Science.gov

Sample records for glial precursors clear

  1. Valproic acid stimulates proliferation of glial precursors during cortical gliogenesis in developing rat.

    PubMed

    Lee, Hee Jae; Dreyfus, Cheryl; DiCicco-Bloom, Emanuel

    2016-07-01

    Valproic acid (VPA) is a neurotherapeutic drug prescribed for seizures, bipolar disorder, and migraine, including women of reproductive age. VPA is a well-known teratogen that produces congenital malformations in many organs including the nervous system, as well as later neurodevelopmental disorders, including mental retardation and autism. In developing brain, few studies have examined VPA effects on glial cells, particularly astrocytes. To investigate effects on primary glial precursors, we developed new cell culture and in vivo models using frontal cerebral cortex of postnatal day (P2) rat. In vitro, VPA exposure elicited dose-dependent, biphasic effects on DNA synthesis and proliferation. In vivo VPA (300 mg/kg) exposure from P2 to P4 increased both DNA synthesis and cell proliferation, affecting primarily astrocyte precursors, as >75% of mitotic cells expressed brain lipid-binding protein. Significantly, the consequence of early VPA exposure was increased astrocytes, as both S100-β+ cells and glial fibrillary acidic protein were increased in adolescent brain. Molecularly, VPA served as an HDAC inhibitor in vitro and in vivo as enhanced proliferation was accompanied by increased histone acetylation, whereas it elicited changes in culture in cell-cycle regulators, including cyclin D1 and E, and cyclin-dependent kinase (CDK) inhibitors, p21 and p27. Collectively, these data suggest clinically relevant VPA exposures stimulate glial precursor proliferation, though at higher doses can elicit inhibition through differential regulation of CDK inhibitors. Because changes in glial cell functions are proposed as mechanisms contributing to neuropsychiatric disorders, these observations suggest that VPA teratogenic actions may be mediated through changes in astrocyte generation during development. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 780-798, 2016. PMID:26505176

  2. Papular Clear Cell Hyperplasia of the Eccrine Duct: A Precursor Lesion of Clear Cell Syringoma?

    PubMed

    Alonso-Riaño, Marina; Cámara-Jurado, Maria; Garrido, Maria C; Rodríguez-Peralto, Jose L

    2015-09-01

    We report the case of a 77-year-old diabetic patient with asymptomatic papular eruption developed over a cutaneous scar after the resection of a squamous cell carcinoma. Histological examination revealed a clear cell proliferation involving the secretory portion of the eccrine glands. This entity has been previously named as papular clear cell hyperplasia of the eccrine duct. This clear cell change might be caused by glycogen deposition because of diabetes. We postulate that papular clear cell hyperplasia could be a precursor lesion of clear cell syringoma. PMID:26291420

  3. Glial expression of the {beta}-Amyloid Precursor Protein (APP) in global ischemia

    SciTech Connect

    Banati, R.B.; Gehrmann, J.; Kreutzberg, G.W. ||

    1995-07-01

    The {beta}-amyloid precursor protein (APP) bears characteristics of an acute-phase protein and therefore is likely to be involved in the glial response to brain injury. In the brain, APP is rapidly synthesized by activated glial cells in response to comparatively mild neuronal lesions, e.g., a remote peripheral nerve injury. Perfusion deficits in the brain result largely in neuronal necrosis and are a common condition in elderly patients. This neuronal necrosis is accompanied by a pronounced reaction of astrocytes and microglia, which can also be observed in animal models. We have therefore studied in the rat, immunocytochemically, the induction of APP after 30 min of global ischemia caused by four-vessel occlusion. The postischemic brain injuries were examined at survival times from 12 h to 7 days. From day 3 onward, APP immunoreactivity was strongly induced in the CA{sub 1} and CA{sub 4} regions of the rat dorsal hippocampus as well as in the dorsolateral striatum. In these areas, the majority of APP-immunoreactive cells were reactive glial fibrillary acidic protein (GFAP)-positive astrocytes, as shown by double-immunofluorescence labeling for GFAP and APP. Additionally, small ramified cells, most likely activated microglia, expressed APP immunoreactivity. In contrast, in the parietal cortex, APP immunoreactivity occurred focally in clusters of activated microglia rather than in astrocytes, as demonstrated by double-immunofluorescence labeling for APP and the microglia-binding lectin Griffonia simplicifolia isolectin B{sub 4}. In conclusion, following global ischemia, APP is induced in reactive glial cells with spatial differences in the distribution pattern of APP induction in actrocytes and microglia. 51 refs., 4 figs.

  4. Examining the properties and therapeutic potential of glial restricted precursors in spinal cord injury.

    PubMed

    Hayakawa, Kazuo; Haas, Christopher; Fischer, Itzhak

    2016-04-01

    In the aftermath of spinal cord injury, glial restricted precursors (GRPs) and immature astrocytes offer the potential to modulate the inflammatory environment of the injured spinal cord and promote host axon regeneration. Nevertheless clinical application of cellular therapy for the repair of spinal cord injury requires strict quality-assured protocols for large-scale production and preservation that necessitates long-term in vitro expansion. Importantly, such processes have the potential to alter the phenotypic and functional properties and thus therapeutic potential of these cells. Furthermore, clinical use of cellular therapies may be limited by the inflammatory microenvironment of the injured spinal cord, altering the phenotypic and functional properties of grafted cells. This report simulates the process of large-scale GRP production and demonstrates the permissive properties of GRP following long-term in vitro culture. Furthermore, we defined the phenotypic and functional properties of GRP in the presence of inflammatory factors, and call attention to the importance of the microenvironment of grafted cells, underscoring the importance of modulating the environment of the injured spinal cord. PMID:27212899

  5. Examining the properties and therapeutic potential of glial restricted precursors in spinal cord injury

    PubMed Central

    Hayakawa, Kazuo; Haas, Christopher; Fischer, Itzhak

    2016-01-01

    In the aftermath of spinal cord injury, glial restricted precursors (GRPs) and immature astrocytes offer the potential to modulate the inflammatory environment of the injured spinal cord and promote host axon regeneration. Nevertheless clinical application of cellular therapy for the repair of spinal cord injury requires strict quality-assured protocols for large-scale production and preservation that necessitates long-term in vitro expansion. Importantly, such processes have the potential to alter the phenotypic and functional properties and thus therapeutic potential of these cells. Furthermore, clinical use of cellular therapies may be limited by the inflammatory microenvironment of the injured spinal cord, altering the phenotypic and functional properties of grafted cells. This report simulates the process of large-scale GRP production and demonstrates the permissive properties of GRP following long-term in vitro culture. Furthermore, we defined the phenotypic and functional properties of GRP in the presence of inflammatory factors, and call attention to the importance of the microenvironment of grafted cells, underscoring the importance of modulating the environment of the injured spinal cord. PMID:27212899

  6. Glial-Restricted Precursors Protect Neonatal Brain Slices from Hypoxic-Ischemic Cell Death Without Direct Tissue Contact.

    PubMed

    Sweda, Romy; Phillips, Andre W; Marx, Joel; Johnston, Michael V; Wilson, Mary Ann; Fatemi, Ali

    2016-07-01

    Glial-Restricted Precursors (GRPs) are tripotential progenitors that have been shown to exhibit beneficial effects in several preclinical models of neurological disorders, including neonatal brain injury. The mechanisms of action of these cells, however, require further study, as do clinically relevant questions such as timing and route of cell administration. Here, we explored the effects of GRPs on neonatal hypoxia-ischemia during acute and subacute stages, using an in vitro transwell co-culture system with organotypic brain slices exposed to oxygen-glucose deprivation (OGD). OGD-exposed slices that were then co-cultured with GRPs without direct cell contact had decreased tissue injury and cortical cell death, as evaluated by lactate dehydrogenase (LDH) release and propidium iodide (PI) staining. This effect was more pronounced when cells were added during the subacute phase of the injury. Furthermore, GRPs reduced the amount of glutamate in the slice supernatant and changed the proliferation pattern of endogenous progenitor cells in brain slices. In summary, we show that GRPs exert a neuroprotective effect on neonatal hypoxia-ischemia without the need for direct cell-cell contact, thus confirming the rising view that beneficial actions of stem cells are more likely attributable to trophic or immunomodulatory support rather than to long-term integration. PMID:27149035

  7. Co-transplantation of syngeneic mesenchymal stem cells improves survival of allogeneic glial-restricted precursors in mouse brain.

    PubMed

    Srivastava, Amit K; Bulte, Camille A; Shats, Irina; Walczak, Piotr; Bulte, Jeff W M

    2016-01-01

    Loss of functional cells from immunorejection during the early post-transplantation period is an important factor that reduces the efficacy of stem cell-based therapies. Recent studies have shown that transplanted mesenchymal stem cells (MSCs) can exert therapeutic effects by secreting anti-inflammatory and pro-survival trophic factors. We investigated whether co-transplantation of MSCs could improve the survival of other transplanted therapeutic cells. Allogeneic glial-restricted precursors (GRPs) were isolated from the brain of a firefly luciferase transgenic FVB mouse (at E13.5 stage) and intracerebrally transplanted, either alone, or together with syngeneic MSCs in immunocompetent BALB/c mice (n=20) or immunodeficient Rag2(-/-) mice as survival control (n=8). No immunosuppressive drug was given to any animal. Using bioluminescence imaging (BLI) as a non-invasive readout of cell survival, we found that co-transplantation of MSCs significantly improved (p<0.05) engrafted GRP survival. No significant change in signal intensities was observed in immunodeficient Rag2(-/-) mice, with transplanted cells surviving in both the GRP only and the GRP+MSC group. In contrast, on day 21 post-transplantation, we observed a 94.2% decrease in BLI signal intensity in immunocompetent mice transplanted with GRPs alone versus 68.1% in immunocompetent mice co-transplanted with MSCs and GRPs (p<0.05). Immunohistochemical analysis demonstrated a lower number of infiltrating CD45, CD11b(+) and CD8(+) cells, reduced astrogliosis, and a higher number of FoxP3(+) cells at the site of transplantation for the immunocompetent mice receiving MSCs. The present study demonstrates that co-transplantation of MSCs can be used to create a microenvironment that is more conducive to the survival of allogeneic GRPs. PMID:26515691

  8. Amyloid-β precursor protein induces glial differentiation of neural progenitor cells by activation of the IL-6/gp130 signaling pathway.

    PubMed

    Kwak, Young-Don; Dantuma, Elise; Merchant, Stephanie; Bushnev, Sergey; Sugaya, Kiminobu

    2010-11-01

    Although amyloid precursor protein (APP) due to the cytotoxicity of Aβ peptides, has been intensively studied, the physiological role of APP still remains wrapped up in veil. In this article, we propose that α-cleaved ectodomain of APP (sAPPα) stimulates the IL-6/gp130 signaling pathway for induction of gliogenesis within neural progenitor cells (NPCs). In our previous study, a high dose of APP differentiated NPCs into glial fibrillary acidic protein (GFAP) positive cells. In order to elucidate the mechanism of APP-induced glial differentiation, we examined the effects of sAPPα on the IL-6/gp130 signaling pathway. Application of sAPPα promoted mRNA expression of gp130, ciliary neurotrophic factor (CNTF), and Janus kinase 1 (JAK1). sAPPα stimulated the glial differentiation by upregulating the expression and phosphorylation of gp130. While mRNA expression of STAT3 was unchanged, phosphorylation of STAT3-Tyr705 gradually increased. Application of small interference RNA (siRNA) for STAT3 suppressed GFAP expression even in the presence of APP. Treatment with siRNA or inhibitor, AG490, of JAK1 efficiently suppressed STAT3 phosphorylation and GFAP expression. Upregulation of CNTF was observed in either short- or long-term treatment with sAPPα. RNA's interference of CNTF dose-dependently inhibited GFAP expression upregulated by treatment with sAPPα. This study suggests that the IL-6/gp130 signaling pathway is involved in sAPPα-induced glial differentiation of NPCs. Although further investigation is needed, this study may provide insight into the mechanism of glial differentiation of NPCs under pathological conditions in Alzheimer's disease or Down syndrome. PMID:20309664

  9. Functional Recovery in Traumatic Spinal Cord Injury after Transplantation of Multineurotrophin-Expressing Glial-Restricted Precursor Cells

    PubMed Central

    Cao, Qilin; Xu, Xiao-Ming; DeVries, William H.; Enzmann, Gaby U.; Ping, Peipei; Tsoulfas, Pantelis; Wood, Patrick M.; Bunge, Mary Bartlett; Whittemore, Scott R.

    2010-01-01

    Demyelination contributes to the physiological and behavioral deficits after contusive spinal cord injury (SCI). Therefore, remyelination may be an important strategy to facilitate repair after SCI. We show here that rat embryonic day 14 spinal cord-derived glial-restricted precursor cells (GRPs), which differentiate into both oligodendrocytes and astrocytes, formed normal-appearing central myelin around axons of cultured DRG neurons and had enhanced proliferation and survival in the presence of neurotrophin 3 (NT3) and brain-derived neurotrophin factor (BDNF). We infected GRPs with retroviruses expressing the multineurotrophin D15A (with both BDNF and NT3 activities) and then transplanted them into the contused adult thoracic spinal cord at 9 d after injury. Expression of D15A in the injured spinal cord is five times higher in animals receiving D15A–GRP grafts than ones receiving enhanced green fluorescent protein (EGFP)–GRP or DMEM grafts. Six weeks after transplantation, the grafted GRPs differentiated into mature oligodendrocytes expressing both myelin basic protein (MBP) and adenomatus polyposis coli (APC). Ultrastructural analysis showed that the grafted GRPs formed morphologically normal-appearing myelin sheaths around the axons in the ventrolateral funiculus (VLF) of spinal cord. Expression of D15A significantly increased the percentage of APC+ oligodendrocytes of grafted GRPs (15–30%). Most importantly, 8 of 12 rats receiving grafts of D15A–GRPs recovered transcranial magnetic motor-evoked potential responses, indicating that conduction through the demyelinated VLF axons was restored. Such electrophysiological recovery was not observed in rats receiving grafts of EGFP–GRPs, D15A–NIH3T3 cells, or an injection of an adenovirus expressing D15A. Recovery of hindlimb locomotor function was also significantly enhanced only in the D15A–GRP-grafted animals at 4 and 5 weeks after transplantation. Therefore, combined treatment with neurotrophins and

  10. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells.

    PubMed

    Cao, Qilin; Xu, Xiao-Ming; Devries, William H; Enzmann, Gaby U; Ping, Peipei; Tsoulfas, Pantelis; Wood, Patrick M; Bunge, Mary Bartlett; Whittemore, Scott R

    2005-07-27

    Demyelination contributes to the physiological and behavioral deficits after contusive spinal cord injury (SCI). Therefore, remyelination may be an important strategy to facilitate repair after SCI. We show here that rat embryonic day 14 spinal cord-derived glial-restricted precursor cells (GRPs), which differentiate into both oligodendrocytes and astrocytes, formed normal-appearing central myelin around axons of cultured DRG neurons and had enhanced proliferation and survival in the presence of neurotrophin 3 (NT3) and brain-derived neurotrophin factor (BDNF). We infected GRPs with retroviruses expressing the multineurotrophin D15A (with both BDNF and NT3 activities) and then transplanted them into the contused adult thoracic spinal cord at 9 d after injury. Expression of D15A in the injured spinal cord is five times higher in animals receiving D15A-GRP grafts than ones receiving enhanced green fluorescent protein (EGFP)-GRP or DMEM grafts. Six weeks after transplantation, the grafted GRPs differentiated into mature oligodendrocytes expressing both myelin basic protein (MBP) and adenomatus polyposis coli (APC). Ultrastructural analysis showed that the grafted GRPs formed morphologically normal-appearing myelin sheaths around the axons in the ventrolateral funiculus (VLF) of spinal cord. Expression of D15A significantly increased the percentage of APC+ oligodendrocytes of grafted GRPs (15-30%). Most importantly, 8 of 12 rats receiving grafts of D15A-GRPs recovered transcranial magnetic motor-evoked potential responses, indicating that conduction through the demyelinated VLF axons was restored. Such electrophysiological recovery was not observed in rats receiving grafts of EGFP-GRPs, D15A-NIH3T3 cells, or an injection of an adenovirus expressing D15A. Recovery of hindlimb locomotor function was also significantly enhanced only in the D15A-GRP-grafted animals at 4 and 5 weeks after transplantation. Therefore, combined treatment with neurotrophins and GRP grafts can

  11. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive. PMID:17901404

  12. Role of the postnatal radial glial scaffold for the development of the dentate gyrus as revealed by Reelin signaling mutant mice

    PubMed Central

    Brunne, Bianka; Franco, Santos; Bouché, Elisabeth; Herz, Joachim; Howell, Brian W.; Pahle, Jasmine; Müller, Ulrich; May, Petra; Frotscher, Michael; Bock, Hans H.

    2014-01-01

    During dentate gyrus development the early embryonic radial glial scaffold is replaced by a secondary glial scaffold around birth. In contrast to neocortical and early dentate gyrus radial glial cells these postnatal glial cells are severely altered with regard to position and morphology in reeler mice lacking the secreted protein Reelin. In this study we focus on the functional impact of these defects. Most radial glial cells throughout the nervous system serve as scaffolds for migrating neurons and precursor cells for both neurogenesis and gliogenesis. Precursor cell function has been demonstrated for secondary radial glial cells but the exact function of these late glial cells in granule cell migration and positioning is not clear. No data exist concerning the interplay between granule neurons and late radial glial cells during dentate gyrus development. Here we show that despite the severe morphological defects in the reeler dentate gyrus the precursor function of secondary radial glial cells is not impaired during development in reeler mice. In addition, selective ablation of Disabled-1, an intracellular adaptor protein essential for Reelin signaling, in neurons but not in glial cells allowed us to distinguish effects of Reelin signaling on radial glial cells from possible secondary effects based on defective granule cells positioning. PMID:23828756

  13. Glial restricted precursor cell transplant with cyclic adenosine monophosphate improved some autonomic functions but resulted in a reduced graft size after spinal cord contusion injury in rats.

    PubMed

    Nout, Yvette S; Culp, Esther; Schmidt, Markus H; Tovar, C Amy; Pröschel, Christoph; Mayer-Pröschel, Margot; Noble, Mark D; Beattie, Michael S; Bresnahan, Jacqueline C

    2011-01-01

    Transplantation of glial restricted precursor (GRP) cells has been shown to reduce glial scarring after spinal cord injury (SCI) and, in combination with neuronal restricted precursor (NRP) cells or enhanced expression of neurotrophins, to improve recovery of function after SCI. We hypothesized that combining GRP transplants with rolipram and cAMP would improve functional recovery, similar to that seen after combining Schwann cell transplants with increasing cAMP. A short term study, (1) uninjured control, (2) SCI+vehicle, and (3) SCI+cAMP, showed that spinal cord [cAMP] was increased 14days after SCI. We used 51 male rats subjected to a thoracic SCI for a 12-week survival study: (1) SCI+vehicle, (2) SCI+GRP, (3) SCI+cAMP, (4) SCI+GRP+cAMP, and (5) uninjured endpoint age-matched control (AM). Rolipram was administered for 2weeks after SCI. At 9days after SCI, GRP transplantation and injection of dibutyryl-cAMP into the spinal cord were performed. GRP cells survived, differentiated, and formed extensive transplants that were well integrated with host tissue. Presence of GRP cells increased the amount of tissue in the lesion; however, cAMP reduced the graft size. White matter sparing at the lesion epicenter was not affected. Serotonergic input to the lumbosacral spinal cord was not affected by treatment, but the amount of serotonin immediately caudal to the lesion was reduced in the cAMP groups. Using telemetric monitoring of corpus spongiosum penis pressure we show that the cAMP groups regained the same number of micturitions per 24hours when compared to the AM group, however, the frequency of peak pressures was increased in these groups compared to the AM group. In contrast, the GRP groups had similar frequency of peak pressures compared to baseline and the AM group. Animals that received GRP cells regained the same number of erectile events per 24hours compared to baseline and the AM group. Since cAMP reduced the GRP transplant graft, and some modest positive

  14. Glial Tau Pathology in Tauopathies: Functional Consequences

    PubMed Central

    Kahlson, Martha A.; Colodner, Kenneth J.

    2015-01-01

    Tauopathies are a class of neurodegenerative diseases characterized by the presence of hyperphosphorylated and aggregated tau pathology in neuronal and glial cells. Though the ratio of neuronal and glial tau aggregates varies across diseases, glial tau aggregates can populate the same degenerating brain regions as neuronal tau aggregates. While much is known about the deleterious consequences of tau pathology in neurons, the relative contribution of glial tau pathology to these diseases is less clear. Recent studies using a number of model systems implicate glial tau pathology in contributing to tauopathy pathogenesis. This review aims to highlight the functional consequences of tau overexpression in glial cells and explore the potential contribution of glial tau pathology in the pathogenesis of neurodegenerative tauopathies. PMID:26884683

  15. Development and organization of glial cells in Drosophila melanogaster.

    PubMed

    Giangrande, A

    1996-10-01

    Glial cells constitute a crucial component of the nervous system. They wrap the neuronal somata and axons and play a number of roles during normal neuronal development and activity as well as during axonal regeneration after wounding. The availability of cellular markers and genetic tools have made it possible in Drosophila to start identifying the genes and the cell-cell interactions leading to glial cell differentiation. The existence of multipotent precursor cells in the nervous system, the requirement for master genes determining the glial cell fate, the migratory abilities of fly glial cells and the existence of neuron-glial cell interactions during development are some of the features revealed by these approaches. These findings also indicate an evolutionary conservation in the developmental mechanisms between invertebrates and vertebrates. Finally, Drosophila is an ideal model system to determine in vivo the precise roles of glial cells and to study the etiology of pathologies associated with abnormal glial differentiation. PMID:8946240

  16. GLIAL ABNORMALITIES IN MOOD DISORDERS

    PubMed Central

    Öngür, Dost; Bechtholt, Anita J.; Carlezon, William A.; Cohen, Bruce M.

    2015-01-01

    Multiple lines of evidence indicate that mood disorders are associated with abnormalities in the brain's cellular composition, especially in glial cells. Considered inert support cells in the past, glial cells are now known to be important for brain function. Treatments for mood disorders enhance glial cell proliferation, and experimental stimulation of cell growth has antidepressant effects in animal models of mood disorders. These findings suggest that the proliferation and survival of glial cells may be important in the pathogenesis of mood disorders and may be possible targets for the development of new treatments. In this chapter, we will review the evidence for glial abnormalities in mood disorders. We will discuss glial cell biology and evidence from postmortem studies of mood disorders. This is not carry out a comprehensive review; rather we selectively discuss existing evidence in building an argument for the role of glial cells in mood disorders. PMID:25377605

  17. Embryonic development of the Drosophila brain. II. Pattern of glial cells.

    PubMed

    Hartenstein, V; Nassif, C; Lekven, A

    1998-12-01

    Glial cells in Drosophila and other insects are organized in an outer layer that envelops the surface of the central and peripheral nervous system (subperineurial glia, peripheral glia), a middle layer associated with neuronal somata in the cortex (cell body glia), and an inner layer surrounding the neuropile (longitudinal glia, midline glia, nerve root glia). In the ventral nerve cord, most glial cells are formed by a relatively small number of neuro-glioblasts; subsequently, glial cell precursors migrate and spread out widely to reach their final destination. By using a glia-specific marker (antibody against the Repo protein) we have reconstructed the pattern of glial cell precursors at successive developmental stages, focusing on the glia of the supraesophageal ganglion and subesophageal ganglion which are not described in previous studies. Digitized images of consecutive optical sections were used to generate 3-D models that show the spatial pattern of glial cell precursors in relationship to the neuropile, brain surface, and peripheral nerves. Similar to their spatial organization in the ventral nerve cord, glial cells of the brain populate the brain nerves and outer surface, cortical cell body layer, and cortex-neuropile interface. Neuropile-associated glial cells arise from a cluster located at the base of the supraesophageal ganglion; from this position, they migrate dorsally along the developing axon tracts and by late embryonic stages form a sheath around all neuropile compartments, including the supraesophageal commissure. Surface and cell body glial cells derive from several discrete foci, notably two large clusters at the deuterocerebrum/protocerebrum boundary and the posterior protocerebrum. From these foci, glial cells then fan out to envelop the surface of the supraesophageal ganglion. PMID:9831044

  18. Distinct molecular pathways mediate glial activation and engulfment of axonal debris after axotomy

    PubMed Central

    Ziegenfuss, Jennifer S.; Doherty, Johnna; Freeman, Marc R.

    2016-01-01

    Glial cells efficiently recognize and clear cellular debris after nervous system injury to maintain brain homeostasis, but pathways governing glial responses to neural injury remain poorly defined. We identify the Drosophila guanine-nucleotide exchange factor (GEF) complex Crk/Mbc/dCed-12, and the small GTPase Rac1 as novel modulators of glial clearance of axonal debris. We show Crk/Mbc/dCed-12 and Rac1 function in a non-redundant fashion with the Draper pathway—loss of either pathway fully suppresses clearance of axonal debris. Draper signaling is required early during glial responses, promoting glial activation, which includes increased Draper and dCed-6 expression and extension of glial membranes to degenerating axons. In contrast, the Crk/Mbc/dCed-12 complex functions at later phases promoting glial phagocytosis of axonal debris. Our work identifies new components of the glial engulfment machinery and shows that glial activation, phagocytosis of axonal debris, and termination of responses to injury are genetically separable events mediated by distinct signaling pathways. PMID:22706267

  19. The Purinergic System and Glial Cells: Emerging Costars in Nociception

    PubMed Central

    2014-01-01

    It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel “druggable” glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states. PMID:25276794

  20. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate

    SciTech Connect

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy(/sup 3/H)glucose convert this glucose analogue to 2-deoxy(/sup 3/H)glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O/sub 2/ and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  1. Cell culture systems to study glial transformation

    SciTech Connect

    Bressler, J.P.; Cole, R.; de Vellis, J.

    1980-01-01

    The transformation of two different types of glial cells has been studied using an in vivo-/in vitro model and a complete in vitro model. The purpose of the study and to define in vitro model systems is to study the the neoplastic transformation of pure populations of glial cells. Data are presented to demonstrate that the transformed cells are glial and tumorigenic. (ACR)

  2. Nerve impulses increase glial intercellular permeability.

    PubMed

    Marrero, H; Orkand, R K

    1996-03-01

    Coordinating the activity of neurons and their satellite glial cells requires mechanisms by which glial cells detect neuronal activity and change their properties as a result. This study monitors the intercellular diffusion of the fluorescent dye Lucifer Yellow (LY), following its injection into glial cells of the frog optic nerve, and demonstrates that nerve impulses increase the permeability of interglial gap junctions. Consequently, the spatial buffer capacity of the neuroglial cell syncytium for potassium, other ions, and small molecules will be enhanced; this may facilitate glial function in maintaining homeostasis of the neuronal microenvironment. PMID:8833199

  3. Review: Glial lineages and myelination in the central nervous system

    PubMed Central

    COMPSTON, ALASTAIR; ZAJICEK, JOHN; SUSSMAN, JON; WEBB, ANNA; HALL, GILLIAN; MUIR, DAVID; SHAW, CHRISTOPHER; WOOD, ANDREW; SCOLDING, NEIL

    1997-01-01

    Oligodendrocytes, derived from stem cell precursors which arise in subventricular zones of the developing central nervous system, have as their specialist role the synthesis and maintenance of myelin. Astrocytes contribute to the cellular architecture of the central nervous system and act as a source of growth factors and cytokines; microglia are bone-marrow derived macrophages which function as primary immunocompetent cells in the central nervous system. Myelination depends on the establishment of stable relationships between each differentiated oligodendrocyte and short segments of several neighbouring axons. There is growing evidence, especially from studies of glial cell implantation, that oligodendrocyte precursors persist in the adult nervous system and provide a limited capacity for the restoration of structure and function in myelinated pathways damaged by injury or disease. PMID:9061442

  4. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies.

    PubMed

    Torika, Nofar; Asraf, Keren; Danon, Abraham; Apte, Ron N; Fleisher-Berkovich, Sigal

    2016-01-01

    The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer's disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression of

  5. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies

    PubMed Central

    Torika, Nofar; Asraf, Keren; Danon, Abraham; Apte, Ron N.; Fleisher-Berkovich, Sigal

    2016-01-01

    The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer’s disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression

  6. MCP-1 involvement in glial differentiation of neuroprogenitor cells through APP signaling.

    PubMed

    Vrotsos, Emmanuel George; Kolattukudy, Pappachan E; Sugaya, Kiminobu

    2009-04-29

    Previously it has been reported that neural stem cells undergoing apoptotic stress have increased levels of amyloid precursor protein (APP) and increased APP expression results in glial differentiation. APP activity was also shown to be required for staurosporine-induced glial differentiation of neuroprogenitor cells. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that is expressed early during inflammation. The binding of MCP-1 to its chemokine receptor induces expression of novel transcription factor MCP-1-induced protein (MCPIP). MCPIP expression subsequently leads to cell death. Previous studies have shown that pro-apoptotic factors have the ability to induce neural differentiation. Therefore, we investigated if MCPIP expression leads to differentiation of NT2 neuroprogenitor cells. Results showed that MCPIP expression increased glial fibrillary acid protein (GFAP) expression and also caused distinct morphological changes, both indicative of glial differentiation. Similar results were observed with MCP-1 treatment. Interestingly, APP expression decreased in response to MCPIP. Instead, we found APP activity regulates expression of both MCP-1 and MCPIP. Furthermore, inhibition of either p38 MAPK or JAK signaling pathways significantly reduced APP's effect on MCP-1 and MCPIP. These data demonstrates the role APP has in glial differentiation of NT2 cells through MCP-1/MCPIP signaling. It is possible that increased APP expression after CNS injury could play a role in MCP-1 production, possibly promoting astrocyte activation at injured site. PMID:19185603

  7. Glial Contributions to Neural Function and Disease.

    PubMed

    Rasband, Matthew N

    2016-02-01

    The nervous system consists of neurons and glial cells. Neurons generate and propagate electrical and chemical signals, whereas glia function mainly to modulate neuron function and signaling. Just as there are many different kinds of neurons with different roles, there are also many types of glia that perform diverse functions. For example, glia make myelin; modulate synapse formation, function, and elimination; regulate blood flow and metabolism; and maintain ionic and water homeostasis to name only a few. Although proteomic approaches have been used extensively to understand neurons, the same cannot be said for glia. Importantly, like neurons, glial cells have unique protein compositions that reflect their diverse functions, and these compositions can change depending on activity or disease. Here, I discuss the major classes and functions of glial cells in the central and peripheral nervous systems. I describe proteomic approaches that have been used to investigate glial cell function and composition and the experimental limitations faced by investigators working with glia. PMID:26342039

  8. Borderless regulates glial extension and axon ensheathment.

    PubMed

    Cameron, Scott; Chen, Yixu; Rao, Yong

    2016-06-15

    Ensheathment of axons by glial processes is essential for normal brain function. While considerable progress has been made to define molecular and cellular mechanisms underlying the maintenance of axon ensheathment, less is known about molecular details of early events for the wrapping of axons by glial processes in the developing nervous system. In this study, we investigate the role of the transmembrane protein Borderless (Bdl) in the developing Drosophila visual system. Bdl belongs to the immunoglobulin (Ig) superfamily, and its in vivo function is unknown. We show that Bdl is expressed in wrapping glia (WG) in the developing eye disc. Cell-type-specific transgene rescue and knockdown indicate that Bdl is specifically required in WG for the extension of glial processes along photoreceptor axons in the optic lobe, and axon ensheathment. Our results identify Bdl as a novel glia-specific cell-surface recognition molecule in regulating glial extension and axon ensheathment. PMID:27131624

  9. OXIDANT-PRECURSOR RELATIONSHIPS

    EPA Science Inventory

    New methods of ambient air analysis were used to define more clearly the relationships between oxidants and their precursors. Non-methane hydrocarbons, NOx, O2, and oxidants were measured at the same time and location (Riverside, California). The ambient air data presented in thi...

  10. Glial Progenitors as Targets for Transformation in Glioma

    PubMed Central

    Ilkanizadeh, Shirin; Lau, Jasmine; Huang, Miller; Foster, Daniel J.; Wong, Robyn; Frantz, Aaron; Wang, Susan; Weiss, William A.; Persson, Anders I.

    2014-01-01

    Glioma is the most common primary malignant brain tumor and arises throughout the central nervous system (CNS). Recent focus on stem-like glioma cells has implicated neural stem cells (NSCs), a minor precursor population restricted to germinal zones, as a potential source of gliomas. In this review, we will focus on the relationship between oligodendrocyte progenitor cells (OPCs), the largest population of cycling glial progenitors in the postnatal brain, and gliomas. Recent studies suggest that OPCs can give rise to gliomas. Furthermore, signaling pathways often associated with NSCs also play key roles during OPC lineage development. Recent advances suggesting that gliomas can undergo a switch from progenitor- to stem-like phenotype after therapy, implicating that an OPC-origin is more likely than previously recognized. Future in-depth studies of OPC biology may shed light on the etiology of OPC-derived gliomas and reveal new therapeutic avenues. PMID:24889528

  11. Specific glial functions contribute to schizophrenia susceptibility.

    PubMed

    Goudriaan, Andrea; de Leeuw, Christiaan; Ripke, Stephan; Hultman, Christina M; Sklar, Pamela; Sullivan, Patrick F; Smit, August B; Posthuma, Danielle; Verheijen, Mark H G

    2014-07-01

    Schizophrenia is a highly polygenic brain disorder. The main hypothesis for disease etiology in schizophrenia primarily focuses on the role of dysfunctional synaptic transmission. Previous studies have therefore directed their investigations toward the role of neuronal dysfunction. However, recent studies have shown that apart from neurons, glial cells also play a major role in synaptic transmission. Therefore, we investigated the potential causal involvement of the 3 principle glial cell lineages in risk to schizophrenia. We performed a functional gene set analysis to test for the combined effects of genetic variants in glial type-specific genes for association with schizophrenia. We used genome-wide association data from the largest schizophrenia sample to date, including 13 689 cases and 18 226 healthy controls. Our results show that astrocyte and oligodendrocyte gene sets, but not microglia gene sets, are associated with an increased risk for schizophrenia. The astrocyte and oligodendrocyte findings are related to astrocyte signaling at the synapse, myelin membrane integrity, glial development, and epigenetic control. Together, these results show that genetic alterations underlying specific glial cell type functions increase susceptibility to schizophrenia and provide evidence that the neuronal hypothesis of schizophrenia should be extended to include the role of glia. PMID:23956119

  12. Specific Glial Functions Contribute to Schizophrenia Susceptibility

    PubMed Central

    de Leeuw, Christiaan; Ripke, Stephan; Hultman, Christina M.; Sklar, Pamela; Sullivan, Patrick F.; Smit, August B.; Posthuma, Danielle; Verheijen, Mark H. G.

    2014-01-01

    Schizophrenia is a highly polygenic brain disorder. The main hypothesis for disease etiology in schizophrenia primarily focuses on the role of dysfunctional synaptic transmission. Previous studies have therefore directed their investigations toward the role of neuronal dysfunction. However, recent studies have shown that apart from neurons, glial cells also play a major role in synaptic transmission. Therefore, we investigated the potential causal involvement of the 3 principle glial cell lineages in risk to schizophrenia. We performed a functional gene set analysis to test for the combined effects of genetic variants in glial type–specific genes for association with schizophrenia. We used genome-wide association data from the largest schizophrenia sample to date, including 13 689 cases and 18 226 healthy controls. Our results show that astrocyte and oligodendrocyte gene sets, but not microglia gene sets, are associated with an increased risk for schizophrenia. The astrocyte and oligodendrocyte findings are related to astrocyte signaling at the synapse, myelin membrane integrity, glial development, and epigenetic control. Together, these results show that genetic alterations underlying specific glial cell type functions increase susceptibility to schizophrenia and provide evidence that the neuronal hypothesis of schizophrenia should be extended to include the role of glia. PMID:23956119

  13. Application of colloidal semiconductor quantum dots as fluorescent labels for diagnosis of brain glial cancer

    NASA Astrophysics Data System (ADS)

    Farias, Patrícia M. A.; Santos, Beate S.; Menezes, Frederico D.; Ferreira, Ricardo; Oliveira, Fernando J. M., Jr.; Carvalho, Hernandes F.; Romão, Luciana; Moura-Neto, Vivaldo; Amaral, Jane C. O. F.; Fontes, Adriana; Cesar, Carlos L.

    2006-02-01

    In this work we present the preparation, characterization and conjugation of colloidal core shell CdS-Cd(OH) II quantum dots to health and cancer glial rats living cells in culture media. The particles were obtained via colloidal synthesis in aqueous medium, with final pH=7.3-7.4. Laser Scan Confocal Microscopy (LSCM) and Fluorescence Microscopy were used to evaluate fluorescence intensities and patterns of health and cancer (glioblastoma) glial cells labeled with the quantum dots in different time intervals. Health and cancer glial cells clearly differ in their fluorescence intensities and patterns. These different fluorescence intensities and patterns may be associated to differences concerning cellular membrane and metabolic features of health and cancer cells. The results obtained indicate the potential of the methodology for fast and precise cancer diagnostics.

  14. GLIAL ANKYRINS FACILITATE PARANODAL AXOGLIAL JUNCTION ASSEMBLY

    PubMed Central

    Chang, Kae-Jiun; Zollinger, Daniel R.; Susuki, Keiichiro; Sherman, Diane L.; Makara, Michael A.; Brophy, Peter J.; Cooper, Edward C.; Bennett, Vann; Mohler, Peter J.; Rasband, Matthew N.

    2014-01-01

    Neuron-glia interactions establish functional membrane domains along myelinated axons. These include nodes of Ranvier, paranodal axoglial junctions, and juxtaparanodes. Paranodal junctions are the largest vertebrate junctional adhesion complex, are essential for rapid saltatory conduction, and contribute to assembly and maintenance of nodes. However, the molecular mechanisms underlying paranodal junction assembly are poorly understood. Ankyrins are cytoskeletal scaffolds traditionally associated with Na+ channel clustering in neurons and important for membrane domain establishment and maintenance in many cell types. Here, we show that ankyrinB, expressed by Schwann cells, and ankyrinG, expressed by oligodendrocytes, are highly enriched at the glial side of paranodal junctions where they interact with the essential glial junctional component neurofascin 155. Conditional knockout of ankyrins in oligodendrocytes disrupts paranodal junction assembly and delays nerve conduction during early development in mice. Thus, glial ankyrins function as major scaffolds that facilitate early and efficient paranodal junction assembly in the developing central nervous system. PMID:25362471

  15. Glial Cell Regulation of Rhythmic Behavior

    PubMed Central

    Jackson, F. Rob; Ng, Fanny S.; Sengupta, Sukanya; You, Samantha; Huang, Yanmei

    2015-01-01

    Brain glial cells, in particular astrocytes and microglia, secrete signaling molecules that regulate glia–glia or glia–neuron communication and synaptic activity. While much is known about roles of glial cells in nervous system development, we are only beginning to understand the physiological functions of such cells in the adult brain. Studies in vertebrate and invertebrate models, in particular mice and Drosophila, have revealed roles of glia–neuron communication in the modulation of complex behavior. This chapter emphasizes recent evidence from studies of rodents and Drosophila that highlight the importance of glial cells and similarities or differences in the neural circuits regulating circadian rhythms and sleep in the two models. The chapter discusses cellular, molecular, and genetic approaches that have been useful in these models for understanding how glia–neuron communication contributes to the regulation of rhythmic behavior. PMID:25707272

  16. Glial ankyrins facilitate paranodal axoglial junction assembly.

    PubMed

    Chang, Kae-Jiun; Zollinger, Daniel R; Susuki, Keiichiro; Sherman, Diane L; Makara, Michael A; Brophy, Peter J; Cooper, Edward C; Bennett, Vann; Mohler, Peter J; Rasband, Matthew N

    2014-12-01

    Neuron-glia interactions establish functional membrane domains along myelinated axons. These include nodes of Ranvier, paranodal axoglial junctions and juxtaparanodes. Paranodal junctions are the largest vertebrate junctional adhesion complex, and they are essential for rapid saltatory conduction and contribute to assembly and maintenance of nodes. However, the molecular mechanisms underlying paranodal junction assembly are poorly understood. Ankyrins are cytoskeletal scaffolds traditionally associated with Na(+) channel clustering in neurons and are important for membrane domain establishment and maintenance in many cell types. Here we show that ankyrin-B, expressed by Schwann cells, and ankyrin-G, expressed by oligodendrocytes, are highly enriched at the glial side of paranodal junctions where they interact with the essential glial junctional component neurofascin 155. Conditional knockout of ankyrins in oligodendrocytes disrupts paranodal junction assembly and delays nerve conduction during early development in mice. Thus, glial ankyrins function as major scaffolds that facilitate early and efficient paranodal junction assembly in the developing CNS. PMID:25362471

  17. Identification of canine glial cells by nonradioactive in situ hybridization.

    PubMed

    Graber, H U; Zurbriggen, A; Vandevelde, M

    1993-01-01

    Studies on the development of the canine central nervous system and on demyelinating diseases demand unequivocal identification of the glial cells. For that reason, nonradioactive in situ hybridization (ISH) was performed in primary dog brain cell cultures (DBCC) and in brain sections of neonatal dogs. Specific RNA probes were used to detect messenger RNA (mRNA) coding for proteolipid protein (PLP), myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP). PLP and MBP are markers for oligodendrocytes, GFAP for astrocytes. Oligodendrocytes positive for PLP and MBP mRNA were found in both DBCC and brain sections of neonatal dogs. Astrocytes expressing GFAP specific mRNA were detected in DBCC and in brain sections. These cells were evenly distributed in the white matter with additional accumulation in the membrana limitans gliae superficialis, around the ventricles and blood vessels. ISH clearly improves the study of oligodendrocytes in brain sections as, in contrast to the immunohistochemical methods, this technique allows to identify individual cells. PMID:8135072

  18. HDAC1 regulates the proliferation of radial glial cells in the developing Xenopus tectum.

    PubMed

    Tao, Yi; Ruan, Hangze; Guo, Xia; Li, Lixin; Shen, Wanhua

    2015-01-01

    In the developing central nervous system (CNS), progenitor cells differentiate into progeny to form functional neural circuits. Radial glial cells (RGs) are a transient progenitor cell type that is present during neurogenesis. It is thought that a combination of neural trophic factors, neurotransmitters and electrical activity regulates the proliferation and differentiation of RGs. However, it is less clear how epigenetic modulation changes RG proliferation. We sought to explore the effect of histone deacetylase (HDAC) activity on the proliferation of RGs in the visual optic tectum of Xenopus laevis. We found that the number of BrdU-labeled precursor cells along the ventricular layer of the tectum decrease developmentally from stage 46 to stage 49. The co-labeling of BrdU-positive cells with brain lipid-binding protein (BLBP), a radial glia marker, showed that the majority of BrdU-labeled cells along the tectal midline are RGs. BLBP-positive cells are also developmentally decreased with the maturation of the brain. Furthermore, HDAC1 expression is developmentally down-regulated in tectal cells, especially in the ventricular layer of the tectum. Pharmacological blockade of HDACs using Trichostatin A (TSA) or Valproic acid (VPA) decreased the number of BrdU-positive, BLBP-positive and co-labeling cells. Specific knockdown of HDAC1 by a morpholino (HDAC1-MO) decreased the number of BrdU- and BLBP-labeled cells and increased the acetylation level of histone H4 at lysine 12 (H4K12). The visual deprivation-induced increase in BrdU- and BLBP-positive cells was blocked by HDAC1 knockdown at stage 49 tadpoles. These data demonstrate that HDAC1 regulates radial glia cell proliferation in the developing optical tectum of Xenopus laevis. PMID:25789466

  19. Predetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system

    PubMed Central

    von Hilchen, Christian M.; Bustos, Álvaro E.; Giangrande, Angela; Technau, Gerhard M.; Altenhein, Benjamin

    2013-01-01

    One of the numerous functions of glial cells in Drosophila is the ensheathment of neurons to isolate them from the potassium-rich haemolymph, thereby establishing the blood-brain barrier. Peripheral nerves of flies are surrounded by three distinct glial cell types. Although all embryonic peripheral glia (ePG) have been identified on a single-cell level, their contribution to the three glial sheaths is not known. We used the Flybow system to label and identify each individual ePG in the living embryo and followed them into third instar larva. We demonstrate that all ePG persist until the end of larval development and some even to adulthood. We uncover the origin of all three glial sheaths and describe the larval differentiation of each peripheral glial cell in detail. Interestingly, just one ePG (ePG2) exhibits mitotic activity during larval stages, giving rise to up to 30 glial cells along a single peripheral nerve tract forming the outermost perineurial layer. The unique mitotic ability of ePG2 and the layer affiliation of additional cells were confirmed by in vivo ablation experiments and layer-specific block of cell cycle progression. The number of cells generated by this glial progenitor and hence the control of perineurial hyperplasia correlate with the length of the abdominal nerves. By contrast, the wrapping and subperineurial glia layers show enormous hypertrophy in response to larval growth. This characterisation of the embryonic origin and development of each glial sheath will facilitate functional studies, as they can now be addressed distinctively and genetically manipulated in the embryo. PMID:23903191

  20. Assessment of Glial Function in the In Vivo Retina

    PubMed Central

    Srienc, Anja I.; Kornfield, Tess E.; Mishra, Anusha; Burian, Michael A.; Newman, Eric A.

    2013-01-01

    Glial cells, traditionally viewed as passive elements in the CNS, are now known to have many essential functions. Many of these functions have been revealed by work on retinal glial cells. This work has been conducted almost exclusively on ex vivo preparations and it is essential that retinal glial cell functions be characterized in vivo as well. To this end, we describe an in vivo rat preparation to assess the functions of retinal glial cells. The retina of anesthetized, paralyzed rats is viewed with confocal microscopy and laser speckle flowmetry to monitor glial cell responses and retinal blood flow. Retinal glial cells are labeled with the Ca2+ indicator dye Oregon Green 488 BAPTA-1 and the caged Ca2+ compound NP-EGTA by injection of the compounds into the vitreous humor. Glial cells are stimulated by photolysis of caged Ca2+ and the activation state of the cells assessed by monitoring Ca2+ indicator dye fluorescence. We find that, as in the ex vivo retina, retinal glial cells in vivo generate both spontaneous and evoked intercellular Ca2+ waves. We also find that stimulation of glial cells leads to the dilation of neighboring retinal arterioles, supporting the hypothesis that glial cells regulate blood flow in the retina. This in vivo preparation holds great promise for assessing glial cell function in the healthy and pathological retina. PMID:22144328

  1. microRNA regulation of neural precursor self-renewal and differentiation

    PubMed Central

    Hudish, Laura I; Appel, Bruce

    2014-01-01

    During early stages of development of the vertebrate central nervous system, neural precursors divide symmetrically to produce new precursors, thereby expanding the precursor population. During middle stages of neural development, precursors switch to an asymmetric division pattern whereby each mitosis produces one new precursor and one cell that differentiates as a neuron or glial cell. At late stages of development, most precursors stop dividing and terminally differentiate. Par complex proteins are associated with the apical membrane of neural precursors and promote precursor self-renewal. How Par proteins are down regulated to bring precursor self-renewal to an end has not been known. Our investigations of zebrafish neural development revealed that the microRNA miR-219 negatively regulates apical Par proteins, thereby promoting cessation of neural precursor division and driving terminal differentiation.

  2. Diet - clear liquid

    MedlinePlus

    ... It includes things such as: Clear broth Tea Cranberry juice Jell-O Popsicles This diet is easier ... such as grape juice, filtered apple juice, and cranberry juice Soup broth (bouillon or consommé) Clear sodas, ...

  3. Expression of gangliosides on glial and neuronal cells in normal and pathological adult human brain.

    PubMed

    Marconi, Silvia; De Toni, Luca; Lovato, Laura; Tedeschi, Elisa; Gaetti, Luigi; Acler, Michele; Bonetti, Bruno

    2005-12-30

    Few studies have assessed the glycolipid phenotype of glial cells in the human central nervous system (CNS) in situ. We investigated by immunohistochemistry the expression and cellular distribution of a panel of gangliosides (GM1, GM2, acetyl-GM3, GD1a, GD1b, GD2, GD3, GT1b, GQ1b and the A2B5 antibody) in adult, human normal and pathological brain, namely multiple sclerosis (MS) and other neurological diseases (OND). In normal conditions, we found diffuse expression in the white matter of most gangliosides tested, with the exception of acetyl-GM3, GT1b and GQ1b. By double immunofluorescence with phenotypic markers, GM1 and GD1b were preferentially expressed on GFAP+ astrocytes, GD1a on NG2+ oligodendrocyte precursors, A2B5 immunostained both populations, while GD2 was selectively present on mature oligodendrocytes. In the gray matter, only GM1, GD2 and A2B5 were present on neuronal cells. Interestingly, those gangliosides present on astrocytes in normal conditions were preferentially expressed on NG2+ cells in chronic MS lesions and in OND. Selective expression of GT1b upon astrocytes and NG2+ cells was instead observed in MS lesions, but not in OND. The definition of the glycolipid phenotype of CNS glial cells may be useful to identify distinct biological glial subsets and provide insights on the potential autoantigenic role of gangliosides in CNS autoimmune diseases. PMID:16313974

  4. Neural Precursor Lineages Specify Distinct Neocortical Pyramidal Neuron Types

    PubMed Central

    Tyler, William A.; Medalla, Maria; Guillamon-Vivancos, Teresa

    2015-01-01

    Several neural precursor populations contemporaneously generate neurons in the developing neocortex. Specifically, radial glial stem cells of the dorsal telencephalon divide asymmetrically to produce excitatory neurons, but also indirectly to produce neurons via three types of intermediate progenitor cells. Why so many precursor types are needed to produce neurons has not been established; whether different intermediate progenitor cells merely expand the output of radial glia or instead generate distinct types of neurons is unknown. Here we use a novel genetic fate mapping technique to simultaneously track multiple precursor streams in the developing mouse brain and show that layer 2 and 3 pyramidal neurons exhibit distinctive electrophysiological and structural properties depending upon their precursor cell type of origin. These data indicate that individual precursor subclasses synchronously produce functionally different neurons, even within the same lamina, and identify a primary mechanism leading to cortical neuronal diversity. PMID:25878286

  5. GnRH Episodic Secretion Is Altered by Pharmacological Blockade of Gap Junctions: Possible Involvement of Glial Cells.

    PubMed

    Pinet-Charvet, Caroline; Geller, Sarah; Desroziers, Elodie; Ottogalli, Monique; Lomet, Didier; Georgelin, Christine; Tillet, Yves; Franceschini, Isabelle; Vaudin, Pascal; Duittoz, Anne

    2016-01-01

    Episodic release of GnRH is essential for reproductive function. In vitro studies have established that this episodic release is an endogenous property of GnRH neurons and that GnRH secretory pulses are associated with synchronization of GnRH neuron activity. The cellular mechanisms by which GnRH neurons synchronize remain largely unknown. There is no clear evidence of physical coupling of GnRH neurons through gap junctions to explain episodic synchronization. However, coupling of glial cells through gap junctions has been shown to regulate neuron activity in their microenvironment. The present study investigated whether glial cell communication through gap junctions plays a role in GnRH neuron activity and secretion in the mouse. Our findings show that Glial Fibrillary Acidic Protein-expressing glial cells located in the median eminence in close vicinity to GnRH fibers expressed Gja1 encoding connexin-43. To study the impact of glial-gap junction coupling on GnRH neuron activity, an in vitro model of primary cultures from mouse embryo nasal placodes was used. In this model, GnRH neurons possess a glial microenvironment and were able to release GnRH in an episodic manner. Our findings show that in vitro glial cells forming the microenvironment of GnRH neurons expressed connexin-43 and displayed functional gap junctions. Pharmacological blockade of the gap junctions with 50 μM 18-α-glycyrrhetinic acid decreased GnRH secretion by reducing pulse frequency and amplitude, suppressed neuronal synchronization and drastically reduced spontaneous electrical activity, all these effects were reversed upon 18-α-glycyrrhetinic acid washout. PMID:26562259

  6. [Studies on potassium transport through glial cell membranes (author's transl)].

    PubMed

    Coles, J A; Gardner-Medwin, A R; Tsacopoulos, M

    1980-04-01

    The retina of the honeybee drone is used as a model for the study of ion movements across the membranes of the glial cells caused by changes in the extracellular potassium concentration. The values found for changes in extracellular potential suggest that at least some of the potassium that enters glial cells in an active region of tissue is associated with an efflux of potassium from parts of the glial syncytium not affected by an increase in extracellular potassium concentration. In addition, it appears that ions other than K+ cross the glial membrane. PMID:7421023

  7. Enteric glial cells have specific immunosuppressive properties.

    PubMed

    Kermarrec, Laetitia; Durand, Tony; Neunlist, Michel; Naveilhan, Philippe; Neveu, Isabelle

    2016-06-15

    Enteric glial cells (EGC) have trophic and neuroregulatory functions in the enteric nervous system, but whether they exert a direct effect on immune cells is unknown. Here, we used co-cultures to show that human EGC can inhibit the proliferation of activated T lymphocytes. Interestingly, EGC from Crohn's patients were effective at one EGC for two T cells whereas EGC from control patients required a ratio of 1:1. These data suggest that EGC contribute to local immune homeostasis in the gastrointestinal wall. They also raise the possibility that EGC have particular immunosuppressive properties in inflammatory bowel diseases such as Crohn's disease. PMID:27235353

  8. Retinal Glial Cells Enhance Human Vision Acuity

    NASA Astrophysics Data System (ADS)

    Labin, A. M.; Ribak, E. N.

    2010-04-01

    We construct a light-guiding model of the retina outside the fovea, in which an array of glial (Muller) cells permeates the depth of the retina down to the photoreceptors. Based on measured refractive indices, we propagate light to obtain a significant increase of the intensity at the photoreceptors. For pupils up to 6 mm width, the coupling between neighboring cells is only a few percent. Low cross talk over the whole visible spectrum also explains the insensitivity to chromatic aberrations of the eye. The retina is revealed as an optimal structure designed for improving the sharpness of images.

  9. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function

    PubMed Central

    Nagayach, Aarti; Patro, Nisha; Patro, Ishan

    2014-01-01

    Behavioral impairments are the most empirical consequence of diabetes mellitus documented in both humans and animal models, but the underlying causes are still poorly understood. As the cerebellum plays a major role in coordination and execution of the motor functions, we investigated the possible involvement of glial activation, cellular degeneration and glutamate transportation in the cerebellum of rats, rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/kg body weight; intraperitoneally). Motor function alterations were studied using Rotarod test (motor coordination) and grip strength (muscle activity) at 2nd, 4th, 6th, 8th, 10th, and 12th week post-diabetic confirmation. Scenario of glial (astroglia and microglia) activation, cell death and glutamate transportation was gaged using immunohistochemistry, histological study and image analysis. Cellular degeneration was clearly demarcated in the diabetic cerebellum. Glial cells were showing sequential and marked activation following diabetes in terms of both morphology and cell number. Bergmann glial cells were hypertrophied and distorted. Active caspase-3 positive apoptotic cells were profoundly present in all three cerebellar layers. Reduced co-labeling of GLT-1 and GFAP revealed the altered glutamate transportation in cerebellum following diabetes. These results, exclusively derived from histology, immunohistochemistry and cellular quantification, provide first insight over the associative reciprocity between the glial activation, cellular degeneration and reduced glutamate transportation, which presumably lead to the behavioral alterations following STZ-induced diabetes. PMID:25400546

  10. Protein kinase activators alter glial cholesterol esterification

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-05-01

    Similar to nonneural tissues, the activity of glial acyl-CoA cholesterol acyltransferase is controlled by a phosphorylation and dephosphorylation mechanism. Manipulation of cyclic AMP content did not alter the cellular cholesterol esterification, suggesting that cyclic AMP is not a bioregulator in this case. Therefore, the authors tested the effect of phorbol-12-myristate 13-acetate (PMA) on cellular cholesterol esterification to determine the involvement of protein kinase C. PMA has a potent effect on cellular cholesterol esterification. PMA depresses cholesterol esterification initially, but cells recover from inhibition and the result was higher cholesterol esterification, suggesting dual effects of protein kinase C. Studies of other phorbol analogues and other protein kinase C activators such as merezein indicate the involvement of protein kinase C. Oleoyl-acetyl glycerol duplicates the effect of PMA. This observation is consistent with a diacyl-glycerol-protein kinase-dependent reaction. Calcium ionophore A23187 was ineffective in promoting the effect of PMA. They concluded that a calcium-independent and protein C-dependent pathway regulated glial cholesterol esterification.

