparan sulfate proteoglycan is present in basement membrane as a double-tracked structure.

    PubMed

    Inoue, S; Grant, D; Leblond, C P

    1989-05-01

    Basement membranes contain 4.5-nm wide sets of two parallel lines, along which short prongs called "spikes" occur at regular intervals. The nature of this structure, referred to as "double tracks," was investigated in Lowicryl sections of mouse kidney and rat Reichert's membrane immunolabeled for basement membrane components using secondary antibodies conjugated to 5-nm gold particles. When the mouse glomerular basement membrane and rat Reichert's membrane were exposed to antibodies directed to the core protein of heparan sulfate proteoglycan, 95% or more of the gold particles were over double tracks, whereas after exposure of Reichert's membrane to antisera against laminin, collagen IV, or entactin, labeling of the double tracks remained at the random level. When heparan sulfate proteoglycan was incubated in Tris buffer, pH 7.4, at 35 degrees C for 1 hr, a precipitate resulted which, on electron microscopic examination, was found to consist of 5- to 6-nm wide sets of two parallel lines along which densities were observed. Immunolabeling confirmed the presence of the proteoglycan's core protein in the sets. Since double tracks were closely similar to this structure and were labeled with the same antibodies, they were likely to be also composed of heparan sulfate proteoglycan. PMID:2522961

  2. Removal of cell surface heparan sulfate increases TACE activity and cleavage of ErbB4 receptor

    PubMed Central

    Määttä, Jorma A; Olli, Kaisa; Henttinen, Tiina; Tuittila, Minna T; Elenius, Klaus; Salmivirta, Markku

    2009-01-01

    Background Nuclear localization of proteolytically formed intracellular fragment of ErbB4 receptor tyrosine kinase has been shown to promote cell survival, and nuclear localization of ErbB4 receptor has been described in human breast cancer. Tumor necrosis factor alpha converting enzyme (TACE) initiates the proteolytic cascade leading to ErbB4 intracellular domain formation. Interactions between matrix metalloproteases and heparan sulfate have been described, but the effect of cell surface heparan sulfate on TACE activity has not been previously described. Results As indicated by immunodetection of increased ErbB4 intracellular domain formation and direct enzyme activity analysis, TACE activity was substantially amplified by enzymatic removal of cell surface heparan sulfate but not chondroitin sulfate. Conclusion In this communication, we suggest a novel role for cell surface heparan sulfate. Removal of cell surface heparan sulfate led to increased formation of ErbB4 intracellular domain. As ErbB4 intracellular domain has previously been shown to promote cell survival this finding may indicate a novel mechanism how HS degradation active in tumor tissue may favor cell survival. PMID:19171023

  3. Diversity of heparan sulfate and HSV entry: basic understanding and treatment strategies.

    PubMed

    Tiwari, Vaibhav; Tarbutton, Morgan S; Shukla, Deepak

    2015-01-01

    A modified form of heparan sulfate (HS) known as 3-O-sulfated heparan sulfate (3-OS HS) generates fusion receptor for herpes simplex virus (HSV) entry and spread. Primary cultures of corneal fibroblasts derived from human eye donors have shown the clinical significance of this receptor during HSV corneal infection. 3-OS HS- is a product of a rare enzymatic modification at C3 position of glucosamine residue which is catalyzed by 3-O-sulfotransferases (3-OSTs) enzymes. From humans to zebrafish, the 3-OST enzymes are highly conserved and widely expressed in cells and tissues. There are multiple forms of 3-OSTs each producing unique subset of sulfated HS making it chemically diverse and heterogeneous. HSV infection of cells or zebrafish can be used as a unique tool to understand the structural-functional activities of HS and 3-OS HS and likewise, the infection can be used as a functional assay to screen phage display libraries for identifying HS and 3-OS HS binding peptides or small molecule inhibitors. Using this approach over 200 unique 12-mer HS and 3-OS HS recognizing peptides were isolated and characterized against HSV corneal infection where 3-OS HS is known to be a key receptor. In this review we discuss emerging role of 3-OS HS based therapeutic strategies in preventing viral infection and tissue damage. PMID:25665065

  4. Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition.

    PubMed

    Alvarez-Domínguez, C; Vázquez-Boland, J A; Carrasco-Marín, E; López-Mato, P; Leyva-Cobián, F

    1997-01-01

    The mechanisms by which the intracellular pathogen Listeria monocytogenes interacts with the host cell surface remain largely unknown. In this study, we investigated the role of heparan sulfate proteoglycans (HSPG) in listerial infection. Pretreatment of bacteria with heparin or heparan sulfate (HS), but not with other glycosaminoglycans, inhibited attachment and subsequent uptake by IC-21 murine macrophages and CHO epithelial-like cells. Specific removal of HS from target cells with heparinase III significantly impaired listerial adhesion and invasion. Mutant CHO cells deficient in HS synthesis bound and internalized significantly fewer bacteria than wild-type cells did. Pretreatment of target cells with the HS-binding proteins fibronectin and platelet factor 4, or with heparinase III, impaired listerial infectivity only in those cells expressing HS. Moreover, a synthetic peptide corresponding to the HS-binding ligand in Plasmodium falciparum circumsporozoite protein (pepPf1) inhibited listerial attachment to IC-21 and CHO cells. A motif very similar to the HS-binding site of pepPf1 was found in the N-terminal region of ActA, the L. monocytogenes surface protein responsible for actin-based bacterial motility and cell-to-cell spread. In the same region of ActA, several clusters of positively charged amino acids which could function as HS-binding domains were identified. An ActA-deficient mutant was significantly impaired in attachment and entry due to altered HS recognition functions. This work shows that specific interaction with an HSPG receptor present on the surface of both professional and nonprofessional phagocytes is involved in L. monocytogenes cytoadhesion and invasion and strongly suggests that the bacterial surface protein ActA may be a ligand mediating HSPG receptor recognition. PMID:8975895

  5. The Role of Heparan Sulfate Proteoglycans in Optic Disc and Stalk Morphogenesis

    PubMed Central

    Cai, Zhigang; Grobe, Kay; Zhang, Xin

    2014-01-01

    Background Heparan sulfate proteoglycans (HSPG) are important for embryonic development via the regulation of gradient formation and signaling of multiple growth factors and morphogens. Previous studies have shown that Bmp/Shh/Fgf signaling are required for the regionalization of the optic vesicle (OV) and for the closure of the optic fissure (OF), the disturbance of which underlie ocular anomalies such as microphthalmia, coloboma and optic nerve hypoplasia. Results To study HSPG-dependent coordination of these signaling pathways during mammalian visual system development, we have generated a series of OV-specific mutations in the heparan sulfate (HS) N-sulfotransferase genes (Ndst1 and Ndst2) and HS O-sulfotransferase genes (Hs2st, Hs6st1 and Hs6st2) in mice. Interestingly, the resulting HS undersulfation still allowed for normal retinal neurogenesis and optic fissure closure, but led to defective optic disc and stalk development. The adult mutant animals further developed optic nerve aplasia/hypoplasia and displayed retinal degeneration. We observed that MAPK/ERK signaling was down-regulated in Ndst mutants, and consistent with this, HS-related optic nerve morphogenesis defects in mutant mice could partially be rescued by constitutive Kras activation. Conclusions These results suggest that HSPGs, depending on their HS sulfation pattern, regulate multiple signaling pathways in optic disc and stalk morphogenesis. PMID:24753163

  6. Combining measurements to estimate properties and characterization extent of complex biochemical mixtures; applications to Heparan Sulfate

    PubMed Central

    Pradines, Joël R.; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan

    2016-01-01

    Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements. PMID:27112127

  7. Combining measurements to estimate properties and characterization extent of complex biochemical mixtures; applications to Heparan Sulfate

    NASA Astrophysics Data System (ADS)

    Pradines, Joël R.; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan

    2016-04-01

    Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements.

  8. Combining measurements to estimate properties and characterization extent of complex biochemical mixtures; applications to Heparan Sulfate.

    PubMed

    Pradines, Joël R; Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Farutin, Victor; Huang, Yongqing; Gunay, Nur Sibel; Capila, Ishan

    2016-01-01

    Complex mixtures of molecular species, such as glycoproteins and glycosaminoglycans, have important biological and therapeutic functions. Characterization of these mixtures with analytical chemistry measurements is an important step when developing generic drugs such as biosimilars. Recent developments have focused on analytical methods and statistical approaches to test similarity between mixtures. The question of how much uncertainty on mixture composition is reduced by combining several measurements still remains mostly unexplored. Mathematical frameworks to combine measurements, estimate mixture properties, and quantify remaining uncertainty, i.e. a characterization extent, are introduced here. Constrained optimization and mathematical modeling are applied to a set of twenty-three experimental measurements on heparan sulfate, a mixture of linear chains of disaccharides having different levels of sulfation. While this mixture has potentially over two million molecular species, mathematical modeling and the small set of measurements establish the existence of nonhomogeneity of sulfate level along chains and the presence of abundant sulfate repeats. Constrained optimization yields not only estimations of sulfate repeats and sulfate level at each position in the chains but also bounds on these levels, thereby estimating the extent of characterization of the sulfation pattern which is achieved by the set of measurements. PMID:27112127

  9. The use of cationic nanogels to deliver proteins to myeloma cells and primary T lymphocytes that poorly express heparan sulfate.

    PubMed

    Watanabe, Kozo; Tsuchiya, Yumiko; Kawaguchi, Yoshinori; Sawada, Shin-ichi; Ayame, Hirohito; Akiyoshi, Kazunari; Tsubata, Takeshi

    2011-09-01

    Fusion proteins containing protein transduction domain (PTD) are widely used for intracellular delivery of exogenous proteins. PTD-mediated delivery requires expression of heparan sulfate on the surface of the target cells. However, some of metastatic tumor cells and primary lymphocytes poorly express heparan sulfate. Here we demonstrate that proteins complexed with nanosize hydrogels formed by cationic cholesteryl group-bearing pullulans (cCHP) are efficiently delivered to myeloma cells and primary CD4(+) T lymphocytes probably by induction of macropinocytosis, although these cells are resistant to PTD-mediated protein delivery as a consequence of poor heparan sulfate expression. The anti-apoptotic protein Bcl-xL delivered by cCHP nanogels efficiently blocked apoptosis of these cells, establishing functional regulation of cells by proteins delivered by cCHP nanogels. Thus, cCHP nanogel is a useful tool to deliver proteins for development of new cancer therapy and immune regulation. PMID:21605901

  10. Differential binding of fibroblast growth factor-2 and -7 to basement membrane heparan sulfate: comparison of normal and abnormal human tissues.

    PubMed Central

    Friedl, A.; Chang, Z.; Tierney, A.; Rapraeger, A. C.

    1997-01-01

    Fibroblast growth factors (FGFs) play multiple roles during development and in adult tissues as paracrine regulators of growth and differentiation. FGFs signal through transmembrane receptor tyrosine kinases, but heparan sulfate is also required for signaling by members of the FGF family. In addition, heparan sulfate may be involved in determining tissue distribution of FGFs. Using biotinylated FGF-2 and FGF-7 (KGF) as probes, we have identified specific interactions between FGFs and heparan sulfates in human tissues. Both FGF species bind to tissue mast cells and to epithelial cell membranes. Binding to basement membrane heparan sulfate is tissue source dependent and specific. Although FGF-2 strongly binds to basement membrane heparan sulfate in skin and most other tissue sites examined, FGF-7 fails to bind to basement membrane heparan sulfate in most locations. However, in subendothelial matrix in blood vessels and in the basement membrane of a papillary renal cell carcinoma, strong FGF-7 binding is seen. In summary, distinct and specific affinities of heparan sulfates for different FGFs were identified that may affect growth factor activation and local distribution. Heparan sulfate may have a gatekeeper function to either restrict or permit diffusion of heparin-binding growth factors across the basement membrane. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9094999

  11. Characterization of the N-deacetylase domain from the heparan sulfate N-deacetylase/N-sulfotransferase 2

    SciTech Connect

    Duncan, Michael B.; Liu, May; Fox, Courtney; Liu, Jian . E-mail: jian_liu@unc.edu

    2006-01-27

    Heparin and heparan sulfate are linear sulfated polysaccharides that exert a multitude of biological functions. Heparan sulfate glucosaminyl N-deacetylase/N-sulfotransferase isoform 2 (NDST-2), a key enzyme in the biosynthesis of heparin, contains two distinct activities. This bifunctional enzyme removes the acetyl group from N-acetylated glucosamine (N-deacetylase activity) and transfers a sulfuryl group to the unsubstituted amino position (N-sulfotransferase activity). The N-sulfotransferase activity of NDST has been unambiguously localized to the C-terminal domain of NDST. Here, we report that the N-terminal domain of NDST-2 retains N-deacetylase activity. The N-terminal domain (A66-P604) of human NDST-2, designated as N-deacetylase (NDase), was cloned as a (His){sub 6}-fusion protein, and protein expression was carried out in Escherichia coli. Heparosan treated with NDase contains N-unsubstituted glucosamine and is highly susceptible to N-sulfation by N-sulfotransferase. Our results conclude that the N-terminal domain of NDST-2 contains functional N-deacetylase activity. This finding helps further elucidate the mechanism of action of heparan sulfate N-deacetylase/N-sulfotransferases and the biosynthesis of heparan sulfate in general.

  12. The interaction of heparan sulfate proteoglycans with endothelial transglutaminase-2 limits VEGF165-induced angiogenesis.

    PubMed

    Beckouche, Nathan; Bignon, Marine; Lelarge, Virginie; Mathivet, Thomas; Pichol-Thievend, Cathy; Berndt, Sarah; Hardouin, Julie; Garand, Marion; Ardidie-Robouant, Corinne; Barret, Alain; Melino, Gerry; Lortat-Jacob, Hugues; Muller, Laurent; Monnot, Catherine; Germain, Stephane

    2015-07-14

    Sprouting angiogenesis is stimulated by vascular endothelial growth factor (VEGF165) that is localized in the extracellular matrix (ECM) and binds to heparan sulfate (HS)-bearing proteins known as heparan sulfate proteoglycans (HSPGs). VEGF165 presentation by HSPGs enhances VEGF receptor-2 (VEGFR2) signaling. We investigated the effect of TG2, which binds to HSPGs, on the interaction between VEGF165 and HS and angiogenesis. Mice with tg2 deficiency showed transiently enhanced retina vessel formation and increased vascularization of VEGF165-containing Matrigel implants. In addition, endothelial cells in which TG2 was knocked down exhibited enhanced VEGF165-induced sprouting and migration, which was associated with increased phosphorylation of VEGFR2 at Tyr(951) and its targets Src and Akt. TG2 knockdown did not affect the phosphorylation of VEGFR2 at Tyr(1175) or cell proliferation in response to VEGF165 and sprouting or signaling in response to VEGF121. Decreased phosphorylation of VEGFR2 at Tyr(951) was due to ECM-localized TG2, which reduced the binding of VEGF165 to endothelial ECM in a manner that required its ability to bind to HS but not its catalytic activity. Surface plasmon resonance assays demonstrated that TG2 impeded the interaction between VEGF165 and HS. These results show that TG2 controls the formation of VEGF165-HSPG complexes and suggest that this regulation could be pharmacologically targeted to modulate developmental and therapeutic angiogenesis. PMID:26175493

  13. Cell surface heparan sulfate proteoglycans contribute to intracellular lipid accumulation in adipocytes

    PubMed Central

    Wilsie, Larissa C; Chanchani, Shree; Navaratna, Deepti; Orlando, Robert A

    2005-01-01

    Background Transport of fatty acids within the cytosol of adipocytes and their subsequent assimilation into lipid droplets has been thoroughly investigated; however, the mechanism by which fatty acids are transported across the plasma membrane from the extracellular environment remains unclear. Since triacylglycerol-rich lipoproteins represent an abundant source of fatty acids for adipocyte utilization, we have investigated the expression levels of cell surface lipoprotein receptors and their functional contributions toward intracellular lipid accumulation; these include very low density lipoprotein receptor (VLDL-R), low density lipoprotein receptor-related protein (LRP), and heparan sulfate proteoglycans (HSPG). Results We found that expression of these three lipoprotein receptors increased 5-fold, 2-fold, and 2.5-fold, respectively, during adipocyte differentiation. The major proteoglycans expressed by mature adipocytes are of high molecular weight (>500 kD) and contain both heparan and chondroitin sulfate moieties. Using ligand binding antagonists, we observed that HSPG, rather than VLDL-R or LRP, play a primary role in the uptake of DiI-lableled apoE-VLDL by mature adipocytes. In addition, inhibitors of HSPG maturation resulted in a significant reduction (>85%) in intracellular lipid accumulation. Conclusions These results suggest that cell surface HSPG is required for fatty acid transport across the plasma membrane of adipocytes. PMID:15636641

  14. Lipoprotein lipase enhances binding of lipoproteins to heparan sulfate on cell surfaces and extracellular matrix.

    PubMed Central

    Eisenberg, S; Sehayek, E; Olivecrona, T; Vlodavsky, I

    1992-01-01

    Lipoprotein lipase enhances binding at 4 degrees C of human plasma lipoproteins (chylomicrons, VLDL, intermediate density lipoprotein, LDL, and HDL3) to cultured fibroblasts and hepG-2 cells and to extracellular matrix. Heparinase treatment of cells and matrix reduces the lipoprotein lipase enhanced binding by 90-95%. Lipoprotein lipase causes only a minimal effect on the binding of lipoproteins to heparan sulfate deficient mutant Chinese hamster ovary cells while it promotes binding to wild type cells that is abolished after heparinase treatment. With 125I-LDL, lipoprotein lipase also enhances uptake and proteolytic degradation at 37 degrees C by normal human skin fibroblasts but has no effect in heparinase-treated normal cells or in LDL receptor-negative fibroblasts. These observations prove that lipoprotein lipase causes, predominantly, binding of lipoproteins to heparan sulfate at cell surfaces and in extracellular matrix rather than to receptors. This interaction brings the lipoproteins into close proximity with cell surfaces and may promote metabolic events that occur at the cell surface, including facilitated transfer to cellular receptors. Images PMID:1430223

  15. Heparan Sulfate Proteoglycans Are Important for Islet Amyloid Formation and Islet Amyloid Polypeptide-induced Apoptosis*

    PubMed Central

    Oskarsson, Marie E.; Singh, Kailash; Wang, Jian; Vlodavsky, Israel; Li, Jin-ping; Westermark, Gunilla T.

    2015-01-01

    Deposition of β cell toxic islet amyloid is a cardinal finding in type 2 diabetes. In addition to the main amyloid component islet amyloid polypeptide (IAPP), heparan sulfate proteoglycan is constantly present in the amyloid deposit. Heparan sulfate (HS) side chains bind to IAPP, inducing conformational changes of the IAPP structure and an acceleration of fibril formation. We generated a double-transgenic mouse strain (hpa-hIAPP) that overexpresses human heparanase and human IAPP but is deficient of endogenous mouse IAPP. Culture of hpa-hIAPP islets in 20 mm glucose resulted in less amyloid formation compared with the amyloid load developed in cultured islets isolated from littermates expressing human IAPP only. A similar reduction of amyloid was achieved when human islets were cultured in the presence of heparin fragments. Furthermore, we used CHO cells and the mutant CHO pgsD-677 cell line (deficient in HS synthesis) to explore the effect of cellular HS on IAPP-induced cytotoxicity. Seeding of IAPP aggregation on CHO cells resulted in caspase-3 activation and apoptosis that could be prevented by inhibition of caspase-8. No IAPP-induced apoptosis was seen in HS-deficient CHO pgsD-677 cells. These results suggest that β cell death caused by extracellular IAPP requires membrane-bound HS. The interaction between HS and IAPP or the subsequent effects represent a possible therapeutic target whose blockage can lead to a prolonged survival of β cells. PMID:25922077

  16. Modular Synthesis of Heparan Sulfate Oligosaccharides for Structure-Activity Relationship Studies

    PubMed Central

    Arungundram, Sailaja; Al-Mafraji, Kanar; Asong, Jinkeng; Leach, Franklin E.; Amster, I. Jonathan; Venot, Andre; Turnbull, Jeremy E.; Boons, Geert-Jan

    2010-01-01

    Although hundreds of heparan sulfate binding proteins have been identified, and implicated in a myriad of physiological and pathological processes, very little information is known about ligand requirements for binding and mediating biological activities by these proteins. This difficulty results from a lack of technology for establishing structure-activity-relationships, which in turn is due to the structural complexity of natural heparan sulfate (HS) and difficulties of preparing well-defined HS-oligosaccharides. To address this deficiency, we have developed a modular approach for the parallel combinatorial synthesis of HS oligosaccharides that utilizes a relatively small number of selectively protected disaccharide building blocks, which can easily be converted into glycosyl donors and acceptors. The utility of the modular building blocks has been demonstrated by the preparation of a library of twelve oligosaccharides, which has been employed to probe structural features of HS for inhibiting the protease, BACE-1. The complex variations in activity with structural changes support the view that important functional information is embedded in HS sequences. Furthermore, the most active derivative provides an attractive lead compound for the preparation of more potent compounds, which may find use as a therapeutic agent for Alzheimer's disease. PMID:19904943

  17. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans.

    PubMed

    Kallapur, S G; Akeson, R A

    1992-12-01

    The neural cell adhesion molecule (NCAM) has been strongly implicated in several aspects of neural development. NCAM mediated adhesion has been proposed to involve a homophilic interaction between NCAMs on adjacent cells. The heparin binding domain (HBD) is an amino acid sequence within NCAM and has been shown to be involved in NCAM mediated adhesion but the relationship of this domain to NCAM segments mediating homophilic adhesion has not been defined. In the present study, a synthetic peptide corresponding to the HBD has been used as a substrate to determine its role in NCAM mediated adhesion. A neural cell line expressing NCAM (B35) and its derived clone which does not express NCAM (B35 clone 3) adhered similarly to plates coated with HBD peptide. A polyclonal antiserum to NCAM inhibited B35 cell-HBD peptide adhesion by only 10%, a value not statistically different from inhibition caused by preimmune serum. Both these experiments suggested no direct NCAM-HBD interactions. To test whether the HBD peptide bound to cell surface heparan sulfate proteoglycans (HSPG), HSPG synthesis was inhibited using beta-D-xyloside. After treatment, B35 cell adhesion to the HBD peptide, but not to control substrates, was significantly decreased. B35 cell adhesion to the HBD peptide could be inhibited by 10(-7) M heparin but not chondroitin sulfate. Preincubation of the substrate (HBD peptide) with heparin caused dramatic reduction of B35 cell-HBD peptide adhesion whereas preincubation of B35 cells with heparin caused only modest reductions in cell-HBD adhesion. Furthermore, inhibition of HSPG sulfation with sodium chlorate also decreased the adhesion of B35 cells to the HBD peptide. These results strongly suggest that, within the assay system, the NCAM HBD does not participate in homophilic interactions but binds to cell surface heparan sulfate proteoglycan. This interaction potentially represents an important mechanism of NCAM adhesion and further supports the view that NCAM has

  18. The Solution Structure of Heparan Sulfate Differs from That of Heparin

    PubMed Central

    Khan, Sanaullah; Fung, Ka Wai; Rodriguez, Elizabeth; Patel, Rima; Gor, Jayesh; Mulloy, Barbara; Perkins, Stephen J.

    2013-01-01

    The highly sulfated polysaccharides heparin and heparan sulfate (HS) play key roles in the regulation of physiological and pathophysiological processes. Despite its importance, no molecular structures of free HS have been reported up to now. By combining analytical ultracentrifugation, small angle x-ray scattering, and constrained scattering modeling recently used for heparin, we have analyzed the solution structures for eight purified HS fragments dp6–dp24 corresponding to the predominantly unsulfated GlcA-GlcNAc domains of heparan sulfate. Unlike heparin, the sedimentation coefficient s20,w of HS dp6–dp24 showed a small rotor speed dependence, where similar s20,w values of 0.82–1.26 S (absorbance optics) and 1.05–1.34 S (interference optics) were determined. The corresponding x-ray scattering measurements of HS dp6–dp24 gave radii of gyration RG values from 1.03 to 2.82 nm, cross-sectional radii of gyration RXS values from 0.31 to 0.65 nm, and maximum lengths L from 3.0 to 10.0 nm. These data showed that HS has a longer and more bent structure than heparin. Constrained scattering modeling starting from 5,000 to 12,000 conformationally randomized HS structures gave best fit dp6–dp24 molecular structures that were longer and more bent than their equivalents in heparin. Alternative fits were obtained for HS dp18 and dp24, indicating their higher bending and flexibility. We conclude that HS displays bent conformations that are significantly distinct from that for heparin. The difference is attributed to the different predominant monosaccharide sequence and reduced sulfation of HS, indicating that HS may interact differently with proteins compared with heparin. PMID:23921391

  19. "Coding" and "Decoding": hypothesis for the regulatory mechanism involved in heparan sulfate biosynthesis.

    PubMed

    Zhang, Xu; Wang, Fengshan; Sheng, Juzheng

    2016-06-16

    Heparan sulfate (HS) is widely distributed in mammalian tissues in the form of HS proteoglycans, which play essential roles in various physiological and pathological processes. In contrast to the template-guided processes involved in the synthesis of DNA and proteins, HS biosynthesis is not believed to involve a template. However, it appears that the final structure of HS chains was strictly regulated. Herein, we report research based hypothesis that two major steps, namely "coding" and "decoding" steps, are involved in the biosynthesis of HS, which strictly regulate its chemical structure and biological activity. The "coding" process in this context is based on the distribution of sulfate moieties on the amino groups of the glucosamine residues in the HS chains. The sulfation of these amine groups is catalyzed by N-deacetylase/N-sulfotransferase, which has four isozymes. The composition and distribution of sulfate groups and iduronic acid residues on the glycan chains of HS are determined by several other modification enzymes, which can recognize these coding sequences (i.e., the "decoding" process). The degree and pattern of the sulfation and epimerization in the HS chains determines the extent of their interactions with several different protein factors, which further influences their biological activity. PMID:27088396

  20. Heparan Sulfate Inhibits Hematopoietic Stem and Progenitor Cell Migration and Engraftment in Mucopolysaccharidosis I*

    PubMed Central

    Watson, H. Angharad; Holley, Rebecca J.; Langford-Smith, Kia J.; Wilkinson, Fiona L.; van Kuppevelt, Toin H.; Wynn, Robert F.; Wraith, J. Edmond; Merry, Catherine L. R.; Bigger, Brian W.

    2014-01-01

    Mucopolysaccharidosis I Hurler (MPSI-H) is a pediatric lysosomal storage disease caused by genetic deficiencies in IDUA, coding for α-l-iduronidase. Idua−/− mice share similar clinical pathology with patients, including the accumulation of the undegraded glycosaminoglycans (GAGs) heparan sulfate (HS), and dermatan sulfate (DS), progressive neurodegeneration, and dysostosis multiplex. Hematopoietic stem cell transplantation (HSCT) is the most effective treatment for Hurler patients, but reduced intensity conditioning is a risk factor in transplantation, suggesting an underlying defect in hematopoietic cell engraftment. HS is a co-receptor in the CXCL12/CXCR4 axis of hematopoietic stem and progenitor cell (HSPC) migration to the bone marrow (BM), but the effect of HS alterations on HSPC migration, or the functional role of HS in MPSI-H are unknown. We demonstrate defective WT HSPC engraftment and migration in Idua−/− recipient BM, particularly under reduced intensity conditioning. Both intra- but especially extracellular Idua−/− BM HS was significantly increased and abnormally sulfated. Soluble heparinase-sensitive GAGs from Idua−/− BM and specifically 2-O-sulfated HS, elevated in Idua−/− BM, both inhibited CXCL12-mediated WT HSPC transwell migration, while DS had no effect. Thus we have shown that excess overly sulfated extracellular HS binds, and sequesters CXCL12, limiting hematopoietic migration and providing a potential mechanism for the limited scope of HSCT in Hurler disease. PMID:25359774

  1. Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate.

    PubMed

    Sasaki, Norihiko; Higashi, Nobuaki; Taka, Tomohiro; Nakajima, Motowo; Irimura, Tatsuro

    2004-03-15

    Extravasation of peripheral blood monocytes through vascular basement membranes requires degradation of extracellular matrix components including heparan sulfate proteoglycans (HSPGs). Heparanase, the heparan sulfate-specific endo-beta-glucuronidase, has previously been shown to be a key enzyme in melanoma invasion, yet its involvement in monocyte extravasation has not been elucidated. We examined a potential regulatory mechanism of heparanase in HSPG degradation and transmigration through basement membranes in leukocyte trafficking using human promonocytic leukemia U937 and THP-1 cells. PMA-treated cells were shown to degrade 35S-sulfated HSPG in endothelial extracellular matrix into fragments of an approximate molecular mass of 5 kDa. This was not found with untreated cells. The gene expression levels of heparanase or the enzyme activity of the amount of cell lysates were no different between untreated and treated cells. Immunocytochemical staining with anti-heparanase mAb revealed pericellular distribution of heparanase in PMA-treated cells but not in untreated cells. Cell surface heparanase capped into a restricted area on PMA-treated cells when they were allowed to adhere. Addition of a chemoattractant fMLP induced polarization of the PMA-treated cells and heparanase redistribution at the leading edge of migration. Therefore a major regulatory process of heparanase activity in the cells seems to be surface expression and capping of the enzyme. Addition of the anti-heparanase Ab significantly inhibited enzymatic activity and transmigration of the PMA-treated cells, suggesting that the cell surface redistribution of heparanase is involved in monocyte extravasation through basement membranes. PMID:15004189

  2. Heparan sulfate regulates the number and centrosome positioning of Drosophila male germline stem cells

    PubMed Central

    Levings, Daniel C.; Arashiro, Takeshi; Nakato, Hiroshi

    2016-01-01

    Stem cell division is tightly controlled via secreted signaling factors and cell adhesion molecules provided from local niche structures. Molecular mechanisms by which each niche component regulates stem cell behaviors remain to be elucidated. Here we show that heparan sulfate (HS), a class of glycosaminoglycan chains, regulates the number and asymmetric division of germline stem cells (GSCs) in the Drosophila testis. We found that GSC number is sensitive to the levels of 6-O sulfate groups on HS. Loss of 6-O sulfation also disrupted normal positioning of centrosomes, a process required for asymmetric division of GSCs. Blocking HS sulfation specifically in the niche, termed the hub, led to increased GSC numbers and mispositioning of centrosomes. The same treatment also perturbed the enrichment of Apc2, a component of the centrosome-anchoring machinery, at the hub–GSC interface. This perturbation of the centrosome-anchoring process ultimately led to an increase in the rate of spindle misorientation and symmetric GSC division. This study shows that specific HS modifications provide a novel regulatory mechanism for stem cell asymmetric division. The results also suggest that HS-mediated niche signaling acts upstream of GSC division orientation control. PMID:26792837

  3. An approach for separation and complete structural sequencing of heparin/heparan sulfate-like oligosaccharides.

    PubMed

    Huang, Rongrong; Liu, Jian; Sharp, Joshua S

    2013-06-18

    As members of the glycosaminoglycan (GAG) family, heparin and heparan sulfate (HS) are responsible for mediation of a wide range of essential biological actions, most of which are mediated by specific patterns of modifications of regions of these polysaccharides. To fully understand the regulation of HS modification and the biological function of HS through its interactions with protein ligands, it is essential to know the specific HS sequences present. However, the sequencing of mixtures of HS oligosaccharides presents major challenges due to the lability of the sulfate modifications, as well as difficulties in separating isomeric HS chains. Here, we apply a sequential chemical derivatization strategy involving permethylation, desulfation, and trideuteroperacetylation to label original sulfation sites with stable and hydrophobic trideuteroacetyl groups. The derivatization chemistry differentiates between all possible heparin/HS sequences solely by glycosidic bond cleavages, without the need to generate cross-ring cleavages. This derivatization strategy combined with LC-MS/MS analysis has been used to separate and sequence five synthetic HS-like oligosaccharides of sizes up to dodecasaccharide, as well as a highly sulfated Arixtra-like heptamer. This strategy offers a unique capability for the sequencing of microgram quantities of HS oligosaccharide mixtures by LC-MS/MS. PMID:23659663

  4. Binding of vascular heparan sulfate proteoglycan to Alzheimer's amyloid precursor protein is mediated in part by the N-terminal region of A4 peptide.