  11. Glial cells: Old cells with new twists

    PubMed Central

    Ndubaku, Ugo; de Bellard, Maria Elena

    2008-01-01

    Summary Based on their characteristics and function – migration, neural protection, proliferation, axonal guidance and trophic effects – glial cells may be regarded as probably the most versatile cells in our body. For many years, these cells were considered as simply support cells for neurons. Recently, it has been shown that they are more versatile than previously believed – as true stem cells in the nervous system – and are important players in neural function and development. There are several glial cell types in the nervous system: the two most abundant are oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system. Although both of these cells are responsible for myelination, their developmental origins are quite different. Oligodendrocytes originate from small niche populations from different regions of the central nervous system, while Schwann cells develop from a stem cell population (the neural crest) that gives rise to many cell derivatives besides glia and which is a highly migratory group of cells. PMID:18068219

  12. CNS Injury, Glial Scars, and Inflammation

    PubMed Central

    Fitch, Michael T.; Silver, Jerry

    2008-01-01

    Spinal cord and brain injuries lead to complex cellular and molecular interactions within the central nervous system in an attempt to repair the initial tissue damage. Many studies have illustrated the importance of the glial cell response to injury, and the influences of inflammation and wound healing processes on the overall morbidity and permanent disability that result. The abortive attempts of neuronal regeneration after spinal cord injury are influenced by inflammatory cell activation, reactive astrogliosis and the production of both growth promoting and inhibitory extracellular molecules. Despite the historical perspective that the glial scar was a mechanical barrier to regeneration, inhibitory molecules in the forming scar and methods to overcome them have suggested molecular modification strategies to allow neuronal growth and functional regeneration. Unlike myelin associated inhibitory molecules, which remain at largely static levels before and after central nervous system trauma, inhibitory extracellular matrix molecules are dramatically upregulated during the inflammatory stages after injury providing a window of opportunity for the delivery of candidate therapeutic interventions. While high dose methylprednisolone steroid therapy alone has not proved to be the solution to this difficult clinical problem, other strategies for modulating inflammation and changing the make up of inhibitory molecules in the extracellular matrix are providing robust evidence that rehabilitation after spinal cord and brain injury has the potential to significantly change the outcome for what was once thought to be permanent disability. PMID:17617407

  13. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

    PubMed

    Stanga, Serena; Zanou, Nadège; Audouard, Emilie; Tasiaux, Bernadette; Contino, Sabrina; Vandermeulen, Gaëlle; René, Frédérique; Loeffler, Jean-Philippe; Clotman, Frédéric; Gailly, Philippe; Dewachter, Ilse; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2016-05-01

    Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation. PMID:26718890

  14. Glial Na(+) -dependent ion transporters in pathophysiological conditions.

    PubMed

    Boscia, Francesca; Begum, Gulnaz; Pignataro, Giuseppe; Sirabella, Rossana; Cuomo, Ornella; Casamassa, Antonella; Sun, Dandan; Annunziato, Lucio

    2016-10-01

    Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697. PMID:27458821

  15. Glial cells as drug targets: What does it take?

    PubMed

    Möller, Thomas; Boddeke, Hendrikus W G M

    2016-10-01

    The last two decades have brought a significant increase in our understanding of glial biology and glial contribution to CNS disease. Yet, despite the fact that glial cells make up the majority of CNS cells, no drug specifically targeting glial cells is on the market. Given the long development times of CNS drugs, on average over 12 years, this is not completely surprising. However, there is increasing interest from academia and industry to exploit glial targets to develop drugs for the benefit of patients with currently limited or no therapeutic options. CNS drug development has a high attrition rate and has encountered many challenges. It seems unlikely that developing drugs against glial targets would be any less demanding. However, the knowledge generated in traditional CNS drug discovery teaches valuable lessons, which could enable the glial community to accelerate the cycle time from basic discovery to drug development. In this review we will discuss steps necessary to bring a "glial target idea" to a clinical development program. GLIA 2016;64:1742-1754. PMID:27121701

  16. Glial heterotopia of the lip: A rare presentation

    PubMed Central

    Dadaci, Mehmet; Bayram, Fazli Cengiz; Ince, Bilsev; Bilgen, Fatma

    2016-01-01

    Glial heterotopia represents collections of normal glial tissue in an abnormal location distant to the central nervous system or spinal canal with no intracranial connectivity. Nasal gliomas are non-neoplastic midline tumours, with limited growth potential and no similarity to the central nervous system gliomas. The nose and the nasopharynx are the most common sites of location. Existence of glial heterotopia in the lip region is a rare developmental disorder. We report a case of large glial heterotopia in the upper lip region in a full-term female newborn which had intracranial extension with a fibrotic band. After the surgery, there was no recurrence in the follow-up period of 3 years. When glial heterotopia, which is a rare midline anomaly, is suspected, possible intracranial connection and properties of the mass should be evaluated by magnetic resonance imaging. By this way, lower complication rate and better aesthetic results can be achieved with early diagnosis and proper surgery.

  17. Photodynamic damage of glial cells in crayfish ventral nerve cord

    NASA Astrophysics Data System (ADS)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  18. Photodynamic damage of glial cells in crayfish ventral nerve cord

    NASA Astrophysics Data System (ADS)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2010-10-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  19. Cornichons modify channel properties of recombinant and glial AMPA receptors

    PubMed Central

    Coombs, Ian D.; Soto, David; Zonouzi, Marzieh; Renzi, Massimiliano; Shelley, Chris; Farrant, Mark; Cull-Candy, Stuart G.

    2012-01-01

    Ionotropic glutamate receptors, which underlie a majority of excitatory synaptic transmission in the CNS, associate with transmembrane proteins that modify their intracellular trafficking and channel gating. For AMPA-type glutamate receptors (AMPARs), significant advances have been made in our understanding of their regulation by transmembrane AMPAR regulatory proteins (TARPs). Less is known about the functional influence of cornichons – unrelated AMPAR-interacting proteins, identified by proteomic analysis. Here we confirm that cornichon homologs 2 and 3 (CNIH-2 and CNIH-3), but not CNIH-1, slow the deactivation and desensitization of both GluA2-containing calcium-impermeable (CI-) and GluA2-lacking calcium-permeable (CP-) AMPARs expressed in tsA201 cells. CNIH-2 and -3 also enhanced the glutamate sensitivity, single-channel conductance and calcium permeability of CP-AMPARs, while decreasing their block by intracellular polyamines. We examined the potential effects of CNIHs on native AMPARs by recording from rat optic nerve oligodendrocyte precursor cells (OPCs), known to express a significant population of CP-AMPARs. These glial cells exhibited surface labelling with an anti-CNIH-2/3 antibody. Two features of their AMPAR-mediated currents – the relative efficacy of the partial agonist kainate (IKA/IGlu ratio 0.4), and a greater than five-fold potentiation of kainate responses by cyclothiazide – suggest AMPAR association with CNIHs. Additionally, overexpression of CNIH-3 in OPCs markedly slowed AMPAR desensitization. Together, our experiments support the view that CNIHs are capable of altering key properties of AMPARs and suggest that they may do so in glia. PMID:22815494

  20. Neuronal vs glial glutamate uptake: Resolving the conundrum.

    PubMed

    Danbolt, N C; Furness, D N; Zhou, Y

    2016-09-01

    Neither normal brain function nor the pathological processes involved in neurological diseases can be adequately understood without knowledge of the release, uptake and metabolism of glutamate. The reason for this is that glutamate (a) is the most abundant amino acid in the brain, (b) is at the cross-roads between several metabolic pathways, and (c) serves as the major excitatory neurotransmitter. In fact most brain cells express glutamate receptors and are thereby influenced by extracellular glutamate. In agreement, brain cells have powerful uptake systems that constantly remove glutamate from the extracellular fluid and thereby limit receptor activation. It has been clear since the 1970s that both astrocytes and neurons express glutamate transporters. However the relative contribution of neuronal and glial transporters to the total glutamate uptake activity, however, as well as their functional importance, has been hotly debated ever since. The present short review provides (a) an overview of what we know about neuronal glutamate uptake as well as an historical description of how we got there, and (b) a hypothesis reconciling apparently contradicting observations thereby possibly resolving the paradox. PMID:27235987

  1. Bidirectional Neuro-Glial Signaling Modalities in the Hypothalamus: Role in Neurohumoral Regulation

    PubMed Central

    Stern, JE; JA, Filosa

    2013-01-01

    Maintenance of bodily homeostasis requires concerted interactions between the neuroendocrine and the autonomic nervous systems, which generate adaptive neurohumoral outflows in response to a variety of sensory inputs. Moreover, an exacerbated neurohumoral activation is recognized to be a critical component in numerous disease conditions, including hypertension, heart failure, stress, and the metabolic syndrome. Thus, the study of neurohumoral regulation in the brain is of critical physiological and pathological relevance. Most of the work in the field over the last decades has been centered on elucidating neuronal mechanisms and pathways involved in neurohumoral control. More recently however, it has become increasingly clear that non-neuronal cell types, particularly astrocytes and microglial cells, actively participate in information processing in areas of the brain involved in neuroendocrine and autonomic control. Thus, in this work, we review recent advances in our understanding of neuro-glial interactions within the hypothalamic supraoptic and paraventricular nuclei, and their impact on neurohumoral integration in these nuclei. Major topics reviewed include anatomical and functional properties of the neuro-glial microenvironment, neuron-to-astrocyte signaling, gliotransmitters, and astrocytes regulation of signaling molecules in the extracellular space. We aimed in this review to highlight the importance of neuro-glial bidirectional interactions in information processing within major hypothalamic networks involved in neurohumoral integration. PMID:23375650

  2. How Does Transcranial Magnetic Stimulation Influence Glial Cells in the Central Nervous System?

    PubMed Central

    Cullen, Carlie L.; Young, Kaylene M.

    2016-01-01

    Transcranial magnetic stimulation (TMS) is widely used in the clinic, and while it has a direct effect on neuronal excitability, the beneficial effects experienced by patients are likely to include the indirect activation of other cell types. Research conducted over the past two decades has made it increasingly clear that a population of non-neuronal cells, collectively known as glia, respond to and facilitate neuronal signaling. Each glial cell type has the ability to respond to electrical activity directly or indirectly, making them likely cellular effectors of TMS. TMS has been shown to enhance adult neural stem and progenitor cell (NSPC) proliferation, but the effect on cell survival and differentiation is less certain. Furthermore there is limited information regarding the response of astrocytes and microglia to TMS, and a complete paucity of data relating to the response of oligodendrocyte-lineage cells to this treatment. However, due to the critical and yet multifaceted role of glial cells in the central nervous system (CNS), the influence that TMS has on glial cells is certainly an area that warrants careful examination. PMID:27092058

  3. Axon ensheathment and metabolic supply by glial cells in Drosophila.

    PubMed

    Schirmeier, Stefanie; Matzat, Till; Klämbt, Christian

    2016-06-15

    Neuronal function requires constant working conditions and a well-balanced supply of ions and metabolites. The metabolic homeostasis in the nervous system crucially depends on the presence of glial cells, which nurture and isolate neuronal cells. Here we review recent findings on how these tasks are performed by glial cells in the genetically amenable model organism Drosophila melanogaster. Despite the small size of its nervous system, which would allow diffusion of metabolites, a surprising division of labor between glial cells and neurons is evident. Glial cells are glycolytically active and transfer lactate and alanine to neurons. Neurons in turn do not require glycolysis but can use the glially provided compounds for their energy homeostasis. Besides feeding neurons, glial cells also insulate neuronal axons in a way similar to Remak fibers in the mammalian nervous system. The molecular mechanisms orchestrating this insulation require neuregulin signaling and resemble the mechanisms controlling glial differentiation in mammals surprisingly well. We hypothesize that metabolic cross talk and insulation of neurons by glial cells emerged early during evolution as two closely interlinked features in the nervous system. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26367447

  4. Neuron-independent Ca(2+) signaling in glial cells of snail's brain.

    PubMed

    Kojima, S; Ogawa, H; Kouuchi, T; Nidaira, T; Hosono, T; Ito, E

    2000-01-01

    To directly monitor the glial activity in the CNS of the pond snail, Lymnaea stagnalis, we optically measured the electrical responses in the cerebral ganglion and median lip nerve to electrical stimulation of the distal end of the median lip nerve. Using a voltage-sensitive dye, RH155, we detected a composite depolarizing response in the cerebral ganglion, which consisted of a fast transient depolarizing response corresponding to a compound action potential and a slow depolarizing response. The slow depolarizing response was observed more clearly in an isolated median lip nerve and also detected by extracellular recording. In the median lip nerve preparation, the slow depolarizing response was suppressed by an L-type Ca(2+) channel blocker, nifedipine, and was resistant to tetrodotoxin and Na(+)-free conditions. Together with the fact that a delay from the compound action potential to the slow depolarizing response was not constant, these results suggested that the slow depolarizing response was not a postsynaptic response. Because the signals of the action potentials appeared on the saturated slow depolarizing responses during repetitive stimulation, the slow depolarizing response was suggested to originate from glial cells. The contribution of the L-type Ca(2+) current to the slow depolarizing response was confirmed by optical recording in the presence of Ba(2+) and also supported by intracellular Ca(2+) measurement. Our results suggested that electrical stimulation directly triggers glial Ca(2+) entry through L-type Ca(2+) channels, providing evidence for the generation of glial depolarization independent of neuronal activity in invertebrates. PMID:11036223

  5. Clarifying Tissue Clearing

    PubMed Central

    Richardson, Douglas S.; Lichtman, Jeff W.

    2015-01-01

    Summary Biological specimens are intrinsically three dimensional; however because of the obscuring effects of light scatter, imaging deep into a tissue volume is problematic. Although efforts to eliminate the scatter by “clearing” the tissue have been ongoing for over a century, there have been a large number of recent innovations. This review introduces the physical basis for light-scatter in tissue, describes the mechanisms underlying various clearing techniques, and discusses several of the major advances in light microscopy for imaging cleared tissue. PMID:26186186

  6. Keeping the Channels Clear.

    ERIC Educational Resources Information Center

    Weisberg, Jacob

    1996-01-01

    Institutional communication channels need to be clear so that administrators have the information necessary to make informed decisions whenever and wherever required. The secret is to treat the arrival of information--the good, the bad, and the neutral--in essentially the same way, and always thank the person who brings the news, regardless of its…

  7. Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction

    NASA Astrophysics Data System (ADS)

    Hoegg-Beiler, Maja B.; Sirisi, Sònia; Orozco, Ian J.; Ferrer, Isidre; Hohensee, Svea; Auberson, Muriel; Gödde, Kathrin; Vilches, Clara; de Heredia, Miguel López; Nunes, Virginia; Estévez, Raúl; Jentsch, Thomas J.

    2014-03-01

    Defects in the astrocytic membrane protein MLC1, the adhesion molecule GlialCAM or the chloride channel ClC-2 underlie human leukoencephalopathies. Whereas GlialCAM binds ClC-2 and MLC1, and modifies ClC-2 currents in vitro, no functional connections between MLC1 and ClC-2 are known. Here we investigate this by generating loss-of-function Glialcam and Mlc1 mouse models manifesting myelin vacuolization. We find that ClC-2 is unnecessary for MLC1 and GlialCAM localization in brain, whereas GlialCAM is important for targeting MLC1 and ClC-2 to specialized glial domains in vivo and for modifying ClC-2’s biophysical properties specifically in oligodendrocytes (OLs), the cells chiefly affected by vacuolization. Unexpectedly, MLC1 is crucial for proper localization of GlialCAM and ClC-2, and for changing ClC-2 currents. Our data unmask an unforeseen functional relationship between MLC1 and ClC-2 in vivo, which is probably mediated by GlialCAM, and suggest that ClC-2 participates in the pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts.

  8. Globular glial tauopathies (GGT): consensus recommendations.

    PubMed

    Ahmed, Zeshan; Bigio, Eileen H; Budka, Herbert; Dickson, Dennis W; Ferrer, Isidro; Ghetti, Bernardino; Giaccone, Giorgio; Hatanpaa, Kimmo J; Holton, Janice L; Josephs, Keith A; Powers, James; Spina, Salvatore; Takahashi, Hitoshi; White, Charles L; Revesz, Tamas; Kovacs, Gabor G

    2013-10-01

    Recent studies have highlighted a group of 4-repeat (4R) tauopathies that are characterised neuropathologically by widespread, globular glial inclusions (GGIs). Tau immunohistochemistry reveals 4R immunoreactive globular oligodendroglial and astrocytic inclusions and the latter are predominantly negative for Gallyas silver staining. These cases are associated with a range of clinical presentations, which correlate with the severity and distribution of underlying tau pathology and neurodegeneration. Their heterogeneous clinicopathological features combined with their rarity and under-recognition have led to cases characterised by GGIs being described in the literature using various and redundant terminologies. In this report, a group of neuropathologists form a consensus on the terminology and classification of cases with GGIs. After studying microscopic images from previously reported cases with suspected GGIs (n = 22), this panel of neuropathologists with extensive experience in the diagnosis of neurodegenerative diseases and a documented record of previous experience with at least one case with GGIs, agreed that (1) GGIs were present in all the cases reviewed; (2) the morphology of globular astrocytic inclusions was different to tufted astrocytes and finally that (3) the cases represented a number of different neuropathological subtypes. They also agreed that the different morphological subtypes are likely to be part of a spectrum of a distinct disease entity, for which they recommend that the overarching term globular glial tauopathy (GGT) should be used. Type I cases typically present with frontotemporal dementia, which correlates with the fronto-temporal distribution of pathology. Type II cases are characterised by pyramidal features reflecting motor cortex involvement and corticospinal tract degeneration. Type III cases can present with a combination of frontotemporal dementia and motor neuron disease with fronto-temporal cortex, motor cortex and

  9. Globular glial tauopathies (GGT): consensus recommendations

    PubMed Central

    Bigio, Eileen H.; Budka, Herbert; Dickson, Dennis W.; Ferrer, Isidro; Ghetti, Bernardino; Giaccone, Giorgio; Hatanpaa, Kimmo J.; Holton, Janice L.; Josephs, Keith A.; Powers, James; Spina, Salvatore; Takahashi, Hitoshi; White, Charles L.; Revesz, Tamas

    2014-01-01

    Rrecent studies have highlighted a group of 4-repeat (4R) tauopathies that are characterised neuropathologically by widespread, globular glial inclusions (GGIs). Tau immunohistochemistry reveals 4R immunore-active globular oligodendroglial and astrocytic inclusions and the latter are predominantly negative for Gallyas silver staining. These cases are associated with a range of clinical presentations, which correlate with the severity and distribution of underlying tau pathology and neurodegeneration. Their heterogeneous clinicopathological features combined with their rarity and under-recognition have led to cases characterised by GGIs being described in the literature using various and redundant terminologies. In this report, a group of neuropathologists form a consensus on the terminology and classification of cases with GGIs. After studying microscopic images from previously reported cases with suspected GGIs (n = 22), this panel of neuropathologists with extensive experience in the diagnosis of neurodegenerative diseases and a documented record of previous experience with at least one case with GGIs, agreed that (1) GGIs were present in all the cases reviewed; (2) the morphology of globular astrocytic inclusions was different to tufted astrocytes and finally that (3) the cases represented a number of different neuropathological subtypes. They also agreed that the different morphological subtypes are likely to be part of a spectrum of a distinct disease entity, for which they recommend that the overarching term globular glial tauopathy (GGT) should be used. Type I cases typically present with frontotemporal dementia, which correlates with the fronto-temporal distribution of pathology. Type II cases are characterised by pyramidal features reflecting motor cortex involvement and corticospinal tract degeneration. Type III cases can present with a combination of frontotemporal dementia and motor neuron disease with fronto-temporal cortex, motor cortex and

  10. Nitric oxide mediates glial-induced neurodegeneration in Alexander disease.

    PubMed

    Wang, Liqun; Hagemann, Tracy L; Kalwa, Hermann; Michel, Thomas; Messing, Albee; Feany, Mel B

    2015-01-01

    Glia play critical roles in maintaining the structure and function of the nervous system; however, the specific contribution that astroglia make to neurodegeneration in human disease states remains largely undefined. Here we use Alexander disease, a serious degenerative neurological disorder caused by astrocyte dysfunction, to identify glial-derived NO as a signalling molecule triggering astrocyte-mediated neuronal degeneration. We further find that NO acts through cGMP signalling in neurons to promote cell death. Glial cells themselves also degenerate, via the DNA damage response and p53. Our findings thus define a specific mechanism for glial-induced non-cell autonomous neuronal cell death, and identify a potential therapeutic target for reducing cellular toxicity in Alexander disease, and possibly other neurodegenerative disorders with glial dysfunction. PMID:26608817

  11. Glial cell biology in the Great Lakes region.

    PubMed

    Feinstein, Douglas L; Skoff, Robert P

    2016-01-01

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration. PMID:27029404

  12. Nitric oxide mediates glial-induced neurodegeneration in Alexander disease

    PubMed Central

    Wang, Liqun; Hagemann, Tracy L.; Kalwa, Hermann; Michel, Thomas; Messing, Albee; Feany, Mel B.

    2015-01-01

    Glia play critical roles in maintaining the structure and function of the nervous system; however, the specific contribution that astroglia make to neurodegeneration in human disease states remains largely undefined. Here we use Alexander disease, a serious degenerative neurological disorder caused by astrocyte dysfunction, to identify glial-derived NO as a signalling molecule triggering astrocyte-mediated neuronal degeneration. We further find that NO acts through cGMP signalling in neurons to promote cell death. Glial cells themselves also degenerate, via the DNA damage response and p53. Our findings thus define a specific mechanism for glial-induced non-cell autonomous neuronal cell death, and identify a potential therapeutic target for reducing cellular toxicity in Alexander disease, and possibly other neurodegenerative disorders with glial dysfunction. PMID:26608817

  13. Glial cell inclusions and the pathogenesis of neurodegenerative diseases

    PubMed Central

    Miller, David W.; Cookson, Mark R.; Dickson, Dennis W.

    2006-01-01

    In this review, we discuss examples that show how glial-cell pathology is increasingly recognized in several neurodegenerative diseases. We also discuss the more provocative idea that some of the disorders that are currently considered to be neurodegenerative diseases might, in fact, be due to primary abnormalities in glia. Although the mechanism of glial pathology (i.e. modulating glutamate excitotoxicity) might be better established for amyotrophic lateral sclerosis (ALS), a role for neuronal–glial interactions in the pathogenesis of most neurodegenerative diseases is plausible. This burgeoning area of neuroscience will receive much attention in the future and it is expected that further understanding of basic neuronal–glial interactions will have a significant impact on the understanding of the fundamental nature of human neurodegenerative disorders. PMID:16614753

  14. Tissue optical immersion clearing.

    PubMed

    Genina, Elina A; Bashkatov, Alexey N; Tuchin, Valery V

    2010-11-01

    In this article, we discuss the optical immersion method based on refractive index matching of scatterers (e.g., collagen, elastin fibers, cells and cell compartments) and the ground material (interstitial fluid and/or cytoplasm) of tissue and blood under the action of exogenous optical clearing agents. We analyze the optical clearing of fibrous and cell-structured tissues and blood from the point of view of receiving more valuable, normally hidden, information from spectroscopic and polarization measurements, confocal microscopy, optical coherence and optical projection tomography, as well as from nonlinear spectroscopies, such as two-photon fluorescence and second-harmonic generation techniques. Some important applications of the immersion technique to glucose sensing, drug delivery monitoring, improvements of image contrast and imaging depth, nondistortive delivery of laser radiation and precision tissue laser photodisruption, among others, are also described. PMID:21050092

  15. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster

    PubMed Central

    Kis, Viktor; Barti, Benjámin; Lippai, Mónika; Sass, Miklós

    2015-01-01

    Lipid droplets (LDs) are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain’s LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp), as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain. PMID:26148013

  16. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster.

    PubMed

    Kis, Viktor; Barti, Benjámin; Lippai, Mónika; Sass, Miklós

    2015-01-01

    Lipid droplets (LDs) are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain's LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp), as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain. PMID:26148013

  17. Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2(+) cells

    PubMed Central

    Alghamdi, Badrah; Fern, Robert

    2015-01-01

    The extent to which NG-2(+) cells form a distinct population separate from astrocytes is central to understanding whether this important cell class is wholly an oligodendrocyte precursor cell (OPC) or has additional functions akin to those classically ascribed to astrocytes. Early immuno-staining studies indicate that NG-2(+) cells do not express the astrocyte marker GFAP, but orthogonal reconstructions of double-labeled confocal image stacks here reveal a significant degree of co-expression in individual cells within post-natal day 10 (P10) and adult rat optic nerve (RON) and rat cortex. Extensive scanning of various antibody/fixation/embedding approaches identified a protocol for selective post-embedded immuno-gold labeling. This first ultrastructural characterization of identified NG-2(+) cells revealed populations of both OPCs and astrocytes in P10 RON. NG-2(+) astrocytes had classic features including the presence of glial filaments but low levels of glial filament expression were also found in OPCs and myelinating oligodendrocytes. P0 RONs contained few OPCs but positively identified astrocytes were observed to ensheath pre-myelinated axons in a fashion previously described as a definitive marker of the oligodendrocyte lineage. Astrocyte ensheathment was also apparent in P10 RONs, was absent from developing nodes of Ranvier and was never associated with compact myelin. Astrocyte processes were also shown to encapsulate some oligodendrocyte somata. The data indicate that common criteria for delineating astrocytes and oligodendroglia are insufficiently robust and that astrocyte features ascribed to OPCs may arise from misidentification. PMID:26106302

  18. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury

    PubMed Central

    Laranjeira, Catia; Sandgren, Katarina; Kessaris, Nicoletta; Richardson, William; Potocnik, Alexandre; Vanden Berghe, Pieter; Pachnis, Vassilis

    2011-01-01

    The enteric nervous system (ENS) in mammals forms from neural crest cells during embryogenesis and early postnatal life. Nevertheless, multipotent progenitors of the ENS can be identified in the adult intestine using clonal cultures and in vivo transplantation assays. The identity of these neurogenic precursors in the adult gut and their relationship to the embryonic progenitors of the ENS are currently unknown. Using genetic fate mapping, we here demonstrate that mouse neural crest cells marked by SRY box–containing gene 10 (Sox10) generate the neuronal and glial lineages of enteric ganglia. Most neurons originated from progenitors residing in the gut during mid-gestation. Afterward, enteric neurogenesis was reduced, and it ceased between 1 and 3 months of postnatal life. Sox10-expressing cells present in the myenteric plexus of adult mice expressed glial markers, and we found no evidence that these cells participated in neurogenesis under steady-state conditions. However, they retained neurogenic potential, as they were capable of generating neurons with characteristics of enteric neurons in culture. Furthermore, enteric glia gave rise to neurons in vivo in response to chemical injury to the enteric ganglia. Our results indicate that despite the absence of constitutive neurogenesis in the adult gut, enteric glia maintain limited neurogenic potential, which can be activated by tissue dissociation or injury. PMID:21865647

  19. Evidence for clonal origin of neoplastic neuronal and glial cells in gangliogliomas.

    PubMed Central

    Zhu, J. J.; Leon, S. P.; Folkerth, R. D.; Guo, S. Z.; Wu, J. K.; Black, P. M.

    1997-01-01

    Gangliogliomas are rare tumors of the central nervous system that account for approximately 1% of all brain tumors. Histologically, gangliogliomas are composed of intimately admixed glial and neuronal components, the pathological origins of which remain to be characterized. Clonal analysis through examination of the pattern of the X chromosome inactivation allows one to distinguish monoclonal differentiation of a genetically abnormal progenitor cell from parallel, but independent, clonal expansion of two different cell types during tumorigenesis in biphasic neoplasms, such as gangliogliomas. In the present study, we investigated the clonality of eight gangliogliomas from female patients using both methylation- and transcription-based clonality assays at the androgen receptor locus (HUMARA) on the X chromosome. Among tumors from seven patients who were heterozygous at the HUMARA locus, five were identified as monoclonal with the methylation-based clonality assay, and the results were confirmed by the transcription-based method, whereas two were shown to be polyclonal by the methylation-based clonality assay but monoclonal by transcription-based clonality analysis. We conclude that the predominant cell types in most gangliogliomas are monoclonal in origin and derive from a common precursor cell that subsequently differentiates to form neoplastic glial and neuronal elements. Images Figure 2 Figure 3 PMID:9250169

  20. Neuron-glial trafficking of NH4+ and K+: separate routes of uptake into glial cells of bee retina.

    PubMed

    Marcaggi, Païkan; Jeanne, Marion; Coles, Jonathan A

    2004-02-01

    Ammonium (NH4+ and/or NH3) and K+ are released from active neurons and taken up by glial cells, and can modify glial cell behaviour. Study of these fluxes is most advanced in the retina of the honeybee drone, which consists essentially of identical neurons (photoreceptors) and identical glial cells (outer pigment cells). In isolated bee retinal glial cells, ammonium crosses the membrane as NH4+ on a Cl- cotransporter. We have now investigated, in the more physiological conditions of a retinal slice, whether the NH4+-Cl- cotransporter can transport K+ and whether the major K+ conductance can transport NH4+. We increased [NH4+] or [K+] in the superfusate and monitored uptake by recording from the glial cell syncytium or from interstitial space with microelectrodes selective for H+ or K+. In normal superfusate solution, ammonium acidified the glial cells but, after 6 min superfusion in low [Cl-] solution, ammonium alkalinized them. In the same low [Cl-] conditions, the rise in intraglial [K+] induced by an increase in superfusate [K+] was unchanged, i.e. no K+ flux on the Cl- cotransporter was detected. Ba2+ (5 mm) abolished the glial depolarization induced by K+ released from photoreceptors but did not reduce NH4+uptake. We estimate that when extracellular [NH4+] is increased, 62-100% is taken up by the NH4+-Cl- cotransporter and that when K+ is increased, 77-100% is taken up by routes selective for K+. This separation makes it possible that the glial uptake of NH4+ and of K+, and hence their signalling roles, might be regulated separately. PMID:15009144

  1. CLEARING OUT A GALAXY

    SciTech Connect

    Zubovas, Kastytis; King, Andrew

    2012-02-15

    It is widely suspected that active galactic nucleus (AGN) activity ultimately sweeps galaxies clear of their gas. We work out the observable properties required to achieve this. Large-scale AGN-driven outflows should have kinetic luminosities {approx}{eta} L{sub Edd}/2 {approx} 0.05 L{sub Edd} and momentum rates {approx}20 L{sub Edd}/c, where L{sub Edd} is the Eddington luminosity of the central black hole and {eta} {approx} 0.1 its radiative accretion efficiency. This creates an expanding two-phase medium in which molecular species coexist with hot gas, which can persist after the central AGN has switched off. This picture predicts outflow velocities {approx}1000-1500 km s{sup -1} and mass outflow rates up to 4000 M{sub Sun} yr{sup -1} on kpc scales, fixed mainly by the host galaxy velocity dispersion (or equivalently black hole mass). All these features agree with those of outflows observed in galaxies such as Mrk231. This strongly suggests that AGN activity is what sweeps galaxies clear of their gas on a dynamical timescale and makes them red and dead. We suggest future observational tests of this picture.

  2. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for glial and neural-related molecules in central nervous system mixed glial cell cultures: neurotrophins, growth factors and structural proteins

    PubMed Central

    Lisak, Robert P; Benjamins, Joyce A; Bealmear, Beverly; Nedelkoska, Liljana; Yao, Bin; Land, Susan; Studzinski, Diane

    2007-01-01

    Background In multiple sclerosis, inflammatory cells are found in both active and chronic lesions, and it is increasingly clear that cytokines are involved directly and indirectly in both formation and inhibition of lesions. We propose that cytokine mixtures typical of Th1 or Th2 lymphocytes, or monocyte/macrophages each induce unique molecular changes in glial cells. Methods To examine changes in gene expression that might occur in glial cells exposed to the secreted products of immune cells, we have used gene array analysis to assess the early effects of different cytokine mixtures on mixed CNS glia in culture. We compared the effects of cytokines typical of Th1 and Th2 lymphocytes and monocyte/macrophages (M/M) on CNS glia after 6 hours of treatment. Results In this paper we focus on changes with potential relevance for neuroprotection and axon/glial interactions. Each mixture of cytokines induced a unique pattern of changes in genes for neurotrophins, growth and maturation factors and related receptors; most notably an alternatively spliced form of trkC was markedly downregulated by Th1 and M/M cytokines, while Th2 cytokines upregulated BDNF. Genes for molecules of potential importance in axon/glial interactions, including cell adhesion molecules, connexins, and some molecules traditionally associated with neurons showed significant changes, while no genes for myelin-associated genes were regulated at this early time point. Unexpectedly, changes occurred in several genes for proteins initially associated with retina, cancer or bone development, and not previously reported in glial cells. Conclusion Each of the three cytokine mixtures induced specific changes in gene expression that could be altered by pharmacologic strategies to promote protection of the central nervous system. PMID:18088439

  3. Stereological assessment of the dorsal anterior cingulate cortex in schizophrenia: absence of changes in neuronal and glial densities

    PubMed Central

    Höistad, Malin; Heinsen, Helmut; Wicinski, Bridget; Schmitz, Christoph; Hof, Patrick R.

    2012-01-01

    Aims The prefrontal and anterior cingulate cortices are implicated in schizophrenia, and many studies have assessed volume, cortical thickness, and neuronal densities or numbers in these regions. Available data however are rather conflicting and no clear cortical alteration pattern has been established. Changes in oligodendrocytes and white matter have been observed in schizophrenia, introducing a hypothesis about a myelin deficit as a key event in disease development. Methods We investigated the dorsal anterior cingulate cortex (dACC) in 13 males with schizophrenia and 13 age- and gender-matched controls. We assessed stereologically the dACC volume, neuronal and glial densities, total neuron and glial numbers, and glia/neuron (GNI) ratios in both layers II-III and V-VI. Results We observed no differences in neuronal or glial densities. No changes were observed in dACC cortical volume, total neuron numbers, and total glial numbers in schizophrenia. This contrasts with previous findings and suggests that the dACC may not undergo as severe changes in schizophrenia as is generally believed. However, we observed higher glial densities in layers V-VI than in layers II-III in both controls and patients with schizophrenia, pointing to possible layer-specific effects on oligodendrocyte distribution during development. Conclusions Using rigorous stereological methods, we demonstrate a seemingly normal cortical organization in an important neocortical area for schizophrenia, emphasizing the importance of such morphometric approaches in quantitative neuropathology. We discuss the significance of subregion- and layer-specific alterations in the development of schizophrenia, and the discrepancies between post-mortem histopathological studies and in vivo brain imaging findings in patients. PMID:22860626

  4. Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of the African lungfish, Protopterus annectens (Dipnoi: Lepidosirenidae).

    PubMed

    Lazzari, Maurizio; Franceschini, Valeria

    2004-12-01

    The distribution of glial intermediate filament molecular markers, glial fibrillary acidic protein (GFAP), and vimentin, in the brain and spinal cord of the African lungfish, Protopterus annectens, was examined by light microscopy immunoperoxidase cytochemistry. Glial fibrillary acidic protein immunoreactivity is clear and is evident in a radial glial system. It consists of fibers of different lengths and thicknesses that are arranged in a regular radial pattern throughout the central nervous system (CNS). They emerge from generally immunopositive radial ependymoglia (tanycytes), lining the ventricular surface, and are directed from the ventricular wall to the meningeal surface. These fibers give rise to endfeet that are apposed to the subpial surface and to blood vessel walls forming the glia limitans externa and the perivascular glial layer, respectively. GFAP-immunopositive star-shaped astrocytes were not found in P. annectens CNS. In the gray matter of the spinal cord, cell bodies of immunopositive radial glia are displaced from the ependymal layer. Vimentin-immunopositive structures are represented by thin fibers mostly localized in the peripheral zones of the brain and the spinal cord. While a few stained fibers appear in the gray matter, the ependymal layer shows no antivimentin immunostaining. In P. annectens the immunocytochemical response of the astroglial intermediate filaments is typical of a mature astroglia cell lineage, since they primarily express GFAP immunoreactivity. This immunocytochemical study shows that the glial pattern of the African lungfish resembles that found in tetrapods such as urodeles and reptiles. The glial pattern of lungfishes is comparable to that of urodeles and reptiles but is not as complex as that of teleosts, birds, and mammals. PMID:15487019

  5. Distinctive response of CNS glial cells in oro-facial pain associated with injury, infection and inflammation

    PubMed Central

    2010-01-01

    injection led to minor microglial morphological changes and an induction of IκB-α mRNA in the CVO regions; a significant increase in IL-1β and IL-6 mRNA started only at 48 hours post-injection, when the induced pain-related behavior started to resolve. Our detailed analysis of CNS glial response clearly revealed that both nerve injury and oro-facial infection/inflammation induced CNS glial activation, but in a completely different pattern, which suggests a remarkable plasticity of glial cells in response to dynamic changes in their microenvironment and different potential involvement of this non-neuronal cell population in pathological pain development. PMID:21067602

  6. Distinctive response of CNS glial cells in oro-facial pain associated with injury, infection and inflammation.

    PubMed

    Lee, SeungHwan; Zhao, Yuan Qing; Ribeiro-da-Silva, Alfredo; Zhang, Ji

    2010-01-01

    injection led to minor microglial morphological changes and an induction of IκB-α mRNA in the CVO regions; a significant increase in IL-1β and IL-6 mRNA started only at 48 hours post-injection, when the induced pain-related behavior started to resolve. Our detailed analysis of CNS glial response clearly revealed that both nerve injury and oro-facial infection/inflammation induced CNS glial activation, but in a completely different pattern, which suggests a remarkable plasticity of glial cells in response to dynamic changes in their microenvironment and different potential involvement of this non-neuronal cell population in pathological pain development. PMID:21067602

  7. Symptomatic glial cysts of the pineal gland.

    PubMed

    Fain, J S; Tomlinson, F H; Scheithauer, B W; Parisi, J E; Fletcher, G P; Kelly, P J; Miller, G M

    1994-03-01

    Small asymptomatic cysts of the pineal gland represent a common incidental finding in adults undergoing computerized tomography or magnetic resonance (MR) imaging or at postmortem examination. In contrast, large symptomatic pineal cysts are rare, being limited to individual case reports or small series. The authors have reviewed 24 cases of large pineal cysts. The mean patient age at presentation was 28.7 years (range 15 to 46 years); 18 were female and six male. Presenting features in 20 symptomatic cases included: headache in 19; nausea and/or vomiting in seven; papilledema in five; visual disturbances in five (diplopia in three, "blurred vision" in two, and unilateral partial oculomotor nerve palsy in one); Parinaud's syndrome in two; hemiparesis in one; hemisensory aberration in one; and seizures in one. Four lesions were discovered incidentally. Magnetic resonance imaging typically demonstrated a 0.8- to 3.0-cm diameter mass (mean 1.7 cm) with homogeneous decreased signal intensity on T1-weighted images, increased signal intensity on T2-weighted images, and a distinct margin. Hydrocephalus was present in eight cases. The cysts were surgically excised via an infratentorial/supracerebellar approach (23 cases) or stereotactically biopsied (one case). Histological examination revealed a cyst wall 0.5 to 2.0 mm thick comprised of three layers: an outer fibrous layer, a middle layer of pineal parenchymal cells with variable calcification, and an inner layer of hypocellular glial tissue often exhibiting Rosenthal fibers and/or granular bodies. Evidence of prior hemorrhage, mild astrocytic degenerative atypia, and disorganization of pineal parenchyma were often present. Postoperative follow-up review in all 24 cases (range 3 months to 10 years) revealed no complications in 21, mild ocular movement deficit in one, gradually resolving Parinaud's syndrome in one, and radiographic evidence of a postoperative venous infarct of the superior cerebellum with ataxia of 1 week

  8. Pathway Analyses Implicate Glial Cells in Schizophrenia

    PubMed Central

    Duncan, Laramie E.; Holmans, Peter A.; Lee, Phil H.; O'Dushlaine, Colm T.; Kirby, Andrew W.; Smoller, Jordan W.; Öngür, Dost; Cohen, Bruce M.

    2014-01-01

    Background The quest to understand the neurobiology of schizophrenia and bipolar disorder is ongoing with multiple lines of evidence indicating abnormalities of glia, mitochondria, and glutamate in both disorders. Despite high heritability estimates of 81% for schizophrenia and 75% for bipolar disorder, compelling links between findings from neurobiological studies, and findings from large-scale genetic analyses, are only beginning to emerge. Method Ten publically available gene sets (pathways) related to glia, mitochondria, and glutamate were tested for association to schizophrenia and bipolar disorder using MAGENTA as the primary analysis method. To determine the robustness of associations, secondary analyses were performed with: ALIGATOR, INRICH, and Set Screen. Data from the Psychiatric Genomics Consortium (PGC) were used for all analyses. There were 1,068,286 SNP-level p-values for schizophrenia (9,394 cases/12,462 controls), and 2,088,878 SNP-level p-values for bipolar disorder (7,481 cases/9,250 controls). Results The Glia-Oligodendrocyte pathway was associated with schizophrenia, after correction for multiple tests, according to primary analysis (MAGENTA p = 0.0005, 75% requirement for individual gene significance) and also achieved nominal levels of significance with INRICH (p = 0.0057) and ALIGATOR (p = 0.022). For bipolar disorder, Set Screen yielded nominally and method-wide significant associations to all three glial pathways, with strongest association to the Glia-Astrocyte pathway (p = 0.002). Conclusions Consistent with findings of white matter abnormalities in schizophrenia by other methods of study, the Glia-Oligodendrocyte pathway was associated with schizophrenia in our genomic study. These findings suggest that the abnormalities of myelination observed in schizophrenia are at least in part due to inherited factors, contrasted with the alternative of purely environmental causes (e.g. medication effects or lifestyle). While not

  9. Connecting Malfunctioning Glial Cells and Brain Degenerative Disorders.

    PubMed

    Kaminsky, Natalie; Bihari, Ofer; Kanner, Sivan; Barzilai, Ari

    2016-06-01

    The DNA damage response (DDR) is a complex biological system activated by different types of DNA damage. Mutations in certain components of the DDR machinery can lead to genomic instability disorders that culminate in tissue degeneration, premature aging, and various types of cancers. Intriguingly, malfunctioning DDR plays a role in the etiology of late onset brain degenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases. For many years, brain degenerative disorders were thought to result from aberrant neural death. Here we discuss the evidence that supports our novel hypothesis that brain degenerative diseases involve dysfunction of glial cells (astrocytes, microglia, and oligodendrocytes). Impairment in the functionality of glial cells results in pathological neuro-glial interactions that, in turn, generate a "hostile" environment that impairs the functionality of neuronal cells. These events can lead to systematic neural demise on a scale that appears to be proportional to the severity of the neurological deficit. PMID:27245308

  10. Modeling Quantum Mechanical Observers via Neural-Glial Networks

    NASA Astrophysics Data System (ADS)

    Konishi, Eiji

    2012-07-01

    We investigate the theory of observers in the quantum mechanical world by using a novel model of the human brain which incorporates the glial network into the Hopfield model of the neural network. Our model is based on a microscopic construction of a quantum Hamiltonian of the synaptic junctions. Using the Eguchi-Kawai large N reduction, we show that, when the number of neurons and astrocytes is exponentially large, the degrees of freedom (d.o.f) of the dynamics of the neural and glial networks can be completely removed and, consequently, that the retention time of the superposition of the wavefunctions in the brain is as long as that of the microscopic quantum system of pre-synaptics sites. Based on this model, the classical information entropy of the neural-glial network is introduced. Using this quantity, we propose a criterion for the brain to be a quantum mechanical observer.

  11. Effects of therapeutic hypothermia on the glial proteome and phenotype.

    PubMed

    Kim, Jong-Heon; Seo, Minchul; Suk, Kyoungho

    2013-02-01

    Therapeutic hypothermia is a useful intervention against brain injury in experimental models and patients, but its therapeutic applications are limited due to its ill-defined mode of action. Glia cells maintain homeostasis and protect the central nervous system from environmental change, but after brain injury, glia are activated and induce glial scar formation and secondary injury. On the other hand, therapeutic hypothermia has been shown to modulate glial hyperactivation under various brain injury conditions. We considered that knowledge of the effect of hypothermia on the molecular profiles of glia and on their phenotypes would improve our understanding of the neuroprotective mechanism of hypothermia. Here, we review the findings of recent studies that examined the effect of hypothermia on proteome changes in reactive glial cells in vitro and in vivo. The therapeutic effects of hypothermia are associated with the inhibition of reactive oxygen species generation, the maintenance of ion homeostasis, and the protection of neurovascular units in cultured glial cells. In an animal model, a distinct pattern of protein alterations was detected in glia following hypothermia under ischemic/reperfusion conditions. In particular, hypothermia was found to exert a neuroprotective effect against ischemic brain injury by regulating specific glial signaling pathways, such as, glutamate signaling, cell death, and stress response, and by influencing neural dysfunction, neurogenesis, neural plasticity, cell differentiation, and neurotrophic activity. Furthermore, the proteins that were differentially expressed belonged to various pathways and could mediate diverse phenotypic changes of glia in vitro or in vivo. Therefore, hypothermia-modulated glial proteins and subsequent phenotypic changes may form the basis of the therapeutic effects of hypothermia. PMID:23441897

  12. Quetiapine Attenuates Glial Activation and Proinflammatory Cytokines in APP/PS1 Transgenic Mice via Inhibition of Nuclear Factor-κB Pathway

    PubMed Central

    Zhu, Shenghua; Shi, Ruoyang; Li, Victor; Wang, Junhui; Zhang, Ruiguo; Tempier, Adrien; He, Jue; Kong, Jiming; Wang, Jun-Feng

    2015-01-01

    Background: In Alzheimer’s disease, growing evidence has shown that uncontrolled glial activation and neuroinflammation may contribute independently to neurodegeneration. Antiinflammatory strategies might provide benefits for this devastating disease. The aims of the present study are to address the issue of whether glial activation and proinflammatory cytokine increases could be modulated by quetiapine in vivo and in vitro and to explore the underlying mechanism. Methods: Four-month–old amyloid precursor protein (APP) and presenilin 1 (PS1) transgenic and nontransgenic mice were treated with quetiapine (5mg/kg/d) in drinking water for 8 months. Animal behaviors, total Aβ levels, and glial activation were evaluated by behavioral tests, enzyme-linked immunosorbent assay, immunohistochemistry, and Western blot accordingly. Inflammatory cytokines and the nuclear factor kappa B pathway were analyzed in vivo and in vitro. Results: Quetiapine improves behavioral performance, marginally affects total Aβ40 and Aβ42 levels, attenuates glial activation, and reduces proinflammatory cytokines in APP/PS1 mice. Quetiapine suppresses Aβ1-42-induced activation of primary microglia by decresing proinflammatory cytokines. Quetiapine inhibits the activation of nuclear factor kappa B p65 pathway in both transgenic mice and primary microglia stimulated by Aβ1–42. Conclusions: The antiinflammatory effects of quetiapine in Alzheimer’s disease may be involved in the nuclear factor kappa B pathway. Quetiapine may be an efficacious and promising treatment for Alzheimer’s disease targeting on neuroinflammation. PMID:25618401

  13. Intercellular calcium waves in glial cells with bistable dynamics

    NASA Astrophysics Data System (ADS)

    Wei, Fang; Shuai, Jianwei

    2011-04-01

    A two-dimensional model is proposed for intercellular calcium (Ca2 +) waves with Ca2 +-induced IP3 regeneration and the diffusion of IP3 through gap junctions. Many experimental observations in glial cells, i.e. responding to local mechanical stimulation, glutamate application, mechanical stimulation followed by ACh application, and glutamate followed by mechanical stimulation, are reproduced and classified by the model. We show that a glial cell model with bistable dynamics, i.e. a Ca2 + oscillation state coexisting with a fixed point, can cause a prolonged plateau of Ca2 + signals in the cells nearby the stimulated cell when the cell network responds to the local mechanical stimulation.

  14. Snail Coordinately Regulates Downstream Pathways to Control Multiple Aspects of Mammalian Neural Precursor Development

    PubMed Central

    Zander, Mark A.; Burns, Sarah E.; Yang, Guang; Kaplan, David R.

    2014-01-01

    The Snail transcription factor plays a key role in regulating diverse developmental processes but is not thought to play a role in mammalian neural precursors. Here, we have examined radial glial precursor cells of the embryonic murine cortex and demonstrate that Snail regulates their survival, self-renewal, and differentiation into intermediate progenitors and neurons via two distinct and separable target pathways. First, Snail promotes cell survival by antagonizing a p53-dependent death pathway because coincident p53 knockdown rescues survival deficits caused by Snail knockdown. Second, we show that the cell cycle phosphatase Cdc25b is regulated by Snail in radial precursors and that Cdc25b coexpression is sufficient to rescue the decreased radial precursor proliferation and differentiation observed upon Snail knockdown. Thus, Snail acts via p53 and Cdc25b to coordinately regulate multiple aspects of mammalian embryonic neural precursor biology. PMID:24719096

  15. Astrocytes Promote TNF-Mediated Toxicity to Oligodendrocyte Precursors

    PubMed Central

    Kim, SunJa; Steelman, Andrew J.; Koito, Hisami; Li, Jianrong

    2010-01-01

    Neuroinflammation and increased production of tumor necrosis factor (TNF) in the central nervous system have been implicated in many neurological diseases including white matter disorders periventricular leukomalacia and multiple sclerosis. However, the exact role of TNF in these diseases and how it mediates oligodendrocyte injury remain unclear. Previously we demonstrated that lipopolysaccharide (LPS) selectively kills oligodendrocyte precursors (preOLs) in a non-cell autonomous fashion through the induction of TNF in mixed glial cultures. Here we report that activation of oligodendroglial, but not astroglial and microglial, TNFR1 is required for LPS toxicity, and that astrocytes promote TNF-mediated preOL death through a cell contact-dependent mechanism. Microglia were the sole source for TNF production in LPS-treated mixed glial cultures. Ablation of TNFR1 in mixed glia completely prevented LPS-induced death of preOLs. TNFR1-expressing preOLs were similarly susceptible to LPS treatment when seeded into wildtype and TNFR1−/− mixed glial cultures, demonstrating a requirement for oligodendroglial TNFR1 in the cell death. Although exogenous TNF failed to cause significant cell death in enriched preOL cultures, it became cytotoxic when preOLs were in contact with astrocytes. Collectively, our results demonstrate oligodendroglial TNFR1 in mediating inflammatory destruction of preOLs and suggest a previously unrecognized role for astrocytes in promoting TNF toxicity to preOLs. PMID:21044081

  16. Mechanisms of Aβ Clearance and Degradation by Glial Cells.

    PubMed

    Ries, Miriam; Sastre, Magdalena

    2016-01-01

    Glial cells have a variety of functions in the brain, ranging from immune defense against external and endogenous hazardous stimuli, regulation of synaptic formation, calcium homeostasis, and metabolic support for neurons. Their dysregulation can contribute to the development of neurodegenerative disorders, including Alzheimer's disease (AD). One of the most important functions of glial cells in AD is the regulation of Amyloid-β (Aβ) levels in the brain. Microglia and astrocytes have been reported to play a central role as moderators of Aβ clearance and degradation. The mechanisms of Aβ degradation by glial cells include the production of proteases, including neprilysin, the insulin degrading enzyme, and the endothelin-converting enzymes, able to hydrolyse Aβ at different cleavage sites. Besides these enzymes, other proteases have been described to have some role in Aβ elimination, such as plasminogen activators, angiotensin-converting enzyme, and matrix metalloproteinases. Other relevant mediators that are released by glial cells are extracellular chaperones, involved in the clearance of Aβ alone or in association with receptors/transporters that facilitate their exit to the blood circulation. These include apolipoproteins, α2macroglobulin, and α1-antichymotrypsin. Finally, astrocytes and microglia have an essential role in phagocytosing Aβ, in many cases via a number of receptors that are expressed on their surface. In this review, we examine all of these mechanisms, providing an update on the latest research in this field. PMID:27458370

  17. Mechanisms of Aβ Clearance and Degradation by Glial Cells

    PubMed Central

    Ries, Miriam; Sastre, Magdalena

    2016-01-01

    Glial cells have a variety of functions in the brain, ranging from immune defense against external and endogenous hazardous stimuli, regulation of synaptic formation, calcium homeostasis, and metabolic support for neurons. Their dysregulation can contribute to the development of neurodegenerative disorders, including Alzheimer’s disease (AD). One of the most important functions of glial cells in AD is the regulation of Amyloid-β (Aβ) levels in the brain. Microglia and astrocytes have been reported to play a central role as moderators of Aβ clearance and degradation. The mechanisms of Aβ degradation by glial cells include the production of proteases, including neprilysin, the insulin degrading enzyme, and the endothelin-converting enzymes, able to hydrolyse Aβ at different cleavage sites. Besides these enzymes, other proteases have been described to have some role in Aβ elimination, such as plasminogen activators, angiotensin-converting enzyme, and matrix metalloproteinases. Other relevant mediators that are released by glial cells are extracellular chaperones, involved in the clearance of Aβ alone or in association with receptors/transporters that facilitate their exit to the blood circulation. These include apolipoproteins, α2macroglobulin, and α1-antichymotrypsin. Finally, astrocytes and microglia have an essential role in phagocytosing Aβ, in many cases via a number of receptors that are expressed on their surface. In this review, we examine all of these mechanisms, providing an update on the latest research in this field. PMID:27458370

  18. Polyimide Precursor Solid Residuum

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.

  19. Effects of memantine on soluble Alphabeta(25-35)-induced changes in peptidergic and glial cells in Alzheimer's disease model rat brain regions.

    PubMed

    Arif, M; Chikuma, T; Ahmed, Md M; Nakazato, M; Smith, M A; Kato, T

    2009-12-15

    Soluble forms of amyloid-beta (Abeta) have been considered responsible for cognitive dysfunction prior to senile plaque formation in Alzheimer's disease (AD). As its mechanism is not well understood, we examined the effects of repeated i.c.v. infusion of soluble Alphabeta(25-35) on peptidergic system and glial cells in the pathogenesis of AD. The present study aims to investigate the protective effects of memantine on Abeta(25-35)-induced changes in peptidergic and glial systems. Infusion of Alphabeta(25-35) decreased the level of immunoreactive somatostatin (SS) and substance P (SP) in the hippocampus prior to neuronal loss or caspase activation, which is correlated with the loss of spine density and activation of inducible nitric-oxide synthase (iNOS). Biochemical experiment with peptide-degrading enzymes, prolyl oligopeptidase (POP) and endopeptidase 24.15 (EP 24.15) activities demonstrated a concomitant increase with the activation of glial marker proteins, glial fibrillary acidic protein (GFAP) and CD11b in the Abeta-treated hippocampus. Double immunostaining experiments of EP 24.15 and GFAP/CD11b antibodies clearly demonstrated the co-localization of neuro peptidases with astrocytes and microglia. Treatment with memantine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist significantly attenuated Abeta(25-35)-induced changes of neuropeptides, their metabolizing enzymes, glial marker proteins, and activation of iNOS. Taken together, the data implies that memantine exerts its protective effects by modulating the neuropeptide system as a consequence of suppressing the glial cells and oxidative stress in AD model rat brain regions. PMID:19733635

  20. Optical clearing of articular cartilage: a comparison of clearing agents

    NASA Astrophysics Data System (ADS)

    Bykov, Alexander; Hautala, Tapio; Kinnunen, Matti; Popov, Alexey; Karhula, Sakari; Saarakkala, Simo; Nieminen, Miika T.; Tuchin, Valery

    2015-07-01

    Optical clearing technique was applied to the problem of OCT imaging of articular cartilage and subchondral bone. We show that optical clearing significantly enhances visualization of articular cartilage and cartilage-bone interface. The effect of different clearing agents was analyzed. For the clearing, iohexol solution and propylene glycol (PG) were used. Clearing was performed in vitro at room temperature by immersion method. Cylindrical osteochondral samples (d=4.8mm) were drilled from bovine lateral femur and stored in phosphate-buffered saline at -20°C until clearing. Monitoring of clearing process was performed using high-speed spectral-domain OCT system providing axial resolution of 5.8μm at 930nm. Total duration of experiment was 90-100min to ensure saturation of clearing. We have shown that iohexol solution and PG are capable to optically clear articular cartilage enabling reliable characterization of cartilagebone interface with OCT. Being a low osmolarity agent, iohexol provides minimal changes to the thickness of cartilage sample. Clearing saturation time for the cartilage sample with the thickness of 0.9 mm measured with OCT is of 50 min. However, less than 15 min is enough to reliably detect the rear cartilage boundary. Alternatively, PG significantly (60%) reduces the cartilage thickness enabling better visualization of subchondral bone. It was observed that PG has higher clearing rate. The clearing saturation time is of 30 min, however less than 5 min is enough to detect cartilage-bone interface. We conclude that iohexol solution is superior for OCT imaging of cartilage and cartilage-bone interface, while PG suits better for subhondral bone visualization.

  1. Earthquakes: hydrogeochemical precursors

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  2. Temporal Variant Frontotemporal Dementia Is Associated with Globular Glial Tauopathy

    PubMed Central

    Clark, Camilla N.; Lashley, Tammaryn; Mahoney, Colin J.; Warren, Jason D.; Revesz, Tamas

    2015-01-01

    Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous neurodegenerative disorder associated with atrophy of the frontal and temporal lobes. Most patients with focal temporal lobe atrophy present with either the semantic dementia subtype of FTD or the behavioral variant subtype. For patients with temporal variant FTD, the most common cause found on post-mortem examination has been a TDP-43 (transactive response DNA-binding protein 43 kDa) proteinopathy, but tauopathies have also been described, including Pick’s disease and mutations in the microtubule-associated protein tau (MAPT) gene. We report the clinical and imaging features of 2 patients with temporal variant FTD associated with a rare frontotemporal lobar degeneration pathology known as globular glial tauopathy. The pathologic diagnosis of globular glial tauopathy should be considered in patients with temporal variant FTD, particularly those who have atypical semantic dementia or an atypical parkinsonian syndrome in association with the right temporal variant. PMID:26102999

  3. Humoral response against glial derived antigens in Parkinson's disease.

    PubMed

    Papuć, Ewa; Kurzepa, Jacek; Kurys-Denis, Ewa; Grabarska, Aneta; Krupski, Witold; Rejdak, Konrad

    2014-04-30

    To check whether glial cells have the ability to elicit adaptive immune response in Parkinson's disease and whether a change in this immune response can be observed over time. There is an increasing evidence that glial cells are involved in the neurodegenerative process in PD, in addition to neuronal structures. Measurement of autoantibodies against proteins of oligodendrocytes may serve as an indirect method to assess the level of glial cells activation or degeneration under in vivo conditions. Serum samples from 26 PD patients were collected twice, at baseline and after mean of 13 months. In addition, serum samples from 13 healthy controls matched for age and gender were assessed at one time point. IgG and IgM autoantibodies against myelin-oligodendrocyticglycoprotein (MOG), myelin basic protein (MBP), myelin-associated glycoprotein (MAG) and proteolipoprotein (PLP) were measured in all investigated subjects by a commercially available ELISA system (Mediagnost, Germany). In a group of PD significant decrease of IgG titers was observed for anti-MAG autoantibodies over the investigated time period (p<0.05). For IgM antibodies, we observed statistically significant decrease in anti-MAG autoantibodies in the follow-up period (p<0.05) and increase in anti-MBP and anti-PLP autoantibodies (p<0.05). All antibody titers differed significantly between healthy control subjects and PD patients. Our study provides the evidence for the presence of humoral response against some glial derived antigens in PD. The increasing levels of anti MBP IgG and IgM might point to the value of this marker for monitoring disease progression. PMID:24594199

  4. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    NASA Astrophysics Data System (ADS)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  5. JC polyomavirus in the aetiology and pathophysiology of glial tumours.