    PubMed

    Buée, L; Ding, W; Anderson, J P; Narindrasorasak, S; Kisilevsky, R; Boyle, N J; Robakis, N K; Delacourte, A; Greenberg, B; Fillit, H M

    1993-11-12

    The exact mechanisms of deposition and accumulation of amyloid in senile plaques and in blood vessels in Alzheimer's disease remain unknown. Heparan sulfate proteoglycans may play an important role in amyloid deposition in Alzheimer's disease. Previous investigations have demonstrated high affinity binding between heparan sulfate proteoglycans and the amyloid precursor, as well as with the A4 peptide. In the current studies, a specific vascular heparan sulfate proteoglycan found in senile plaques bound with high affinity to two amyloid protein precursors (APP695 and APP770). Vascular heparan sulfate proteoglycan also bound the Alzheimer's amyloid A4 peptide, and not other amyloid protein precursor regions studied, with high affinity. Both heparan sulfate glycosaminoglycan chains and chemically deglycosylated vascular heparan sulfate proteoglycan protein core bound to A4. High affinity interactions between vascular heparan sulfate proteoglycan and the A4 peptide may play a role in the process of amyloidogenesis in Alzheimer's disease, by localizing the site of deposition of A4, protecting A4 from further proteolysis, or by promoting aggregation and fibril formation. PMID:8298962

  5. Heparan Sulfate Proteoglycans Mediate Factor XIIa Binding to the Cell Surface*

    PubMed Central

    Wujak, Lukasz; Didiasova, Miroslava; Zakrzewicz, Dariusz; Frey, Helena; Schaefer, Liliana; Wygrecka, Malgorzata

    2015-01-01

    Hageman factor (FXIIa) initiates the intrinsic coagulation pathway and triggers the kallikrein-kinin and the complement systems. In addition, it functions as a growth factor by expressing promitogenic activities toward several cell types. FXIIa binds to the cell surface via a number of structurally unrelated surface receptors; however, the underlying mechanisms are not yet fully understood. Here, we demonstrate that FXIIa utilizes cell membrane-bound glycosaminoglycans to interact with the cell surface of human lung fibroblasts (HLF). The combination of enzymatic, inhibitory, and overexpression approaches identified a heparan sulfate (HS) component of proteoglycans as an important determinant of the FXIIa binding capacity of HLF. Moreover, cell-free assays and competition experiments revealed preferential binding of FXIIa to HS and heparin over dextran sulfate, dermatan sulfate, and chondroitin sulfate A and C. Finally, we demonstrate that fibroblasts isolated from the lungs of the patients suffering from idiopathic pulmonary fibrosis (IPF) exhibit enhanced FXIIa binding capacity. Increased sulfation of HS resulting from elevated HS 6-O-sulfotransferase-1 expression in IPF HLF accounted, in part, for this phenomenon. Application of RNA interference technology and inhibitors of intracellular sulfation revealed the cooperative action of cell surface-associated HS and urokinase-type plasminogen activator receptor in the accumulation of FXIIa on the cell surface of IPF HLF. Moreover, FXIIa stimulated IPF HLF migration, which was abrogated by pretreatment of cells with heparinase I. Collectively, our study uncovers a novel role of HS-type glycosaminoglycans in a local accumulation of FXIIa on the cell membrane. The enhanced association of FXIIa with IPF HLF suggests its contribution to fibrogenesis. PMID:25589788

  6. Hypoxia induces NO-dependent release of heparan sulfate in fibroblasts from the Alzheimer mouse Tg2576 by activation of nitrite reduction.

    PubMed

    Cheng, Fang; Bourseau-Guilmain, Erika; Belting, Mattias; Fransson, Lars-Åke; Mani, Katrin

    2016-06-01

    There is a functional relationship between the heparan sulfate proteoglycan glypican-1 and the amyloid precursor protein (APP) of Alzheimer disease. In wild-type mouse embryonic fibroblasts, expression and processing of the APP is required for endosome-to-nucleus translocation of anhydromannose-containing heparan sulfate released from S-nitrosylated glypican-1 by ascorbate-induced, nitrosothiol-catalyzed deaminative cleavage. In fibroblasts from the transgenic Alzheimer mouse Tg2576, there is increased processing of the APP to amyloid-β peptides. Simultaneously, there is spontaneous formation of anhydromannose-containing heparan sulfate by an unknown mechanism. We have explored the effect of hypoxia on anhydromannose-containing heparan sulfate formation in wild-type and Tg2576 fibroblasts by deconvolution immunofluorescence microscopy and flow cytometry using an anhydromannose-specific monoclonal antibody and by (35)SO4-labeling experiments. Hypoxia prevented ascorbate-induced heparan sulfate release in wild-type fibroblasts, but induced an increased formation of anhydromannose-positive and (35)S-labeled heparan sulfate in Tg2576 fibroblasts. This appeared to be independent of glypican-1 S-nitrosylation as demonstrated by using a monoclonal antibody specific for S-nitrosylated glypican-1. In hypoxic wild-type fibroblasts, addition of nitrite to the medium restored anhydromannose-containing heparan sulfate formation. The increased release of anhydromannose-containing heparan sulfate in hypoxic Tg2576 fibroblasts did not require addition of nitrite. However, it was suppressed by inhibition of the nitrite reductase activity of xanthine oxidoreductase/aldehyde oxidase or by inhibition of p38 mitogen-activated protein kinase or by chelation of iron. We propose that normoxic Tg2576 fibroblasts maintain a high level of anhydromannose-containing heparan sulfate production by a stress-activated generation of nitric oxide from endogenous nitrite. This activation is enhanced

  7. Important role of heparan sulfate in postnatal islet growth and insulin secretion

    SciTech Connect

    Takahashi, Iwao; Noguchi, Naoya; Nata, Koji; Yamada, Shuhei; Kaneiwa, Tomoyuki; Mizumoto, Shuji; Ikeda, Takayuki; Sugihara, Kazushi; Asano, Masahide; Yoshikawa, Takeo; Yamauchi, Akiyo; Shervani, Nausheen Jamal; Uruno, Akira; Kato, Ichiro; Unno, Michiaki; Sugahara, Kazuyuki; Takasawa, Shin; and others

    2009-05-22

    Heparan sulfate (HS) binds with several signaling molecules and regulates ligand-receptor interactions, playing an essential role in embryonic development. Here we showed that HS was intensively expressed in pancreatic islet {beta}-cells after 1 week of age in mice. The enzymatic removal of HS in isolated islets resulted in attenuated glucose-induced insulin secretion with a concomitant reduction in gene expression of several key components in the insulin secretion machinery. We further depleted islet HS by inactivating the exostosin tumor-like 3 gene specifically in {beta}-cells. These mice exhibited abnormal islet morphology with reduced {beta}-cell proliferation after 1 week of age and glucose intolerance due to defective insulin secretion. These results demonstrate that islet HS is involved in the regulation of postnatal islet maturation and required to ensure normal insulin secretion.

  8. Enzyme overexpression - an exercise toward understanding regulation of heparan sulfate biosynthesis.

    PubMed

    Fang, Jianping; Song, Tianyi; Lindahl, Ulf; Li, Jin-Ping

    2016-01-01

    Biosynthesis of heparan sulfate (HS) involves conversion of D-glucuronic acid (GlcA) to L-iduronic acid (IdoA) units catalyzed by glucuronyl C5-epimerase (Hsepi). IdoA units are the favored substrate for 2-O-sulfotransferase (2OST). We used HEK293 cells as a model to investigate the effects of overexpression of these enzymes on HS structure. Overexpression of Hsepi alone resulted in an unexpected increase in HS chain length. A Hsepi point-mutant (Y168A), devoid of catalytic activity, failed to affect chain length. Moreover, the effect of Hsepi overexpression on HS chain length was abolished by simultaneous overexpression of 2OST. These findings raise novel aspects on regulation of HS biosynthesis. We propose a hypothetical enzyme-binding protein (EBP) with distinct, specific and partly overlapping binding sites, the interactions of which will determine levels of enzymes available to the biosynthetic process. PMID:27511124

  9. Chemical Synthesis of Human Syndecan-3 Glycopeptides Bearing Two Heparan Sulfate Glycan Chains

    PubMed Central

    Yoshida, Keisuke; Yang, Bo; Yang, Weizhun; Zhang, Zeren; Zhang, Jicheng

    2014-01-01

    Despite the ubiquitous presence of proteoglycans in mammalian systems, methodologies to synthesize this class of glycopeptides with homogeneous glycans are not well developed. Herein, we report the first synthesis of glycosaminoglycan family glycopeptides containing two different heparan sulfate chains from human syndecan-3. With the large sizes and tremendous structural complexities, multiple unexpected obstacles were encountered in synthesis, which include the high sensitivity to base treatment and the instability of glycopeptides with two glycan chains towards catalytic hydrogenation conditions. To overcome these challenges, after many trials, a successful strategy was established by constructing the partially deprotected single glycan chain containing glycopeptides first followed by union of the glycan bearing fragments and cleavage of ester type protecting groups. This work has laid the foundation to prepare other members of this important class of molecules. PMID:24981920

  10. Functions of Heparan Sulfate Proteoglycans in Development: Insights From Drosophila Models.

    PubMed

    Nakato, H; Li, J-P

    2016-01-01

    Heparan sulfate proteoglycans (HSPGs) are a class of carbohydrate-modified proteins involved in key biological processes, including growth factor signaling, cell adhesion, and enzymatic catalysis. HSPGs serve as coreceptors for a number of ligand molecules to regulate their signaling and distribution. These HS-dependent factors include fibroblast growth factors, bone morphogenetic proteins, Wnt-related factors, hedgehog, and cytokines. Several classes of HSPGs are evolutionarily conserved from humans to the genetically tractable model organism Drosophila. Sophisticated molecular genetic tools available in Drosophila provide for a powerful system to address unanswered questions regarding in vivo functions of HSPGs. These studies have highlighted the functions of HSPGs in the regulation of significant developmental events, such as morphogen gradient formation, nervous system formation, and the stem cell niche. Drosophila genetics has also established HSPGs as key factors in feedback controls that ensure robustness in developmental systems. PMID:27241223

  11. Cell mutants defective in synthesizing a heparan sulfate proteoglycan with regions of defined monosaccharide sequence

    SciTech Connect

    De Agostini, A.L.; Lau, H.K.; Leone, C.; Youssoufian, H. ); Rosenberg, R.D. Beth Israel Hospital, Boston, MA Harvard Medical School, Boston, MA )

    1990-12-01

    The authors have demonstrated that mouse LTA cells synthesize cell-surface heparan sulfate proteoglycans (HSPGs) with regions of defined monosaccharide sequence that specifically interact with antithrombin (HSPG{sup act}). It remains unclear how HSPG{sup act} can be generated by a biosynthetic pathway with no simple template for directing the ordered assembly of monosaccharide units. To examine this issue, they treated LTA cells with ethyl methanesulfonate and then isolated seven stable mutants that synthesize only 8 - 27% of the wild-type HSPG{sup act} but produce normal amounts of other HSPGs. These mutants are recessive in nature and fall into at least two different complementation groups. The delineation of the molecular basis of these defects should help to elucidate the manner by which cells synthesize HSPGs with regions of defined monosaccharide sequence.

  12. Enzyme overexpression – an exercise toward understanding regulation of heparan sulfate biosynthesis

    PubMed Central

    Fang, Jianping; Song, Tianyi; Lindahl, Ulf; Li, Jin-Ping

    2016-01-01

    Biosynthesis of heparan sulfate (HS) involves conversion of D-glucuronic acid (GlcA) to L-iduronic acid (IdoA) units catalyzed by glucuronyl C5-epimerase (Hsepi). IdoA units are the favored substrate for 2-O-sulfotransferase (2OST). We used HEK293 cells as a model to investigate the effects of overexpression of these enzymes on HS structure. Overexpression of Hsepi alone resulted in an unexpected increase in HS chain length. A Hsepi point-mutant (Y168A), devoid of catalytic activity, failed to affect chain length. Moreover, the effect of Hsepi overexpression on HS chain length was abolished by simultaneous overexpression of 2OST. These findings raise novel aspects on regulation of HS biosynthesis. We propose a hypothetical enzyme-binding protein (EBP) with distinct, specific and partly overlapping binding sites, the interactions of which will determine levels of enzymes available to the biosynthetic process. PMID:27511124

  13. A study on the interactions between Heparan Sulfate Proteoglycans and Wnt proteins

    PubMed Central

    Fuerer, Christophe; Habib, Shukry J.; Nusse, Roel

    2010-01-01

    The Wnt signaling pathway plays key roles in development and adult homeostasis. Wnt proteins are secreted, lipid-modified glycoproteins. They can form morphogen gradients that are regulated at the level of protein secretion, diffusion, and internalization. These gradients can only exist if the hydrophobic Wnt proteins are prevented from aggregating in the extracellular environment. Heparan sulfate proteoglycans (HSPGs) are necessary for proper activity of Wnt proteins and influence their distribution along the morphogenetic gradient. In this study, we show that HSPGs are able to maintain the solubility of Wnt proteins, thus stabilizing their signaling activity. Our results suggest that the role of HSPGs is not only to concentrate Wnt molecules at the cell surface but also to prevent them from aggregating in the extracellular environment. PMID:19705435

  14. Human Coronavirus NL63 Utilizes Heparan Sulfate Proteoglycans for Attachment to Target Cells

    PubMed Central

    Milewska, Aleksandra; Zarebski, Miroslaw; Nowak, Paulina; Stozek, Karol; Potempa, Jan

    2014-01-01

    ABSTRACT Human coronavirus NL63 (HCoV-NL63) is an alphacoronavirus that was first identified in 2004 in the nasopharyngeal aspirate from a 7-month-old patient with a respiratory tract infection. Previous studies showed that HCoV-NL63 and the genetically distant severe acute respiratory syndrome (SARS)-CoV employ the same receptor for host cell entry, angiotensin-converting enzyme 2 (ACE2), but it is largely unclear whether ACE2 interactions are sufficient to allow HCoV-NL63 binding to cells. The present study showed that directed expression of angiotensin-converting enzyme 2 (ACE2) on cells previously resistant to HCoV-NL63 renders them susceptible, showing that ACE2 protein acts as a functional receptor and that its expression is required for infection. However, comparative analysis showed that directed expression or selective scission of the ACE2 protein had no measurable effect on virus adhesion. In contrast, binding of HCoV-NL63 to heparan sulfates was required for viral attachment and infection of target cells, showing that these molecules serve as attachment receptors for HCoV-NL63. IMPORTANCE ACE2 protein was proposed as a receptor for HCoV-NL63 already in 2005, but an in-depth analysis of early events during virus infection had not been performed thus far. Here, we show that the ACE2 protein is required for viral entry but that it is not the primary binding site on the cell surface. Conducted research showed that heparan sulfate proteoglycans function as adhesion molecules, increasing the virus density on cell surface and possibly facilitating the interaction between HCoV-NL63 and its receptor. Obtained results show that the initial events during HCoV-NL63 infection are more complex than anticipated and that a newly described interaction may be essential for understanding the infection process and, possibly, also assist in drug design. PMID:25187545

  15. Role of Deacetylase Activity of N-Deacetylase/N-Sulfotransferase 1 in Forming N-Sulfated Domain in Heparan Sulfate*

    PubMed Central

    Dou, Wenfang; Xu, Yongmei; Pagadala, Vijayakanth; Pedersen, Lars C.; Liu, Jian

    2015-01-01

    Heparan sulfate (HS) is a highly sulfated polysaccharide that plays important physiological roles. The biosynthesis of HS involves a series of enzymes, including glycosyltransferases (or HS polymerase), epimerase, and sulfotransferases. N-Deacetylase/N-Sulfotransferase isoform 1 (NDST-1) is a critical enzyme in this pathway. NDST-1, a bifunctional enzyme, displays N-deacetylase and N-sulfotransferase activities to convert an N-acetylated glucosamine residue to an N-sulfo glucosamine residue. Here, we report the cooperative effects between N-deacetylase and N-sulfotransferase activities. Using baculovirus expression in insect cells, we obtained three recombinant proteins: full-length NDST-1 and the individual N-deacetylase and N-sulfotransferase domains. Structurally defined oligosaccharide substrates were synthesized to test the substrate specificities of the enzymes. We discovered that N-deacetylation is the limiting step and that interplay between the N-sulfotransferase and N-deacetylase accelerates the reaction. Furthermore, combining the individually expressed N-deacetylase and N-sulfotransferase domains produced different sulfation patterns when compared with that made by the NDST-1 enzyme. Our data demonstrate the essential role of domain cooperation within NDST-1 in producing HS with specific domain structures. PMID:26109066

  16. Endogenous heparan sulfate and heparin modulate bone morphogenetic protein-4 signaling and activity.

    PubMed

    Khan, Shaukat A; Nelson, Matthew S; Pan, Chendong; Gaffney, Patrick M; Gupta, Pankaj

    2008-06-01

    Bone morphogenetic proteins (BMPs) and their endogenous antagonists are important for brain and bone development and tumor initiation and progression. Heparan sulfate (HS) proteoglycans (HSPG) modulate the activities of BMPs and their antagonists. How glycosaminoglycans (GAGs) influence BMP activity in various malignancies and in inherited abnormalities of GAG metabolism, and the structural features of GAGs essential for modulation of BMP signaling, remain incompletely defined. We examined whether chemically modified soluble heparins, the endogenous HS in malignant cells and the HS accumulated in Hurler syndrome cells influence BMP-4 signaling and activity. We show that both exogenous (soluble) and endogenous GAGs modulate BMP-4 signaling and activity, and that this effect is dependent on specific sulfate residues of GAGs. Our studies suggest that endogenous sulfated GAGs promote the proliferation and impair differentiation of malignant human cells, providing the rationale for investigating whether pharmacological agents that inhibit GAG synthesis or function might reverse this effect. Our demonstration of impairment of BMP-4 signaling by GAGs in multipotent stem cells in human Hurler syndrome identifies a mechanism that might contribute to the progressive neurological and skeletal abnormalities in Hurler syndrome and related mucopolysaccharidoses. PMID:18385288

  17. Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate.

    PubMed

    Gao, Wei; Xu, Yongmei; Liu, Jian; Ho, Mitchell

    2016-01-01

    Heparan sulfate (HS) is a polysaccharide known to modulate many important biological processes, including Wnt signaling. However, the biochemical interaction between HS and Wnt molecules is not well characterized largely due to the lack of suitable methods. To determine the Wnt binding domain in HS, we used a Wnt signaling-inhibitory antibody (HS20) and a panel of synthetic HS oligosaccharides with distinct lengths and sulfation modifications. We found that the binding of HS20 to heparan sulfate required sulfation at both the C2 position (2-O-sulfation) and C6 position (6-O-sulfation). The oligosaccharides with the greatest competitive effect for HS20 binding were between six and eight saccharide residues in length. Additionally, a four residue-long oligosaccharide could also be recognized by HS20 if an additional 3-O-sulfation modification was present. Furthermore, similar oligosaccharides with 2-O, 6-O and 3-O-sulfations showed inhibition for Wnt activation. These results have revealed that HS20 and Wnt recognize a HS structure containing IdoA2S and GlcNS6S, and that the 3-O-sulfation in GlcNS6S3S significantly enhances the binding of both HS20 and Wnt. This study provides the evidence for identifying the Wnt binding domain in HS and suggests a therapeutic approach to target the interaction of Wnt and HS in cancer and other diseases. PMID:27185050

  18. Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate

    PubMed Central

    Gao, Wei; Xu, Yongmei; Liu, Jian; Ho, Mitchell

    2016-01-01

    Heparan sulfate (HS) is a polysaccharide known to modulate many important biological processes, including Wnt signaling. However, the biochemical interaction between HS and Wnt molecules is not well characterized largely due to the lack of suitable methods. To determine the Wnt binding domain in HS, we used a Wnt signaling-inhibitory antibody (HS20) and a panel of synthetic HS oligosaccharides with distinct lengths and sulfation modifications. We found that the binding of HS20 to heparan sulfate required sulfation at both the C2 position (2-O-sulfation) and C6 position (6-O-sulfation). The oligosaccharides with the greatest competitive effect for HS20 binding were between six and eight saccharide residues in length. Additionally, a four residue-long oligosaccharide could also be recognized by HS20 if an additional 3-O-sulfation modification was present. Furthermore, similar oligosaccharides with 2-O, 6-O and 3-O-sulfations showed inhibition for Wnt activation. These results have revealed that HS20 and Wnt recognize a HS structure containing IdoA2S and GlcNS6S, and that the 3-O-sulfation in GlcNS6S3S significantly enhances the binding of both HS20 and Wnt. This study provides the evidence for identifying the Wnt binding domain in HS and suggests a therapeutic approach to target the interaction of Wnt and HS in cancer and other diseases. PMID:27185050

  19. Role of Heparan Sulfate 2-O-Sulfotransferase in Prostate Cancer Cell Proliferation, Invasion, and Growth Factor Signaling

    PubMed Central

    Ferguson, Brent W.; Datta, Sumana

    2011-01-01

    Heparan-sulfate proteoglycans (HSPGs) are required for maximal growth factor signaling in prostate cancer progression. The degree of sulfate modification on the covalently attached heparan sulfate (HS) chains is one of the determining factors of growth factor-HSPG interactions. Sulfate groups are transferred to HS chains via a series of O-sulfotransferases. In the present study, we demonstrate that Heparan sulfate 2-O-sulfotransferase (2OST) is essential for maximal proliferation and invasion of prostate cancer cells in the LNCaP-C4-2B model. We also show that a decrease in invasion due to 2OST siRNA is associated with an increase in actin and E-cadherin accumulation at the cell surface. 2OST expression correlates with increasing metastatic potential in this model. We demonstrate that 2OST expression is upregulated by the stress-inducible transcription factors HIF1α, ATF2, and NFκB. Chromatin immunoprecipitation analysis suggests that HIF1α and ATF2 act directly on the 2OST promoter, while NFκB acts indirectly. PMID:22135748

  20. A Targeted Glycan-Related Gene Screen Reveals Heparan Sulfate Proteoglycan Sulfation Regulates WNT and BMP Trans-Synaptic Signaling

    PubMed Central

    Dani, Neil; Nahm, Minyeop; Lee, Seungbok; Broadie, Kendal

    2012-01-01

    A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS) 6-O-sulfotransferase (hs6st) and sulfatase (sulf1), which bidirectionally control HS proteoglycan (HSPG) sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased (hs6st) and increased (sulf1) neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg) and BMP (Glass Bottom Boat; Gbb) ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects. PMID:23144627

  1. Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host-cell interaction

    NASA Astrophysics Data System (ADS)

    Hu, Yu-Peng; Lin, Shu-Yi; Huang, Cheng-Yen; Zulueta, Medel Manuel L.; Liu, Jing-Yuan; Chang, Wen; Hung, Shang-Cheng

    2011-07-01

    Cell surface carbohydrates play significant roles in a number of biologically important processes. Heparan sulfate, for instance, is a ubiquitously distributed polysulfated polysaccharide that is involved, among other things, in the initial step of herpes simplex virus type 1 (HSV-1) infection. The virus interacts with cell-surface heparan sulfate to facilitate host-cell attachment and entry. 3-O-Sulfonated heparan sulfate has been found to function as an HSV-1 entry receptor. Achieving a complete understanding of these interactions requires the chemical synthesis of such oligosaccharides, but this remains challenging. Here, we present a convenient approach for the synthesis of two irregular 3-O-sulfonated heparan sulfate octasaccharides, making use of a key disaccharide intermediate to acquire different building blocks for the oligosaccharide chain assembly. Despite substantial structural differences, the prepared 3-O-sulfonated sugars blocked viral infection in a dosage-dependent manner with remarkable similarity to one another.

  2. Acute UV irradiation increases heparan sulfate proteoglycan levels in human skin.

    PubMed

    Jung, Ji-Yong; Oh, Jang-Hee; Kim, Yeon Kyung; Shin, Mi Hee; Lee, Dayae; Chung, Jin Ho

    2012-03-01

    Glycosaminoglycans are important structural components in the skin and exist as various proteoglycan forms, except hyaluronic acid. Heparan sulfate (HS), one of the glycosaminoglycans, is composed of repeated disaccharide units, which are glucuronic acids linked to an N-acetyl-glucosamine or its sulfated forms. To investigate acute ultraviolet (UV)-induced changes of HS and HS proteoglycans (HSPGs), changes in levels of HS and several HSPGs in male human buttock skin were examined by immunohistochemistry and real-time quantitative polymerase chain reaction (qPCR) after 2 minimal erythema doses (MED) of UV irradiation (each n = 4-7). HS staining revealed that 2 MED of UV irradiation increased its expression, and staining for perlecan, syndecan-1, syndecan-4, CD44v3, and CD44 showed that UV irradiation increased their protein levels. However, analysis by real-time qPCR showed that UV irradiation did not change mRNA levels of CD44 and agrin, and decreased perlecan and syndecan-4 mRNA levels, while increased syndecan-1 mRNA level. As HS-synthesizing or -degrading enzymes, exostosin-1 and heparanase mRNA levels were increased, but exostosin-2 was decreased by UV irradiation. UV-induced matrix metalloproteinase-1 expression was confirmed for proper experimental conditions. Acute UV irradiation increases HS and HSPG levels in human skin, but their increase may not be mediated through their transcriptional regulation. PMID:22379342

  3. Primary attachment of murine leukaemia virus vector mediated by particle-associated heparan sulfate proteoglycan

    PubMed Central

    Kureishy, Nina; Faruque, Daisy; Porter, Colin D.

    2006-01-01

    Target cell entry of murine leukaemia virus vectors proceeds via primary attachment, independent of the viral envelope protein and subsequent envelope–receptor interaction. Although much attention has been paid to modifying the latter for target cell specificity, the initial binding interaction has been overlooked, despite its opposing involvement both in providing the virus available for receptor binding and in depleting free virus. As a first step towards modifying primary attachment, both to provide specificity and to enhance vector availability, we sought to determine the nature of this interaction. Following an initial screen of GAGs (glycosaminoglycans) for their ability to inhibit virus binding and transduction, we have shown that production of virus from cells in which GAG sulfation is inhibited, or treatment of virus with heparinase III, reduces both particle attachment and infection. Detection in purified virus preparations of a neo-epitope generated by heparinase III confirmed the presence of virus-associated HSPG [HS (heparan sulfate) proteoglycan], acquired from the producer cell. We propose that host-acquired cell-surface HSPG (potentially including syndecan-2) provides a means of virus attachment to target cells that precedes specific receptor interaction and membrane fusion. Inhibition of HS biosynthesis may provide a sufficiently reduced background of primary binding such that novel mechanisms of attachment, ideally with appropriate target cell specificity, can be introduced. PMID:16895523

  4. Recognition of heparan sulfate by clinical strains of dengue virus serotype 1 using recombinant subviral particles

    PubMed Central

    Artpradit, Charlermchai; Robinson, Luke N.; Gavrilov, Boris K.; Rurak, Troy T.; Ruchirawat, Mathuros; Sasisekharan, Ram

    2014-01-01

    Dengue is the most important arthropod-borne viral disease in humans, with an estimated 3.6 billion people at risk for infection and more than 200 million infections per year. Identification of the cellular receptors for dengue virus (DV), the causative agent of dengue, is important toward understanding the pathogenesis of the disease. Heparan sulfate (HS) has been characterized as a DV receptor in multiple model systems, however the physiological relevance of these findings has been questioned by observations that flaviviruses, including DV, can undergo cell culture adaptation changes resulting in increased binding to HS. It thus remains unclear whether HS is utilized by clinical, non-cell culture-adapted strains of DV. To address this question, herein we describe a set of methodologies using recombinant subviral particles (RSPs) to determine the utilization of HS by clinical strains of DV serotype 1 (DV1). RSPs of clinically isolated strains with low cell culture passage histories were used to study HS interaction. Biochemically characterized RSPs showed dose-dependent binding to immobilized heparin, which could be competed by heparin and HS but not structurally related glycosaminoglycans chondroitin sulfate A and hyaluronic acid. The relevance of heparin and HS biochemical interactions was demonstrated by competition of RSP and DV binding to cells with soluble heparin and HS. Our results demonstrate that clinical strains of DV1 can specifically interact with heparin and HS. Together, these data support the possibility that HS on cell surfaces is utilized in the DV-human infection process. PMID:23707399

  5. The involvement of heparan sulfate proteoglycans in stem cell differentiation and in malignant glioma

    NASA Astrophysics Data System (ADS)

    Kundu, Soumi; Xiong, Anqi; Forsberg-Nilsson, Karin

    2016-04-01

    Heparan sulfate (HS) proteoglycans (HSPG) are major components of the extracellular matrix. They interact with a plethora of macromolecules that are of physiological importance. The pattern of sulfation of the HS chain determines the specificity of these interactions. The enzymes that synthesize and degrade HS are thus key regulators of processes ranging from embryonic development to tissue homeostasis and tumor development. Formation of the nervous system is also critically dependent on appropriate HSPGs as shown by several studies on the role of HS in neural induction from embryonic stem cells. High-grade glioma is the most common primary malignant brain tumor among adults, and the prognosis is poor. Neural and glioma stem cells share several traits, including sustained proliferation and highly efficient migration in the brain. There are also similarities between the neurogenic niche where adult neural stem cells reside and the tumorigenic niche, including their interactions with components of the extracellular matrix (ECM). The levels of many of these components, for example HSPGs and enzymes involved in the biosynthesis and modification of HS are attenuated in gliomas. In this paper, HS regulation of pathways involved in neural differentiation and how these may be of importance for brain development are discussed. The literature suggesting that modifications of HS could regulate glioma growth and invasion is reviewed. Targeting the invasiveness of glioma cells by modulating HS may improve upon present therapeutic options, which only marginally enhance the survival of glioma patients.

  6. A molecular mechanism for the heparan sulfate dependence of slit-robo signaling.

    PubMed

    Hussain, Sadaf-Ahmahni; Piper, Michael; Fukuhara, Noémi; Strochlic, Laure; Cho, Gian; Howitt, Jason A; Ahmed, Yassir; Powell, Andrew K; Turnbull, Jeremy E; Holt, Christine E; Hohenester, Erhard

    2006-12-22

    Slit is a large secreted protein that provides important guidance cues in the developing nervous system and in other organs. Signaling by Slit requires two receptors, Robo transmembrane proteins and heparan sulfate (HS) proteoglycans. How HS controls Slit-Robo signaling is unclear. Here we show that the second leucine-rich repeat domain (D2) of Slit, which mediates binding to Robo receptors, also contains a functionally important binding site for heparin, a highly sulfated variant of HS. Heparin markedly enhances the affinity of the Slit-Robo interaction in a solid-phase binding assay. Analytical gel filtration chromatography demonstrates that Slit D2 associates with a soluble Robo fragment and a heparin-derived oligosaccharide to form a ternary complex. Retinal growth cone collapse triggered by Slit D2 requires cell surface HS or exogenously added heparin. Mutation of conserved basic residues in the C-terminal cap region of Slit D2 reduces heparin binding and abolishes biological activity. We conclude that heparin/HS is an integral component of the minimal Slit-Robo signaling complex and serves to stabilize the relatively weak Slit-Robo interaction. PMID:17062560

  7. Heparan Sulfate in Skeletal Development, Growth, and Pathology: The Case of Hereditary Multiple Exostoses

    PubMed Central

    Huegel, Julianne; Sgariglia, Federica; Enomoto-Iwamoto, Motomi; Koyama, Eiki; Dormans, John P.; Pacifici, Maurizio

    2014-01-01

    Heparan sulfate (HS) is an essential component of cell surface and matrix-associated proteoglycans (HSPGs). Due to their sulfation patterns, the HS chains interact with numerous signaling proteins and regulate their distribution and activity on target cells. Many of these proteins, including bone morphogenetic protein family members, are expressed in the growth plate of developing skeletal elements, and several skeletal phenotypes are caused by mutations in HS-synthesizing and modifying enzymes. The disease we discuss here is Hereditary Multiple Exostoses (HME), a disorder caused by mutations in HS synthesizing enzymes EXT1 and EXT2, leading to HS deficiency. The exostoses are benign cartilaginous-bony outgrowths, form next to growth plates, can cause growth retardation and deformities, chronic pain and impaired motion, and progress to malignancy in 2-5% of patients. We describe recent advancements on HME pathogenesis and exostosis formation deriving from studies that have determined distribution, activities and roles of signaling proteins in wild type and HS-deficient cells and tissues. Aberrant distribution of signaling factors combined with aberrant responsiveness of target cells to those same factors appear to be a major culprit in exostosis formation. Insights from these studies suggest plausible and cogent ideas about how HME could be treated in the future. PMID:23821404

  8. Heparan sulfate deficiency in autistic postmortem brain tissue from the subventricular zone of the lateral ventricles

    PubMed Central

    Pearson, Brandon L.; Corley, Michael J.; Vasconcellos, Amy; Blanchard, D. Caroline; Blanchard, Robert J.

    2013-01-01

    Abnormal cellular growth and organization have been characterized in postmortem tissue from brains of autistic individuals, suggestive of pathology in a critical neurogenic niche, the subventricular zone (SVZ) of the brain lateral ventricles (LV). We examined cellular organization, cell proliferation, and constituents of the extracellular matrix such as N-sulfated heparan sulfate (HS) and laminin (LAM) in postmortem brain tissue from the LV-SVZ of young to elderly individuals with autism (n = 4) and age-matched typically developing (TD) individuals (n = 4) using immunofluorescence techniques. Strong and systematic reductions in HS immunofluorescence were observed in the LV-SVZ of the TD individuals with increasing age. For young through mature, but not elderly, autistic pair members, HS was reduced compared to their matched TDs. Cellular proliferation (Ki67+) was higher in the autistic individual of the youngest age-matched pair. These preliminary data suggesting that HS may be reduced in young to mature autistic individuals are in agreement with previous findings from the BTBR T+tf/J mouse, an animal model of autism; from mice with genetic modifications reducing HS; and with genetic variants in HS-related genes in autism. They suggest that aberrant extracellular matrix glycosaminoglycan function localized to the subventricular zone of the lateral ventricles may be a biomarker for autism, and potentially involved in the etiology of the disorder. PMID:23318464

  9. Immobilization of Heparan Sulfate on Electrospun Meshes to Support Embryonic Stem Cell Culture and Differentiation*

    PubMed Central

    Meade, Kate A.; White, Kathryn J.; Pickford, Claire E.; Holley, Rebecca J.; Marson, Andrew; Tillotson, Donna; van Kuppevelt, Toin H.; Whittle, Jason D.; Day, Anthony J.; Merry, Catherine L. R.

    2013-01-01

    As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface. Bound GAGs retained the ability to interact with GAG-binding molecules and, crucially, presented GAG sulfation motifs fundamental to mediating stem cell behavior. Bound GAG proved to be biologically active, rescuing the neural differentiation capacity of heparan sulfate-deficient mouse embryonic stem cells and functioning in concert with FGF4 to facilitate the formation of extensive neural processes across the scaffold surface. The combination of GAGs with electrospun scaffolds creates a biomaterial with potent applicability for the propagation and effective differentiation of pluripotent stem cells. PMID:23235146

  10. Heparan Sulfate Proteoglycans May Promote or Inhibit Cancer Progression by Interacting with Integrins and Affecting Cell Migration

    PubMed Central

    Soares, Mariana A.; Teixeira, Felipe C. O. B.; Fontes, Miguel; Arêas, Ana Lúcia; Leal, Marcelo G.; Pavão, Mauro S. G.; Stelling, Mariana P.

    2015-01-01

    The metastatic disease is one of the main consequences of tumor progression, being responsible for most cancer-related deaths worldwide. This review intends to present and discuss data on the relationship between integrins and heparan sulfate proteoglycans in health and cancer progression. Integrins are a family of cell surface transmembrane receptors, responsible for cell-matrix and cell-cell adhesion. Integrins' main functions include cell adhesion, migration, and survival. Heparan sulfate proteoglycans (HSPGs) are cell surface molecules that play important roles as cell receptors, cofactors, and overall direct or indirect contributors to cell organization. Both molecules can act in conjunction to modulate cell behavior and affect malignancy. In this review, we will discuss the different contexts in which various integrins, such as α5, αV, β1, and β3, interact with HSPGs species, such as syndecans and perlecans, affecting tissue homeostasis. PMID:26558271

  11. Plasma syndecan-1 and heparan sulfate correlate with microvascular glycocalyx degradation in hemorrhaged rats after different resuscitation fluids.

    PubMed

    Torres Filho, Ivo P; Torres, Luciana N; Salgado, Christi; Dubick, Michael A

    2016-06-01

    The endothelial glycocalyx plays an essential role in many physiological functions and is damaged after hemorrhage. Fluid resuscitation may further change the glycocalyx after an initial hemorrhage-induced degradation. Plasma levels of syndecan-1 and heparan sulfate have been used as indirect markers for glycocalyx degradation, but the extent to which these measures are representative of the events in the microcirculation is unknown. Using hemorrhage and a wide range of resuscitation fluids, we studied quantitatively the relationship between plasma biomarkers and changes in microvascular parameters, including glycocalyx thickness. Rats were bled 40% of total blood volume and resuscitated with seven different fluids (fresh whole blood, blood products, and crystalloids). Intravital microscopy was used to estimate glycocalyx thickness in >270 postcapillary venules from 58 cremaster preparations in 9 animal groups; other microvascular parameters were measured using noninvasive techniques. Systemic physiological parameters and blood chemistry were simultaneously collected. Changes in glycocalyx thickness were negatively correlated with changes in plasma levels of syndecan-1 (r = -0.937) and heparan sulfate (r = -0.864). Changes in microvascular permeability were positively correlated with changes in both plasma biomarkers (r = 0.8, P < 0.05). Syndecan-1 and heparan sulfate were also positively correlated (r = 0.7, P < 0.05). Except for diameter and permeability, changes in local microcirculatory parameters (red blood cell velocity, blood flow, and wall shear rate) did not correlate with plasma biomarkers or glycocalyx thickness changes. This work provides a quantitative framework supporting plasma syndecan-1 and heparan sulfate as valuable clinical biomarkers of glycocalyx shedding that may be useful in guiding resuscitation strategies following hemorrhage. PMID:27037369

  12. Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation

    PubMed Central

    Brennan, Todd V.; Lin, Liwen; Brandstadter, Joshua D.; Rendell, Victoria R.; Dredge, Keith; Huang, Xiaopei; Yang, Yiping

    2015-01-01

    Heparan sulfate (HS) is an essential component of the extracellular matrix (ECM), which serves as a barrier to tumor invasion and metastasis. Heparanase promotes tumor growth by cleaving HS chains of proteoglycan and releasing HS-bound angiogenic growth factors and facilitates tumor invasion and metastasis by degrading the ECM. HS mimetics, such as PG545, have been developed as antitumor agents and are designed to suppress angiogenesis and metastasis by inhibiting heparanase and competing for the HS-binding domain of angiogenic growth factors. However, how PG545 exerts its antitumor effect remains incompletely defined. Here, using murine models of lymphoma, we determined that the antitumor effects of PG545 are critically dependent on NK cell activation and that NK cell activation by PG545 requires TLR9. We demonstrate that PG545 does not activate TLR9 directly but instead enhances TLR9 activation through the elevation of the TLR9 ligand CpG in DCs. Specifically, PG545 treatment resulted in CpG accumulation in the lysosomal compartment of DCs, leading to enhanced production of IL-12, which is essential for PG545-mediated NK cell activation. Overall, these results reveal that PG545 activates NK cells and that this activation is critical for the antitumor effect of PG545. Moreover, our findings may have important implications for improving NK cell–based antitumor therapies. PMID:26649979

  13. Heparan Sulfate Expression in the Neural Crest is Essential for Mouse Cardiogenesis

    PubMed Central

    Pan, Yi; Carbe, Christian; Pickhinke, Ute; Kupich, Sabine; Ohlig, Stefanie; Frye, Maike; Seelige, Ruth; Pallerla, Srinivas R.; Moon, Anne M.; Lawrence, Roger; Esko, Jeffrey D.; Zhang, Xin; Grobe, Kay

    2015-01-01

    Impaired heparan sulfate (HS) synthesis in vertebrate development causes complex malformations due to the functional disruption of multiple HS-binding growth factors and morphogens. Here, we report developmental heart defects in mice bearing a targeted disruption of the HS-generating enzyme GlcNAc N-Deacetylase/GlcN N-Sulfotransferase 1 (NDST1), including ventricular septal defects (VSD), persistent truncus arteriosus (PTA), double outlet right ventricle (DORV), and retroesophageal right subclavian artery (RERSC). These defects closely resemble cardiac anomalies observed in mice made deficient in the cardiogenic regulator fibroblast growth factor 8 (FGF8). Consistent with this, we show that HS-dependent FGF8/FGF-receptor2C assembly and FGF8-dependent ERK-phosphorylation are strongly reduced in NDST1−/− embryonic cells and tissues. Moreover, WNT1-Cre/LoxP-mediated conditional targeting of NDST function in neural crest cells (NCCs) revealed that their impaired HS-dependent development contributes strongly to the observed cardiac defects. These findings raise the possibility that defects in HS biosynthesis may contribute to congenital heart defects in humans that represent the most common type of birth defect. PMID:24200809

  14. A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition

    PubMed Central

    Kuo, Ping-Hsueh; Chang, Pei-Lin; Wang, Wen-Ching; Chuang, Yung-Jen; Chang, Margaret Dah-Tsyr

    2015-01-01

    As heparan sulfate proteoglycans (HSPGs) are known as co-receptors to interact with numerous growth factors and then modulate downstream biological activities, overexpression of HS/HSPG on cell surface acts as an increasingly reliable prognostic factor in tumor progression. Cell penetrating peptides (CPPs) are short-chain peptides developed as functionalized vectors for delivery approaches of impermeable agents. On cell surface negatively charged HS provides the initial attachment of basic CPPs by electrostatic interaction, leading to multiple cellular effects. Here a functional peptide (CPPecp) has been identified from critical HS binding region in hRNase3, a unique RNase family member with in vitro antitumor activity. In this study we analyze a set of HS-binding CPPs derived from natural proteins including CPPecp. In addition to cellular binding and internalization, CPPecp demonstrated multiple functions including strong binding activity to tumor cell surface with higher HS expression, significant inhibitory effects on cancer cell migration, and suppression of angiogenesis in vitro and in vivo. Moreover, different from conventional highly basic CPPs, CPPecp facilitated magnetic nanoparticle to selectively target tumor site in vivo. Therefore, CPPecp could engage its capacity to be developed as biomaterials for diagnostic imaging agent, therapeutic supplement, or functionalized vector for drug delivery. PMID:26064887

  15. Heparan Sulfate Proteoglycans Promote Telomerase Internalization and MHC Class II Presentation on Dendritic Cells.

    PubMed

    Galaine, Jeanne; Kellermann, Guillaume; Guillaume, Yves; Boidot, Romain; Picard, Emilie; Loyon, Romain; Queiroz, Lise; Boullerot, Laura; Beziaud, Laurent; Jary, Marine; Mansi, Laura; André, Claire; Lethier, Lydie; Ségal-Bendirdjian, Evelyne; Borg, Christophe; Godet, Yann; Adotévi, Olivier

    2016-09-01

    Telomerase is a prototype-shared tumor Ag and represents an attractive target for anticancer immunotherapy. We have previously described promiscuous and immunogenic HLA-DR-restricted peptides derived from human telomerase reverse transcriptase (hTERT) and referred as universal cancer peptide (UCP). In nonsmall cell lung cancer, the presence of spontaneous UCP-specific CD4 T cell responses increases the survival of chemotherapy-responding patients. However, the precise mechanisms of hTERT's uptake, processing, and presentation on MHC-II molecules to stimulate CD4 T cells are poorly understood. In this work, by using well-characterized UCP-specific CD4 T cell clones, we showed that hTERT processing and presentation on MHC-II involve both classical endolysosomal and nonclassical cytosolic pathways. Furthermore, to our knowledge, we demonstrated for the first time that hTERT's internalization by dendritic cells requires its interaction with surface heparan sulfate proteoglycans. Altogether, our findings provide a novel mechanism of tumor-specific CD4 T cell activation and will be useful for the development of novel cancer immunotherapies that harness CD4 T cells. PMID:27481844

  16. Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma

    PubMed Central

    Phillips, Joanna J.; Huillard, Emmanuelle; Robinson, Aaron E.; Ward, Anna; Lum, David H.; Polley, Mei-Yin; Rosen, Steven D.; Rowitch, David H.; Werb, Zena

    2012-01-01

    Glioblastoma (GBM), a uniformly lethal brain cancer, is characterized by diffuse invasion and abnormal activation of multiple receptor tyrosine kinase (RTK) signaling pathways, presenting a major challenge to effective therapy. The activation of many RTK pathways is regulated by extracellular heparan sulfate proteoglycans (HSPG), suggesting these molecules may be effective targets in the tumor microenvironment. In this study, we demonstrated that the extracellular sulfatase, SULF2, an enzyme that regulates multiple HSPG-dependent RTK signaling pathways, was expressed in primary human GBM tumors and cell lines. Knockdown of SULF2 in human GBM cell lines and generation of gliomas from Sulf2–/– tumorigenic neurospheres resulted in decreased growth in vivo in mice. We found a striking SULF2 dependence in activity of PDGFRα, a major signaling pathway in GBM. Ablation of SULF2 resulted in decreased PDGFRα phosphorylation and decreased downstream MAPK signaling activity. Interestingly, in a survey of SULF2 levels in different subtypes of GBM, the proneural subtype, characterized by aberrations in PDGFRα, demonstrated the strongest SULF2 expression. Therefore, in addition to its potential as an upstream target for therapy of GBM, SULF2 may help identify a subset of GBMs that are more dependent on exogenous growth factor–mediated signaling. Our results suggest the bioavailability of growth factors from the microenvironment is a significant contributor to tumor growth in a major subset of human GBM. PMID:22293178

  17. Heparan Sulfate Proteoglycan: An Arbovirus Attachment Factor Integral to Mosquito Salivary Gland Ducts

    PubMed Central

    Ciano, Kristen A.; Saredy, Jason J.; Bowers, Doria F.

    2014-01-01

    Variants of the prototype Alphavirus, Sindbis (SINV), were used in per os infections of adult female mosquitoes to investigate arbovirus interaction with the salivary gland (SG). Infection of Aedine mosquitoes with AR339, a heparan sulfate proteoglycan (HSPG)-dependent variant, resulted in gross pathology in the SG lateral lobes while infection with TR339, a HSPG-independent variant, resulted in minimal SG pathology. HSPG was detected in the internal ducts of the SG lateral lobes by immunolabeling but not in the median lobe, or beyond the triad structure and external ducts. Reports that human lactoferrin interacts with HSPG, suggested an interference with virus attachment to receptors on vertebrate cells. Pre-incubation of Aedes albopictus cultured C7-10 cells with bovine lactoferrin (bLF) followed by adsorption of SINV resulted in earlier and greater intensity of cytopathic response to TR339 compared with AR339. Following pre-treatment of C7-10 cells with bLF, plaques from tissue culture-adapted high-titer SINVTaV-GFP-TC were observed at 48 h post-infection (p.i.), while plaques from low-titer SINVTaV-GFP-TC were not observed until 120 h p.i. Confocal optics detected this reporter virus at 30 days p.i. in the SG proximal lateral lobe, a region of HSPG-immunolocalization. Altogether these data suggest an association between SINV and HSPG in the host mosquito. PMID:25533661

  18. Heparan sulfate mimetic PG545-mediated antilymphoma effects require TLR9-dependent NK cell activation.

    PubMed

    Brennan, Todd V; Lin, Liwen; Brandstadter, Joshua D; Rendell, Victoria R; Dredge, Keith; Huang, Xiaopei; Yang, Yiping

    2016-01-01

    Heparan sulfate (HS) is an essential component of the extracellular matrix (ECM), which serves as a barrier to tumor invasion and metastasis. Heparanase promotes tumor growth by cleaving HS chains of proteoglycan and releasing HS-bound angiogenic growth factors and facilitates tumor invasion and metastasis by degrading the ECM. HS mimetics, such as PG545, have been developed as antitumor agents and are designed to suppress angiogenesis and metastasis by inhibiting heparanase and competing for the HS-binding domain of angiogenic growth factors. However, how PG545 exerts its antitumor effect remains incompletely defined. Here, using murine models of lymphoma, we determined that the antitumor effects of PG545 are critically dependent on NK cell activation and that NK cell activation by PG545 requires TLR9. We demonstrate that PG545 does not activate TLR9 directly but instead enhances TLR9 activation through the elevation of the TLR9 ligand CpG in DCs. Specifically, PG545 treatment resulted in CpG accumulation in the lysosomal compartment of DCs, leading to enhanced production of IL-12, which is essential for PG545-mediated NK cell activation. Overall, these results reveal that PG545 activates NK cells and that this activation is critical for the antitumor effect of PG545. Moreover, our findings may have important implications for improving NK cell-based antitumor therapies. PMID:26649979

  19. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries.

    PubMed

    Billings, Paul C; Pacifici, Maurizio

    2015-01-01

    Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics. PMID:26076122

  20. Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells

    PubMed Central

    2011-01-01

    Background Several naturally occurring cationic antimicrobial peptides (CAPs), including bovine lactoferricin (LfcinB), display promising anticancer activities. These peptides are unaffected by multidrug resistance mechanisms and have been shown to induce a protective immune response against solid tumors, thus making them interesting candidates for developing novel lead structures for anticancer treatment. Recently, we showed that the anticancer activity by LfcinB was inhibited by the presence of heparan sulfate (HS) on the surface of tumor cells. Based on extensive structure-activity relationship studies performed on LfcinB, shorter and more potent peptides have been constructed. In the present study, we have investigated the anticancer activity of three chemically modified 9-mer peptides and the influence of HS and chondroitin sulfate (CS) on their cytotoxic activity. Methods Various cell lines and red blood cells were used to investigate the anticancer activity and selectivity of the peptides. The cytotoxic effect of the peptides against the different cell lines was measured by use of a colorimetric MTT viability assay. The influence of HS and CS on their cytotoxic activity was evaluated by using HS/CS expressing and HS/CS deficient cell lines. The ability of soluble HS and CS to inhibit the cytotoxic activity of the peptides and the peptides' affinity for HS and CS were also investigated. Results The 9-mer peptides displayed selective anticancer activity. Cells expressing HS/CS were equally or more susceptible to the peptides than cells not expressing HS/CS. The peptides displayed a higher affinity for HS compared to CS, and exogenously added HS inhibited the cytotoxic effect of the peptides. Conclusions In contrast to the previously reported inhibitory effect of HS on LfcinB, the present study shows that the cytotoxic activity of small lytic peptides was increased or not affected by cell surface HS. PMID:21453492

  1. A new sequencing approach for N-unsubstituted heparin/heparan sulfate oligosaccharides.

    PubMed

    Liang, Qun Tao; Xiao, Xiao Mao; Lin, Jian Hui; Wei, Zheng

    2015-07-01

    The rare N-unsubstituted glucosamine (GlcNH(3)(+)) residues in heparan sulfate (HS) have important biological and pathophysiological roles. Because of their low natural abundance, the use of chemically generated, structurally defined, N-unsubstituted heparin/HS oligosaccharides can greatly contribute to the investigation of their natural role in HS. However, the sequencing of mixtures of chemically generated oligosaccharides presents major challenges due to the difficulties in separating isomers and the available detection methods. In this study, we developed and validated a simple and sensitive method for the sequence analysis of N-unsubstituted heparin/HS oligosaccharides. This protocol involves pH 4 nitrous acid (HNO(2)) degradation, size-exclusion HPLC and ion-pair reversed-phase liquid chromatography-ion trap/time-of-flight mass spectrometry (IPRP-LC-ITTOF MS). We unexpectedly found that absorbance at 232 nm (normally used for specific detection of C4-C5 unsaturated oligosaccharides) was, in most cases, still sufficiently sensitive to also simultaneously detect saturated oligosaccharides during HPLC, thus simplifying the positional analysis of GlcNH(3)(+)) residues. The IPRP-LC-ITTOF MS system can supply further structural information leading to full sequence determination of the original oligosaccharide. This new methodology has been used to separate and sequence a variety of chemically generated, N-unsubstituted dp6 species containing between 1 and 3 GlcNH(3)(+)) residues per oligosaccharide in different positional combinations. This strategy offers possibilities for the sequencing of natural N-unsubstituted oligosaccharides from HS and should also be applicable, with minor modification, for sequencing at N-sulfated residues using alternative pH 1.5 HNO(2) scission. PMID:25677303

  2. Association of cell surface heparan sulfate proteoglycans of Schwann cells with extracellular matrix proteins.

    PubMed

    Carey, D J; Crumbling, D M; Stahl, R C; Evans, D M

    1990-11-25

    The terminal differentiation of Schwann cells is dependent on contact with basement membrane. The present study was undertaken to investigate the role of cell surface heparan sulfate proteoglycans (HSPGs) in mediating Schwann cell responses to extracellular matrix contact. Phosphatidylinositol-specific phospholipase C-releasable cell surface HSPGs purified from cultures of neonatal rat Schwann cells were subjected to affinity chromatography on immobilized laminin and fibronectin. Binding of the HSPG to both affinity matrices was observed. The strength of the association, however, was sensitive to the ionic strength of the buffer. In 0.1 M Tris-HCl, HSPG binding was essentially irreversible whereas in physiological ionic strength buffer (e.g. 0.142 M NaCl, 10 mM Tris), weaker binding was detected as a delay in elution of the HSPG from the affinity columns. Further studies of HSPG-laminin binding suggested that the binding was mediated by the glycosaminoglycan chains of the proteoglycans. Results of equilibrium gel filtration chromatography provided additional evidence for a reversible association of the HSPG and laminin with a Kd of approximately 1 x 10(-6) M. When Schwann cells were plated on plastic dishes coated with laminin, the cells attached and extended long slender processes. Inclusion of heparin, but not chondroitin sulfate, in the assay medium resulted in partial inhibition of process extension, but at concentrations of heparin which were higher than that needed to disrupt laminin-HSPG association in vitro. Addition of anti-integrin receptor antibodies resulted in more extensive inhibition of laminin-dependent process extension. Anti-integrin antibodies plus heparin essentially totally inhibited laminin-dependent process extension. These results demonstrate that cell surface HSPGs are capable of reversible association with extracellular matrix molecules and suggest that HSPG-laminin interactions play a role in laminin-dependent Schwann cell spreading. PMID

  3. HEPARAN SULFATE PROTEOGLYCAN-MEDIATED ENTRY PATHWAY FOR CHARGED TRI-PLATINUM COMPOUNDS. DIFFERENTIAL CELLULAR ACCUMULATION MECHANISMS FOR PLATINUM

    PubMed Central

    Silva, Heveline; Frézard, Frédéric; Peterson, Erica J.; Kabolizadeh, Peyman; Ryan, John J.; Farrell, Nicholas P.

    2012-01-01

    We examined the mechanism of accumulation of charged polynuclear platinum complexes (PPCs), based on analogy of polyarginine interactions with the cell surface heparan sulfate proteoglycan (HSPG) family of protein-linked glycosoaminoglycan polysaccharides (GAGs). GAGS such as heparan sulfate (HS) and chondroitin sulfate (CS) mediate the cellular entry of many charged molecules. Fluorescence microscopy and flow cytometry showed that PPCs, but not the neutral cisplatin or oxaliplatin, blocked the cellular entry of TAMRA-R9 (a nonarginine peptide, R9) coupled to the TAMRA fluorescent label 5-(and 6-)carboxytetramethylrhodamine) in Chinese Hamster Ovary (CHO), human colon carcinoma (HCT116), and osteosarcoma (SAOS-2) cells. Furthermore, detection of platinum accumulation in wt CHO, mutant CHO-pgsD-677 (lacking HS), and CHO-pgsA (lacking HS/CS) cells confirms that HSPG-mediated interactions are an important mechanism for PPC internalization, but not so for uncharged cisplatin and oxaliplatin. Endocytosis inhibitor studies show that macropinocytosis, a mechanism of cell entry for heparan sulfate GAGs and arginine-rich peptides, is important in the cellular accumulation of “non-covalent” TriplatinNC, and to a lesser degree, the covalently-binding BBR3464. Clathrin-mediated endocytosis, however, was not involved in either case. Overall the results suggest a new proteoglycan-mediated mechanism for cellular accumulation of PPCs not shared by cisplatin or oxaliplatin. The results have significant implications for rational design of platinum antitumor drugs with distinct biological profiles in comparison to the clinically-used agents as well as expanding the chemotypes for HS proteoglycan-dependent receptors. PMID:22494465

  4. Lysosomal storage of heparan sulfate causes mitochondrial defects, altered autophagy, and neuronal death in the mouse model of mucopolysaccharidosis III type C.

    PubMed

    Pshezhetsky, Alexey V

    2016-06-01

    The genetic metabolic disease mucopolysaccharidosis III type C (MPS IIIC, Sanfilippo disease type C) causes progressive neurodegeneration in infants and children, leading to dementia and death before adulthood. MPS IIIC stands out among lysosomal diseases because it is the only one caused by a deficiency not of a hydrolase but of HGSNAT (heparan--glucosaminide N-acetyltransferase), which catalyzes acetylation of glycosaminoglycan heparan sulfate (HS) prior to its hydrolysis. PMID:25998837

  5. Heparan Sulfate Regulates Hair Follicle and Sebaceous Gland Morphogenesis and Homeostasis*

    PubMed Central

    Coulson-Thomas, Vivien Jane; Gesteira, Tarsis Ferreira; Esko, Jeffrey; Kao, Winston

    2014-01-01

    Hair follicle (HF) morphogenesis and cycling are a result of intricate autonomous epithelial-mesenchymal interactions. Once the first HF cycle is complete it repeatedly undergoes cyclic transformations. Heparan sulfate (HS) proteoglycans are found on the cell surface and in the extracellular matrix where they influence a variety of biological processes by interacting with physiologically important proteins, such as growth factors. Inhibition of heparanase (an HS endoglycosidase) in in vitro cultured HFs has been shown to induce a catagen-like process. Therefore, this study aimed to elucidate the precise role of HS in HF morphogenesis and cycling. An inducible tetratransgenic mouse model was generated to excise exostosin glycosyltransferase 1 (Ext1) in keratin 14-positive cells from P21. Interestingly, EXT1StEpiΔ/StEpiΔ mice presented solely anagen HFs. Moreover, waxing the fur to synchronize the HFs revealed accelerated hair regrowth in the EXT1StEpiΔ/StEpiΔ mice and hindered cycling into catagen. The ablation of HS in the interfollicular epidermal cells of mature skin led to the spontaneous formation of new HFs and an increase in Sonic Hedgehog expression resembling wild-type mice at P0, thereby indicating that the HS/Sonic Hedgehog signaling pathway regulates HF formation during embryogenesis and prevents HF formation in mature skin. Finally, the knock-out of HS also led to the morphogenesis and hyperplasia of sebaceous glands and sweat glands in mature mice, leading to exacerbated sebum production and accumulation on the skin surface. Therefore, our findings clearly show that an intricate control of HS levels is required for HF, sebaceous gland, and sweat gland morphogenesis and HF cycling. PMID:25053416

  6. Effect of heparan sulfate and gold nanoparticles on muscle development during embryogenesis

    PubMed Central

    Zielinska, Marlena; Sawosz, Ewa; Grodzik, Marta; Wierzbicki, Mateusz; Gromadka, Maria; Hotowy, Anna; Sawosz, Filip; Lozicki, Andrzej; Chwalibog, Andrè

    2011-01-01

    Purpose It was hypothesized that heparan sulfate (HS) as an essential compound for myogenesis and nanoparticles of gold (nano-Au) as highly reactive compounds can affect muscle development as a consequence of molecular regulation of muscle cell formation, and that these effects may be enhanced by a complex of HS conjugated with nano-Au. The objective of the present study was to determine the effect of administration of nano-Au, HS, and a nano-Au+HS complex on the morphological and molecular characteristics of breast muscle during embryogenesis. Methods Chicken embryos were used as in vivo model. Fertilized chicken eggs (n = 350) were randomly divided into the control group and the groups treated with nano-Au, HS, and nano-Au+HS. The experimental solutions were given in ovo on the first day of incubation and the embryos were evaluated on day 20 of incubation. The methods included biochemical indices in blood, immunohistochemistry, microscopy (transmission electron microscopy, scanning electron microscopy, confocal), and gene expression at the messenger ribonucleic acid and protein levels. Results The treatments did not adversely affect mortality, organ weight, and homeostasis of the embryos. HS stimulated the development and maturation of breast muscle by increasing the number of nuclei, satellite cells, and muscle fibers and affected the expression of basic fibroblast growth factor-2 and paired-box transcription factor-7. Furthermore, the nano-Au+HS complex contributed to the increased number of myocytes and nuclei in chicken embryo muscles. Conclusion The results indicate that the administration of HS and nano-Au affects muscle development and that this effect is enhanced by conjugating HS with nano-Au. PMID:22238506

  7. Blood Vessels Pattern Heparan Sulfate Gradients between Their Apical and Basolateral Aspects

    PubMed Central

    Stoler-Barak, Liat; Moussion, Christine; Shezen, Elias; Hatzav, Miki; Sixt, Michael; Alon, Ronen

    2014-01-01

    A hallmark of immune cell trafficking is directional guidance via gradients of soluble or surface bound chemokines. Vascular endothelial cells produce, transport and deposit either their own chemokines or chemokines produced by the underlying stroma. Endothelial heparan sulfate (HS) was suggested to be a critical scaffold for these chemokine pools, but it is unclear how steep chemokine gradients are sustained between the lumenal and ablumenal aspects of blood vessels. Addressing this question by semi-quantitative immunostaining of HS moieties around blood vessels with a pan anti-HS IgM mAb, we found a striking HS enrichment in the basal lamina of resting and inflamed post capillary skin venules, as well as in high endothelial venules (HEVs) of lymph nodes. Staining of skin vessels with a glycocalyx probe further suggested that their lumenal glycocalyx contains much lower HS density than their basolateral extracellular matrix (ECM). This polarized HS pattern was observed also in isolated resting and inflamed microvascular dermal cells. Notably, progressive skin inflammation resulted in massive ECM deposition and in further HS enrichment around skin post capillary venules and their associated pericytes. Inflammation-dependent HS enrichment was not compromised in mice deficient in the main HS degrading enzyme, heparanase. Our results suggest that the blood vasculature patterns steep gradients of HS scaffolds between their lumenal and basolateral endothelial aspects, and that inflammatory processes can further enrich the HS content nearby inflamed vessels. We propose that chemokine gradients between the lumenal and ablumenal sides of vessels could be favored by these sharp HS scaffold gradients. PMID:24465652

  8. Blood vessels pattern heparan sulfate gradients between their apical and basolateral aspects.

    PubMed

    Stoler-Barak, Liat; Moussion, Christine; Shezen, Elias; Hatzav, Miki; Sixt, Michael; Alon, Ronen

    2014-01-01

    A hallmark of immune cell trafficking is directional guidance via gradients of soluble or surface bound chemokines. Vascular endothelial cells produce, transport and deposit either their own chemokines or chemokines produced by the underlying stroma. Endothelial heparan sulfate (HS) was suggested to be a critical scaffold for these chemokine pools, but it is unclear how steep chemokine gradients are sustained between the lumenal and ablumenal aspects of blood vessels. Addressing this question by semi-quantitative immunostaining of HS moieties around blood vessels with a pan anti-HS IgM mAb, we found a striking HS enrichment in the basal lamina of resting and inflamed post capillary skin venules, as well as in high endothelial venules (HEVs) of lymph nodes. Staining of skin vessels with a glycocalyx probe further suggested that their lumenal glycocalyx contains much lower HS density than their basolateral extracellular matrix (ECM). This polarized HS pattern was observed also in isolated resting and inflamed microvascular dermal cells. Notably, progressive skin inflammation resulted in massive ECM deposition and in further HS enrichment around skin post capillary venules and their associated pericytes. Inflammation-dependent HS enrichment was not compromised in mice deficient in the main HS degrading enzyme, heparanase. Our results suggest that the blood vasculature patterns steep gradients of HS scaffolds between their lumenal and basolateral endothelial aspects, and that inflammatory processes can further enrich the HS content nearby inflamed vessels. We propose that chemokine gradients between the lumenal and ablumenal sides of vessels could be favored by these sharp HS scaffold gradients. PMID:24465652

  9. Heparan sulfate regulates hair follicle and sebaceous gland morphogenesis and homeostasis.

    PubMed

    Coulson-Thomas, Vivien Jane; Gesteira, Tarsis Ferreira; Esko, Jeffrey; Kao, Winston

    2014-09-01

    Hair follicle (HF) morphogenesis and cycling are a result of intricate autonomous epithelial-mesenchymal interactions. Once the first HF cycle is complete it repeatedly undergoes cyclic transformations. Heparan sulfate (HS) proteoglycans are found on the cell surface and in the extracellular matrix where they influence a variety of biological processes by interacting with physiologically important proteins, such as growth factors. Inhibition of heparanase (an HS endoglycosidase) in in vitro cultured HFs has been shown to induce a catagen-like process. Therefore, this study aimed to elucidate the precise role of HS in HF morphogenesis and cycling. An inducible tetratransgenic mouse model was generated to excise exostosin glycosyltransferase 1 (Ext1) in keratin 14-positive cells from P21. Interestingly, EXT1(StEpiΔ/StEpiΔ) mice presented solely anagen HFs. Moreover, waxing the fur to synchronize the HFs revealed accelerated hair regrowth in the EXT1(StEpiΔ/StEpiΔ) mice and hindered cycling into catagen. The ablation of HS in the interfollicular epidermal cells of mature skin led to the spontaneous formation of new HFs and an increase in Sonic Hedgehog expression resembling wild-type mice at P0, thereby indicating that the HS/Sonic Hedgehog signaling pathway regulates HF formation during embryogenesis and prevents HF formation in mature skin. Finally, the knock-out of HS also led to the morphogenesis and hyperplasia of sebaceous glands and sweat glands in mature mice, leading to exacerbated sebum production and accumulation on the skin surface. Therefore, our findings clearly show that an intricate control of HS levels is required for HF, sebaceous gland, and sweat gland morphogenesis and HF cycling. PMID:25053416

  10. Shear-induced Endothelial NOS Activation and Remodeling via Heparan Sulfate, Glypican-1, and Syndecan-1

    PubMed Central

    Ebong, Eno E; Lopez-Quintero, Sandra V; Rizzo, Victor; Spray, David C; Tarbell, John M

    2014-01-01

    Mammalian epithelial cells are coated with a multifunctional surface glycocalyx (GCX). On vascular endothelial cells (EC), intact GCX is atheroprotective. It is degraded in many vascular diseases. GCX heparan sulfate (HS) is essential for healthy flow-induced EC nitric oxide (NO) release, elongation, and alignment. The HS core protein mechanisms involved in these processes are unknown. We hypothesized that the glypican-1 (GPC1) HS core protein mediates flow-induced EC NO synthase (eNOS) activation because GPC1 is anchored to caveolae where eNOS resides. We also hyphothesized that the HS core protein syndecan-1 (SDC1) mediates flow-induced EC elongation and alignment because SDC1 is linked to the cytoskeleton which impacts cell shape. We tested our hypotheses by exposing EC monolayers treated with HS degrading heparinase III (HepIII), and monolayers with RNA-silenced GPC1, or SDC1, to 3 to 24 hours of physiological shear stress. Shear-conditioned EC with intact GCX exhibited characteristic eNOS activation in short-term flow conditions. After long-term exposure, EC with intact GCX were elongated and aligned in the direction of flow. HS removal and GPC1 inhibition, not SDC1 reduction, blocked shear-induced eNOS activation. EC remodeling in response to flow was attenuated by HS degradation and in the absence of SDC1, but preserved with GPC1 knockdown. These findings clearly demonstrate that HS is involved in both centralized and decentralized GCX-mediated mechanotransduction mechanisms, with GPC1 acting as a centralized mechanotransmission agent and SDC1 functioning in decentralized mechanotransmission. This foundational work demonstrates how EC can transform fluid shear forces into diverse biomolecular and biomechanical responses. PMID:24480876

  11. Basement membrane heparan sulfate proteoglycan (perlecan) synthesized by ACC3, adenoid cystic carcinoma cells of human salivary gland origin.