    PubMed

    Eftimov, Tihomir; Enchev, Yavor; Tsekov, Iliya; Simeonov, Plamen; Kalvatchev, Zlatko; Encheva, Elitsa

    2016-01-01

    Glial brain tumours with their poor prognosis, limited treatment modalities and unclear detailed pathophysiology represent a significant health concern. The purpose of the current study was to investigate and describe the possible role of the human polyomavirus JC as an underlying cancerogenic or co-cancerogenic factor in the complex processes of glial tumour induction and development. Samples from 101 patients with glial tumours were obtained during neurosurgical tumour resection. Small tissue pieces were taken from several areas of the histologically verified solid tumour core. Biopsies were used for DNA extraction and subsequent amplification reactions of sequences from the JC viral genome. Real-time polymerase chain reaction was used for detection and quantification of its non-coding control region (NCCR) and gene encoding the regulatory protein Large T antigen (LT). An average of 37.6% of all patients was found to be LT positive, whereas only 6.9% tested positive for NCCR. The analysis of the results demonstrated significant variance between the determined LT prevalence and the rate for NCCR, with a low starting copy number in all positive samples and threshold cycles in the range of 36 to 42 representing viral load in the range from 10 to 1000 copies/μl. The results most probably indicate incomplete JC viral replication. Under such conditions, mutations in the host cell genome may be accumulated due to interference of the virus with the host cell machinery, and eventually malignant transformation may occur. PMID:26560882

  6. Immunopathology: autoimmune glial diseases and differentiation from multiple sclerosis.

    PubMed

    Popescu, Bogdan F Gh; Lucchinetti, Claudia F

    2016-01-01

    While multiple sclerosis (MS) is often referred to as an autoimmune inflammatory demyelinating disease, neuromyelitis optica (NMO) is currently the only proven and well-characterized autoimmune disease affecting the glial cells. The target antigen is the water channel aquaporin-4 (AQP4), expressed on astrocytes, and antibodies against AQP4 (AQP4-IgG) are present in the serum of NMO patients. Clinical, serologic, cerebrospinal fluid, and neuroimaging criteria help differentiate NMO from other central nervous system inflammatory demyelinating disorders. Pathologically, the presence of dystrophic astrocytes, myelin vacuolation, granulocytic inflammatory infiltrates, vascular hyalinization, macrophages containing glial fibrillary acidic protein-positive debris and/or the absence of Creutzfeldt-Peters cells is more characteristic, but not specific, for NMO. These findings should prompt the neuropathologist to perform AQP4 immunohistochemistry, and recommend serologic testing for AQP4-IgG to exclude a diagnosis of NMO/NMO spectrum disorder (NMOSD). Loss of AQP4 on biopsied active demyelinating lesions and/or seropositivity for AQP4-IgG may confirm the diagnosis of NMO/NMOSD, which is important because treatments that are suitable for MS can aggravate NMO. Few other putative glial antigens have been postulated, but their pathogenic role remains to be demonstrated. PMID:27112673

  7. Glial-like differentiation potential of human mature adipocytes.

    PubMed

    Poloni, Antonella; Maurizi, Giulia; Foia, Federica; Mondini, Eleonora; Mattiucci, Domenico; Ambrogini, Patrizia; Lattanzi, Davide; Mancini, Stefania; Falconi, Massimo; Cinti, Saverio; Olivieri, Attilio; Leoni, Pietro

    2015-01-01

    The potential ability to differentiate dedifferentiated adipocytes into a neural lineage is attracting strong interest as an emerging method of producing model cells for the treatment of a variety of neurological diseases. Here, we describe the efficient conversion of dedifferentiated adipocytes into a neural-like cell population. These cells grew in neurosphere-like structures and expressed a high level of the early neuroectodermal marker Nestin. These neurospheres could proliferate and express stemness genes, suggesting that these cells could be committed to the neural lineage. After neural induction, NeuroD1, Sox1, Double Cortin, and Eno2 were not expressed. Patch clamp data did not reveal different electrophysiological properties, indicating the inability of these cells to differentiate into mature neurons. In contrast, the differentiated cells expressed a high level of CLDN11, as demonstrated using molecular method, and stained positively for the glial cell markers CLDN11 and GFAP, as demonstrated using immunocytochemistry. These data were confirmed by quantitative results for glial cell line-derived neurotrophic factor production, which showed a higher secretion level in neurospheres and the differentiated cells compared with the untreated cells. In conclusion, our data demonstrate morphological, molecular, and immunocytochemical evidence of initial neural differentiation of mature adipocytes, committing to a glial lineage. PMID:25007949

  8. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition.

    PubMed

    Yoon, Bo-Eun; Woo, Junsung; Chun, Ye-Eun; Chun, Heejung; Jo, Seonmi; Bae, Jin Young; An, Heeyoung; Min, Joo Ok; Oh, Soo-Jin; Han, Kyung-Seok; Kim, Hye Yun; Kim, Taekeun; Kim, Young Soo; Bae, Yong Chul; Lee, C Justin

    2014-11-15

    GABA is the major inhibitory transmitter in the brain and is released not only from a subset of neurons but also from glia. Although neuronal GABA is well known to be synthesized by glutamic acid decarboxylase (GAD), the source of glial GABA is unknown. After estimating the concentration of GABA in Bergmann glia to be around 5-10 mM by immunogold electron microscopy, we demonstrate that GABA production in glia requires MAOB, a key enzyme in the putrescine degradation pathway. In cultured cerebellar glia, both Ca(2+)-induced and tonic GABA release are significantly reduced by both gene silencing of MAOB and the MAOB inhibitor selegiline. In the cerebellum and striatum of adult mice, general gene silencing, knock out of MAOB or selegiline treatment resulted in elimination of tonic GABA currents recorded from granule neurons and medium spiny neurons. Glial-specific rescue of MAOB resulted in complete rescue of tonic GABA currents. Our results identify MAOB as a key synthesizing enzyme of glial GABA, which is released via bestrophin 1 (Best1) channel to mediate tonic inhibition in the brain. PMID:25239459

  9. Glial biomarkers in human central nervous system disease.

    PubMed

    Garden, Gwenn A; Campbell, Brian M

    2016-10-01

    There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. GLIA 2016;64:1755-1771. PMID:27228454

  10. Role of satellite glial cells in gastrointestinal pain

    PubMed Central

    Hanani, Menachem

    2015-01-01

    Gastrointestinal (GI) pain is a common clinical problem, for which effective therapy is quite limited. Sensations from the GI tract, including pain, are mediated largely by neurons in the dorsal root ganglia (DRG), and to a smaller extent by vagal afferents emerging from neurons in the nodose/jugular ganglia. Neurons in rodent DRG become hyperexcitable in models of GI pain (e.g., gastric or colonic inflammation), and can serve as a source for chronic pain. Glial cells are another element in the pain signaling pathways, and there is evidence that spinal glial cells (microglia and astrocytes) undergo activation (gliosis) in various pain models and contribute to pain. Recently it was found that satellite glial cells (SGCs), the main type of glial cells in sensory ganglia, might also contribute to chronic pain in rodent models. Most of that work focused on somatic pain, but in several studies GI pain was also investigated, and these are discussed in the present review. We have shown that colonic inflammation induced by dinitrobenzene sulfonic acid (DNBS) in mice leads to the activation of SGCs in DRG and increases gap junction-mediated coupling among these cells. This coupling appears to contribute to the hyperexcitability of DRG neurons that innervate the colon. Blocking gap junctions (GJ) in vitro reduced neuronal hyperexcitability induced by inflammation, suggesting that glial GJ participate in SGC-neuron interactions. Moreover, blocking GJ by carbenoxolone and other agents reduces pain behavior. Similar changes in SGCs were also found in the mouse nodose ganglia (NG), which provide sensory innervation to most of the GI tract. Following systemic inflammation, SGCs in these ganglia were activated, and displayed augmented coupling and greater sensitivity to the pain mediator ATP. The contribution of these changes to visceral pain remains to be determined. These results indicate that although visceral pain is unique, it shares basic mechanisms with somatic pain

  11. Role of satellite glial cells in gastrointestinal pain.

    PubMed

    Hanani, Menachem

    2015-01-01

    Gastrointestinal (GI) pain is a common clinical problem, for which effective therapy is quite limited. Sensations from the GI tract, including pain, are mediated largely by neurons in the dorsal root ganglia (DRG), and to a smaller extent by vagal afferents emerging from neurons in the nodose/jugular ganglia. Neurons in rodent DRG become hyperexcitable in models of GI pain (e.g., gastric or colonic inflammation), and can serve as a source for chronic pain. Glial cells are another element in the pain signaling pathways, and there is evidence that spinal glial cells (microglia and astrocytes) undergo activation (gliosis) in various pain models and contribute to pain. Recently it was found that satellite glial cells (SGCs), the main type of glial cells in sensory ganglia, might also contribute to chronic pain in rodent models. Most of that work focused on somatic pain, but in several studies GI pain was also investigated, and these are discussed in the present review. We have shown that colonic inflammation induced by dinitrobenzene sulfonic acid (DNBS) in mice leads to the activation of SGCs in DRG and increases gap junction-mediated coupling among these cells. This coupling appears to contribute to the hyperexcitability of DRG neurons that innervate the colon. Blocking gap junctions (GJ) in vitro reduced neuronal hyperexcitability induced by inflammation, suggesting that glial GJ participate in SGC-neuron interactions. Moreover, blocking GJ by carbenoxolone and other agents reduces pain behavior. Similar changes in SGCs were also found in the mouse nodose ganglia (NG), which provide sensory innervation to most of the GI tract. Following systemic inflammation, SGCs in these ganglia were activated, and displayed augmented coupling and greater sensitivity to the pain mediator ATP. The contribution of these changes to visceral pain remains to be determined. These results indicate that although visceral pain is unique, it shares basic mechanisms with somatic pain

  12. Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels.

    PubMed

    Bay, Virginia; Butt, Arthur M

    2012-04-01

    Uptake of K(+) released by axons during action potential propagation is a major function of astrocytes. Here, we demonstrate the importance of glial inward rectifying potassium channels (Kir) in regulating extracellular K(+) ([K(+)](o)) and axonal electrical activity in CNS white matter of the mouse optic nerve. Increasing optic nerve stimulation frequency from 1 Hz to 10-35 Hz for 120 s resulted in a rise in [K(+)](o) and consequent decay in the compound action potential (CAP), a measure of reduced axonal activity. On cessation of high frequency stimulation, rapid K(+) clearance resulted in a poststimulus [K(+)](o) undershoot, followed by a slow recovery of [K(+)](o) and the CAP, which were more protracted with increasing stimulation frequency. Blockade of Kir (100 μM BaCl(2)) slowed poststimulus recovery of [K(+)](o) and the CAP at all stimulation frequencies, indicating a primary function of glial Kir was redistributing K(+) to the extracellular space to offset active removal by Na(+)-K(+) pumps. At higher levels of axonal activity, Kir blockade also increased [K(+)](o) accumulation, exacerbating the decline in the CAP and impeding its subsequent recovery. In the Kir4.1-/- mouse, astrocytes displayed a marked reduction of inward currents and were severely depolarized, resulting in retarded [K(+)](o) regulation and reduced CAP. The results demonstrate the importance of glial Kir in K(+) spatial buffering and sustaining axonal activity in the optic nerve. Glial Kir have increasing importance in K(+) clearance at higher levels of axonal activity, helping to maintain the physiological [K(+)](o) ceiling and ensure the fidelity of signaling between the retina and brain. PMID:22290828

  13. Transplantation of glial progenitors that overexpress glutamate transporter GLT1 preserves diaphragm function following cervical SCI.

    PubMed

    Li, Ke; Javed, Elham; Hala, Tamara J; Sannie, Daniel; Regan, Kathleen A; Maragakis, Nicholas J; Wright, Megan C; Poulsen, David J; Lepore, Angelo C

    2015-03-01

    Approximately half of traumatic spinal cord injury (SCI) cases affect cervical regions, resulting in chronic respiratory compromise. The majority of these injuries affect midcervical levels, the location of phrenic motor neurons (PMNs) that innervate the diaphragm. A valuable opportunity exists following SCI for preventing PMN loss that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxicity due to dysregulation of extracellular glutamate homeostasis. Astrocytes express glutamate transporter 1 (GLT1), which is responsible for the majority of CNS glutamate clearance. Given our observations of GLT1 dysfunction post-SCI, we evaluated intraspinal transplantation of Glial-Restricted Precursors (GRPs)--a class of lineage-restricted astrocyte progenitors--into ventral horn following cervical hemicontusion as a novel strategy for reconstituting GLT1 function, preventing excitotoxicity and protecting PMNs in the acutely injured spinal cord. We find that unmodified transplants express low levels of GLT1 in the injured spinal cord. To enhance their therapeutic properties, we engineered GRPs with AAV8 to overexpress GLT1 only in astrocytes using the GFA2 promoter, resulting in significantly increased GLT1 protein expression and functional glutamate uptake following astrocyte differentiation in vitro and after transplantation into C4 hemicontusion. Compared to medium-only control and unmodified GRPs, GLT1-overexpressing transplants reduced lesion size, diaphragm denervation and diaphragm dysfunction. Our findings demonstrate transplantation-based replacement of astrocyte GLT1 is a promising approach for SCI. PMID:25492561

  14. Fine Astrocyte Processes Contain Very Small Mitochondria: Glial Oxidative Capability May Fuel Transmitter Metabolism.

    PubMed

    Derouiche, Amin; Haseleu, Julia; Korf, Horst-Werner

    2015-12-01

    The peripheral astrocyte process (PAP) is the glial compartment largely handling inactivation of transmitter glutamate, and supplying glutamate to the axon terminal. It is not clear how these energy demanding processes are fueled, and whether the PAP exhibits oxidative capability. Whereas the GFAP-positive perinuclear cytoplasm and stem process are rich in mitochondria, the PAP is often considered too narrow to contain mitochondria and might thus not rely on oxidative metabolism. Applying high resolution light microscopy, we investigate here the presence of mitochondria in the PAPs of freshly dissociated, isolated astrocytes. We provide an overview of the subcellular distribution and the approximate size of astrocytic mitochondria. A substantial proportion of the astrocyte's mitochondria are contained in the PAPs and, on the average, they are smaller there than in the stem processes. The majority of mitochondria in the stem and peripheral processes are surprisingly small (0.2-0.4 µm), spherical and not elongate, or tubular, which is supported by electron microscopy. The density of mitochondria is two to several times lower in the PAPs than in the stem processes. Thus, PAPs do not constitute a mitochondria free glial compartment but contain mitochondria in large numbers. No juxtaposition of mitochondria-containing PAPs and glutamatergic synapses has been reported. However, the issue of sufficient ATP concentrations in perisynaptic PAPs can be seen in the light of (1) the rapid, activity dependent PAP motility, and (2) the recently reported activity-dependent mitochondrial transport and immobilization leading to spatial, subcellular organisation of glutamate uptake and oxidative metabolism. PMID:25894677

  15. SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch

    SciTech Connect

    Genethliou, Nicholas; Panayiotou, Elena; Panayi, Helen; Orford, Michael; Mean, Richard; Lapathitis, George; Gill, Herman; Raoof, Sahir; Gasperi, Rita De; Elder, Gregory; Kessaris, Nicoletta; Richardson, William D.; Malas, Stavros

    2009-12-25

    During neural development the transition from neurogenesis to gliogenesis, known as the neuron-glial ({Nu}/G) fate switch, requires the coordinated function of patterning factors, pro-glial factors and Notch signalling. How this process is coordinated in the embryonic spinal cord is poorly understood. Here, we demonstrate that during the N/G fate switch in the ventral spinal cord (vSC) SOX1 links the function of neural patterning and Notch signalling. We show that, SOX1 expression in the vSC is regulated by PAX6, NKX2.2 and Notch signalling in a domain-specific manner. We further show that SOX1 regulates the expression of Hes1 and that loss of Sox1 leads to enhanced production of oligodendrocyte precursors from the pMN. Finally, we show that Notch signalling functions upstream of SOX1 during this fate switch and is independently required for the acquisition of the glial fate perse by regulating Nuclear Factor I A expression in a PAX6/SOX1/HES1/HES5-independent manner. These data integrate functional roles of neural patterning factors, Notch signalling and SOX1 during gliogenesis.

  16. JNK pathway activation is able to synchronize neuronal death and glial phagocytosis in Drosophila

    PubMed Central

    Shklover, J; Mishnaevski, K; Levy-Adam, F; Kurant, E

    2015-01-01

    Glial phagocytosis of superfluous neurons and damaged or aberrant neuronal material is crucial for normal development and maintenance of the CNS. However, the molecular mechanisms underlying the relationship between neuronal death and glial phagocytosis are poorly understood. We describe a novel mechanism that is able to synchronize neuronal cell death and glial phagocytosis of dying neurons in the Drosophila embryonic CNS. This mechanism involves c-Jun N-terminal kinase (JNK) signaling, which is required for developmental apoptosis of specific neurons during embryogenesis. We demonstrate that the dJNK pathway gain-of-function in neurons leads to dJNK signaling in glia, which results in upregulation of glial phagocytosis. Importantly, this promotion of phagocytosis is not mediated by upregulation of the glial phagocytic receptors SIMU and DRPR, but by increasing glial capacity to degrade apoptotic particles inside phagosomes. The proposed mechanism may be important for removal of damaged neurons in the developing and mature CNS. PMID:25695602

  17. Radon earthquake precursor: A short review

    NASA Astrophysics Data System (ADS)

    Woith, H.

    2015-05-01

    More than 100 publications reporting radon anomalies to precede earthquakes were evaluated. A clear apparent negative correlation between the number of reported anomalies and the published length of the timeseries is evident. 19% of all timeseries are longer than 5 years, characterized by a precursor rate of less than one precursor per year, the extreme case being 1 anomaly in 18 years of monitoring. Contrary, precursor rates between 1 and more than 10 precursors per year stem from published timeseries shorter than 3 years. Nearly 50% of the timeseries contain exactly one radon anomaly, independent of the length of the observation interval. Generally, the number of anomalies is about 5 times higher at sites where radon is measured in soil air as compared to radon in groundwater. In conclusion: (i) significant radon anomalies exist, and (ii) seismo-tectonically induced radon anomalies probably exist. But, radon anomalies of non-tectonic origin also exist and may look strikingly similar to tectonic ones. Thus, presumably only a fraction of all reported radon precursors are real in the sense that they are physically related to the preparation process of an impending earthquake.

  18. Transient receptor potential channels and their role in modulating radial glial-neuronal interaction: a signaling pathway involving mGluR5.

    PubMed

    Louhivuori, Lauri M; Jansson, Linda; Turunen, Pauli M; Jäntti, Maria H; Nordström, Tommy; Louhivuori, Verna; Åkerman, Karl E

    2015-03-15

    The guidance of developing neurons to the right position in the central nervous system is of central importance in brain development. Canonical transient receptor potential (TRPC) channels are thought to mediate turning responses of growth cones to guidance cues through fine control of calcium transients. Proliferating and 1- to 5-day-differentiated neural progenitor cells (NPCs) showed expression of Trpc1 and Trpc3 mRNA, while Trpc4-7 was not clearly detected. Time-lapse imaging showed that the motility pattern of neuronal cells was phasic with bursts of rapid movement (>60 μm/h), changes in direction, and intermittent slow phases or stallings (<40 μm/h), which frequently occurred in close contact with radial glial processes. Genetic interference with the TRPC3 and TRPC1 channel enhanced the motility of NPCs (burst frequency/stalling frequency). TRPC3-deficient cells or cells treated with the TRPC3 blocker pyr3 infrequently changed direction and seldom contacted radial glial processes. TRPC channels are also activated by group I metabotropic glutamate receptors (mGluR1 and mGluR5). As shown here, pyr3 blocked the calcium response mediated through mGluR5 in radial glial processes. Furthermore, 2-methyl-6-(phenylethynyl)pyridine, a blocker of mGluR5, affected the motility pattern in a similar way as TRPC3/6 double knockout or pyr3. The results suggest that radial glial cells exert attractant signals to migrating neuronal cells, which alter their motility pattern. Our results suggest that mGluR5 acting through TRPC3 is of central importance in radial glial-mediated neuronal guidance. PMID:25347706

  19. Comparative study of muscarinic acetylcholine receptors of human and rat cortical glial cells

    SciTech Connect

    Demushkin, V.P.; Burbaeva, G.S.; Dzhaliashvili, T.A.; Plyashkevich, Y.G.

    1985-04-01

    The aim of the present investigation was a comparative studyof muscarinic acetylcholine receptors in human and rat glial cells. (/sup 3/H)Quinuclidinyl-benzylate ((/sup 3/H)-QB), atropine, platiphylline, decamethonium, carbamylcholine, tubocurarine, and nicotine were used. The glial cell fraction was obtained from the cerebral cortex of rats weighing 130-140 g and from the frontal pole of the postmortem brain from men aged 60-70 years. The use of the method of radioimmune binding of (/sup 3/H)-QB with human and rat glial cell membranes demonstrated the presence of a muscarinic acetylcholine receptor in the glial cells.

  20. Guanosine protects glial cells against 6-hydroxydopamine toxicity.

    PubMed

    Giuliani, Patricia; Ballerini, Patrizia; Buccella, Silvana; Ciccarelli, Renata; Rathbone, Michel P; Romano, Silvia; D'Alimonte, Iolanda; Caciagli, Francesco; Di Iorio, Patrizia; Pokorski, Mieczyslaw

    2015-01-01

    Increasing body of evidence indicates that neuron-neuroglia interaction may play a key role in determining the progression of neurodegenerative diseases including Parkinson's disease (PD), a chronic pathological condition characterized by selective loss of dopaminergic (DA) neurons in the substantia nigra. We have previously reported that guanosine (GUO) antagonizes MPP(+)-induced cytotoxicity in neuroblastoma cells and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA) and beta-amyloid-induced apoptosis of SH-SY5Y cells. In the present study we demonstrate that GUO protected C6 glioma cells, taken as a model system for astrocytes, from 6-OHDA-induced neurotoxicity. We show that GUO, either alone or in combination with 6-OHDA activated the cell survival pathways ERK and PI3K/Akt. The involvement of these signaling systems in the mechanism of the nucleoside action was strengthened by a reduction of the protective effect when glial cells were pretreated with U0126 or LY294002, the specific inhibitors of MEK1/2 and PI3K, respectively. Since the protective effect on glial cell death of GUO was not affected by pretreatment with a cocktail of nucleoside transporter blockers, GUO transport and its intracellular accumulation were not at play in our in vitro model of PD. This fits well with our data which pointed to the presence of specific binding sites for GUO on rat brain membranes. On the whole, the results described in the present study, along with our recent evidence showing that GUO when administered to rats via intraperitoneal injection is able to reach the brain and with previous data indicating that it stimulates the release of neurotrophic factors, suggest that GUO, a natural compound, by acting at the glial level could be a promising agent to be tested against neurodegeneration. PMID:25310956

  1. Untangling ENSO Precursors

    NASA Astrophysics Data System (ADS)

    Pegion, K.; Alexander, M. A.

    2014-12-01

    There are several proposed precursors to the El Nino-Southern Oscillation (ENSO) that may provide the ability to predict ENSO as much as one year in advance. Some of these precursors are associated with stochastic forcing from extratropical atmospheric variability. Two examples are the seasonal footprinting mechanism (SFM) and the Pacific meridional mode (PMM). Both of these ENSO precursors are thought to be forced by the North Pacific Oscillation (NPO), a north-south sea level pressure dipole in the north Pacific. Additionally, both the PMM and SFM are thought to impact the tropics through wind evaporation SST feedbacks and have a correlation with ENSO up to one year in advance. These two precursors are discussed interchangeably throughout the literature and various indices used to define them co-mingle them. As a result, whether they are independent of each other or are part of the same process has not been investigated. The research presented is focused on untangling the relationship between the PMM, SFM, NPO, and ENSO using observational datasets and model simulations. Observational results demonstrate that these two mechanisms are different, are forced by different atmospheric circulations, and result in different manifestations of ENSO. Modeling results highlight the extent to which climate models can simulate these relationships and their impact on the simulation of ENSO.

  2. Septins in the glial cells of the nervous system.

    PubMed

    Patzig, Julia; Dworschak, Michelle S; Martens, Ann-Kristin; Werner, Hauke B

    2014-02-01

    The capacity of cytoskeletal septins to mediate diverse cellular processes is related to their ability to assemble as distinct heterooligomers and higher order structures. However, in many cell types the functional relevance of septins is not well understood. This minireview provides a brief overview of our current knowledge about septins in the non-neuronal cells of the vertebrate nervous system, collectively termed 'glial cells', i.e., astrocytes, microglia, oligodendrocytes, and Schwann cells. The dysregulation of septins observed in various models of myelin pathology is discussed with respect to implications for hereditary neuralgic amyotrophy (HNA) caused by mutations of the human SEPT9-gene. PMID:24047595

  3. Glial regulation of the axonal membrane at nodes of Ranvier.

    PubMed

    Schafer, Dorothy P; Rasband, Matthew N

    2006-10-01

    Action potential conduction in myelinated nerve fibers depends on a polarized axonal membrane. Voltage-gated Na(+) and K(+) channels are clustered at nodes of Ranvier and mediate the transmembrane currents necessary for rapid saltatory conduction. Paranodal junctions flank nodes and function as attachment sites for myelin and as paracellular and membrane protein diffusion barriers. Common molecular mechanisms, directed by myelinating glia, are used to establish these axonal membrane domains. Initially, heterophilic interactions between glial and axonal cell adhesion molecules define the locations where nodes or paranodes form. Subsequently, within each domain, axonal cell adhesion molecules are stabilized and retained through interactions with cytoskeletal and scaffolding proteins, including ankyrins and spectrins. PMID:16945520

  4. 17 CFR 23.610 - Clearing member acceptance for clearing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... clearing. 23.610 Section 23.610 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION... practicable if fully automated systems were used; and (b) Each swap dealer or major swap participant that is a... for it as quickly as would be technologically practicable if fully automated systems were used;...

  5. 17 CFR 23.610 - Clearing member acceptance for clearing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... clearing. 23.610 Section 23.610 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION... practicable if fully automated systems were used; and (b) Each swap dealer or major swap participant that is a... for it as quickly as would be technologically practicable if fully automated systems were used;...

  6. Plain Language Clear and Simple.

    ERIC Educational Resources Information Center

    National Literacy Secretariat, Ottawa (Ontario).

    Written for Canadian public servants and written with their help, this handbook presents principles and tips to make official writing clear, concise, and well organized. The handbook defines "plain language" writing as a technique of organizing information in ways that make sense to the reader--using familiar, straightforward words. The handbook…

  7. Electron cytochemical study of carbohydrate components in different types of cultured glial cells of snail Helix pomatia.

    PubMed

    Koval, L M; Kononenko, N I; Lutsik, M D; Yavorskaya, E N

    1994-01-01

    Using a variety of colloidal gold-labelled lectins with different sugar specificities, the structure and topography of carbohydrate determinants of the surface membrane of in vitro cultured glial and nerve cells of the snail Helix pomatia have been electron cytochemically studied. Heterogeneity of carbohydrate pools among different types of glial cells and between glial and nerve cells was established. It was found that satellite glial cells having the ultrastructural signs of cells with high metabolic level (type II cells) selectively bind GNA which is specific to terminal alpha-D-mannose residues and do not bind other mannose-specific lectins, Con A and LCA. GNA determinants are absent in satellite type I glial cells, fibrous glial cells, microglia and neurons. It has been found that glial cells (satellite type I and II glial cells, filamentous glial cells and microglial cells) do not bind PVA and LABA. LTA did not bind to any glial cells and binds weakly to neurons. Con A and WGA determinants which are abundant on the neurons are completely absent on satellite type II glial cells but present on satellite type I glial cells and filamentous glial cells. Microglial cells contain Con A and LCA determinants and the density of PNA determinants on these cells is the highest compared to other types of glial cells or neurons. It is concluded that some lectin determinants (for RCA-1, PNA, LPA) are present on all types of glial cells, while another determinant (GNA) is specific for a definite type of glial cells and can serve as a marker of these cells. The role of specific carbohydrate determinants in the functioning of a neuron-glial complex is discussed. PMID:7914854

  8. SomethiNG 2 talk about-Transcriptional regulation in embryonic and adult oligodendrocyte precursors.

    PubMed

    Küspert, Melanie; Wegner, Michael

    2016-05-01

    Glial cells that express the chondroitin sulfate proteoglycan NG2 represent an inherently heterogeneous population. These so-called NG2-glia are present during development and in the adult CNS, where they are referred to as embryonic oligodendrocyte precursors and adult NG2-glia, respectively. They give rise to myelinating oligodendrocytes at all times of life. Over the years much has been learnt about the transcriptional network in embryonic oligodendrocyte precursors, and several transcription factors from the HLH, HMG-domain, zinc finger and homeodomain protein families have been identified as main constituents. Much less is known about the corresponding network in adult NG2-glia. Here we summarize and discuss current knowledge on functions of each of these transcription factor families in NG2-glia, and where possible compare transcriptional regulation in embryonic oligodendrocyte precursors and adult NG2-glia. This article is part of a Special Issue entitled SI:NG2-glia (Invited only). PMID:26232072

  9. Ability of retinal Müller glial cells to protect neurons against excitotoxicity in vitro depends upon maturation and neuron-glial interactions.

    PubMed

    Heidinger, V; Hicks, D; Sahel, J; Dreyfus, H

    1999-02-01

    Glutamate is the most abundant excitatory amino acid in the central nervous system. It has also been described as a potent toxin when present in high concentrations because excessive stimulation of its receptors leads to neuronal death. Glial influence on neuronal survival has already been shown in the central nervous system, but the mechanisms underlying glial neuroprotection are only partly known. When cells isolated from newborn rat retina were maintained in culture as enriched neuronal populations, 80% of the cells were destroyed by application of excitotoxic concentrations of glutamate. Massive neuronal death was also observed in newborn retinal cultures containing large numbers of glia, or when neurons were seeded onto feeder layers of purified cells prepared from immature (postnatal 8 day) rat retina. When newborn retinal neurons were seeded onto feeder layers of purified glial cells prepared from adult retinas, application of excitotoxic amino acids no longer led to neuronal death. Furthermore, neuronal death was not observed in mixed neuron/glial cultures prepared from adult retina. However, in all cases (newborn and adult) application of kainate led to amacrine cell-specific death. Activity of glutamine synthetase, a key glial enzyme involved in glutamate detoxification, was assayed in these cultures in the presence or absence of exogenous glutamate. Whereas pure glial cultures alone (from young or adult retina) showed low activity that was not stimulated by glutamate addition, mixed or co-cultured neurons and adult glia exhibited up to threefold higher levels of activity following glutamate treatment. These data indicate that two conditions must be satisfied to observe glial neuroprotection: maturation of glutamine synthetase expression, and neuron-glial signalling through glutamate-elicited responses. PMID:9932869

  10. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth

    PubMed Central

    Sun, Ye; Ju, Meihua; Lin, Zhiqiang; Fredrick, Thomas W.; Evans, Lucy P.; Tian, Katherine T.; Saba, Nicholas J.; Morss, Peyton C.; Pu, William T.; Chen, Jing; Stahl, Andreas; Joyal, Jean-Sébastien; Smith, Lois E. H.

    2015-01-01

    Neurons and glial cells in the retina contribute to neovascularization, or the formation of abnormal new blood vessels, in proliferative retinopathy, a condition that can lead to vision loss or blindness. We identified a mechanism by which suppressor of cytokine signaling 3 (SOCS3) in neurons and glial cells prevents neovascularization. We found that Socs3 expression was increased in the retinal ganglion cell and inner nuclear layers after oxygen-induced retinopathy. Mice with Socs3 deficiency in neuronal and glial cells had substantially reduced vaso-obliterated retinal areas and increased pathological retinal neovascularization in response to oxygen-induced retinopathy, suggesting that loss of neuronal/glial SOCS3 increased both retinal vascular regrowth and pathological neovascularization. Furthermore, retinal expression of Vegfa (which encodes vascular endothelial growth factor A) was higher in these mice than in Socs3 flox/flox controls, indicating that neuronal and glial Socs3 suppressed Vegfa expression during pathological conditions. Lack of neuronal and glial SOCS3 resulted in greater phosphorylation and activation of STAT3, which led to increased expression of its gene target Vegfa, and increased endothelial cell proliferation. In summary, SOCS3 in neurons and glial cells inhibited the STAT3-mediated secretion of VEGF from these cells, which suppresses endothelial cell activation, resulting in decreased endothelial cell proliferation and angiogenesis. These results suggest that neuronal and glial cell SOCS3 limits pathological retinal angiogenesis by suppressing VEGF signaling. PMID:26396267

  11. A Mathematical Model of Regenerative Axon Growing along Glial Scar after Spinal Cord Injury.

    PubMed

    Chen, Xuning; Zhu, Weiping

    2016-01-01

    A major factor in the failure of central nervous system (CNS) axon regeneration is the formation of glial scar after the injury of CNS. Glial scar generates a dense barrier which the regenerative axons cannot easily pass through or by. In this paper, a mathematical model was established to explore how the regenerative axons grow along the surface of glial scar or bypass the glial scar. This mathematical model was constructed based on the spinal cord injury (SCI) repair experiments by transplanting Schwann cells as bridge over the glial scar. The Lattice Boltzmann Method (LBM) was used in this model for three-dimensional numerical simulation. The advantage of this model is that it provides a parallel and easily implemented algorithm and has the capability of handling complicated boundaries. Using the simulated data, two significant conclusions were made in this study: (1) the levels of inhibitory factors on the surface of the glial scar are the main factors affecting axon elongation and (2) when the inhibitory factor levels on the surface of the glial scar remain constant, the longitudinal size of the glial scar has greater influence on the average rate of axon growth than the transverse size. These results will provide theoretical guidance and reference for researchers to design efficient experiments. PMID:27274762

  12. Spinster controls Dpp signaling during glial migration in the Drosophila eye.

    PubMed

    Yuva-Aydemir, Yeliz; Bauke, Ann-Christin; Klämbt, Christian

    2011-05-11

    The development of multicellular organisms requires the well balanced and coordinated migration of many cell types. This is of particular importance within the developing nervous system, where glial cells often move long distances to reach their targets. The majority of glial cells in the peripheral nervous system of the Drosophila embryo is derived from the CNS and migrates along motor axons toward their targets. In the developing Drosophila eye, CNS-derived glial cells move outward toward the nascent photoreceptor cells, but the molecular mechanisms coupling the migration of glial cells with the growth of the eye imaginal disc are mostly unknown. Here, we used an enhancer trap approach to identify the gene spinster, which encodes a multipass transmembrane protein involved in endosome-lysosome trafficking, as being expressed in many glial cells. spinster mutants are characterized by glial overmigration. Genetic experiments demonstrate that Spinster modulates the activity of several signaling cascades. Within the migrating perineurial glial cells, Spinster is required to downregulate Dpp (Decapentaplegic) signaling activity, which ceases migratory abilities. In addition, Spinster affects the growth of the carpet cell, which indirectly modulates glial migration. PMID:21562262

  13. A Mathematical Model of Regenerative Axon Growing along Glial Scar after Spinal Cord Injury

    PubMed Central

    Chen, Xuning; Zhu, Weiping

    2016-01-01

    A major factor in the failure of central nervous system (CNS) axon regeneration is the formation of glial scar after the injury of CNS. Glial scar generates a dense barrier which the regenerative axons cannot easily pass through or by. In this paper, a mathematical model was established to explore how the regenerative axons grow along the surface of glial scar or bypass the glial scar. This mathematical model was constructed based on the spinal cord injury (SCI) repair experiments by transplanting Schwann cells as bridge over the glial scar. The Lattice Boltzmann Method (LBM) was used in this model for three-dimensional numerical simulation. The advantage of this model is that it provides a parallel and easily implemented algorithm and has the capability of handling complicated boundaries. Using the simulated data, two significant conclusions were made in this study: (1) the levels of inhibitory factors on the surface of the glial scar are the main factors affecting axon elongation and (2) when the inhibitory factor levels on the surface of the glial scar remain constant, the longitudinal size of the glial scar has greater influence on the average rate of axon growth than the transverse size. These results will provide theoretical guidance and reference for researchers to design efficient experiments. PMID:27274762

  14. The EM Earthquake Precursor

    NASA Astrophysics Data System (ADS)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  15. 77 FR 21277 - Customer Clearing Documentation, Timing of Acceptance for Clearing, and Clearing Member Risk...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ...\\ Clearing Member Risk Management, 76 FR 45724 (Aug. 1, 2011). \\7\\ Adaption of Regulations to Incorporate... ``risk management.'' See, e.g., proposed Sec. 39.13 relating to risk management for DCOs, 76 FR at 3720... and increases risk.\\38\\ \\38\\ See 76 FR 1214, Jan. 7, 2011. In this rulemaking, the Commission...

  16. CLEAR LAKE BASIN 2000 PROJECT

    SciTech Connect

    LAKE COUNTY SANITATION DISTRICT

    2003-03-31

    The following is a final report for the Clear Lake Basin 2000 project. All of the major project construction work was complete and this phase generally included final details and testing. Most of the work was electrical. Erosion control activities were underway to prepare for the rainy season. System testing including pump stations, electrical and computer control systems was conducted. Most of the project focus from November onward was completing punch list items.

  17. Ideas for clear technical writing

    USGS Publications Warehouse

    Robinson, B.P.

    1984-01-01

    The three greatest obstacles to clear technical-report writing are probably (1) imprecise words, (2) wordiness, and (3) poorly constructed sentences. Examples of category 1 include abstract words, jargon, and vogue words; of category 2, sentences containing impersonal construction superfluous words; and of category 3, sentences lacking parallel construction and proper order of related words and phrases. These examples and other writing-related subjects are discussed in the report, which contains a cross-referenced index and 24 references.

  18. Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration.

    PubMed

    Weissman, Tamily; Noctor, Stephen C; Clinton, Brian K; Honig, Lawrence S; Kriegstein, Arnold R

    2003-06-01

    Radial glial cells play at least two crucial roles in cortical development: neuronal production in the ventricular zone (VZ) and the subsequent guidance of neuronal migration. There is evidence that radial glia-like cells are present not only during development but in the adult mammalian brain as well. In addition, radial glial cells appear to be neurogenic in the central nervous system of a number of vertebrate species. We demonstrate here that most dividing progenitor cells in the embryonic human VZ express radial glial proteins. Furthermore, we provide evidence that radial glial cells maintain a vimentin-positive radial fiber throughout each stage of cell division. Asymmetric inheritance of this fiber may be an important factor in determining how neuronal progeny will migrate into the developing cortical plate. Although radial glial cells have traditionally been characterized by their role in guiding migration, their role as neuronal progenitors may represent their defining characteristic throughout the vertebrate CNS. PMID:12764028

  19. Sox2 promotes survival of satellite glial cells in vitro

    SciTech Connect

    Koike, Taro Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  20. Neuronal-glial networks as substrate for CNS integration.

    PubMed

    Verkhratsky, A; Toescu, E C

    2006-01-01

    Astrocytes have been considered, for a long time, as the support and house-keeping cells of the nervous system. Indeed, the astrocytes play very important metabolic roles in the brain, but the catalogue of nervous system functions or activities that involve directly glial participation has extended dramatically in the last decade. In addition to the further refining of the signalling capacity of the neuroglial networks and the detailed reassessment of the interactions between glia and vascular bed in the brain, one of the important salient features of the increased glioscience activity in the last few years was the morphological and functional demonstration that protoplasmic astrocytes occupy well defined spatial territories, with only limited areas of morphological overlapping, but still able to communicate with adjacent neighbours through intercellular junctions. All these features form the basis for a possible reassessment of the nature of integration of activity in the central nervous system that could raise glia to a role of central integrator. PMID:17125587

  1. Neuronal-glial networks as substrate for CNS integration

    PubMed Central

    Verkhratsky, A; Toescu, E C

    2006-01-01

    Astrocytes have been considered, for a long time, as the support and house-keeping cells of the nervous system. Indeed, the astrocytes play very important metabolic roles in the brain, but the catalogue of nervous system functions or activities that involve directly glial participation has extended dramatically in the last decade. In addition to the further refining of the signalling capacity of the neuroglial networks and the detailed reassessment of the interactions between glia and vascular bed in the brain, one of the important salient features of the increased glioscience activity in the last few years was the morphological and functional demonstration that protoplasmic astrocytes occupy well defined spatial territories, with only limited areas of morphological overlapping, but still able to communicate with adjacent neighbours through intercellular junctions. All these features form the basis for a possible reassessment of the nature of integration of activity in the central nervous system that could raise glia to a role of central integrator.

  2. New advances on glial activation in health and disease

    PubMed Central

    Lee, Kim Mai; MacLean, Andrew G

    2015-01-01

    In addition to being the support cells of the central nervous system (CNS), astrocytes are now recognized as active players in the regulation of synaptic function, neural repair, and CNS immunity. Astrocytes are among the most structurally complex cells in the brain, and activation of these cells has been shown in a wide spectrum of CNS injuries and diseases. Over the past decade, research has begun to elucidate the role of astrocyte activation and changes in astrocyte morphology in the progression of neural pathologies, which has led to glial-specific interventions for drug development. Future therapies for CNS infection, injury, and neurodegenerative disease are now aimed at targeting astrocyte responses to such insults including astrocyte activation, astrogliosis and other morphological changes, and innate and adaptive immune responses. PMID:25964871

  3. Io's Sodium Cloud (Clear Filter)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of Jupiter's moon Io and its surrounding sky is shown in false color. It was taken at 5 hours 30 minutes Universal Time on Nov. 9, 1996 by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft, using a clear filter whose wavelength range was approximately 400 to 1100 nanometers. This picture differs in two main ways from the green-yellow filter image of the same scene which was released yesterday.

    First, the sky around Io is brighter, partly because the wider wavelength range of the clear filter lets in more scattered light from Io's illuminated crescent and from Prometheus' sunlit plume. Nonetheless, the overall sky brightness in this frame is comparable to that seen through the green-yellow filter, indicating that even here much of the diffuse sky emission is coming from the wavelength range of the green-yellow filter (i.e., from Io's Sodium Cloud).

    The second major difference is that a quite large roundish spot has appeared in Io's southern hemisphere. This spot -- which has been colored red -- corresponds to thermal emission from the volcano Pele. The green-yellow filter image bears a much smaller trace of this emission because the clear filter is far more sensitive to those relatively long wavelengths where thermal emission is strongest.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  4. Chamber Clearing First Principles Modeling

    SciTech Connect

    Loosmore, G

    2009-06-09

    LIFE fusion is designed to generate 37.5 MJ of energy per shot, at 13.3 Hz, for a total average fusion power of 500 MW. The energy from each shot is partitioned among neutrons ({approx}78%), x-rays ({approx}12%), and ions ({approx}10%). First wall heating is dominated by x-rays and debris because the neutron mean free path is much longer than the wall thickness. Ion implantation in the first wall also causes damage such as blistering if not prevented. To moderate the peak-pulse heating, the LIFE fusion chamber is filled with a gas (such as xenon) to reduce the peak-pulse heat load. The debris ions and majority of the x-rays stop in the gas, which re-radiates this energy over a longer timescale (allowing time for heat conduction to cool the first wall sufficiently to avoid damage). After a shot, because of the x-ray and ion deposition, the chamber fill gas is hot and turbulent and contains debris ions. The debris needs to be removed. The ions increase the gas density, may cluster or form aerosols, and can interfere with the propagation of the laser beams to the target for the next shot. Moreover, the tritium and high-Z hohlraum debris needs to be recovered for reuse. Additionally, the cryogenic target needs to survive transport through the gas mixture to the chamber center. Hence, it will be necessary to clear the chamber of the hot contaminated gas mixture and refill it with a cool, clean gas between shots. The refilling process may create density gradients that could interfere with beam propagation, so the fluid dynamics must be studied carefully. This paper describes an analytic modeling effort to study the clearing and refilling process for the LIFE fusion chamber. The models used here are derived from first principles and balances of mass and energy, with the intent of providing a first estimate of clearing rates, clearing times, fractional removal of ions, equilibrated chamber temperatures, and equilibrated ion concentrations for the chamber. These can be used

  5. Vascular Precursor Cells

    PubMed Central

    Chaudhury, Hera; Goldie, Lauren C.

    2011-01-01

    Understanding the mechanisms that regulate the proliferation and differentiation of human stem and progenitor cells is critically important for the development and optimization of regenerative medicine strategies. For vascular regeneration studies, specifically, a true “vascular stem cell” population has not yet been identified. However, a number of cell types that exist endogenously, or can be generated or propagated ex vivo, function as vascular precursor cells and can participate in and/or promote vascular regeneration. Herein, we provide an overview of what is known about the regulation of their differentiation specifically toward a vascular endothelial cell phenotype. PMID:22866199

  6. Depression as a Glial-Based Synaptic Dysfunction

    PubMed Central

    Rial, Daniel; Lemos, Cristina; Pinheiro, Helena; Duarte, Joana M.; Gonçalves, Francisco Q.; Real, Joana I.; Prediger, Rui D.; Gonçalves, Nélio; Gomes, Catarina A.; Canas, Paula M.; Agostinho, Paula; Cunha, Rodrigo A.

    2016-01-01

    Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processes occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia) tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the “quad-partite” synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increased microglia “activation” in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, brain-derived neurotrophic factor, BDNF) affect glia functioning, whereas antidepressant treatments (serotonin-selective reuptake inhibitors, SSRIs, electroshocks, deep brain stimulation) recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication—such as the purinergic neuromodulation system operated by adenosine 5′-triphosphate (ATP) and adenosine—emerge as promising candidates to “re-normalize” synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future

  7. Evidence for brain glial activation in chronic pain patients

    PubMed Central

    Loggia, Marco L.; Chonde, Daniel B.; Akeju, Oluwaseun; Arabasz, Grae; Catana, Ciprian; Edwards, Robert R.; Hill, Elena; Hsu, Shirley; Izquierdo-Garcia, David; Ji, Ru-Rong; Riley, Misha; Wasan, Ajay D.; Zürcher, Nicole R.; Albrecht, Daniel S.; Vangel, Mark G.; Rosen, Bruce R.; Napadow, Vitaly; Hooker, Jacob M.

    2015-01-01

    Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand 11C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for 11C-PBR28, nine patient–control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29–63 for patients and 28–65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions. PMID:25582579

  8. Evidence for brain glial activation in chronic pain patients.

    PubMed

    Loggia, Marco L; Chonde, Daniel B; Akeju, Oluwaseun; Arabasz, Grae; Catana, Ciprian; Edwards, Robert R; Hill, Elena; Hsu, Shirley; Izquierdo-Garcia, David; Ji, Ru-Rong; Riley, Misha; Wasan, Ajay D; Zürcher, Nicole R; Albrecht, Daniel S; Vangel, Mark G; Rosen, Bruce R; Napadow, Vitaly; Hooker, Jacob M

    2015-03-01

    Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions. PMID:25582579

  9. Depression as a Glial-Based Synaptic Dysfunction.

    PubMed

    Rial, Daniel; Lemos, Cristina; Pinheiro, Helena; Duarte, Joana M; Gonçalves, Francisco Q; Real, Joana I; Prediger, Rui D; Gonçalves, Nélio; Gomes, Catarina A; Canas, Paula M; Agostinho, Paula; Cunha, Rodrigo A

    2015-01-01

    Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processes occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia) tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the "quad-partite" synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increased microglia "activation" in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, brain-derived neurotrophic factor, BDNF) affect glia functioning, whereas antidepressant treatments (serotonin-selective reuptake inhibitors, SSRIs, electroshocks, deep brain stimulation) recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication-such as the purinergic neuromodulation system operated by adenosine 5'-triphosphate (ATP) and adenosine-emerge as promising candidates to "re-normalize" synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future pharmacological tools to

  10. Minocycline inhibits the production of the precursor form of nerve growth factor by retinal microglial cells☆

    PubMed Central

    Yang, Xiaochun; Duan, Xuanchu

    2013-01-01

    A rat model of acute ocular hypertension was established by enhancing the perfusion of balanced salt solution in the anterior chamber of the right eye. Minocycline (90 mg/kg) was administered intraperitoneally into rats immediately after the operation for 3 consecutive days. Immunofluorescence, western blot assay and PCR detection revealed that the expression of the precursor form of nerve growth factor, nerve growth factor and the p75 neurotrophin receptor, and the mRNA expression of nerve growth factor and the p75 neurotrophin receptor, increased after acute ocular hypertension. The number of double-labeled CD11B- and precursor form of nerve growth factor-positive cells, glial fibrillary acidic protein- and p75 neurotrophin receptor-positive cells, glial fibrillary acidic protein- and caspase-3-positive cells in the retina markedly increased after acute ocular hypertension. The above-described expression decreased after minocycline treatment. These results suggested that minocycline inhibited the increased expression of the precursor form of nerve growth factor in microglia, the p75 neurotrophin receptor in astroglia, and protected cells from apoptosis. PMID:25206672

  11. EGFRvIII expression and PTEN loss synergistically induce chromosomal instability and glial tumors

    PubMed Central

    Li, Li; Dutra, Amalia; Pak, Evgenia; Labrie, Joseph E.; Gerstein, Rachel M.; Pandolfi, Pier Paolo; Recht, Larry D.; Ross, Alonzo H.

    2009-01-01

    Glioblastomas often show activation of epidermal growth factor receptor (EGFR) and loss of PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor, but it is not known if these two genetic lesions act together to transform cells. To answer this question, we infected PTEN−/− neural precursor cells with a retrovirus encoding EGFRvIII, which is a constitutively activated receptor. EGFRvIII PTEN−/− cells formed highly mitotic tumors with nuclear pleomorphism, necrotic areas, and glioblastoma markers. The transformed cells showed increased cell proliferation, centrosome amplification, colony formation in soft agar, self-renewal, expression of the stem cell marker CD133, and resistance to oxidative stress and ionizing radiation. The RAS/mitogen-activated protein kinase (ERK) and phosphoinositide 3-kinase/protein kinase B (PI3K/ Akt) pathways were activated, and checkpoint kinase 1 (Chk1), the DNA damage regulator, was phosphorylated at S280 by Akt, suppressing Chk1 phosphorylation at S345 in response to ionizing irradiation. The PTEN−/− cells showed low levels of DNA damage in the absence of irradiation, which was increased by EGFRvIII expression. Finally, secondary changes occurred during tumor growth in mice. Cells from these tumors showed decreased tumor latencies and additional chromosomal aberrations. Most of these tumor lines showed translocations of mouse chromosome 15. Intracranial injections of one of these lines led to invasive, glial fibrillary acidic protein–positive, nestin-positive tumors. These results provide a molecular basis for the occurrence of these two genetic lesions in brain tumors and point to a role in induction of genomic instability. PMID:18812521

  12. Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation.

    PubMed

    Teixeira, Fábio G; Carvalho, Miguel M; Neves-Carvalho, Andreia; Panchalingam, Krishna M; Behie, Leo A; Pinto, Luísa; Sousa, Nuno; Salgado, António J

    2015-04-01

    It was recently shown that the conditioned media (CM) of Human Umbilical Cord Perivascular Cells (HUCPVCs), a mesenchymal progenitor population residing within the Wharton Jelly of the umbilical cord, was able to modulate in vitro the survival and viability of different neuronal and glial cells populations. In the present work, we aimed to assess if the secretome of HUCPVCs is able to 1) induce the differentiation of human telencephalon neural precursor cells (htNPCs) in vitro, and 2) modulate neural/glial proliferation, differentiation and survival in the dentate gyrus (DG) of adult rat hippocampus. For this purpose, two separate experimental setups were performed: 1) htNPCs were incubated with HUCPVCs-CM for 5 days after which neuronal differentiation was assessed and, 2) HUCPVCs, or their respective CM, were injected into the DG of young adult rats and their effects assessed 7 days later. Results revealed that the secretome of HUCPVCs was able to increase neuronal cell differentiation in vitro; indeed, higher densities of immature (DCX(+) cells) and mature neurons (MAP-2(+) cells) were observed when htNPCs were incubated with the HUCPVCs-CM. Additionally, when HUCPVCs and their CM were injected in the DG, results revealed that both cells or CM were able to increase the endogenous proliferation (BrdU(+) cells) 7 days after injection. It was also possible to observe an increased number of newborn neurons (DCX(+) cells), upon injection of HUCPVCs or their respective CM. Finally western blot analysis revealed that after CM or HUCPVCs transplantation, there was an increase of fibroblast growth factor-2 (FGF-2) and, to a lesser extent, of nerve growth factor (NGF) in the DG tissue. Concluding, our results have shown that the transplantation of HUCPVCs or the administration of their secretome were able to potentiate neuronal survival and differentiation in vitro and in vivo. PMID:25420577

  13. The glial response to intracerebrally delivered therapies for neurodegenerative disorders: is this a critical issue?

    PubMed Central

    Cicchetti, Francesca; Barker, Roger A.

    2014-01-01

    The role of glial cells in the pathogenesis of many neurodegenerative conditions of the central nervous system (CNS) is now well established (as is discussed in other reviews in this special issue of Frontiers in Neuropharmacology). What is less clear is whether there are changes in these same cells in terms of their behavior and function in response to invasive experimental therapeutic interventions for these diseases. This has, and will continue to become more of an issue as we enter a new era of novel treatments which require the agent to be directly placed/infused into the CNS such as deep brain stimulation (DBS), cell transplants, gene therapies and growth factor infusions. To date, all of these treatments have produced variable outcomes and the reasons for this have been widely debated but the host astrocytic and/or microglial response induced by such invasively delivered agents has not been discussed in any detail. In this review, we have attempted to summarize the limited published data on this, in particular we discuss the small number of human post-mortem studies reported in this field. By so doing, we hope to provide a better description and understanding of the extent and nature of both the astrocytic and microglial response, which in turn could lead to modifications in the way these therapeutic interventions are delivered. PMID:25071571

  14. PROGRESSING FROM IDENTIFICATION AND FUNCTIONAL ANALYSIS OF PRECURSOR BEHAVIOR TO TREATMENT OF SELFINJURIOUS BEHAVIOR

    PubMed Central

    Dracobly, Joseph D; Smith, Richard G

    2012-01-01

    This multiplestudy experiment evaluated the utility of assessing and treating severe selfinjurious behavior SIB based on the outcomes of a functional analysis of precursor behavior. In Study 1, a precursor to SIB was identified using descriptive assessment and conditional probability analyses. In Study 2, a functional analysis of precursor behavior was conducted. Finally, Study 3 evaluated the effects of a treatment in which precursor behavior produced the maintaining variable identified in the precursor functional analysis. Studies 1 and 3 were conducted in two settings in the participants natural environment, where data collection was ongoing throughout the course of the study. Results showed that it was possible to identify a precursor to infrequent but severe SIB, that a functional analysis of precursor behavior suggested a clear operant function, and that treatment based on the results of the precursor functional analysis reduced SIB in the natural environment. PMID:22844142

  15. A Novel Bidirectional Interaction between endothelin-3 and Retinoic Acid in Rat Enteric Nervous System Precursors

    PubMed Central

    Gisser, Jonathan M.; Cohen, Ariella R.; Yin, Han; Gariepy, Cheryl E.

    2013-01-01

    Background Signaling through the endothelin receptor B (EDNRB) is critical for the development of the enteric nervous system (ENS) and mutations in endothelin system genes cause Hirschsprung’s aganglionosis in humans. Penetrance of the disease is modulated by other genetic factors. Mutations affecting retinoic acid (RA) signaling also produce aganglionosis in mice. Thus, we hypothesized that RA and endothelin signaling pathways may interact in controlling development of the ENS. Methods Rat immunoselected ENS precursor cells were cultured with the EDNRB ligand endothelin-3, an EDNRB-selective antagonist (BQ-788), and/or RA for 3 or 14 days. mRNA levels of genes related to ENS development, RA- and EDNRB-signaling were measured at 3 days. Proliferating cells and cells expressing neuronal, glial, and myofibroblast markers were quantified. Results Culture of isolated ENS precursors for 3 days with RA decreases expression of the endothelin-3 gene and that of its activation enzyme. These changes are associated with glial proliferation, a higher percentage of glia, and a lower percentage of neurons compared to cultures without RA. These changes are independent of EDNRB signaling. Conversely, EDNRB activation in these cultures decreases expression of RA receptors β and γ mRNA and affects the expression of the RA synthetic and degradative enzymes. These gene expression changes are associated with reduced glial proliferation and a lower percentage of glia in the culture. Over 14 days in the absence of EDNRB signaling, RA induces the formation of a heterocellular plexus replete with ganglia, glia and myofibroblasts. Conclusions A complex endothelin-RA interaction exists that coordinately regulates the development of rat ENS precursors in vitro. These results suggest that environmental RA may modulate the expression of aganglionosis in individuals with endothelin mutations. PMID:24040226

  16. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  17. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2010-10-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  18. The role of Ca 2+-related signaling in photodynamic injury of nerve and glial cells

    NASA Astrophysics Data System (ADS)

    Lobanov, A. V.; Petin, Y. O.; Uzdensky, A. B.

    2007-05-01

    Photodynamic therapy (PDT) inhibited and irreversibly abolished firing, caused necrosis of neurons, necrosis, apoptosis and proliferation of glial cells in the isolated crayfish stretch receptor. The role in these processes of the central components of Ca 2+-mediated signaling pathway: phospholipase C, calmodulin, calmodulin-dependent kinase II, and protein kinase C was studied using their inhibitors: ET-18, fluphenazine, KN-93, or staurosporine, respectively. ET-18 reduced functional inactivation of neurons, necrosis and apoptosis of glial cells. Fluphenazine and KN-93 reduced PDT-induced necrosis of neurons and glial cells. Staurosporine enhanced PDT-induced glial apoptosis. PDTinduced gliosis was prevented by KN-93 and staurosporine. Therefore, phospholipase C participated in neuron inactivation and glial necrosis and apoptosis. Calmodulin and calmodulin-dependent kinase II were involved in PDT-induced necrosis of neurons and glial cells but not in glial apoptosis. Protein kinase C protected glia from apoptosis and participated in PDT-induced gliosis and loss of neuronal activity. These data may be used for modulation of PDT of brain tumors.

  19. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    PubMed

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells. PMID:25452710

  20. The glial investment of the adult and developing antennal lobe of Drosophila

    PubMed Central

    Oland, Lynne A.; Biebelhausen, John P.; Tolbert, Leslie P.

    2009-01-01

    In recent years, the Drosophila olfactory system, with its unparalleled opportunities for genetic dissection of development and functional organization, has been used to study the development of central olfactory neurons and the molecular basis of olfactory coding. The results of these studies have been interpreted in the absence of a detailed understanding of the steps in maturation of glial cells in the antennal lobe. Here, we present a high-resolution study of the glia associated with olfactory glomeruli in adult and developing antennal lobes. The study provides a basis for comparison of findings in Drosophila with those in the moth Manduca sexta that indicate a critical role for glia in antennal lobe development. Using flies expressing GFP under a Nervana2 driver to visualize glia for confocal microscopy, and probing at higher resolution with the electron microscope, we find that glial development in Drosophila differs markedly from that in moths: glial cell bodies remain in a rind around the glomerular neuropil; glial processes ensheathe axon bundles in the nerve layer but likely contribute little to axonal sorting; their processes insinuate between glomeruli only very late and then form only a sparse, open network around each glomerulus; and glial processes invade the synaptic neuropil. Taking our results in the context of previous studies, we conclude that glial cells in the developing Drosophila antennal lobe are unlikely to play a strong role in either axonal sorting or glomerulus stabilization and that in the adult, glial processes do not electrically isolate glomeruli from their neighbors. PMID:18537134

  1. The Drosophila blood-brain barrier: development and function of a glial endothelium

    PubMed Central

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells. PMID:25452710

  2. Radial glial cells play a key role in echinoderm neural regeneration

    PubMed Central

    2013-01-01

    Background Unlike the mammalian central nervous system (CNS), the CNS of echinoderms is capable of fast and efficient regeneration following injury and constitutes one of the most promising model systems that can provide important insights into evolution of the cellular and molecular events involved in neural repair in deuterostomes. So far, the cellular mechanisms of neural regeneration in echinoderm remained obscure. In this study we show that radial glial cells are the main source of new cells in the regenerating radial nerve cord in these animals. Results We demonstrate that radial glial cells of the sea cucumber Holothuria glaberrima react to injury by dedifferentiation. Both glia and neurons undergo programmed cell death in the lesioned CNS, but it is the dedifferentiated glial subpopulation in the vicinity of the injury that accounts for the vast majority of cell divisions. Glial outgrowth leads to formation of a tubular scaffold at the growing tip, which is later populated by neural elements. Most importantly, radial glial cells themselves give rise to new neurons. At least some of the newly produced neurons survive for more than 4 months and express neuronal markers typical of the mature echinoderm CNS. Conclusions A hypothesis is formulated that CNS regeneration via activation of radial glial cells may represent a common capacity of the Deuterostomia, which is not invoked spontaneously in higher vertebrates, whose adult CNS does not retain radial glial cells. Potential implications for biomedical research aimed at finding the cure for human CNS injuries are discussed. PMID:23597108

  3. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  4. Identified EM Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  5. Generation of Nonlinear Vortex Precursors.

    PubMed

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required. PMID:27447507

  6. Generation of Nonlinear Vortex Precursors

    NASA Astrophysics Data System (ADS)

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required.

  7. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells

    PubMed Central

    Freitas, Hercules R.; Ferraz, Gabriel; Ferreira, Gustavo C.; Ribeiro-Resende, Victor T.; Chiarini, Luciana B.; do Nascimento, José Luiz M.; Matos Oliveira, Karen Renata H.; Pereira, Tiago de Lima; Ferreira, Leonardo G. B.; Kubrusly, Regina C.; Faria, Robson X.

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1–10mM) showed that 5–10mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50mM KCl (labeled as βIII tubulin positive cells). BBG 100nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70μM and MK-801 20μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  8. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells.

    PubMed

    Freitas, Hercules R; Ferraz, Gabriel; Ferreira, Gustavo C; Ribeiro-Resende, Victor T; Chiarini, Luciana B; do Nascimento, José Luiz M; Matos Oliveira, Karen Renata H; Pereira, Tiago de Lima; Ferreira, Leonardo G B; Kubrusly, Regina C; Faria, Robson X; Herculano, Anderson Manoel; Reis, Ricardo A de Melo

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1-10 mM) showed that 5-10 mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50 mM KCl (labeled as βIII tubulin positive cells). BBG 100 nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70 μM and MK-801 20 μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5 mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  9. USE OF GLIAL FIBRILLARY ACIDIC PROTEIN IN FIRST-TIER ASSESSMENTS OF NEUROTOXICITY

    EPA Science Inventory

    Diverse neurotoxic insults result in proliferation and hypertrophy of astrocytes, a subtype of central nervous system glia. he hallmark of this response, often termed "reactive gliosis," is the enhanced expression of the major intermediate filament protein of astrocytes, glial fi...

  10. GLUCOCORTICOIDS REGULATE THE CONCENTRATION OF GLIAL FIBRILLARY ACIDIC PROTEIN THROUGHOUT THE BRAIN

    EPA Science Inventory

    The role of glucocorticoids in the in vivo regulation of glial fibrillary acidic protein was examined. orticosterone administration to adult rats resulted in decreased levels of GFAP throughout the brain whereas adrenalectomy caused levels of GFAP to increase. orticosterone admin...

  11. A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue

    PubMed Central

    Elsayed, Maha; Magistretti, Pierre J.

    2015-01-01

    Mental illnesses have long been perceived as the exclusive consequence of abnormalities in neuronal functioning. Until recently, the role of glial cells in the pathophysiology of mental diseases has largely been overlooked. However recently, multiple lines of evidence suggest more diverse and significant functions of glia with behavior-altering effects. The newly ascribed roles of astrocytes, oligodendrocytes and microglia have led to their examination in brain pathology and mental illnesses. Indeed, abnormalities in glial function, structure and density have been observed in postmortem brain studies of subjects diagnosed with mental illnesses. In this review, we discuss the newly identified functions of glia and highlight the findings of glial abnormalities in psychiatric disorders. We discuss these preclinical and clinical findings implicating the involvement of glial cells in mental illnesses with the perspective that these cells may represent a new target for treatment. PMID:26733803

  12. An electrically resistive sheet of glial cells for amplifying signals of neuronal extracellular recordings

    NASA Astrophysics Data System (ADS)

    Matsumura, R.; Yamamoto, H.; Niwano, M.; Hirano-Iwata, A.

    2016-01-01

    Electrical signals of neuronal cells can be recorded non-invasively and with a high degree of temporal resolution using multielectrode arrays (MEAs). However, signals that are recorded with these devices are small, usually 0.01%-0.1% of intracellular recordings. Here, we show that the amplitude of neuronal signals recorded with MEA devices can be amplified by covering neuronal networks with an electrically resistive sheet. The resistive sheet used in this study is a monolayer of glial cells, supportive cells in the brain. The glial cells were grown on a collagen-gel film that is permeable to oxygen and other nutrients. The impedance of the glial sheet was measured by electrochemical impedance spectroscopy, and equivalent circuit simulations were performed to theoretically investigate the effect of covering the neurons with such a resistive sheet. Finally, the effect of the resistive glial sheet was confirmed experimentally, showing a 6-fold increase in neuronal signals. This technique feasibly amplifies signals of MEA recordings.

  13. New Tools for the Analysis of Glial Cell Biology in Drosophila

    PubMed Central

    Awasaki, Takeshi; Lee, Tzumin

    2010-01-01

    Due to its genetic, molecular, and behavioral tractability, Drosophila has emerged as a powerful model system for studying molecular and cellular mechanisms underlying the development and function of nervous systems. The Drosophila nervous system has fewer neurons and exhibits a lower glia:neuron ratio than is seen in vertebrate nervous systems. Despite the simplicity of the Drosophila nervous system, glial organization in flies is as sophisticated as it is in vertebrates. Furthermore, fly glial cells play vital roles in neural development and behavior. In addition, powerful genetic tools are continuously being created to explore cell function in vivo. In taking advantage of these features, the fly nervous system serves as an excellent model system to study general aspects of glial cell development and function in vivo. In this article, we review and discuss advanced genetic tools that are potentially useful for understanding glial cell biology in Drosophila. PMID:21305614

  14. Observation and manipulation of glial cell function by virtue of sufficient probe expression

    PubMed Central

    Natsubori, Akiyo; Takata, Norio; Tanaka, Kenji F.

    2015-01-01

    The development of gene-encoded indicators and actuators to observe and manipulate cellular functions is being advanced and investigated. Expressing these probe molecules in glial cells is expected to enable observation and manipulation of glial cell activity, leading to elucidate the behaviors and causal roles of glial cells. The first step toward understanding glial cell functions is to express the probes in sufficient amounts, and the Knockin-mediated ENhanced Gene Expression (KENGE)-tet system provides a strategy for achieving this. In the present article, three examples of KENGE-tet system application are reviewed: depolarization of oligodendrocytes, intracellular acidification of astrocytes, and observation of intracellular calcium levels in the fine processes of astrocytes. PMID:26005405

  15. GONADAL STEROIDS REGULATED THE EXPRESSION OF GLIAL FIBRILLARY ACIDIC PROTEIN IN THE ADULT MALE RAT HIPPOCAMPUS

    EPA Science Inventory

    This study demonstrates that gonadal steroids (estradiol, testosterone, dihydrotestosterone) can inhibit the expression of glial fibrillary acidic protein and it MRNA in the adult male rat brain. esticular hormones may influence the activity of astrocytes in the intact and lesion...

  16. ASSESSMENT OF NEUROTOXICITY: USE OF GLIAL FIBRILLARY ACIDIC PROTEIN AS A BIOMARKER

    EPA Science Inventory

    Diverse neurotoxic insults results in proliferation and hypertrophy of astrocytes. he hallmark of this response is enhanced expression of the major intermediate filament protein of astrocytes, glial fibrillary acidic protein (GFAP). hese observations suggest that GFAP may be a us...

  17. Embryonic development of glial cells and myelin in the shark, Chiloscyllium punctatum

    PubMed Central

    Rotenstein, Lisa; Milanes, Anthony; Juarez, Marilyn; Reyes, Michelle; de Bellard, Maria Elena

    2009-01-01

    Glial cells are responsible for a wide range of functions in the nervous system of vertebrates. The myelinated nervous systems of extant elasmobranchs have the longest independent history of all gnathostomes. Much is known about the development of glia in other jawed vertebrates, but research in elasmobranchs is just beginning to reveal the mechanisms guiding neurodevelopment. This study examines the development of glial cells in the bamboo shark, Chiloscyllium punctatum, by identifying the expression pattern of several classic glial and myelin proteins. We show for the first time that glial development in the bamboo shark (Ch. punctamum) embryo follows closely the one observed in other vertebrates and that neural development seems to proceed at a faster rate in the PNS than in the CNS. In addition, we observed more myelinated tracts in the PNS than in the CNS, and as early as stage 32, suggesting that the ontogeny of myelin in sharks is closer to osteichthyans than agnathans. PMID:19733690

  18. [Glial cells are involved in iron accumulation and degeneration of dopamine neurons in Parkinson's disease].

    PubMed

    Xu, Hua-Min; Wang, Jun; Song, Ning; Jiang, Hong; Xie, Jun-Xia

    2016-08-25

    A growing body of evidence suggests that glial cells play an important role in neural development, neural survival, nerve repair and regeneration, synaptic transmission and immune inflammation. As the highest number of cells in the central nervous system, the role of glial cells in Parkinson's disease (PD) has attracted more and more attention. It has been confirmed that nigral iron accumulation contributes to the death of dopamine (DA) neurons in PD. Until now, most researches on nigral iron deposition in PD are focusing on DA neurons, but in fact glial cells in the central nervous system also play an important role in the regulation of iron homeostasis. Therefore, this review describes the role of iron metabolism of glial cells in death of DA neurons in PD, which could provide evidence to reveal the mechanisms underlying nigral iron accumulation of DA neurons in PD and provide the basis for discovering new potential therapeutic targets for PD. PMID:27546505

  19. Brain but not retinal glial cells have carbonic anhydrase activity in the honeybee drone.

    PubMed

    Walz, B

    1988-02-15

    Carbonic anhydrase (CA) activity was localized histochemically in the retina and brain of the honeybee drone. A positive reaction that could be inhibited with 10(-5) M acetazolamide was found only in brain glial cells such as those in the lamina and medulla of the optic lobes. In the retina, neither the photoreceptors nor the pigmented glial cells showed CA activity. Hence, there is a marked difference between retinal and brain glial cells with respect to those functions thought to be performed by CA. This study extends the range of tissues in which CA has been shown to be localized in glial cells, but the absence of CA from the retina will impose constraints on a general explanation of the role of CA in nervous tissue. PMID:3129680

  20. Developmental regulation of voltage-gated K+ channel and GABAA receptor expression in Bergmann glial cells.

    PubMed

    Müller, T; Fritschy, J M; Grosche, J; Pratt, G D; Möhler, H; Kettenmann, H

    1994-05-01

    Bergmann glial cells are closely associated with neurons: during development they provide guiding structures for migrating granule cells and in the adult cerebellum they display intimate interactions with Purkinje cells. In this study, we have addressed the question of whether such changes in neuronal-glial interactions during development are accompanied by variations in the membrane properties of Bergmann glial cells. We used a mouse cerebellum slice preparation to study membrane currents of the Bergmann glial cells at various stages of development in situ using the patch-clamp technique. The distinct morphology of Bergmann glial cells was revealed by Lucifer yellow injections during recording. While Bergmann glial cells in mice of postnatal day 20 (P20) to P30 have thick processes with arborized, irregularly shaped leaf-like appendages, the processes of cells from younger mice (P5-P7) are thinner and smoother. This morphological maturation is accompanied by a variation in voltage-gated currents. In cells from P5 to P7, delayed outward- and inward-rectifying K+ currents were recorded, while older Bergmann glial cells were characterized by, large, voltage- and time-independent K+ currents. In addition, application of GABA induces two effects, a rapid activation of a Cl- conductance and a longer-lasting decrease in the (resting) K+ conductance. Both effects were mediated by benzodiazepine-insensitive GABAA receptors. Responses in cells of P5-P7 mice were large as compared to the small or even undetectable responses in P20-P30 cells. These GABAA receptors were characterized immunohistochemically in mice and rat brain sections with five subunit-specific antibodies. Bergmann glial cells exhibit a distinct but transient immunoreactivity for the GABAA receptor alpha 2-, alpha 3-, and delta-subunits. Staining is maximal between P7 and P10 and decreases gradually thereafter. In contrast, antibodies to the alpha 1- and beta 2,3-subunits fail to decorate Bergmann glial cells

  1. Glial potassium channels activated by neuronal firing or intracellular cyclic AMP in Helix.

    PubMed Central

    Gommerat, I; Gola, M

    1996-01-01

    1. Cell-attached and whole cell patch clamp experiments were performed on satellite glial cells adhering to the cell body of neurones in situ within the nervous system of the snail Helix pomatia. The underlying neurone was under current or voltage-clamp control. 2. Neuronal firing induced a delayed (20-30 s) persistent (3-4 min) increase in the opening probability of glial K+ channels. The channels were also activated by perfusing the ganglion with a depolarizing high-K+ saline, except when the underlying neurone was prevented from depolarizing under voltage-clamp conditions. 3. Two K(+)-selective channels were detected in the glial membrane. The channel responding to neuronal firing was present in 95% of the patches (n = 393). It had a unitary conductance of 56 pS, a Na+ :K+ permeability ratio < 0.02 and displayed slight inward rectification in symmetrical [K+] conditions. It was sensitive to TEA, Ba2+ and Cs+. The following results refer to this channel as studied in the cell-attached configuration. 4. The glial K+ channel was activated by bath application of the membrane-permeant cyclic AMP derivatives 8-bromo-cAMP and dibutyryl-cAMP, the adenylyl cyclase activator forskolin and the diesterase inhibitors IBMX, theophylline and caffeine. It was insensitive to cyclic GMP activators and to conditions that might alter the intracellular [Ca2+] (ionomycin, low-Ca2+ saline and Ca2+ channel blockers). 5. The forskolin-induced changes in channel behaviour (open and closed time distributions, burst duration, short and long gaps within bursts) could be accounted for by a four-state model (3 closed states, 1 open state) by simply changing one of the six rate parameters. 6. The present results suggest that the signal sent by an active neurone to satellite glial cells is confined to the glial cells round that neurone. The effect of this signal on the class of glial K+ channels studied can be mimicked by an increase in glial cAMP concentration. The subsequent delayed opening

  2. In vivo quantification of neuro-glial metabolism and glial glutamate concentration using 1H-[13C] MRS at 14.1T.

    PubMed

    Lanz, Bernard; Xin, Lijing; Millet, Philippe; Gruetter, Rolf

    2014-01-01

    Astrocytes have recently become a major center of interest in neurochemistry with the discoveries on their major role in brain energy metabolism. An interesting way to probe this glial contribution is given by in vivo (13) C NMR spectroscopy coupled with the infusion labeled glial-specific substrate, such as acetate. In this study, we infused alpha-chloralose anesthetized rats with [2-(13) C]acetate and followed the dynamics of the fractional enrichment (FE) in the positions C4 and C3 of glutamate and glutamine with high sensitivity, using (1) H-[(13) C] magnetic resonance spectroscopy (MRS) at 14.1T. Applying a two-compartment mathematical model to the measured time courses yielded a glial tricarboxylic acid (TCA) cycle rate (Vg ) of 0.27 ± 0.02 μmol/g/min and a glutamatergic neurotransmission rate (VNT ) of 0.15 ± 0.01 μmol/g/min. Glial oxidative ATP metabolism thus accounts for 38% of total oxidative metabolism measured by NMR. Pyruvate carboxylase (VPC ) was 0.09 ± 0.01 μmol/g/min, corresponding to 37% of the glial glutamine synthesis rate. The glial and neuronal transmitochondrial fluxes (Vx (g) and Vx (n) ) were of the same order of magnitude as the respective TCA cycle fluxes. In addition, we estimated a glial glutamate pool size of 0.6 ± 0.1 μmol/g. The effect of spectral data quality on the fluxes estimates was analyzed by Monte Carlo simulations. In this (13) C-acetate labeling study, we propose a refined two-compartment analysis of brain energy metabolism based on (13) C turnover curves of acetate, glutamate and glutamine measured with state of the art in vivo dynamic MRS at high magnetic field in rats, enabling a deeper understanding of the specific role of glial cells in brain oxidative metabolism. In addition, the robustness of the metabolic fluxes determination relative to MRS data quality was carefully studied. PMID:24117599

  3. Proliferation of differentiated glial cells in the brain stem.

    PubMed

    Barradas, P C; Cavalcante, L A

    1998-02-01

    Classical studies of macroglial proliferation in muride rodents have provided conflicting evidence concerning the proliferating capabilities of oligodendrocytes and microglia. Furthermore, little information has been obtained in other mammalian orders and very little is known about glial cell proliferation and differentiation in the subclass Metatheria although valuable knowledge may be obtained from the protracted period of central nervous system maturation in these forms. Thus, we have studied the proliferative capacity of phenotypically identified brain stem oligodendrocytes by tritiated thymidine radioautography and have compared it with known features of oligodendroglial differentiation as well as with proliferation of microglia in the opossum Didelphis marsupialis. We have detected a previously undescribed ephemeral, regionally heterogeneous proliferation of oligodendrocytes expressing the actin-binding, ensheathment-related protein 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), that is not necessarily related to the known regional and temporal heterogeneity of expression of CNPase in cell bodies. On the other hand, proliferation of microglia tagged by the binding of Griffonia simplicifolia B4 isolectin, which recognizes an alpha-D-galactosyl-bearing glycoprotein of the plasma membrane of macrophages/microglia, is known to be long lasting, showing no regional heterogeneity and being found amongst both ameboid and differentiated ramified cells, although at different rates. The functional significance of the proliferative behavior of these differentiated cells is unknown but may provide a low-grade cell renewal in the normal brain and may be augmented under pathological conditions. PMID:9686148

  4. Endothelium in brain: Receptors, mitogenesis, and biosynthesis in glial cells

    SciTech Connect

    MacCumber, M.W.; Ross, C.A.; Snyder, S.H. )

    1990-03-01

    The authors have explored the cellular loci of endothelin (ET) actions and formation in the brain, using cerebellar mutant mice was well as primary and continuous cell cultures. A glial role is favored by several observations: (1) mutant mice lacking neuronal Purkinje cells display normal ET receptor binding and enhanced stimulation by ET of inositolphospholipid turnover; (ii) in weaver mice lacking neuronal granule cells, ET stimulation of inositolphospholipid turnover is not significantly diminished; (iii) C{sub 6} glioma cells and primary cultures of cerebellar astroglia exhibit substantial ET receptor binding and ET-induced stimulation of inositolphospholipid turnover; (iv) ET promotes mitogenesis of C{sub 6} glioma cells and primary cerebellar astroglia; and (v) primary cultures of cerebellar astroglia contain ET mRNA. ET also appears to have a neuronal role, since it stimulates inositolphospholipid turnover in primary cultures of cerebellar granule cells, and ET binding declines in granule cell-deficient mice. Thus, ET can be produced by glia and act upon both glia and neurons in a paracrine fashion.

  5. Glial Localization of Antiquitin: Implications for Pyridoxine-Dependent Epilepsy

    PubMed Central

    Jansen, Laura A.; Hevner, Robert F.; Roden, William H.; Hahn, Sihoun; Jung, Sunhee; Gospe, Sidney M.

    2013-01-01

    Objective A high incidence of structural brain abnormalities has been reported in individuals with pyridoxine-dependent epilepsy (PDE). PDE is caused by mutations in ALDH7A1, also known as antiquitin. How antiquitin dysfunction leads to cerebral dysgenesis is unknown. In this study, we analyzed tissue from a child with PDE as well as control human and murine brain to determine the normal distribution of antiquitin, its distribution in PDE, and associated brain malformations. Methods Formalin-fixed human brain sections were subjected to histopathology and fluorescence immunohistochemistry studies. Frozen brain tissue was utilized for measurement of PDE-associated metabolites and Western blot analysis. Comparative studies of antiquitin distribution were performed in developing mouse brain sections. Results Histologic analysis of PDE cortex revealed areas of abnormal radial neuronal organization consistent with type Ia focal cortical dysplasia. Heterotopic neurons were identified in subcortical white matter, as was cortical astrogliosis, hippocampal sclerosis, and status marmoratus of the basal ganglia. Highly elevated levels of lysine metabolites were present in postmortem PDE cortex. In control human and developing mouse brain, antiquitin immunofluorescence was identified in radial glia, mature astrocytes, ependyma, and choroid plexus epithelium, but not in neurons. In PDE cortex, antiquitin immunofluorescence was greatly attenuated with evidence of perinuclear accumulation in astrocytes. Interpretation Antiquitin is expressed within glial cells in the brain, and its dysfunction in PDE is associated with neuronal migration abnormalities and other structural brain defects. These malformations persist despite postnatal pyridoxine supplementation and likely contribute to neurodevelopmental impairments. PMID:24122892

  6. A Digital Realization of Astrocyte and Neural Glial Interactions.

    PubMed

    Hayati, Mohsen; Nouri, Moslem; Haghiri, Saeed; Abbott, Derek

    2016-04-01

    The implementation of biological neural networks is a key objective of the neuromorphic research field. Astrocytes are the largest cell population in the brain. With the discovery of calcium wave propagation through astrocyte networks, now it is more evident that neuronal networks alone may not explain functionality of the strongest natural computer, the brain. Models of cortical function must now account for astrocyte activities as well as their relationships with neurons in encoding and manipulation of sensory information. From an engineering viewpoint, astrocytes provide feedback to both presynaptic and postsynaptic neurons to regulate their signaling behaviors. This paper presents a modified neural glial interaction model that allows a convenient digital implementation. This model can reproduce relevant biological astrocyte behaviors, which provide appropriate feedback control in regulating neuronal activities in the central nervous system (CNS). Accordingly, we investigate the feasibility of a digital implementation for a single astrocyte constructed by connecting a two coupled FitzHugh Nagumo (FHN) neuron model to an implementation of the proposed astrocyte model using neuron-astrocyte interactions. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed neuron astrocyte model, with significantly low hardware cost, can mimic biological behavior such as the regulation of postsynaptic neuron activity and the synaptic transmission mechanisms. PMID:26390499

  7. Glial heterotopia in the subcutaneous tissue overlying T-12.

    PubMed

    Skelton, H G; Smith, K J

    1999-11-01

    Heterotopic glial nodules occur most commonly in the head and neck area, and are theorized to arise following abnormalities in the development of the facial and skull bone plates. However, in spite of the fact that some of these lesions are associated with communication with the central nervous system (CNS), the lack of a meningeal component, argues against simple herniation and separation of brain tissue through a defect in the skull. We present an infant with a nodule directly over the spine present in the T-12 region with no skin abnormalities. Magnetic resonance imaging (MRI) and computerized axial tomography (CT) showed no spinal abnormalities with an overlying fibrotic soft tissue mass. The patient had no other associated clinical findings. Histologic findings showed a cellular component arising within the reticular dermis with a deep circumscribed margin. The nodule contained irregularly shaped cells containing abundant cytoplasm and indistinct cellular margins with bland nuclei. These cells were clustered around and between a fibro-mucinous stroma. Immunohistochemical stains showed positive staining for S-100 protein, vimentin, GFAP, NSE, and CD57, and negative staining for Ki-67, CD34, Neurofilament protein, cytokeratin, and EMA. The spindle cells showed positive staining for CD34 and vimentin. The clinical and histologic features and immunohistochemical profiles are used to separate this lesion from the closely related, ependymal rests, ependymomas, and primary cutaneous chorodomas. PMID:10599945

  8. Implications of glial nitric oxide in neurodegenerative diseases

    PubMed Central

    Yuste, Jose Enrique; Tarragon, Ernesto; Campuzano, Carmen María; Ros-Bernal, Francisco

    2015-01-01

    Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS) that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases. PMID:26347610

  9. Glial Reactivity in Resistance to Methamphetamine-Induced Neurotoxicity

    PubMed Central

    Friend, Danielle M.; Keefe, Kristen A.

    2013-01-01

    Neurotoxic regimens of methamphetamine (METH) result in reactive microglia and astrocytes in striatum. Prior data indicate that rats with partial dopamine (DA) loss resulting from prior exposure to METH are resistant to further decreases in striatal DA when re-exposed to METH 30 days later. Such resistant animals also do not show an activated microglia phenotype, suggesting a relation between microglial activation and METH-induced neurotoxicity. To date, the astrocyte response in such resistance has not been examined. Thus, this study examined glial-fibrillary acidic protein (GFAP) and CD11b protein expression in striata of animals administered saline or a neurotoxic regimen of METH on postnatal days 60 and/or 90 (Saline:Saline, Saline:METH, METH:Saline, METH:METH). Consistent with previous work, animals experiencing acute toxicity (Saline:METH) showed both activated microglia and astocytes, whereas those resistant to the acute toxicity (METH:METH) did not show activated microglia. Interestingly, GFAP expression remained elevated in rats exposed to METH at PND60 (METH:Saline), and was not elevated further in resistant rats treated for the second time with METH (METH:METH). These data suggest that astrocytes remain reactive up to 30 days post-METH exposure. Additionally, these data indicate that astrocyte reactivity does not reflect acute, METH-induced DA terminal toxicity, whereas microglial reactivity does. PMID:23414433

  10. Defective Glial Maturation in Vanishing White Matter Disease

    PubMed Central

    Bugiani, Marianna; Boor, Ilja; van Kollenburg, Barbara; Postma, Nienke; Polder, Emiel; van Berkel, Carola; van Kesteren, Ronald E.; Windrem, Martha S.; Hol, Elly M.; Scheper, Gert C.; Goldman, Steven A.; van der Knaap, Marjo S.

    2014-01-01

    Vanishing white matter disease (VWM) is a genetic leukoencephalopathy linked to mutations in the eukaryotic translation initiation factor 2B (eIF2B). It is a disease of infants, children and adults, who experience a slowly progressive neurological deterioration with episodes of rapid clinical worsening triggered by stress and eventually leading to death. Characteristic neuropathological findings include cystic degeneration of the white matter with scarce reactive gliosis, dysmorphic astrocytes, and paucity of myelin despite an increase in oligodendrocytic density. To assess whether a defective maturation of macroglia may be responsible for the feeble gliosis and lack of myelin, we investigated the maturation status of astrocytes and oligodendrocytes in the brains of 8 VWM patients, 4 patients with other white matter disorders and 6 age-matched controls with a combination of immunocytochemistry, histochemistry, scratch-wound assays, Western blot and quantitative PCR. We observed increased proliferation and a defect in the maturation of VWM astrocytes. They show an anomalous composition of their intermediate filament network with predominance of the δ-isoform of the glial fibrillary acidic protein and an increase in the heat shock protein αB-crystallin, supporting the possibility that a deficiency in astrocyte function may contribute to the loss of white matter in VWM. We also demonstrated a significant increase in numbers of pre-myelinating oligodendrocyte progenitors in VWM, which may explain the co-existence of oligodendrocytosis and myelin paucity in the patients’ white matter. PMID:21157376

  11. Comparison of the radiosensitivities of neurons and glial cells derived from the same rat brain

    PubMed Central

    KUDO, SHIGEHIRO; SUZUKI, YOSHIYUKI; NODA, SHIN-EI; MIZUI, TOSHIYUKI; SHIRAI, KATSUYUKI; OKAMOTO, MASAHIKO; KAMINUMA, TAKUYA; YOSHIDA, YUKARI; SHIRAO, TOMOAKI; NAKANO, TAKASHI

    2014-01-01

    Non-proliferating cells, such as mature neurons, are generally believed to be more resistant to X-rays than proliferating cells, such as glial and vascular endothelial cells. Therefore, the late adverse effects of radiotherapy on the brain have been attributed to the radiation-induced damage of glial and vascular endothelial cells. However, little is known about the radiosensitivities of neurons and glial cells due to difficulties in culturing these cells, particularly neurons, independently. In the present study, primary dissociated neurons and glial cultures were prepared separately from the hippocampi and cerebrum, respectively, which had been obtained from the same fetal rat on embryonic day 18. X-irradiations of 50 Gy were performed on the cultured neurons and glial cells at 7 and 21 days in vitro (DIV). The cells were fixed at 24 h after irradiation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was then performed to measure the apoptotic indices (AIs). The AIs of non-irradiated and irradiated neurons at 7 DIV were 23.7±6.7 and 64.9±4.8%, and those at 21 DIV were 52.1±17.4 and 44.6±12.5%, respectively. The AIs of non-irradiated and irradiated glial cells at 7 DIV were 5.8±1.5 and 78.4±3.3% and those at 21 DIV were 9.6±2.6 and 86.3±4.9%, respectively. Glial cells and neurons were radiosensitive at 7 DIV. However, while glial cells were radiosensitive at 21 DIV, neurons were not. PMID:25120594

  12. Argyrophilic ubiquitinated cytoplasmic inclusions of Leu-7-positive glial cells in olivopontocerebellar atrophy (multiple system atrophy).

    PubMed

    Kato, S; Nakamura, H; Hirano, A; Ito, H; Llena, J F; Yen, S H

    1991-01-01

    We described cytoplasmic inclusions in glial cells in 18 patients with olivopontocerebellar atrophy (OPCA) (multiple system atrophy, MSA). These glial inclusions showed intense argyrophilia with modified Bielschowsky's and Bodian's silver impregnation techniques, and were observed in the pons, cerebellar white matter, midbrain, medulla oblongata and basal ganglia, as well as cerebral white matter and spinal cord. None of the 54 control cases had glial argyrophilic inclusions. Immunohistochemically, these inclusions were intensely labeled by anti-ubiquitin antibody. Some of them reacted with an antibody to Rosenthal fiber (RF) protein. The cytoplasm of ubiquitinated inclusion-bearing glial cells was immunostained by anti-Leu-7 antibody, but not by anti-GFAP antibody. Ultrastructurally, the glial inclusions were composed primarily of approximately 24- to 40-nm fibrils, which were coated with osmiophilic granular material along their length in longitudinal section. These fibrils appeared as annuli in cross section. Often, a central granule approximately 5 nm in diameter was seen in the lucent lumen of a cross-sectioned fibril. The granule-coated fibrils were not seen in the glial filament-containing astrocytes. Electron microscopic examination of silver-impregnated specimens revealed that the granule-coated fibrils had strong affinity for silver. Immunoelectron microscopy using the indirect immunoperoxidase techniques with antibodies to ubiquitin and RF protein revealed that the electron-dense reaction products respective to both were located on constituents of glial inclusions. Our observation that Leu-7-positive glial cells, mainly oligodendroglial cells, had argyrophilic ubiquitinated inclusions may be of significance for the evaluation of the pathology of OPCA(MSA). PMID:1723828

  13. Loss of glial neurofascin155 delays developmental synapse elimination at the neuromuscular junction.

    PubMed

    Roche, Sarah L; Sherman, Diane L; Dissanayake, Kosala; Soucy, Geneviève; Desmazieres, Anne; Lamont, Douglas J; Peles, Elior; Julien, Jean-Pierre; Wishart, Thomas M; Ribchester, Richard R; Brophy, Peter J; Gillingwater, Thomas H

    2014-09-17

    Postnatal synapse elimination plays a critical role in sculpting and refining neural connectivity throughout the central and peripheral nervous systems, including the removal of supernumerary axonal inputs from neuromuscular junctions (NMJs). Here, we reveal a novel and important role for myelinating glia in regulating synapse elimination at the mouse NMJ, where loss of a single glial cell protein, the glial isoform of neurofascin (Nfasc155), was sufficient to disrupt postnatal remodeling of synaptic circuitry. Neuromuscular synapses were formed normally in mice lacking Nfasc155, including the establishment of robust neuromuscular synaptic transmission. However, loss of Nfasc155 was sufficient to cause a robust delay in postnatal synapse elimination at the NMJ across all muscle groups examined. Nfasc155 regulated neuronal remodeling independently of its canonical role in forming paranodal axo-glial junctions, as synapse elimination occurred normally in mice lacking the axonal paranodal protein Caspr. Rather, high-resolution proteomic screens revealed that loss of Nfasc155 from glial cells was sufficient to disrupt neuronal cytoskeletal organization and trafficking pathways, resulting in reduced levels of neurofilament light (NF-L) protein in distal axons and motor nerve terminals. Mice lacking NF-L recapitulated the delayed synapse elimination phenotype observed in mice lacking Nfasc155, suggesting that glial cells regulate synapse elimination, at least in part, through modulation of the axonal cytoskeleton. Together, our study reveals a glial cell-dependent pathway regulating the sculpting of neuronal connectivity and synaptic circuitry in the peripheral nervous system. PMID:25232125

  14. Distinct angiotensin II receptor in primary cultures of glial cells from rat brain

    SciTech Connect

    Raizada, M.K.; Phillips, M.I.; Crews, F.T.; Sumners, C.

    1987-07-01

    Angiotensin II (Ang-II) has profound effects on the brain. Receptors for Ang-II have been demonstrated on neurons, but no relationship between glial cells and Agn-II has been established. Glial cells (from the hypothalamus and brain stem of 1-day-old rat brains) in primary culture have been used to demonstrate the presence of specific Ang-II receptors. Binding of /sup 125/I-Ang-II to glial cultures was rapid, reversible, saturable, and specific for Ang-II. The rank order of potency of /sup 125/I-Ang-II binding was determined. Scatchard analysis revealed a homogeneous population of high-affinity binding sites with a B/sub max/ of 110 fmol/mg of protein. Light-microscopic autoradiography of /sup 125/I-Ang-II binding supported the kinetic data, documenting specific Ang-II receptors on the glial cells. Ang-II stimulated a dose-dependent hydrolysis of phosphatidylinositols in glial cells, an effect mediated by Ang-II receptors. However, Ang-II failed to influence (/sup 3/H) norepinephrine uptake, and catecholamines failed to regulate Ang-II receptors, effects that occur in neurons. These observations demonstrate the presence of specific Ang-II receptors on the glial cells in primary cultures derived from normotensive rat brain. The receptors are kinetically similar to, but functionally distinct from, the neuronal Ang-II receptors.

  15. Insulin-like Signaling Promotes Glial Phagocytic Clearance of Degenerating Axons through Regulation of Draper.

    PubMed

    Musashe, Derek T; Purice, Maria D; Speese, Sean D; Doherty, Johnna; Logan, Mary A

    2016-08-16

    Neuronal injury triggers robust responses from glial cells, including altered gene expression and enhanced phagocytic activity to ensure prompt removal of damaged neurons. The molecular underpinnings of glial responses to trauma remain unclear. Here, we find that the evolutionarily conserved insulin-like signaling (ILS) pathway promotes glial phagocytic clearance of degenerating axons in adult Drosophila. We find that the insulin-like receptor (InR) and downstream effector Akt1 are acutely activated in local ensheathing glia after axotomy and are required for proper clearance of axonal debris. InR/Akt1 activity, it is also essential for injury-induced activation of STAT92E and its transcriptional target draper, which encodes a conserved receptor essential for glial engulfment of degenerating axons. Increasing Draper levels in adult glia partially rescues delayed clearance of severed axons in glial InR-inhibited flies. We propose that ILS functions as a key post-injury communication relay to activate glial responses, including phagocytic activity. PMID:27498858

  16. Photodynamic injury of isolated crayfish neuron and surrounding glial cells: the role of p53

    NASA Astrophysics Data System (ADS)

    Sharifulina, S. A.; Uzdensky, A. B.

    2015-03-01

    The pro-apoptotic transcription factor p53 is involved in cell responses to injurious impacts. Using its inhibitor pifithrin- α and activators tenovin-1, RITA and WR-1065, we studied its potential participation in inactivation and death of isolated crayfish mechanoreceptor neuron and satellite glial cells induced by photodynamic treatment, a strong inducer of oxidative stress. In dark, p53 activation by tenovin-1 or WR-1065 shortened activity of isolated neurons. Tenovin-1 and WR-1065 induced apoptosis of glial cells, whereas pifithrin-α was anti-apoptotic. Therefore, p53 mediated glial apoptosis and suppression of neuronal activity after axotomy. Tenovin-1 but not other p53 modulators induced necrosis of axotomized neurons and surrounding glia, possibly, through p53-independent pathway. Under photodynamic treatment, p53 activators tenovin-1 and RITA enhanced glial apoptosis indicating the pro-apoptotic activity of p53. Photoinduced necrosis of neurons and glia was suppressed by tenovin-1 and, paradoxically, by pifithrin-α. Modulation of photoinduced changes in the neuronal activity and necrosis of neurons and glia was possibly p53-independent. The different effects of p53 modulators on neuronal and glial responses to axotomy and photodynamic impact were apparently associated with different signaling pathways in neurons and glial cells.

  17. Soluble guanylyl cyclase is involved in PDT-induced injury of crayfish glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Uzdensky, A. B.

    2016-04-01

    Photodynamic therapy (PDT) is a potential tool for selective destruction of malignant brain tumors. However, not only malignant but also healthy neurons and glial cells may be damaged during PDT. Nitric oxide is an important modulator of cell viability and intercellular neuroglial communications. NO have been already shown to participate in PDT-induced injury of neurons and glial cells. As soluble guanylyl cyclase is the only known receptor for NO, we have studied the possible role of soluble guanylyl cyclase in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Using inhibitory analysis we have shown that during PDT soluble guanylyl cyclase, probably, has proapoptotic and antinecrotic effect on the glial cells of the isolated crayfish stretch receptor. Proapoptotic effect of soluble guanylyl cyclase could be mediated by protein kinase G (PKG). Thus, the involvement of NO/sGC/cGMP/PKG signaling pathway in PDT-induced apoptosis of glial cells was indirectly demonstrated.

  18. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain.

    PubMed

    Saito, Mariko; Chakraborty, Goutam; Hui, Maria; Masiello, Kurt; Saito, Mitsuo

    2016-01-01

    Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain. PMID:27537918

  19. Loss of Glial Neurofascin155 Delays Developmental Synapse Elimination at the Neuromuscular Junction

    PubMed Central

    Roche, Sarah L.; Sherman, Diane L.; Dissanayake, Kosala; Soucy, Geneviève; Desmazieres, Anne; Lamont, Douglas J.; Peles, Elior; Julien, Jean-Pierre; Wishart, Thomas M.; Ribchester, Richard R.; Brophy, Peter J.

    2014-01-01

    Postnatal synapse elimination plays a critical role in sculpting and refining neural connectivity throughout the central and peripheral nervous systems, including the removal of supernumerary axonal inputs from neuromuscular junctions (NMJs). Here, we reveal a novel and important role for myelinating glia in regulating synapse elimination at the mouse NMJ, where loss of a single glial cell protein, the glial isoform of neurofascin (Nfasc155), was sufficient to disrupt postnatal remodeling of synaptic circuitry. Neuromuscular synapses were formed normally in mice lacking Nfasc155, including the establishment of robust neuromuscular synaptic transmission. However, loss of Nfasc155 was sufficient to cause a robust delay in postnatal synapse elimination at the NMJ across all muscle groups examined. Nfasc155 regulated neuronal remodeling independently of its canonical role in forming paranodal axo–glial junctions, as synapse elimination occurred normally in mice lacking the axonal paranodal protein Caspr. Rather, high-resolution proteomic screens revealed that loss of Nfasc155 from glial cells was sufficient to disrupt neuronal cytoskeletal organization and trafficking pathways, resulting in reduced levels of neurofilament light (NF-L) protein in distal axons and motor nerve terminals. Mice lacking NF-L recapitulated the delayed synapse elimination phenotype observed in mice lacking Nfasc155, suggesting that glial cells regulate synapse elimination, at least in part, through modulation of the axonal cytoskeleton. Together, our study reveals a glial cell-dependent pathway regulating the sculpting of neuronal connectivity and synaptic circuitry in the peripheral nervous system. PMID:25232125

  20. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination

    PubMed Central

    Poitelon, Y.; Bogni, S.; Matafora, V.; Della-Flora Nunes, G.; Hurley, E.; Ghidinelli, M.; Katzenellenbogen, B. S.; Taveggia, C.; Silvestri, N.; Bachi, A.; Sannino, A.; Wrabetz, L.; Feltri, M. L.

    2015-01-01

    Cell–cell interactions promote juxtacrine signals in specific subcellular domains, which are difficult to capture in the complexity of the nervous system. For example, contact between axons and Schwann cells triggers signals required for radial sorting and myelination. Failure in this interaction causes dysmyelination and axonal degeneration. Despite its importance, few molecules at the axo-glial surface are known. To identify novel molecules in axo-glial interactions, we modified the ‘pseudopodia' sub-fractionation system and isolated the projections that glia extend when they receive juxtacrine signals from axons. By proteomics we identified the signalling networks present at the glial-leading edge, and novel proteins, including members of the Prohibitin family. Glial-specific deletion of Prohibitin-2 in mice impairs axo-glial interactions and myelination. We thus validate a novel method to model morphogenesis and juxtacrine signalling, provide insights into the molecular organization of the axo-glial contact, and identify a novel class of molecules in myelination. PMID:26383514

  1. Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters

    PubMed Central

    Newman, Eric A.

    2015-01-01

    Astrocytes in the brain release transmitters that actively modulate neuronal excitability and synaptic efficacy. Astrocytes also release vasoactive agents that contribute to neurovascular coupling. As reviewed in this article, Müller cells, the principal retinal glial cells, modulate neuronal activity and blood flow in the retina. Stimulated Müller cells release ATP which, following its conversion to adenosine by ectoenzymes, hyperpolarizes retinal ganglion cells by activation of A1 adenosine receptors. This results in the opening of G protein-coupled inwardly rectifying potassium (GIRK) channels and small conductance Ca2+-activated K+ (SK) channels. Tonic release of ATP also contributes to the generation of tone in the retinal vasculature by activation of P2X receptors on vascular smooth muscle cells. Vascular tone is lost when glial cells are poisoned with the gliotoxin fluorocitrate. The glial release of vasoactive metabolites of arachidonic acid, including prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs), contributes to neurovascular coupling in the retina. Neurovascular coupling is reduced when neuronal stimulation of glial cells is interrupted and when the synthesis of arachidonic acid metabolites is blocked. Neurovascular coupling is compromised in diabetic retinopathy owing to the loss of glial-mediated vasodilation. This loss can be reversed by inhibiting inducible nitric oxide synthase. It is likely that future research will reveal additional important functions of the release of transmitters from glial cells. PMID:26009774

  2. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R.; Norton, H. N.; Stearns, J. W.; Stimpson, L. D.; Weissman, P.

    1980-01-01

    A mission out of the planetary system, launched about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low-energy cosmic rays, interplanetary gas distribution, and the mass of the solar system. Secondary objectives include investigation of Pluto. The mission should extend to 400-1000 AU from the sun. A heliocentric hyperbolic escape velocity of 50-100 km/sec or more is needed to attain this distance within a reasonable mission duration (20-50 years). The trajectory should be toward the incoming interstellar gas. For a year 2000 launch, a Pluto encounter and orbiter can be included. A second mission targeted parallel to the solar axis would also be worthwhile. The mission duration is 20 years, with an extended mission to a total of 50 years. A system using one or two stages of nuclear electric propulsion (NEP) was selected as a possible baseline. The most promising alternatives are ultralight solar sails or laser sailing, with the lasers in earth orbit, for example. The NEP baseline design allows the option of carrying a Pluto orbiter as a daughter spacecraft.

  3. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    PubMed

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. PMID:25953554

  4. The involvement of NF-κB in PDT-induced death of crayfish glial and nerve cells

    NASA Astrophysics Data System (ADS)

    Berezhnaya, E. V.; Neginskaya, M. A.; Kovaleva, V. D.; Rudkovskii, M. V.; Uzdensky, A. B.

    2015-03-01

    Photodynamic therapy (PDT) is used for selective destruction of cells, in particular, for treatment of brain tumors. However, photodynamic treatment damages not only tumor cells, but also healthy neurons and glial cells. To study the possible role of NF-κB in photodynamic injury of neurons and glial cells, we investigated the combined effect of photodynamic treatment and NF-κB modulators: activator betulinic acid, or inhibitors parthenolide and CAPE on an isolated crayfish stretch receptor consisting of a single neuron surrounded by glial cells. A laser diode (670 nm, 0.4 W/cm2) was used as a light source. The inhibition of NF-κB during PDT increased the duration of neuron firing and glial necrosis and decreased neuron necrosis and glial apoptosis. The activation of NF-κB during PDT increased neuron necrosis and glial apoptosis and decreased glial necrosis. The difference between the effects of NF-κB modulators on photosensitized neurons and glial cells indicates the difference in NF-κB-mediated signaling pathways in these cell types. Thus, NF-κB is involved in PDT-induced shortening of neuron firing, neuronal and glial necrosis, and apoptosis of glial cells.

  5. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages.

    PubMed

    Seaberg, Raewyn M; Smukler, Simon R; Kieffer, Timothy J; Enikolopov, Grigori; Asghar, Zeenat; Wheeler, Michael B; Korbutt, Gregory; van der Kooy, Derek

    2004-09-01

    The clonal isolation of putative adult pancreatic precursors has been an elusive goal of researchers seeking to develop cell replacement strategies for diabetes. We report the clonal identification of multipotent precursor cells from the adult mouse pancreas. The application of a serum-free, colony-forming assay to pancreatic cells enabled the identification of precursors from pancreatic islet and ductal populations. These cells proliferate in vitro to form clonal colonies that coexpress neural and pancreatic precursor markers. Upon differentiation, individual clonal colonies produce distinct populations of neurons and glial cells, pancreatic endocrine beta-, alpha- and delta-cells, and pancreatic exocrine and stellate cells. Moreover, the newly generated beta-like cells demonstrate glucose-dependent Ca(2+) responsiveness and insulin release. Pancreas colonies do not express markers of embryonic stem cells, nor genes suggestive of mesodermal or neural crest origins. These cells represent a previously unidentified adult intrinsic pancreatic precursor population and are a promising candidate for cell-based therapeutic strategies. PMID:15322557

  6. Mathematical modeling of chemotaxis and glial scarring around implanted electrodes

    NASA Astrophysics Data System (ADS)

    Silchenko, Alexander N.; Tass, Peter A.

    2015-02-01

    It is well known that the implantation of electrodes for deep brain stimulation or microelectrode probes for the recording of neuronal activity is always accompanied by the response of the brain’s immune system leading to the formation of a glial scar around the implantation sites. The implantation of electrodes causes massive release of adenosine-5‧-triphosphate (ATP) and different cytokines into the extracellular space and activates the microglia. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y2,12 as well as A3A/A2A adenosine receptors. The size and density of an insulating sheath around the electrode, formed by microglial cells, are important criteria for the optimization of the signal-to-noise ratio during microelectrode recordings or parameters of electrical current delivered to the brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards implanted electrodes as well as the possible impact of an anti-inflammatory coating consisting of the interleukin-1 receptor antagonist. We present a model describing the formation of a stable aggregate around the electrode due to the joint chemo-attractive action of ATP and ADP and the mixed influence of extracellular adenosine. The bioactive coating is modeled as a source of chemo-repellent located near the electrode surface. The obtained analytical and numerical results allowed us to reveal the dependences of size and spatial location of the insulating sheath on the amount of released ATP and estimate the impact of immune suppressive coating on the scarring process.

  7. Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions

    PubMed Central

    2009-01-01

    Background Emerging evidences suggest that enteric glial cells (EGC), a major constituent of the enteric nervous system (ENS), are key regulators of intestinal epithelial barrier (IEB) functions. Indeed EGC inhibit intestinal epithelial cells (IEC) proliferation and increase IEB paracellular permeability. However, the role of EGC on other important barrier functions and the signalling pathways involved in their effects are currently unknown. To achieve this goal, we aimed at identifying the impact of EGC upon IEC transcriptome by performing microarray studies. Results EGC induced significant changes in gene expression profiling of proliferating IEC after 24 hours of co-culture. 116 genes were identified as differentially expressed (70 up-regulated and 46 down-regulated) in IEC cultured with EGC compared to IEC cultured alone. By performing functional analysis of the 116 identified genes using Ingenuity Pathway Analysis, we showed that EGC induced a significant regulation of genes favoring both cell-to-cell and cell-to-matrix adhesion as well as cell differentiation. Consistently, functional studies showed that EGC induced a significant increase in cell adhesion. EGC also regulated genes involved in cell motility towards an enhancement of cell motility. In addition, EGC profoundly modulated expression of genes involved in cell proliferation and cell survival, although no clear functional trend could be identified. Finally, important genes involved in lipid and protein metabolism of epithelial cells were shown to be differentially regulated by EGC. Conclusion This study reinforces the emerging concept that EGC have major protective effects upon the IEB. EGC have a profound impact upon IEC transcriptome and induce a shift in IEC phenotype towards increased cell adhesion and cell differentiation. This concept needs to be further validated under both physiological and pathophysiological conditions. PMID:19883504

  8. Three-Dimensional Regulation of Radial Glial Functions by Lis1-Nde1 and Dystrophin Glycoprotein Complexes

    PubMed Central

    Pawlisz, Ashley S.; Feng, Yuanyi

    2011-01-01

    Radial glial cells (RGCs) are distinctive neural stem cells with an extraordinary slender bipolar morphology and dual functions as precursors and migration scaffolds for cortical neurons. Here we show a novel mechanism by which the Lis1-Nde1 complex maintains RGC functions through stabilizing the dystrophin/dystroglycan glycoprotein complex (DGC). A direct interaction between Nde1 and utrophin/dystrophin allows for the assembly of a multi-protein complex that links the cytoskeleton to the extracellular matrix of RGCs to stabilize their lateral membrane, cell-cell adhesion, and radial morphology. Lis1-Nde1 mutations destabilized the DGC and resulted in deformed, disjointed RGCs and disrupted basal lamina. Besides impaired RGC self-renewal and neuronal migration arrests, Lis1-Nde1 deficiencies also led to neuronal over-migration. Additional to phenotypic resemblances of Lis1-Nde1 with DGC, strong synergistic interactions were found between Nde1 and dystroglycan in RGCs. As functional insufficiencies of LIS1, NDE1, and dystroglycan all cause lissencephaly syndromes, our data demonstrated that a three-dimensional regulation of RGC's cytoarchitecture by the Lis1-Nde1-DGC complex determines the number and spatial organization of cortical neurons as well as the size and shape of the cerebral cortex. PMID:22028625

  9. Post-traumatic hypoxia exacerbates brain tissue damage: analysis of axonal injury and glial responses.

    PubMed

    Hellewell, Sarah C; Yan, Edwin B; Agyapomaa, Doreen A; Bye, Nicole; Morganti-Kossmann, M Cristina

    2010-11-01

    Traumatic brain injury (TBI) resulting in poor neurological outcome is predominantly associated with diffuse brain damage and secondary hypoxic insults. Post-traumatic hypoxia is known to exacerbate primary brain injury; however, the underlying pathological mechanisms require further elucidation. Using a rat model of diffuse traumatic axonal injury (TAI) followed by a post-traumatic hypoxic insult, we characterized axonal pathology, macrophage/microglia accumulation, and astrocyte responses over 14 days. Rats underwent TAI alone, TAI followed by 30 min of hypoxia (TAI + Hx), hypoxia alone, or sham-operation (n = 6/group). Systemic hypoxia was induced by ventilating rats with 12% oxygen in nitrogen, resulting in a ∼ 50% reduction in arterial blood oxygen saturation. Brains were assessed for axonal damage, macrophage/microglia accumulation, and astrocyte activation at 1, 7, and 14 days post-treatment. Immunohistochemistry with axonal damage markers (β-amyloid precursor protein [β-APP] and neurofilament) showed strong positive staining in TAI + Hx rats, which was most prominent in the corpus callosum (retraction bulbs 69.8 ± 18.67; swollen axons 14.2 ± 5.25), and brainstem (retraction bulbs 294 ± 118.3; swollen axons 50.3 ± 20.45) at 1 day post-injury. Extensive microglia/macrophage accumulation detected with the CD68 antibody was maximal at 14 days post-injury in the corpus callosum (macrophages 157.5 ± 55.48; microglia 72.71 ± 20.75), and coincided with regions of axonal damage. Astrocytosis assessed with glial fibrillary acidic protein (GFAP) antibody was also abundant in the corpus callosum and maximal at 14 days, with a trend toward an increase in TAI + Hx animals (18.99 ± 2.45 versus 13.56 ± 0.81; p = 0.0617). This study demonstrates for the first time that a hypoxic insult following TAI perpetuates axonal pathology and cellular inflammation, which may account for the poor neurological outcomes seen in TBI patients who experience post

  10. Tapping into the glial reservoir: cells committed to remaining uncommitted

    PubMed Central

    Chong, S.Y. Christin

    2010-01-01

    The development and maturation of the oligodendrocyte requires a series of highly orchestrated events that coordinate the proliferation and differentiation of the oligodendrocyte precursor cell (OPC) as well as the spatiotemporal regulation of myelination. In recent years, widespread interest has been devoted to the therapeutic potential of adult OPCs scattered throughout the central nervous system (CNS). In this review, we highlight molecular mechanisms controlling OPC differentiation during development and the implication of these mechanisms on adult OPCs for remyelination. Cell-autonomous regulators of differentiation and the heterogeneous microenvironment of the developing and the adult CNS may provide coordinated inhibitory cues that ultimately maintain a reservoir of uncommitted glia. PMID:20142420

  11. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  12. The F. C. C.'s Clear Channel Radio Policies: Regulation in the Slow Lane.

    ERIC Educational Resources Information Center

    Jassem, Harvey C.

    In 1928, the Federal Radio Commission (the precursor of the Federal Communications Commission--FCC) noted the need for special radio channels that could carry radio across the United States free from interference from other radio stations. Many of these "clear channels" still exist as protected entities. Perhaps no other FCC policy better reflects…

  13. Characterization of a synaptiform transmission between a neuron and a glial cell in the leech central nervous system.

    PubMed

    Britz, Frank C; Lohr, Christian; Schmidt, Joachim; Deitmer, Joachim W

    2002-05-01

    The cross-talk between neurons and glial cells is receiving increased attention because of its potential role in information processing in nervous systems. Stimulation of a single identifiable neuron, the neurosecretory Leydig interneuron in segmental ganglia of the leech Hirudo medicinalis, which modulates specific behaviors in the leech, evokes membrane hyperpolarization directly in the giant glial cell (Schmidt and Deitmer. Eur J Neurosci 11:3125-3133, 1999). We have studied the neuron-to-glia signal transmission in the voltage-clamped giant glial cell to determine whether this interaction exhibits properties of a chemical synapse. The glial response had a mean latency of 4.9 s and was dependent on the action potential frequency; the glial cell responded to as few as five Leydig neuron action potentials in 50% of the trials. The glial current was sustained for minutes during repetitive Leydig neuron activity without any sign of desensitization. The current was sensitive to tetraethylammonium, and its reversal potential of -78 mV shifted with the external K+ concentration. The glial response increased with the duration of the neuronal action potentials and was sensitive to the external Ca2+/Mg2+ concentration ratio. The results suggest that Leydig neuron activity leads to a Ca2+-dependent release of transmitter from the neuronal dendrites, evoking an K+ outward current in the giant glial cell, implying a synapse-like transmission between a neuron and a glial cell. PMID:11968059

  14. Keep Your Kidneys Clear: Kicking Kidney Stones

    MedlinePlus

    ... PDF—450 kb) Hey, Parents: It’s a Noisy Planet Keep Your Kidneys Clear Keep Your Kidneys Clear ... Pike Bethesda, Maryland 20892 Department of Health and Human Services Office of Communications and Public Liaison

  15. Activated microglia mediate axo-glial disruption that contributes to axonal injury in multiple sclerosis

    PubMed Central

    Garg, Anurag; Komada, Masayuki; Brophy, Peter. J.; Reynolds, Richard

    2015-01-01

    The complex symptoms of chronic multiple sclerosis (MS) are due, in part, to widespread axonal pathology affecting lesioned and non-lesioned areas of the CNS. Here we describe an association between microglial activation and axon/ oligodendrocyte pathology at nodal and paranodal domains in normal appearing white matter (NAWM) of MS and experimental allergic encephalomyelitis (EAE). The extent of paranodal axo-glial (neurofascin-155+/Caspr1+) disruption correlated with the local degree of microglial inflammation and axonal injury (expression of nonphosphorylated neurofilaments) in MS NAWM. These changes were independent of demyelinating lesions and did not correlate with the density of infiltrating lymphocytes. Similar axo-glial alterations were seen in pre-symptomatic EAE, at a time-point characterised by microglia activation prior to the infiltration of immune cells. Disruption of the axo-glial unit in adjuvant immunised animals was reversible and coincided with the resolution of microglial inflammation, whereas paranodal damage and microglial inflammation persisted in chronic EAE. We were able to preserve axo-glial integrity by administering minocycline, which inhibited microglial activation, in actively immunised animals. Therefore, permanent disruption to axo-glial domains in an environment of microglial inflammation is an early indicator of axonal injury that would affect normal nerve conduction contributing to pathology outside of the demyelinated lesion. PMID:20838243

  16. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling.