    PubMed

    Kimura, S; Cheng, J; Toyoshima, K; Oda, K; Saku, T

    1999-02-01

    The biosynthesis of basement membrane heparan sulfate proteoglycan (HSPG), known as perlecan, in ACC3 cells established from a adenoid cystic carcinoma of the human salivary gland was studied using metabolic labeling and immunoprecipitation with discriminative antibodies specific for HSPG core protein. Treatment of immunoprecipitated HSPG with HNO2, heparitinase, and chondroitinase ABC revealed that ACC3 cells synthesized HSPG molecules composed of 470-kDa core protein and heparan sulfate but not of chondroitin sulfate. The core protein was shown to contain complex type N-linked oligosaccharides by digestion with N-glycanase and endoglycosidase H. Pulse-chase experiments showed that the mature form of HSPG was formed in the cells in 30 min and released into the medium thereafter. Degradation of HSPG was also found in the chase period of 3 h. In time course experiments, HSPG was found to be synthesized maximally at day 4 after plating, deposited in the cell layer maximally at day 6, and secreted maximally at day 8. This was also confirmed by immunofluorescence, Northern blotting, and in-situ hybridization. The results indicate that ACC3 cells synthesize, secrete and degrade basement membrane type HSPG, which is analogous to those produced by other cell types, and that the biosynthesis and secretion of HSPG in ACC3 cells are strictly regulated by the cell growth, that may be reflected in the characteristic histology of adenoid cystic carcinomas. PMID:9990141

  12. Involvement of heparan sulfate 6-O-sulfation in the regulation of energy metabolism and the alteration of thyroid hormone levels in male mice.

    PubMed

    Nagai, Naoko; Habuchi, Hiroko; Sugaya, Noriko; Nakamura, Masao; Imamura, Toru; Watanabe, Hideto; Kimata, Koji

    2013-08-01

    Here, we report that male heparan sulfate 6-O-sulfotransferase-2 (Hs6st2) knockout mice showed increased body weight in an age-dependent manner even when fed with a normal diet and showed a phenotype of impaired glucose metabolism and insulin resistance. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that the expression of mitochondrial uncoupling proteins Ucp1 and Ucp3 was reduced in the interscapular brown adipose tissue (BAT) of male Hs6st2 knockout mice, suggesting reduced energy metabolism. The serum level of thyroid-stimulating hormone was significantly higher and that of thyroxine was lower in the knockout mice. When cultures of brown adipocytes from wild-type and Hs6st2 knockout mice isolated and differentiated in vitro were treated with FGF19 (fibroblast growth factor 19) or FGF21 in the presence or the absence of heparitinase I, phosphorylation of p42/p44 mitogen-activated protein (MAP) kinase was reduced. Heparan sulfate (HS) 6-O-sulfation was reduced not only in BAT but also in the thyroid tissue of the knockout mice. Thus, 6-O-sulfation in HS seems to play an important role in mediating energy metabolism by controlling thyroid hormone levels and signals from the FGF19 subfamily proteins, and the alteration of the HS composition may result in metabolic syndrome phenotypes such as altered glucose and insulin tolerance. PMID:23690091

  13. A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection

    PubMed Central

    Riblett, Amber M.; Blomen, Vincent A.; Jae, Lucas T.; Altamura, Louis A.; Doms, Robert W.; Brummelkamp, Thijn R.

    2015-01-01

    ABSTRACT Rift Valley fever virus (RVFV) causes recurrent insect-borne epizootics throughout the African continent, and infection of humans can lead to a lethal hemorrhagic fever syndrome. Deep mutagenesis of haploid human cells was used to identify host factors required for RVFV infection. This screen identified a suite of enzymes involved in glycosaminoglycan (GAG) biogenesis and transport, including several components of the cis-oligomeric Golgi (COG) complex, one of the central components of Golgi complex trafficking. In addition, disruption of PTAR1 led to RVFV resistance as well as reduced heparan sulfate surface levels, consistent with recent observations that PTAR1-deficient cells exhibit altered Golgi complex morphology and glycosylation defects. A variety of biochemical and genetic approaches were utilized to show that both pathogenic and attenuated RVFV strains require GAGs for efficient infection on some, but not all, cell types, with the block to infection being at the level of virion attachment. Examination of other members of the Bunyaviridae family for GAG-dependent infection suggested that the interaction with GAGs is not universal among bunyaviruses, indicating that these viruses, as well as RVFV on certain cell types, employ additional unidentified virion attachment factors and/or receptors. IMPORTANCE Rift Valley fever virus (RVFV) is an emerging pathogen that can cause severe disease in humans and animals. Epizootics among livestock populations lead to high mortality rates and can be economically devastating. Human epidemics of Rift Valley fever, often initiated by contact with infected animals, are characterized by a febrile disease that sometimes leads to encephalitis or hemorrhagic fever. The global burden of the pathogen is increasing because it has recently disseminated beyond Africa, which is of particular concern because the virus can be transmitted by widely distributed mosquito species. There are no FDA-licensed vaccines or antiviral

  14. Soluble Heparan Sulfate in Serum of Septic Shock Patients Induces Mitochondrial Dysfunction in Murine Cardiomyocytes.

    PubMed

    Martin, Lukas; Peters, Carsten; Schmitz, Susanne; Moellmann, Julia; Martincuks, Antons; Heussen, Nicole; Lehrke, Michael; Müller-Newen, Gerhard; Marx, Gernot; Schuerholz, Tobias

    2015-12-01

    The heart is one of the most frequently affected organs in sepsis. Recent studies focused on lipopolysaccharide-induced mitochondrial dysfunction; however myocardial dysfunction is not restricted to gram-negative bacterial sepsis. The purpose of this study was to investigate circulating heparan sulfate (HS) as an endogenous danger associated molecule causing cardiac mitochondrial dysfunction in sepsis. We used an in vitro model with native sera (SsP) and sera eliminated from HS (HS-free), both of septic shock patients, to stimulate murine cardiomyocytes. As determined by extracellular flux analyzing, SsP increased basal mitochondrial respiration, but reduced maximum mitochondrial respiration, compared with unstimulated cells (P < 0.0001 and P < 0.0001, respectively). Cells stimulated with HS-free serum revealed unaltered basal and maximum mitochondrial respiration, compared with unstimulated cells (P = 0.1174 and P = 0.8992, respectively). Cellular ATP-level were decreased in SsP-stimulated cells but unaltered in cells stimulated with HS-free serum compared with unstimulated cells (P < 0.0001 and P = 0.1593, respectively). Live-cell imaging revealed an increased production of mitochondrial reactive oxygen species in cells stimulated with SsP compared with cells stimulated with HS-free serum (P < 0.0001). Expression of peroxisome proliferator-activated receptors (PPARα and PPARγ) and their co-activators PGC-1α, which regulate mitochondrial function, were studied using PCR. Cells stimulated with SsP showed downregulated PPARs and PGC-1α mRNA-levels compared with HS-free serum (P = 0.0082, P = 0.0128, and P = 0.0185, respectively). Blocking Toll-like receptor 4 revealed an inhibition of HS-dependent downregulation of PPARs and PGC-1α (all P < 0.0001). In conclusion, circulating HS in serum of septic shock patients cause cardiac mitochondrial dysfunction, suggesting that HS may be targets of therapeutics in septic

  15. Human Immunodeficiency Virus and Heparan Sulfate: From Attachment to Entry Inhibition

    PubMed Central

    Connell, Bridgette J.; Lortat-Jacob, Hugues

    2013-01-01

    By targeting cells that provide protection against infection, HIV-1 causes acquired immunodeficiency syndrome. Infection starts when gp120, the viral envelope glycoprotein, binds to CD4 and to a chemokine receptor usually CCR5 or CXCR4. As many microorganisms, HIV-1 also interacts with heparan sulfate (HS), a complex group of cell surface associated anionic polysaccharides. It has been thought that this binding, occurring at a step prior to CD4 recognition, increases infectivity by pre-concentrating the virion particles at the cell surface. Early work, dating from before the identification of CCR5 and CXCR4, showed that a variety of HS mimetics bind to the gp120 V3 loop through electrostatic interactions, compete with cell surface associated HS to bind the virus and consequently, neutralize the infectivity of a number of T-cell line-adapted HIV-1 strains. However, progress made to better understand HIV-1 attachment and entry, coupled with the recent identification of additional gp120 regions mediating HS recognition, have considerably modified this view. Firstly, the V3 loop from CXCR4-using viruses is much more positively charged compared to those using CCR5. HS inhibition of cell attachment is thus restricted to CXCR4-using viruses (such as T-cell line-adapted HIV-1). Secondly, studies aiming at characterizing the gp120/HS complex revealed that HS binding was far more complex than previously thought: in addition to the V3 loop of CXCR4 tropic gp120, HS interacts with several other cryptic areas of the protein, which can be induced upon CD4 binding, and are conserved amongst CCR5 and CXCR4 viruses. In view of these data, this review will detail the present knowledge on HS binding to HIV-1, with regards to attachment and entry processes. It will discuss the perspective of targeting the gp120 co-receptor binding site with HS mimetic compounds, a strategy that recently gave rise to entry inhibitors that work in the low nanomolar range, independently of co

  16. Heparan Sulfate Biosynthesis Enzyme, Ext1, Contributes to Outflow Tract Development of Mouse Heart via Modulation of FGF Signaling

    PubMed Central

    Zhang, Rui; Cao, Peijuan; Yang, Zhongzhou; Wang, Zhenzhen; Wu, Jiu-Lin; Chen, Yan; Pan, Yi

    2015-01-01

    Glycosaminoglycans are important regulators of multiple signaling pathways. As a major constituent of the heart extracellular matrix, glycosaminoglycans are implicated in cardiac morphogenesis through interactions with different signaling morphogens. Ext1 is a glycosyltransferase responsible for heparan sulfate synthesis. Here, we evaluate the function of Ext1 in heart development by analyzing Ext1 hypomorphic mutant and conditional knockout mice. Outflow tract alignment is sensitive to the dosage of Ext1. Deletion of Ext1 in the mesoderm induces a cardiac phenotype similar to that of a mutant with conditional deletion of UDP-glucose dehydrogenase, a key enzyme responsible for synthesis of all glycosaminoglycans. The outflow tract defect in conditional Ext1 knockout(Ext1f/f:Mesp1Cre) mice is attributable to the reduced contribution of second heart field and neural crest cells. Ext1 deletion leads to downregulation of FGF signaling in the pharyngeal mesoderm. Exogenous FGF8 ameliorates the defects in the outflow tract and pharyngeal explants. In addition, Ext1 expression in second heart field and neural crest cells is required for outflow tract remodeling. Our results collectively indicate that Ext1 is crucial for outflow tract formation in distinct progenitor cells, and heparan sulfate modulates FGF signaling during early heart development. PMID:26295701

  17. Crosstalk between 2 organelles: Lysosomal storage of heparan sulfate causes mitochondrial defects and neuronal death in mucopolysaccharidosis III type C

    PubMed Central

    Pshezhetsky, Alexey V

    2015-01-01

    More than 30% of all lysosomal diseases are mucopolysaccharidoses, disorders affecting the enzymes needed for the stepwise degradation of glycosaminoglycans (mucopolysaccharides). Mucopolysaccharidosis type IIIC (MPS IIIC) is a severe neurologic disease caused by genetic deficiency of heparan sulfate acetyl-CoA: α-glucosaminide N-acetyltransferase (HGSNAT). Through our studies, we have cloned the gene, identified molecular defects in MPS IIIC patients and most recently completed phenotypic characterization of the first animal model of the disease, a mouse with a germline inactivation of the Hgsnat gene.1 The obtained data have led us to propose that Hgsnat deficiency and lysosomal accumulation of heparan sulfate in microglial cells followed by their activation and cytokine release result in mitochondrial dysfunction in the neurons causing their death which explains why MPS IIIC manifests primarily as a neurodegenerative disease. The goal of this addendum is to summarize data yielding new insights into the mechanism of MPS IIIC and promising novel therapeutic solutions for this and similar disorders. PMID:26459666

  18. The Wingless morphogen gradient is established by the cooperative action of Frizzled and Heparan Sulfate Proteoglycan receptors.

    PubMed

    Baeg, Gyeong-Hun; Selva, Erica M; Goodman, Robyn M; Dasgupta, Ramanuj; Perrimon, Norbert

    2004-12-01

    We have examined the respective contribution of Heparan Sulfate Proteoglycans (HSPGs) and Frizzled (Fz) proteins in the establishment of the Wingless (Wg) morphogen gradient. From the analysis of mutant clones of sulfateless/N-deacetylase-sulphotransferase in the wing imaginal disc, we find that lack of Heparan Sulfate (HS) causes a dramatic reduction of both extracellular and intracellular Wg in receiving cells. Our studies, together with others [Kirkpatrick, C.A., Dimitroff, B.D., Rawson, J.M., Selleck, S.B., 2004. Spatial regulation of Wingless morphogen distribution and signalling by Dally-like protein. Dev. Cell (in press)], reveals that the Glypican molecule Dally-like Protein (Dlp) is associated with both negative and positive roles in Wg short- and long-range signaling, respectively. In addition, analyses of the two Fz proteins indicate that the Fz and DFz2 receptors, in addition to transducing the signal, modulate the slope of the Wg gradient by regulating the amount of extracellular Wg. Taken together, our analysis illustrates how the coordinated activities of HSPGs and Fz/DFz2 shape the Wg morphogen gradient. PMID:15531366

  19. Association of malachite green-positive material with heparan sulfate proteoglycan double tracks in basement membrane of mouse kidney tubules.

    PubMed

    Inoue, S

    1995-03-01

    The presence of lipids in the basement membrane of the mouse kidney tubules was examined by histochemical staining with malachite green. Pieces of mouse kidney cortex were immersed in a fixative containing 3% glutaraldehyde and 0.1% malachite green in 0.067 M sodium cacodylate buffer, pH 6.8, for 18 hr at 4 degrees C. Control tissue was fixed in the same way except that no malachite green was added to the fixative. The tissue pieces were cryoprotected, frozen in Freon 22, and subjected to freeze-substitution in dry acetone containing 1% OsO4. Thin sections of Epon-embedded specimens were observed by electron microscopy at first without uranyl-lead counterstaining. The basement membrane of mouse kidney tubules was positively stained in a pattern composed of an irregular assembly of 5-8-nm wide strands. The nature of these malachite green-positive strands was further examined by counterstaining thin sections with uranyl-lead, and they were identified as 4.5-5-nm wide ribbon-like "double tracks" previously characterized as the form taken by heparan sulfate proteoglycan in basement membranes. It is concluded that lipids are present in the basement membrane of mouse kidney tubules in association with heparan sulfate proteoglycan. PMID:7868858

  20. Tandem Mass Spectrometry of Heparan Sulfate Negative Ions: Sulfate Loss Patterns and Chemical Modification Methods for Improvement of Product Ion Profiles

    NASA Astrophysics Data System (ADS)

    Shi, Xiaofeng; Huang, Yu; Mao, Yang; Naimy, Hicham; Zaia, Joseph

    2012-09-01

    Heparan sulfate (HS) is a polysaccharide modified with sulfation, acetylation, and epimerization that enable its binding with protein ligands and regulation of important biological processes. Tandem mass spectrometry has been employed to sequence linear biomolecules e.g., proteins and peptides. However, its application in structural characterization of HS is limited due to the neutral loss of sulfate (SO3) during collisional induced dissociation (CID). In this report, we studied the dissociation patterns of HS disaccharides and demonstrate that the N-sulfate (N-S) bond is especially facile during CID. We identified factors that influence the propensities of such losses from precursor ions and proposed a Free Proton Index (FPI) to help select ions that are able to produce meaningful backbone dissociations. We then investigated the thermodynamics and kinetics of SO3 loss from sulfates that are protonated, deprotonated, and metal-adducted using density functional theory computations. The calculations showed that sulfate loss from a protonated site was much more facile than that from a deprotonated or metal-adducted site. Further, the loss of SO3 from N-sulfate was energetically favored by 3-8 kcal/mol in transition states relative to O-sulfates, making it more prone to this process by a substantial factor. In order to reduce the FPI, representing the number of labile sulfates in HS native chains and oligosaccharides, we developed a series of chemical modifications to selectively replace the N-sulfates of the glucosamine with deuterated acetyl group. These modifications effectively reduced the sulfate density on the HS oligosaccharides and generated considerably more backbone dissociation using on-line LC/tandem MS.

  1. Affinity of the heparin binding motif of Noggin1 to heparan sulfate and its visualization in the embryonic tissues.

    PubMed

    Nesterenko, Alexey M; Orlov, Eugeny E; Ermakova, Galina V; Ivanov, Igor A; Semenyuk, Pavel I; Orlov, Victor N; Martynova, Natalia Y; Zaraisky, Andrey G

    Heparin binding motifs were found in many secreted proteins and it was suggested that they are responsible for retardation of the protein diffusion within the intercellular space due to the binding to heparan sulfate proteoglycanes (HSPG). Here we used synthetic FITC labeled heparin binding motif (HBM peptide) of the Xenopus laevis secreted BMP inhibitor Noggin1 to study its diffusion along the surface of the heparin beads by FRAP method. As a result, we have found out that diffusivity of HBM-labeled FITC was indeed much lesser than those predicted by theoretical calculations even for whole protein of the Noggin size. We also compared by isothermal titration calorimetry the binding affinity of HBM and the control oligolysine peptide to several natural polyanions including heparan sulfate (HS), heparin, the bacterial dextran sulfate and salmon sperm DNA, and demonstrated that HBM significantly exceeds oligolysine peptide in the affinity to HS, heparin and DNA. By contrast, oligolysine peptide bound with higher affinity to dextran sulfate. We speculate that such a difference may ensure specificity of the morphogen binding to HSPG and could be explained by steric constrains imposed by different distribution of the negative charges along a given polymeric molecule. Finally, by using EGFP-HBM recombinant protein we have visualized the natural pattern of the Noggin1 binding sites within the X. laevis gastrula and demonstrated that these sites forms a dorsal-ventral concentration gradient, with a maximum in the dorsal blastopore lip. In sum, our data provide a quantitative basis for modeling the process of Noggin1 diffusion in embryonic tissues, considering its interaction with HSPG. PMID:26525852

  2. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Phan, Anne Q; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V; Gardiner, David M

    2015-08-01

    Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain-of-function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position-specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position-specific, developmental-stage-specific, and heparan sulfate-dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals. PMID:27499874

  3. Synthesis of heparan sulfate with cyclophilin B-binding properties is determined by cell type-specific expression of sulfotransferases.

    PubMed

    Deligny, Audrey; Denys, Agnès; Marcant, Adeline; Melchior, Aurélie; Mazurier, Joël; van Kuppevelt, Toin H; Allain, Fabrice

    2010-01-15

    Cyclophilin B (CyPB) induces migration and adhesion of T lymphocytes via a mechanism that requires interaction with 3-O-sulfated heparan sulfate (HS). HS biosynthesis is a complex process with many sulfotransferases involved. N-Deacetylases/N-sulfotransferases are responsible for N-sulfation, which is essential for subsequent modification steps, whereas 3-O-sulfotransferases (3-OSTs) catalyze the least abundant modification. These enzymes are represented by several isoforms, which differ in term of distribution pattern, suggesting their involvement in making tissue-specific HS. To elucidate how the specificity of CyPB binding is determined, we explored the relationships between the expression of these sulfotransferases and the generation of HS motifs with CyPB-binding properties. We demonstrated that high N-sulfate density and the presence of 2-O- and 3-O-sulfates determine binding of CyPB, as evidenced by competitive experiments with heparin derivatives, soluble HS, and anti-HS antibodies. We then showed that target cells, i.e. CD4+ lymphocyte subsets, monocytes/macrophages, and related cell lines, specifically expressed high levels of NDST2 and 3-OST3 isoforms. Silencing the expression of NDST1, NDST2, 2-OST, and 3-OST3 by RNA interference efficiently decreased binding and activity of CyPB, thus confirming their involvement in the biosynthesis of binding sequences for CyPB. Moreover, we demonstrated that NDST1 was able to partially sulfate exogenous substrate in the absence of NDST2 but not vice versa, suggesting that both isoenzymes do not have redundant activities but do have rather complementary activities in making N-sulfated sequences with CyPB-binding properties. Altogether, these results suggest a regulatory mechanism in which cell type-specific expression of certain HS sulfotransferases determines the specific binding of CyPB to target cells. PMID:19940140

  4. Hs3st3-modified heparan sulfate controls KIT+ progenitor expansion by regulating 3-O-sulfotransferases

    PubMed Central

    Patel, Vaishali N.; Lombaert, Isabelle M. A.; Cowherd, Samuel N.; Shworak, Nicholas W.; Xu, Yongmei; Liu, Jian; Hoffman, Matthew P.

    2014-01-01

    Summary The exquisite control of growth factor function by heparan sulfate (HS) is dictated by the tremendous structural heterogeneity of sulfated modifications. It is not known how specific HS structures control growth factor-dependent progenitor expansion during organogenesis. We isolated KIT+ progenitors from fetal salivary glands during a stage of rapid progenitor expansion and profiled HS biosynthetic enzyme expression. Enzymes generating a specific type of 3-O-sulfated-HS (3-O-HS) are enriched, and FGF10/FGFR2b signaling directly regulates their expression. Bioengineered 3-O-HS binds FGFR2b and stabilizes FGF10/FGFR2b complexes in a receptor- and growth factor-specific manner. Rapid autocrine feedback increases 3-O-HS, KIT and progenitor expansion. Knockdown of multiple Hs3st isoforms limits fetal progenitor expansion, but is rescued with bioengineered 3-O-HS, which also increases adult progenitor expansion. Rapidly altering a specific 3-O-sulfated epitope provides a cellular mechanism to modulate the response to FGFR2b signaling and control progenitor expansion. 3-O-HS may expand KIT+ progenitors in vitro for regenerative therapy. PMID:24960693

  5. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders.

    PubMed

    Farach-Carson, Mary C; Warren, Curtis R; Harrington, Daniel A; Carson, Daniel D

    2014-02-01

    The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously

  6. Border Patrol: Insights into the Unique Role of Perlecan/Heparan Sulfate Proteoglycan2 at Cell and Tissue Borders

    PubMed Central

    Farach-Carson, Mary C.; Warren, Curtis R.; Harrington, Daniel A.; Carson, Daniel D.

    2013-01-01

    The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550M years) extracellular matrix molecules. In vertebrates, perlecan’s five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously

  7. 2-O Heparan Sulfate Sulfation by Hs2st Is Required for Erk/Mapk Signalling Activation at the Mid-Gestational Mouse Telencephalic Midline

    PubMed Central

    Chan, Wai Kit; Howe, Katherine; Clegg, James M.; Guimond, Scott E.; Price, David J.; Turnbull, Jeremy E.; Pratt, Thomas

    2015-01-01

    Heparan sulfate (HS) is a linear carbohydrate composed of polymerized uronate-glucosamine disaccharide units that decorates cell surface and secreted glycoproteins in the extracellular matrix. In mammals HS is subjected to differential sulfation by fifteen different heparan sulfotransferase (HST) enzymes of which Hs2st uniquely catalyzes the sulfation of the 2-O position of the uronate in HS. HS sulfation is postulated to be important for regulation of signaling pathways by facilitating the interaction of HS with signaling proteins including those of the Fibroblast Growth Factor (Fgf) family which signal through phosphorylation of extracellular signal-regulated kinases Erk1/2. In the developing mouse telencephalon Fgf2 signaling regulates proliferation and neurogenesis. Loss of Hs2st function phenocopies the thinned cerebral cortex of mutant mice in which Fgf2 or Erk1/2 function are abrogated, suggesting the hypothesis that 2-O-sulfated HS structures play a specific role in Fgf2/Erk signaling pathway in this context in vivo. This study investigated the molecular role of 2-O sulfation in Fgf2/Erk signaling in the developing telencephalic midline midway through mouse embryogenesis at E12.5. We examined the expression of Hs2st, Fgf2, and Erk1/2 activity in wild-type and Hs2st-/- mice. We found that Hs2st is expressed at high levels at the midline correlating with high levels of Erk1/2 activation and Erk1/2 activation was drastically reduced in the Hs2st-/- mutant at the rostral telencephalic midline. We also found that 2-O sulfation is specifically required for the binding of Fgf2 protein to Fgfr1, its major cell-surface receptor at the rostral telencephalic midline. We conclude that 2-O sulfated HS structures generated by Hs2st are needed to form productive signaling complexes between HS, Fgf2 and Fgfr1 that activate Erk1/2 at the midline. Overall, our data suggest the interesting possibility that differential expression of Hs2st targets the rostral telencephalic

  8. 2-O Heparan Sulfate Sulfation by Hs2st Is Required for Erk/Mapk Signalling Activation at the Mid-Gestational Mouse Telencephalic Midline.

    PubMed

    Chan, Wai Kit; Howe, Katherine; Clegg, James M; Guimond, Scott E; Price, David J; Turnbull, Jeremy E; Pratt, Thomas

    2015-01-01

    Heparan sulfate (HS) is a linear carbohydrate composed of polymerized uronate-glucosamine disaccharide units that decorates cell surface and secreted glycoproteins in the extracellular matrix. In mammals HS is subjected to differential sulfation by fifteen different heparan sulfotransferase (HST) enzymes of which Hs2st uniquely catalyzes the sulfation of the 2-O position of the uronate in HS. HS sulfation is postulated to be important for regulation of signaling pathways by facilitating the interaction of HS with signaling proteins including those of the Fibroblast Growth Factor (Fgf) family which signal through phosphorylation of extracellular signal-regulated kinases Erk1/2. In the developing mouse telencephalon Fgf2 signaling regulates proliferation and neurogenesis. Loss of Hs2st function phenocopies the thinned cerebral cortex of mutant mice in which Fgf2 or Erk1/2 function are abrogated, suggesting the hypothesis that 2-O-sulfated HS structures play a specific role in Fgf2/Erk signaling pathway in this context in vivo. This study investigated the molecular role of 2-O sulfation in Fgf2/Erk signaling in the developing telencephalic midline midway through mouse embryogenesis at E12.5. We examined the expression of Hs2st, Fgf2, and Erk1/2 activity in wild-type and Hs2st-/- mice. We found that Hs2st is expressed at high levels at the midline correlating with high levels of Erk1/2 activation and Erk1/2 activation was drastically reduced in the Hs2st-/- mutant at the rostral telencephalic midline. We also found that 2-O sulfation is specifically required for the binding of Fgf2 protein to Fgfr1, its major cell-surface receptor at the rostral telencephalic midline. We conclude that 2-O sulfated HS structures generated by Hs2st are needed to form productive signaling complexes between HS, Fgf2 and Fgfr1 that activate Erk1/2 at the midline. Overall, our data suggest the interesting possibility that differential expression of Hs2st targets the rostral telencephalic

  9. Degradation of heparan sulfate in the subendothelial extracellular matrix by a readily released heparanase from human neutrophils. Possible role in invasion through basement membranes.

    PubMed Central

    Matzner, Y; Bar-Ner, M; Yahalom, J; Ishai-Michaeli, R; Fuks, Z; Vlodavsky, I

    1985-01-01

    Freshly isolated human neutrophils were investigated for their ability to degrade heparan sulfate proteoglycans in the subendothelial extracellular matrix (ECM) produced by cultured corneal and vascular endothelial cells. The ECM was metabolically labeled with Na2(35S)O4 and labeled degradation products were analyzed by gel filtration over Sepharose 6B. More than 90% of the released radioactivity consisted of heparan sulfate fragments 5-6 times smaller than intact heparan sulfate side chains released from the ECM by either papain or alkaline borohydride. These fragments were sensitive to deamination with nitrous acid and were not produced in the presence of either heparin or serine protease inhibitors. In contrast, degradation of soluble high molecular weight heparan sulfate proteoglycan, which was first released from the ECM, was inhibited by heparin but there was no effect of protease inhibitors. These results indicate that interaction of human neutrophils with the subendothelial ECM is associated with degradation of its heparan sulfate by means of a specific, newly identified, heparanase activity and that this degradation is facilitated to a large extent by serine proteases. The neutrophil heparanase was readily and preferentially released (15-25% of the cellular content in 60 min) by simply incubating the cells at 4 degrees C in the absence of added stimuli. Under these conditions, less than 5% of the cellular content of lactate dehydrogenase, lysozyme, and globin degrading proteases was released. Further purification of the neutrophil heparanase was achieved by its binding to heparin-Sepharose and elution at 1 M NaCl. It is suggested that heparanase activity is involved in the early events of extravasation and diapedesis of neutrophils in response to a threshold signal from an extravascular inflamed organ. PMID:2997275

  10. Targeted Disruption of Heparan Sulfate Interaction with Hepatocyte and Vascular Endothelial Growth Factors Blocks Normal and Oncogenic Signaling

    PubMed Central

    Cecchi, Fabiola; Pajalunga, Deborah; Fowler, C. Andrew; Uren, Aykut; Rabe, Daniel C.; Peruzzi, Benedetta; MacDonald, Nicholas J.; Blackman, Davida K.; Stahl, Stephen J.; Byrd, R. Andrew; Bottaro, Donald P.

    2012-01-01

    Summary Hepatocyte growth factor (HGF) and vascular endothelial cell growth factor (VEGF) regulate normal development and homeostasis, and drive disease progression in many forms of cancer. Both proteins signal by binding to receptor tyrosine kinases and heparan sulfate (HS) proteoglycans on target cell surfaces. Basic residues comprising the primary HS binding sites on HGF and VEGF provide similar surface charge distributions without underlying structural similarity. Combining three acidic amino acid substitutions in these sites in the HGF isoform NK1 or the VEGF isoform VEGF165 transformed each into potent, selective competitive antagonists of their respective normal and oncogenic signaling pathways. Our findings illustrate the importance of HS in growth factor driven cancer progression and reveal an efficient strategy for therapeutic antagonist development. PMID:22897854

  11. SULF2, a heparan sulfate endosulfatase, is present in the blood of healthy individuals and increases in cirrhosis

    PubMed Central

    Singer, Mark S.; Phillips, Joanna J.; Lemjabbar-Alaoui, Hassan; Wang, Yang Qing; Wu, Jing; Goldman, Radoslav; Rosen, Steven D.

    2014-01-01

    Background SULF2 is an extracellular sulfatase that acts on heparan sulfate proteoglycans and modulates multiple signaling pathways. It is normally bound to the cell surface but can be released into the medium of cultured cells. SULF2 is known to be increased in cirrhotic liver compared to healthy liver. We asked whether SULF2 protein was present in the blood of healthy controls and increased in patients with liver cirrhosis. Methods We devised a sandwich ELISA for SULF2 using 2 novel monoclonal antibodies (mAbs) and measured its levels in sera of normal individuals and cirrhosis patients. Results SULF2 was higher in cirrhosis patients (1460 ± 1160 pg/ml, N =34) than healthy individuals (728 ± 400 pg/ml, N =37). SULF2 levels increased with age in both healthy and patient groups. Conclusions SULF2 may be a useful serologic biomarker for liver cirrhosis. PMID:25444749

  12. Mutations in Biosynthetic Enzymes for the Protein Linker Region of Chondroitin/Dermatan/Heparan Sulfate Cause Skeletal and Skin Dysplasias.