    PubMed

    Metea, Monica R; Newman, Eric A

    2006-03-15

    Neuronal activity evokes localized changes in blood flow. Although this response, termed neurovascular coupling, is widely used to monitor human brain function and diagnose pathology, the cellular mechanisms that mediate the response remain unclear. We investigated the contribution of glial cells to neurovascular coupling in the acutely isolated mammalian retina. We found that light stimulation and glial cell stimulation can both evoke dilation or constriction of arterioles. Light-evoked and glial-evoked vasodilations were blocked by inhibitors of cytochrome P450 epoxygenase, the synthetic enzyme for epoxyeicosatrienoic acids. Vasoconstrictions, in contrast, were blocked by an inhibitor of omega-hydroxylase, which synthesizes 20-hydroxyeicosatetraenoic acid. Nitric oxide influenced whether vasodilations or vasoconstrictions were produced in response to light and glial stimulation. Light-evoked vasoactivity was blocked when neuron-to-glia signaling was interrupted by a purinergic antagonist. These results indicate that glial cells contribute to neurovascular coupling and suggest that regulation of blood flow may involve both vasodilating and vasoconstricting components. PMID:16540563

  17. Viscoelastic properties of individual glial cells and neurons in the CNS.

    PubMed

    Lu, Yun-Bi; Franze, Kristian; Seifert, Gerald; Steinhäuser, Christian; Kirchhoff, Frank; Wolburg, Hartwig; Guck, Jochen; Janmey, Paul; Wei, Er-Qing; Käs, Josef; Reichenbach, Andreas

    2006-11-21

    One hundred fifty years ago glial cells were discovered as a second, non-neuronal, cell type in the central nervous system. To ascribe a function to these new, enigmatic cells, it was suggested that they either glue the neurons together (the Greek word "gammalambdaiotaalpha" means "glue") or provide a robust scaffold for them ("support cells"). Although both speculations are still widely accepted, they would actually require quite different mechanical cell properties, and neither one has ever been confirmed experimentally. We investigated the biomechanics of CNS tissue and acutely isolated individual neurons and glial cells from mammalian brain (hippocampus) and retina. Scanning force microscopy, bulk rheology, and optically induced deformation were used to determine their viscoelastic characteristics. We found that (i) in all CNS cells the elastic behavior dominates over the viscous behavior, (ii) in distinct cell compartments, such as soma and cell processes, the mechanical properties differ, most likely because of the unequal local distribution of cell organelles, (iii) in comparison to most other eukaryotic cells, both neurons and glial cells are very soft ("rubber elastic"), and (iv) intriguingly, glial cells are even softer than their neighboring neurons. Our results indicate that glial cells can neither serve as structural support cells (as they are too soft) nor as glue (because restoring forces are dominant) for neurons. Nevertheless, from a structural perspective they might act as soft, compliant embedding for neurons, protecting them in case of mechanical trauma, and also as a soft substrate required for neurite growth and facilitating neuronal plasticity. PMID:17093050

  18. Differential effects of ethanol on glial signal transduction initiated by lipopolysaccharide and interferon-gamma.

    PubMed

    Choi, Dong-Kug; Lee, Heasuk; Jeong, Jaeyoon; Lim, Beongou; Suk, Kyoungho

    2005-10-15

    Although the pathogenic effects of alcohol abuse on brain are well established, its specific effects on the intracellular signal transduction pathways of glial cells in the central nervous system (CNS) are poorly understood. In this study, we evaluated how ethanol affects the glial signal transduction associated with inflammatory activation. Lipopolysaccharide (LPS), gangliosides, and interferon (IFN)-gamma induced the inflammatory activation of glia, which was differentially influenced by ethanol: 1) ethanol inhibited LPS- or gangliosides-induced, but not IFNgamma-induced, glial activation as demonstrated by the production of nitric oxide and the expression of inflammatory genes such as interleukin-1beta, tumor necrosis factor-alpha, IP-10, and CD86; 2) nuclear factor (NF)-kappaB or JAK/STAT1 pathway was necessary for LPS- or IFNgamma-induced glial activation, respectively; 3) ethanol inhibited LPS-induced NF-kappaB activation; and 4) ethanol did not significantly affect IFNgamma-induced STAT1/IRF-1 activation. Based on these results, ethanol seems to inhibit selectively some parts of the glial signal transduction pathways that are associated with inflammatory activation, which may lead to the deregulation of CNS inflammatory responses. PMID:16175582

  19. Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity

    PubMed Central

    Croft, Wayne; Dobson, Katharine L.; Bellamy, Tomas C.

    2015-01-01

    The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes) have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours) rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology. PMID:26339509

  20. 7 CFR 1773.42 - Clearing accounts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Clearing accounts. 1773.42 Section 1773.42... § 1773.42 Clearing accounts. The CPA's workpapers must contain an analysis of all clearing accounts... allocation between expense and capital accounts....

  1. 29 CFR 1926.604 - Site clearing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Motor Vehicles, Mechanized Equipment, and Marine Operations § 1926.604 Site clearing. (a) General requirements. (1) Employees engaged in site clearing shall... 29 Labor 8 2010-07-01 2010-07-01 false Site clearing. 1926.604 Section 1926.604 Labor...

  2. 27 CFR 9.99 - Clear Lake.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Boundaries. The Clear Lake viticultural area is located in southwestern Lake County, California. The... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Clear Lake. 9.99 Section 9... TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.99 Clear Lake....

  3. 27 CFR 9.99 - Clear Lake.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Boundaries. The Clear Lake viticultural area is located in southwestern Lake County, California. The... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Clear Lake. 9.99 Section 9... TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.99 Clear Lake....

  4. 27 CFR 9.99 - Clear Lake.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Boundaries. The Clear Lake viticultural area is located in southwestern Lake County, California. The... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Clear Lake. 9.99 Section 9... TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.99 Clear Lake....

  5. 27 CFR 9.99 - Clear Lake.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Boundaries. The Clear Lake viticultural area is located in southwestern Lake County, California. The... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Clear Lake. 9.99 Section 9... TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.99 Clear Lake....

  6. 27 CFR 9.99 - Clear Lake.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Boundaries. The Clear Lake viticultural area is located in southwestern Lake County, California. The... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Clear Lake. 9.99 Section 9... TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.99 Clear Lake....

  7. 77 FR 66219 - Clearing Agency Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-02

    ... to clear credit default swaps. See Exchange Act Release Nos. 60372 (July 23, 2009), 74 FR 37748 (July 29, 2009), 61973 (Apr. 23, 2010), 75 FR 22656 (Apr. 29, 2010) and 63389 (Nov. 29, 2010), 75 FR 75520 (Dec. 3, 2010) (CDS clearing by ICE Clear Europe Limited); 60373 (July 23, 2009), 74 FR 37740 (July...

  8. Heterogeneity and Bipotency of Astroglial-Like Cerebellar Progenitors along the Interneuron and Glial Lineages.

    PubMed

    Parmigiani, Elena; Leto, Ketty; Rolando, Chiara; Figueres-Oñate, María; López-Mascaraque, Laura; Buffo, Annalisa; Rossi, Ferdinando

    2015-05-13

    Cerebellar GABAergic interneurons in mouse comprise multiple subsets of morphologically and neurochemically distinct phenotypes located at strategic nodes of cerebellar local circuits. These cells are produced by common progenitors deriving from the ventricular epithelium during embryogenesis and from the prospective white matter (PWM) during postnatal development. However, it is not clear whether these progenitors are also shared by other cerebellar lineages and whether germinative sites different from the PWM originate inhibitory interneurons. Indeed, the postnatal cerebellum hosts another germinal site along the Purkinje cell layer (PCL), in which Bergmann glia are generated up to first the postnatal weeks, which was proposed to be neurogenic. Both PCL and PWM comprise precursors displaying traits of juvenile astroglia and neural stem cell markers. First, we examine the proliferative and fate potential of these niches, showing that different proliferative dynamics regulate progenitor amplification at these sites. In addition, PCL and PWM differ in the generated progeny. GABAergic interneurons are produced exclusively by PWM astroglial-like progenitors, whereas PCL precursors produce only astrocytes. Finally, through in vitro, ex vivo, and in vivo clonal analyses we provide evidence that the postnatal PWM hosts a bipotent progenitor that gives rise to both interneurons and white matter astrocytes. PMID:25972168

  9. Recent progress in tissue optical clearing

    PubMed Central

    Zhu, Dan; Larin, Kirill V; Luo, Qingming; Tuchin, Valery V

    2013-01-01

    Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This paper gives a review of recent developments in tissue optical clearing techniques. The physical, molecular and physiological mechanisms of tissue optical clearing are overviewed and discussed. Various methods for enhancing penetration of optical-clearing agents into tissue, such as physical methods, chemical-penetration enhancers and combination of physical and chemical methods are introduced. Combining the tissue optical clearing technique with advanced microscopy image or labeling technique, applications for 3D microstructure of whole tissues such as brain and central nervous system with unprecedented resolution are demonstrated. Moreover, the difference in diffusion and/or clearing ability of selected agents in healthy versus pathological tissues can provide a highly sensitive indicator of the tissue health/pathology condition. Finally, recent advances in optical clearing of soft or hard tissue for in vivo imaging and phototherapy are introduced. PMID:24348874

  10. Radioresistance secondary to low pH in human glial cells and Chinese hamster ovary cells

    SciTech Connect

    Rottinger, E.M.; Mendonca, M.

    1982-08-01

    The influence of the extracellular pH on the radiosensitivity of human glial cells and Chinese hamster ovary cells was examined. The period of low pH varied from 0 to 96 hours in glial cells and from 0 to 48 hours in Chinese hamster cells. Maintenance of low pH after a dose of 10 Gy for at least 24 hours for glial cells and at least 6 hours for Chinese hamster cells improved survival by more than one order of magnitude at pH 6.4. Cellular inactivation by irradiation may be impaired by an extracellular pH at or below pH 6.7.

  11. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    SciTech Connect

    Stiene-Martin, A.; Hauser, K.F. )

    1990-01-01

    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 {mu}M met-enkephalin, 1 {mu}M met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined ({sup 3}H)-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in ({sup 3}H)-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture.

  12. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  13. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells

    PubMed Central

    Chen, Xing-Shu; Huang, Nanxin; Michael, Namaka; Xiao, Lan

    2015-01-01

    Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells. PMID:26696822

  14. Regulation of neuronal-glial fate specification by long non-coding RNAs.

    PubMed

    Wang, Lei; Liu, Yan; Sun, Shaiqi; Lu, Ming; Xia, Ying

    2016-07-01

    Neural stem cell transplantation is becoming a promising and attractive cell-based treatment modality for repairing the damaged central nervous system. One of the limitations of this approach is that the proportion of functional cells differentiated from stem cells still remains at a low level. In recent years, novel long non-coding RNAs (lncRNAs) are being discovered at a growing pace, suggesting that this class of molecules may act as novel regulators in neuronal-glial fate specification. In this review, we first describe the general features of lncRNAs that are more likely to be relevant to reveal their function. By this, we aim to point out the specific roles of a number of lncRNAs whose function has been described during neuronal and glial cell differentiation. There is no doubt that investigation of the lncRNAs will open a new window in studying neuronal-glial fate specification. PMID:26943605

  15. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease.

    PubMed

    Neunlist, Michel; Van Landeghem, Laurianne; Mahé, Maxime M; Derkinderen, Pascal; des Varannes, Stanislas Bruley; Rolli-Derkinderen, Malvyne

    2013-02-01

    The monolayer of columnar epithelial cells lining the gastrointestinal tract--the intestinal epithelial barrier (IEB)--is the largest exchange surface between the body and the external environment. The permeability of the IEB has a central role in the regulation of fluid and nutrient intake as well as in the control of the passage of pathogens. The functions of the IEB are highly regulated by luminal as well as internal components, such as bacteria or immune cells, respectively. Evidence indicates that two cell types of the enteric nervous system (ENS), namely enteric neurons and enteric glial cells, are potent modulators of IEB functions, giving rise to the novel concept of a digestive 'neuronal-glial-epithelial unit' akin to the neuronal-glial-endothelial unit in the brain. In this Review, we summarize findings demonstrating that the ENS is a key regulator of IEB function and is actively involved in pathologies associated with altered barrier function. PMID:23165236

  16. Recovery capacity of glial progenitors after in vivo fission-neutron or X irradiation: age dependence, fractionation and low-dose-rate irradiations.

    PubMed

    Philippo, H; Winter, E A M; van der Kogel, A J; Huiskamp, R

    2005-06-01

    Previous experiments on the radiosensitivity of O-2A glial progenitors determined for single-dose fission-neutron and X irradiation showed log-linear survival curves, suggesting a lack of accumulation of recovery of sublethal damage. In the present study, we addressed this question and further characterized the radiobiological properties of these glial stem cells by investigating the recovery capacity of glial stem cells using either fractionated or protracted whole-body irradiation. Irradiations were performed on newborn, 2-week-old or 12-week-old rats. Fractionated irradiations (four fractions) were performed with 24-h intervals, followed by cell isolations 16- 24 h after the last irradiation. Single-dose irradiations were followed by cell isolation 16-24 h after irradiation or delayed cell isolation (4 days after irradiation) of the O-2A progenitor cells from either spinal cord (newborns) or optic nerve (2- and 12-week-old rats). Results for neonatal progenitor cell survival show effect ratios for both fractionated fission-neutron and X irradiation of the order of 1.8 when compared with single-dose irradiation. A similar ratio was found after single-dose irradiation combined with delayed plating. Comparable results were observed for juvenile and adult optic nerve progenitors, with effect ratios of the order of 1.2. The present investigation clearly shows that fractionated irradiation regimens using X rays or fission neutrons and CNS tissue from rats of various ages results in an increase in O-2A progenitor cell survival while repair is virtually absent. This recovery of the progenitor pool after irradiation can be observed at all ages but is greatest in the neonatal spinal cord and can probably be attributed to repopulation. PMID:15913395

  17. The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia

    PubMed Central

    Moises, Hans W; Zoega, Tomas; Gottesman, Irving I

    2002-01-01

    Background A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. Presentation of the hypothesis Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. Testing the hypothesis Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. Implications of the hypothesis The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments. PMID:12095426

  18. Effects of DNA synthesis inhibitors on post-traumatic glial cell proliferation

    SciTech Connect

    Billingsley, M.L.; Mandel, H.G.

    1982-09-01

    This study attempts to inhibit post-traumatic glial cell scarring in rats lesioned in the frontal cortex, by treatment with several antiproliferative drugs. (/sup 3/H)Thymidine ((/sup 3/H)TdR) incorporation into DNA served as the biochemical index of glial cell proliferation and histological observations confirmed the biochemical effects. Cytosine arabinoside (ara-C), given i.p. at a total daily dosage of 15 to 100 mg/kg, was found to inhibit the incorporation of (/sup 3/H)TdR into cortical DNA and also inhibited the proliferation of glial cells after cortical trauma. Treatment using ara-C induced marked histological changes in glial cells near the lesion, indicating that the inhibition by the drug of DNA synthesis correlated with cytotoxicity to proliferating glial cells. Experiments using (/sup 3/H)ara-C confirmed that this drug entered lesioned brain tissue, although at levels considerably lower than those found in the periphery. Cyclophosphamide also reduced (/sup 3/H)TdR incorporation into both lesioned and control cortices; however, this effect, unlike that of ara-C, was not proportionately greater in the lesioned cortex. Vincristine, but not vinblastine, also inhibited (/sup 3/H)TdR incorporation into the lesioned cortex, possibly reflecting differences in the neuronal uptake of the vinca alkaloids. We propose that ara-C can inhibit the proliferation of glial cells after neural trauma and that judicious use of this agent may lessen scarring in the injured central nervous system, possibly enhancing the regenerative capacity of the brain.

  19. General Anesthetics Inhibit LPS-Induced IL-1β Expression in Glial Cells

    PubMed Central

    Tanaka, Tomoharu; Kai, Shinichi; Matsuyama, Tomonori; Adachi, Takehiko; Fukuda, Kazuhiko; Hirota, Kiichi

    2013-01-01

    Background Glial cells, including microglia and astrocytes, are considered the primary source of proinflammatory cytokines in the brain. Immune insults stimulate glial cells to secrete proinflammatory cytokines that modulate the acute systemic response, which includes fever, behavioral changes, and hypothalamic-pituitary-adrenal (HPA) axis activation. We investigated the effect of general anesthetics on proinflammatory cytokine expression in the primary cultured glial cells, the microglial cell line BV-2, the astrocytic cell line A-1 and mouse brain. Methodology/Principal Findings Primary cultured glial cells were exposed to lipopolysaccharide (LPS) in combination with general anesthetics including isoflurane, pentobarbital, midazolam, ketamine, and propofol. Following this treatment, we examined glial cell expression of the proinflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α). LPS-induced expression of IL-1β mRNA and protein were significantly reduced by all the anesthetics tested, whereas IL-6 and TNF-α mRNA expression was unaffected. The anesthetics suppressed LPS-induced extracellular signal-regulated kinase 1/2 (ERK 1/2) phosphorylation, but did not affect nuclear factor-kappaB and activator protein-1 activation. The same effect was observed with BV-2, but not with A-1 cells. In the mouse experiments, LPS was injected intraperitoneally, and isoflurane suppressed IL-1β in the brain and adrenocorticotropic hormone in plasma, but not IL-1β in plasma. Conclusions/Significance Taken together, our results indicate that general anesthetics inhibit LPS-induced IL-1β upregulation in glial cells, particularly microglia, and affects HPA axis participation in the stress response. PMID:24349401

  20. Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila.

    PubMed

    Chaturvedi, Ratna; Reddig, Keith; Li, Hong-Sheng

    2014-02-18

    Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system as a genetic model, here we show that a multicellular glial network transports neurotransmitter metabolites between perisynaptic glia and neuronal cell bodies to mediate long-distance recycling of neurotransmitter. In the first visual neuropil (lamina), which contains a multilayer glial network, photoreceptor axons release histamine to hyperpolarize secondary sensory neurons. Subsequently, the released histamine is taken up by perisynaptic epithelial glia and converted into inactive carcinine through conjugation with β-alanine for transport. In contrast to a previous assumption that epithelial glia deliver carcinine directly back to photoreceptor axons for histamine regeneration within the lamina, we detected both carcinine and β-alanine in the fly retina, where they are found in photoreceptor cell bodies and surrounding pigment glial cells. Downregulating Inx2 gap junctions within the laminar glial network causes β-alanine accumulation in retinal pigment cells and impairs carcinine synthesis, leading to reduced histamine levels and photoreceptor synaptic vesicles. Consequently, visual transmission is impaired and the fly is less responsive in a visual alert analysis compared with wild type. Our results suggest that a gap junction-dependent laminar and retinal glial network transports histamine metabolites between perisynaptic glia and photoreceptor cell bodies to mediate a novel, long-distance mechanism of neurotransmitter recycling, highlighting the importance of glial networks in the regulation of neuronal functions. PMID:24550312

  1. Production and perception of clear speech

    NASA Astrophysics Data System (ADS)

    Bradlow, Ann R.

    2003-04-01

    When a talker believes that the listener is likely to have speech perception difficulties due to a hearing loss, background noise, or a different native language, she or he will typically adopt a clear speaking style. Previous research has established that, with a simple set of instructions to the talker, ``clear speech'' can be produced by most talkers under laboratory recording conditions. Furthermore, there is reliable evidence that adult listeners with either impaired or normal hearing typically find clear speech more intelligible than conversational speech. Since clear speech production involves listener-oriented articulatory adjustments, a careful examination of the acoustic-phonetic and perceptual consequences of the conversational-to-clear speech transformation can serve as an effective window into talker- and listener-related forces in speech communication. Furthermore, clear speech research has considerable potential for the development of speech enhancement techniques. After reviewing previous and current work on the acoustic properties of clear versus conversational speech, this talk will present recent data from a cross-linguistic study of vowel production in clear speech and a cross-population study of clear speech perception. Findings from these studies contribute to an evolving view of clear speech production and perception as reflecting both universal, auditory and language-specific, phonological contrast enhancement features.

  2. Glial Modulation by N-acylethanolamides in Brain Injury and Neurodegeneration

    PubMed Central

    Herrera, María I.; Kölliker-Frers, Rodolfo; Barreto, George; Blanco, Eduardo; Capani, Francisco

    2016-01-01

    Neuroinflammation involves the activation of glial cells and represents a key element in normal aging and pathophysiology of brain damage. N-acylethanolamides (NAEs), naturally occurring amides, are known for their pro-homeostatic effects. An increase in NAEs has been reported in vivo and in vitro in the aging brain and in brain injury. Treatment with NAEs may promote neuroprotection and exert anti-inflammatory actions via PPARα activation and/or by counteracting gliosis. This review aims to provide an overview of endogenous and exogenous properties of NAEs in neuroinflammation and to discuss their interaction with glial cells. PMID:27199733

  3. PREDICTING SIGNIFICANCE OF UNKNOWN VARIANTS IN GLIAL TUMORS THROUGH SUB-CLASS ENRICHMENT.

    PubMed

    Fichtenholtz, Alex M; Camarda, Nicholas D; Neumann, Eric K

    2016-01-01

    Glial tumors have been heavily studied and sequenced, leading to scores of findings about altered genes. This explosion in knowledge has not been matched with clinical success, but efforts to understand the synergies between drivers of glial tumors may alleviate the situation. We present a novel molecular classification system that captures the combinatorial nature of relationships between alterations in these diseases. We use this classification to mine for enrichment of variants of unknown significance, and demonstrate a method for segregating unknown variants with functional importance from passengers and SNPs. PMID:26776195

  4. Glial Modulation by N-acylethanolamides in Brain Injury and Neurodegeneration.

    PubMed

    Herrera, María I; Kölliker-Frers, Rodolfo; Barreto, George; Blanco, Eduardo; Capani, Francisco

    2016-01-01

    Neuroinflammation involves the activation of glial cells and represents a key element in normal aging and pathophysiology of brain damage. N-acylethanolamides (NAEs), naturally occurring amides, are known for their pro-homeostatic effects. An increase in NAEs has been reported in vivo and in vitro in the aging brain and in brain injury. Treatment with NAEs may promote neuroprotection and exert anti-inflammatory actions via PPARα activation and/or by counteracting gliosis. This review aims to provide an overview of endogenous and exogenous properties of NAEs in neuroinflammation and to discuss their interaction with glial cells. PMID:27199733

  5. Interaction of the Lyme Disease Spirochete Borrelia burgdorferi with Brain Parenchyma Elicits Inflammatory Mediators from Glial Cells as Well as Glial and Neuronal Apoptosis

    PubMed Central

    Ramesh, Geeta; Borda, Juan T.; Dufour, Jason; Kaushal, Deepak; Ramamoorthy, Ramesh; Lackner, Andrew A.; Philipp, Mario T.

    2008-01-01

    Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, often manifests by causing neurocognitive deficits. As a possible mechanism for Lyme neuroborreliosis, we hypothesized that B. burgdorferi induces the production of inflammatory mediators in the central nervous system with concomitant neuronal and/or glial apoptosis. To test our hypothesis, we constructed an ex vivo model that consisted of freshly collected slices from brain cortex of a rhesus macaque and allowed live B. burgdorferi to penetrate the tissue. Numerous transcripts of genes that regulate inflammation as well as oligodendrocyte and neuronal apoptosis were significantly altered as assessed by DNA microarray analysis. Transcription level increases of 7.43-fold (P = 0.005) for the cytokine tumor necrosis factor-α and 2.31-fold (P = 0.016) for the chemokine interleukin (IL)-8 were also detected by real-time-polymerase chain reaction array analysis. The immune mediators IL-6, IL-8, IL-1β, COX-2, and CXCL13 were visualized in glial cells in situ by immunofluorescence staining and confocal microscopy. Concomitantly, significant proportions of both oligodendrocytes and neurons undergoing apoptosis were present in spirochete-stimulated tissues. IL-6 production by astrocytes in addition to oligodendrocyte apoptosis were also detected, albeit at lower levels, in rhesus macaques that had received in vivo intraparenchymal stereotaxic inoculations of live B. burgdorferi. These results provide proof of concept for our hypothesis that B. burgdorferi produces inflammatory mediators in the central nervous system, accompanied by glial and neuronal apoptosis. PMID:18832582

  6. Interaction of the Lyme disease spirochete Borrelia burgdorferi with brain parenchyma elicits inflammatory mediators from glial cells as well as glial and neuronal apoptosis.

    PubMed

    Ramesh, Geeta; Borda, Juan T; Dufour, Jason; Kaushal, Deepak; Ramamoorthy, Ramesh; Lackner, Andrew A; Philipp, Mario T

    2008-11-01

    Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, often manifests by causing neurocognitive deficits. As a possible mechanism for Lyme neuroborreliosis, we hypothesized that B. burgdorferi induces the production of inflammatory mediators in the central nervous system with concomitant neuronal and/or glial apoptosis. To test our hypothesis, we constructed an ex vivo model that consisted of freshly collected slices from brain cortex of a rhesus macaque and allowed live B. burgdorferi to penetrate the tissue. Numerous transcripts of genes that regulate inflammation as well as oligodendrocyte and neuronal apoptosis were significantly altered as assessed by DNA microarray analysis. Transcription level increases of 7.43-fold (P = 0.005) for the cytokine tumor necrosis factor-alpha and 2.31-fold (P = 0.016) for the chemokine interleukin (IL)-8 were also detected by real-time-polymerase chain reaction array analysis. The immune mediators IL-6, IL-8, IL-1beta, COX-2, and CXCL13 were visualized in glial cells in situ by immunofluorescence staining and confocal microscopy. Concomitantly, significant proportions of both oligodendrocytes and neurons undergoing apoptosis were present in spirochete-stimulated tissues. IL-6 production by astrocytes in addition to oligodendrocyte apoptosis were also detected, albeit at lower levels, in rhesus macaques that had received in vivo intraparenchymal stereotaxic inoculations of live B. burgdorferi. These results provide proof of concept for our hypothesis that B. burgdorferi produces inflammatory mediators in the central nervous system, accompanied by glial and neuronal apoptosis. PMID:18832582

  7. The involvement of MAP kinases JNK and p38 in photodynamic injury of crayfish neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Petin, Y. O.; Bibov, M. Y.; Uzdensky, A. B.

    2007-05-01

    The role of JNK and p38 MAP kinases in functional inactivation and necrosis of mechanoreceptor neurons as well as necrosis, apoptosis and proliferation of satellite glial cells induced by photodynamic treatment (10 -7 M Photosens, 30 min incubation, 670 nm laser irradiation at 0.4 W/cm2) in the isolated crayfish stretch receptor was studied using specific inhibitors SP600125 and SB202190, respectively. SP600125 enhanced PDT-induced apoptosis of photosensitized glial cells but did not influence PDT-induced changes in neuronal activity, density of glial nuclei around neuron body, and necrosis of receptor neurons and glial cells. SB202190 did not influence neuron activity and survival as well but reduced PDT-induced necrosis but not apoptosis of glial cells. Therefore, both MAP kinases influenced glial cells but not neurons. JNK protected glial cells from PDT-induced apoptosis but did not influence necrosis and proliferation of these cells. In contrast, p38 did not influence apoptosis but contributed into PDT-induced necrosis of glial cells and PDT-induced gliosis. These MAP kinase inhibitors may be used for modulation of photodynamic therapy of brain tumors.

  8. GlialCAM, a CLC-2 Cl(-) channel subunit, activates the slow gate of CLC chloride channels.

    PubMed

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-09-01

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl(-) channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction. PMID:25185546

  9. GlialCAM, a CLC-2 Cl- Channel Subunit, Activates the Slow Gate of CLC Chloride Channels

    PubMed Central

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-01-01

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl- channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction. PMID:25185546

  10. PHARMACOLOGIC AND IMMUNOLOGIC APPROACHES TO THE PROBLEMS OF POSTTRAUMATIC GLIAL PROLIFERATION FOLLOWING CNS (CENTRAL NERVOUS SYSTEM) DAMAGE

    EPA Science Inventory

    The authors have devised a pharmacologic approach to block the proliferation of glial cells (gliosis) which follows various forms of trauma to nervous tissue. A method was devised using the incorporation of 3H-thymidine incorporation into DNA of glial cells as a proliferative ind...

  11. Clear cell carcinoma of the lung.

    PubMed Central

    Edwards, C; Carlile, A

    1985-01-01

    Six tumours of the lung initially classified as clear cell carcinoma, were studied. Examination of further material by light and electron microscopy showed adenocarcinomatous differentiation in three cases and squamous differentiation in two. One case showed the features of a large cell anaplastic carcinoma. The clear appearance of the cytoplasm in paraffin sections was due to accumulations of glycogen that were partially removed during processing. It is concluded that clear cell carcinoma is not a single and separate entity. Images PMID:4031101

  12. Major Land Clearing Fires, Kalimantan, Borneo, Indonesia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    These many and intense land clearing fires in the Kalimantan region of the island of Borneo, Indonesia (3.5S, 113.5E) are indicative of the many deforestation activities on a worldwide scale. In order to feed and house ever increasing populations, more cleared land is required for agriculture to feed ever increasing populations. More pasture lands are needed for livestock. And, more cleared lands are needed for housing.

  13. Precursors of Hypertension: A Review

    PubMed Central

    Thomas, John; Neser, William B.; Thomas, Johniene; Semenya, Kofi; Green, Donald R.

    1983-01-01

    Recent advances in hypertension therapy have been remarkable; however, much less is known about those precursors that facilitate preventive and early intervention measures. This review of the literature indicates that relevant precursors are early elevated casual systolic blood pressures, positive family history, and obesity in females. Additional predisposing or enhancing factors point to high sodium ingestion, heavy smoking, and high socioecologic stress. Evidence for a high-risk hypertensive personality is not conclusive. There is a paucity of longitudinal data on hypertension in the black population. PMID:6864814

  14. Origin and development of neuropil glia of the Drosophila larval and adult brain: two distinct glial populations derived from separate progenitors

    PubMed Central

    Omoto, Jaison Jiro; Yogi, Puja; Hartenstein, Volker

    2015-01-01

    Glia comprise a conspicuous population of non-neuronal cells in vertebrate and invertebrate nervous systems. Drosophila serves as a favorable model to elucidate basic principles of glial biology in vivo. The Drosophila neuropil glia (NPG), subdivided into astrocyte-like (ALG) and ensheathing glia (EG), extend reticular processes which associate with synapses and sheath-like processes which surround neuropil compartments, respectively. In this paper we characterize the development of NPG throughout fly brain development. We find that differentiated neuropil glia of the larval brain originate as a cluster of precursors derived from embryonic progenitors located in the basal brain. These precursors undergo a characteristic migration to spread over the neuropil surface while specifying/differentiating into primary ALG and EG. Embryonically-derived primary NPG are large cells which are few in number, and occupy relatively stereotyped positions around the larval neuropil surface. During metamorphosis, primary NPG undergo cell death. Neuropil glia of the adult (secondary NPG) are derived from type II lineages during the postembryonic phase of neurogliogenesis. These secondary NPG are much smaller in size but greater in number than primary NPG. Lineage tracing reveals that both NPG subtypes derive from intermediate neural progenitors of multipotent type II lineages. Taken together, this study reveals previously uncharacterized dynamics of NPG development and provides a framework for future studies utilizing Drosophila glia as a model. PMID:25779704

  15. Origin and development of neuropil glia of the Drosophila larval and adult brain: Two distinct glial populations derived from separate progenitors.

    PubMed

    Omoto, Jaison Jiro; Yogi, Puja; Hartenstein, Volker

    2015-08-15

    Glia comprise a conspicuous population of non-neuronal cells in vertebrate and invertebrate nervous systems. Drosophila serves as a favorable model to elucidate basic principles of glial biology in vivo. The Drosophila neuropil glia (NPG), subdivided into astrocyte-like (ALG) and ensheathing glia (EG), extend reticular processes which associate with synapses and sheath-like processes which surround neuropil compartments, respectively. In this paper we characterize the development of NPG throughout fly brain development. We find that differentiated neuropil glia of the larval brain originate as a cluster of precursors derived from embryonic progenitors located in the basal brain. These precursors undergo a characteristic migration to spread over the neuropil surface while specifying/differentiating into primary ALG and EG. Embryonically-derived primary NPG are large cells which are few in number, and occupy relatively stereotyped positions around the larval neuropil surface. During metamorphosis, primary NPG undergo cell death. Neuropil glia of the adult (secondary NPG) are derived from type II lineages during the postembryonic phase of neurogliogenesis. These secondary NPG are much smaller in size but greater in number than primary NPG. Lineage tracing reveals that both NPG subtypes derive from intermediate neural progenitors of multipotent type II lineages. Taken together, this study reveals previously uncharacterized dynamics of NPG development and provides a framework for future studies utilizing Drosophila glia as a model. PMID:25779704

  16. 17 CFR 39.4 - Procedures for implementing derivatives clearing organization rules and clearing new products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... product until its registration as a derivatives clearing organization is reinstated under the procedures... clearing a new product that is not traded on a designated contract market or a registered derivatives... of the product that make it acceptable for clearing with a certification that the clearing of...

  17. 17 CFR 22.3 - Derivatives clearing organizations: Treatment of Cleared Swaps Customer Collateral.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... clearing organization may invest the money, securities, or other property constituting Cleared Swaps... behalf of Cleared Swaps Customers with any of the following: (i) The money, securities, or other property belonging to the derivatives clearing organization; (ii) The money, securities, or other property...

  18. The Effect of Pro-Neurogenic Gene Expression on Adult Subventricular Zone Precursor Cell Recruitment and Fate Determination After Excitotoxic Brain Injury

    PubMed Central

    Jones, Kathryn S; Connor, Bronwen J

    2016-01-01

    Despite the presence of on-going neurogenesis in the adult mammalian brain, neurons are generally not replaced after injury. Using a rodent model of excitotoxic cell loss and retroviral (RV) lineage tracing, we previously demonstrated transient recruitment of precursor cells from the subventricular zone (SVZ) into the lesioned striatum. In the current study we determined that these cells included migratory neuroblasts and oligodendrocyte precursor cells (OPC), with the predominant response from glial cells. We attempted to override this glial response by ectopic expression of the pro-neurogenic genes Pax6 or Dlx2 in the adult rat SVZ following quinolinic acid lesioning. RV-Dlx2 over-expression stimulated repair at a previously non-neurogenic time point by enhancing neuroblast recruitment and the percentage of cells that retained a neuronal fate within the lesioned area, compared to RV-GFP controls. RV-Pax6 expression was unsuccessful at inhibiting glial fate and intriguingly, increased OPC cell numbers with no change in neuronal recruitment. These findings suggest that gene choice is important when attempting to augment endogenous repair as the lesioned environment can overcome pro-neurogenic gene expression. Dlx2 over-expression however was able to partially overcome an anti-neuronal environment and therefore is a promising candidate for further study of striatal regeneration. PMID:27397999

  19. Acoustics of Clear Speech: Effect of Instruction

    ERIC Educational Resources Information Center

    Lam, Jennifer; Tjaden, Kris; Wilding, Greg

    2012-01-01

    Purpose: This study investigated how different instructions for eliciting clear speech affected selected acoustic measures of speech. Method: Twelve speakers were audio-recorded reading 18 different sentences from the Assessment of Intelligibility of Dysarthric Speech (Yorkston & Beukelman, 1984). Sentences were produced in habitual, clear,…

  20. 17 CFR 256.184 - Clearing accounts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Clearing accounts. 256.184... SYSTEM OF ACCOUNTS FOR MUTUAL SERVICE COMPANIES AND SUBSIDIARY SERVICE COMPANIES, PUBLIC UTILITY HOLDING COMPANY ACT OF 1935 4. Deferred Debits § 256.184 Clearing accounts. This account shall...

  1. 17 CFR 256.184 - Clearing accounts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Clearing accounts. 256.184... SYSTEM OF ACCOUNTS FOR MUTUAL SERVICE COMPANIES AND SUBSIDIARY SERVICE COMPANIES, PUBLIC UTILITY HOLDING COMPANY ACT OF 1935 4. Deferred Debits § 256.184 Clearing accounts. This account shall...

  2. Chemical Literature Exercises and Resources (CLEAR).

    ERIC Educational Resources Information Center

    Hostettler, John D.; And Others

    These materials were developed to make the structure and use of the chemical literature clear to chemistry students and to help them become independent and intelligent users of the library. The design of Chemical Literature Exercises and Resources (CLEAR) includes a users' note and five main parts: introduction to chemical literature, chemical…

  3. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  4. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  5. Postnatal development of the myenteric glial network and its modulation by butyrate.

    PubMed

    Cossais, François; Durand, Tony; Chevalier, Julien; Boudaud, Marie; Kermarrec, Laetitia; Aubert, Philippe; Neveu, Isabelle; Naveilhan, Philippe; Neunlist, Michel

    2016-06-01

    The postnatal period is crucial for the development of gastrointestinal (GI) functions. The enteric nervous system is a key regulator of GI functions, and increasing evidences indicate that 1) postnatal maturation of enteric neurons affect the development of GI functions, and 2) microbiota-derived short-chain fatty acids can be involved in this maturation. Although enteric glial cells (EGC) are central regulators of GI functions, the postnatal evolution of their phenotype remains poorly defined. We thus characterized the postnatal evolution of EGC phenotype in the colon of rat pups and studied the effect of short-chain fatty acids on their maturation. We showed an increased expression of the glial markers GFAP and S100β during the first postnatal week. As demonstrated by immunohistochemistry, a structured myenteric glial network was observed at 36 days in the rat colons. Butyrate inhibited EGC proliferation in vivo and in vitro but had no effect on glial marker expression. These results indicate that the EGC myenteric network continues to develop after birth, and luminal factors such as butyrate endogenously produced in the colon may affect this development. PMID:27056724

  6. Flavonoids Modulate the Proliferation of Neospora caninum in Glial Cell Primary Cultures

    PubMed Central

    Barbosa de Matos, Rosan; Braga-de-Souza, Suzana; Pena Seara Pitanga, Bruno; Amaral da Silva, Victor Diógenes; Viana de Jesus, Erica Etelvina; Morales Pinheiro, Alexandre; Dias Costa, Maria de Fátima; dos Santos El-Bacha, Ramon; de Oliveira Ribeiro, Cátia Suse

    2014-01-01

    Neospora caninum (Apicomplexa; Sarcocystidae) is a protozoan that causes abortion in cattle, horses, sheep, and dogs as well as neurological and dermatological diseases in dogs. In the central nervous system of dogs infected with N. caninum, cysts were detected that exhibited gliosis and meningitis. Flavonoids are polyphenolic compounds that exhibit antibacterial, antiparasitic, antifungal, and antiviral properties. In this study, we investigated the effects of flavonoids in a well-established in vitro model of N. caninum infection in glial cell cultures. Glial cells were treated individually with 10 different flavonoids, and a subset of cultures was also infected with the NC-1 strain of N. caninum. All of the flavonoids tested induced an increase in the metabolism of glial cells and many of them increased nitrite levels in cultures infected with NC-1 compared to controls and uninfected cultures. Among the flavonoids tested, 3',4'-dihydroxyflavone, 3',4',5,7-tetrahydroxyflavone (luteolin), and 3,3',4',5,6-pentahydroxyflavone (quercetin), also inhibited parasitophorous vacuole formation. Taken together, our findings show that flavonoids modulate glial cell responses, increase NO secretion, and interfere with N. caninum infection and proliferation. PMID:25548412

  7. Tumor necrosis factor-α modifies the effects of Shiga toxin on glial cells.

    PubMed

    Leu, Hue; Sugimoto, Naotoshi; Shimizu, Masaki; Toma, Tomoko; Wada, Taizo; Ohta, Kunio; Yachie, Akihiro

    2016-09-01

    Shiga toxin (STX) is one of the main factors inducing hemorrhagic colitis and hemolytic-uremic syndrome (HUS) in infections with STX-producing Escherichia coli (STEC). Approximately 62% of patients with HUS showed symptoms of encephalopathy in the 2011 Japanese outbreak of STEC infections. At that time, we reported elevated serum concentrations of tumor necrosis factor (TNF)-α in patients with acute encephalopathy during the HUS phase. In the current study, we investigated whether TNF-α augments the effects of STX in glial cell lines and primary glial cells. We found that TNF-α alone or STX in combination with TNF-α activates nuclear factor-κB (NF-κB) signaling and inhibits growth of glial cells. The magnitude of the NF-κB activation and the inhibition of cell growth by the STX and TNF-α combination was greater than that obtained with TNF-α alone or STX alone. Thus, this in vitro study reveals the role of TNF-α in glial cells during STEC infections. PMID:27268285

  8. INCREASE IN GLIAL FIBRILLARY ACIDIC PROTEIN FOLLOWS BRAIN HYPERTHERMIA IN RATS

    EPA Science Inventory

    Previously, the authors have demonstrated that an increase in the astrocyte-associated protein, glial fibrillary acidic protein (GFAP), accompanies brain injury induced by a variety of chemical insults. In the present study the authors examined the effects of microwave-induced hy...

  9. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence.

    PubMed

    Ibiza, Sales; García-Cassani, Bethania; Ribeiro, Hélder; Carvalho, Tânia; Almeida, Luís; Marques, Rute; Misic, Ana M; Bartow-McKenney, Casey; Larson, Denise M; Pavan, William J; Eberl, Gérard; Grice, Elizabeth A; Veiga-Fernandes, Henrique

    2016-07-21

    Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers. ILC3 development is thought to be programmed, but how ILC3 perceive, integrate and respond to local environmental signals remains unclear. Here we show that ILC3 in mice sense their environment and control gut defence as part of a glial–ILC3–epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22), impaired epithelial reactivity, dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate Il22 downstream of the p38 MAPK/ERK-AKT cascade and STAT3 activation. Notably, ILC3 were adjacent to neurotrophic-factor-expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88-dependent manner to control neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic Myd88 deletion led to impaired production of ILC3-derived IL-22 and a pronounced propensity towards gut inflammation and infection. Our work sheds light on a novel multi-tissue defence unit, revealing that glial cells are central hubs of neuron and innate immune regulation by neurotrophic factor signals. PMID:27409807

  10. The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Berezhnaya, E. V.; Uzdensky, A. B.

    2015-03-01

    Nitric oxide (NO) is an important second messenger, involved in the implementation of various cell functions. It regulates various physiological and pathological processes such as neurotransmission, cell responses to stress, and neurodegeneration. NO synthase is a family of enzymes that synthesize NO from L-arginine. The activity of different NOS isoforms depends both on endogenous and exogenous factors. In particular, it is modulated by oxidative stress, induced by photodynamic therapy (PDT). We have studied the possible role of NOS in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Antinecrotic and proapoptotic effects of NO on the glial cells were found using inhibitory analysis. We have shown the role of inducible NO synthase in photoinduced apoptosis and involvement of neuronal NO synthase in photoinduced necrosis of glial cells in the isolated crayfish stretch receptor. The activation of NO synthase was evaluated using NADPH-diaphorase histochemistry, a marker of neurons expressing the enzyme. The activation of NO synthase in the isolated crayfish stretch receptor was evaluated as a function of time after PDT. Photodynamic treatment induced transient increase in NO synthase activity and then slowly inhibited this enzyme.

  11. Mcidas and GemC1/Lynkeas specify embryonic radial glial cells.

    PubMed

    Kyrousi, Christina; Lalioti, Maria-Eleni; Skavatsou, Eleni; Lygerou, Zoi; Taraviras, Stavros

    2016-01-01

    Ependymal cells are multiciliated cells located in the wall of the lateral ventricles of the adult mammalian brain and are key components of the subependymal zone niche, where adult neural stem cells reside. Through the movement of their motile cilia, ependymal cells control the cerebrospinal fluid flow within the ventricular system from which they receive secreted molecules and morphogens controlling self-renewal and differentiation decisions of adult neural stem cells. Multiciliated ependymal cells become fully differentiated at postnatal stages however they are specified during mid to late embryogenesis from a population of radial glial cells. Here we discuss recent findings suggesting that 2 novel molecules, Mcidas and GemC1/Lynkeas are key players on radial glial specification to ependymal cells. Both proteins were initially described as cell cycle regulators revealing sequence similarity to Geminin. They are expressed in radial glial cells committed to the ependymal cell lineage during embryogenesis, while overexpression and knock down experiments showed that are sufficient and necessary for ependymal cell generation. We propose that Mcidas and GemC1/Lynkeas are key components of the molecular cascade that promotes radial glial cells fate commitment toward multiciliated ependymal cell lineage operating upstream of c-Myb and FoxJ1. PMID:27606337

  12. Involvement of interleukin-1 in glial responses to lipopolysaccharide: endogenous versus exogenous interleukin-1 actions.

    PubMed

    Molina-Holgado, F; Toulmond, S; Rothwell, N J

    2000-11-01

    Interleukin-1beta (IL-1beta) participates in neuroinflammation and neurodegeneration. Its mechanisms of action are not fully understood, but appear to involve complex interactions between neurons and glia. The objective of this study was to determine the involvement of endogenous IL-1beta in inflammatory responses to LPS in cultured mouse glial cells, and compare this to the effects of exogenous IL-1beta. Activation of primary mixed glial cultures by incubation with LPS (1 microgram/ml, 24 h), caused marked (approximately ten-fold) increases in release of NO, twenty-fold increases in PGE(2) and ninety-fold increases of IL-6 release. Incubation with human recombinant IL-1beta (100 ng/ml) also stimulated NO and IL-6 release to a similar extent to LPS, but IL-1beta (1 or 100 ng/ml) caused only modest increases (approximately seven-fold) in PGE(2) release. Co-incubation with IL-1ra inhibited the effects of LPS on NO release (-65%) and IL-6 production (-30%), but failed to reduce PGE(2) release. These results indicate that exogenous IL-1beta induces release of NO, PGE(2) and IL-6 in mixed glial cultures, and that endogenous IL-1beta mediates inflammatory actions of LPS on NO and to a lesser extent IL-6, but not on PGE(2) release in mixed glial cultures. Indeed endogenous IL-1beta appears to inhibit LPS-induced PGE(2) release. PMID:11063815

  13. Controlled Adhesion and Growth of Long Term Glial and Neuronal Cultures on Parylene-C

    PubMed Central

    Delivopoulos, Evangelos; Murray, Alan F.

    2011-01-01

    This paper explores the long term development of networks of glia and neurons on patterns of Parylene-C on a SiO2 substrate. We harvested glia and neurons from the Sprague-Dawley (P1–P7) rat hippocampus and utilized an established cell patterning technique in order to investigate cellular migration, over the course of 3 weeks. This work demonstrates that uncontrolled glial mitosis gradually disrupts cellular patterns that are established early during culture. This effect is not attributed to a loss of protein from the Parylene-C surface, as nitrogen levels on the substrate remain stable over 3 weeks. The inclusion of the anti-mitotic cytarabine (Ara-C) in the culture medium moderates glial division and thus, adequately preserves initial glial and neuronal conformity to underlying patterns. Neuronal apoptosis, often associated with the use of Ara-C, is mitigated by the addition of brain derived neurotrophic factor (BDNF). We believe that with the right combination of glial inhibitors and neuronal promoters, the Parylene-C based cell patterning method can generate structured, active neural networks that can be sustained and investigated over extended periods of time. To our knowledge this is the first report on the concurrent application of Ara-C and BDNF on patterned cell cultures. PMID:21966523

  14. Potential primary roles of glial cells in the mechanisms of psychiatric disorders.

    PubMed

    Yamamuro, Kazuhiko; Kimoto, Sohei; Rosen, Kenneth M; Kishimoto, Toshifumi; Makinodan, Manabu

    2015-01-01

    While neurons have long been considered the major player in multiple brain functions such as perception, emotion, and memory, glial cells have been relegated to a far lesser position, acting as merely a "glue" to support neurons. Multiple lines of recent evidence, however, have revealed that glial cells such as oligodendrocytes, astrocytes, and microglia, substantially impact on neuronal function and activities and are significantly involved in the underlying pathobiology of psychiatric disorders. Indeed, a growing body of evidence indicates that glial cells interact extensively with neurons both chemically (e.g., through neurotransmitters, neurotrophic factors, and cytokines) and physically (e.g., through gap junctions), supporting a role for these cells as likely significant modifiers not only of neural function in brain development but also disease pathobiology. Since questions have lingered as to whether glial dysfunction plays a primary role in the biology of neuropsychiatric disorders or a role related solely to their support of neuronal physiology in these diseases, informative and predictive animal models have been developed over the last decade. In this article, we review recent findings uncovered using glia-specific genetically modified mice with which we can evaluate both the causation of glia dysfunction and its potential role in neuropsychiatric disorders such as autism and schizophrenia. PMID:26029044

  15. Coupling of glutamate and glucose uptake in cultured Bergmann glial cells.

    PubMed

    Mendez-Flores, Orquidia G; Hernández-Kelly, Luisa C; Suárez-Pozos, Edna; Najimi, Mustapha; Ortega, Arturo

    2016-09-01

    Glutamate, the main excitatory neurotransmitter in the vertebrate brain, exerts its actions through specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of sodium-dependent, glutamate uptake transporters mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing neuronal death. The sustained sodium influx associated to glutamate removal in glial cells, activates the sodium/potassium ATPase restoring the ionic balance, additionally, glutamate entrance activates glutamine synthetase, both events are energy demanding, therefore glia cells increase their ATP expenditure favouring glucose uptake, and triggering several signal transduction pathways linked to proper neuronal glutamate availability, via the glutamate/glutamine shuttle. To further characterize these complex transporters interactions, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity, plasma membrane localization and protein levels of glucose transporters was detected upon d-aspartate exposure. Interestingly, this increase is the result of a protein kinase C-dependent signaling cascade. Furthermore, a glutamate-dependent glucose and glutamate transporters co-immunoprecipitation was detected. These results favour the notion that glial cells are involved in glutamatergic neuronal physiology. PMID:27184733

  16. CONCENTRATION OF GLIAL FIBRILLARY ACIDIC PROTEIN INCREASES WITH AGE IN THE MOUSE AND RAT BRAIN

    EPA Science Inventory

    The role of aging in the expression of the astrocyte protein, glial fibrillary acidic protein (GFAP), was examined. n both mice and rats the concentration of GFAP increased throughout the brain as a function of aging. he largest increase (2-fold) was observed in striatum for both...

  17. 5,7-DIHYDROXYTRYPTAMINE INJECTIONS INCREASE GLIAL FIBRILLARY ACIDIC PROTEIN IN THE HYPOTHALAMUS OF ADULT RATS

    EPA Science Inventory

    The distribution and level of glial fibrillary acidic protein (GFAP) were determined in the adult rat hypothalamus following axotomy of serotonin (5-HT) neurons. even days after unilateral intrahypothalamic injection of the 5-HT neurotoxic, 5,7- dihydroxytryptamine, there gas a m...

  18. Myricetin and quercetin attenuate ischemic injury in glial cultures by different mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have demonstrated that polyphenols from cinnamon and green tea reduce cell swelling and mitochondrial dysfunction in C6 glial cultures following ischemic injury. We tested the protective effects of the flavonoid polyphenols, myricetin and quercetin, on key features of ischemic injury. C6 cultures...

  19. Potential primary roles of glial cells in the mechanisms of psychiatric disorders

    PubMed Central

    Yamamuro, Kazuhiko; Kimoto, Sohei; Rosen, Kenneth M.; Kishimoto, Toshifumi; Makinodan, Manabu

    2015-01-01

    While neurons have long been considered the major player in multiple brain functions such as perception, emotion, and memory, glial cells have been relegated to a far lesser position, acting as merely a “glue” to support neurons. Multiple lines of recent evidence, however, have revealed that glial cells such as oligodendrocytes, astrocytes, and microglia, substantially impact on neuronal function and activities and are significantly involved in the underlying pathobiology of psychiatric disorders. Indeed, a growing body of evidence indicates that glial cells interact extensively with neurons both chemically (e.g., through neurotransmitters, neurotrophic factors, and cytokines) and physically (e.g., through gap junctions), supporting a role for these cells as likely significant modifiers not only of neural function in brain development but also disease pathobiology. Since questions have lingered as to whether glial dysfunction plays a primary role in the biology of neuropsychiatric disorders or a role related solely to their support of neuronal physiology in these diseases, informative and predictive animal models have been developed over the last decade. In this article, we review recent findings uncovered using glia-specific genetically modified mice with which we can evaluate both the causation of glia dysfunction and its potential role in neuropsychiatric disorders such as autism and schizophrenia. PMID:26029044

  20. Cinnamon Polyphenols Attenuate Neuronal Death and Glial Swelling in Ischemic Injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brain edema is a major complication associated with ischemic stroke and is characterized by a volumetric enlargement of the brain. Astrocyte swelling is a major component of brain edema. We investigated the protective effects of polyphenols isolated from green tea and cinnamon in C6 glial cultures s...

  1. Modification of potassium movement through the retina of the drone (Apis mellifera male) by glial uptake.

    PubMed Central

    Coles, J A; Orkand, R K

    1983-01-01

    Intracellular recordings were made in photoreceptors and glial cells (outer pigment cells) of the superfused cut head of the honey-bee drone (Apis mellifera male). When the [K+] in the superfusate was abruptly increased from 3.2 mM to 17.9 mM both photoreceptors and glial cells depolarized. The time course of the depolarization of the photoreceptors was slower with increasing depth from the surface. Half time of depolarization was plotted against depth: this graph was compatible with the arrival of K+ being exclusively by diffusion through the extracellular clefts. However, as we then showed, this interpretation is inadequate. The time course of depolarization of the glial cells was almost the same at all depths. This indicates that they are electrically coupled. Consequently, current-mediated K+ flux (spatial buffering) through glial cells will contribute to the transport of K+ through the tissue: K+ ions enter the glial syncytium in the region of high external potassium concentration, [K+]0, and an equivalent quantity of K+ ions leave in regions of low [K+]0. Intracellular K+ activity (aiK) was measured with double-barrelled K+-sensitive micro-electrodes in slices of retina superfused on both faces. When [K+] in the superfusate was increased from 7.5 mM to 17.9 mM an increase in aiK was observed in glial cells at all depths in the slice (initial rate 1.7 mM min-1, S.E. of the mean = 0.2 mM min-1), but there was little increase in the photoreceptors (0.3 +/- 0.2 mM min-1). The increase in aiK in glial cells near the centre of the slice could not have been caused by spatial buffering; it presumably resulted from net uptake. We conclude that when [K+] is increased at the surface of this tissue, the build up of K+ in the extracellular clefts depends on extracellular diffusion, spatial buffering and net uptake. The latter two processes, which have opposing effects, involve about 10 times as much K+ as the first. This is in rough agreement with less direct experiments

  2. Glial glutamate transporter and glutamine synthetase regulate GABAergic synaptic strength in the spinal dorsal horn.

    PubMed

    Jiang, Enshe; Yan, Xisheng; Weng, Han-Rong

    2012-05-01

    Decreased GABAergic synaptic strength ('disinhibition') in the spinal dorsal horn is a crucial mechanism contributing to the development and maintenance of pathological pain. However, mechanisms leading to disinhibition in the spinal dorsal horn remain elusive. We investigated the role of glial glutamate transporters (GLT-1 and GLAST) and glutamine synthetase in maintaining GABAergic synaptic activity in the spinal dorsal horn. Electrically evoked GABAergic inhibitory post-synaptic currents (eIPSCs), spontaneous IPSCs (sIPSCs) and miniature IPSCs were recorded in superficial spinal dorsal horn neurons of spinal slices from young adult rats. We used (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), to block both GLT-1 and GLAST and dihydrokainic acid to block only GLT-1. We found that blockade of both GLAST and GLT-1 and blockade of only GLT-1 in the spinal dorsal horn decreased the amplitude of GABAergic eIPSCs, as well as both the amplitude and frequency of GABAergic sIPSCs or miniature IPSCs. Pharmacological inhibition of glial glutamine synthetase had similar effects on both GABAergic eIPSCs and sIPSCs. We provided evidence demonstrating that the reduction in GABAergic strength induced by the inhibition of glial glutamate transporters is due to insufficient GABA synthesis through the glutamate-glutamine cycle between astrocytes and neurons. Thus, our results indicate that deficient glial glutamate transporters and glutamine synthetase significantly attenuate GABAergic synaptic strength in the spinal dorsal horn, which may be a crucial synaptic mechanism underlying glial-neuronal interactions caused by dysfunctional astrocytes in pathological pain conditions. PMID:22339645

  3. Spinal cord stimulation reduces mechanical hyperalgesia and glial cell activation in animals with neuropathic pain

    PubMed Central

    Sato, Karina L.; Johanek, Lisa M.; Sanada, Luciana S.; Sluka, Kathleen A.

    2015-01-01

    Spinal cord stimulation (SCS) is used to manage chronic intractable neuropathic pain. We examined parameters of SCS in rats with spared nerve injury by modulating frequency (4Hz vs. 60Hz), duration (30m vs. 6h), or intensity (50%, 75%, or 90% MT). To elucidate potential mechanisms modulated by SCS, we examined immunoreactivity glial markers in the spinal cord after SCS). An epidural SCS lead was implanted in the upper lumbar spinal cord. Animals were tested for mechanical withdrawal threshold (MWT) of the paw before and 2 weeks after SNI, before and after SCS daily for 4 days, and for 9 days after SCS. Seperate groups of animals were tested for glial immunoreactivity after 4 days of 6h SCS. All rats showed a decrease in MWT 2 weeks after nerve injury and an increase in glial activation. For frequency, 4Hz or 60Hz SCS reversed the MWT when compared to sham SCS. For duration, 6h of SCS showed a greater reduction in MWT when compared to 30 min. For intensity, 90% MT was greater than 75% MT and both were greater than 50% MT or sham SCS. SCS decreased glial activation (GFAP, MCP-1 and OX-42) in the spinal cord dorsal horn when compared to sham. In conclusion, 4Hz and 60Hz SCS for a 6h at 90% MT were the most effective parameters for reducing hyperalgesia, suggesting parameters of stimulation are important for effectiveness of SCS. SCS reduced glial activation at the level of the spinal cord suggesting reduction in central excitability. PMID:24361846

  4. Glial cell modulators attenuate methamphetamine self-administration in the rat

    PubMed Central

    Snider, Sarah E.; Hendrick, Elizabeth S.; Beardsley, Patrick M.

    2013-01-01

    Neuroinflammation induced by activated microglia and astrocytes can be elicited by drugs of abuse. Methamphetamine administration activates glial cells and increases proinflammatory cytokine production, and there is recent evidence of a linkage between glial cell activation and drug abuse-related behavior. We have previously reported that ibudilast (AV411; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine), which inhibits phosphodiesterase (PDE) and pro-inflammatory activity, blocks reinstatement of methamphetamine-maintained responding in rats, and that ibudilast and AV1013, an amino analog of ibudilast, which has similar glial-attenuating properties but limited PDE activity, attenuate methamphetamine-induced locomotor activity and sensitization in mice. The present study's objective was to determine whether co-administered ibudilast, AV1013, or minocycline, which is a tetracycline derivative that also suppresses methamphetamine-induced glial activation, would attenuate active methamphetamine i.v. self-administration in Long-Evans hooded rats. Rats were initially trained to press a lever for 0.1 mg/kg/inf methamphetamine according to a FR1 schedule during 2-h daily sessions. Once stable responding was obtained, twice daily ibudilast (1, 7.5, 10 mg/kg), AV1013 (1, 10, 30 mg/kg), or once daily minocycline (10, 30, 60 mg/kg), or their corresponding vehicles, were given i.p. for three consecutive days during methamphetamine (0.001, 0.03, 0.1 mg/kg/inf) self-administration. Ibudilast, AV1013, and minocycline all significantly (p<0.05) reduced responding maintained by 0.03 mg/kg/inf methamphetamine that had maintained the highest level of infusions under vehicle conditions. These results suggest that targeting glial cells may provide a novel approach to pharmacotherapy for treating methamphetamine abuse. PMID:23375937

  5. Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment.