    PubMed

    Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki

    2015-01-01

    Glycosaminoglycans, including chondroitin, dermatan, and heparan sulfate, have various roles in a wide range of biological events such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Their polysaccharides covalently attach to the serine residues on specific core proteins through the common linker region tetrasaccharide, -xylose-galactose-galactose-glucuronic acid, which is produced through the stepwise addition of respective monosaccharides by four distinct glycosyltransferases. Mutations in the human genes encoding the glycosyltransferases responsible for the biosynthesis of the linker region tetrasaccharide cause a number of genetic disorders, called glycosaminoglycan linkeropathies, including Desbuquois dysplasia type 2, spondyloepimetaphyseal dysplasia, Ehlers-Danlos syndrome, and Larsen syndrome. This review focused on recent studies on genetic diseases caused by defects in the biosynthesis of the common linker region tetrasaccharide. PMID:26582078

  13. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    SciTech Connect

    Tiwari, Vaibhav; Darmani, Nissar A.; Thrush, Gerald R.; Shukla, Deepak

    2009-12-18

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  14. Mutations in Biosynthetic Enzymes for the Protein Linker Region of Chondroitin/Dermatan/Heparan Sulfate Cause Skeletal and Skin Dysplasias

    PubMed Central

    Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki

    2015-01-01

    Glycosaminoglycans, including chondroitin, dermatan, and heparan sulfate, have various roles in a wide range of biological events such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Their polysaccharides covalently attach to the serine residues on specific core proteins through the common linker region tetrasaccharide, -xylose-galactose-galactose-glucuronic acid, which is produced through the stepwise addition of respective monosaccharides by four distinct glycosyltransferases. Mutations in the human genes encoding the glycosyltransferases responsible for the biosynthesis of the linker region tetrasaccharide cause a number of genetic disorders, called glycosaminoglycan linkeropathies, including Desbuquois dysplasia type 2, spondyloepimetaphyseal dysplasia, Ehlers-Danlos syndrome, and Larsen syndrome. This review focused on recent studies on genetic diseases caused by defects in the biosynthesis of the common linker region tetrasaccharide. PMID:26582078

  15. The perlecan heparan sulfate proteoglycan mediates cellular uptake of HIV-1 Tat through a pathway responsible for biological activity

    SciTech Connect

    Argyris, Elias G.; Kulkosky, Joseph; Meyer, Marie E.; Xu Yan; Mukhtar, Muhammad; Pomerantz, Roger J. . E-mail: roger.j.pomerantz@jefferson.edu; Williams, Kevin Jon . E-mail: K_Williams@mail.jci.tju.edu

    2004-12-20

    Cell surface heparan sulfate proteoglycans (HSPGs) mediate internalization of HIV-1 Tat. Herein, we report that human WiDr cells, which express perlecan but no other HSPGs, can internalize {sup 125}I-labeled Tat with minimal lysosomal degradation. Pre-treatment of cells with heparitinase almost completely abolished {sup 125}I-Tat surface binding, while the use of an HIV-1 long terminal repeat (LTR) promoter-reporter construct demonstrated that transactivation was potently blocked by pretreatment of cells with heparitinase, indicating an essential role for perlecan in the biologic effects of Tat. We conclude that the perlecan mediates Tat uptake and is required for HIV-1 LTR-directed transactivation in this human cell type.

  16. The Synthetic Antimicrobial Peptide 19-2.5 Interacts with Heparanase and Heparan Sulfate in Murine and Human Sepsis

    PubMed Central

    Martin, Lukas; De Santis, Rebecca; Koczera, Patrick; Simons, Nadine; Haase, Hajo; Heinbockel, Lena; Brandenburg, Klaus; Marx, Gernot; Schuerholz, Tobias

    2015-01-01

    Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains from their proteoglycans. Thereby, heparanase liberates highly potent circulating heparan sulfate-fragments (HS-fragments) and triggers the fatal and excessive inflammatory response in sepsis. As a potential anti-inflammatory agent for sepsis therapy, peptide 19–2.5 belongs to the class of synthetic anti-lipopolysaccharide peptides; however, its activity is not restricted to Gram-negative bacterial infection. We hypothesized that peptide 19–2.5 interacts with heparanase and/or HS, thereby reducing the levels of circulating HS-fragments in murine and human sepsis. Our data indicate that the treatment of septic mice with peptide 19–2.5 compared to untreated control animals lowers levels of plasma heparanase and circulating HS-fragments and reduces heparanase activity. Additionally, mRNA levels of heparanase in heart, liver, lung, kidney and spleen are downregulated in septic mice treated with peptide 19–2.5 compared to untreated control animals. In humans, plasma heparanase level and activity are elevated in septic shock. The ex vivo addition of peptide 19–2.5 to plasma of septic shock patients decreases heparanase activity but not heparanase level. Isothermal titration calorimetry revealed a strong exothermic reaction between peptide 19–2.5 and heparanase and HS-fragments. However, a saturation character has been identified only in the peptide 19–2.5 and HS interaction. In conclusion, the findings of our current study indicate that peptide 19–2.5 interacts with heparanase, which is elevated in murine and human sepsis and consecutively attenuates the generation of circulating HS-fragments in systemic inflammation. Thus, peptide 19–2.5 seems to be a potential anti-inflammatory agent in sepsis. PMID:26600070

  17. The Synthetic Antimicrobial Peptide 19-2.5 Interacts with Heparanase and Heparan Sulfate in Murine and Human Sepsis.

    PubMed

    Martin, Lukas; De Santis, Rebecca; Koczera, Patrick; Simons, Nadine; Haase, Hajo; Heinbockel, Lena; Brandenburg, Klaus; Marx, Gernot; Schuerholz, Tobias

    2015-01-01

    Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains from their proteoglycans. Thereby, heparanase liberates highly potent circulating heparan sulfate-fragments (HS-fragments) and triggers the fatal and excessive inflammatory response in sepsis. As a potential anti-inflammatory agent for sepsis therapy, peptide 19-2.5 belongs to the class of synthetic anti-lipopolysaccharide peptides; however, its activity is not restricted to Gram-negative bacterial infection. We hypothesized that peptide 19-2.5 interacts with heparanase and/or HS, thereby reducing the levels of circulating HS-fragments in murine and human sepsis. Our data indicate that the treatment of septic mice with peptide 19-2.5 compared to untreated control animals lowers levels of plasma heparanase and circulating HS-fragments and reduces heparanase activity. Additionally, mRNA levels of heparanase in heart, liver, lung, kidney and spleen are downregulated in septic mice treated with peptide 19-2.5 compared to untreated control animals. In humans, plasma heparanase level and activity are elevated in septic shock. The ex vivo addition of peptide 19-2.5 to plasma of septic shock patients decreases heparanase activity but not heparanase level. Isothermal titration calorimetry revealed a strong exothermic reaction between peptide 19-2.5 and heparanase and HS-fragments. However, a saturation character has been identified only in the peptide 19-2.5 and HS interaction. In conclusion, the findings of our current study indicate that peptide 19-2.5 interacts with heparanase, which is elevated in murine and human sepsis and consecutively attenuates the generation of circulating HS-fragments in systemic inflammation. Thus, peptide 19-2.5 seems to be a potential anti-inflammatory agent in sepsis. PMID:26600070

  18. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum)

    PubMed Central

    Phan, Anne Q.; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V.

    2015-01-01

    Abstract Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain‐of‐function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position‐specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position‐specific, developmental‐stage‐specific, and heparan sulfate‐dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals. PMID:27499874

  19. Lymphatic Specific Disruption in the Fine Structure of Heparan Sulfate Inhibits Dendritic Cell Traffic and Functional T Cell Responses in the Lymph Node

    PubMed Central

    Yin, Xin; Johns, Scott C.; Kim, Daniel; Mikulski, Zbigniew; Salanga, Catherina L.; Handel, Tracy M.; Macal, Mónica; Zúñiga, Elina I.; Fuster, Mark M.

    2014-01-01

    Dendritic cells (DC) are potent antigen-presenting cells essential for initiating adaptive immunity. Following pathogen exposure, trafficking of DC to lymph nodes (LN) through afferent lymphatic vessels constitutes a crucial step in the execution of their functions. The mechanisms regulating this process, however, are poorly understood, although the involvement of certain chemokines in this process has recently been reported. Herein, we demonstrate that genetically altering the fine structure (N-sulfation) of heparan sulfate specifically in mouse lymphatic endothelium significantly reduces DC trafficking to regional lymph nodes in vivo. Moreover, this alteration had the unique functional consequence of reducing CD8+ T cell proliferative responses in draining lymph nodes in an ovalbumin immunization model. Mechanistic studies suggested that lymphatic endothelial heparan sulfate regulates multiple steps during DC trafficking, including optimal presentation of chemokines on the surface of DC, thus acting as a co-receptor that may function “in trans” to mediate chemokine-receptor binding. This study not only identifies novel glycan-mediated mechanisms that regulate lymphatic DC trafficking, but also validates the fine structure of lymphatic-vascular specific heparan sulfate as a novel molecular target for strategies aiming to modulate DC behavior and/or alter pathologic T cell responses in lymph nodes. PMID:24493818

  20. A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread

    SciTech Connect

    O'Donnell, Christopher D.; Tiwari, Vaibhav; Oh, Myung-Jin; Shukla, Deepak . E-mail: dshukla@uic.edu

    2006-03-15

    Heparan sulfate (HS) 3-O-sulfotransferase isoform-2 (3-OST-2), which belongs to a family of enzymes capable of generating herpes simplex virus type-1 (HSV-1) entry and spread receptors, is predominantly expressed in human brain. Despite its unique expression pattern, the ability of 3-OST-2 to mediate HSV-1 entry and cell-to-cell fusion is not known. Our results demonstrate that expression of 3-OST-2 can render Chinese hamster ovary K1 (CHO-K1) cells susceptible to entry of wild-type and mutant strains of HSV-1. Evidence for generation of gD receptors by 3-OST-2 were suggested by gD-mediated interference assay and the ability of 3-OST-2-expressing CHO-K1 cells to preferentially bind HSV-1 gD, which could be reversed by prior treatment of cells with HS lyases (heparinases II/III). In addition, 3-OST-2-expressing CHO-K1 cells acquired the ability to fuse with cells-expressing HSV-1 glycoproteins, a phenomenon that mimics a way of viral spread in vivo. Demonstrating specificity, the cell fusion was inhibited by soluble 3-O-sulfated forms of HS, but not unmodified HS. Taken together, our results raise the possibility of a role of 3-OST-2 in the spread of HSV-1 infection in the brain.

  1. Degradation of endothelial cell matrix heparan sulfate proteoglycan by elastase and the myeloperoxidase-H2O2-chloride system.

    PubMed Central

    Klebanoff, S. J.; Kinsella, M. G.; Wight, T. N.

    1993-01-01

    The degradation of the heparan sulfate proteoglycans of subendothelial matrix by neutrophil elastase and the myeloperoxidase-H2O2-chloride system added separately, sequentially, or together at pH 4.5 to 7.5 was determined by the release of lower molecular weight 35S-labeled material. Elastase alone and the myeloperoxidase system alone caused degradation, and when 4-hour exposure to elastase was followed by 15 minutes of exposure to the myeloperoxidase system, the effect was greater than additive. A greater than additive effect was not observed when elastase followed the myeloperoxidase system or the two were added together. Chloride (or sulfate) alone increased the release of 35S-labeled material from elastase-treated matrix, although the effect of 0.1 M chloride was not as great as that observed when an equivalent concentration of chloride was combined with myeloperoxidase and H2O2. The release of these systems at sites of adherence of neutrophils to glomerular basement membrane may contribute to neutrophil-associated proteinuria. Images Figure 1 Figure 2 Figure 5 Figure 7 PMID:8395774

  2. The role of heparan sulfate on adhesion of 47 and 51 kDa outer membrane proteins of Helicobacter pylori to gastric cancer cells.

    PubMed

    López-Bolaños, Claudia C; Guzmán-Murillo, Maria A; Ruiz-Bustos, Eduardo; Ascencio, Felipe

    2009-04-01

    Helicobacter pylori is a common gastrointestinal pathogenic bacterium in humans and the usual preference for the stomach's outer membrane proteins (OMPs) are antigens involved in the adhesion process. Through SDS-PAGE and blotting analyses, using horseradish peroxidase-labeled heparan sulfate (HRP-HS) as a probe, we identified H. pylori OMPs with affinity for heparan sulfate (OMP-HS). Biotin-streptavidin bacterial-adhesion assay was used to evaluate participation of OMP-HS in the adhesion of H. pylori to semi-confluent HeLa S3 and Kato III cell monolayers. The results provide evidence that induction of antibodies against 2 OMP-HSs (HSBP-47 and HSBP-51) could reduce binding of H. pylori to both cell lines and induce detachment of cell-bound bacteria from infected cultured cells. PMID:19396245

  3. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    SciTech Connect

    Dahms, Sven O.; Mayer, Magnus C.; Roeser, Dirk; Multhaup, Gerd; Than, Manuel E.

    2015-03-01

    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.

  4. Porcine complement regulatory protein CD46 and heparan sulfates are the major factors for classical swine fever virus attachment in vitro.

    PubMed

    Dräger, Carolin; Beer, Martin; Blome, Sandra

    2015-03-01

    Classical swine fever virus (CSFV) is the causative agent of a severe multi-systemic disease of pigs. While several aspects of virus-host-interaction are known, the early steps of infection remain unclear. For the closely related bovine viral diarrhea virus (BVDV), a cellular receptor is known: bovine complement regulatory protein CD46. Given that these two pestiviruses are closely related, porcine CD46 is also a candidate receptor for CSFV. In addition to CD46, cell-culture-adapted CSFV strains have been shown to use heparan sulfates as an additional cellular factor. In the present study, the interaction of field-type and cell-culture-adapted CSFV with a permanent porcine cell line or primary macrophages was assessed using anti-porcine CD46 monoclonal antibodies and a heparan-sulfate-blocking compound, DSTP-27. The influence of receptor blocking was assessed using virus titration and quantitative PCR. Treatment of cells with monoclonal antibodies against porcine CD46 led to a reduction of viral growth in both cell types. The effect was most pronounced with field-type CSFV. The blocking could be enhanced by addition of DSTP-27, especially for cell-culture-adapted CSFV. The combined use of both blocking agents led to a significant reduction of viral growth but was also not able to abolish infection completely. The results obtained in this study showed that both porcine CD46 and heparan sulfates play a major role in the initial steps of CSFV infection. Additional receptors might also play a role for attachment and entry; however, their impact is obviously limited in vitro in comparison to CD46 and heparan sulfates. PMID:25559665

  5. De Novo Sequencing of Heparan Sulfate Oligosaccharides by Electron-Activated Dissociation

    PubMed Central

    Huang, Yu; Yu, Xiang; Mao, Yang; Costello, Catherine E.; Zaia, Joseph; Lin, Cheng

    2014-01-01

    Structural characterization of highly sulfated glycosaminoglycans (GAGs) by collisionally activated dissociation (CAD) is challenging because of the extensive sulfate losses mediated by free protons. While removal of the free protons may be achieved through the use of derivatization, metal cation adducts, and/or electrospray supercharging reagents, these steps add complexity to the experimental workflow. It is therefore desirable to develop an analytical approach for GAG sequencing that does not require derivatization or addition of reagents to the electrospray solution. Electron detachment dissociation (EDD) can produce extensive and informative fragmentation for GAGs without the need to remove free protons from the precursor ions. However, EDD is an inefficient process, often requiring consumption of large sample quantities (typically several micrograms), particularly for highly sulfated GAG ions. Here, we report that with improved instrumentation, optimization of the ionization and ion transfer parameters, and enhanced EDD efficiency, it is possible to generate highly informative EDD spectra of highly sulfated GAGs on the liquid chromatography (LC) time-scale, with consumption of only a few nanograms of sample. We further show that negative electron transfer dissociation (NETD) is an even more effective fragmentation technique for GAG sequencing, producing fewer sulfate losses while consuming smaller amount of samples. Finally, a simple algorithm was developed for de novo HS sequencing based on their high resolution tandem mass spectra. These results demonstrate the potential of EDD and NETD as sensitive analytical tools for detailed, high-throughput, de novo structural analyses of highly sulfated GAGs. PMID:24224699

  6. Synthetic Site-Selectively Mono-6-O-Sulfated Heparan Sulfate Dodecasaccharide Shows Anti-Angiogenic Properties In Vitro and Sensitizes Tumors to Cisplatin In Vivo.

    PubMed

    Avizienyte, Egle; Cole, Claire L; Rushton, Graham; Miller, Gavin J; Bugatti, Antonella; Presta, Marco; Gardiner, John M; Jayson, Gordon C

    2016-01-01

    Heparan sulphate (HS), a ubiquitously expressed glycosaminoglycan (GAG), regulates multiple cellular functions by mediating interactions between numerous growth factors and their cell surface cognate receptors. However, the structural specificity of HS in these interactions remains largely undefined. Here, we used completely synthetic, structurally defined, alternating N-sulfated glucosamine (NS) and 2-O-sulfated iduronate (IS) residues to generate dodecasaccharides ([NSIS]6) that contained no, one or six glucosamine 6-O-sulfates (6S). The aim was to address how 6S contributes to the potential of defined HS dodecasaccharides to inhibit the angiogenic growth factors FGF2 and VEGF165, in vitro and in vivo. We show that the addition of a single 6S at the non-reducing end of [NSIS]6, i.e. [NSIS6S]-[NSIS]5, significantly augments the inhibition of FGF2-dependent endothelial cell proliferation, migration and sprouting in vitro when compared to the non-6S variant. In contrast, the fully 6-O-sulfated dodecasaccharide, [NSIS6S]6, is not a potent inhibitor of FGF2. Addition of a single 6S did not significantly improve inhibitory properties of [NSIS]6 when tested against VEGF165-dependent endothelial cell functions.In vivo, [NSIS6S]-[NSIS]5 blocked FGF2-dependent blood vessel formation without affecting tumor growth. Reduction of non-FGF2-dependent ovarian tumor growth occurred when [NSIS6S]-[NSIS]5 was combined with cisplatin. The degree of inhibition by [NSIS6S]-[NSIS]5 in combination with cisplatin in vivo equated with that induced by bevacizumab and sunitinib when administered with cisplatin. Evaluation of post-treatment vasculature revealed that [NSIS6S]-[NSIS]5 treatment had the greatest impact on tumor blood vessel size and lumen formation. Our data for the first time demonstrate that synthetic, structurally defined oligosaccharides have potential to be developed as active anti-angiogenic agents that sensitize tumors to chemotherapeutic agents. PMID:27490176

  7. Synthetic Site-Selectively Mono-6-O-Sulfated Heparan Sulfate Dodecasaccharide Shows Anti-Angiogenic Properties In Vitro and Sensitizes Tumors to Cisplatin In Vivo

    PubMed Central

    Avizienyte, Egle; Cole, Claire L.; Rushton, Graham; Miller, Gavin J.; Bugatti, Antonella; Presta, Marco; Gardiner, John M.; Jayson, Gordon C.

    2016-01-01

    Heparan sulphate (HS), a ubiquitously expressed glycosaminoglycan (GAG), regulates multiple cellular functions by mediating interactions between numerous growth factors and their cell surface cognate receptors. However, the structural specificity of HS in these interactions remains largely undefined. Here, we used completely synthetic, structurally defined, alternating N-sulfated glucosamine (NS) and 2-O-sulfated iduronate (IS) residues to generate dodecasaccharides ([NSIS]6) that contained no, one or six glucosamine 6-O-sulfates (6S). The aim was to address how 6S contributes to the potential of defined HS dodecasaccharides to inhibit the angiogenic growth factors FGF2 and VEGF165, in vitro and in vivo. We show that the addition of a single 6S at the non-reducing end of [NSIS]6, i.e. [NSIS6S]-[NSIS]5, significantly augments the inhibition of FGF2-dependent endothelial cell proliferation, migration and sprouting in vitro when compared to the non-6S variant. In contrast, the fully 6-O-sulfated dodecasaccharide, [NSIS6S]6, is not a potent inhibitor of FGF2. Addition of a single 6S did not significantly improve inhibitory properties of [NSIS]6 when tested against VEGF165-dependent endothelial cell functions.In vivo, [NSIS6S]-[NSIS]5 blocked FGF2-dependent blood vessel formation without affecting tumor growth. Reduction of non-FGF2-dependent ovarian tumor growth occurred when [NSIS6S]-[NSIS]5 was combined with cisplatin. The degree of inhibition by [NSIS6S]-[NSIS]5 in combination with cisplatin in vivo equated with that induced by bevacizumab and sunitinib when administered with cisplatin. Evaluation of post-treatment vasculature revealed that [NSIS6S]-[NSIS]5 treatment had the greatest impact on tumor blood vessel size and lumen formation. Our data for the first time demonstrate that synthetic, structurally defined oligosaccharides have potential to be developed as active anti-angiogenic agents that sensitize tumors to chemotherapeutic agents. PMID:27490176

  8. Sanfilippo syndrome type C: mutation spectrum in the heparan sulfate acetyl-CoA: alpha-glucosaminide N-acetyltransferase (HGSNAT) gene.

    PubMed

    Feldhammer, Matthew; Durand, Stéphanie; Mrázová, Lenka; Boucher, Renée-Myriam; Laframboise, Rachel; Steinfeld, Robert; Wraith, James E; Michelakakis, Helen; van Diggelen, Otto P; Hrebícek, Martin; Kmoch, Stanislav; Pshezhetsky, Alexey V

    2009-06-01

    Mucopolysaccharidosis (MPS) type IIIC or Sanfilippo syndrome type C is a rare autosomal recessive disorder caused by the deficiency of the lysosomal membrane enzyme, heparan sulfate acetyl-CoA (AcCoA): alpha-glucosaminide N-acetyltransferase (HGSNAT; EC 2.3.1.78), which catalyzes transmembrane acetylation of the terminal glucosamine residues of heparan sulfate prior to their hydrolysis by alpha-N-acetylglucosaminidase. Lysosomal storage of undegraded heparan sulfate in the cells of affected patients leads to neuronal death, causing neurodegeneration and severely impaired development accompanied by mild visceral and skeletal abnormalities, including mild dwarfism, coarse facies, and joint stiffness. To date, 50 HGSNAT mutations have been identified in MPS IIIC patients: 40 were previously published and 10 novel mutations are reported here. The mutations span the entire structure of the gene and include 13 splice-site mutations, 11 insertions and deletions, 8 nonsense mutations, and 18 missense mutations (http://chromium.liacs.nl/LOVD2/home.php?select_db=HGSNAT). In addition, four polymorphisms result in amino acid changes that do not affect activity of the enzyme. In this work we discuss the spectrum of MPS IIIC mutations, their clinical presentation and distribution within the patient population, and speculate how the mutations may affect the structure and function of HGSNAT. PMID:19479962

  9. Secreted NS1 of Dengue Virus Attaches to the Surface of Cells via Interactions with Heparan Sulfate and Chondroitin Sulfate E

    PubMed Central

    Avirutnan, Panisadee; Zhang, Lijuan; Punyadee, Nuntaya; Manuyakorn, Ananya; Puttikhunt, Chunya; Kasinrerk, Watchara; Malasit, Prida; Atkinson, John P; Diamond, Michael S

    2007-01-01

    Dengue virus (DENV) nonstructural protein-1 (NS1) is a secreted glycoprotein that is absent from viral particles but accumulates in the supernatant and on the plasma membrane of cells during infection. Immune recognition of cell surface NS1 on endothelial cells has been hypothesized as a mechanism for the vascular leakage that occurs during severe DENV infection. However, it has remained unclear how NS1 becomes associated with the plasma membrane, as it contains no membrane-spanning sequence motif. Using flow cytometric and ELISA-based binding assays and mutant cell lines lacking selective glycosaminoglycans, we show that soluble NS1 binds back to the surface of uninfected cells primarily via interactions with heparan sulfate and chondroitin sulfate E. DENV NS1 binds directly to the surface of many types of epithelial and mesenchymal cells yet attaches poorly to most peripheral blood cells. Moreover, DENV NS1 preferentially binds to cultured human microvascular compared to aortic or umbilical cord vein endothelial cells. This binding specificity was confirmed in situ as DENV NS1 bound to lung and liver but not intestine or brain endothelium of mouse tissues. Differential binding of soluble NS1 by tissue endothelium and subsequent recognition by anti-NS1 antibodies could contribute to the selective vascular leakage syndrome that occurs during severe secondary DENV infection. PMID:18052531

  10. Homodimerization Controls the Fibroblast Growth Factor 9 Subfamily's Receptor Binding and Heparan Sulfate-Dependent Diffusion in the Extracellular Matrix

    SciTech Connect

    Kalinina, J.; Byron, S; Makarenkova, H; Olsen, S; Eliseenkova, A; Larochelle, W; Dhanabal, M; Blais, S; Mohammadi, M; et. al.

    2009-01-01

    Uncontrolled fibroblast growth factor (FGF) signaling can lead to human diseases, necessitating multiple layers of self-regulatory control mechanisms to keep its activity in check. Herein, we demonstrate that FGF9 and FGF20 ligands undergo a reversible homodimerization, occluding their key receptor binding sites. To test the role of dimerization in ligand autoinhibition, we introduced structure-based mutations into the dimer interfaces of FGF9 and FGF20. The mutations weakened the ability of the ligands to dimerize, effectively increasing the concentrations of monomeric ligands capable of binding and activating their cognate FGF receptor in vitro and in living cells. Interestingly, the monomeric ligands exhibit reduced heparin binding, resulting in their increased radii of heparan sulfate-dependent diffusion and biologic action, as evidenced by the wider dilation area of ex vivo lung cultures in response to implanted mutant FGF9-loaded beads. Hence, our data demonstrate that homodimerization autoregulates FGF9 and FGF20's receptor binding and concentration gradients in the extracellular matrix. Our study is the first to implicate ligand dimerization as an autoregulatory mechanism for growth factor bioactivity and sets the stage for engineering modified FGF9 subfamily ligands, with desired activity for use in both basic and translational research.

  11. Sweet on Hedgehogs: regulatory roles of heparan sulfate proteoglycans in Hedgehog-dependent cell proliferation and differentiation.

    PubMed

    Bandari, Shyam; Exner, Sebastian; Ortmann, Corinna; Bachvarova, Velina; Vortkamp, Andrea; Grobe, Kay

    2015-01-01

    Morphogens exert their effects over long distances, typically by spreading from cell to cell to activate signal transduction in surrounding tissues in concentration-dependent manner. One example of a morphogen is the signaling molecule Hedgehog (Hh), which controls growth and patterning during development and has also been implicated in the progression of numerous cancers. To this end, accessory mechanisms that release, transport, and receive Hhs are required to elicit temporally and spatially specific responses in cells and tissues. The Hh spreading mechanism is especially intriguing, because all Hhs are released from the producing cells despite being synthesized as dually lipidated, membrane-tethered molecules. In addition to this cellular association, Hhs bind strongly to extracellular heparan sulfate proteoglycans (HSPGs), which is expected to further reduce their spreading. Paradoxically, several lines of evidence suggest that Hh gradient formation actually requires HSPG expression, and that HSPGs act as both positive and negative regulators of Hh function. This article reviews the multiple roles that HSPGs play in Hh morphogen function, and discusses their congruity with proposed mechanisms of Hh solubilization, transport, and signal reception in vertebrate and invertebrate tissues. PMID:25692848

  12. Liposome-Mediated Herpes Simplex Virus Uptake Is Glycoprotein-D Receptor-Independent but Requires Heparan Sulfate.

    PubMed

    Burnham, Lorrie A; Jaishankar, Dinesh; Thompson, Jeffrey M; Jones, Kevin S; Shukla, Deepak; Tiwari, Vaibhav

    2016-01-01

    Cationic liposomes are widely used to facilitate introduction of genetic material into target cells during transfection. This study describes a non-receptor mediated herpes simplex virus type-1 (HSV-1) entry into the Chinese hamster ovary (CHO-K1) cells that naturally lack glycoprotein D (gD)-receptors using a commercially available cationic liposome: lipofectamine. Presence of cell surface heparan sulfate (HS) increased the levels of viral entry indicating a potential role of HS in this mode of entry. Loss of viral entry in the presence of actin de-polymerizing or lysosomotropic agents suggests that this mode of entry results in the endocytosis of the lipofectamine-virus mixture. Enhancement of HSV-1 entry by liposomes was also demonstrated in vivo using a zebrafish embryo model that showed stronger infection in the eyes and other tissues. Our study provides novel insights into gD receptor independent viral entry pathways and can guide new strategies to enhance the delivery of viral gene therapy vectors or oncolytic viruses. PMID:27446014

  13. Liposome-Mediated Herpes Simplex Virus Uptake Is Glycoprotein-D Receptor-Independent but Requires Heparan Sulfate

    PubMed Central

    Burnham, Lorrie A.; Jaishankar, Dinesh; Thompson, Jeffrey M.; Jones, Kevin S.; Shukla, Deepak; Tiwari, Vaibhav

    2016-01-01

    Cationic liposomes are widely used to facilitate introduction of genetic material into target cells during transfection. This study describes a non-receptor mediated herpes simplex virus type-1 (HSV-1) entry into the Chinese hamster ovary (CHO-K1) cells that naturally lack glycoprotein D (gD)-receptors using a commercially available cationic liposome: lipofectamine. Presence of cell surface heparan sulfate (HS) increased the levels of viral entry indicating a potential role of HS in this mode of entry. Loss of viral entry in the presence of actin de-polymerizing or lysosomotropic agents suggests that this mode of entry results in the endocytosis of the lipofectamine-virus mixture. Enhancement of HSV-1 entry by liposomes was also demonstrated in vivo using a zebrafish embryo model that showed stronger infection in the eyes and other tissues. Our study provides novel insights into gD receptor independent viral entry pathways and can guide new strategies to enhance the delivery of viral gene therapy vectors or oncolytic viruses. PMID:27446014

  14. Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: Antithrombin binding on cultured endothelial cells and perfused rat aorta

    SciTech Connect

    de Agostini, A.I.; Watkins, S.C.; Slayter, H.S.; Youssoufian, H.; Rosenberg, R.D. )

    1990-09-01

    We have studied the interaction of {sup 125}I-antithrombin ({sup 125}I-AT) with microvascular endothelial cells (RFPEC) to localize the cellular site of anticoagulantly active heparan sulfate proteoglycans (HSPG). The radiolabeled protease inhibitor bound specifically to the above HSPG with a Kd of approximately 50 nM. Confluent monolayer RFPEC cultures exhibited a linear increase in the amount of AT bound per cell for up to 16 d, whereas suspension RFPEC cultures possessed a constant number of protease inhibitor binding sites per cell for up to 5 d. These results suggest that monolayer RFPEC cultures secrete anticoagulantly active HSPG, which then accumulate in the extracellular matrix. This hypothesis was confirmed by quantitative light and EM level autoradiography which demonstrated that the AT binding sites are predominantly located in the extracellular matrix with only small quantities of protease inhibitor complexed to the cell surface. We have also pinpointed the in vivo position of anticoagulantly active HSPG within the blood vessel wall. Rat aortas were perfused, in situ, with {sup 125}I-AT, and bound labeled protease inhibitor was localized by light and EM autoradiography. The anticoagulantly active HSPG were concentrated immediately beneath the aortic and vasa vasorum endothelium with only a very small extent of labeling noted on the luminal surface of the endothelial cells. Based upon the above data, we propose a model whereby luminal and abluminal anticoagulantly active HSPG regulate coagulation mechanism activity.

  15. Butanolysis derivatization: improved sensitivity in LC-MS/MS quantitation of heparan sulfate in urine from mucopolysaccharidosis patients.

    PubMed

    Trim, Paul J; Hopwood, John J; Snel, Marten F

    2015-09-15

    Heparan sulfate (HS) is a complex oligosaccharide that is a marker of a number of diseases, most notably several of the mucopolysaccharidoses (MPS). It is a very heterogeneous compound and its quantification at physiological concentrations in patient samples is challenging. Here, we demonstrate novel derivatization chemistry for depolymerization/desulfation and alkylation of HS based on butanolysis. The resultant alkylated disaccharides are quantifiable by LC-MS/MS. This new method is at least 70-fold more sensitive than a previously published methanolysis method. Disaccharide yield over time is compared for methanolysis, ethanolysis, and butanolysis. Maximum disaccharide concentration was observed after 2 h with butanolysis and 18 h with ethanolysis whereas a maximum was not reached over the 24 h of the experiment with methanolysis. The sensitivity of the new technique is illustrated by the quantification of HS in 5 μL urine samples from MPS patients and healthy controls. HS was quantifiable in all samples including controls. Disaccharide reaction products were further characterized using exact mass MS/MS. PMID:26301744

  16. Bridging the gap: heparan sulfate and Scube2 assemble Sonic hedgehog release complexes at the surface of producing cells

    PubMed Central

    Jakobs, P.; Schulz, P.; Ortmann, C.; Schürmann, S.; Exner, S.; Rebollido-Rios, R.; Dreier, R.; Seidler, D. G.; Grobe, K.