    PubMed

    Shi, Ming; Du, Fang; Liu, Yang; Li, Li; Cai, Jing; Zhang, Guo-Feng; Xu, Xiao-Fei; Lin, Tian; Cheng, Hao-Ran; Liu, Xue-Dong; Xiong, Li-Ze; Zhao, Gang

    2013-11-01

    Vibroacoustic disease, a progressive and systemic disease, mainly involving the central nervous system, is caused by excessive exposure to low-frequency but high-intensity noise generated by various heavy transportations and machineries. Infrasound is a type of low-frequency noise. Our previous studies demonstrated that infrasound at a certain intensity caused neuronal injury in rats but the underlying mechanism(s) is still largely unknown. Here, we showed that glial cell-expressed TRPV4, a Ca(2+)-permeable mechanosensitive channel, mediated infrasound-induced neuronal injury. Among different frequencies and intensities, infrasound at 16 Hz and 130 dB impaired rat learning and memory abilities most severely after 7-14 days exposure, a time during which a prominent loss of hippocampal CA1 neurons was evident. Infrasound also induced significant astrocytic and microglial activation in hippocampal regions following 1- to 7-day exposure, prior to neuronal apoptosis. Moreover, pharmacological inhibition of glial activation in vivo protected against neuronal apoptosis. In vitro, activated glial cell-released proinflammatory cytokines IL-1β and TNF-α were found to be key factors for this neuronal apoptosis. Importantly, infrasound induced an increase in the expression level of TRPV4 both in vivo and in vitro. Knockdown of TRPV4 expression by siRNA or pharmacological inhibition of TRPV4 in cultured glial cells decreased the levels of IL-1β and TNF-α, attenuated neuronal apoptosis, and reduced TRPV4-mediated Ca(2+) influx and NF-κB nuclear translocation. Finally, using various antagonists we revealed that calmodulin and protein kinase C signaling pathways were involved in TRPV4-triggered NF-κB activation. Thus, our results provide the first evidence that glial cell-expressed TRPV4 is a potential key factor responsible for infrasound-induced neuronal impairment. PMID:24002225

  6. Viscoelastic properties of individual glial cells and neurons in the CNS

    PubMed Central

    Lu, Yun-Bi; Franze, Kristian; Seifert, Gerald; Steinhäuser, Christian; Kirchhoff, Frank; Wolburg, Hartwig; Guck, Jochen; Janmey, Paul; Wei, Er-Qing; Käs, Josef; Reichenbach, Andreas

    2006-01-01

    One hundred fifty years ago glial cells were discovered as a second, non-neuronal, cell type in the central nervous system. To ascribe a function to these new, enigmatic cells, it was suggested that they either glue the neurons together (the Greek word “γλια” means “glue”) or provide a robust scaffold for them (“support cells”). Although both speculations are still widely accepted, they would actually require quite different mechanical cell properties, and neither one has ever been confirmed experimentally. We investigated the biomechanics of CNS tissue and acutely isolated individual neurons and glial cells from mammalian brain (hippocampus) and retina. Scanning force microscopy, bulk rheology, and optically induced deformation were used to determine their viscoelastic characteristics. We found that (i) in all CNS cells the elastic behavior dominates over the viscous behavior, (ii) in distinct cell compartments, such as soma and cell processes, the mechanical properties differ, most likely because of the unequal local distribution of cell organelles, (iii) in comparison to most other eukaryotic cells, both neurons and glial cells are very soft (“rubber elastic”), and (iv) intriguingly, glial cells are even softer than their neighboring neurons. Our results indicate that glial cells can neither serve as structural support cells (as they are too soft) nor as glue (because restoring forces are dominant) for neurons. Nevertheless, from a structural perspective they might act as soft, compliant embedding for neurons, protecting them in case of mechanical trauma, and also as a soft substrate required for neurite growth and facilitating neuronal plasticity. PMID:17093050

  7. Rho kinase inhibition following traumatic brain injury in mice promotes functional improvement and acute neuron survival but has little effect on neurogenesis, glial responses or neuroinflammation.

    PubMed

    Bye, Nicole; Christie, Kimberly J; Turbic, Alisa; Basrai, Harleen S; Turnley, Ann M

    2016-05-01

    Inhibition of the Rho/Rho kinase pathway has been shown to be beneficial in a variety of neural injuries and diseases. In this manuscript we investigate the role of Rho kinase inhibition in recovery from traumatic brain injury using a controlled cortical impact model in mice. Mice subjected to a moderately severe TBI were treated for 1 or 4weeks with the Rho kinase inhibitor Y27632, and functional outcomes and neuronal and glial cell responses were analysed at 1, 7 and 35days post-injury. We hypothesised that Y27632-treated mice would show functional improvement, with augmented recruitment of neuroblasts from the SVZ and enhanced survival of newborn neurons in the pericontusional cortex, with protection against neuronal degeneration, neuroinflammation and modulation of astrocyte reactivity and blood-brain-barrier permeability. While Rho kinase inhibition enhanced recovery of motor function after trauma, there were no substantial increases in the recruitment of DCX(+) neuroblasts or the number of BrdU(+) or EdU(+) labelled newborn neurons in the pericontusional cortex of Y27632-treated mice. Inhibition of Rho kinase significantly reduced the number of degenerating cortical neurons at 1day post-injury compared to saline controls but had no longer term effect on neuronal degeneration, with only modest effects on astrocytic reactivity and macrophage/microglial responses. Overall, this study showed that Rho kinase contributes to acute neurodegenerative processes in the injured cortex but does not play a significant role in SVZ neural precursor cell-derived adult neurogenesis, glial responses or blood-brain barrier permeability following a moderately severe brain injury. PMID:26896832

  8. Vascular endothelial growth factors A and C are induced in the SVZ following neonatal hypoxia-ischemia and exert different effects on neonatal glial progenitors

    PubMed Central

    Bain, Jennifer M.; Moore, Lisamarie; Ren, Zhihua; Simonishvili, Sophia; Levison, Steven W.

    2012-01-01

    Episodes of neonatal hypoxia-ischemia (H-I) are strongly associated with cerebral palsy and a wide spectrum of other neurological deficits in children. Two key processes required to repair damaged organs are to amplify the number of precursors capable of regenerating damaged cells and to direct their differentiation towards the cell types that need to be replaced. Since hypoxia induces vascular endothelial growth factor (VEGF) production, it is logical to predict that VEGFs are key mediators of tissue repair after H-I injury. The goal of this study was to test the hypothesis that certain VEGF isoforms increase during recovery from neonatal H-I and that they would differentially affect the proliferation and differentiation of subventricular zone (SVZ) progenitors. During the acute recovery period from H-I both VEGF-A and VEGF-C were transiently induced in the SVZ, which correlated with an increase in SVZ blood vessel diameter. These growth factors were produced by glial progenitors, astrocytes and to a lesser extent, microglia. VEGF-A promoted the production of astrocytes from SVZ glial progenitors while VEGF-C stimulated the proliferation of both early and late oligodendrocyte progenitors, which was abolished by blocking the VEGFR-3. Altogether, these results provide new insights into the signals that coordinate the reactive responses of the progenitors in the SVZ to neonatal H-I. Our studies further suggest that therapeutics that extend VEGF-C production and/or agonists that stimulate the VEGFR-3 will promote oligodendrocyte progenitor cell development to enhance myelination after perinatal brain injury. PMID:23565129

  9. Performance of Cleared Blood Glucose Monitors

    PubMed Central

    Klonoff, David C.; Prahalad, Priya

    2015-01-01

    Cleared blood glucose monitor (BGM) systems do not always perform as accurately for users as they did to become cleared. We performed a literature review of recent publications between 2010 and 2014 that present data about the frequency of inaccurate performance using ISO 15197 2003 and ISO 15197 2013 as target standards. We performed an additional literature review of publications that present data about the clinical and economic risks of inaccurate BGMs for making treatment decisions or calibrating continuous glucose monitors (CGMs). We found 11 publications describing performance of 98 unique BGM systems. 53 of these 98 (54%) systems met ISO 15197 2003 and 31 of the 98 (32%) tested systems met ISO 15197 2013 analytical accuracy standards in all studies in which they were evaluated. Of the tested systems, 33 were identified by us as FDA-cleared. Among these FDA-cleared BGM systems, 24 out of 32 (75%) met ISO 15197 2003 and 15 out of 31 (48.3%) met ISO 15197 2013 in all studies in which they were evaluated. Among the non-FDA-cleared BGM systems, 29 of 65 (45%) met ISO 15197 2003 and 15 out of 65 (23%) met ISO 15197 2013 in all studies in which they were evaluated. It is more likely that an FDA-cleared BGM system, compared to a non-FDA-cleared BGM system, will perform according to ISO 15197 2003 (χ2 = 6.2, df = 3, P = 0.04) and ISO 15197 2013 (χ2 = 11.4, df = 3, P = 0.003). We identified 7 articles about clinical risks and 3 articles about economic risks of inaccurate BGMs. We conclude that a significant proportion of cleared BGMs do not perform at the level for which they were cleared or according to international standards of accuracy. Such poor performance leads to adverse clinical and economic consequences. PMID:25990294

  10. CLEARING OF ELECTRON CLOUD IN SNS.

    SciTech Connect

    WANG,L.LEE,Y.Y.RAPRIA,D.ET AL.

    2004-07-05

    In this paper we describe a mechanism using the clearing electrodes to remove the electron cloud in the Spallation Neutron Source (SNS) accumulator ring, where strong multipacting could happen at median clearing fields. A similar phenomenon was reported in an experimental study at Los Alamos laboratory's Proton Synchrotron Ring (PSR). We also investigated the effectiveness of the solenoid's clearing mechanism in the SNS, which differs from the short bunch case, such as in B-factories. The titanium nitride (TiN) coating of the chamber walls was applied to reduce the secondary electron yield (SEY).

  11. Temporal co-registration for TROPOMI cloud clearing

    NASA Astrophysics Data System (ADS)

    Genkova, I.; Robaidek, J.; Roebeling, R.; Sneep, M.; Veefkind, P.

    2011-10-01

    The TROPOspheric Monitoring Instrument (TROPOMI) is planed for launch in 2014 on board of the Sentinel 5 Precursor (S5P) and is anticipated to provide high-quality and timely information on the global atmospheric composition for climate and air quality applications. TROPOMI will observe key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, methane, formaldehyde and aerosol properties. The retrieval algorithms for the anticipated products require cloud information on a pixel basis. Most of them will use the cloud properties derived from TROPOMI's own measurements, such as the O2 A-band measurements. However, the methane and the aerosol retrievals require very precise cloud clearing, which is difficult to achieve at the TROPOMI spatial resolution (7 × 7 km2) and without thermal IR measurements. The current payload of the Sentinel 5 Precursor (S-5P) does not include a cloud imager, thus it is planned to fly the S5P mission in a constellation with another instrument yielding an accurate cloud mask. The cloud imagery data will be provided by the US NPOESS Preparatory Project (NPP) mission which will have the Visible Infrared Imager Radiometer Suite (VIIRS) on board (Scalione, 2004). VIIRS will have 22 bands in the VIS and IR spectral ranges, and will deliver data with two spatial resolutions: imagery resolution bands with a nominal pixel size of 370 m at nadir, and moderate resolution bands with nominal pixel size 740 m at nadir. The instrument is combining fine spatial resolution with high-accuracy calibration similar or superior to AVHRR. This paper presents results from investigating the temporal co-registration requirements for suitable time differences between the VIIRS measurements of clouds and the TROPOMI methane and aerosol measurements, so that the former could be used for cloud clearing. The temporal co-registration is studied using Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI

  12. Radiation-induced reduction of the glial population during development disrupts the formation of olfactory glomeruli in an insect

    SciTech Connect

    Oland, L.A.; Tolbert, L.P.; Mossman, K.L.

    1988-01-01

    Interactions between neurons and between neurons and glial cells have been shown by a number of investigators to be critical for normal development of the nervous system. In the olfactory system of Manduca sexta, sensory axons have been shown to induce the formation of synaptic glomeruli in the antennal lobe of the brain. Oland and Tolbert (1987) found that the growth of sensory axons into the developing antennal lobe causes changes in glial shape and disposition that presage the establishment of glomeruli, each surrounded by a glial envelope. Several lines of evidence lead us to hypothesize that the glial cells of the lobe may be acting as intermediaries in developmental interactions between sensory axons and neurons of the antennal lobe. In the present study, we have tested this hypothesis by using gamma-radiation to reduce the number of glial cells at a time when neurons of the antennal system are postmitotic but glomeruli have not yet developed. When glial numbers are severely reduced, the neuropil of the resulting lobe lacks glomeruli. Despite the presence of afferent axons, the irradiated lobe has many of the features of a lobe that developed in the absence of afferent axons. Our findings indicate that the glial cells must play a necessary role in the inductive influence of the afferent axons.

  13. Ion clearing the the XLS-ring

    SciTech Connect

    Bozoki, E.S.; Halama, H.

    1990-01-01

    The mechanism of ion capture by the beam, their effects on the beam as well as ways to clear the ions are discussed. Special attention is given to these questions for the SXLS ring. 20 refs., 5 figs., 4 tabs.

  14. Flowmeter for Clear and Translucent Fluids

    NASA Technical Reports Server (NTRS)

    White, P. R.

    1985-01-01

    Transducer with only three moving parts senses flow of clear or translucent fluid. Displacement of diaphragm by force of flow detected electrooptically and displayed by panel meter or other device. Transducer used to measure flow of gasoline to automobile engine.

  15. Clear Corneal Incision in Cataract Surgery

    PubMed Central

    Al Mahmood, Ammar M.; Al-Swailem, Samar A.; Behrens, Ashley

    2014-01-01

    Since the introduction of sutureless clear corneal cataract incisions, the procedure has gained increasing popularity worldwide because it offers several advantages over the traditional sutured scleral tunnels and limbal incisions. Some of these benefits include lack of conjunctival trauma, less discomfort and bleeding, absence of suture-induced astigmatism, and faster visual rehabilitation. However, an increasing incidence of postoperative endophthalmitis after clear corneal cataract surgery has been reported. Different authors have shown a significant increase up to 15-fold in the incidence of endophthalmitis following clear corneal incision compared to scleral tunnels. The aim of this report is to review the advantages and disadvantages of clear corneal incisions in cataract surgery, emphasizing on wound construction recommendations based on published literature. PMID:24669142

  16. Clear corneal incision in cataract surgery.

    PubMed

    Al Mahmood, Ammar M; Al-Swailem, Samar A; Behrens, Ashley

    2014-01-01

    Since the introduction of sutureless clear corneal cataract incisions, the procedure has gained increasing popularity worldwide because it offers several advantages over the traditional sutured scleral tunnels and limbal incisions. Some of these benefits include lack of conjunctival trauma, less discomfort and bleeding, absence of suture-induced astigmatism, and faster visual rehabilitation. However, an increasing incidence of postoperative endophthalmitis after clear corneal cataract surgery has been reported. Different authors have shown a significant increase up to 15-fold in the incidence of endophthalmitis following clear corneal incision compared to scleral tunnels. The aim of this report is to review the advantages and disadvantages of clear corneal incisions in cataract surgery, emphasizing on wound construction recommendations based on published literature. PMID:24669142

  17. A case of intrahepatic clear cell cholangiocarcinoma

    PubMed Central

    Toriyama, Eo; Nanashima, Atsushi; Hayashi, Hideyuki; Abe, Kuniko; Kinoshita, Naoe; Yuge, Shunsuke; Nagayasu, Takeshi; Uetani, Masataka; Hayashi, Tomayoshi

    2010-01-01

    Intrahepatic clear cell cholangiocarcinoma is very rare - only 8 cases have been reported. A 56-year-old Japanese man with chronic hepatitis B infection was diagnosed with a 2.2 cm hepatocellular carcinoma on imaging, and hepatic segmentectomy was performed. Histopathologically, the tumor cells had copious clear cytoplasm and formed glandular structures or solid nests. These pathological findings suggested the tumor was a clear cell variant of intrahepatic cholangiocarcinoma. Particular stains and radiological images suggested that the cause of the clear cell change had been glycogen, not mucin nor lipid. On immunohistochemical staining, cytokeratin (CK) 7 and CK19 were positive, whereas CK20 was negative. Vimentin was detected on the cell membranes, and CD56 was focally positive. The patient was given adjuvant chemotherapy and is currently free from the tumor 7 mo postoperatively. Careful follow-up with adequate postoperative supplementary chemotherapy is necessary because the characteristics of this type of tumor are unknown. PMID:20503460

  18. 17 CFR 20.3 - Clearing organizations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...; (13) Gross long non-delta-adjusted swaption positions; and (14) Gross short non-delta-adjusted... organizations shall report end of reporting day settlement prices for each cleared product and deltas for...

  19. 17 CFR 20.3 - Clearing organizations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...; (13) Gross long non-delta-adjusted swaption positions; and (14) Gross short non-delta-adjusted... organizations shall report end of reporting day settlement prices for each cleared product and deltas for...

  20. 17 CFR 20.3 - Clearing organizations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...; (13) Gross long non-delta-adjusted swaption positions; and (14) Gross short non-delta-adjusted... organizations shall report end of reporting day settlement prices for each cleared product and deltas for...

  1. Uele River, Cleared Pasture Lands, Zaire, Africa

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In this view of the Uele River and cleared pasturelands in Zaire (3.5N, 27.0E), the distinctive dendritic drainage pattern of the region becomes obvious. Cleared pasture lands shown as light green, contrasts with the dark green of the remaining closed conopy forests. The remnant woodlands along the streams indicates the intricate drainage network of this hilly region. Scattered vegetation free spots show the deep red tropical soils.

  2. CO2 Efflux from Cleared Mangrove Peat

    PubMed Central

    Lovelock, Catherine E.; Ruess, Roger W.; Feller, Ilka C.

    2011-01-01

    Background CO2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. Methodology/Principal Findings We measured CO2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO2 efflux. CO2 efflux from soils declines from time of clearing from ∼10 600 tonnes km−2 year−1 in the first year to 3000 tonnes km2 year−1 after 20 years since clearing. Disturbing peat leads to short term increases in CO2 efflux (27 umol m−2 s−1), but this had returned to baseline levels within 2 days. Conclusions/Significance Deforesting mangroves that grow on peat soils results in CO2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks. PMID:21738628

  3. Skin optical clearing potential of disaccharides.

    PubMed

    Feng, Wei; Shi, Rui; Ma, Ning; Tuchina, Daria K; Tuchin, Valery V; Zhu, Dan

    2016-08-01

    Skin optical clearing can significantly enhance the ability of biomedical optical imaging. Some alcohols and sugars have been selected to be optical clearing agents (OCAs). In this work, we paid attention to the optical clearing potential of disaccharides. Sucrose and maltose were chosen as typical disaccharides to compare with fructose, an excellent monosaccharide-OCA, by using molecular dynamics simulation and an ex vivo experiment. The experimental results indicated that the optical clearing efficacy of skin increases linearly with the concentration for each OCA. Both the theoretical predication and experimental results revealed that the two disaccharides exerted a better optical clearing potential than fructose at the same concentration, and sucrose is optimal. Since maltose has an extremely low saturation concentration, the other two OCAs with saturation concentrations were treated topically on rat skin in vivo, and optical coherence tomography imaging was applied to monitor the optical clearing process. The results demonstrated that sucrose could cause a more significant increase in imaging depth and signal intensity than fructose. PMID:27108771

  4. The Innate Lymphoid Cell Precursor.

    PubMed

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages. PMID:27168240

  5. Precursor polymer compositions comprising polybenzimidazole

    SciTech Connect

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  6. Temporal co-registration for TROPOMI cloud clearing

    NASA Astrophysics Data System (ADS)

    Genkova, I.; Robaidek, J.; Roebling, R.; Sneep, M.; Veefkind, P.

    2012-03-01

    The TROPOspheric Monitoring Instrument (TROPOMI) is anticipated to provide high-quality and timely global atmospheric composition information through observations of atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, methane, formaldehyde and aerosol properties. The methane and the aerosol retrievals require very precise cloud clearing, which is difficult to achieve at the TROPOMI spatial resolution (7 by 7 km) and without thermal IR measurements. The TROPOMI carrier - the Sentinel 5 Precursor (S5P), does not include a cloud imager, thus it is planned to fly the S5P mission in a constellation with an instrument yielding an accurate cloud mask. The cloud imagery data will be provided by the US NPOESS Preparatory Project (NPP) mission, which will have the Visible Infrared Imager Radiometer Suite (VIIRS) on board (Scalione, 2004). This paper investigates the temporal co-registration requirements for suitable time differences between the VIIRS measurements of clouds and the TROPOMI methane and aerosol measurements, so that the former could be used for cloud clearing. The temporal co-registration is studied using Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) data with 15 min temporal resolution (Veefkind, 2008b), and with data from the Geostationary Operational Environmental Satellite - 10 (GOES-10) having 1 min temporal resolution. The aim is to understand and assess the relation between the amount of allowed cloud contamination and the required time difference between the two satellites' overflights. Quantitative analysis shows that a time difference of approximately 5 min is sufficient (in most conditions) to use the cloud information from the first instrument for cloud clearing in the retrievals using data from the second instrument. In recent years the A-train constellation demonstrated the benefit of flying satellites in formation. Therefore this study's findings will be useful for

  7. Nucleation precursors in protein crystallization

    PubMed Central

    Vekilov, Peter G.; Vorontsova, Maria A.

    2014-01-01

    Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Here, methods of detection and characterization of the precursors are reviewed: dynamic light scattering, atomic force microscopy and Brownian microscopy. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein-dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometres in size, the cluster population occupies from 10−7 to 10−3 of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e. undersaturated, solutions. The clusters exist owing to the conformation flexibility of the protein molecules, leading to exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. Investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics. PMID:24598910

  8. All brains are made of this: a fundamental building block of brain matter with matching neuronal and glial masses

    PubMed Central

    Mota, Bruno; Herculano-Houzel, Suzana

    2014-01-01

    How does the size of the glial and neuronal cells that compose brain tissue vary across brain structures and species? Our previous studies indicate that average neuronal size is highly variable, while average glial cell size is more constant. Measuring whole cell sizes in vivo, however, is a daunting task. Here we use chi-square minimization of the relationship between measured neuronal and glial cell densities in the cerebral cortex, cerebellum, and rest of brain in 27 mammalian species to model neuronal and glial cell mass, as well as the neuronal mass fraction of the tissue (the fraction of tissue mass composed by neurons). Our model shows that while average neuronal cell mass varies by over 500-fold across brain structures and species, average glial cell mass varies only 1.4-fold. Neuronal mass fraction varies typically between 0.6 and 0.8 in all structures. Remarkably, we show that two fundamental, universal relationships apply across all brain structures and species: (1) the glia/neuron ratio varies with the total neuronal mass in the tissue (which in turn depends on variations in average neuronal cell mass), and (2) the neuronal mass per glial cell, and with it the neuronal mass fraction and neuron/glia mass ratio, varies with average glial cell mass in the tissue. We propose that there is a fundamental building block of brain tissue: the glial mass that accompanies a unit of neuronal mass. We argue that the scaling of this glial mass is a consequence of a universal mechanism whereby numbers of glial cells are added to the neuronal parenchyma during development, irrespective of whether the neurons composing it are large or small, but depending on the average mass of the glial cells being added. We also show how evolutionary variations in neuronal cell mass, glial cell mass and number of neurons suffice to determine the most basic characteristics of brain structures, such as mass, glia/neuron ratio, neuron/glia mass ratio, and cell densities. PMID:25429260

  9. TAPP1 inhibits the differentiation of oligodendrocyte precursor cells via suppressing the Mek/Erk pathway.

    PubMed

    Chen, Yidan; Mei, Ruyi; Teng, Peng; Yang, Aifen; Hu, Xuemei; Zhang, Zunyi; Qiu, Mengsheng; Zhao, Xiaofeng

    2015-10-01

    Oligodendrocytes (OLs) are glial cells that form myelin sheaths around axons in the central nervous system (CNS). Loss of the myelin sheath in demyelinating and neurodegenerative diseases can lead to severe impairment of movement. Understanding the extracellular signals and intracellular factors that regulate OL differentiation and myelination during development can help to develop novel strategies for enhancing myelin repair in neurological disorders. Here, we report that TAPP1 was selectively expressed in differentiating OL precursor cells (OPCs). TAPP1 knockdown promoted OL differentiation and myelin gene expression in culture. Conversely, over-expression of TAPP1 in immature OPCs suppressed their differentiation. Moreover, TAPP1 inhibition in OPCs altered the expression of Erk1/2 but not AKT. Taken together, our results identify TAPP1 as an important negative regulator of OPC differentiation through the Mek/Erk signaling pathway. PMID:26242484

  10. 17 CFR 22.6 - Futures Commission Merchants and derivatives clearing organizations: Naming of Cleared Swaps...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Futures Commission Merchants and derivatives clearing organizations: Naming of Cleared Swaps Customer Accounts. 22.6 Section 22.6 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION CLEARED SWAPS (Eff. 4-9-2012) §...

  11. 17 CFR 22.3 - Derivatives clearing organizations: Treatment of cleared swaps customer collateral.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... organization may invest the money, securities, or other property constituting Cleared Swaps Customer Collateral... behalf of Cleared Swaps Customers with any of the following: (i) The money, securities, or other property belonging to the derivatives clearing organization; (ii) The money, securities, or other property...

  12. Technical note: Methionine, a precursor of methane in living plants

    NASA Astrophysics Data System (ADS)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2014-11-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued, not only about their contribution to the global methane budget, but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds identified. We made use of stable isotope techniques to verify in vivo formation of methane and, in order to identify the carbon precursor, 13C-positionally labelled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labelled methionine clearly identified the sulphur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  13. Technical Note: Methionine, a precursor of methane in living plants

    NASA Astrophysics Data System (ADS)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  14. Graft-copolymer-based approach to clear, durable, and anti-smudge polyurethane coatings.

    PubMed

    Rabnawaz, Muhammad; Liu, Guojun

    2015-05-26

    Clear anti-smudge coatings with a thickness of up to tens of micrometers have been prepared through a graft-copolymer-based approach from commercial precursors. The coatings repel water, diiodomethane, hexadecane, ink, and an artificial fingerprint liquid. In addition, they can be readily applied onto different substrates using different coating methods. These coatings could find applications in protecting hand-held electronic devices from fingerprints, windows from stains, and buildings from graffiti. PMID:25919762

  15. Rapid radiative clearing of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Haworth, Thomas J.; Clarke, Cathie J.; Owen, James E.

    2016-04-01

    The lack of observed transition discs with inner gas holes of radii greater than ˜50 au implies that protoplanetary discs dispersed from the inside out must remove gas from the outer regions rapidly. We investigate the role of photoevaporation in the final clearing of gas from low mass discs with inner holes. In particular, we study the so-called `thermal sweeping' mechanism which results in rapid clearing of the disc. Thermal sweeping was originally thought to arise when the radial and vertical pressure scalelengths at the X-ray heated inner edge of the disc match. We demonstrate that this criterion is not fundamental. Rather, thermal sweeping occurs when the pressure maximum at the inner edge of the dust heated disc falls below the maximum possible pressure of X-ray heated gas (which depends on the local X-ray flux). We derive new critical peak volume and surface density estimates for rapid radiative clearing which, in general, result in rapid dispersal happening less readily than in previous estimates. This less efficient clearing of discs by X-ray driven thermal sweeping leaves open the issue of what mechanism (e.g. far-ultraviolet heating) can clear gas from the outer disc sufficiently quickly to explain the non-detection of cold gas around weak line T Tauri stars.

  16. Oral Cavity Clear Cell Odontogenic Carcinoma.

    PubMed

    Ginat, Daniel Thomas; Villaflor, Victoria; Cipriani, Nicole A

    2016-06-01

    A case of clear cell odontogenic carcinoma of the oral cavity is described in this sine qua non radiology-pathology correlation article. CT demonstrated a solid and cystic mass arising from the mandible. Histology demonstrated variably-sized nests of clear to pale eosinophilic cells with occasional central necrosis embedded in a hyalinized to fibrocellular stroma. The specimen was also positive for the characteristic rearrangement of the EWSR1 (22q12) locus in 93.5 % of interphase cells. PMID:25994920

  17. Clear air turbulence - An airborne alert system

    NASA Technical Reports Server (NTRS)

    Stearns, L. P.; Caracena, F.; Kuhn, P. M.; Kurkowski, R. L.

    1981-01-01

    An infrared radiometer system has been developed that can alert a pilot of an aircraft 2 to 9 minutes in advance of an encounter with clear air turbulence. The time between the warning and the clear air turbulence event varies with the flight altitude of the aircraft. In turbulence-free areas, the incidence of false alarms is found to be less than one in 3.4 hours of flight time compared to less than one per 10 hours of flight time in areas with turbulence.

  18. Emerging role of glial cells in the control of body weight

    PubMed Central

    García-Cáceres, Cristina; Fuente-Martín, Esther; Argente, Jesús; Chowen, Julie A.

    2012-01-01

    Glia are the most abundant cell type in the brain and are indispensible for the normal execution of neuronal actions. They protect neurons from noxious insults and modulate synaptic transmission through affectation of synaptic inputs, release of glial transmitters and uptake of neurotransmitters from the synaptic cleft. They also transport nutrients and other circulating factors into the brain thus controlling the energy sources and signals reaching neurons. Moreover, glia express receptors for metabolic hormones, such as leptin and insulin, and can be activated in response to increased weight gain and dietary challenges. However, chronic glial activation can be detrimental to neurons, with hypothalamic astrocyte activation or gliosis suggested to be involved in the perpetuation of obesity and the onset of secondary complications. It is now accepted that glia may be a very important participant in metabolic control and a possible therapeutical target. Here we briefly review this rapidly advancing field. PMID:24024117

  19. Induction of the major heat-stress protein in purified rat glial cells

    SciTech Connect

    Nishimura, R.N.; Dwyer, B.E.; Welch, W.; Cole, R.; de Vellis, J.; Liotta, K.

    1988-05-01

    Cultured purified oligodendroglia and astroglia exposed to heat stress (45 degrees C, 10 or 20 min) synthesized a 68-kDa heat-stress protein, which migrates on two-dimensional gel electrophoresis and reacts with a specific monoclonal antibody suggesting it is similar to a major 72-kDa heat-shock protein previously reported in other cell types. This protein was not detected in control glial cultures. Actinomycin D prevented synthesis of this protein demonstrating an absolute requirement for newly synthesized mRNA. The response was prolonged by increasing the period of heat stress from 10 to 20 min. In addition to the 68-kDa HSP protein, the incorporation of radioactivity into 70-, 89-, and 97-kDa proteins was also increased after heating, but in contrast to the 68 kDa protein these proteins appeared to be made in control glial cultures.

  20. An autopsy case of sudden unexpected death due to a glial cyst of the pineal gland.

    PubMed

    Na, Joo-Young; Lee, Kyung-Hwa; Kim, Hyung-Seok; Park, Jong-Tae

    2014-09-01

    Pineal cysts are usually asymptomatic; however, they may rarely cause symptoms such as chronic headache, paroxysmal headache with gaze paresis, postural syncope, loss of consciousness, and sudden death. A 30-year-old woman with no specific medical history except chronic headache was found collapsed in a public toilet per se. Postmortem examination revealed no external injuries or internal diseases except a cystic lesion of the pineal gland. Histologic examination showed an internal cyst surrounded by glial tissues and pineal parenchyma that was diagnosed as a glial cyst of the pineal gland. Although the pineal cyst cannot be confirmed as the cause of death, it was considered, as no other cause was evident. Herein, we report a pineal cyst considered as an assumed cause of death. PMID:25062343

  1. Rapid tumor growth with glial differentiation of central neurocytoma after stereotactic radiosurgery.

    PubMed

    Tanaka, Hirotomo; Sasayama, Takashi; Yamashita, Haruo; Hara, Yoshie; Hayashi, Shigeto; Yamamoto, Yusuke; Fujita, Yuichi; Okino, Takeshi; Mizowaki, Takashi; Yamaguchi, Yoji; Tanaka, Kazuhiro; Kohmura, Eiji

    2016-09-01

    Although stereotactic radiosurgery (SRS) is effective for central neurocytoma (CN), the long-term outcome of SRS remains unclear. We present a case of recurrent CN that was diagnosed 10years after surgical resection and consecutive stereotactic radiotherapy. The patient was treated with SRS for the recurrent tumor, but underwent two-staged surgery once again due to rapid tumor growth. Histological features of the recurrent tumor were consistent with the diagnosis of CN. However, an increased Ki-67 proliferation index (3.4%), aberrant angiogenesis and glial differentiation of the tumor cells were observed, which were not identified in the initial CN. In addition, vascular endothelial growth factor (VEGF) and VEGF receptor were highly expressed in the recurrent tumor cells, as well as in the vascular endothelial cells. Our case suggests that malignant transition with aberrant angiogenesis and glial differentiation may be attributable to SRS. PMID:27242062

  2. Glial Fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker

    PubMed Central

    Yang, Zhihui; Wang, Kevin K.W.

    2015-01-01

    Glial fibrillary acidic protein (GFAP) is an intermediate filament-III protein uniquely found in astrocytes in the CNS, non-myelinating Schwann cells in the PNS and enteric glial cells. GFAP mRNA expressions are regulated by several nuclear-receptor hormones, growth factors and lipopolysaccharides. GFAP is also subjected to a number of post-translational modifications while GFAP mutations result in protein deposits known as Rosenthal fibers in Alexander disease. GFAP gene activation and protein induction appear to play a critical role in astroglia cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP protein and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders. PMID:25975510

  3. Glutamate release from satellite glial cells of the murine trigeminal ganglion.

    PubMed

    Wagner, Lysann; Warwick, Rebekah A; Pannicke, Thomas; Reichenbach, Andreas; Grosche, Antje; Hanani, Menachem

    2014-08-22

    It has been proposed that glutamate serves as a mediator between neurons and satellite glial cells (SGCs) in sensory ganglia and that SGCs release glutamate. Using a novel method, we studied glutamate release from SGCs from murine trigeminal ganglia. Sensory neurons with adhering SGCs were enzymatically isolated from wild type and transgenic mice in which vesicular exocytosis was suppressed in glial cells. Extracellular glutamate was detected by microfluorimetry. After loading the cells with a photolabile Ca(2+) chelator, the intracellular Ca(2+) concentration was raised in SGCs by a UV pulse, which resulted in glutamate release. The amount of released glutamate was decreased in cells with suppressed exocytosis and after pharmacological block of hemichannels. The data demonstrate that SGCs of the trigeminal ganglion release glutamate in a Ca(2+)-dependent manner. PMID:24993296

  4. Energy metabolism in neuronal/glial induction and in iPSC models of brain disorders.

    PubMed

    Mlody, Barbara; Lorenz, Carmen; Inak, Gizem; Prigione, Alessandro

    2016-04-01

    The metabolic switch associated with the reprogramming of somatic cells to pluripotency has received increasing attention in recent years. However, the impact of mitochondrial and metabolic modulation on stem cell differentiation into neuronal/glial cells and related brain disease modeling still remains to be fully addressed. Here, we seek to focus on this aspect by first addressing brain energy metabolism and its inter-cellular metabolic compartmentalization. We then review the findings related to the mitochondrial and metabolic reconfiguration occurring upon neuronal/glial specification from pluripotent stem cells (PSCs). Finally, we provide an update of the PSC-based models of mitochondria-related brain disorders and discuss the challenges and opportunities that may exist on the road to develop a new era of brain disease modeling and therapy. PMID:26877213

  5. [State of the blood coagulation in glial tumors of the brain].

    PubMed

    Burgman, G P; Kachkov, I A; Vial'tseva, I N; Shcherbakova, G G

    1979-01-01

    The data presented may be of definite value in the prevention of hemorrhage and thrombosis in patients with malignant glial tumors. A malignant glioma may lead to increased activity of the blood coagulation system (BCS). Preoperative staining of the tumor was not attended by marked changes in the BCS and blood viscocity, though a tendency towards an increase in BCS activity according to some of the indices may sometimes be noted. Chemotherapy with nitrosourea and methotrexate was attended by thrombocytopenia but there was practically no changes in the other BCS indices. The postoperative period is usually marked by increased BCS activity according to most of the indices. Increased blood viscocity is often encountered in patients with glial cerebral tumors in the preoperative and postoperative periods, which is evidently due to the intensive dehydration therapy to which they are subjected in marked increase of intracranial pressure. PMID:223352

  6. Precursors of Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Troja, E.; Rosswog, S.; Gehrels, N.

    2010-01-01

    We carried out a systematic search of precursors on the sample of short GRBs observed by Swift. We found that approx. 8-10% of short GRBs display such early episode of emission. One burst (GRB 090510) shows two precursor events, the former approx.13 s and the latter approx. 0.5 s before the GRB. We did not find any substantial difference between the precursor and the main GRB emission, and between short GRBs with and without precursors. We discuss possible mechanisms to reproduce the observed precursor emission within the scenario of compact object mergers. The implications of our results on quantum gravity constraints are also discussed.

  7. Assembly of glial intermediate filament protein is initiated in the centriolar region.

    PubMed

    Kalnins, V I; Subrahmanyan, L; Fedoroff, S

    1985-10-21

    Assembly of glial intermediate filament protein (GFP) into intermediate filaments (IF) was first detected by immunofluorescence in the perinuclear region of astrocytes differentiating in colony cultures before the rest of the cytoplasm was labeled. Double labeling with antisera specific for centrioles indicated that this site corresponds to the centriolar region. These studies suggest that the centriolar region plays an important role in the assembly of some types of IF as well as microtubules. PMID:3899284

  8. Distribution of glial cells in the auditory brainstem: Normal development and effects of unilateral lesion

    PubMed Central

    Dinh, Minhan L.; Koppel, Scott J.; Korn, Matthew J.; Cramer, Karina S.

    2014-01-01

    Auditory brainstem networks facilitate sound source localization through binaural integration. A key component of this circuitry is the projection from the ventral cochlear nucleus (VCN) to the medial nucleus of the trapezoid body (MNTB), a relay nucleus that provides inhibition to the superior olivary complex. This strictly contralateral projection terminates in the large calyx of Held synapse. The formation of this pathway requires spatiotemporal coordination of cues that promote cell maturation, axon growth, and synaptogenesis. Here we have examined the emergence of distinct classes of glial cells, which are known to function in development and in response to injury. Immunofluorescence for several astrocyte markers revealed unique expression patterns. ALDH1L1 was expressed earliest in both nuclei, followed by S100β, during the first postnatal week. GFAP expression was seen in the second postnatal week. GFAP-positive cell bodies remained outside the boundaries of VCN and MNTB, with a limited number of labeled fibers penetrating into the margins of the nuclei. OLIG2 expression revealed the presence of oligodendrocytes in VCN and MNTB from birth until after hearing onset. In addition, IBA1-positive microglia were observed after the first postnatal week. Following hearing onset, all glial populations were found in MNTB. We then determined the distribution of glial cells following early (P2) unilateral cochlear removal, which results in formation of ectopic projections from the intact VCN to ipsilateral MNTB. We found that following perturbation, astrocytic markers showed expression near the ectopic ipsilateral calyx. Taken together, the developmental expression patterns are consistent with a role for glial cells in the maturation of the calyx of Held and suggest that these cells may have a similar role in maturation of lesion-induced connections. PMID:25158674

  9. A Hypoxia-Responsive Glial Cell–Specific Gene Therapy Vector for Targeting Retinal Neovascularization

    PubMed Central

    Biswal, Manas R.; Prentice, Howard M.; Dorey, C. Kathleen; Blanks, Janet C.

    2014-01-01

    Purpose. Müller cells, the major glial cell in the retina, play a significant role in retinal neovascularization in response to tissue hypoxia. We previously designed and tested a vector using a hypoxia-responsive domain and a glial fibrillary acidic protein (GFAP) promoter to drive green fluorescent protein (GFP) expression in Müller cells in the murine model of oxygen-induced retinopathy (OIR). This study compares the efficacy of regulated and unregulated Müller cell delivery of endostatin in preventing neovascularization in the OIR model. Methods. Endostatin cDNA was cloned into plasmids with hypoxia-regulated GFAP or unregulated GFAP promoters, and packaged into self-complementary adeno-associated virus serotype 2 vectors (scAAV2). Before placement in hyperoxia on postnatal day (P)7, mice were given intravitreal injections of regulated or unregulated scAAV2, capsid, or PBS. Five days after return to room air, on P17, neovascular and avascular areas, as well as expression of the transgene and vascular endothelial growth factor (VEGF), were compared in OIR animals treated with a vector, capsid, or PBS. Results. The hypoxia-regulated, glial-specific, vector-expressing endostatin reduced neovascularization by 93% and reduced the central vaso-obliteration area by 90%, matching the results with the unregulated GFAP-Endo vector. Retinas treated with the regulated endostatin vector expressed substantial amounts of endostatin protein, and significantly reduced VEGF protein. Endostatin production from the regulated vector was undetectable in retinas with undamaged vasculature. Conclusions. These findings suggest that the hypoxia-regulated, glial cell–specific vector expressing endostatin may be useful for treatment of neovascularization in proliferative diabetic retinopathy. PMID:25377223

  10. Time-lapse imaging reveals stereotypical patterns of Drosophila midline glial migration.

    PubMed

    Wheeler, Scott R; Pearson, Joseph C; Crews, Stephen T

    2012-01-15

    The Drosophila CNS midline glia (MG) are multifunctional cells that ensheath and provide trophic support to commissural axons, and direct embryonic development by employing a variety of signaling molecules. These glia consist of two functionally distinct populations: the anterior MG (AMG) and posterior MG (PMG). Only the AMG ensheath axon commissures, whereas the function of the non-ensheathing PMG is unknown. The Drosophila MG have proven to be an excellent system for studying glial proliferation, cell fate, apoptosis, and axon-glial interactions. However, insight into how AMG migrate and acquire their specific positions within the axon-glial scaffold has been lacking. In this paper, we use time-lapse imaging, single-cell analysis, and embryo staining to comprehensively describe the proliferation, migration, and apoptosis of the Drosophila MG. We identified 3 groups of MG that differed in the trajectories of their initial inward migration: AMG that migrate inward and to the anterior before undergoing apoptosis, AMG that migrate inward and to the posterior to ensheath commissural axons, and PMG that migrate inward and to the anterior to contact the commissural axons before undergoing apoptosis. In a second phase of their migration, the surviving AMG stereotypically migrated posteriorly to specific positions surrounding the commissures, and their final position was correlated with their location prior to migration. Most noteworthy are AMG that migrated between the commissures from a ventral to a dorsal position. Single-cell analysis indicated that individual AMG possessed wide-ranging and elaborate membrane extensions that partially ensheathed both commissures. These results provide a strong foundation for future genetic experiments to identify mutants affecting MG development, particularly in guidance cues that may direct migration. Drosophila MG are homologous in structure and function to the glial-like cells that populate the vertebrate CNS floorplate, and study

  11. Chloride-dependent transport of NH4+ into bee retinal glial cells.

    PubMed

    Marcaggi, P; Thwaites, D T; Deitmer, J W; Coles, J A

    1999-01-01

    Mammalian astrocytes convert glutamate to glutamine and bee retinal glial cells convert pyruvate to alanine. To maintain such amination reactions these glial cells may take up NH4+/NH3. We have studied the entry of NH4+/NH3 into bundles of glial cells isolated from bee retina by using the fluorescent dye BCECF to measure pH. Ammonium caused intracellular pH to decrease by a saturable process: the rate of change of pH was maximal for an ammonium concentration of about 5 mM. This acidifying response to ammonium was abolished by the loop diuretic bumetanide (100 microM) and by removal of extracellular Cl-. These results strongly suggest that ammonium enters the cell by contransport of NH4+ with Cl-. Removal of extracellular Na+ did not abolish the NH(4+)-induced acidification. The NH(4+)-induced pH change was unaffected when nearly all K+ conductance was blocked with 5 mM Ba2+ showing that NH4+ did not enter through Ba(2+)-sensitive ion channels. Application of 2 mM NH4+ led to a large increase in total intracellular proton concentration estimated to exceed 13.5 mEq/L. As the cell membrane appeared to be permeable to NH3, we suggest that when NH4+ entered the cells, NH3 left, so that protons were shuttled into the cell. This shuttle, which was strongly dependent on internal and external pH, was quantitatively modelled. In retinal slices, 2 mM NH4+ alkalinized the extracellular space: this alkalinization was reduced in the absence of bath Cl-. We conclude that NH4+ enters the glial cells in bee retina on a cotransporter with functional similarities to the NH4+(K+)-Cl- cotransporter described in kidney cells. PMID:9987021

  12. Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung

    PubMed Central

    Suarez-Mier, Gabriela B.

    2015-01-01

    Autonomic nerves regulate important functions in visceral organs, including the lung. The postganglionic portion of these nerves is ensheathed by glial cells known as non-myelinating Schwann cells. In the brain, glia play important functional roles in neurotransmission, neuroinflammation, and maintenance of the blood brain barrier. Similarly, enteric glia are now known to have analogous roles in gastrointestinal neurotransmission, inflammatory response, and barrier formation. In contrast to this, very little is known about the function of glia in other visceral organs. Like the gut, the lung forms a barrier between airborne pathogens and the bloodstream, and autonomic lung innervation is known to affect pulmonary inflammation and lung function. Lung glia are described as non-myelinating Schwann cells but their function is not known, and indeed no transgenic tools have been validated to study them in vivo. The primary goal of this research was, therefore, to investigate the relationship between non-myelinating Schwann cells and pulmonary nerves in the airways and vasculature and to validate existing transgenic mouse tools that would be useful for studying their function. We focused on the glial fibrillary acidic protein promoter, which is a cognate marker of astrocytes that is expressed by enteric glia and non-myelinating Schwann cells. We describe the morphology of non-myelinating Schwann cells in the lung and verify that they express glial fibrillary acidic protein and S100, a classic glial marker. Furthermore, we characterize the relationship of non-myelinating Schwann cells to pulmonary nerves. Finally, we report tools for studying their function, including a commercially available transgenic mouse line. PMID:26442852

  13. Time-lapse Imaging Reveals Stereotypical Patterns of Drosophila Midline Glial Migration

    PubMed Central

    Wheeler, Scott R.; Pearson, Joseph C.; Crews, Stephen T.

    2011-01-01

    The Drosophila CNS midline glia (MG) are multifunctional cells that ensheath and provide trophic support to commissural axons, and direct embryonic development by employing a variety of signaling molecules. These glia consist of two functionally distinct populations: the anterior MG (AMG) and posterior MG (PMG). Only the AMG ensheath axon commissures, whereas the function of the non-ensheathing PMG is unknown. The Drosophila MG have proven to be an excellent system for studying glial proliferation, cell fate, apoptosis, and axon-glial interactions. However, insight into how AMG migrate and acquire their specific positions within the axon-glial scaffold has been lacking. In this paper, we use time-lapse imaging, single-cell analysis, and embryo staining to comprehensively describe the proliferation, migration, and apoptosis of the Drosophila MG. We identified 3 groups of MG that differed in the trajectories of their initial inward migration: AMG that migrate inward and to the anterior before undergoing apoptosis, AMG that migrate inward and to the posterior to ensheath commissural axons, and PMG that migrate inward and to the anterior to contact the commissural axons before undergoing apoptosis. In a second phase of their migration, the surviving AMG stereotypically migrated posteriorly to specific positions surrounding the commissures, and their final position was correlated with their location prior to migration. Most noteworthy are AMG that migrated between the commissures from a ventral to a dorsal position. Single-cell analysis indicated that individual AMG possessed wide-ranging and elaborate membrane extensions that partially ensheathed both commissures. These results provide a strong foundation for future genetic experiments to identify mutants affecting MG development, particularly in guidance cues that may direct migration. Drosophila MG are homologous in structure and function to the glial-like cells that populate the vertebrate CNS floorplate, and study

  14. Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish.

    PubMed

    Cano-Nicolau, Joel; Garoche, Clémentine; Hinfray, Nathalie; Pellegrini, Elisabeth; Boujrad, Noureddine; Pakdel, Farzad; Kah, Olivier; Brion, François

    2016-08-15

    The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC50 ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation. PMID:27245768

  15. Polymer precursors for ceramic composites

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1986-01-01

    The fiber composite approach to reinforced ceramics provides the possibility of achieving ceramics with high fracture toughness relative to monolithics. Fabrication of ceramic composites, however, demands low processing temperatures to avoid fiber degradation. Formation of complex shapes further requires small diameter fibers as well as techniques for infiltrating the matrix between fibers. Polymers offer low temperature processability, control of rheology not available with ceramic powders, and should serve as precursors to matrix fibers. In recent years, a number of polysilanes and polysilezanes were investigated as potential presursors. A review of candidate polymers is presented, including recent studies of silsesquioxanes.

  16. Immunocytochemical localization of glial fibrillary acidic protein (GFAP) in the area postrema of the cat - Light and electron microscopic study

    NASA Technical Reports Server (NTRS)

    Damelio, F. E.; Gibbs, M. A.; Mehler, W. R.; Eng, L. F.

    1985-01-01

    Glial fibrillary acidic protein (GFAP) was demonstrated in the cytoplasm and processes of ependymal cells and astroglial components of the area postrema of the cat. These observations differ from the findings in the ependyma of the ventricular cavities which are consistently negative for the protein. Since some studies have suggested sensory functions of the glial cells in this emetic chemoreceptor trigger zone, a careful consideration of morphological and biochemical attributes of these cells seems appropriate.

  17. The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion

    PubMed Central

    Mashanov, Vladimir S; Zueva, Olga R; Heinzeller, Thomas; Aschauer, Beate; Naumann, Wilfried W; Grondona, Jesus M; Cifuentes, Manuel; Garcia-Arraras, Jose E

    2009-01-01

    Background Echinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of the central nervous system. The present study employs two polyclonal antisera raised against bovine Reissner's substance (RS), a secretory product produced by glial cells of the subcomissural organ, to study RS-like immunoreactivity in the central nervous system of sea cucumbers. Results In the ectoneural division of the nervous system, both antisera recognize the content of secretory vacuoles in the apical cytoplasm of the radial glia-like cells of the neuroepithelium and in the flattened glial cells of the non-neural epineural roof epithelium. The secreted immunopositive material seems to form a thin layer covering the cell apices. There is no accumulation of the immunoreactive material on the apical surface of the hyponeural neuroepithelium or the hyponeural roof epithelium. Besides labelling the supporting cells and flattened glial cells of the epineural roof epithelium, both anti-RS antisera reveal a previously unknown putative glial cell type within the neural parenchyma of the holothurian nervous system. Conclusion Our results show that: a) the glial cells of the holothurian tubular nervous system produce a material similar to Reissner's substance known to be synthesized by secretory glial cells in all chordates studied so far; b) the nervous system of sea cucumbers shows a previously unrealized complexity of glial organization. Our findings also provide significant clues for interpretation of the evolution of the nervous system in the Deuterostomia. It is suggested that echinoderms and chordates might have inherited the RS-producing radial glial cell type from the central nervous system of their common ancestor, i.e., the last common ancestor of all the

  18. Design and Screening of a Glial Cell-Specific, Cell Penetrating Peptide for Therapeutic Applications in Multiple Sclerosis

    PubMed Central

    Heffernan, Corey; Sumer, Huseyin; Guillemin, Gilles J.; Manuelpillai, Ursula; Verma, Paul J.

    2012-01-01

    Multiple Sclerosis (MS) is an autoimmune, neurodegenerative disease of the central nervous system (CNS) characterized by demyelination through glial cell loss. Current and proposed therapeutic strategies to arrest demyelination and/or promote further remyelination include: (i) modulation of the host immune system; and/or (ii) transplantation of myelinating/stem or progenitor cells to the circulation or sites of injury. However, significant drawbacks are inherent with both approaches. Cell penetrating peptides (CPP) are short amino acid sequences with an intrinsic ability to translocate across plasma membranes, and theoretically represent an attractive vector for delivery of therapeutic peptides or nanoparticles to glia to promote cell survival or remyelination. The CPPs described to date are commonly non-selective in the cell types they transduce, limiting their therapeutic application in vivo. Here, we describe a theoretical framework for design of a novel CPP sequence that selectively transduces human glial cells (excluding non-glial cell types), and conduct preliminary screens of purified, recombinant CPPs with immature and matured human oligodendrocytes and astrocytes, and two non-glial cell types. A candidate peptide, termed TD2.2, consistently transduced glial cells, was significantly more effective at transducing immature oligodendrocytes than matured progeny, and was virtually incapable of transducing two non-glial cell types: (i) human neural cells and (ii) human dermal fibroblasts. Time-lapse confocal microscopy confirms trafficking of TD2.2 (fused to EGFP) to mature oligodendrocytes 3–6 hours after protein application in vitro. We propose selectivity of TD2.2 for glial cells represents a new therapeutic strategy for the treatment of glial-related disease, such as MS. PMID:23049807

  19. Suprasellar Clear Cell Meningioma in an Infant

    PubMed Central

    Anunobi, Charles C.; Bankole, Olufemi; Ikeri, Nzechukwu Z.; Adeleke, Nurudeen A.

    2016-01-01

    Clear cell meningiomas are an uncommon subtype of meningioma rarely seen in infancy. We report a case of clear cell meningioma in an 8-month-old male infant. He presented at the Lagos University Teaching Hospital, Lagos, Nigeria, in 2015 with persistent vomiting, poor feeding and failure to thrive over a four month period. Generalised hypertonia and hyperreflexia were noted on examination. Computed tomography of the brain revealed a huge largely isodense suprasellar mass with a hypodense core. The tumour, which measured 6 × 5 × 4 cm, enhanced non-uniformly with contrast injection and extended to occlude the third ventricle. The patient underwent a bifrontal craniotomy with subtotal tumour excision. Six hours postoperatively, he went into cardiac arrest and could not be resuscitated. A histological diagnosis of clear cell meningioma was made as the tumour cells were immunoreactive to epithelial membrane antigen, S100 protein and vimentin. This case of clear cell meningioma was unusual due to its early occurrence and supratentorial location. PMID:27606120

  20. Writing: Clearing the Mind for Action.

    ERIC Educational Resources Information Center

    Neff, Bonita Dostal

    Many communication majors expect to do little written communication, since skill in oral communication is more developed if not preferred. Before a student writes or becomes engaged in the rational and logical process of evaluating writing, he or she is in the stage of clearing the mind for action. A non-rationalistic approach to writing seeks to…

  1. Suprasellar Clear Cell Meningioma in an Infant.

    PubMed

    Anunobi, Charles C; Bankole, Olufemi; Ikeri, Nzechukwu Z; Adeleke, Nurudeen A

    2016-08-01

    Clear cell meningiomas are an uncommon subtype of meningioma rarely seen in infancy. We report a case of clear cell meningioma in an 8-month-old male infant. He presented at the Lagos University Teaching Hospital, Lagos, Nigeria, in 2015 with persistent vomiting, poor feeding and failure to thrive over a four month period. Generalised hypertonia and hyperreflexia were noted on examination. Computed tomography of the brain revealed a huge largely isodense suprasellar mass with a hypodense core. The tumour, which measured 6 × 5 × 4 cm, enhanced non-uniformly with contrast injection and extended to occlude the third ventricle. The patient underwent a bifrontal craniotomy with subtotal tumour excision. Six hours postoperatively, he went into cardiac arrest and could not be resuscitated. A histological diagnosis of clear cell meningioma was made as the tumour cells were immunoreactive to epithelial membrane antigen, S100 protein and vimentin. This case of clear cell meningioma was unusual due to its early occurrence and supratentorial location. PMID:27606120

  2. Team Planning to CLEAR Up Problems

    ERIC Educational Resources Information Center

    Koehler, Nancy

    2006-01-01

    Professionals and parents need effective systems of teamwork for planning restorative outcomes with troubled children and youth. This article taps the resilient problem-solving process C*L*E*A*R, which is drawn from the Response Ability Pathways (RAP) curriculum. Participants examine the timeline of Challenges, Logic, Emotions, Actions, and…

  3. 7 CFR 1773.42 - Clearing accounts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Clearing accounts. 1773.42 Section 1773.42 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) POLICY ON AUDITS OF RUS BORROWERS RUS Required Audit Procedures and...

  4. Lake Mead--clear and vital

    USGS Publications Warehouse

    Wessells, Stephen M.; Rosen, Michael

    2013-01-01

    “Lake Mead – Clear and Vital” is a 13 minute documentary relating the crucial role of science in maintaining high water quality in Lake Mead. The program was produced coincident with release of the Lakes Mead and Mohave Circular a USGS publication covering past and on-going research in the lakes and tributaries of the Lake Mead National Recreation Area.

  5. Still No Clear Answer on Graduation Prayer.

    ERIC Educational Resources Information Center

    Sendor, Benjamin

    1996-01-01

    Describes the Supreme Court graduation-prayer decision in "Lee v. Weisman" (1992) and implications of the "Jones v. Clear Creek Independent School District" case, which the Court decided not to review in 1993. Discusses the New Jersey graduation-prayer experiment and ruling of third District Circuit Court Judge Theodore A. McKee, whose rationale…

  6. Clear Communication in the Digital Age

    ERIC Educational Resources Information Center

    Manchester, Bette

    2009-01-01

    One of the essential factors of successful integration of technology in classrooms is the role and relationship of the technology coordinator in supporting integration efforts. The vision for the use of technology in each school and district and the leadership role of the tech coordinator must be clear and understood by all. This article presents…

  7. Plant Histology: Clearing and the Optical Section.

    ERIC Educational Resources Information Center

    Freeman, H. E.