    2016-01-01

    Decision making in cellular ensembles requires the dynamic release of signaling molecules from the producing cells into the extracellular compartment. One important example of molecules that require regulated release in order to signal over several cell diameters is the Hedgehog (Hh) family, because all Hhs are synthesized as dual-lipidated proteins that firmly tether to the outer membrane leaflet of the cell that produces them. Factors for the release of the vertebrate Hh family member Sonic Hedgehog (Shh) include cell-surface sheddases that remove the lipidated terminal peptides, as well as the soluble glycoprotein Scube2 that cell-nonautonomously enhances this process. This raises the question of how soluble Scube2 is recruited to cell-bound Shh substrates to regulate their turnover. We hypothesized that heparan sulfate (HS) proteoglycans (HSPGs) on the producing cell surface may play this role. In this work, we confirm that HSPGs enrich Scube2 at the surface of Shh-producing cells and that Scube2-regulated proteolytic Shh processing and release depends on specific HS. This finding indicates that HSPGs act as cell-surface assembly and storage platforms for Shh substrates and for protein factors required for their release, making HSPGs critical decision makers for Scube2-dependent Shh signaling from the surface of producing cells. PMID:27199253

  17. Neuropilin-1 and heparan sulfate proteoglycans cooperate in cellular uptake of nanoparticles functionalized by cationic cell-penetrating peptides

    PubMed Central

    Pang, Hong-Bo; Braun, Gary B.; Ruoslahti, Erkki

    2015-01-01

    Cell-penetrating peptides (CPPs) have been widely used to deliver nanomaterials and other types of macromolecules into mammalian cells for therapeutic and diagnostic use. Cationic CPPs that bind to heparan sulfate (HS) proteoglycans on the cell surface induce potent endocytosis; however, the role of other surface receptors in this process is unclear. We describe the convergence of an HS-dependent pathway with the C-end rule (CendR) mechanism that enables peptide ligation with neuropilin-1 (NRP1), a cell surface receptor known to be involved in angiogenesis and vascular permeability. NRP1 binds peptides carrying a positive residue at the carboxyl terminus, a feature that is compatible with cationic CPPs, either intact or after proteolytic processing. We used CPP and CendR peptides, as well as HS- and NRP1-binding motifs from semaphorins, to explore the commonalities and differences of the HS and NRP1 pathways. We show that the CendR-NRP1 interaction determines the ability of CPPs to induce vascular permeability. We also show at the ultrastructural level, using a novel cell entry synchronization method, that both the HS and NRP1 pathways can initiate a macropinocytosis-like process and visualize these CPP-cargo complexes going through various endosomal compartments. Our results provide new insights into how CPPs exploit multiple surface receptor pathways for intracellular delivery. PMID:26601141

  18. Peptide 19-2.5 inhibits heparan sulfate-triggered inflammation in murine cardiomyocytes stimulated with human sepsis serum.

    PubMed

    Martin, Lukas; Schmitz, Susanne; De Santis, Rebecca; Doemming, Sabine; Haase, Hajo; Hoeger, Janine; Heinbockel, Lena; Brandenburg, Klaus; Marx, Gernot; Schuerholz, Tobias

    2015-01-01

    Myocardial dysfunction in sepsis has been linked to inflammation caused by pathogen-associated molecular patterns (PAMPs) as well as by host danger-associated molecular patterns (DAMPs). These include soluble heparan sulfate (HS), which triggers the devastating consequences of the pro-inflammatory cascades in severe sepsis and septic shock. Thus, there is increasing interest in the development of anti-infective agents, with effectiveness against both PAMPs and DAMPs. We hypothesized that a synthetic antimicrobial peptide (peptide 19-2.5) inhibits inflammatory response in murine cardiomyocytes (HL-1 cells) stimulated with PAMPs, DAMPs or serum from patients with septic shock by reduction and/or neutralization of soluble HS. In the current study, our data indicate that the treatment with peptide 19-2.5 decreases the inflammatory response in HL-1 cells stimulated with either PAMPs or DAMPs. Furthermore, our work shows that soluble HS in serum from patients with Gram-negative or Gram-positive septic shock induces a strong pro-inflammatory response in HL-1 cells, which can be effectively blocked by peptide 19-2.5. Based on these findings, peptide 19-2.5 is a novel anti-inflammatory agent interacting with both PAMPs and DAMPs, suggesting peptide 19-2.5 may have the potential for further development as a broad-spectrum anti-inflammatory agent in sepsis-induced myocardial inflammation and dysfunction. PMID:26024383

  19. PDGF-A interactions with fibronectin reveal a critical role for heparan sulfate in directed cell migration during Xenopus gastrulation

    PubMed Central

    Smith, Erin M.; Mitsi, Maria; Nugent, Matthew A.; Symes, Karen

    2009-01-01

    Platelet-derived growth factor (PDGF) signaling is essential for processes involving cell motility and differentiation during embryonic development in a wide variety of organisms including the mouse, frog, zebrafish, and sea urchin. In early Xenopus laevis embryos, PDGF-AA provides guidance cues for the migration of anterior mesendoderm cells as they move across a fibronectin-rich extracellular matrix. The long form of PDGF-A includes a positively charged carboxyl-terminal retention motif that can interact with the extracellular matrix and heparan sulfate proteoglycans (HSPGs). In this study we demonstrate that PDGF-AA binds directly to fibronectin and that this association is greatly enhanced by heparin. The PDGF-AA-fibronectin binding occurs across a broad range of pHs (5.5–9), which is significant because the PDGF-guided migration of Xenopus mesendoderm cells occurs under basic extracellular conditions (pH 8.4). We further demonstrate that endogenous HSPG's are required for the PDGF-AA-guided mesendoderm movement, suggesting an in vivo role for HSPGs in mediating the interaction between PDGF-AA and fibronectin. PMID:19966216

  20. Fibrillin-1 mutations causing Weill-Marchesani syndrome and acromicric and geleophysic dysplasias disrupt heparan sulfate interactions.

    PubMed

    Cain, Stuart A; McGovern, Amanda; Baldwin, Andrew K; Baldock, Clair; Kielty, Cay M

    2012-01-01

    The extracellular glycoprotein fibrillin-1 forms microfibrils that act as the template for elastic fibers. Most mutations in fibrillin-1 cause Marfan syndrome with severe cardiovascular and ocular symptoms, and tall stature. This is in contrast to mutations within a heparin-binding TB domain (TB5), which is downstream of the arg-gly-asp cell adhesion domain, which can cause Weill-Marchesani syndrome (WMS) or Acromicric (AD) and Geleophysic Dysplasias (GD). WMS is characterized by short limbs, joint stiffness and ocular defects, whilst fibrillin-1 AD and GD have severe short stature, joint defects and thickened skin. We previously showed that TB5 binds heparin. Here, we show that the corresponding region of fibrillin-2 binds heparin very poorly, highlighting a novel functional difference between the two isoforms. This finding enabled us to map heparin/heparan sulfate binding to two sites on fibrillin-1 TB5 using a mutagenesis approach. Once these sites were mapped, we were able to investigate whether disease-causing mutations in this domain disrupt binding to HS. We show that a WMS deletion mutant, and five AD and GD point mutants all have disrupted heparin binding to TB5. These data provide insights into the biology of fibrillins and the pathologies of WMS, AD and GD. PMID:23133647

  1. Extended Release of an Anti–Heparan Sulfate Peptide From a Contact Lens Suppresses Corneal Herpes Simplex Virus-1 Infection

    PubMed Central

    Jaishankar, Dinesh; Buhrman, Jason S.; Valyi-Nagy, Tibor; Gemeinhart, Richard A.; Shukla, Deepak

    2016-01-01

    Purpose To prolong the release of a heparan sulfate binding peptide, G2-C, using a commercially available contact lens as a delivery vehicle and to demonstrate the ability of the released peptide to block herpes simplex virus-1 (HSV-1) infection using in vitro, ex vivo, and in vivo models of corneal HSV-1 infection. Methods Commercially available contact lenses were immersed in peptide solution for 5 days prior to determining the release of the peptide at various time points. Cytotoxicity of the released samples was determined by MTT and cell cycle analysis, and the functional activity of the released samples were assessed by viral entry, and viral spread assay using human corneal epithelial cells (HCE). The ability to suppress infection in human and pig cornea ex vivo and mouse in vivo models were also assessed. Results Peptide G2-C was released through the contact lens. Following release for 3 days, the peptide showed significant activity by inhibiting HSV-1 viral entry and spread in HCE cells. Significant suppression of infection was also observed in the ex vivo and in vivo experiments involving corneas. Conclusions Extended release of an anti–HS peptide through a commercially available contact lens can generate significant anti–HSV-1 activity and provides a new and effective way to control corneal herpes. PMID:26780322

  2. Bridging the gap: heparan sulfate and Scube2 assemble Sonic hedgehog release complexes at the surface of producing cells.

    PubMed

    Jakobs, P; Schulz, P; Ortmann, C; Schürmann, S; Exner, S; Rebollido-Rios, R; Dreier, R; Seidler, D G; Grobe, K

    2016-01-01

    Decision making in cellular ensembles requires the dynamic release of signaling molecules from the producing cells into the extracellular compartment. One important example of molecules that require regulated release in order to signal over several cell diameters is the Hedgehog (Hh) family, because all Hhs are synthesized as dual-lipidated proteins that firmly tether to the outer membrane leaflet of the cell that produces them. Factors for the release of the vertebrate Hh family member Sonic Hedgehog (Shh) include cell-surface sheddases that remove the lipidated terminal peptides, as well as the soluble glycoprotein Scube2 that cell-nonautonomously enhances this process. This raises the question of how soluble Scube2 is recruited to cell-bound Shh substrates to regulate their turnover. We hypothesized that heparan sulfate (HS) proteoglycans (HSPGs) on the producing cell surface may play this role. In this work, we confirm that HSPGs enrich Scube2 at the surface of Shh-producing cells and that Scube2-regulated proteolytic Shh processing and release depends on specific HS. This finding indicates that HSPGs act as cell-surface assembly and storage platforms for Shh substrates and for protein factors required for their release, making HSPGs critical decision makers for Scube2-dependent Shh signaling from the surface of producing cells. PMID:27199253

  3. N-sulfotestosteronan, a novel substrate for heparan sulfate 6-O-sulfotransferases and its analysis by oxidative degradation

    PubMed Central

    Li, Guoyun; Masuko, Sayaka; Green, Dixy E.; Xu, Yongmei; Li, Lingyun; Zhang, Fuming; Xue, Changhu; Liu, Jian; DeAngelis, Paul. L.; Linhardt, Robert J.

    2013-01-01

    Testosteronan, an unusual glycosaminoglycan first isolated from the microbe Comamonas testosteroni, was enzymatically synthesized in vitro by transferring uridine diphosphate sugars on β-p-nitrophenyl glucuronide acceptor. After chemically converting testosteronan to N-sulfotestosteronan it was tested as a substrate for sulfotransferases involved in the biosynthesis of the glycosaminoglycan, heparan sulfate. Studies using 35S-labeled 3′-phosphodenosine-5′-phosphosulfate (PAPS) showed that only 6-O-sulfotransferases acted on N-sulfotestosteronan. An oxidative depolymerization reaction was explored to generate oligosaccharides from 34S-labeled 6-O-sulfo-N-sulfotestosteroran using 34S-labeled PAPS because testosteronan was resistant to all of the tested glycosaminoglycan-degrading enzymes. Liquid chromotography-mass spectrometric analysis of the oxidatively depolymerized polysaccharides confirmed the incorporation of 34S into ~14% of the glucosamine residues. Nuclear magnetic resonance spectroscopy also showed that the sulfo groups were transferred to ~20% of the 6-hydroxyl groups in the glucosamine residue of N-sulfotestosteronan. The bioactivity of 6-O–sulfo-N-sulfotestosteronan was examined by performing protein-binding studies with fibroblast growth factors and antithrombin III using a surface plasmon resonance competition assay. The introduction of 6-O-sulfo groups enhanced N-sulfotestosteronan binding to the fibroblast growth factors, but not to antithrombin III. PMID:23606289

  4. The in vivo assessment of a novel scaffold containing heparan sulfate for tissue engineering with human mesenchymal stem cells.

    PubMed

    Luong-Van, Emma; Grøndahl, Lisbeth; Song, Shujun; Nurcombe, Victor; Cool, Simon

    2007-10-01

    Human mesenchymal stem cells (hMSCs) are an attractive tissue engineering avenue for the repair and regeneration of bone. In this study we detail the in vivo performance of a novel electrospun polycaprolactone scaffold incorporating the glycosaminoglycan heparan sulfate (HS) as a carrier for hMSC. HS is a multifunctional regulator of many key growth factors expressed endogenously during bone wound repair, and we have found it to be a potent stimulator of proliferation in hMSCs. To assess the potential of the scaffolds to support hMSC function in vivo, hMSCs pre-committed to the osteogenic lineage (human osteoprogenitor cells) were seeded onto the scaffolds and implanted subcutaneously into the dorsum of nude rats. After 6 weeks the scaffolds were retrieved and examined by histological methods. Implanted human cells were identified using a human nuclei-specific antibody. The host response to the implants was characterized by ED1 and ED2 antibody staining for monocytes/macrophages and mature tissue macrophages, respectively. It was found that the survival of the implanted human cells was affected by the host response to the implant regardless of the presence of HS, highlighting the importance of controlling the host response to tissue engineering devices. PMID:17694276

  5. The Heparan and Heparin Metabolism Pathway is Involved in Regulation of Fatty Acid Composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six genes involved in the heparan sulfate and heparin metabolism pathway, DSEL (dermatan sulfate epimerase-like), EXTL1 (exostoses (multiple)-like 1), HS6ST1 (heparan sulfate 6-O-sulfotransferase 1), HS6ST3 (heparan sulfate 6-O-sulfotransferase 3), NDST3 (N-deacetylase/N-sulfotransferase (heparan gl...

  6. Isolation and characterization of ryudocan and syndecan heparan sulfate proteoglycans, core proteins, and cDNAs from a rat endothelial cell line.

    PubMed

    Shworak, N W; Kojima, T; Rosenberg, R D

    1993-03-01

    We have isolated heparan sulfate proteoglycans (HSPGs) from cloned rat microvascular endothelial cells using a combination of ion-exchange chromatography, affinity fractionation with antithrombin III (AT III), and gel filtration in denaturing solvents. The anticoagulantly active heparan sulfate proteoglycans (HSPGact) which bind tightly to AT III bear mainly anticoagulantly active heparan sulfate (HSact) whereas the anticoagulantly inactive heparan sulfate proteoglycans (HSPGinact) possess mainly anticoagulantly inactive heparan sulfate (HSinact). The core proteins of HSPGact and HSPGinact were isolated by treatment with Flavobacterium heparitinase and purification by ion-exchange chromatography. SDS-PAGE showed that both sets of core proteins exhibited three major components with M(r) of 25-, 30-, and 50-kD, respectively. Peptide mapping revealed that HSPGact and HSPGinact possess extremely similar core proteins. The primary sequences of internal peptides obtained from HSPGinact core proteins and the NH2-terminal sequence analyses of the 25-kD component from the HSPGinact core proteins demonstrate that the 30-kD component is a previously unidentified species--designated as ryudocan--with the 25-kD component representing a proteolytic degradation product; while the 50-kD component is the rat homolog of syndecan [Saunders S, Jalkanen M, O'Farrell S, Bernfield M: J Cell Biol 1989; 108:1547-1556]. Specific oligonucleotide probes were obtained for ryudocan and syndecan by PCR, and the corresponding cDNAs were isolated from a RFP-EC library. The cDNAs encode type I integral membrane proteins of 202 and 313 amino acids, respectively, which have homologous transmembrane and intracellular domains but very distinct extracellular regions. In particular, ryudocan exhibits only 3 potential glycosaminoglycan (GAG) attachment sites within the extracellular region while syndecan has 5 GAG attachment sites within the same domain. The levels of ryudocan and syndecan mRNA were

  7. Deliberate Attenuation of Chikungunya Virus by Adaptation to Heparan Sulfate-Dependent Infectivity: A Model for Rational Arboviral Vaccine Design

    PubMed Central

    Gardner, Christina L.; Hritz, Jozef; Sun, Chengqun; Vanlandingham, Dana L.; Song, Timothy Y.; Ghedin, Elodie; Higgs, Stephen; Klimstra, William B.; Ryman, Kate D.

    2014-01-01

    Mosquito-borne chikungunya virus (CHIKV) is a positive-sense, single-stranded RNA virus from the genus Alphavirus, family Togaviridae, which causes fever, rash and severe persistent polyarthralgia in humans. Since there are currently no FDA licensed vaccines or antiviral therapies for CHIKV, the development of vaccine candidates is of critical importance. Historically, live-attenuated vaccines (LAVs) for protection against arthropod-borne viruses have been created by blind cell culture passage leading to attenuation of disease, while maintaining immunogenicity. Attenuation may occur via multiple mechanisms. However, all examined arbovirus LAVs have in common the acquisition of positively charged amino acid substitutions in cell-surface attachment proteins that render virus infection partially dependent upon heparan sulfate (HS), a ubiquitously expressed sulfated polysaccharide, and appear to attenuate by retarding dissemination of virus particles in vivo. We previously reported that, like other wild-type Old World alphaviruses, CHIKV strain, La Réunion, (CHIKV-LR), does not depend upon HS for infectivity. To deliberately identify CHIKV attachment protein mutations that could be combined with other attenuating processes in a LAV candidate, we passaged CHIKV-LR on evolutionarily divergent cell-types. A panel of single amino acid substitutions was identified in the E2 glycoprotein of passaged virus populations that were predicted to increase electrostatic potential. Each of these substitutions was made in the CHIKV-LR cDNA clone and comparisons of the mutant viruses revealed surface exposure of the mutated residue on the spike and sensitivity to competition with the HS analog, heparin, to be primary correlates of attenuation in vivo. Furthermore, we have identified a mutation at E2 position 79 as a promising candidate for inclusion in a CHIKV LAV. PMID:24587470

  8. Rapid nuclear transit and impaired degradation of amyloid β and glypican-1-derived heparan sulfate in Tg2576 mouse fibroblasts.

    PubMed

    Cheng, Fang; Fransson, Lars-Åke; Mani, Katrin

    2015-05-01

    Anhydromannose (anMan)-containing heparan sulfate (HS) derived from S-nitrosylated glypican-1 is generated in endosomes by an endogenously or ascorbate induced S-nitrosothiol-catalyzed reaction. Expression and processing of amyloid precursor protein (APP) is required to initiate formation and endosome-to-nucleus translocation of anMan-containing HS in wild-type mouse embryonic fibroblasts (WT MEF). HS is then transported to autophagosomes and finally degraded in lysosomes. To investigate how APP-derived amyloid β (Aβ) peptide affects intracellular trafficking of HS, we have studied nuclear transit as well as autophagosome/lysosome targeting and degradation in transgenic Alzheimer disease mouse (Tg2576) MEF which produce increased amounts of Aβ. Deconvolution immunofluorescence microscopy with an anMan-specific monoclonal antibody showed anMan staining in the nuclei of Tg2576 MEF after 5 min of ascorbate treatment and after 15 min in WT MEF. There was also greater nuclear accumulation of HS in Tg2576 MEF as determined by (35)S-sulfate-labeling experiments. Tg2576 MEF was less sensitive to inhibition of NO production and copper-chelation than WT MEF. By using APP- and Aβ-recognizing antibodies, we observed nuclear translocation of Aβ peptide in Tg2576 MEF but not in WT MEF. HS remained in the nucleus of WT MEF for at least 8 h and was then transported to autophagosomes. By 8 h, HS had disappeared from the nuclei of Tg2576 MEF but colocalized poorly with the autophagosome marker LC3. Aβ also disappeared rapidly from the nuclei of Tg2576 MEF. Initially, it appeared in acidic vesicles and later it accumulated extracellularly. Thus, in Tg2576 MEF there is nuclear accumulation as well as secretion of Aβ and impaired degradation of HS. PMID:25527428

  9. Adaptation of Alphaviruses to Heparan Sulfate: Interaction of Sindbis and Semliki Forest Viruses with Liposomes Containing Lipid-Conjugated Heparin

    PubMed Central

    Smit, Jolanda M.; Waarts, Barry-Lee; Kimata, Koji; Klimstra, William B.; Bittman, Robert; Wilschut, Jan

    2002-01-01

    Passage of Sindbis virus (SIN) in BHK-21 cells has been shown to select for virus mutants with high affinity for the glycosaminoglycan heparan sulfate (HS). Three loci in the viral spike protein E2 (E2:1, E2:70, and E2:114) have been identified that mutate during adaptation and independently confer on the virus the ability to bind to cell surface HS (W. B. Klimstra, K. D. Ryman, and R. E. Johnston, J. Virol. 72:7357-7366, 1998). In this study, we used HS-adapted SIN mutants to evaluate a new model system involving target liposomes containing lipid-conjugated heparin (HepPE) as an HS receptor analog for the virus. HS-adapted SIN, but not nonadapted wild-type SIN TR339, interacted efficiently with HepPE-containing liposomes at neutral pH. Binding was competitively inhibited by soluble heparin. Despite the efficient binding of HS-adapted SIN to HepPE-containing liposomes at neutral pH, there was no fusion under these conditions. Fusion did occur, however, at low pH, consistent with cellular entry of the virus via acidic endosomes. At low pH, wild-type or HS-adapted SIN underwent fusion with liposomes with or without HepPE with similar kinetics, suggesting that interaction with the HS receptor analog at neutral pH has little influence on subsequent fusion of SIN at low pH. Finally, Semliki Forest virus (SFV), passaged frequently on BHK-21 cells, also interacted efficiently with HepPE-containing liposomes, indicating that SFV, like other alphaviruses, readily adapts to cell surface HS. In conclusion, the liposomal model system presented in this paper may serve as a novel tool for the study of receptor interactions and membrane fusion properties of HS-interacting enveloped viruses. PMID:12239287

  10. Abnormally High Content of Free Glucosamine Residues Identified in a Preparation of Commercially Available Porcine Intestinal Heparan Sulfate.

    PubMed

    Mulloy, Barbara; Wu, Nian; Gyapon-Quast, Frederick; Lin, Lei; Zhang, Fuming; Pickering, Matthew C; Linhardt, Robert J; Feizi, Ten; Chai, Wengang

    2016-07-01

    Heparan sulfate (HS) polysaccharides are ubiquitous in animal tissues as components of proteoglycans, and they participate in many important biological processes. HS carbohydrate chains are complex and can contain rare structural components such as N-unsubstituted glucosamine (GlcN). Commercially available HS preparations have been invaluable in many types of research activities. In the course of preparing microarrays to include probes derived from HS oligosaccharides, we found an unusually high content of GlcN residue in a recently purchased batch of porcine intestinal mucosal HS. Composition and sequence analysis by mass spectrometry of the oligosaccharides obtained after heparin lyase III digestion of the polysaccharide indicated two and three GlcN in the tetrasaccharide and hexasaccharide fractions, respectively. (1)H NMR of the intact polysaccharide showed that this unusual batch differed strikingly from other HS preparations obtained from bovine kidney and porcine intestine. The very high content of GlcN (30%) and low content of GlcNAc (4.2%) determined by disaccharide composition analysis indicated that N-deacetylation and/or N-desulfation may have taken place. HS is widely used by the scientific community to investigate HS structures and activities. Great care has to be taken in drawing conclusions from investigations of structural features of HS and specificities of HS interaction with proteins when commercial HS is used without further analysis. Pending the availability of a validated commercial HS reference preparation, our data may be useful to members of the scientific community who have used the present preparation in their studies. PMID:27295282

  11. Abnormally High Content of Free Glucosamine Residues Identified in a Preparation of Commercially Available Porcine Intestinal Heparan Sulfate

    PubMed Central

    2016-01-01

    Heparan sulfate (HS) polysaccharides are ubiquitous in animal tissues as components of proteoglycans, and they participate in many important biological processes. HS carbohydrate chains are complex and can contain rare structural components such as N-unsubstituted glucosamine (GlcN). Commercially available HS preparations have been invaluable in many types of research activities. In the course of preparing microarrays to include probes derived from HS oligosaccharides, we found an unusually high content of GlcN residue in a recently purchased batch of porcine intestinal mucosal HS. Composition and sequence analysis by mass spectrometry of the oligosaccharides obtained after heparin lyase III digestion of the polysaccharide indicated two and three GlcN in the tetrasaccharide and hexasaccharide fractions, respectively. 1H NMR of the intact polysaccharide showed that this unusual batch differed strikingly from other HS preparations obtained from bovine kidney and porcine intestine. The very high content of GlcN (30%) and low content of GlcNAc (4.2%) determined by disaccharide composition analysis indicated that N-deacetylation and/or N-desulfation may have taken place. HS is widely used by the scientific community to investigate HS structures and activities. Great care has to be taken in drawing conclusions from investigations of structural features of HS and specificities of HS interaction with proteins when commercial HS is used without further analysis. Pending the availability of a validated commercial HS reference preparation, our data may be useful to members of the scientific community who have used the present preparation in their studies. PMID:27295282

  12. An affinity adsorption media that mimics heparan sulfate proteoglycans for the treatment of drug-resistant bacteremia

    NASA Astrophysics Data System (ADS)

    McCrea, Keith R.; Ward, Robert S.

    2016-06-01

    Removal of several drug-resistant bacteria from blood by affinity adsorption onto a heparin-functional media is reported. Heparin is a chemical analogue of heparan sulfate (HS) proteoglycans, found on transmembrane proteins of endothelial cells. Many blood-borne human pathogens, including bacteria, viruses, parasites, and fungi have been reported to target HS as an initial step in their pathogenesis. Here, we demonstrate the binding and removal of Methicillin-resistant Staphylococcus aureus (MRSA), Extended-Spectrum Betalactamase Klebsiella pneumoniae (ESBL), and two Carbapenem-resistant Enterobacteriaceae (both CRE Escherichia coli and CRE K. pneumoniae) using 300 μm polyethylene beads surface modified with end-point-attached heparin. Depending on the specific bacteria, the amount removed ranged between 39% (ESBL) and 99.9% (CRE). The total amount of bacteria adsorbed ranged between 2.8 × 105 and 8.6 × 105 colony forming units (CFU) per gram of adsorption media. Based on a polymicrobial challenge which showed no competitive binding, MRSA and CRE apparently utilize different binding sequences on the immobilized heparin ligand. Since the total circulating bacterial load during bacteremia seldom exceeds 5 × 105 CFUs, it appears possible to significantly reduce bacterial concentration in infected patients by multi-pass recirculation of their blood through a small extracorporeal affinity filter containing the heparin-functional adsorption media. This 'dialysis-like therapy' is expected to improve patient outcomes and reduce the cost of care, particularly when there are no anti-infective drugs available to treat the infection.

  13. Heparan Sulfates Mediate the Interaction between Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1) and the Gαq/11 Subunits of Heterotrimeric G Proteins*

    PubMed Central

    dela Paz, Nathaniel G.; Melchior, Benoît; Shayo, Francisca Y.; Frangos, John A.

    2014-01-01

    The endothelial cell-cell junction has emerged as a major cell signaling structure that responds to shear stress by eliciting the activation of signaling pathways. Platelet endothelial cell adhesion molecule-1 (PECAM-1) and heterotrimeric G protein subunits Gαq and 11 (Gαq/11) are junctional proteins that have been independently proposed as mechanosensors. Our previous findings suggest that they form a mechanosensitive junctional complex that discriminates between different flow profiles. The nature of the PECAM-1·Gαq/11 interaction is still unclear although it is likely an indirect association. Here, we investigated the role of heparan sulfates (HS) in mediating this interaction and in regulating downstream signaling in response to flow. Co-immunoprecipitation studies show that PECAM-1·Gαq/11 binding is dramatically decreased by competitive inhibition with heparin, pharmacological inhibition with the HS antagonist surfen, and enzymatic removal of HS chains with heparinase III treatment as well as by site-directed mutagenesis of basic residues within the extracellular domain of PECAM-1. Using an in situ proximity ligation assay, we show that endogenous PECAM-1·Gαq/11 interactions in endothelial cells are disrupted by both competitive inhibition and HS degradation. Furthermore, we identified the heparan sulfate proteoglycan syndecan-1 in complexes with PECAM-1 that are rapidly decreased in response to flow. Finally, we demonstrate that flow-induced Akt activation is attenuated in endothelial cells in which PECAM-1 was knocked down and reconstituted with a binding mutant. Taken together, our results indicate that the PECAM-1·Gαq/11 mechanosensitive complex contains an endogenous heparan sulfate proteoglycan with HS chains that is critical for junctional complex assembly and regulating the flow response. PMID:24497640

  14. The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics

    PubMed Central

    Hammond, Edward; Khurana, Ashwani; Shridhar, Viji; Dredge, Keith

    2014-01-01

    Heparan sulfate proteoglycans (HSPGs) are an integral and dynamic part of normal tissue architecture at the cell surface and within the extracellular matrix. The modification of HSPGs in the tumor microenvironment is known to result not just in structural but also functional consequences, which significantly impact cancer progression. As substrates for the key enzymes sulfatases and heparanase, the modification of HSPGs is typically characterized by the degradation of heparan sulfate (HS) chains/sulfation patterns via the endo-6-O-sulfatases (Sulf1 and Sulf2) or by heparanase, an endo-glycosidase that cleaves the HS polymers releasing smaller fragments from HSPG complexes. Numerous studies have demonstrated how these enzymes actively influence cancer cell proliferation, signaling, invasion, and metastasis. The activity or expression of these enzymes has been reported to be modified in a variety of cancers. Such observations are consistent with the degradation of normal architecture and basement membranes, which are typically compromised in metastatic disease. Moreover, recent studies elucidating the requirements for these proteins in tumor initiation and progression exemplify their importance in the development and progression of cancer. Thus, as the influence of the tumor microenvironment in cancer progression becomes more apparent, the focus on targeting enzymes that degrade HSPGs highlights one approach to maintain normal tissue architecture, inhibit tumor progression, and block metastasis. This review discusses the role of these enzymes in the context of the tumor microenvironment and their promise as therapeutic targets for the treatment of cancer. PMID:25105093

  15. The amyloid precursor protein (APP) of Alzheimer disease and its paralog, APLP2, modulate the Cu/Zn-Nitric Oxide-catalyzed degradation of glypican-1 heparan sulfate in vivo.

    PubMed

    Cappai, Roberto; Cheng, Fang; Ciccotosto, Giuseppe D; Needham, B Elise; Masters, Colin L; Multhaup, Gerd; Fransson, Lars-Ake; Mani, Katrin

    2005-04-01

    Processing of the recycling proteoglycan glypican-1 involves the release of its heparan sulfate chains by copper ion- and nitric oxide-catalyzed ascorbate-triggered autodegradation. The Alzheimer disease amyloid precursor protein (APP) and its paralogue, the amyloid precursor-like protein 2 (APLP2), contain copper ion-, zinc ion-, and heparan sulfate-binding domains. We have investigated the possibility that APP and APLP2 regulate glypican-1 processing during endocytosis and recycling. By using cell-free biochemical experiments, confocal laser immunofluorescence microscopy, and flow cytometry of tissues and cells from wild-type and knock-out mice, we find that (a) APP and glypican-1 colocalize in perinuclear compartments of neuroblastoma cells, (b) ascorbate-triggered nitric oxidecatalyzed glypican-1 autodegradation is zinc ion-dependent in the same cells, (c) in cell-free experiments, APP but not APLP2 stimulates glypican-1 autodegradation in the presence of both Cu(II) and Zn(II) ions, whereas the Cu(I) form of APP and the Cu(II) and Cu(I) forms of APLP2 inhibit autodegradation, (d) in primary cortical neurons from APP or APLP2 knock-out mice, there is an increased nitric oxide-catalyzed degradation of heparan sulfate compared with brain tissue and neurons from wild-type mice, and (e) in growth-quiescent fibroblasts from APLP2 knock-out mice, but not from APP knock-out mice, there is also an increased heparan sulfate degradation. We propose that the rate of autoprocessing of glypican-1 is modulated by APP and APLP2 in neurons and by APLP2 in fibroblasts. These observation identify a functional relationship between the heparan sulfate and copper ion binding activities of APP/APLP2 in their modulation of the nitroxyl anion-catalyzed heparan sulfate degradation in glypican-1. PMID:15677459

  16. Role of Heparan Sulfate in Cellular Infection of Integrin-Binding Coxsackievirus A9 and Human Parechovirus 1 Isolates

    PubMed Central

    Merilahti, Pirjo; Karelehto, Eveliina; Susi, Petri

    2016-01-01

    Heparan sulfate/heparin class of proteoglycans (HSPG) have been shown to function in cellular attachment and infection of numerous viruses including picornaviruses. Coxsackievirus A9 (CV-A9) and human parechovirus 1 (HPeV-1) are integrin-binding members in the family Picornaviridae. CV-A9 Griggs and HPeV-1 Harris (prototype) strains have been reported not to bind to heparin, but it was recently shown that some CV-A9 isolates interact with heparin in vitro via VP1 protein with a specific T132R/K mutation. We found that the infectivity of both CV-A9 Griggs and HPeV-1 Harris was reduced by sodium chlorate and heparinase suggestive of HSPG interactions. We analyzed the T132 site in fifty-four (54) CV-A9 clinical isolates and found that only one of them possessed T132/R mutation while the other nine (9) had T132K. We then treated CV-A9 Griggs and HPeV-1 Harris and eight CV-A9 and six HPeV-1 clinical isolates with heparin and protamine. Although infectivity of Griggs strain was slightly reduced (by 25%), heparin treatment did not affect the infectivity of the CV-A9 isolates that do not possess the T132R/K mutation, which is in line with the previous findings. Some of the HPeV-1 isolates were also affected by heparin treatment, which suggested that there may be a specific heparin binding site in HPeV-1. In contrast, protamine (a specific inhibitor of heparin) completely inhibited the infection of both prototypes and clinical CV-A9 and HPeV-1 isolates. We conclude that T132R/K mutation has a role in heparin binding of CV-A9, but we also show data, which suggest that there are other HSPG binding sites in CV-A9. In all, we suggest that HSPGs play a general role in both CV-A9 and HPeV-1 infections. PMID:26785353

  17. Early accumulation of heparan sulfate in neurons and in the beta-amyloid protein-containing lesions of Alzheimer's disease and Down's syndrome.