    1985-01-01

    Clearing is a simple and rapid technique in which 75 percent lactic acid is used to remove pigments and cytoplasmic contents of fresh leaves, enabling microscopic view of various internal leaf layers. Procedures for using the technique (which helps students gain a more thorough understanding of plant anatomy) are given. (DH)

  8. Differential effects on glial activation by a direct versus an indirect thrombin inhibitor.

    PubMed

    Marangoni, M Natalia; Braun, David; Situ, Annie; Moyano, Ana L; Kalinin, Sergey; Polak, Paul; Givogri, Maria I; Feinstein, Douglas L

    2016-08-15

    Thrombin is a potent regulator of brain function in health and disease, modulating glial activation and brain inflammation. Thrombin inhibitors, several of which are in clinical use as anti-coagulants, can reduce thrombin-dependent neuroinflammation in pathological conditions. However, their effects in a healthy CNS are largely unknown. In adult healthy mice, we compared the effects of treatment by the direct thrombin inhibitor dabigatran etexilate (DE), to those of warfarin, which acts by preventing vitamin K recycling essential for coagulation. After 4weeks, warfarin increased both astrocyte GFAP and microglia Iba-1 staining throughout the CNS; whereas DE reduced expression of both markers. Warfarin, but not DE, reduced sulfatide levels; and warfarin showed longer lasting changes in cerebellar gene expression. DE also reduced glial activation in a mouse model of Alzheimer's disease, although no changes in amyloid plaque burden were observed. These results suggest that treatment with direct thrombin inhibitors may be preferable to those agents which reduce vitamin K levels and have the potential to increase glial activation. PMID:27397090

  9. APOE genotype alters glial activation and loss of synaptic markers in mice

    PubMed Central

    Zhu, Yuangui; Nwabuisi-Heath, Evelyn; Dumanis, Sonya B.; Tai, Leon; Yu, Chunjiang; Rebeck, G. William; Jo LaDu, Mary

    2011-01-01

    The E4 allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and affects clinical outcomes of chronic and acute brain damages. The mechanisms by which apoE affect diverse diseases and disorders may involve modulation of the glial response to various types of brain damages. We examined glial activation in a mouse model where each of the human APOE alleles are expressed under the endogenous mouse APOE promoter, as well as in APOE knock-out mice. APOE4 mice displayed increased glial activation in response to intracerebroventricular lipopolysaccharide (LPS) compared to APOE2 and APOE3 mice by several measures. There were higher levels of microglia/macrophage, astrocytes, and invading T-cells after LPS injection in APOE4 mice. APOE4 mice also displayed greater and more prolonged increases of cytokines (IL-1β, IL-6, TNF-α) than APOE2 and APOE3 mice. We found that APOE4 mice had greater synaptic protein loss after LPS injection, as measured by three different markers: PSD-95, Drebin, and synaptophysin. In all assays, APOE knock-out mice responded similar to APOE4 mice, suggesting that the apoE4 protein may lack anti-inflammatory characteristics of apoE2 and apoE3. Together, these findings demonstrate that APOE4 predisposes to inflammation, which could contribute to its association with Alzheimer's disease and other disorders. PMID:22228589

  10. Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity

    PubMed Central

    Battefeld, Arne; Klooster, Jan; Kole, Maarten H. P.

    2016-01-01

    Satellite oligodendrocytes (s-OLs) are closely apposed to the soma of neocortical layer 5 pyramidal neurons but their properties and functional roles remain unresolved. Here we show that s-OLs form compact myelin and action potentials of the host neuron evoke precisely timed Ba2+-sensitive K+ inward rectifying (Kir) currents in the s-OL. Unexpectedly, the glial K+ inward current does not require oligodendrocytic Kir4.1. Action potential-evoked Kir currents are in part mediated by gap–junction coupling with neighbouring OLs and astrocytes that form a syncytium around the pyramidal cell body. Computational modelling predicts that glial Kir constrains the perisomatic [K+]o increase most importantly during high-frequency action potentials. Consistent with these predictions neurons with s-OLs showed a reduced probability for action potential burst firing during [K+]o elevations. These data suggest that s-OLs are integrated into a glial syncytium for the millisecond rapid K+ uptake limiting activity-dependent [K+]o increase in the perisomatic neuron domain. PMID:27161034

  11. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    NASA Astrophysics Data System (ADS)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  12. Regulation of neuronal excitability by release of proteins from glial cells

    PubMed Central

    Igelhorst, Birte A.; Niederkinkhaus, Vanessa; Karus, Claudia; Lange, Maren D.; Dietzel, Irmgard D.

    2015-01-01

    Effects of glial cells on electrical isolation and shaping of synaptic transmission between neurons have been extensively studied. Here we present evidence that the release of proteins from astrocytes as well as microglia may regulate voltage-activated Na+ currents in neurons, thereby increasing excitability and speed of transmission in neurons kept at distance from each other by specialized glial cells. As a first example, we show that basic fibroblast growth factor and neurotrophin-3, which are released from astrocytes by exposure to thyroid hormone, influence each other to enhance Na+ current density in cultured hippocampal neurons. As a second example, we show that the presence of microglia in hippocampal cultures can upregulate Na+ current density. The effect can be boosted by lipopolysaccharides, bacterial membrane-derived stimulators of microglial activation. Comparable effects are induced by the exposure of neuron-enriched hippocampal cultures to tumour necrosis factor-α, which is released from stimulated microglia. Taken together, our findings suggest that release of proteins from various types of glial cells can alter neuronal excitability over a time course of several days. This explains changes in neuronal excitability occurring in states of thyroid hormone imbalance and possibly also in seizures triggered by infectious diseases. PMID:26009773

  13. DEVELOMENT AND NEUROGENIC POTENTIAL OF MÜLLER GLIAL CELLS IN THE VERTEBRATE RETINA

    PubMed Central

    Jadhav, Ashutosh P.; Roesch, Karin; Cepko, Constance L.

    2011-01-01

    Considerable research on normal and diseased states within the retina has focused on neurons. Recent research on glia throughout the central nervous system, including within the retina where Müller glia are the main type of glia, has provided a more in depth view of glial functions in health and disease. Glial cells have been recognized as being vital for the maintenance of a healthy tissue environment, where they actively participate in neuronal activity. More recently, Müller glia have been recognized as being very similar to retinal progenitor cells, particularly when compared at the molecular level using comprehensive expression profiling techniques. The molecular similarities, as well as the developmental events that occur at the end of the genesis period of retinal cells, have led us to propose that Müller glia are a form of late stage retinal progenitor cells. These late stage progenitor cells acquire some specialized glial functions, but do not irreversibly leave the progenitor state. Indeed, Müller glia appear to be able to behave as a progenitor in that they have been shown to proliferate and produce neurons in several instances when an acute injury has been applied to the retina. Enhancement of this response is thus an exciting strategy for retinal repair. PMID:19465144

  14. Satellite glial cells in dorsal root ganglia are activated in streptozotocin-treated rodents

    PubMed Central

    Hanani, Menachem; Blum, Erez; Liu, Shuangmei; Peng, Lichao; Liang, Shangdong

    2014-01-01

    Neuropathic pain is a very common complication in diabetes mellitus (DM), and treatment for it is limited. As DM is becoming a global epidemic it is important to understand and treat this problem. The mechanisms of diabetic neuropathic pain are largely obscure. Recent studies have shown that glial cells are important for a variety of neuropathic pain types, and we investigated what are the changes that satellite glial cells (SGCs) in dorsal root ganglia undergo in a DM type 1 model, induced by streptozotocin (STZ) in mice and rats. We carried out immunohistochemical studies to learn about changes in the activation marker glial fibrillary acidic protein (GFAP) in SGCs. We found that after STZ-treatment the number of neurons surrounded with GFAP-positive SGCs in dorsal root ganglia increased 4-fold in mice and 5-fold in rats. Western blotting for GFAP, which was done only on rats because of the larger size of the ganglia, showed an increase of about 2-fold in STZ-treated rats, supporting the immunohistochemical results. These results indicate for the first time that SGCs are activated in rodent models of DM1. As SGC activation appears to contribute to chronic pain, these results suggest that SGCs may participate in the generation and maintenance of diabetic neuropathic pain, and can serve as a potential therapeutic target. PMID:25312986

  15. Glial cell morphological and density changes through the lifespan of rhesus macaques.

    PubMed

    Robillard, Katelyn N; Lee, Kim M; Chiu, Kevin B; MacLean, Andrew G

    2016-07-01

    How aging impacts the central nervous system (CNS) is an area of intense interest. Glial morphology is known to affect neuronal and immune function as well as metabolic and homeostatic balance. Activation of glia, both astrocytes and microglia, occurs at several stages during development and aging. The present study analyzed changes in glial morphology and density through the entire lifespan of rhesus macaques, which are physiologically and anatomically similar to humans. We observed apparent increases in gray matter astrocytic process length and process complexity as rhesus macaques matured from juveniles through adulthood. These changes were not attributed to cell enlargement because they were not accompanied by proportional changes in soma or process volume. There was a decrease in white matter microglial process length as rhesus macaques aged. Aging was shown to have a significant effect on gray matter microglial density, with a significant increase in aged macaques compared with adults. Overall, we observed significant changes in glial morphology as macaques age indicative of astrocytic activation with subsequent increase in microglial density in aged macaques. PMID:26851132

  16. Altered membrane physiology in Müller glial cells after transient ischemia of the rat retina.

    PubMed

    Pannicke, Thomas; Uckermann, Ortrud; Iandiev, Ianors; Biedermann, Bernd; Wiedemann, Peter; Perlman, Ido; Reichenbach, Andreas; Bringmann, Andreas

    2005-04-01

    Inwardly rectifying K+ (Kir) channels have been implicated in the mediation of retinal K+ homeostasis by Muller glial cells. To assess possible involvement of altered glial K+ channel expression in ischemia-reperfusion injury, transient retinal ischemia was induced in rat eyes. Acutely isolated Muller cells from postischemic retinae displayed a fast downregulation of their Kir currents, which began within 1 day and reached a maximum at 3 days of reperfusion, with a peak decrease to 20% as compared with control. This strong decrease of Kir currents was accompanied by an increase of the incidence of cells which displayed depolarization-evoked fast transient (A-type) K+ currents. While no cell from untreated control rats expressed A-type K+ currents, all cells investigated from 3- and 7-day postischemic retinae displayed such currents. An increased incidence of cells displaying fast transient Na+ currents was observed at 7 days after ischemia. These results suggest a role of altered glial Kir channel expression in postischemic neuronal degeneration via disturbance of retinal K+ siphoning. PMID:15593100

  17. The Comparative Utility of Viromer RED and Lipofectamine for Transient Gene Introduction into Glial Cells

    PubMed Central

    Rao, Sudheendra; Morales, Alejo A.; Pearse, Damien D.

    2015-01-01

    The introduction of genes into glial cells for mechanistic studies of cell function and as a therapeutic for gene delivery is an expanding field. Though viral vector based systems do exhibit good delivery efficiency and long-term production of the transgene, the need for transient gene expression, broad and rapid gene setup methodologies, and safety concerns regarding in vivo application still incentivize research into the use of nonviral gene delivery methods. In the current study, aviral gene delivery vectors based upon cationic lipid (Lipofectamine 3000) lipoplex or polyethylenimine (Viromer RED) polyplex technologies were examined in cell lines and primary glial cells for their transfection efficiencies, gene expression levels, and toxicity. The transfection efficiencies of polyplex and lipoplex agents were found to be comparable in a limited, yet similar, transfection setting, with or without serum across a number of cell types. However, differential effects on cell-specific transgene expression and reduced viability with cargo loaded polyplex were observed. Overall, our data suggests that polyplex technology could perform comparably to the market dominant lipoplex technology in transfecting various cells lines including glial cells but also stress a need for further refinement of polyplex reagents to minimize their effects on cell viability. PMID:26539498

  18. Numerical modelling and in vivo analysis of fluorescent and laser light backscattered from glial brain tumors

    NASA Astrophysics Data System (ADS)

    Savelieva, Tatiana A.; Kalyagina, Nina A.; Kholodtsova, Maria N.; Loschenov, Victor B.; Goryainov, Sergey A.; Potapov, Aleksander A.

    2012-03-01

    Brain glial tumors have peculiar features of the perifocal region extension, characterized by its indistinct area, which complicates determination of the borders for tissue resection. In the present study filter-reduced back-scattered laser light signals, compared to the data from mathematical modeling, were used for description of the brain white matter. The simulations of the scattered light distributions were performed in a Monte Carlo program using scattering and absorption parameters of the different grades of the brain glial tumors. The parameters were obtained by the Mie calculations for three main types of scatterers: myelinated axon fibers, cell nuclei and mitochondria. It was revealed that diffuse-reflected light, measured at the perifocal areas of the glial brain tumors, shows a significant difference relative to the signal, measured at the normal tissue, which signifies the possibility to provide diagnostically useful information on the tissue state, and to determine the borders of the tumor, thus to reduce the recurrence appearance. Differences in the values of ratios of diffuse reflectance from active growth parts of tumors and normal white matter can be useful for determination of the degree of tumor progress during the spectroscopic analysis.

  19. Enteric Glial Cells: A New Frontier in Neurogastroenterology and Clinical Target for Inflammatory Bowel Diseases

    PubMed Central

    Ochoa-Cortes, Fernando; Turco, Fabio; Linan-Rico, Andromeda; Soghomonyan, Suren; Whitaker, Emmett; Wehner, Sven; Cuomo, Rosario

    2015-01-01

    Abstract: The word “glia” is derived from the Greek word “γλοια,” glue of the enteric nervous system, and for many years, enteric glial cells (EGCs) were believed to provide mainly structural support. However, EGCs as astrocytes in the central nervous system may serve a much more vital and active role in the enteric nervous system, and in homeostatic regulation of gastrointestinal functions. The emphasis of this review will be on emerging concepts supported by basic, translational, and/or clinical studies, implicating EGCs in neuron-to-glial (neuroglial) communication, motility, interactions with other cells in the gut microenvironment, infection, and inflammatory bowel diseases. The concept of the “reactive glial phenotype” is explored as it relates to inflammatory bowel diseases, bacterial and viral infections, postoperative ileus, functional gastrointestinal disorders, and motility disorders. The main theme of this review is that EGCs are emerging as a new frontier in neurogastroenterology and a potential therapeutic target. New technological innovations in neuroimaging techniques are facilitating progress in the field, and an update is provided on exciting new translational studies. Gaps in our knowledge are discussed for further research. Restoring normal EGC function may prove to be an efficient strategy to dampen inflammation. Probiotics, palmitoylethanolamide (peroxisome proliferator-activated receptor–α), interleukin-1 antagonists (anakinra), and interventions acting on nitric oxide, receptor for advanced glycation end products, S100B, or purinergic signaling pathways are relevant clinical targets on EGCs with therapeutic potential. PMID:26689598

  20. In vitro model of glial scarring around neuroelectrodes chronically implanted in the CNS.

    PubMed

    Polikov, Vadim S; Block, Michelle L; Fellous, Jean-Marc; Hong, Jau-Shyong; Reichert, W Monty

    2006-11-01

    A novel in vitro model of glial scarring was developed by adapting a primary cell-based system previously used for studying neuroinflammatory processes in neurodegenerative disease. Midbrains from embryonic day 14 Fischer 344 rats were mechanically dissociated and grown on poly-D-lysine coated 24 well plates to a confluent layer of neurons, astrocytes, and microglia. The culture was injured with either a mechanical scrape or foreign-body placement (segments of 50 microm diameter stainless steel microwire), fixed at time points from 6 h to 10 days, and assessed by immunocytochemistry. Microglia invaded the scraped wound area at early time points and hypertrophied activated astrocytes repopulated the wound after 7 days. The chronic presence of microwire resulted in a glial scar forming at 10 days, with microglia forming an inner layer of cells coating the microwire, while astrocytes surrounded the microglial core with a network of cellular processes containing upregulated GFAP. Vimentin expressing cells and processes were present in the scrape at early times and within the astrocyte processes forming the glial scar. Neurons within the culture did not repopulate the scrape wound and did not respond to the microwire, although they were determined to be electrically active through patch clamp recording. The time course and relative positions of the glia in response to the different injury paradigms correlated well with stereotypical in vivo responses and warrant further work in the development of a functional in vitro test bed. PMID:16842846

  1. Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity.

    PubMed

    Battefeld, Arne; Klooster, Jan; Kole, Maarten H P

    2016-01-01

    Satellite oligodendrocytes (s-OLs) are closely apposed to the soma of neocortical layer 5 pyramidal neurons but their properties and functional roles remain unresolved. Here we show that s-OLs form compact myelin and action potentials of the host neuron evoke precisely timed Ba(2+)-sensitive K(+) inward rectifying (Kir) currents in the s-OL. Unexpectedly, the glial K(+) inward current does not require oligodendrocytic Kir4.1. Action potential-evoked Kir currents are in part mediated by gap-junction coupling with neighbouring OLs and astrocytes that form a syncytium around the pyramidal cell body. Computational modelling predicts that glial Kir constrains the perisomatic [K(+)]o increase most importantly during high-frequency action potentials. Consistent with these predictions neurons with s-OLs showed a reduced probability for action potential burst firing during [K(+)]o elevations. These data suggest that s-OLs are integrated into a glial syncytium for the millisecond rapid K(+) uptake limiting activity-dependent [K(+)]o increase in the perisomatic neuron domain. PMID:27161034

  2. Tracheal development in the Drosophila brain is constrained by glial cells

    PubMed Central

    Pereanu, Wayne; Spindler, Shana; Cruz, Luis; Hartenstein, Volker

    2007-01-01

    The Drosophila brain is tracheated by the cerebral trachea, a branch of the first segmental trachea of the embryo. During larval stages the cerebral trachea splits into several main (primary) branches that grow around the neuropile, forming a perineuropilar tracheal plexus (PNP) at the neuropile surface. Five primary tracheal branches whose spatial relationship to brain compartments is relatively invariant can be distinguished, although the exact trajectories and branching pattern of the brain tracheae is surprisingly variable. Immuno-histochemical and electron microscopic demonstrate that all brain tracheae grow in direct contact with the glial cell processes that surround the neuropile. To investigate the effect of glia on tracheal development, embryos and larvae lacking glial cells as a result of a genetic mutation or a directed ablation were analyzed. In these animals, the tracheal branching pattern was highly abnormal. In particular, the number of secondary branches entering the central neuropile was increased. Wild type larvae possess only two central tracheae, typically associated with the mushroom body and the antenno-cerebral tract. In larvae lacking glial cells, six to ten tracheal branches penetrate the neuropile in a variable pattern. This finding indicates that glia-derived signals constrained tracheal growth in the Drosophila brain and restrict the number of branches entering the neuropile. PMID:17046740

  3. Glial abnormalities in substance use disorders and depression: Does shared glutamatergic dysfunction contribute to comorbidity?

    PubMed Central

    Niciu, Mark J.; Henter, Ioline D.; Sanacora, Gerard; Zarate, Carlos A.

    2014-01-01

    Objectives Preclinical and clinical research in neuropsychiatric disorders, particularly mood and substance use disorders, have historically focused on neurons; however, glial cells – astrocytes, microglia, and oligodendrocytes – also play key roles in these disorders. Methods Peer-reviewed PubMed/Medline articles published through December 2012 were identified using the following keyword combinations: glia, astrocytes, oligodendrocytes/glia, microglia, substance use, substance abuse, substance dependence, alcohol, opiate, opioid, cocaine, psychostimulants, stimulants, and glutamate. Results Depressive and substance use disorders are highly comorbid, suggesting a common or overlapping aetiology and pathophysiology. Reduced astrocyte cell number occurs in both disorders. Altered glutamate neurotransmission and metabolism – specifically changes in the levels/activity of transporters, receptors, and synaptic proteins potentially related to synaptic physiology – appear to be salient features of both disorders. Glial cell pathology may also underlie the pathophysiology of both disorders via impaired astrocytic production of neurotrophic factors. Microglial/neuroinflammatory pathology is also evident in both depressive and substance use disorders. Finally, oligodendrocyte impairment decreases myelination and impairs expression of myelin-related genes in both substance use and depressive disorders. Conclusions Glial-mediated glutamatergic dysfunction is a common neuropathological pathway in both substance use and depression. Therefore, glutamatergic neuromodulation is a rational drug target in this comorbidity. PMID:24024876

  4. Myelination in vitro of rodent dorsal root ganglia by glial progenitor cells.

    PubMed

    Zajicek, J; Compston, A

    1994-12-01

    Oligodendrocytes synthesize myelin in the mammalian central nervous system; they develop from glial progenitors which, at least in vitro, are bipotential and also differentiate into astrocytes. Maturation of these O-2A progenitors is known to be influenced by growth factors and by extracellular matrix molecules. We investigated the effect of neurons on glial development by co-culturing highly purified rodent embryonic dorsal root ganglia with neonatal O-2A progenitors. Neurons produce signals, including platelet-derived growth factor BB and basic fibroblast growth factor, which stimulate progenitor cells to synthesize DNA; axonal contact is associated with down-regulation in the expression of complex ganglioside surface molecules on O-2A progenitors; with maturation, many of these cells develop into oligodendrocytes allowing the normal process of myelination to take place, but neurons also promote the differentiation of type 2 astrocytes. This orchestration of proliferation and differentiation in O-2A progenitor cells favours the development of glial-neuronal interactions needed for saltatory conduction of the nerve impulse. PMID:7820570

  5. Glial cells, but not neurons, exhibit a controllable response to a localized inflammatory microenvironment in vitro

    PubMed Central

    Sommakia, Salah; Rickus, Jenna L.; Otto, Kevin J.

    2014-01-01

    The ability to design long-lasting intracortical implants hinges on understanding the factors leading to the loss of neuronal density and the formation of the glial scar. In this study, we modify a common in vitro mixed cortical culture model using lipopolysaccharide (LPS) to examine the responses of microglia, astrocytes, and neurons to microwire segments. We also use dip-coated polyethylene glycol (PEG), which we have previously shown can modulate impedance changes to neural microelectrodes, to control the cellular responses. We find that microglia, as expected, exhibit an elevated response to LPS-coated microwire for distances of up to 150 μm, and that this elevated response can be mitigated by co-depositing PEG with LPS. Astrocytes exhibit a more complex, distance-dependent response, whereas neurons do not appear to be affected by the type or magnitude of glial response within this in vitro model. The discrepancy between our in vitro responses and typically observed in vivo responses suggest the importance of using a systems approach to understand the responses of the various brain cell types in a chronic in vivo setting, as well as the necessity of studying the roles of cell types not native to the brain. Our results further indicate that the loss of neuronal density observed in vivo is not a necessary consequence of elevated glial activation. PMID:25452724

  6. Robotic Precursor Missions for Mars Habitats

    NASA Astrophysics Data System (ADS)

    Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay

    2000-07-01

    Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.

  7. Robotic Precursor Missions for Mars Habitats

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay

    2000-01-01

    Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.

  8. Annealing of aromatic polyimide precursors

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.

    1975-01-01

    A study has been made of the thermal behavior of polyimide precursors: an isomeric pair of crystals of the complex formed by p-phenylenediamine with the separated isomers of the di-isopropyl ester of pyromellitic acid. Specimens of this material were isothermally annealed in the temperature range 120 C to 170 C for periods of time up to 1 week. Although this temperature range is well below that customarily used for imidizations, the working hypothesis was that it would be more likely that a polymer embodying at least part of the precursor structure could be formed if the molecular motion was minimized to that actually required for the formation of the imide linkage. The progress of the annealing was followed by: infrared spectroscopy, differential thermal analysis, powder X-ray diffraction, and thermal gravimetric analysis. Single crystal X-ray analysis of the meta monomer yields a structure of chains of alternating acid and base and suggests that this monomer is amenable to polymerization with a minimum of geometrical disruption.

  9. Differential Deployment of REST and CoREST Promotes Glial Subtype Specification and Oligodendrocyte Lineage Maturation

    PubMed Central

    Gokhan, Solen; Zheng, Deyou; Bergman, Aviv; Mehler, Mark F.

    2009-01-01

    Background The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a master transcriptional regulator that binds to numerous genomic RE1 sites where it acts as a molecular scaffold for dynamic recruitment of modulatory and epigenetic cofactors, including corepressor for element-1-silencing transcription factor (CoREST). CoREST also acts as a hub for various cofactors that play important roles in epigenetic remodeling and transcriptional regulation. While REST can recruit CoREST to its macromolecular complex, CoREST complexes also function at genomic sites independently of REST. REST and CoREST perform a broad array of context-specific functions, which include repression of neuronal differentiation genes in neural stem cells (NSCs) and other non-neuronal cells as well as promotion of neurogenesis. Despite their involvement in multiple aspects of neuronal development, REST and CoREST are not believed to have any direct modulatory roles in glial cell maturation. Methodology/Principal Findings We challenged this view by performing the first study of REST and CoREST in NSC-mediated glial lineage specification and differentiation. Utilizing ChIP on chip (ChIP-chip) assays, we identified distinct but overlapping developmental stage-specific profiles for REST and CoREST target genes during astrocyte (AS) and oligodendrocyte (OL) lineage specification and OL lineage maturation and myelination, including many genes not previously implicated in glial cell biology or linked to REST and CoREST regulation. Amongst these factors are those implicated in macroglial (AS and OL) cell identity, maturation, and maintenance, such as members of key developmental signaling pathways and combinatorial transcription factor codes. Conclusions/Significance Our results imply that REST and CoREST modulate not only neuronal but also glial lineage elaboration. These factors may therefore mediate critical developmental processes including the

  10. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    SciTech Connect

    Boku, Shuken; Nakagawa, Shin; Takamura, Naoki; Kato, Akiko; Takebayashi, Minoru; Hisaoka-Nakashima, Kazue; Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  11. Ependymal tumors with oligodendroglioma like clear cells: Experience from a tertiary care hospital in Pakistan

    PubMed Central

    Hashmi, Fauzan Alam; Khan, Muhammad Faheem; Khan, Saad Akhtar; Waqas, Muhammad; Bari, Muhammad Ehsan; Ahmed, Arsalan

    2015-01-01

    Background: Ependymal tumors with oligodendroglioma like clear cells have never been reported from Pakistan. We aimed to see the features and outcomes of this rare entity. Methods: It was retrospective cohort conducted at the Department of Neurosurgery, Aga Khan University from 2003 to 2013. The medical records and radiology of patients with proven histopathology were reviewed. Analysis was done on SPSS 20. Results: Eleven cases of ependymal tumors with clear cells were found, which equated to 1.5% of the total tumor burden in 11 years. The median age was 49 years. Most common presenting symptom was headache 54.5%. Out of 11 patients, 9 patients had a supratentorial tumor. Magnetic resonance imaging showed hypointense signals on T1 and hyperintense signals on T2-weighted images in all cases. Contrast enhancement was found in 9 patients (77.8%), necrosis and hemorrhage was found in 4 (36%) and 3 (27%) patients, respectively. Immunohistochemistry showed glial fibrillary acidic protein and epithelial membrane antigen positivity in all cases. Ki-67 showed high proliferative index in 6 patients. According to the World Health Organization grading of ependymal tumors, 2 patients had Grade II tumors, and 9 patients had Grade III tumors with clear cells. Gross total resection was achieved in 6 (54.5%) and subtotal resection in 5 patients (45.4%). Recurrence was observed in 9 patients. Six patients died of the disease. Median progression-free survival and overall survival was 8 months and 10 months, respectively. Conclusion: Ependymal tumors with clear cells presented more commonly in Grade III lesions and were more aggressive in behavior with poorer outcome compared to similar studies. PMID:26664928

  12. Analysis of Amyloid Precursor Protein Function in Drosophila melanogaster

    PubMed Central

    Cassar, Marlène; Kretzschmar, Doris

    2016-01-01

    The Amyloid precursor protein (APP) has mainly been investigated in connection with its role in Alzheimer’s Disease (AD) due to its cleavage resulting in the production of the Aβ peptides that accumulate in the plaques characteristic for this disease. However, APP is an evolutionary conserved protein that is not only found in humans but also in many other species, including Drosophila, suggesting an important physiological function. Besides Aβ, several other fragments are produced by the cleavage of APP; large secreted fragments derived from the N-terminus and a small intracellular C-terminal fragment. Although these fragments have received much less attention than Aβ, a picture about their function is finally emerging. In contrast to mammals, which express three APP family members, Drosophila expresses only one APP protein called APP-like or APPL. Therefore APPL functions can be studied in flies without the complication that other APP family members may have redundant functions. Flies lacking APPL are viable but show defects in neuronal outgrowth in the central and peripheral nervous system (PNS) in addition to synaptic changes. Furthermore, APPL has been connected with axonal transport functions. In the adult nervous system, APPL, and more specifically its secreted fragments, can protect neurons from degeneration. APPL cleavage also prevents glial death. Lastly, APPL was found to be involved in behavioral deficits and in regulating sleep/activity patterns. This review, will describe the role of APPL in neuronal development and maintenance and briefly touch on its emerging function in circadian rhythms while an accompanying review will focus on its role in learning and memory formation. PMID:27507933

  13. Analysis of Amyloid Precursor Protein Function in Drosophila melanogaster.

    PubMed

    Cassar, Marlène; Kretzschmar, Doris

    2016-01-01

    The Amyloid precursor protein (APP) has mainly been investigated in connection with its role in Alzheimer's Disease (AD) due to its cleavage resulting in the production of the Aβ peptides that accumulate in the plaques characteristic for this disease. However, APP is an evolutionary conserved protein that is not only found in humans but also in many other species, including Drosophila, suggesting an important physiological function. Besides Aβ, several other fragments are produced by the cleavage of APP; large secreted fragments derived from the N-terminus and a small intracellular C-terminal fragment. Although these fragments have received much less attention than Aβ, a picture about their function is finally emerging. In contrast to mammals, which express three APP family members, Drosophila expresses only one APP protein called APP-like or APPL. Therefore APPL functions can be studied in flies without the complication that other APP family members may have redundant functions. Flies lacking APPL are viable but show defects in neuronal outgrowth in the central and peripheral nervous system (PNS) in addition to synaptic changes. Furthermore, APPL has been connected with axonal transport functions. In the adult nervous system, APPL, and more specifically its secreted fragments, can protect neurons from degeneration. APPL cleavage also prevents glial death. Lastly, APPL was found to be involved in behavioral deficits and in regulating sleep/activity patterns. This review, will describe the role of APPL in neuronal development and maintenance and briefly touch on its emerging function in circadian rhythms while an accompanying review will focus on its role in learning and memory formation. PMID:27507933

  14. Multiphoton microscopy of cleared mouse organs

    NASA Astrophysics Data System (ADS)

    Parra, Sonia G.; Chia, Thomas H.; Zinter, Joseph P.; Levene, Michael J.

    2010-05-01

    Typical imaging depths with multiphoton microscopy (MPM) are limited to less than 300 μm in many tissues due to light scattering. Optical clearing significantly reduces light scattering by replacing water in the organ tissue with a fluid having a similar index of refraction to that of proteins. We demonstrate MPM of intact, fixed, cleared mouse organs with penetration depths and fields of view in excess of 2 mm. MPM enables the creation of large 3-D data sets with flexibility in pixel format and ready access to intrinsic fluorescence and second-harmonic generation. We present high-resolution images and 3-D image stacks of the brain, small intestine, large intestine, kidney, lung, and testicle with image sizes as large as 4096×4096 pixels.

  15. Clearing the smoke around medical marijuana.

    PubMed

    Ware, M A

    2011-12-01

    The hazy world of "medical marijuana" continues to cry out for clear data on which to base medical decision making and rational policy design. In this issue of Clinical Pharmacology & Therapeutics, Abrams and colleagues report that vaporized cannabis does not meaningfully affect opioid plasma levels and may even augment the efficacy of oxycodone and morphine in patients with chronic non-cancer pain. This Commentary considers the implications of this work for clinical practice and further research initiatives. PMID:22089341

  16. Clearings in Ly-alpha forests

    NASA Astrophysics Data System (ADS)

    Kovner, Israel; Rees, Martin J.

    1989-10-01

    At sufficient resolution, QSO spectra can be examined for patches of reduced H I column density in Ly-alpha clouds. Statistics of these clearings can constrain the fraction of the ionizing background contributed by compact sources and (possibly) their lifetimes and beaming. This is demonstrated first in a simple Euclidean setup and then in a model which takes into account the expansion of the universe and the cosmological evolution of the factors involved. The expected number of clearings in a Ly-alpha forest extending back to the formation epoch of compact sources of ionizing radiation (CSIRs) is about 1/4, if the CSIRs are important ionizing agents, and if the transience of CSIRs is unimportant. The particular properties of the CSIR population, e.g., their luminosity function, have little importance. However, expected number of clearings can be much larger if the CSIR lifetimes are short compared to the light crossing times of the domains of dominance, or if the CSIRs turned on sharply at a time when the ionization rate due to competing processes was low.

  17. Clear differences in hand-held dermoscopes.

    PubMed

    Blum, Andreas; Jaworski, Simone

    2006-12-01

    In order to correctly evaluate melanocytic and non-melanocytic skin tumors using a hand-held dermoscope, it is essential to have adequate magnification and illumination to allow the differential structures to be clearly seen. One example of a dysplastic compound melanocytic nevus and a thin malignant melanoma were examined with five different handheld dermoscopes (Heine Delta 10, Heine Delta 20, Dermogenius and Dermlite Foto 37 with and without glass plate) in order to assess the image quality. The magnification was identical in all dermoscopes. In the newer dermoscopes (Heine Delta 20, Dermogenius and Dermlite Foto 37 with and without glass plate) the light sources were clearly improved, as now 6 or 24 LEDs, respectively, are employed. This distinctly improved the image quality with regard to color and visible differential structures compared to the dermoscope (Heine Delta 10) with only one light source. Clear differences is assessing differential structures were seen in one dermoscope (Dermlite Foto 37 without glass plate). Using this dermoscope without any glass plate or liquid between the dermoscope and the skin, exophytic tumors were better visualized in a three-dimensional fashion but fewer differential structures were seen. PMID:17176414

  18. 76 FR 45730 - Customer Clearing Documentation and Timing of Acceptance for Clearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ..., Clearing, and Transfer of Customer Positions). On June 16, 2011, the Futures Industry Association (FIA) and... COMMISSION 17 CFR Parts 1, 23, and 39 RIN 3038-AD51 Customer Clearing Documentation and Timing of Acceptance.... These proposed rules address: The documentation between a customer and a futures commission...

  19. The novel BTB/POZ and zinc finger factor Zbtb45 is essential for proper glial differentiation of neural and oligodendrocyte progenitor cells

    PubMed Central

    Södersten, Erik; Lilja, Tobias

    2010-01-01

    Understanding the regulatory mechanisms controlling the fate decisions of neural stem cells (NSCs) is a crucial issue to shed new light on mammalian central nervous system (CNS) development in health and disease. We have investigated a possible role for the previously uncharacterized BTB/POZ-domain containing zinc finger factor Zbtb45 in the differentiation of NSCs and postnatal oligodendrocyte precursors. In situ hybridization histochemistry and RT-qPCR analysis revealed that Zbtb45 mRNA was ubiquitously expressed in the developing CNS in mouse embryos at embryonic day (E) 12.5 and 14.5. Zbtb45 mRNA knockdown in embryonic forebrain NSCs by siRNA resulted in a rapid decrease in the expression of oligodendrocyte-characteristic genes after mitogen (FGF2) withdrawal, whereas the expression of astrocyte-associated genes such as CD44 and GFAP increased compared to control. Accordingly, the number of astrocytes was significantly increased seven days after Zbtb45 siRNA delivery to NSCs, in contrast to the numbers of neuronal and oligodendrocyte-like cells. Surprisingly, mRNA knockdown of the Zbtb45-associated factor Med31, a subunit of the Mediator complex, did not result in any detectable effect on NSC differentiation. Similar to NSCs, Zbtb45 mRNA knockdown in oligodendrocyte precursors (CG-4) reduced oligodendrocyte maturation upon mitogen withdrawal associated with downregulation of the mRNA expression and protein levels of markers for oligodendrocytic differentiation. Zbtb45 mRNA knockdown did not significantly affect proliferation or cell death in any of the cell types. Based on these observations, we propose that Zbtb45 is a novel regulator of glial differentiation. PMID:21131782

  20. Premarital precursors of marital infidelity.

    PubMed

    Allen, Elizabeth S; Rhoades, Galena Kline; Stanley, Scott M; Markman, Howard J; Williams, Tamara; Melton, Jessica; Clements, Mari L

    2008-06-01

    Premarital precursors of infidelity were evaluated in a sample of 72 couples (N = 144) who were taking part in a longitudinal study of marriage. Premarital self-report and observational data were compared for couples who experienced infidelity and those who did not experience infidelity in the first years of marriage. Couples in which the male engaged in marital infidelity were characterized, premaritally, by significantly lower male sexual satisfaction, lower male positive communication, and higher female invalidation, whereas couples in which the female went on to engage in infidelity were characterized, premaritally, by significantly lower levels of female positive communication, higher levels of male and female negative communication, and higher levels of male and female invalidation. Implications of the findings for future research on the prediction and prevention of infidelity are discussed. PMID:18605124

  1. Precursors for Carbon Nitride Synthesis

    SciTech Connect

    Prashantha, M.; Gopal, E. S. R.; Ramesh, K.

    2011-07-15

    Nano structured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition. Pyrrole (C{sub 4}H{sub 5}N), Pyrrolidine (C{sub 4}H{sub 9}N), Azabenzimidazole (C{sub 6}H{sub 5}N{sub 3}) and Triazine (C{sub 6}H{sub 15}N{sub 3}) were used as precursors. The vibrational modes observed for C-N and C = N from FTIR spectra confirms the bonding of nitrogen with carbon. XPS core level spectra of C 1s and N 1s also show the formation of bonding between carbon and nitrogen atoms. The nitrogen content in the prepared samples was found to be around 25 atomic %.

  2. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates

    NASA Astrophysics Data System (ADS)

    Malaga, Karlo A.; Schroeder, Karen E.; Patel, Paras R.; Irwin, Zachary T.; Thompson, David E.; Bentley, J. Nicole; Lempka, Scott F.; Chestek, Cynthia A.; Patil, Parag G.

    2016-02-01

    Objective. We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. Approach. A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. Main results. From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 μV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. Significance. This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the

  3. STS-74 clears the tower (front view)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle Atlantis breaks free from its Earthly ties and soars toward the stars. The five astronauts assigned to Mission STS-74 are headed for an historic rendezvous in space: the second docking of the U.S. Space Shuttle with the Russian Space Station Mir. Atlantis lifted off from Launch Pad 39A at 7:30:43.071 a.m. EST, Nov. 12. The mission commander is Kenneth D. Cameron; James D. Halsell Jr. is the pilot, and the three mission specialists are Jerry L. Ross, William S. 'Bill' McArthur Jr., and Chris A. Hadfield, who represents the Canadian Space Agency. The profile of Mission STS-74 represents a direct precursor to the types of activities flight crews will carry out during assembly and operation of the international space station later this decade. During their eight-day spaceflight, the crew will deliver a Russian-built Docking Module to Mir. The Docking Module will be attached to the docking port on Mir's Kristall module to serve as a permanent extension to the station to simplify future linkups with the Shuttle. The Shuttle astronauts and the three cosmonauts on Mir also will transfer logistics materials to and from Mir.

  4. STS-74 clears the tower (side view)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle Atlantis breaks free from its Earthly ties and soars toward the stars. The five astronauts assigned to Mission STS-74 are headed for an historic rendezvous in space: the second docking of the U.S. Space Shuttle with the Russian Space Station Mir. Atlantis lifted off from Launch Pad 39A at 7:30:43.071 a.m. EST, Nov. 12. The mission commander is Kenneth D. Cameron; James D. Halsell Jr. is the pilot, and the three mission specialists are Jerry L. Ross, William S. 'Bill' McArthur Jr., and Chris A. Hadfield, who represents the Canadian Space Agency. The profile of Mission STS-74 represents a direct precursor to the types of activities flight crews will carry out during assembly and operation of the international space station later this decade. During their eight-day spaceflight, the crew will deliver a Russian-built Docking Module to Mir. The Docking Module will be attached to the docking port on Mir's Kristall module to serve as a permanent extension to the station to simplify future linkups with the Shuttle. The Shuttle astronauts and the three cosmonauts on Mir also will transfer logistics materials to and from Mir.

  5. Functional analyses and treatment of precursor behavior.

    PubMed

    Najdowski, Adel C; Wallace, Michele D; Ellsworth, Carrie L; MacAleese, Alicia N; Cleveland, Jackie M

    2008-01-01

    Functional analysis has been demonstrated to be an effective method to identify environmental variables that maintain problem behavior. However, there are cases when conducting functional analyses of severe problem behavior may be contraindicated. The current study applied functional analysis procedures to a class of behavior that preceded severe problem behavior (precursor behavior) and evaluated treatments based on the outcomes of the functional analyses of precursor behavior. Responding for all participants was differentiated during the functional analyses, and individualized treatments eliminated precursor behavior. These results suggest that functional analysis of precursor behavior may offer an alternative, indirect method to assess the operant function of severe problem behavior. PMID:18468282

  6. 1994 Accident sequence precursor program results

    SciTech Connect

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.

    1996-01-01

    The Accident Sequence Precursor (ASP) Program involves the systematic review and evaluation of operational events that have occurred at light-water reactors to identify and categorize precursors to potential severe core damage accident sequences. The results of the ASP Program are published in an annual report. The most recent report, which contains the analyses of the precursors for 1994, is NUREG/CR-4674, Vols. 21 and 22, Precursors to Potential Severe Core Damage Accidents: 1994, A Status Report, published in December 1995. This article provides an overview of the ASP review and evaluation process and a summary of the results for 1994. 12 refs., 2 figs., 4 tabs.

  7. 1995 Accident Sequence Precursor (ASP) Program results

    SciTech Connect

    Muhlheim, M.D.; Belles, R.J.; Cletcher, J.W.; Copinger, D.A.; O`Reilly, P.D.; Dolan, B.W.; Minarick, J.W.

    1997-01-01

    The Accident Sequence Precursor (ASP) Program involves the systematic review and evaluation of operational events that have occurred at light-water reactors to identify and categorize precursors to potential severe core damage accident sequences. The results of the ASP Program are published in an annual report. The most recent report, which contains the precursors for 1995, is NUREG/CR-4674, Volume 23, Precursors to Potential Severe Core Damage Accidents: 1995, A Status Report, published in April 1997. This article provides an overview of the ASP review and evaluation process and a summary of the results for 1995.

  8. ClearedLeavesDB: an online database of cleared plant leaf images

    PubMed Central

    2014-01-01

    Background Leaf vein networks are critical to both the structure and function of leaves. A growing body of recent work has linked leaf vein network structure to the physiology, ecology and evolution of land plants. In the process, multiple institutions and individual researchers have assembled collections of cleared leaf specimens in which vascular bundles (veins) are rendered visible. In an effort to facilitate analysis and digitally preserve these specimens, high-resolution images are usually created, either of entire leaves or of magnified leaf subsections. In a few cases, collections of digital images of cleared leaves are available for use online. However, these collections do not share a common platform nor is there a means to digitally archive cleared leaf images held by individual researchers (in addition to those held by institutions). Hence, there is a growing need for a digital archive that enables online viewing, sharing and disseminating of cleared leaf image collections held by both institutions and individual researchers. Description The Cleared Leaf Image Database (ClearedLeavesDB), is an online web-based resource for a community of researchers to contribute, access and share cleared leaf images. ClearedLeavesDB leverages resources of large-scale, curated collections while enabling the aggregation of small-scale collections within the same online platform. ClearedLeavesDB is built on Drupal, an open source content management platform. It allows plant biologists to store leaf images online with corresponding meta-data, share image collections with a user community and discuss images and collections via a common forum. We provide tools to upload processed images and results to the database via a web services client application that can be downloaded from the database. Conclusions We developed ClearedLeavesDB, a database focusing on cleared leaf images that combines interactions between users and data via an intuitive web interface. The web interface

  9. WEST CLEAR CREEK ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Ulrich, George E.; Bielski, Alan M.

    1984-01-01

    Results of geologic, geochemical, and aeromagnetic studies and review of mineral records and prospect examination for the West Clear Creek Roadless Area, Arizona, indicate that there is little likelihood of the occurrence of mineral or energy resources. No concentrations of minerals were identified within the boundary of the area. A small manganese deposit occurs 1-3 mi east of the area but does not extend into the area. Slightly anomalous values for certain trace metals were found in samples taken within the area, but do not indicate the presence of metallic resources. Gypsum, basaltic cinders, and sandstone occur in the area.

  10. Nitrous oxide flux following tropical land clearing

    NASA Technical Reports Server (NTRS)

    Luizao, Flavio; Luizao, Regina; Matson, Pamela; Livingston, Gerald; Vitousek, Peter

    1989-01-01

    The importance of seasonal cycles of N2O flux from tropical ecosystems and the possibility that tropical deforestation could contribute to the ongoing global increase in N2O concentrations were assessed by measuring N2O flux from forest, cleared land, and pasture over an annual cycle in the central Amazon. A pasture that had been converted from tropical forest had threefold greater annual N2O flux than a paired forest site; similar results were obtained in spot measurements in other pastures. If these results are general, such tropical pastures represent a globally significant source of increased N2O.

  11. PLANETARY CHAOTIC ZONE CLEARING: DESTINATIONS AND TIMESCALES

    SciTech Connect

    Morrison, Sarah; Malhotra, Renu

    2015-01-20

    We investigate the orbital evolution of particles in a planet's chaotic zone to determine their final destinations and their timescales of clearing. There are four possible final states of chaotic particles: collision with the planet, collision with the star, escape, or bounded but non-collision orbits. In our investigations, within the framework of the planar circular restricted three body problem for planet-star mass ratio μ in the range 10{sup –9} to 10{sup –1.5}, we find no particles hitting the star. The relative frequencies of escape and collision with the planet are not scale-free, as they depend upon the size of the planet. For planet radius R{sub p} ≥ 0.001 R{sub H} where R{sub H} is the planet's Hill radius, we find that most chaotic zone particles collide with the planet for μ ≲ 10{sup –5}; particle scattering to large distances is significant only for higher mass planets. For fixed ratio R{sub p} /R{sub H} , the particle clearing timescale, T {sub cl}, has a broken power-law dependence on μ. A shallower power law, T {sub cl} ∼ μ{sup –1/3}, prevails at small μ where particles are cleared primarily by collisions with the planet; a steeper power law, T {sub cl} ∼ μ{sup –3/2}, prevails at larger μ where scattering dominates the particle loss. In the limit of vanishing planet radius, we find T {sub cl} ≈ 0.024 μ{sup –3/2}. The interior and exterior boundaries of the annular zone in which chaotic particles are cleared are increasingly asymmetric about the planet's orbit for larger planet masses; the inner boundary coincides well with the classical first order resonance overlap zone, Δa {sub cl,} {sub int} ≅ 1.2 μ{sup 0.28} a{sub p} ; the outer boundary is better described by Δa {sub cl,} {sub ext} ≅ 1.7 μ{sup 0.31} a{sub p} , where a{sub p} is the planet-star separation.

  12. ESBLs: A Clear and Present Danger?

    PubMed Central

    Dhillon, Rishi H.-P.; Clark, John

    2012-01-01

    Extended spectrum β-lactamases (ESBLs) are enzymes produced by a variety of Gram negative bacteria which confer an increased resistance to commonly used antibiotics. They are a worrying global public health issue as infections caused by such enzyme-producing organisms are associated with a higher morbidity and mortality and greater fiscal burden. Coupled with increasing prevalence rates worldwide and an ever diminishing supply in the antibiotic armamentarium, these enzymes represent a clear and present danger to public health. This article aims to give an overview of the current situation regarding ESBLs, with a focus on the epidemiology and management of such infections. PMID:21766013

  13. 75 FR 27338 - NASDAQ OMX Commodities Clearing-Contract Merchant LLC; NASDAQ OMX Commodities Clearing-Delivery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Commodities Clearing--Delivery LLC; NASDAQ OMX Commodities Clearing--Finance LLC; Notice of Filing May 6, 2010... Commodities Clearing--Delivery LLC, and NASDAQ OMX Commodities Clearing--Finance LLC filed a supplement to...

  14. Increased cellular turnover in response to fluoxetine in neuronal precursors derived from human embryonic stem cells.

    PubMed

    Chang, Eun-Ah; Beyhan, Zeki; Yoo, Myung-Sik; Siripattarapravat, Kannika; Ko, Tak; Lookingland, Keith J; Madhukar, Burra V; Cibelli, Jose B

    2010-01-01

    Previous reports have shown that antidepressants increase neuronal cell proliferation and enhance neuroplasticity both in vivo and in vitro. This study investigated the direct effects of one such antidepressant, fluoxetine , on cell proliferation and on the production of neurotrophic factors in neuronal precursors derived from human embryonic stem cells (hESCs; H9). Fluoxetine induced the differentiation of neuronal precursors, strongly enhancing neuronal characteristics. The rate of proliferation was higher in fluoxetine -treated cells than in control cells, as determined by MTT [3(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide] assay. The CPDL (cumulative population doubling level) of the fluoxetine-treated cells was significantly increased in comparison to that of control cells (p<.001). Bromodeoxyuridine incorporation and staurosporine-induced apoptosis assays were elevated in fluoxetine-treated cells. Quantitative RT-PCR analysis revealed no significant differences in the expression of neurotrophic factors, brain-derived neurotrophic factor (BDNF);glial-derived neurotrophic factor (GDNF) and cAMP-responsive element-binding protein (CREB) between cells treated with fluoxetine for two weeks and their untreated counterparts. These results may help elucidate the mechanism of action of fluoxetine as a therapeutic drug for the treatment of depression. Data presented herein provide more evidence that, in addition to having a direct chemical effect on serotonin levels, fluoxetine can influence hESC-derived neuronal cells by increasing cell proliferation, while allowing them to maintain their neuronal characteristics. PMID:19598107

  15. Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine.

    PubMed

    Hussy, N; Brès, V; Rochette, M; Duvoid, A; Alonso, G; Dayanithi, G; Moos, F C

    2001-09-15

    Osmotic regulation of supraoptic nucleus (SON) neuron activity depends in part on activation of neuronal glycine receptors (GlyRs), most probably by taurine released from adjacent astrocytes. In the neurohypophysis in which the axons of SON neurons terminate, taurine is also concentrated in and osmo-dependently released by pituicytes, the specialized glial cells ensheathing nerve terminals. We now show that taurine release from isolated neurohypophyses is enhanced by hypo-osmotic and decreased by hyper-osmotic stimulation. The high osmosensitivity is shown by the significant increase on only 3.3% reduction in osmolarity. Inhibition of taurine release by 5-nitro-2-(3-phenylpropylamino)benzoic acid, niflumic acid, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid suggests the involvement of volume-sensitive anion channels. On purified neurohypophysial nerve endings, activation of strychnine-sensitive GlyRs by taurine or glycine primarily inhibits the high K(+)-induced rise in [Ca(2+)](i) and subsequent release of vasopressin. Expression of GlyRs in vasopressin and oxytocin terminals is confirmed by immunohistochemistry. Their implication in the osmoregulation of neurohormone secretion was assessed on isolated whole neurohypophyses. A 6.6% hypo-osmotic stimulus reduces by half the depolarization-evoked vasopressin secretion, an inhibition totally prevented by strychnine. Most importantly, depletion of taurine by a taurine transport inhibitor also abolishes the osmo-dependent inhibition of vasopressin release. Therefore, in the neurohypophysis, an osmoregulatory system involving pituicytes, taurine, and GlyRs is operating to control Ca(2+) influx in and neurohormone release from nerve terminals. This elucidates the functional role of glial taurine in the neurohypophysis, reveals the expression of GlyRs on axon terminals, and further defines the role of glial cells in the regulation of neuroendocrine function. PMID:11549721

  16. Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus.

    PubMed

    Deleuze, C; Duvoid, A; Hussy, N

    1998-03-01

    1. Taurine, prominently concentrated in glial cells in the supraoptic nucleus (SON), is probably involved in the inhibition of SON vasopressin neurones by peripheral hypotonic stimulus, via activation of neuronal glycine receptors. We report here the properties and origin of the osmolarity-dependent release of preloaded [3H]taurine from isolated whole SO nuclei. 2. Hyposmotic medium induced a rapid, reversible and dose-dependent increase in taurine release. Release showed a high sensitivity to osmotic change, with a significant enhancement with less than a 5% decrease in osmolarity. Hyperosmotic stimulus decreased basal release. 3. Evoked release was independent of extracellular Ca2+ and Na+, and was blocked by the Cl- channel blockers DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) and DPC (N-phenylanthranilic acid), suggesting a diffusion process through volume-sensitive Cl- channels. 4. Evoked release was transient for large osmotic reductions (> or = 15%), probably reflecting regulatory volume decrease (RVD). However, it was sustained for smaller changes, suggesting that taurine release induced by physiological variations in osmolarity is not linked to RVD. 5. Basal and evoked release were strongly inhibited by an incubation of the tissue with the glia-specific toxin fluorocitrate, but were unaffected by a neurotoxic-treatment with NMDA, demonstrating the glial origin of the release of taurine in the SON. 6. The high osmosensitivity of taurine release suggests an important role in the osmoregulation of the SON function. These results strengthen the notion of an implication of taurine and glial cells in the regulation of the whole-body fluid balance through the modulation of vasopressin release. PMID:9518705

  17. Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus

    PubMed Central

    Deleuze, Charlotte; Duvoid, Anne; Hussy, Nicolas

    1998-01-01

    Taurine, prominently concentrated in glial cells in the supraoptic nucleus (SON), is probably involved in the inhibition of SON vasopressin neurones by peripheral hypotonic stimulus, via activation of neuronal glycine receptors. We report here the properties and origin of the osmolarity-dependent release of preloaded [3H]taurine from isolated whole SO nuclei.Hyposmotic medium induced a rapid, reversible and dose-dependent increase in taurine release. Release showed a high sensitivity to osmotic change, with a significant enhancement with less than a 5 % decrease in osmolarity. Hyperosmotic stimulus decreased basal release.Evoked release was independent of extracellular Ca2+ and Na+, and was blocked by the Cl− channel blockers DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid) and DPC (N-phenylanthranilic acid), suggesting a diffusion process through volume-sensitive Cl− channels.Evoked release was transient for large osmotic reductions (≥ 15 %), probably reflecting regulatory volume decrease (RVD). However, it was sustained for smaller changes, suggesting that taurine release induced by physiological variations in osmolarity is not linked to RVD.Basal and evoked release were strongly inhibited by an incubation of the tissue with the glia-specific toxin fluorocitrate, but were unaffected by a neurotoxic treatment with NMDA, demonstrating the glial origin of the release of taurine in the SON.The high osmosensitivity of taurine release suggests an important role in the osmoregulation of the SON function. These results strengthen the notion of an implication of taurine and glial cells in the regulation of the whole-body fluid balance through the modulation of vasopressin release. PMID:9518705

  18. Mechanisms of a Glial Modulating Agent, Propentofylline: Potential New Treatment for Glioblastoma Multiforme

    NASA Astrophysics Data System (ADS)

    Jacobs, Valerie

    Glioblastoma multiforme is the most common and aggressive primary brain tumor with a very poor prognosis despite multi-modalities of treatment. As a result, there is a critical need to develop alternative therapies. Propentofylline (PPF) is a methyl xanthine with glial modulating properties. Based on known mechanisms of PPF and the important role of glial cells in glioma growth, we hypothesized that PPF can target glial cells in the tumor microenvironment, decreasing tumor growth. More specifically, PPF can target microglia and astrocytes. In Chapter 3 we demonstrate that PPF decreases microglia migration towards CNS-1 cells, decreases CNS-1 cells invasion when cultured with microglia and decreases MMP-9 expression in microglia. In Chapter 4 we showed that PPF decreases TROY expression in microglia. In Chapter 5 we showed PPF causes astrocytes to increase glutamate uptake through the GLT-1 transporter, leading to less glutamate available for CNS-1 cells, ultimately resulting in increased CNS-1 cell apoptosis. Finally, in Chapter 6 we present supportive data that PPF uniquely targets resident microglia in the CNS due to pharmacological differences between species and cell types. This thesis describes the following major contributions to the field of glioma research: 1) identification of propentofylline as a possible new drug for GBM treatment that targets microglia and astrocytes, decreasing brain tumor growth in vivo, and further supporting a different functional role of microglia and infiltrating macrophages in the tumor microenvironment, 2) identification of TROY as a novel signaling molecule expressed in microglia in response to CNS-1 cells and involved in microglia migration, and 3) identification of differential responses between species and cell types with propentofylline treatment.

  19. Ionotropic purinergic receptors P2X in frog and turtle retina: glial and neuronal localization.

    PubMed

    Vitanova, Lily Alexandrova; Kupenova, Petia Nikolova

    2014-06-01

    Purinergic signaling is represented in both the peripheral and central nervous system (CNS), and in particular in the retina, which may be regarded as a part of the CNS. While purigenic signaling is relatively well studied in mammalian retinas, little is known about it in retinas of lower vertebrates. The aim of present study was to investigate, using immunocytochemistry, the distribution of purinoreceptors P2X in retinas of frog and turtle, which are appropriate models of the brain neuron-to-glia interactions. The results showed widespread expression of all seven ionotropic purinoreceptors (P2X1-P2X7) in both frog and turtle retinas. They were predominantly expressed in Müller cells, the principal glial cells in the retina. All structures typical of Müller cells: the outer and the inner limiting membranes, the cells bodies in the inner nuclear layer, the radial processes in the inner plexiform layer (IPL), and the so called endfeet (frog) or the orthogonal arrays of particles (turtle) in the ganglion cells layer were immunostained. Colocalizations between P2X1-P2X7 and the glial cell marker Vimentin proved that the immunostaining was in the Müller cells. In addition to the glial staining, neuronal staining was also seen as fine puncta in the inner plexiform layer and by small dots and patches in the outer plexiform layer. Some cell bodies of horizontal, amacrine and ganglion cells were also stained. The results obtained imply that the purinergic P2X receptors may significantly contribute to the neuron-to-glia signaling in retinas of the lower vertebrates. PMID:24461518

  20. Magnolol protects against trimethyltin-induced neuronal damage and glial activation in vitro and in vivo.

    PubMed

    Kim, Da Jung; Kim, Yong Sik

    2016-03-01

    Trimethyltin (TMT), an organotin with potent neurotoxic effects by selectively damaging to hippocampus, is used as a tool for creating an experimental model of neurodegeneration. In the present study, we investigated the protective effects of magnolol, a natural biphenolic compound, on TMT-induced neurodegeneration and glial activation in vitro and in vivo. In HT22 murine neuroblastoma cells, TMT induced necrotic/apoptotic cell death and oxidative stress, including intracellular reactive oxygen species (ROS), protein carbonylation, induction of heme oxygenase-1 (HO-1), and activation of all mitogen-activated protein kinases (MAPKs) family proteins. However, magnolol treatment significantly suppressed neuronal cell death by inhibiting TMT-mediated ROS generation and activation of JNK and p38 MAPKs. In BV-2 microglial cells, magnolol efficiently attenuated TMT-induced microglial activation via suppression of ROS generation and activation of JNK, p38 MAPKs, and nuclear factor-κB (NF-κB) signaling. In an in vivo mouse study, TMT induced massive neuronal damage and enhanced oxidative stress at day 2. We also observed a concomitant increase in glial cells and inducible nitric oxide synthase (iNOS) expression on the same day. These features of TMT toxicity were reversed by treatment of magnolol. We observed that p-JNK and p-p38 MAPK levels were increased in the mouse hippocampus at day 1 after TMT treatment and that magnolol blocked TMT-induced JNK and p38 MAPK activation. Magnolol administration prevented TMT-induced hippocampal neurodegeneration and glial activation, possibly through the regulation of TMT-mediated ROS generation and MAPK activation. PMID:26756313

  1. Protein S100 immunoreactivity in glial cells and neurons of the Japanese quail brain.

    PubMed

    Castagna, Claudia; Viglietti-Panzica, Carla; Carlo Panzica, Gian

    2003-03-01

    In mammals, sparse data illustrated the neuronal expression of S100 protein in central and peripheral nervous system. Similar studies have not been performed in other vertebrate species, in particular in birds. We provide here a detailed description of the distribution of the calcium-binding protein S100 in neuronal and glial elements in the central nervous system of an avian species, the Japanese quail (Coturnix japonica) largely used for neuroanatomical and functional studies. The distribution of S100-like immunoreactivity was analyzed by three different antisera: a polyclonal, against S100 protein, and two monoclonals, against the beta-subunit (S100beta) and the alpha-subunit (S100alpha) of this protein. All sera showed glial positive elements, which were more abundant in the brainstem than in the prosencephalon. Moreover, the polyclonal and the monoclonal antibodies against the beta-subunit evidenced a neuronal population with a wide distribution, variable morphology and staining intensity. In the telencephalon and diencephalon a few S100-positive neurons were observed in basal ganglia, nucleus paraventricularis hypothalami, nucleus rotundus and nucleus geniculatus lateralis, pars ventralis. In the mesencephalon and pons a wide S100-immunoreactive neuronal population was detected in several regions, including motor and sensory nuclei of most cranial nerves (i.e. oculomotoris, abducens, trigeminus, cochlearis, trochlearis and vestibularis nuclei). This distribution appears very similar to that previously described in the rat hindbrain by both immunocytochemistry and in situ hybridization, as well as to sparse observations on different vertebrates. Therefore, our results suggest that the distribution pattern of this protein (both in glial and in neuronal elements) is highly conserved throughout the phylogeny. PMID:12706207

  2. Remodeling of glial coverage of glutamatergic synapses in the rat nucleus tractus solitarii after ozone inhalation.

    PubMed

    Chounlamountry, Keodavanh; Boyer, Bénédicte; Penalba, Virginie; François-Bellan, Anne-Marie; Bosler, Olivier; Kessler, Jean-Pierre; Strube, Caroline

    2015-09-01

    Besides the well-described inflammatory and dysfunction effects on the respiratory tract, accumulating evidence indicates that ozone (O3 ) exposure also affects central nervous system functions. However, the mechanisms through which O3 exerts toxic effects on the brain remain poorly understood. We previously showed that O3 exposure caused a neuronal activation in regions of the rat nucleus tractus solitarii (NTS) overlapping terminal fields of vagal lung afferents. Knowing that O3 exposure can impact astrocytic protein expression, we decided to investigate whether it may induce astroglial cellular alterations in the NTS. Using electron microscopy and immunoblot techniques, we showed that in O3 -exposed animals, the astrocytic coverage of NTS glutamatergic synapses was 19% increased while the astrocyte volume fraction and membrane density were not modified. Moreover, the expression of glial fibrillary acidic protein and S100β, which are known to be increased in reactive astroglia, did not change. These results indicate that O3 inhalation induces a glial plasticity that is restricted to the peri-synaptic coverage without overall astroglial activation. Taken together, these findings, along with our previous observations, support the conclusion that O3 -induced pulmonary inflammation results in a specific activation of vagal lung afferents rather than non-specific overall brain alterations mediated by blood-borne agents. Exposure to ozone, a major atmospheric pollutant, induces an increase in the glial coverage of neurons that is restricted to peri-synaptic compartments. This observation does not support the view that the ozone-induced neuronal disorders are related to non-specific overall brain alterations. It rather argues for a specific activation of the vagus nerve in response to pulmonary inflammation. PMID:26083406

  3. 76 FR 47529 - Customer Clearing Documentation and Timing of Acceptance for Clearing; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... Street, NW., Washington, DC 20581. SUPPLEMENTARY INFORMATION: In FR Doc. 2011-19365 appearing on page... From the Federal Register Online via the Government Publishing Office COMMODITY FUTURES TRADING... for Clearing; Correction AGENCY: Commodity Futures Trading Commission. ACTION: Notice of...