    PubMed Central

    Snow, A. D.; Mar, H.; Nochlin, D.; Sekiguchi, R. T.; Kimata, K.; Koike, Y.; Wight, T. N.

    1990-01-01

    A monoclonal antibody (HK-249) that recognizes a glucosamine sulfate alpha 1----4 glucuronic acid-containing determinant in heparan sulfate (HS) chains of a basement membrane-derived heparan sulfate proteoglycan identified and immunolocalized HS specifically to the amyloid deposits in neuritic plaques (NPs), congophilic angiopathy (CA), as well as in neurofibrillary tangles (NFTs) and non-tangle-bearing neurons in the brains of Alzheimer's and Down's syndrome (DS) patients. Ultrastructural immunohistochemistry demonstrated that HS within neurons of Alzheimer's disease (AD) brain was localized to lipofuscin granules, an aging pigment previously shown also to contain beta-amyloid protein (BAP). Heparan sulfate also was localized to neurite-containing, nonfibrillar 'primitive' plaques that also demonstrated positive BAP immunoreactivity in both AD and DS brains. Antibodies to laminin, fibronectin, and a chondroitin sulfate proteoglycan failed to show positive immunostaining of the HS-containing sites described above. Analysis of DS patients at different ages revealed that HS accumulated within neurons of the hippocampus and amygdala as early as 1 day after birth. Young age-matched controls did not demonstrate similar positive HS immunoreactivity in neurons, whereas positive immunostaining for HS was observed in other regions thought to normally contain HS. The earliest deposition of BAP was first observed as 'amorphous' or 'diffuse' cortical deposits in DS brain in patients aged 18 and 24 years before the accumulation of fibrillar amyloid (observed in DS patients who are 35 years and older). These cortical deposits also contained positive HS immunoreactivity, implying that HS accumulation in conjunction with the BAP is an early event that ultimately may contribute to the early age-related accumulation (ie, as early as 35 years of age in DS) of NPs, NFTs, and/or CA. Furthermore the colocalization of HS and BAP in a number of specific locales in AD and DS brain

  18. The heparan sulfate mimetic PG545 interferes with Wnt/β-catenin signaling and significantly suppresses pancreatic tumorigenesis alone and in combination with gemcitabine

    PubMed Central

    Kim, Eun-Ok; Kim, Jaekwang; Kim, Bonglee; Jung, Ji Hoon; Wang, Enfeng; Mukhopadhyay, Debabrata; Hammond, Edward; Dredge, Keith; Shridhar, Viji; Kim, Sung-Hoon

    2015-01-01

    The heparan sulfate mimetic PG545 has been shown to exert anti-angiogenic and anti-metastatic activity in vitro and in vivo cancer models. Although much of this activity has been attributed to inhibition of heparanase and heparan sulfate-binding growth factors, it was hypothesized that PG545 may additionally disrupt Wnt signaling, an important pathway underlying the malignancy of pancreatic cancer. We show that PG545, by directly interacting with Wnt3a and Wnt7a, inhibits Wnt/β-catenin signaling leading to inhibition of proliferation in pancreatic tumor cell lines. Additionally, we demonstrate for the first time that the combination of PG545 with gemcitabine has strong synergistic effects on viability, motility and apoptosis induction in several pancreatic cell lines. In an orthotopic xenograft mouse model, combination of PG545 with gemcitabine efficiently inhibited tumor growth and metastasis compared to single treatment alone. Also, PG545 treatment alone decreased the levels of β-catenin and its downstream targets, cyclin D1, MMP-7 and VEGF which is consistent with our in vitro data. Collectively, our findings suggest that PG545 exerts anti-tumor activity by disrupting Wnt/β-catenin signaling and combination with gemcitabine should be considered as a novel therapeutic strategy for pancreatic cancer treatment. PMID:25669977

  19. CXCL14 enhances proliferation and migration of NCI-H460 human lung cancer cells overexpressing the glycoproteins containing heparan sulfate or sialic acid.

    PubMed

    Park, Cho Rong; You, Dong-Joo; Kim, Dong-Kyu; Moon, Mi Jin; Lee, Cheolju; Oh, Seung-Hyun; Ahn, Curie; Seong, Jae Young; Hwang, Jong-Ik

    2013-05-01

    CXCL14 is a chemokine family member that is involved in various cellular responses in addition to immune cell activation. Although constitutive CXCL14 expression in normal epithelial cells may help protect against infection by activating immune systems, its expression in cancer cells has raised controversy regarding its possible role in tumorigenesis. However, the underlying mechanisms for this disparity remain unknown. Investigation of cellular CXCL14 binding properties might increase our understanding of the peptide's roles in tumorigenesis. In the present study, we found that CXCL14 binds to various cell types. Interestingly, binding to NCI-H460 cells was prevented by heparan sulfate and N-acetyl neuraminic acid. Next, we examined effect of CXCL14 binding in NCI-H460 and NCI-H23. CXCL14 enhanced proliferation and migration in NCI-H460 but had no effect on NCI-H23. A reporter gene assay with various transcription factor response elements revealed that only nuclear factor-κB (NF-κB) signaling was activated by CXCL14 in NCI-H460 cells, which was blocked by BAPTA-AM, TPCA-1, and brefeldin A. Exogenous expression of some glycoproteins such as syndecan-4, podoplanin, and CD43 in these cells enhanced CXCL14 binding and NF-κB activity. Collectively, these results demonstrate that CXCL14 binding to glycoproteins harboring heparan sulfate proteoglycans and sialic acids leads proliferation and migration of some cancer cells. PMID:23161284

  20. The Agmatine-Containing Poly(Amidoamine) Polymer AGMA1 Binds Cell Surface Heparan Sulfates and Prevents Attachment of Mucosal Human Papillomaviruses

    PubMed Central

    Cagno, Valeria; Donalisio, Manuela; Bugatti, Antonella; Civra, Andrea; Cavalli, Roberta; Ranucci, Elisabetta; Ferruti, Paolo; Rusnati, Marco

    2015-01-01

    The agmatine-containing poly(amidoamine) polymer AGMA1 was recently shown to inhibit the infectivity of several viruses, including human papillomavirus 16 (HPV-16), that exploit cell surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The aim of this work was to assess the antiviral activity of AGMA1 and its spectrum of activity against a panel of low-risk and high-risk HPVs and to elucidate its mechanism of action. AGMA1 was found to be a potent inhibitor of mucosal HPV types (i.e., types 16, 31, 45, and 6) in pseudovirus-based neutralization assays. The 50% inhibitory concentration was between 0.34 μg/ml and 0.73 μg/ml, and no evidence of cytotoxicity was observed. AGMA1 interacted with immobilized heparin and with cellular heparan sulfates, exerting its antiviral action by preventing virus attachment to the cell surface. The findings from this study indicate that AGMA1 is a leading candidate compound for further development as an active ingredient of a topical microbicide against HPV and other sexually transmitted viral infections. PMID:26077258

  1. The agmatine-containing poly(amidoamine) polymer AGMA1 binds cell surface heparan sulfates and prevents attachment of mucosal human papillomaviruses.

    PubMed

    Cagno, Valeria; Donalisio, Manuela; Bugatti, Antonella; Civra, Andrea; Cavalli, Roberta; Ranucci, Elisabetta; Ferruti, Paolo; Rusnati, Marco; Lembo, David

    2015-09-01

    The agmatine-containing poly(amidoamine) polymer AGMA1 was recently shown to inhibit the infectivity of several viruses, including human papillomavirus 16 (HPV-16), that exploit cell surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The aim of this work was to assess the antiviral activity of AGMA1 and its spectrum of activity against a panel of low-risk and high-risk HPVs and to elucidate its mechanism of action. AGMA1 was found to be a potent inhibitor of mucosal HPV types (i.e., types 16, 31, 45, and 6) in pseudovirus-based neutralization assays. The 50% inhibitory concentration was between 0.34 μg/ml and 0.73 μg/ml, and no evidence of cytotoxicity was observed. AGMA1 interacted with immobilized heparin and with cellular heparan sulfates, exerting its antiviral action by preventing virus attachment to the cell surface. The findings from this study indicate that AGMA1 is a leading candidate compound for further development as an active ingredient of a topical microbicide against HPV and other sexually transmitted viral infections. PMID:26077258

  2. Efficacy of a New Heparan Sulfate Mimetic Dressing in the Healing of Foot and Lower Extremity Ulcerations in Type 2 Diabetes: A Case Series.

    PubMed

    Papanas, Nikolaos; Demetzos, Costas; Pippa, Natassa; Maltezos, Efstratios; Tentolouris, Nicholas

    2016-03-01

    A novel heparan sulfate glycosaminoglycan mimetic product for local application to promote wound healing (CACIPLIQ) has recently become available. It is a biophysical therapeutic product comprising a polysaccharide as an innovative biomaterial to accomplish mechanical tissue engineering and skin regeneration in the site of ulceration. We present a series of 12 patients with type 2 diabetes (4 men and 8 women; age 53-87 years; diabetes duration 8-25 years) having chronic resistance to therapy for foot and lower extremity ulcerations. CACIPLIQ was locally applied twice per week after careful debridement. Complete ulcer healing was accomplished in all patients after a mean treatment duration of 4.92 months (range = 2-12 months). The product was very well tolerated. In conclusion, these results, although preliminary, are encouraging and suggest adequate efficacy and safety of the new product in difficult-to-heal foot and lower extremity ulcerations in type 2 diabetes. PMID:26933115

  3. Cloning of the human heparan sulfate-N-deacetylase/N-sulfotransferase gene from the Treacher Collins syndrome candidate region at 5q32-q33.1

    SciTech Connect

    Dixon, J.; Loftus, S.K.; Gladwin, A.J.

    1995-03-20

    Treacher Collins syndrome is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. Previous studies have shown that the Treacher Collins syndrome locus is flanked by D5S519 and SPARC, and a yeast artificial chromosome contig encompassing this {open_quotes}critical region{close_quotes} has been completed. In the current investigation a cosmid containing D5S519 has been used to screen a human placental cDNA library. This has resulted in the cloning of the human heparan sulfate-N-deacetylase/N-sulfotransferase gene. Two different mRNA species that have identical protein coding sequences but that differ in the size and sequence of the 3{prime} untranslated regions (3{prime}UTR) have been identified. The smaller species has a 3{prime}UTR of 1035 bp, whereas that of the larger is 4878 bp. 24 refs., 3 figs.

  4. A synthetic heparan sulfate-mimetic peptide conjugated to a mini CD4 displays very high anti- HIV-1 activity independently of coreceptor usage.

    PubMed

    Connell, Bridgette Janine; Baleux, Françoise; Coic, Yves-Marie; Clayette, Pascal; Bonnaffé, David; Lortat-Jacob, Hugues

    2012-01-27

    The HIV-1 envelope gp120, which features both the virus receptor (CD4) and coreceptor (CCR5/CXCR4) binding sites, offers multiple sites for therapeutic intervention. However, the latter becomes exposed, thus vulnerable to inhibition, only transiently when the virus has already bound cellular CD4. To pierce this defense mechanism, we engineered a series of heparan sulfate mimicking tridecapeptides and showed that one of them target the gp120 coreceptor binding site with μM affinity. Covalently linked to a CD4-mimetic that binds to gp120 and renders the coreceptor binding domain available to be targeted, the conjugated tridecapeptide now displays nanomolar affinity for its target. Using solubilized coreceptors captured on top of sensorchip we show that it inhibits gp120 binding to both CCR5 and CXCR4 and in peripheral blood mononuclear cells broadly inhibits HIV-1 replication with an IC(50) of 1 nM. PMID:22284360

  5. Molecular cloning and expression of two distinct cDNA-encoding heparan sulfate proteoglycan core proteins from a rat endothelial cell line.

    PubMed

    Kojima, T; Shworak, N W; Rosenberg, R D

    1992-03-01

    The cloned rat fat pad endothelial cell (RFP-EC) line synthesizes anticoagulantly active heparan sulfate proteoglycans (HSPGact) and anticoagulantly inactive heparan sulfate proteoglycans (HSPGinact), both of which exhibit 25-, 30-, and 50-kDa core proteins of extremely similar structure. The primary sequences of internal peptides obtained from HSPGinact core proteins and the NH2-terminal sequence analyses of the 25-kDa component from the HSPGinact core proteins demonstrate that the 30-kDa component is a previously unidentified species, designated as ryudocan, with the 25-kDa component representing a proteolytic degradation product, while the 50-kDa component is the rat homolog of syndecan (Saunders, S. Jalkanen, M., O'Farrell, S., and Bernfield, M. (1989) J. Cell Biol. 108, 1547-1556). Specific oligonucleotide probes were obtained for ryudocan and syndecan by polymerase chain reaction, and the corresponding cDNAs were isolated from a RFP-EC library. The cDNAs encode type I integral membrane proteins of 202 and 313 amino acids, respectively, which have homologous transmembrane and intracellular domains but very distinct extracellular regions. In particular, ryudocan exhibits only three potential glycosaminoglycan attachment sites within the extracellular region while syndecan has five glycosaminoglycan attachment sites within the same domain. Both species are expressed in RFP-EC lines, primary rat aortic smooth muscle cells and primary rat skin fibroblast cells. The levels of ryudocan and syndecan mRNA were measured by quantitative polymerase chain reaction in primary microvascular endothelial cells and closely associated non-endothelial cells isolated by cell sorting. Ryudocan and syndecan mRNAs were abundantly expressed in both populations representing about 0.1-0.5% of mRNA. PMID:1537865

  6. ¹H and (15)N NMR Analyses on Heparin, Heparan Sulfates and Related Monosaccharides Concerning the Chemical Exchange Regime of the N-Sulfo-Glucosamine Sulfamate Proton.

    PubMed

    Pomin, Vitor H

    2016-01-01

    Heparin and heparan sulfate are structurally related glycosaminoglycans (GAGs). Both GAGs present, although in different concentrations, N-sulfo-glucosamine (GlcNS) as one of their various composing units. The conditional fast exchange property of the GlcNS sulfamate proton in these GAGs has been pointed as the main barrier to its signal detection via NMR experiments, especially ¹H-(15)N HSQC. Here, a series of NMR spectra is collected on heparin, heparan sulfate and related monosaccharides. The N-acetyl glucosamine-linked uronic acid types of these GAGs were properly assigned in the ¹H-(15)N HSQC spectra. Dynamic nuclear polarization (DNP) was employed in order to facilitate 1D spectral acquisition of the sulfamate (15)N signal of free GlcNS. Analyses on the multiplet pattern of scalar couplings of GlcNS (15)N has helped to understand the chemical properties of the sulfamate proton in solution. The singlet peak observed for GlcNS happens due to fast chemical exchange of the GlcNS sulfamate proton in solution. Analyses on kinetics of alpha-beta anomeric mutarotation via ¹H NMR spectra have been performed in GlcNS as well as other glucose-based monosaccharides. 1D ¹H and 2D ¹H-(15)N HSQC spectra recorded at low temperature for free GlcNS dissolved in a proton-rich solution showed signals from all exchangeable protons, including those belonging to the sulfamate group. This work suits well to the current grand celebration of one-century-anniversary of the discovery of heparin. PMID:27618066

  7. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    SciTech Connect

    Roehrig, John T.; Butrapet, Siritorn; Liss, Nathan M.; Bennett, Susan L.; Luy, Betty E.; Childers, Thomas; Boroughs, Karen L.; Stovall, Janae L.; Calvert, Amanda E.; Blair, Carol D.; Huang, Claire Y.-H.

    2013-07-05

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants.

  8. Functional abnormalities of heparan sulfate in mucopolysaccharidosis-I are associated with defective biologic activity of FGF-2 on human multipotent progenitor cells.

    PubMed

    Pan, Chendong; Nelson, Matthew S; Reyes, Morayma; Koodie, Lisa; Brazil, Joseph J; Stephenson, Elliot J; Zhao, Robert C; Peters, Charles; Selleck, Scott B; Stringer, Sally E; Gupta, Pankaj

    2005-09-15

    In mucopolysaccharidosis-I (MPS-I), alpha-L-iduronidase deficiency leads to progressive heparan sulfate (HS) and dermatan sulfate (DS) glycosaminoglycan (GAG) accumulation. The functional consequences of these accumulated molecules are unknown. HS critically influences tissue morphogenesis by binding to and modulating the activity of several cytokines (eg, fibroblast growth factors [FGFs]) involved in developmental patterning. We recently isolated a multipotent progenitor cell from postnatal human bone marrow, which differentiates into cells of all 3 embryonic lineages. The availability of multipotent progenitor cells from healthy volunteers and patients with MPS-I (Hurler syndrome) provides a unique opportunity to directly examine the functional effects of abnormal HS on cytokine-mediated stem-cell proliferation and survival. We demonstrate here that abnormally sulfated HS in Hurler multipotent progenitor cells perturb critical FGF-2-FGFR1-HS interactions, resulting in defective FGF-2-induced proliferation and survival of Hurler multipotent progenitor cells. Both the mitogenic and survival-promoting activities of FGF-2 were restored by substitution of Hurler HS by normal HS. This perturbation of critical HS-cytokine receptor interactions may represent a mechanism by which accumulated HS contributes to the developmental pathophysiology of Hurler syndrome. Similar mechanisms may operate in the pathogenesis of other diseases where structurally abnormal GAGs accumulate. PMID:15947088

  9. The PAPS transporter PST-1 is required for heparan sulfation and is essential for viability and neural development in C. elegans

    PubMed Central

    Bhattacharya, Raja; Townley, Robert A.; Berry, Katherine L.; Bülow, Hannes E.

    2009-01-01

    Summary Sulfations of sugars, such as heparan sulfates (HS), or tyrosines require the universal sulfate donor 3′-phospho-adenosine-5′-phosphosulfate (PAPS) to be transported from the cytosol into the Golgi. Metazoan genomes encode two putative PAPS transporters (PAPST1 and PAPST2), which have been shown in vitro to preferentially transport PAPS across membranes. We have identified the C. elegans orthologs of PAPST1 and PAPST2 and named them pst-1 and pst-2, respectively. We show that pst-1 is essential for viability in C. elegans, functions non-redundantly with pst-2, and can act non-autonomously to mediate essential functions. Additionally, pst-1 is required for specific aspects of nervous system development rather than for formation of the major neuronal ganglia or fascicles. Neuronal defects correlate with reduced complexity of HS modification patterns, as measured by direct biochemical analysis. Our results suggest that pst-1 functions in metazoans to establish the complex HS modification patterns that are required for the development of neuronal connectivity. PMID:19920077

  10. The BDLF3 gene product of Epstein-Barr virus, gp150, mediates non-productive binding to heparan sulfate on epithelial cells and only the binding domain of CD21 is required for infection.

    PubMed

    Chesnokova, Liudmila S; Valencia, Sarah M; Hutt-Fletcher, Lindsey M

    2016-07-01

    The cell surface molecules used by Epstein-Barr virus (EBV) to attach to epithelial cells are not well-defined, although when CD21, the B cell receptor for EBV is expressed epithelial cell infection increases disproportionately to the increase in virus bound. Many herpesviruses use low affinity charge interactions with molecules such as heparan sulfate to attach to cells. We report here that the EBV glycoprotein gp150 binds to heparan sulfate proteoglycans, but that attachment via this glycoprotein is not productive of infection. We also report that only the aminoterminal two short consensus repeats of CD21 are required for efficient infection, This supports the hypothesis that, when expressed on an epithelial cell CD21 serves primarily to cluster the major attachment protein gp350 in the virus membrane and enhance access of other important glycoproteins to the epithelial cell surface. PMID:27061054

  11. Extracellular matrix of cultured glial cells: Selective expression of chondroitin 4-sulfate by type-2 astrocytes and their progenitors

    SciTech Connect

    Gallo, V.; Bertolotto, A. )

    1990-04-01

    We have studied the extracellular matrix composition of cultured glial cells by immunocytochemistry with different monoclonal and polyclonal antibodies. Double immunofluorescence experiments and metabolic labeling with (3H)glucosamine performed in different types of cerebellar and cortical cultures showed that bipotential progenitors for type-2 astrocytes and for oligodendrocytes synthesize chondroitin sulfate (CS) and deposit this proteoglycan in their extracellular matrix. The distribution of the various (3H)glucosamine-labeled glycosaminoglycans between the intracellular and the extracellular space was different. CS was present both within the cells and in the culture medium, although in different amounts. Bi-potential progenitors became also O4-positive during their development in vitro. At the stage of O4-positivity they were still stained with antibodies against CS. However, when the progenitor cells were maintained in serum-free medium and differentiated into Gal-C-positive oligodendrocytes, they became CS-negative. In the presence of fetal calf serum in the culture medium, the bipotential progenitors differentiated into GFAP-positive type-2 astrocytes. These cells still expressed CS: their Golgi area and their surface were stained with anti-CS antibodies. Staining with monoclonal antibodies specific for different types of CS (4-sulfate, 6-sulfate, and unsulfated) revealed that both bipotential progenitors and type-2 astrocytes synthesized only chondroitin 4-sulfate. Type-1 astrocytes were negative for both the polyclonal and the monoclonal anti-CS antibodies. Finally, type-2 astrocytes and their progenitors were weakly stained with anti-laminin antibodies and unstained with anti-fibronectin. Type-1 astrocytes were positive for both anti-laminin and anti-fibronectin antibodies and appeared to secrete fibronectin in the extracellular space.

  12. Ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for the structural analysis of N-unsubstituted heparin/heparan sulfate.

    PubMed

    Du, Jia Yan; Chen, Lan Rong; Liu, Su; Lin, Jiang Hui; Liang, Qun Tao; Lyon, Malcolm; Wei, Zheng

    2016-08-15

    The rare N-unsubstituted glucosamine (GlcNH3(+)) residues in heparan sulfate (HS) have important biological and pathophysiological roles. In this study, a high-resolution method for the separation and analysis of N-unsubstituted disaccharides of heparin/HS is described. Four N-unsubstituted disaccharides, together with eight N-substituted species, can be well-separated by ion-pair reverse-phase ultra-performance liquid chromatography. Each disaccharide can then be detected and its relative abundance quantified using electrospray ionization mass spectrometry in the negative mode. Because of its high sensitivity, without interference from proteins and other sample impurities, this method is particularly useful in the analysis of low content GlcNH3(+) residues in small amounts of biological materials, eg. sera, tissue and cell culture-derived samples. This would lead to a better understanding of the biological origin of GlcNH3(+) residues and their increasingly important function in human health and disease. PMID:27322632

  13. Heparan sulfates targeting increases MHC class I- and MHC class II-restricted antigen presentation and CD8(+) T-cell response.

    PubMed

    Knittel, Delphine; Gadzinski, Adeline; Hua, Stéphane; Denizeau, Jordan; Savatier, Alexandra; de la Rochère, Philippe; Boulain, Jean-Claude; Amigorena, Sebastian; Piaggio, Eliane; Sedlik, Christine; Léonetti, Michel

    2016-06-01

    Heparan sulfates (HS) are carbohydrate moieties of HS proteoglycans (HSPGs). They often represent alternative attachment points for proteins or microorganisms targeting receptors. HSPGs, which are ubiquitously expressed, thereby participate in numerous biological processes. We previously showed that MHC class II-restricted antigen presentation is increased when antigens are coupled to HS ligands, suggesting that HSPGs might contribute to adaptive immune responses. Here, we examined if HSPG targeting influences other aspects of immune responses. We found that coupling of an HS ligand to the antigen increases antigen presentation to CD4(+) and CD8(+) T-cells after antigen targeting to membrane immunoglobulins or to MHC-II molecules. Moreover, this increased stimulating capacity correlates with an enhanced CD8(+) immune response in mice. Last, animals control more effectively the growth of Ova-expressing tumour cells when they are immunized with an Ova construct targeting HSPGs and MHC-II molecules. Our results indicate that ubiquitous molecules can influence both MHC class I- and MHC class II-restricted antigen presentation and behave as co-receptors during T-cell stimulation. Moreover, they suggest that tumour-antigens endowed with the ability to target both HSPGs and MHC-II molecules could be of value to increase CD8(+) immune response and control tumour-growth, opening new perspectives for the design of highly immunogenic protein-based vaccines. PMID:27154391

  14. KSHV attachment and entry are dependent on αVβ3 integrin localized to specific cell surface microdomains and do not correlate with the presence of heparan sulfate

    PubMed Central

    Garrigues, H. Jacques; DeMaster, Laura K.; Rubinchikova, Yelena E.; Rose, Timothy M.

    2014-01-01

    Cellular receptors for KSHV attachment and entry were characterized using tyramide signal amplification (TSA)-enhanced confocal microscopy. Integrins αVβ3, αVβ5 and α3β1 were detected on essentially all the actin-based cell surface microdomains that initially bind KSHV, while the presence of CD98 and heparan sulfate (HS), the putative attachment receptor, was more variable. KSHV bound to the same cell surface microdomains with and without HS indicating that initial attachment of KSHV is not dependent on HS and that receptors other than HS can mediate attachment. A human salivary gland (HSG) epithelial line was identified, which lacks αVβ3 but expresses high levels of HS, α3β1 and other putative KSHV receptors. These cells were resistant to KSHV-binding and infection. Reconstitution of cell surface αVβ3 rendered HSG cells highly susceptible to KSHV infection, demonstrating a critical role for αVβ3 in the binding and entry of KSHV that is not shared with other proposed receptors. PMID:25063885

  15. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    PubMed Central

    Dahms, Sven O.; Mayer, Magnus C.; Roeser, Dirk; Multhaup, Gerd; Than, Manuel E.

    2015-01-01

    Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2)2–(heparin)2 complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins. PMID:25760599

  16. Regulation of the Expression of Heparan Sulfate 3-O-Sulfotransferase 3B (HS3ST3B) by Inflammatory Stimuli in Human Monocytes.

    PubMed

    Sikora, Anne-Sophie; Delos, Maxime; Martinez, Pierre; Carpentier, Mathieu; Allain, Fabrice; Denys, Agnès

    2016-07-01

    Heparan sulfate (HS) is recognized as an important player in a wide range of dynamic steps of inflammatory reactions. Thereby, structural HS remodeling is likely to play an important role in the regulation of inflammatory and immune responses; however, little is known about underlying mechanism. In this study, we analyzed the regulation of expression of HS 3-O-sulfotransferases (HS3STs) in response to inflammatory stimuli. We found that among the seven HS3ST isoenzymes, only the expression of HS3ST3B was markedly up-regulated in human primary monocytes and the related cell line THP1 after exposure to TLR agonists. TNF-α was also efficient, to a lesser extent, to increase HS3ST3B expression, while IL-6, IL-4, and IFN-γ were poor inducers. We then analyzed the molecular mechanisms that regulate the high expression of HS3ST3B in response to LPS. Based on the expression of HS3ST3B transcripts and on the response of a reporter gene containing the HS3ST3B1 promoter, we provide evidence that LPS induces a rapid and strong transcription of HS3ST3B1 gene, which was mainly dependent on the activation of NF-κB and JNK signaling pathways. Additionally, active p38 MAPK and de novo synthesized proteins are involved in post-transcriptional mechanisms to maintain a high level of HS3ST3B mRNA to a steady state. Altogether, our findings indicate that HS3ST3B1 gene behaves as a primary response gene, suggesting that it may play an important role in making 3-O-sulfated HS with specific functions in the regulation of inflammatory and immune responses. J. Cell. Biochem. 117: 1529-1542, 2016. © 2015 Wiley Periodicals, Inc. PMID:26575945

  17. A highly efficient tree structure for the biosynthesis of heparan sulfate accounts for the commonly observed disaccharides and suggests a mechanism for domain synthesis.

    PubMed

    Rudd, Timothy R; Yates, Edwin A

    2012-04-01

    The form of the biosynthetic pathway of the biologically and medically important polysaccharides heparan sulfate (HS) and the closely related heparin remain obscure despite significant progress characterising the biosynthetic machinery. Considering possible biosynthetic schemes using a graph approach and applying known constraints of enzyme order and specificity, a previously unreported system with a highly efficient tree structure emerged with two features: (1) All commonly occurring HS disaccharides could be synthesised through a common route, the major branch. (2) The least common disaccharides also occurred on a separate common branch, termed here the minor branch. This suggested that the relative abundance of these two sets of structures were the result of the specificity of a single enzyme (HS epimerase) acting at an early point in the scheme, to convert GlcA-GlcNS to IdoA-GlcNS in preference to converting GlcA-GlcNAc to IdoA-GlcNAc. A third key finding was that the common substrates for 3-O-sulfation all lie on the same (major) branch. The proposed scheme is consistent with a wide body of experiments comprising both biochemical data and results from HS biosynthetic enzyme knockout experiments in the literature. The major branch also contains a bifurcation, providing a choice of two distinct backbone geometries with the same charge. Further development of this novel biosynthetic scheme, in which frame shifts in the site of action of the enzymes were permitted to occur, while maintaining their order of action, suggested a mechanism by which domains could be generated, or further modification blocked. The relationship between the proposed pathway and the geometric and charge possibilities it allows were also explored. PMID:22370609

  18. PG545, a heparan sulfate mimetic, reduces heparanase expression in vivo, blocks spontaneous metastases and enhances overall survival in the 4T1 breast carcinoma model.

    PubMed

    Hammond, Edward; Brandt, Ralf; Dredge, Keith

    2012-01-01

    PG545 is a clinically relevant heparan sulfate (HS) mimetic which, in addition to possessing anti-angiogenic properties, also acts as a heparanase inhibitor which may differentiate its mechanism(s) of action from approved angiogenesis inhibitors. The degradation of HS by heparanase has been strongly implicated in cell dissemination and the metastatic process. Thus, the anti-metastatic activity of PG545 has been linked to the enzymatic function of heparanase - the only endoglycosidase known to cleave HS, an important component of the extracellular matrix (ECM) which represents a potential avenue for therapeutic intervention for certain metastatic cancer indications. Recent concerns raised about the paucity of overall survival as an endpoint in mouse models of clinically relevant metastasis led us to examine the effect of PG545 on the progression of both primary tumor growth and the spontaneously metastasizing disease in the 4T1 syngeneic breast carcinoma model in a non-surgical and surgical (mastectomy) setting. PG545 significantly inhibited primary tumor growth but importantly also inhibited lung metastasis in treated mice, an effect not observed with the tyrosine kinase inhibitor sorafenib. Importantly, PG545 significantly enhanced overall survival compared to vehicle control and the sorafenib group, suggesting PG545's inhibitory effect on heparanase is indeed a critical attribute to induce anti-metastatic activity. In addition to blocking a common angiogenic signalling pathway in tumor cells, the expression of heparanase in the primary tumor and lung was also significantly reduced by PG545 treatment. These results support the ongoing development of PG545 and highlight the potential utility in metastatic disease settings. PMID:23300607

  19. Dendritic Cell Internalization of Foot-and-Mouth Disease Virus: Influence of Heparan Sulfate Binding on Virus Uptake and Induction of the Immune Response▿

    PubMed Central

    Harwood, Lisa J.; Gerber, Heidi; Sobrino, Francisco; Summerfield, Artur; McCullough, Kenneth C.

    2008-01-01

    Dendritic cells (DC), which are essential for inducing and regulating immune defenses and responses, represent the critical target for vaccines against pathogens such as foot-and-mouth disease virus (FMDV). Although it is clear that FMDV enters epithelial cells via integrins, little is known about FMDV interaction with DC. Accordingly, DC internalization of FMDV antigen was analyzed by comparing vaccine virus dominated by heparan sulfate (HS)-binding variants with FMDV lacking HS-binding capacity. The internalization was most efficient with the HS-binding virus, employing diverse endocytic pathways. Moreover, internalization relied primarily on HS binding. Uptake of non-HS-binding virus by DC was considerably less efficient, so much so that it was often difficult to detect virus interacting with the DC. The HS-binding FMDV replicated in DC, albeit transiently, which was demonstrable by its sensitivity to cycloheximide treatment and the short duration of infectious virus production. There was no evidence that the non-HS-binding virus replicated in the DC. These observations on virus replication may be explained by the activities of viral RNA in the DC. When DC were transfected with infectious RNA, only 1% of the translated viral proteins were detected. Nevertheless, the transfected cells, and DC which had internalized live virus, did present antigen to lymphocytes, inducing an FMDV-specific immunoglobulin G response. These results demonstrate that DC internalization of FMDV is most efficient for vaccine virus with HS-binding capacity, but HS binding is not an exclusive requirement. Both non-HS-binding virus and infectious RNA interacting with DC induce specific immune responses, albeit less efficiently than HS-binding virus. PMID:18448534

  20. Acidosis increases MHC class II-restricted presentation of a protein endowed with a pH-dependent heparan sulfate-binding ability.

    PubMed

    Knittel, Delphine; Savatier, Alexandra; Upert, Grégory; Lortat-Jacob, Hugues; Léonetti, Michel

    2015-04-15

    Heparan sulfate proteoglycans (HSPGs) are ubiquitously expressed molecules that participate in numerous biological processes. We previously showed that HSPGs expressed on the surface of APCs can serve as receptors for a hybrid protein containing an HS ligand and an Ag, which leads to more efficient stimulation of Th cells. To investigate whether such behavior is shared by proteins with inherent HS-binding ability, we looked for proteins endowed with this characteristic. We found that diphtheria toxin and its nontoxic mutant, called CRM197, can interact with HS. However, we observed that their binding ability is higher at pH 6 than at pH 7.4. Therefore, as extracellular acidosis occurs during infection by various micro-organisms, we assessed whether HS-binding capacity affects MHC class II-restricted presentation at different pHs. We first observed that pH decrease allows CRM197 binding to HSPG-expressing cells, including APCs. Then, we showed that this interaction enhances Ag uptake and presentation to Th cells. Lastly, we observed that pH decrease does not affect processing and presentation abilities of the APCs. Our findings show that acidic pH causes an HSPG-mediated uptake and an enhancement of T cell stimulation of Ags with the inherent ability to bind HSPGs pH-dependently. Furthermore, they suggest that proteins from micro-organisms with this binding characteristic might be supported more efficiently by the adaptive immune system when acidosis is triggered during infection. PMID:25754736

  1. Characterizing the Microstructure of Heparin and Heparan Sulfate using N-sulfoglucosamine 1H and 15N NMR Chemical Shift Analysis

    PubMed Central

    Langeslay, Derek J.; Beecher, Consuelo N.; Naggi, Annamaria; Guerrini, Marco; Torri, Giangiacomo; Larive, Cynthia K.

    2014-01-01

    Heparin and heparan sulfate (HS) are members of a biologically important group of highly anionic linear polysaccharides called glycosaminoglycans (GAGs). Because of their structural complexity, the molecular-level characterization of heparin and HS continues to be a challenge. The work presented herein describes an emerging approach for the analysis of unfractionated and low molecular weight heparins as well as porcine and human-derived HS. This approach utilizes the untapped potential of 15N NMR to characterize these preparations through detection of the NH resonances of N-sulfo-glucosamine residues. The sulfamate group 1H and 15N chemical shifts of six GAG microenvironments were assigned based on the critical comparison of selectively modified heparin derivatives, NMR measurements for a library of heparin-derived oligosaccharide standards, and an in-depth NMR analysis of the low molecular weight heparin enoxaparin through systematic investigation of the chemical exchange properties of NH resonances and residue-specific assignments using the [1H, 15N] HSQC-TOCSY experiment. The sulfamate microenvironments characterized in this study include GlcNS(6S)-UA(2S), ΔUA(2S)-GlcNS(6S), GlcNS(3S)(6S)-UA(2S), GlcNS-UA, GlcNS(6S)-redα, and 1,6-anhydro GlcNS demonstrate the utility of [1H, 15N] HSQC NMR spectra to provide a spectroscopic fingerprint reflecting the composition of intact GAGs and low molecular weight heparin preparations. PMID:23240897

  2. Interaction of human papillomavirus type 16 particles with heparan sulfate and syndecan-1 molecules in the keratinocyte extracellular matrix plays an active role in infection

    PubMed Central

    Sterkand, Rosa T.; Ozbun, Michelle A.

    2015-01-01

    Oncogenic human papillomaviruses (HPVs) attach predominantly to extracellular matrix (ECM) components during infection of cultured keratinocytes and in the rodent vaginal challenge model in vivo. However, the mechanism of virion transfer from the ECM to receptors that mediate entry into host cells has not been determined. In this work we strove to assess the role of heparan sulfate (HS) chains in HPV16 binding to the ECM and determine how HPV16 release from the ECM is regulated. We also assessed the extent to which capsids released from the ECM are infectious. We show that a large fraction of HPV16 particles binds to the ECM via HS chains, and that syndecan-1 (snd-1) molecules present in the ECM are involved in virus binding. Inhibiting the normal processing of snd-1 and HS molecules via matrix metalloproteinases and heparanase dramatically reduces virus release from the ECM, cellular uptake and infection. Conversely, exogenous heparinase activates each of these processes. We confirm that HPV16 released from the ECM is infectious in keratinocytes. Use of a specific inhibitor shows furin is not involved in HPV16 release from ECM attachment factors and corroborates other studies showing only the intracellular activity of furin is responsible for modulating HPV infectivity. These data suggest that our recently proposed model, describing the action of HS proteoglycan processing enzymes in releasing HPV16 from the cell surface in complex with the attachment factor snd-1, is also relevant to the release of HPV16 particles from the ECM to promote efficient infection of keratinocytes. PMID:26289843

  3. Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in Hereditary Multiple Exostoses.

    PubMed

    Huegel, Julianne; Mundy, Christina; Sgariglia, Federica; Nygren, Patrik; Billings, Paul C; Yamaguchi, Yu; Koyama, Eiki; Pacifici, Maurizio

    2013-05-01

    During limb skeletogenesis the cartilaginous long bone anlagen and their growth plates become delimited by perichondrium with which they interact functionally. Yet, little is known about how, despite being so intimately associated with cartilage, perichondrium acquires and maintains its distinct phenotype and exerts its border function. Because perichondrium becomes deranged and interrupted by cartilaginous outgrowths in Hereditary Multiple Exostoses (HME), a pediatric disorder caused by EXT mutations and consequent heparan sulfate (HS) deficiency, we asked whether EXT genes and HS normally have roles in establishing its phenotype and function. Indeed, conditional Ext1 ablation in perichondrium and lateral chondrocytes flanking the epiphyseal region of mouse embryo long bone anlagen - a region encompassing the groove of Ranvier - caused ectopic cartilage formation. A similar response was observed when HS function was disrupted in long bone anlagen explants by genetic, pharmacological or enzymatic means, a response preceded by ectopic BMP signaling within perichondrium. These treatments also triggered excess chondrogenesis and cartilage nodule formation and overexpression of chondrogenic and matrix genes in limb bud mesenchymal cells in micromass culture. Interestingly, the treatments disrupted the peripheral definition and border of the cartilage nodules in such a way that many nodules overgrew and fused with each other into large amorphous cartilaginous masses. Interference with HS function reduced the physical association and interactions of BMP2 with HS and increased the cell responsiveness to endogenous and exogenous BMP proteins. In sum, Ext genes and HS are needed to establish and maintain perichondrium's phenotype and border function, restrain pro-chondrogenic signaling proteins including BMPs, and restrict chondrogenesis. Alterations in these mechanisms may contribute to exostosis formation in HME, particularly at the expense of regions rich in progenitor

  4. Heparan sulfate side chains have a critical role in the inhibitory effects of perlecan on vascular smooth muscle cell response to arterial injury.

    PubMed

    Gotha, Lara; Lim, Sang Yup; Osherov, Azriel B; Wolff, Rafael; Qiang, Beiping; Erlich, Ilana; Nili, Nafiseh; Pillarisetti, Sivaram; Chang, Ya-Ting; Tran, Phan-Kiet; Tryggvason, Karl; Hedin, Ulf; Tran-Lundmark, Karin; Advani, Suzanne L; Gilbert, Richard E; Strauss, Bradley H

    2014-08-01

    Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2(Δ3/Δ3) (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type (P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB (P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall. PMID:24858854

  5. Cell entry and trafficking of human adenovirus bound to blood factor X is determined by the fiber serotype and not hexon:heparan sulfate interaction.

    PubMed

    Corjon, Stéphanie; Gonzalez, Gaëlle; Henning, Petra; Grichine, Alexei; Lindholm, Leif; Boulanger, Pierre; Fender, Pascal; Hong, Saw-See

    2011-01-01

    Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon:FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors. PMID

  6. Cell Entry and Trafficking of Human Adenovirus Bound to Blood Factor X Is Determined by the Fiber Serotype and Not Hexon:Heparan Sulfate Interaction

    PubMed Central

    Henning, Petra; Grichine, Alexei; Lindholm, Leif; Boulanger, Pierre; Fender, Pascal; Hong, Saw-See

    2011-01-01

    Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon∶FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors

  7. Syndecan-1-Induced ECM Fiber Alignment Requires Integrin αvβ3 and Syndecan-1 Ectodomain and Heparan Sulfate Chains

    PubMed Central

    Yang, Ning; Friedl, Andreas

    2016-01-01

    Expression of the cell surface proteoglycan syndecan-1 (Sdc1) is frequently induced in stromal fibroblasts of invasive breast carcinomas. We have recently identified a correlation between stromal Sdc1 expression and extracellular matrix (ECM) fiber alignment, both in vitro and in vivo. ECMs derived from Sdc1-positive human mammary fibroblasts (HMF) showed an aligned fiber architecture, which contrasted markedly with the more random fiber arrangement in the ECM produced by Sdc1-negative HMFs. We further demonstrated that aligned fiber architecture promotes the directional migration and invasion of breast carcinoma cells. To decipher the molecular mechanisms governing the formation of an aligned, invasion-permissive ECM, a series of Sdc1 mutants was introduced into HMF. We found that both the ectodomain and heparan sulfate chains of Sdc1 were required for full activity of Sdc1 in regulating ECM alignment, while transmembrane and cytoplasmic domains were dispensable. Sdc1 regulates the activities of several integrins via its ectodomain. Integrins are key players in the assembly of fibronectin-rich ECM. In addition, integrins are capable of regulating cell morphology and cell shape and orientation may affect ECM architecture. Therefore, we investigated the role of integrins in Sdc1-mediated ECM fiber alignment. Sdc1-overexpressing HMF gained an enhanced spindle-shaped morphology when cultured in an overconfluent state under conditions permissive for ECM production, which was partially reversed by siRNA-mediated silencing of β3 integrin expression. Moreover, suppression of αvβ3 integrin activity by a function-blocking antibody or β3 knockdown largely abolished the aligned ECM fiber architecture and consequently the invasion-permissive properties of the ECM induced by Sdc1. The results suggest that Sdc1 may modulate fibronectin fibrillogenesis and/or alter cell morphology during ECM production through αvβ3 integrin, thereby mediating ECM fiber alignment

  8. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody

    SciTech Connect

    Hirano, Kazumi; Van Kuppevelt, Toin H.; Nishihara, Shoko

    2013-01-18

    Highlights: ► Fas transcript increases during the transition from the naïve to the primed state. ► 3OST-5 transcript, the HS4C3 epitope synthesis gene, increases during the transition. ► Fas signaling regulates the transition from the naïve to the primed state. ► HS4C3-binding epitope regulates the transition from the naïve to the primed state. ► Fas signaling is regulated by the HS4C3 epitope during the transition. -- Abstract: The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope

  9. The healing of alkali-injured cornea is stimulated by a novel matrix regenerating agent (RGTA, CACICOL20): a biopolymer mimicking heparan sulfates reducing proteolytic, oxidative and nitrosative damage.

    PubMed

    Cejkova, Jitka; Olmiere, Celine; Cejka, Cestmir; Trosan, Peter; Holan, Vladimir

    2014-04-01

    The efficacy of a chemically modified dextran - heparan sulfate mimicking regenerating agent (RGTA) on the healing of the rabbit cornea injured with alkali was examined. The eyes were injured with 0.15 N NaOH applied on the cornea or with 1.0 N NaOH using a 8 mm diameter filter paper disk. Then RGTA or placebo was applied on the cornea. In the last group of rabbits, corneas injured with the high alkali concentration were left without any treatment for four weeks; subsequently, the corneas were treated with RGTA or placebo. The central corneal thickness was measured using a pachymeter. The corneas were examined morphologically, immunohistochemically and for real time-PCR. Compared to control (unaffected) corneas, following the application of low alkali concentration the expression of urokinase-type plasminogen activator, metalloproteinase 9, nitric oxide synthase and xanthine oxidase was increased in the injured corneal epithelium of placebo-treated eyes, whereas the expression of antioxidant enzymes was reduced. Nitrotyrosine and malondialdehyde stainings appeared in the corneal epithelium. RGTA application suppressed the antioxidant/prooxidant imbalance and reduced the expression of the above-mentioned immunohistochemical markers. The corneal thickness increased after alkali injury, decreased during corneal healing after RGTA treatment faster than after placebo application. Following the injury with the high alkali concentration, corneal inflammation and neovascularization were highly pronounced in placebo-treated corneas, whereas in RGTA-treated corneas they were significantly supressed. When RGTA or placebo application was started later after alkali injury and corneas were ulcerated, subsequent RGTA treatment healed the majority of them. In conclusion, RGTA facilitates the healing of injured corneas via a reduction of proteolytic, oxidative and nitrosative damage. PMID:24105332

  10. Suppression of amyloid beta A11 antibody immunoreactivity by vitamin C: possible role of heparan sulfate oligosaccharides derived from glypican-1 by ascorbate-induced, nitric oxide (NO)-catalyzed degradation.

    PubMed

    Cheng, Fang; Cappai, Roberto; Ciccotosto, Giuseppe D; Svensson, Gabriel; Multhaup, Gerd; Fransson, Lars-Åke; Mani, Katrin

    2011-08-01

    Amyloid β (Aβ) is generated from the copper- and heparan sulfate (HS)-binding amyloid precursor protein (APP) by proteolytic processing. APP supports S-nitrosylation of the HS proteoglycan glypican-1 (Gpc-1). In the presence of ascorbate, there is NO-catalyzed release of anhydromannose (anMan)-containing oligosaccharides from Gpc-1-nitrosothiol. We investigated whether these oligosaccharides interact with Aβ during APP processing and plaque formation. anMan immunoreactivity was detected in amyloid plaques of Alzheimer (AD) and APP transgenic (Tg2576) mouse brains by immunofluorescence microscopy. APP/APP degradation products detected by antibodies to the C terminus of APP, but not Aβ oligomers detected by the anti-Aβ A11 antibody, colocalized with anMan immunoreactivity in Tg2576 fibroblasts. A 50-55-kDa anionic, sodium dodecyl sulfate-stable, anMan- and Aβ-immunoreactive species was obtained from Tg2576 fibroblasts using immunoprecipitation with anti-APP (C terminus). anMan-containing HS oligo- and disaccharide preparations modulated or suppressed A11 immunoreactivity and oligomerization of Aβ42 peptide in an in vitro assay. A11 immunoreactivity increased in Tg2576 fibroblasts when Gpc-1 autoprocessing was inhibited by 3-β[2(diethylamino)ethoxy]androst-5-en-17-one (U18666A) and decreased when Gpc-1 autoprocessing was stimulated by ascorbate. Neither overexpression of Gpc-1 in Tg2576 fibroblasts nor addition of copper ion and NO donor to hippocampal slices from 3xTg-AD mice affected A11 immunoreactivity levels. However, A11 immunoreactivity was greatly suppressed by the subsequent addition of ascorbate. We speculate that temporary interaction between the Aβ domain and small, anMan-containing oligosaccharides may preclude formation of toxic Aβ oligomers. A portion of the oligosaccharides are co-secreted with the Aβ peptides and deposited in plaques. These results support the notion that an inadequate supply of vitamin C could contribute to late onset AD

  11. The heparan and heparin metabolism pathway is involved in regulation of fatty acid composition.

    PubMed

    Jiang, Zhihua; Michal, Jennifer J; Wu, Xiao-Lin; Pan, Zengxiang; MacNeil, Michael D

    2011-01-01

    Six genes involved in the heparan sulfate and heparin metabolism pathway, DSEL (dermatan sulfate epimerase-like), EXTL1 (exostoses (multiple)-like 1), HS6ST1 (heparan sulfate 6-O-sulfotransferase 1), HS6ST3 (heparan sulfate 6-O-sulfotransferase 3), NDST3 (N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 3), and SULT1A1 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1), were investigated for their associations with muscle lipid composition using cattle as a model organism. Nineteen single nucleotide polymorphisms (SNPs)/multiple nucleotide length polymorphisms (MNLPs) were identified in five of these six genes. Six of these mutations were then genotyped on 246 Wagyu x Limousin F(2) animals, which were measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. Association analysis revealed that DSEL, EXTL1 and HS6ST1 significantly affected two stearoyl-CoA desaturase activity indices, the amount of conjugated linoleic acid (CLA), and the relative amount of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) in skeletal muscle (P<0.05). In particular, HS6ST1 joined our previously reported SCD1 and UQCRC1 genes to form a three gene network for one of the stearoyl-CoA desaturase activity indices. These results provide evidence that genes involved in heparan sulfate and heparin metabolism are also involved in regulation of lipid metabolism in bovine muscle. Whether the SNPs affected heparan sulfate proteoglycan structure is unknown and warrants further investigation. PMID:21647334

  12. Release of glomerular heparan-/sup 35/SO/sub 4/ proteoglycan by heparin from glomeruli of streptozocin-induced diabetic rats

    SciTech Connect

    Klein, D.J.; Oegema, T.R. Jr.; Brown, D.M.

    1989-01-01

    Abnormalities in the incorporation of heparan sulfate proteoglycan into the glomerular basement membrane have been implicated in the pathogenesis of various proteinuric states, including diabetes mellitus. To understand further the interactions between proteoglycans and glomerular extracellular matrices, glomeruli were isolated from normal and streptozocin-induced diabetic rats after in vivo exposure to 35S-labeled sulfate and were treated with heparin in vitro. Heparin treatment released a unique heparan sulfate proteoglycan from glomerular cell surface or extracellular matrix proteoglycan receptors. Another, smaller heparan sulfate proteoglycan was the most abundant proteoglycan released into medium and was released constitutively in medium with or without added heparin. While the two heparin-extracted proteoglycans copurified on anion-exchange and gel-filtration chromatographic columns, they were resolved by composite 0.6% agarose--1.8% polyacrylamide gel electrophoresis. Glomeruli from diabetic rats contained decreased proportions of the heparin-releasable heparan sulfate proteoglycan and more constitutively released heparan sulfate proteoglycan. The apparent molecular weight and intrinsic charge of the heparin-released proteoglycan mixture and the apparent molecular weight and sulfation pattern of their 35S-labeled glycosaminoglycan chains after nitrous acid deaminative cleavage were similar in the two groups. A brief trypsin digestion of heparin-treated glomeruli released proportionately less integral membrane and extracellular matrix 35S-labeled proteoglycans and 35S-labeled glycopeptides from diabetic glomeruli than form control glomeruli. Elution of these 35S-labeled macromolecules from anion-exchange columns and migration in agarose-polyacrylamide gels were similar in the two groups.

  13. GLIAL ABNORMALITIES IN MOOD DISORDERS

    PubMed Central

    Öngür, Dost; Bechtholt, Anita J.; Carlezon, William A.; Cohen, Bruce M.

    2015-01-01

    Multiple lines of evidence indicate that mood disorders are associated with abnormalities in the brain's cellular composition, especially in glial cells. Considered inert support cells in the past, glial cells are now known to be important for brain function. Treatments for mood disorders enhance glial cell proliferation, and experimental stimulation of cell growth has antidepressant effects in animal models of mood disorders. These findings suggest that the proliferation and survival of glial cells may be important in the pathogenesis of mood disorders and may be possible targets for the development of new treatments. In this chapter, we will review the evidence for glial abnormalities in mood disorders. We will discuss glial cell biology and evidence from postmortem studies of mood disorders. This is not carry out a comprehensive review; rather we selectively discuss existing evidence in building an argument for the role of glial cells in mood disorders. PMID:25377605

  14. Human Genetic Disorders Caused by Mutations in Genes Encoding Biosynthetic Enzymes for Sulfated Glycosaminoglycans*

    PubMed Central

    Mizumoto, Shuji; Ikegawa, Shiro; Sugahara, Kazuyuki

    2013-01-01

    A number of genetic disorders are caused by mutations in the genes encoding glycosyltransferases and sulfotransferases, enzymes responsible for the synthesis of sulfated glycosaminoglycan (GAG) side chains of proteoglycans, including chondroitin sulfate, dermatan sulfate, and heparan sulfate. The phenotypes of these genetic disorders reflect disturbances in crucial biological functions of GAGs in human. Recent studies have revealed that mutations in genes encoding chondroitin sulfate and dermatan sulfate biosynthetic enzymes cause various disorders of connective tissues. This minireview focuses on growing glycobiological studies of recently described genetic diseases caused by disturbances in biosynthetic enzymes for sulfated GAGs. PMID:23457301

  15. Sulfated carbohydrate compounds prevent microbial adherence by sexually transmitted disease pathogens.

    PubMed Central

    Herold, B C; Siston, A; Bremer, J; Kirkpatrick, R; Wilbanks, G; Fugedi, P; Peto, C; Cooper, M

    1997-01-01

    Heparan sulfate (HS) serves as a receptor for adherence of herpes simplex viruses, Chlamydia trachomatis, Neisseria gonorrhoeae, and, indirectly, human immunodeficiency virus. Using primary human culture systems, we identified sulfated carbohydrate compounds that resemble HS and competitively inhibit infection by these pathogens. These compounds are candidates for intravaginal formulations for the prevention of sexually transmitted diseases. PMID:9420059

  16. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth.

    PubMed

    El Ghazal, Roland; Yin, Xin; Johns, Scott C; Swanson, Lee; Macal, Monica; Ghosh, Pradipta; Zuniga, Elina I; Fuster, Mark M

    2016-05-01

    In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs) in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1) in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21)-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt) were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4-deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer. PMID:27237321

  17. Insights into the role of sulfated glycans in cancer cell adhesion and migration through use of branched peptide probe.

    PubMed

    Brunetti, Jlenia; Depau, Lorenzo; Falciani, Chiara; Gentile, Mariangela; Mandarini, Elisabetta; Riolo, Giulia; Lupetti, Pietro; Pini, Alessandro; Bracci, Luisa

    2016-01-01

    The tetra-branched peptide NT4 selectively binds to different human cancer cells and tissues. NT4 specifically binds to sulfated glycosaminoglycans on cancer cell membranes. Since sulfated glycosaminoglycans are involved in cancer cell interaction with the extracellular matrix, we evaluated the effect of NT4 on cancer cell adhesion and migration. We demonstrated here that the branched peptide NT4 binds sulfated glycosaminoglycans with high affinity and with preferential binding to heparan sulfate. NT4 inhibits cancer cell adhesion and migration on different proteins, without modifying cancer cell morphology or their ability to produce protrusions, but dramatically affecting the directionality and polarity of cell movement. Results obtained by taking advantage of the selective targeting of glycosaminoglycans chains by NT4, provide insights into the role of heparan sulfate proteoglycans in cancer cell adhesion and migration and suggest a determinant role of sulfated glycosaminoglycans in the control of cancer cell directional migration. PMID:27255651

  18. Insights into the role of sulfated glycans in cancer cell adhesion and migration through use of branched peptide probe

    PubMed Central

    Brunetti, Jlenia; Depau, Lorenzo; Falciani, Chiara; Gentile, Mariangela; Mandarini, Elisabetta; Riolo, Giulia; Lupetti, Pietro; Pini, Alessandro; Bracci, Luisa

    2016-01-01

    The tetra-branched peptide NT4 selectively binds to different human cancer cells and tissues. NT4 specifically binds to sulfated glycosaminoglycans on cancer cell membranes. Since sulfated glycosaminoglycans are involved in cancer cell interaction with the extracellular matrix, we evaluated the effect of NT4 on cancer cell adhesion and migration. We demonstrated here that the branched peptide NT4 binds sulfated glycosaminoglycans with high affinity and with preferential binding to heparan sulfate. NT4 inhibits cancer cell adhesion and migration on different proteins, without modifying cancer cell morphology or their ability to produce protrusions, but dramatically affecting the directionality and polarity of cell movement. Results obtained by taking advantage of the selective targeting of glycosaminoglycans chains by NT4, provide insights into the role of heparan sulfate proteoglycans in cancer cell adhesion and migration and suggest a determinant role of sulfated glycosaminoglycans in the control of cancer cell directional migration. PMID:27255651

  19. Purification and characterization of heparan sulphate proteoglycan from bovine brain.

    PubMed Central

    Park, Y; Yu, G; Gunay, N S; Linhardt, R J

    1999-01-01

    A heparan sulphate proteoglycan was purified from adult bovine brain tissues and its structure was characterized. The major heparan sulphate proteoglycan from whole bovine brain had a molecular mass of >200 kDa on denaturing SDS/PAGE and a core protein size of 66 kDa following the removal of glycosaminoglycan chains. Fractionation on DEAE-Sephacel showed that this proteoglycan consisted of three major forms having high, intermediate and low overall charge. All core proteins were identical in size and reacted with heparan sulphate proteoglycan-stub antibody and an antibody made to a synthetic peptide based on rat glypican. The three forms of proteoglycans had identical peptide maps and their amino acid compositional analysis did not match any of the known glypicans. The internal sequence of a major peptide showed only 37.5% sequence similarity with human glypican 5. The glycosaminoglycan chain sizes of the three forms of this proteoglycan, determined after beta-elimination by PAGE, were identical. The disaccharide compositional analysis on the heparan sulphate chains from the three forms of the proteoglycan, determined by treatment with a mixture of heparin lyases followed by high-resolution capillary electrophoresis, showed that they differed primarily by degree of sulphation. The most highly sulphated proteoglycan isolated had a disaccharide composition similar to heparan sulphate glycosaminoglycans found in brain tissue. Based on their sensitivity to low pH nitrous acid treatment, the N-sulphate groups in these proteoglycans were found to be primarily in the smaller glycosaminoglycan chains. The heparan sulphate proteoglycans were also heavily glycosylated with O-linked glycans and no glycosylphosphatidylinositol anchor could be detected. PMID:10585858

  20. Glial Tau Pathology in Tauopathies: Functional Consequences

    PubMed Central

    Kahlson, Martha A.; Colodner, Kenneth J.

    2015-01-01

    Tauopathies are a class of neurodegenerative diseases characterized by the presence of hyperphosphorylated and aggregated tau pathology in neuronal and glial cells. Though the ratio of neuronal and glial tau aggregates varies across diseases, glial tau aggregates can populate the same degenerating brain regions as neuronal tau aggregates. While much is known about the deleterious consequences of tau pathology in neurons, the relative contribution of glial tau pathology to these diseases is less clear. Recent studies using a number of model systems implicate glial tau pathology in contributing to tauopathy pathogenesis. This review aims to highlight the functional consequences of tau overexpression in glial cells and explore the potential contribution of glial tau pathology in the pathogenesis of neurodegenerative tauopathies. PMID:26884683

  1. Glucosamine sulfate

    MedlinePlus

    ... to control arthritis pain. These creams usually contain camphor and other ingredients in addition to glucosamine. Glucosamine ... in combination with chondroitin sulfate, shark cartilage, and camphor for up to 8 weeks. Glucosamine sulfate can ...

  2. Chondroitin sulfate

    MedlinePlus

    ... If you have asthma, use chondroitin sulfate cautiously. Blood clotting disorders: In theory, administering chondroitin sulfate might increase the risk of bleeding in people with blood clotting disorders. Prostate cancer: Early research suggests that chondroitin ...

  3. Barium Sulfate

    MedlinePlus

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  4. Cellufine sulfate column chromatography as a simple, rapid, and effective method to purify dengue virus.

    PubMed

    Kanlaya, Rattiyaporn; Thongboonkerd, Visith

    2016-08-01

    Conventional method to purify/concentrate dengue virus (DENV) is time-consuming with low virus recovery yield. Herein, we applied cellufine sulfate column chromatography to purify/concentrate DENV based on the mimicry between heparan sulfate and DENV envelope protein. Comparative analysis demonstrated that this new method offered higher purity (as determined by less contamination of bovine serum albumin) and recovery yield (as determined by greater infectivity). Moreover, overall duration used for cellufine sulfate column chromatography to purify/concentrate DENV was approximately 1/20 of that of conventional method. Therefore, cellufine sulfate column chromatography serves as a simple, rapid, and effective alternative method for DENV purification/concentration. PMID:27155240

  5. Regulation of sulfated glycosaminoglycan production by prostaglandin E2 in cultured lung fibroblasts

    SciTech Connect

    Karlinsky, J.B.; Goldstein, R.H. )

    1989-08-01

    Prostaglandin E2 (PGE2) has been shown to increase the synthesis of hyaluronic acid in cultured fibroblasts by increasing the activity of hyaluronate synthetase, a group of plasma membrane-bound synthetic enzymes. We examined whether PGE2 also increased the activity of those enzyme systems involved in the synthesis of sulfated glycosaminoglycan in the human embryonic lung fibroblast. Exposure of cells to PGE2 resulted in dose-dependent increases in glucosamine incorporation into all sulfated glycosaminoglycan subtypes. PGE2 at 10(-7) mol/L increased total glycosaminoglycan per dish to 21.6 +/- 3.1 micrograms versus 12.0 +/- 2.5 micrograms in control untreated cultures. Stimulation of endogenous PGE2 production by bradykinin had a similar effect on glycosaminoglycan synthesis. To examine whether PGE2 affected sulfated glycosaminoglycan protein core production, cells were labeled with tritiated glucosamine in the presence of cycloheximide. Under these conditions, incorporation of radiolabel into all glycosaminoglycan subtypes was reduced. However, when exogenous sulfated glycosaminoglycan chain initiator (p-nitrophenyl beta-D-xyloside) was added, incorporation of tritiated glucosamine into sulfated glycosaminoglycan increased but not to levels found in control cultures. Application of PGE2 to cultures treated with cycloheximide alone, or to cultures treated with cycloheximide plus xyloside, increased tritiated glucosamine incorporation into chondroitin, dermatan sulfate, and to a lesser extent into heparan sulfate. We conclude that PGE2 stimulates synthesis of all sulfated glycosaminoglycan even in the absence of new protein core production, probably by increasing activities of sulfated glycosaminoglycan synthetase enzymes. PGE2 stimulation of heparan sulfate synthesis is partially dependent on the availability of heparan sulfate-specific protein core.

  6. Cell culture systems to study glial transformation

    SciTech Connect

    Bressler, J.P.; Cole, R.; de Vellis, J.

    1980-01-01

    The transformation of two different types of glial cells has been studied using an in vivo-/in vitro model and a complete in vitro model. The purpose of the study and to define in vitro model systems is to study the the neoplastic transformation of pure populations of glial cells. Data are presented to demonstrate that the transformed cells are glial and tumorigenic. (ACR)

  7. Nerve impulses increase glial intercellular permeability.

    PubMed

    Marrero, H; Orkand, R K

    1996-03-01

    Coordinating the activity of neurons and their satellite glial cells requires mechanisms by which glial cells detect neuronal activity and change their properties as a result. This study monitors the intercellular diffusion of the fluorescent dye Lucifer Yellow (LY), following its injection into glial cells of the frog optic nerve, and demonstrates that nerve impulses increase the permeability of interglial gap junctions. Consequently, the spatial buffer capacity of the neuroglial cell syncytium for potassium, other ions, and small molecules will be enhanced; this may facilitate glial function in maintaining homeostasis of the neuronal microenvironment. PMID:8833199

  8. Glucosamine sulfate

    MedlinePlus

    ... 8 weeks. Glucosamine sulfate can cause some mild side effects including nausea, heartburn, diarrhea, and constipation. Uncommon side effects are drowsiness, skin reactions, and headache. These are ...

  9. Synthesis, radiolabeling with fluorine-18 and preliminary in vivo evaluation of a heparan sulphate mimetic as potent angiogenesis and heparanase inhibitor for cancer applications.

    PubMed

    Kuhnast, B; El Hadri, A; Boisgard, R; Hinnen, F; Richard, S; Caravano, A; Nancy-Portebois, V; Petitou, M; Tavitian, B; Dollé, F

    2016-02-14

    Heparan Sulfate (HS) mimetics are able to block crucial interactions of the components of the extracellular matrix in angiogenic processes and as such, represent a valuable class of original candidates for cancer therapy. Here we first report the synthesis and in vitro angiogenic inhibition properties of a conjugated, novel and rationally-designed octasaccharide-based HS mimetic. We also herein report its labeling with fluorine-18 and present the preliminary in vivo Positron Emission Tomography imaging data in rats. This constitutes one of the rare examples of labeling and in vivo evaluation of a synthetic, polysaccharide-based, macromolecule. PMID:26757783

  10. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    PubMed

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates. PMID:24253764