  4. Leading time domain seismic precursors

    NASA Astrophysics Data System (ADS)

    Boucouvalas, A. C.; Gkasios, M.; Keskebes, A.; Tselikas, N. T.

    2014-08-01

    The problem of predicting the occurrence of earthquakes is threefold. On one hand it is necessary to predict the date and magnitude of an earthquake, and on the other hand the location of the epicenter. In this work after a brief review of the state of earthquake prediction research, we report on a new leading time precursor for determining time onset of earthquake occurrence. We report the linking between earthquakes of the past with those which happen in the future via Fibonacci, Dual and Lucas numbers (FDL) numbers. We demonstrate it here with two example seed earthquakes at least 100 years old. Using this leading indicator method we can predict significant earthquake events >6.5R, with good accuracy approximately +- 1 day somewhere in the world. From a single seed we produce at least 100 trials simultaneously of which 50% are correct to +- 1day. The indicator is based on Fibonacci, Dual and Lucas numbers (FDL). This result hints that the log periodic FDL numbers are at the root of the understanding of the earthquake mechanism. The theory is based on the assumption that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series. (The mechanism could well be linked to planetary orbits). When future dates are derived from clustering and convergence from previous strong earthquake dates at an FDL time distance, then we have a high probability for an earthquake to occur on that date. We set up a real time system which generates FDL time series from each previous significant earthquake (>7R) and we produce a year to year calendar of high probability earthquake dates. We have tested this over a number of years with considerable success. We have applied this technique for strong (>7R) earthquakes across the globe as well as on a restricted region such as the Greek geographic region where the magnitude is small (>4R-6.5R). In both cases the success of the method is impressive. It is our belief that supplementing this method with

  5. Primary Glial and Neuronal Tumors of the Ovary or Peritoneum: A Clinicopathologic Study of 11 Cases.

    PubMed

    Liang, Li; Olar, Adriana; Niu, Na; Jiang, Yi; Cheng, Wenjun; Bian, Xiu-Wu; Yang, Wentao; Zhang, Jing; Yemelyanova, Anna; Malpica, Anais; Zhang, Zhihong; Fuller, Gregory N; Liu, Jinsong

    2016-06-01

    Primary glial and neuronal tumors of the ovary or peritoneum are rare neuroectodermal-type tumors similar to their counterparts in the central nervous system. We retrospectively reviewed 11 cases. These cases included 4 ependymomas, 6 astrocytic tumors, and 1 neurocytoma. Patients' age ranged from 9 to 50 years (mean, 26 y; median, 24 y). All ependymal tumors with detailed clinical history (n=3) were not associated with any other ovarian neoplasm. In contrast, all astrocytic tumors were associated with immature teratoma (n=4), mature cystic teratoma (n=1), or mixed germ cell tumor (n=1). The neurocytoma arose in association with mature teratomatous components in a patient with a history of treated mixed germ cell tumor. Immunohistochemical staining showed that 7 of 7 ependymal and astrocytic tumors (100%) were positive for glial fibrillary acidic protein, and 2 of 2 ependymomas (100%) were positive for both estrogen and progesterone receptors. The neurocytoma was positive for synaptophysin and negative for S100 protein, glial fibrillary acidic protein, and SALL4. No IDH1-R132H mutation was detected in 2 of 2 (0%) astrocytomas by immunohistochemistry. Next-generation sequencing was performed on additional 2 ependymomas and 2 astrocytomas but detected no mutations in a panel of 50 genes that included IDH1, IDH2, TP53, PIK3CA, EGFR, BRAF, and PTEN. Follow-up information was available for 8 patients, with the follow-up period ranging from 4 to 59 months (mean, 15 mo; median, 8.5 mo), of which 3 had no evidence of disease and 5 were alive with disease. In conclusion, primary glial and neuronal tumors of the ovary can arise independently or in association with other ovarian germ cell tumor components. Pathologists should be aware of these rare tumors and differentiate them from other ovarian neoplasms. Even though an IDH1 or IDH2 mutation is found in the majority of WHO grade II and III astrocytomas, and in secondary glioblastomas arising from them, such mutations were

  6. A Cl− Cotransporter Selective for Nh4+ over K+ in Glial Cells of Bee Retina

    PubMed Central

    Marcaggi, Païkan; Coles, Jonathan A.

    2000-01-01

    There appears to be a flux of ammonium (NH4+/NH3) from neurons to glial cells in most nervous tissues. In bee retinal glial cells, NH4+/NH3 uptake is at least partly by chloride-dependant transport of the ionic form NH4+. Transmembrane transport of NH4+ has been described previously on transporters on which NH4+ replaces K+, or, more rarely, Na+ or H+, but no transport system in animal cells has been shown to be selective for NH4+ over these other ions. To see if the NH4+-Cl− cotransporter on bee retinal glial cells is selective for NH4+ over K+ we measured ammonium-induced changes in intracellular pH (pHi) in isolated bundles of glial cells using a fluorescent indicator. These changes in pHi result from transmembrane fluxes not only of NH4+, but also of NH3. To estimate transmembrane fluxes of NH4+, it was necessary to measure several parameters. Intracellular pH buffering power was found to be 12 mM. Regulatory mechanisms tended to restore intracellular [H+] after its displacement with a time constant of 3 min. Membrane permeability to NH3 was 13 μm s−1. A numerical model was used to deduce the NH4+ flux through the transporter that would account for the pHi changes induced by a 30-s application of ammonium. This flux saturated with increasing [NH4+]o; the relation was fitted with a Michaelis-Menten equation with Km ≈ 7 mM. The inhibition of NH4+ flux by extracellular K+ appeared to be competitive, with an apparent Ki of ∼15 mM. A simple standard model of the transport process satisfactorily described the pHi changes caused by various experimental manipulations when the transporter bound NH4+ with greater affinity than K+. We conclude that this transporter is functionally selective for NH4+ over K+ and that the transporter molecule probably has a greater affinity for NH4+ than for K+. PMID:10919861

  7. Voltage-dependent clamp of intracellular pH of identified leech glial cells.

    PubMed Central

    Deitmer, J W; Schneider, H P

    1995-01-01

    1. The intracellular pH (pHi) was measured in voltage-clamped, giant neuropile glial cells in isolated segmental ganglia of the leech Hirudo medicinalis, using double-barrelled, pH-sensitive microelectrodes and a slow, two-electrode voltage-clamp system. The potential sensitivity of the pHi regulation in these glial cells was found to be due to an electrogenic Na(+)-HCO3- cotransporter (Deitmer & Szatkowski, 1990). 2. In the presence of 5% CO2 and 24 mM HCO3- (pH 7.4), pHi shifted by 1 pH unit per 110 mV, corresponding to a stoichiometry of 2HCO3-: 1 Na+ of the cotransporter, while in Hepes-buffered CO2-HCO3(-)-free saline (pH 7.4), pHi changed by 1 pH unit per 274 mV. The potential sensitivity of pHi decreased at lower pHo, being 1 pH unit per 216 mV at external pH (pHo) 7.0. 3. Changing pHo between 7.8 and 6.6 induced pHi shifts with a slope of 0.72 pHi units per pHo unit in non-clamped, and of 0.80 pHi units per pHo unit in voltage-clamped cells, indicating that pHi largely followed pHo. The electrochemical gradient of H(+)-HCO3- across the glial membrane was around 56 mV, and remained almost constant over this pHo range. 4. The membrane potential-dependent and pHo-sensitive shifts of pHi were unaffected by amiloride, an inhibitor of Na(+)-H+ exchange. 5. The intracellular acidification upon lowering pHo could be reversed by depolarizing the membrane as predicted from a cotransporter, whose equilibrium follows the membrane potential by resetting pHi. 6. The results indicate that the pHi of leech glial cells is dominated by the electrogenic Na(+)-HCO3- cotransporter, and is hence a function of the membrane potential, and the Na+ and H(+)-HCO3- gradients, across the cell membrane. PMID:7658370

  8. Electroacupuncture activates enteric glial cells and protects the gut barrier in hemorrhaged rats

    PubMed Central

    Hu, Sen; Zhao, Zeng-Kai; Liu, Rui; Wang, Hai-Bin; Gu, Chun-Yu; Luo, Hong-Min; Wang, Huan; Du, Ming-Hua; Lv, Yi; Shi, Xian

    2015-01-01

    AIM: To investigate whether electroacupuncture ST36 activates enteric glial cells, and alleviates gut inflammation and barrier dysfunction following hemorrhagic shock. METHODS: Sprague-Dawley rats were subjected to approximately 45% total blood loss and randomly divided into seven groups: (1) sham: cannulation, but no hemorrhage; (2) subjected to hemorrhagic shock (HS); (3) electroacupuncture (EA) ST36 after hemorrhage; (4) vagotomy (VGX)/EA: VGX before hemorrhage, then EA ST36; (5) VGX: VGX before hemorrhage; (6) α-bungarotoxin (BGT)/EA: intraperitoneal injection of α-BGT before hemorrhage, then EA ST36; and (7) α-BGT group: α-BGT injection before hemorrhage. Morphological changes in enteric glial cells (EGCs) were observed by immunofluorescence, and glial fibrillary acidic protein (GFAP; a protein marker of enteric glial activation) was evaluated using reverse transcriptase polymerase chain reaction and western blot analysis. Intestinal cytokine levels, gut permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran, and the expression and distribution of tight junction protein zona occludens (ZO)-1 were also determined. RESULTS: EGCs were distorted following hemorrhage and showed morphological abnormalities. EA ST36 attenuated the morphological changes in EGCs at 6 h, as compared with the VGX, α-BGT and HS groups. EA ST36 increased GFAP expression to a greater degree than in the other groups. EA ST36 decreased intestinal permeability to FITC-dextran (760.5 ± 96.43 ng/mL vs 2466.7 ± 131.60 ng/mL, P < 0.05) and preserved ZO-1 protein expression and localization at 6 h after hemorrhage compared with the HS group. However, abdominal VGX and α-BGT treatment weakened or eliminated the effects of EA ST36. EA ST36 reduced tumor necrosis factor-α levels in intestinal homogenates after blood loss, while vagotomy or intraperitoneal injection of α-BGT before EA ST36 abolished its anti-inflammatory effects. CONCLUSION: EA ST36 attenuates hemorrhage

  9. A transient wave of BMP signaling in the retina is necessary for Müller glial differentiation.

    PubMed

    Ueki, Yumi; Wilken, Matthew S; Cox, Kristen E; Chipman, Laura B; Bermingham-McDonogh, Olivia; Reh, Thomas A

    2015-02-01

    The primary glial cells in the retina, the Müller glia, differentiate from retinal progenitors in the first postnatal week. CNTF/LIF/STAT3 signaling has been shown to promote their differentiation; however, another key glial differentiation signal, BMP, has not been examined during this period of Müller glial differentiation. In the course of our analysis of the BMP signaling pathway, we observed a transient wave of Smad1/5/8 signaling in the inner nuclear layer at the end of the first postnatal week, from postnatal day (P) 5 to P9, after the end of neurogenesis. To determine the function of this transient wave, we blocked BMP signaling during this period in vitro or in vivo, using either a BMP receptor antagonist or noggin (Nog). Either treatment leads to a reduction in expression of the Müller glia-specific genes Rlbp1 and Glul, and the failure of many of the Müller glia to repress the bipolar/photoreceptor gene Otx2. These changes in normal Müller glial differentiation result in permanent disruption of the retina, including defects in the outer limiting membrane, rosette formation and a reduction in functional acuity. Our results thus show that Müller glia require a transient BMP signal at the end of neurogenesis to fully repress the neural gene expression program and to promote glial gene expression. PMID:25605781

  10. Regulation of Human Neurotropic JC Virus Replication by Alternative Splicing Factor SF2/ASF in Glial Cells

    PubMed Central

    Sariyer, Ilker Kudret; Khalili, Kamel

    2011-01-01

    Background The human neurotropic virus, JC virus (JCV), is the etiologic agent of the fatal demyelinating disease of the central nervous system, Progressive Multifocal Leukoencephlopathy (PML) that is seen primarily in immunodeficient individuals. Productive infection of JCV occurs only in glial cells, and this restriction is, to a great extent, due to the activation of the viral promoter that has cell type-specific characteristics. Earlier studies led to the hypothesis that glial-specific activation of the JCV promoter is mediated through positive and negative transcription factors that control reactivation of the JCV genome under normal physiological conditions and suppress its activation in non-glial cells. Methodololgy/Principal Findings Using a variety of virological and molecular biological approaches, we demonstrate that the alternative splicing factor SF2/ASF has the capacity to exert a negative effect on transcription of the JCV promoter in glial cells through direct association with a specific DNA sequence within the viral enhancer/promoter region. Our results show that down-regulation of SF2/ASF in fetal and adult glial cells increases the level of JCV gene expression and its replication indicating that negative regulation of the JCV promoter by SF2/ASF may control reactivation of JCV replication in brain. Conclusions/Significance Our results establish a new regulatory role for SF2/ASF in controlling gene expression at the transcriptional level. PMID:21297941

  11. Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex

    PubMed Central

    Ghashghaei, H.T.; Weimer, Jill M.; Schmid, Ralf S.; Yokota, Yukako; McCarthy, Ken D.; Popko, Brian; Anton, E.S.

    2007-01-01

    Radial glial cells play a critical role in the construction of mammalian brain by functioning as a source of new neurons and by providing a scaffold for radial migration of new neurons to their target locations. Radial glia transform into astrocytes at the end of embryonic development. Strategies to promote functional recovery in the injured adult brain depend on the generation of new neurons and the appropriate guidance of these neurons to where they are needed, two critical functions of radial glia. Thus, the competence to regain radial glial identity in the adult brain is of significance for the ability to promote functional repair via neurogenesis and targeted neuronal migration in the mature brain. Here we show that the in vivo induction of the tyrosine kinase receptor, ErbB2, in mature astrocytes enables a subset of them to regain radial glial identity in the mature cerebral cortex. These new radial glial progenitors are capable of giving rise to new neurons and can support neuronal migration. These studies indicate that ErbB2 signaling critically modulates the functional state of radial glia, and induction of ErbB2 in distinct adult astrocytes can promote radial glial identity in the mature cerebral cortex. PMID:18079173

  12. Bioluminescent imaging of Ca2+ activity reveals spatiotemporal dynamics in glial networks of dark-adapted mouse retina

    PubMed Central

    Agulhon, Cendra; Platel, Jean-Claude; Kolomiets, Bogdan; Forster, Valérie; Picaud, Serge; Brocard, Jacques; Faure, Philippe; Brulet, Philippe

    2007-01-01

    Glial Ca2+ excitability plays a key role in reciprocal neuron–glia communication. In the retina, neuron–glia signalling is expected to be maximal in the dark, but the glial Ca2+ signal characteristics under such conditions have not been evaluated. To address this question, we used bioluminescence imaging to monitor spontaneous Ca2+ changes under dark conditions selectively in Müller cells, the principal retinal glial cells. By combining this imaging approach with network analysis, we demonstrate that activity in Müller cells is organized in networks of coactive cells, involving 2–16 cells located distantly and/or in clusters. We also report that spontaneous activity of small networks (2–6 Müller cells) repeat over time, sometimes in the same sequential order, revealing specific temporal dynamics. In addition, we show that networks of coactive glial cells are inhibited by TTX, indicating that ganglion and/or amacrine neuronal cells probably regulate Müller cell network properties. These results represent the first demonstration that spontaneous activity in adult Müller cells is patterned into correlated networks that display repeated sequences of coactivations over time. Furthermore, our bioluminescence technique provides a novel tool to study the dynamic characteristics of glial Ca2+ events in the retina under dark conditions, which should greatly facilitate future investigations of retinal dark-adaptive processes. PMID:17627996

  13. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging

    PubMed Central

    Kurihara, Daisuke; Mizuta, Yoko; Sato, Yoshikatsu; Higashiyama, Tetsuya

    2015-01-01

    Imaging techniques for visualizing and analyzing precise morphology and gene expression patterns are essential for understanding biological processes during development in all organisms. With the aid of chemical screening, we developed a clearing method using chemical solutions, termed ClearSee, for deep imaging of morphology and gene expression in plant tissues. ClearSee rapidly diminishes chlorophyll autofluorescence while maintaining fluorescent protein stability. By adjusting the refractive index mismatch, whole-organ and whole-plant imaging can be performed by both confocal and two-photon excitation microscopy in ClearSee-treated samples. Moreover, ClearSee is applicable to multicolor imaging of fluorescent proteins to allow structural analysis of multiple gene expression. Given that ClearSee is compatible with staining by chemical dyes, the technique is useful for deep imaging in conjunction with genetic markers and for plant species not amenable to transgenic approaches. This method is useful for whole imaging for intact morphology and will help to accelerate the discovery of new phenomena in plant biological research. PMID:26493404

  14. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging.

    PubMed

    Kurihara, Daisuke; Mizuta, Yoko; Sato, Yoshikatsu; Higashiyama, Tetsuya

    2015-12-01

    Imaging techniques for visualizing and analyzing precise morphology and gene expression patterns are essential for understanding biological processes during development in all organisms. With the aid of chemical screening, we developed a clearing method using chemical solutions, termed ClearSee, for deep imaging of morphology and gene expression in plant tissues. ClearSee rapidly diminishes chlorophyll autofluorescence while maintaining fluorescent protein stability. By adjusting the refractive index mismatch, whole-organ and whole-plant imaging can be performed by both confocal and two-photon excitation microscopy in ClearSee-treated samples. Moreover, ClearSee is applicable to multicolor imaging of fluorescent proteins to allow structural analysis of multiple gene expression. Given that ClearSee is compatible with staining by chemical dyes, the technique is useful for deep imaging in conjunction with genetic markers and for plant species not amenable to transgenic approaches. This method is useful for whole imaging for intact morphology and will help to accelerate the discovery of new phenomena in plant biological research. PMID:26493404

  15. The Interrelationships of Mathematical Precursors in Kindergarten

    ERIC Educational Resources Information Center

    Cirino, Paul T.

    2011-01-01

    This study evaluated the interrelations among cognitive precursors across quantitative, linguistic, and spatial attention domains that have been implicated for math achievement in young children. The dimensionality of the quantity precursors was evaluated in 286 kindergarteners via latent variable techniques, and the contribution of precursors…

  16. Precursors in gas-liquid mixtures

    NASA Astrophysics Data System (ADS)

    Gasenko, V. G.; Gorelik, R. S.; Nakoryakov, V. E.; Timkin, L. S.

    2013-10-01

    Two types of precursors propagating at the speed of sound in a pure liquid have been revealed in the experiments on the evolution of pressure pulses in a gas-liquid mixture; at the same time, the main pressure pulse propagates at a low equilibrium speed of sound and its evolution is described by the Burgers-Korteweg-de Vries equation. The first high-frequency precursor is a complete analog of a classical Sommerfeld precursor, because the resonance dispersion equation for a bubble mixture coincides with that for insulators in the Lorentz model, and oscillates at a frequency close to the "plasma frequency." The second low-frequency precursor has been revealed in this work. The frequency of the low-frequency precursor is close to the resonance frequency of pulsations of bubbles, which is almost an order of magnitude lower than the frequency of the high-frequency precursor. The low-frequency precursor has a much larger amplitude of pulsations and smaller damping and is not described within the homogeneous model of the gas-liquid mixture. The observed phenomenon of low-frequency precursors has been explained within a simple heterogeneous model of a bubble liquid.

  17. Precursors and adjuncts of a lunar base

    NASA Technical Reports Server (NTRS)

    Burke, J. D.

    1988-01-01

    The automated, teleoperated, robotic and human-tended subsystems which will precede and accompany a lunar base program are discussed. The information about lunar conditions that can be provided by such precursors and adjuncts is addressed. The use of precursors and adjuncts for communications and navigation, for safety and survival, for lunar archives, and for entertainment and leisure is examined.

  18. Optical clearing in photoacoustic flow cytometry.

    PubMed

    Menyaev, Yulian A; Nedosekin, Dmitry A; Sarimollaoglu, Mustafa; Juratli, Mazen A; Galanzha, Ekaterina I; Tuchin, Valery V; Zharov, Vladimir P

    2013-01-01

    Clinical applications of photoacoustic (PA) flow cytometry (PAFC) for detection of circulating tumor cells in deep blood vessels are hindered by laser beam scattering, that result in loss of PAFC sensitivity and resolution. We demonstrate biocompatible and rapid optical clearing (OC) of skin to minimize light scattering and thus, increase optical resolution and sensitivity of PAFC. OC effect was achieved in 20 min by sequent skin cleaning, microdermabrasion, and glycerol application enhanced by massage and sonophoresis. Using 0.8 mm mouse skin layer over a blood vessel in vitro phantom we demonstrated 1.6-fold decrease in laser spot blurring accompanied by 1.6-fold increase in PA signal amplitude from blood background. As a result, peak rate for B16F10 melanoma cells in blood flow increased 1.7-fold. By using OC we also demonstrated the feasibility of PA contrast improvement for human hand veins. PMID:24409398

  19. Clear cell adenocarcinoma arising from adenomyosis.

    PubMed

    Hirabayashi, Kenichi; Yasuda, Masanori; Kajiwara, Hiroshi; Nakamura, Naoya; Sato, Shigeru; Nishijima, Yoshihiro; Mikami, Mikio; Osamura, Robert Yoshiyuki

    2009-05-01

    A 73-year-old postmenopausal Japanese woman presented with a complaint of slight fever and weight loss. An elevated level of CA125 in the blood favored a diagnosis of malignant uterine body tumor, but was not confirmed by endometrial cytology and biopsy. Resection of the uterus revealed a solid whitish tumor in the myometrium that was diagnosed as clear cell adenocarcinoma (CCA) arising from adenomyosis. There were transitions between endometrial epithelium of adenomyosis, noninvasive CCA, and invasive CCA. Immunohistochemical expression of hepatocyte nuclear factor-1beta supported the diagnosis of CCA. Only one other English language document pertaining to CCA arising from adenomyosis exists. Malignant tumor arising from adenomyosis should be considered as a differential diagnosis when the serum level of tumor markers such as CA125 is high and when the tumor is intramyometrial. PMID:19620944

  20. Atypical presentation of clear cell odontogenic carcinoma.

    PubMed

    Infante-Cossio, Pedro; Torres-Carranza, Eusebio; Gonzalez-Perez, Luis-Miguel; Gonzalez-Cardero, Eduardo; Sanchez-Gallego, Felicia

    2012-09-01

    Clear cell odontogenic carcinoma (CCOC) is a rare malignant neoplasm of odontogenic origin. The usual clinical presentation of CCOC is a mass of progressive growth in the mandible sometimes accompanied with loss of teeth, pain, or bleeding. We describe a rare case of CCOC that showed an atypical presentation not previously described in the literature like a fast-growing painless mass in the retromolar area that reached a considerable size in a few days that caused obstruction of the airway. The presence of airway obstruction required immediate treatment, which consisted of a surgical excision of the tumor via a hemimandibulectomy. This clinical report highlights the possibility of odontogenic tumors presenting like a rapid-growing mass and the importance of clinical differential diagnosis of such presentation. PMID:22976710

  1. EBM, HTA, and CER: Clearing the Confusion

    PubMed Central

    Luce, Bryan R; Drummond, Michael; Jönsson, Bengt; Neumann, Peter J; Schwartz, J Sanford; Siebert, Uwe; Sullivan, Sean D

    2010-01-01

    Context: The terms evidence-based medicine (EBM), health technology assessment (HTA), comparative effectiveness research (CER), and other related terms lack clarity and so could lead to miscommunication, confusion, and poor decision making. The objective of this article is to clarify their definitions and the relationships among key terms and concepts. Methods: This article used the relevant methods and policy literature as well as the websites of organizations engaged in evidence-based activities to develop a framework to explain the relationships among the terms EBM, HTA, and CER. Findings: This article proposes an organizing framework and presents a graphic demonstrating the differences and relationships among these terms and concepts. Conclusions: More specific terminology and concepts are necessary for an informed and clear public policy debate. They are even more important to inform decision making at all levels and to engender more accountability by the organizations and individuals responsible for these decisions. PMID:20579285

  2. Optical clearing in photoacoustic flow cytometry

    PubMed Central

    Menyaev, Yulian A.; Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Juratli, Mazen A.; Galanzha, Ekaterina I.; Tuchin, Valery V.; Zharov, Vladimir P.

    2013-01-01

    Clinical applications of photoacoustic (PA) flow cytometry (PAFC) for detection of circulating tumor cells in deep blood vessels are hindered by laser beam scattering, that result in loss of PAFC sensitivity and resolution. We demonstrate biocompatible and rapid optical clearing (OC) of skin to minimize light scattering and thus, increase optical resolution and sensitivity of PAFC. OC effect was achieved in 20 min by sequent skin cleaning, microdermabrasion, and glycerol application enhanced by massage and sonophoresis. Using 0.8 mm mouse skin layer over a blood vessel in vitro phantom we demonstrated 1.6-fold decrease in laser spot blurring accompanied by 1.6-fold increase in PA signal amplitude from blood background. As a result, peak rate for B16F10 melanoma cells in blood flow increased 1.7-fold. By using OC we also demonstrated the feasibility of PA contrast improvement for human hand veins. PMID:24409398

  3. The Protease Ste24 Clears Clogged Translocons.

    PubMed

    Ast, Tslil; Michaelis, Susan; Schuldiner, Maya

    2016-01-14

    Translocation into the endoplasmic reticulum (ER) is the first step in the biogenesis of thousands of eukaryotic endomembrane proteins. Although functional ER translocation has been avidly studied, little is known about the quality control mechanisms that resolve faulty translocational states. One such faulty state is translocon clogging, in which the substrate fails to properly translocate and obstructs the translocon pore. To shed light on the machinery required to resolve clogging, we carried out a systematic screen in Saccharomyces cerevisiae that highlighted a role for the ER metalloprotease Ste24. We could demonstrate that Ste24 approaches the translocon upon clogging, and it interacts with and generates cleavage fragments of the clogged protein. Importantly, these functions are conserved in the human homolog, ZMPSTE24, although disease-associated mutant forms of ZMPSTE24 fail to clear the translocon. These results shed light on a new and critical task of Ste24, which safeguards the essential process of translocation. PMID:26771486

  4. Anorectic activity of prostaglandin precursors.

    PubMed Central

    Doggett, N S; Jawaharlal, K

    1977-01-01

    1 Intraperitoneal and intragastric (i.g.) administration of prostaglandin precursors arachidonic (2 mg, 15 mg/kg, i.p; 30 mg/kg i.g.), linolenic (100 mg/kg i.p.; 200 mg/kg, i.g.) and linoleic (15, 100 mg/kg, i.p.; 100 mg/kg, i.g.) acids to 22 h food-deprived rats inhibits food intake. 2 This anorexia is similar to that induced by prostaglandin F2alpha (1 mg/kg, i.p.). 3 At anorectic doses these fatty acids do not cause pyrexia, in fact arachidonic acid causes hypothermia. 4 Prior treatment with indomethacin (15 mg/kg) and paracetamol (50 mg/kg) specifically reverses the anorexia and the behavioural satiety induced by the three fatty acids, while not affecting prostaglandin F2alpha-induced suppression of food intake. 5 Results of the present experiments suggest that both physiological and pharmacological modification of appetite could be brought about through an effect on prostaglandin generating systems. PMID:890209

  5. Precursor films in wetting phenomena.

    PubMed

    Popescu, M N; Oshanin, G; Dietrich, S; Cazabat, A-M

    2012-06-20

    The spontaneous spreading of non-volatile liquid droplets on solid substrates poses a classic problem in the context of wetting phenomena. It is well known that the spreading of a macroscopic droplet is in many cases accompanied by a thin film of macroscopic lateral extent, the so-called precursor film, which emanates from the three-phase contact line region and spreads ahead of the latter with a much higher speed. Such films have been usually associated with liquid-on-solid systems, but in the last decade similar films have been reported to occur in solid-on-solid systems. While the situations in which the thickness of such films is of mesoscopic size are fairly well understood, an intriguing and yet to be fully understood aspect is the spreading of microscopic, i.e. molecularly thin, films. Here we review the available experimental observations of such films in various liquid-on-solid and solid-on-solid systems, as well as the corresponding theoretical models and studies aimed at understanding their formation and spreading dynamics. Recent developments and perspectives for future research are discussed. PMID:22627067

  6. Classification of precursors in nanoscale droplets

    NASA Astrophysics Data System (ADS)

    Isele-Holder, Rolf E.; Ismail, Ahmed E.

    2016-04-01

    Molecular precursors, ultrathin films that precede spreading droplets, are still far from being understood, despite intensive study. The inherent microscopic length scales make small-scale experimental techniques and molecular simulation ideal methods to study this phenomenon. Previous work on molecular precursors using nanoscale droplets, however, consistently suffers from incorrect measurement of the dimensions of the precursor film. An alternative method to accurately characterize the precursor film is presented here. In contrast to previous measures, this method (i) allows for easy detection and characterization of precursors and (ii) yields wetting dynamics that agree with experimental observations. Finally, we briefly comment on previous studies whose conclusions may merit reconsideration in light of the present work.

  7. The Interrelationships of Mathematical Precursors in Kindergarten

    PubMed Central

    Cirino, Paul T.

    2011-01-01

    This study evaluated the interrelations among cognitive precursors across quantitative, linguistic, and spatial attention domains that have been implicated for math achievement in young children. The dimensionality of the quantity precursors was evaluated in 286 Kindergarteners via latent variable techniques, and the contribution of precursors from each domain was established for small sums addition. Results showed a five factor structure for the quantity precursors with the major distinction between nonsymbolic and symbolic tasks. The overall model demonstrated good fit, and strong predictive power (R2 = 55%) for addition number combinations. Linguistic and spatial attention domains showed indirect relationships with outcomes, with their effects mediated by symbolic quantity measures. These results have implications for the measurement of mathematical precursors, and yield promise for predicting future math performance. PMID:21194711

  8. Method of texturing a superconductive oxide precursor

    DOEpatents

    DeMoranville, Kenneth L.; Li, Qi; Antaya, Peter D.; Christopherson, Craig J.; Riley, Jr., Gilbert N.; Seuntjens, Jeffrey M.

    1999-01-01

    A method of forming a textured superconductor wire includes constraining an elongated superconductor precursor between two constraining elongated members placed in contact therewith on opposite sides of the superconductor precursor, and passing the superconductor precursor with the two constraining members through flat rolls to form the textured superconductor wire. The method includes selecting desired cross-sectional shape and size constraining members to control the width of the formed superconductor wire. A textured superconductor wire formed by the method of the invention has regular-shaped, curved sides and is free of flashing. A rolling assembly for single-pass rolling of the elongated precursor superconductor includes two rolls, two constraining members, and a fixture for feeding the precursor superconductor and the constraining members between the rolls. In alternate embodiments of the invention, the rolls can have machined regions which will contact only the elongated constraining members and affect the lateral deformation and movement of those members during the rolling process.

  9. Regulatory role of a neurotransmitter (5-HT) on glial Na+/K(+)-ATPase in the rat brain.

    PubMed

    Mercado, R; Hernández, J

    1992-07-01

    In the present work we studied the effect of serotonin (5-HT) on the kinetics of Na+/K(+)-ATPase in subcellular preparations of the cerebral cortex from male Wistar rats using various concentrations of ATP and K+ with and without added 5-HT. Also we studied the effect of 5-HT on the enzyme in glial or neuronal preparations. The results indicated that there was a significant increase (P < 0.05) of the Vmax in the presence of 5-HT in the whole tissue preparation (homogenate) but not in the subcellular fractions, suggesting that the interaction could be preferentially with the glial pump. Further results supported that this was the case since activation by 5-HT was mainly in the glial preparations. Kinetic data and the binding of [3H]ouabain supported that the enzyme is activated by 5-HT through the exposure of more enzymatic active sites. PMID:1303137

  10. Molecular effective coverage surface area of optical clearing agents for predicting optical clearing potential

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Ma, Ning; Zhu, Dan

    2015-03-01

    The improvement of methods for optical clearing agent prediction exerts an important impact on tissue optical clearing technique. The molecular dynamic simulation is one of the most convincing and simplest approaches to predict the optical clearing potential of agents by analyzing the hydrogen bonds, hydrogen bridges and hydrogen bridges type forming between agents and collagen. However, the above analysis methods still suffer from some problem such as analysis of cyclic molecule by reason of molecular conformation. In this study, a molecular effective coverage surface area based on the molecular dynamic simulation was proposed to predict the potential of optical clearing agents. Several typical cyclic molecules, fructose, glucose and chain molecules, sorbitol, xylitol were analyzed by calculating their molecular effective coverage surface area, hydrogen bonds, hydrogen bridges and hydrogen bridges type, respectively. In order to verify this analysis methods, in vitro skin samples optical clearing efficacy were measured after 25 min immersing in the solutions, fructose, glucose, sorbitol and xylitol at concentration of 3.5 M using 1951 USAF resolution test target. The experimental results show accordance with prediction of molecular effective coverage surface area. Further to compare molecular effective coverage surface area with other parameters, it can show that molecular effective coverage surface area has a better performance in predicting OCP of agents.

  11. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders

    PubMed Central

    Noda, Mami

    2015-01-01

    It is widely accepted that there is a close relationship between the endocrine system and the central nervous system (CNS). Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the development and function of the CNS; not only for neuronal cells but also for glial development and differentiation. Any impairment of TH supply to the developing CNS causes severe and irreversible changes in the overall architecture and function of the human brain, leading to various neurological dysfunctions. In the adult brain, impairment of THs, such as hypothyroidism and hyperthyroidism, can cause psychiatric disorders such as schizophrenia, bipolar disorder, anxiety and depression. Although impact of hypothyroidism on synaptic transmission and plasticity is known, its effect on glial cells and related cellular mechanisms remain enigmatic. This mini-review article summarizes how THs are transported into the brain, metabolized in astrocytes and affect microglia and oligodendrocytes, demonstrating an example of glioendocrine system. Neuroglial effects may help to understand physiological and/or pathophysiological functions of THs in the CNS and how hypo- and hyper-thyroidism may cause mental disorders. PMID:26089777

  12. THE ROLE OF TUMOR PROGRESSION LOCUS 2 (TPL-2) PROTEIN KINASE IN GLIAL INFLAMMATORY RESPONSE

    PubMed Central

    Hirschhorn, Joshua; Mohanty, Sangeeta; Bhat, Narayan R.

    2013-01-01

    Tumor progression locus 2 (Tpl2)/Cot kinase is a newer member of MAP3K family that is now known for its essential role in TNFα expression in macrophages, but its proinflammatory signaling, if any, in glia is unknown. When cultures of murine microglia and astrocytes were exposed to lipopolysaccharide, there was a rapid activation (i.e., phosphorylation) of Tpl2 in parallel to the activation of down-stream effector MAPKs i.e., ERK, p38 MAPK and JNK. Pre-incubation of the cultures with a Tpl2 inhibitor selectively suppressed the activation of the primary down-stream target i.e., ERK relative to p38 MAPK and JNK. That Tpl2 activation was functionally involved in glial inflammatory response was indicated by a reduced release of the cytokines i.e., TNFα and the expression of inducible nitric oxide synthase (iNOS) in the presence of the kinase inhibitor. Further, overexpression of a wild-type Tpl2 construct in C-6 glia resulted in an enhanced transcriptional activation of iNOS while transfection with a dominant negative form of Tpl-2 had the opposite effect. The findings assign an important proinflammatory signaling function for Tpl2 pathway in glial cells. PMID:24188160

  13. Electron probe X-ray microanalysis of residual bodies in aged cultured human glial cells

    SciTech Connect

    Blomquist, E.; Fredriksson, B.A.; Brunk, U.

    1980-01-01

    Secondary lysosomes of the residual body type are frequent in nondividing cells from phase III cultures of human glial cells. These organelles have previously been shown to be analogous to lipofuscin granules of postmitotic cells in vivo. Most recent studies favor the assumption that residual bodies mainly result from incomplete degradation within the lysosomal vacuome of endogenous cellular components such as mitochondria and endoplasmic reticulum. Since iron occurs in several metalloenzymes produced by such organelles, it should then be possible to demonstrate accumulated iron within residual bodies. X-ray dispersive analysis of sectioned biological material is often hampered by diffusion and dissolution during preparation, as well as by too low a concentration of the elements. In this study we cultured glial cells on Formvar-coated gold grids and studied them unsectioned, after brief glutaraldehyde fixation and freeze-drying, in a transmission electron microscope at 100 kV in TEM and STEM mode. It was then possible to demonstrate iron in residual bodies of aged cells, presumably because the type of preparation utilized does not permit much dissolution.

  14. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments. PMID:27026484

  15. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders.

    PubMed

    Noda, Mami

    2015-01-01

    It is widely accepted that there is a close relationship between the endocrine system and the central nervous system (CNS). Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the development and function of the CNS; not only for neuronal cells but also for glial development and differentiation. Any impairment of TH supply to the developing CNS causes severe and irreversible changes in the overall architecture and function of the human brain, leading to various neurological dysfunctions. In the adult brain, impairment of THs, such as hypothyroidism and hyperthyroidism, can cause psychiatric disorders such as schizophrenia, bipolar disorder, anxiety and depression. Although impact of hypothyroidism on synaptic transmission and plasticity is known, its effect on glial cells and related cellular mechanisms remain enigmatic. This mini-review article summarizes how THs are transported into the brain, metabolized in astrocytes and affect microglia and oligodendrocytes, demonstrating an example of glioendocrine system. Neuroglial effects may help to understand physiological and/or pathophysiological functions of THs in the CNS and how hypo- and hyper-thyroidism may cause mental disorders. PMID:26089777

  16. Agenesis of the Corpus Callosum Due to Defective Glial Wedge Formation in Lhx2 Mutant Mice.

    PubMed

    Chinn, Gregory A; Hirokawa, Karla E; Chuang, Tony M; Urbina, Cecilia; Patel, Fenil; Fong, Jeanette; Funatsu, Nobuo; Monuki, Edwin S

    2015-09-01

    Establishment of the corpus callosum involves coordination between callosal projection neurons and multiple midline structures, including the glial wedge (GW) rostrally and hippocampal commissure caudally. GW defects have been associated with agenesis of the corpus callosum (ACC). Here we show that conditional Lhx2 inactivation in cortical radial glia using Emx1-Cre or Nestin-Cre drivers results in ACC. The ACC phenotype was characterized by aberrant ventrally projecting callosal axons rather than Probst bundles, and was 100% penetrant on 2 different mouse strain backgrounds. Lhx2 inactivation in postmitotic cortical neurons using Nex-Cre mice did not result in ACC, suggesting that the mutant phenotype was not autonomous to the callosal projection neurons. Instead, ACC was associated with an absent hippocampal commissure and a markedly reduced to absent GW. Expression studies demonstrated strong Lhx2 expression in the normal GW and in its radial glial progenitors, with absence of Lhx2 resulting in normal Emx1 and Sox2 expression, but premature exit from the cell cycle based on EdU-Ki67 double labeling. These studies define essential roles for Lhx2 in GW, hippocampal commissure, and corpus callosum formation, and suggest that defects in radial GW progenitors can give rise to ACC. PMID:24781987

  17. Altered Expression of Glial and Synaptic Markers in the Anterior Hippocampus of Behaviorally Depressed Female Monkeys

    PubMed Central

    Willard, Stephanie L.; Hemby, Scott E.; Register, Thomas C.; McIntosh, Scot; Shively, Carol A.

    2014-01-01

    The anterior hippocampus is associated with emotional functioning and hippocampal volume is reduced in depression. We reported reduced neuropil volume and number of glia in the dentate gyrus (DG) and cornu ammonis (CA)1 of the anterior hippocampus in behaviorally depressed adult female cynomolgus macaques. To determine the biochemical correlates of morphometric and behavioral differences between behaviorally depressed and nondepressed adult female monkeys, glial and synaptic transcripts and protein levels were assessed in the DG, CA3 and CA1 of the anterior hippocampus. Glial fibrillary acidic protein (GFAP) was increased whereas spinophilin and postsynaptic density (PSD)-95 protein were decreased in the CA1 of depressed monkeys. GFAP was reciprocally related to spinophilin and PSD-95 protein in the CA1. Gene expression of GFAP paralleled the protein changes observed in the CA1 and was inversely related to serum estradiol levels in depressed monkeys. These results suggest that behavioral depression in female primates is accompanied by astrocytic and synaptic protein alterations in the CA1. Moreover, these findings indicate a potential role for estrogen in modulating astrocyte-mediated impairments in synaptic plasticity. PMID:24440617

  18. [An Autopsy Case of Globular Glial Tauopathy Presenting with Amyotrophic Lateral Sclerosis with Dementia].

    PubMed

    Sasaki, Ryogen; Mimuro, Maya; Kokubo, Yasumasa; Imai, Hiroshi; Yoshida, Mari; Tomimoto, Hidekazu

    2016-08-01

    We report an autopsy case of globular glial tauopathy (GGT) presenting clinically with amyotrophic lateral sclerosis (ALS) with dementia. A 79-year-old female developed weakness in the right upper limb, which progressed gradually. She developed apathy and speech disorder at 80 years of age. On neurological examination, she showed signs of upper and lower motor neuron disorder and dementia, but no extrapyramidal signs. The clinical diagnosis was ALS with dementia. The autopsy revealed left predominant marked atrophy of the frontal lobe due to severe neuronal loss and Gliosis. Immunohistochemistry using anti-4-repeat tau antibody revealed numerous globular glial inclusions. Severe neurodegeneration in the primary motor cortex and corticospinal tract was observed. There were distinctive tau-positive inclusions in both Betz and anterior horn cells. TDP-43-positive inclusions in motor neurons were not detected. Sequence analysis of the tau gene revealed no mutations in exons 1-5, 7, 9-13, or the adjacent intronic sequences. GGT can cause a clinical phenotype of ALS with dementia. (Received December 28, 2015; Accepted February 23, 2016; Published August 1, 2016). PMID:27503823

  19. Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes

    SciTech Connect

    Lieuallen, Kimberly; Pennacchio, Len A.; Park, Morgan; Myers, Richard M.; Lennon, Gregory G.

    2001-07-05

    Loss-of-function mutations in the cystatin B (Cstb) gene cause a neurological disorder known as Unverricht Lundborg disease (EPM1) in human patients. Mice that lack Cstb provide a mammalian model for EPM1 by displaying progressive ataxia and myoclonic seizures. We analyzed RNAs from brains of Cstb-deficient mice by using modified differential display, oligonucleotide microarray hybridization and quantitative reverse transcriptase polymerase chain reaction to examine the molecular consequences of the lack of Cstb. We identified seven genes that have consistently increased transcript levels in neurological tissues from the knockout mice. These genes are cathepsin S, C1q B-chain of complement (C1qB), beta-2-microglobulin, glial fibrillary acidic protein (Gfap), apolipoprotein D, fibronectin 1 and metallothionein II, which are expected to be involved in increased proteolysis, apoptosis and glial activation. The molecular changes in Cstb-deficient mice are consistent with the pathology found in the mouse model and may provide clues towards the identification of therapeutic points of intervention for EPM1 patients.

  20. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    PubMed Central

    Orellana, Juan A.; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J.; Stehberg, Jimmy; Sáez, Juan C.

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression. PMID:25883550

  1. Synchronization of stochastic systems: from paddlefish electroreceptors to human epileptic glial cell cultures

    NASA Astrophysics Data System (ADS)

    Neiman, Alexander

    2000-03-01

    Synchronization is one of the fundamental nonlinear phenomena observed in nature. We have studied stochastic synchronization in the electrosensitive system of the paddlefish, Polyodon spathula and have also applied synchronization analysis to networks of glial cells cultured from brain tissue of patients with severe epilepsy. We also present theoretical and numerical models for stochastic synchronization. The electrosensitive system of the paddlefish consists of tens of thousands of electroreceptors located mainly on the "rostrum", which serves as an antenna to locate plankton. Each electroreceptor is a noisy oscillator with natural frequencies in the range of 30-90 Hz. We study synchronization in vivo due to 3-20 Hz external periodic electric fields, which correspond to natural signals produced by Daphnia, the usual prey of paddlefish. We find that for signals whose strengths are in the range that paddlefish customarily encounter in the wild, synchronization coding offers a plausible alternative to the more usual rate coding. We also have studied mutual synchronization between different electroreceptors. Although the spontaneous firing of distant electroreceptors is not synchronized, synchronization is observed when external periodic or even noisy electric fields are applied. We have applied the same analysis techniques to examine synchronization between groups of glial cells. In contrast to cultures of healthy astrocytes, which demonstrate calcium waves, the networks from epileptic tissue are characterized by spatially disordered hyper activity. Nevertheless, we have found that, in many cases, synchronized activity is a rather typical for tissue taken from the uncus region of the brain.

  2. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease.

    PubMed

    Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia

    2016-01-01

    Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression. PMID:27512952

  3. Temporal patterns of cortical proliferation of glial cell populations after traumatic brain injury in mice

    PubMed Central

    Susarla, Bala T.S.; Villapol, Sonia; Yi, Jae-Hyuk; Geller, Herbert M.; Symes, Aviva J.

    2014-01-01

    TBI (traumatic brain injury) triggers an inflammatory cascade, gliosis and cell proliferation following cell death in the pericontusional area and surrounding the site of injury. In order to better understand the proliferative response following CCI (controlled cortical impact) injury, we systematically analyzed the phenotype of dividing cells at several time points post-lesion. C57BL/6 mice were subjected to mild to moderate CCI over the left sensory motor cortex. At different time points following injury, mice were injected with BrdU (bromodeoxyuridine) four times at 3-h intervals and then killed. The greatest number of proliferating cells in the pericontusional region was detected at 3 dpi (days post-injury). At 1 dpi, NG2+ cells were the most proliferative population, and at 3 and 7 dpi the Iba-1+ microglial cells were proliferating more. A smaller, but significant number of GFAP+ (glial fibrillary acidic protein) astrocytes proliferated at all three time points. Interestingly, at 3 dpi we found a small number of proliferating neuroblasts [DCX+ (doublecortin)] in the injured cortex. To determine the cell fate of proliferative cells, mice were injected four times with BrdU at 3 dpi and killed at 28 dpi. Approximately 70% of proliferative cells observed at 28 dpi were GFAP+ astrocytes. In conclusion, our data suggest that the specific glial cell types respond differentially to injury, suggesting that each cell type responds to a specific pattern of growth factor stimulation at each time point after injury. PMID:24670035

  4. Modeling Glial Contributions to Seizures and Epileptogenesis: Cation-Chloride Cotransporters in Drosophila melanogaster

    PubMed Central

    Rusan, Zeid M.; Kingsford, Olivia A.; Tanouye, Mark A.

    2014-01-01

    Flies carrying a kcc loss-of-function mutation are more seizure-susceptible than wild-type flies. The kcc gene is the highly conserved Drosophila melanogaster ortholog of K+/Cl− cotransporter genes thought to be expressed in all animal cell types. Here, we examined the spatial and temporal requirements for kcc loss-of-function to modify seizure-susceptibility in flies. Targeted RNA interference (RNAi) of kcc in various sets of neurons was sufficient to induce severe seizure-sensitivity. Interestingly, kcc RNAi in glia was particularly effective in causing seizure-sensitivity. Knockdown of kcc in glia or neurons during development caused a reduction in seizure induction threshold, cell swelling, and brain volume increase in 24–48 hour old adult flies. Third instar larval peripheral nerves were enlarged when kcc RNAi was expressed in neurons or glia. Results suggest that a threshold of K+/Cl− cotransport dysfunction in the nervous system during development is an important determinant of seizure-susceptibility in Drosophila. The findings presented are the first attributing a causative role for glial cation-chloride cotransporters in seizures and epileptogenesis. The importance of elucidating glial cell contributions to seizure disorders and the utility of Drosophila models is discussed. PMID:24971529

  5. TAR-independent replication of human immunodeficiency virus type 1 in glial cells.

    PubMed Central

    Bagasra, O; Khalili, K; Seshamma, T; Taylor, J P; Pomerantz, R J

    1992-01-01

    The molecular mechanisms involved in the replication of human immunodeficiency virus type 1 (HIV-1) may differ in various cell types and with various exogenous stimuli. Astrocytic glial cells, which can support HIV-1 replication in cell cultures and may be infected in vivo, are demonstrated to provide a cellular milieu in which TAR mutant HIV-1 viruses may replicate. Using transfections of various TAR mutant HIV-1 proviral constructs, we demonstrate TAR-independent replication in unstimulated astrocytic cells. We further demonstrate, using viral constructs with mutations in the tat gene and in the nuclear factor kappa B (NF-kappa B)-binding sites (enhancer) of the HIV-1 long terminal repeat, that TAR-independent HIV-1 replication in astrocytic cells requires both intact NF-kappa B moiety-binding motifs in the HIV-1 long terminal repeat and Tat expression. We measured HIV-1 p24 antigen production, syncytium formation, and levels and patterns of viral RNA expression by Northern (RNA) blotting to characterize TAR-independent HIV-1 expression in astrocytic glial cells. This alternative regulatory pathway of TAR-independent, Tat-responsive viral production may be important in certain cell types for therapies which seek to perturb Tat-TAR binding as a strategy to interrupt the viral lytic cycle. Images PMID:1433528

  6. Radial glia inhibit peripheral glial infiltration into the spinal cord at motor exit point transition zones.

    PubMed

    Smith, Cody J; Johnson, Kimberly; Welsh, Taylor G; Barresi, Michael J F; Kucenas, Sarah

    2016-07-01

    In the mature vertebrate nervous system, central and peripheral nervous system (CNS and PNS, respectively) GLIA myelinate distinct motor axon domains at the motor exit point transition zone (MEP TZ). How these cells preferentially associate with and myelinate discrete, non-overlapping CNS versus PNS axonal segments, is unknown. Using in vivo imaging and genetic cell ablation in zebrafish, we demonstrate that radial glia restrict migration of PNS glia into the spinal cord during development. Prior to development of radial glial endfeet, peripheral cells freely migrate back and forth across the MEP TZ. However, upon maturation, peripherally located cells never enter the CNS. When we ablate radial glia, peripheral glia ectopically migrate into the spinal cord during developmental stages when they would normally be restricted. These findings demonstrate that radial glia contribute to both CNS and PNS development and control the unidirectional movement of glial cell types across the MEP TZ early in development. GLIA 2016. GLIA 2016;64:1138-1153. PMID:27029762

  7. Nogo receptor 1 is expressed in both primary cultured glial cells and neurons

    PubMed Central

    Ukai, Junichi; Imagama, Shiro; Ohgomori, Tomohiro; Ito, Zenya; Ando, Kei; Ishiguro, Naoki; Kadomatsu, Kenji

    2016-01-01

    ABSTRACT Nogo receptor (NgR) is common in myelin-derived molecules, i.e., Nogo, MAG, and OMgp, and plays important roles in both axon fasciculation and the inhibition of axonal regeneration. In contrast to NgR’s roles in neurons, its roles in glial cells have been poorly explored. Here, we found a dynamic regulation of NgR1 expression during development and neuronal injury. NgR1 mRNA was consistently expressed in the brain from embryonic day 18 to postnatal day 25. In contrast, its expression significantly decreased in the spinal cord during development. Primary cultured neurons, microglia, and astrocytes expressed NgR1. Interestingly, a contusion injury in the spinal cord led to elevated NgR1 mRNA expression at the injury site, but not in the motor cortex, 14 days after injury. Consistent with this, astrocyte activation by TGFβ1 increased NgR1 expression, while microglia activation rather decreased NgR1 expression. These results collectively suggest that NgR1 expression is enhanced in a milieu of neural injury. Our findings may provide insight into the roles of NgR1 in glial cells.

  8. Retinal Glial Cell Glutamate Transporter is Coupled to an Anionic Conductance

    NASA Astrophysics Data System (ADS)

    Eliasof, Scott; Jahr, Craig E.

    1996-04-01

    Application of L-glutamate to retinal glial (Muller) cells results in an inwardly rectifying current due to the net influx of one positive charge per molecule of glutamate transported into the cell. However, at positive potentials an outward current can be elicited by glutamate. This outward current is eliminated by removal of external chloride ions. Substitution of external chloride with the anions thiocyanate, perchlorate, nitrate, and iodide, which are known to be more permeant at other chloride channels, results in a considerably larger glutamate-elicited outward current at positive potentials. The large outward current in external nitrate has the same ionic dependence, apparent affinity for L-glutamate, and pharmacology as the glutamate transporter previously reported to exist in these cells. Varying the concentration of external nitrate shifts the reversal potential in a manner consistent with a conductance permeable to nitrate. Together, these results suggest that the glutamate transporter in retinal glial cells is associated with an anionic conductance. This anionic conductance may be important for preventing a reduction in the rate of transport due the depolarization that would otherwise occur as a result of electrogenic glutamate uptake.

  9. Cells transplanted onto the surface of the glial scar reveal hidden potential for functional neural regeneration

    PubMed Central

    Sekiya, Tetsuji; Holley, Matthew C.; Hashido, Kento; Ono, Kazuya; Shimomura, Koichiro; Horie, Rie T.; Hamaguchi, Kiyomi; Yoshida, Atsuhiro; Sakamoto, Tatsunori; Ito, Juichi

    2015-01-01

    Cell transplantation therapy has long been investigated as a therapeutic intervention for neurodegenerative disorders, including spinal cord injury, Parkinson’s disease, and amyotrophic lateral sclerosis. Indeed, patients have high hopes for a cell-based therapy. However, there are numerous practical challenges for clinical translation. One major problem is that only very low numbers of donor cells survive and achieve functional integration into the host. Glial scar tissue in chronic neurodegenerative disorders strongly inhibits regeneration, and this inhibition must be overcome to accomplish successful cell transplantation. Intraneural cell transplantation is considered to be the best way to deliver cells to the host. We questioned this view with experiments in vivo on a rat glial scar model of the auditory system. Our results show that intraneural transplantation to the auditory nerve, preceded by chondroitinase ABC (ChABC)-treatment, is ineffective. There is no functional recovery, and almost all transplanted cells die within a few weeks. However, when donor cells are placed on the surface of a ChABC-treated gliotic auditory nerve, they autonomously migrate into it and recapitulate glia- and neuron-guided cell migration modes to repair the auditory pathway and recover auditory function. Surface transplantation may thus pave the way for improved functional integration of donor cells into host tissue, providing a less invasive approach to rescue clinically important neural tracts. PMID:26080415

  10. Glial response to 17β-estradiol in neonatal rats with excitotoxic brain injury.

    PubMed

    Pansiot, Julien; Pham, Hoa; Dalous, Jeremie; Chevenne, Didier; Colella, Marina; Schwendimann, Leslie; Fafouri, Assia; Mairesse, Jérôme; Moretti, Raffaella; Schang, Anne-Laure; Charriaut-Marlangue, Christiane; Gressens, Pierre; Baud, Olivier

    2016-08-01

    White-matter injury is the most common cause of the adverse neurodevelopmental outcomes observed in preterm infants. Only few options exist to prevent perinatal brain injury associated to preterm delivery. 17β-estradiol (E2) is the predominant estrogen in circulation and has been shown to be neuroprotective in vitro and in vivo. However, while E2 has been found to modulate inflammation in adult models of brain damage, how estrogens influence glial cells response in the developing brain needs further investigations. Using a model of ibotenate-induced brain injury, we have refined the effects of E2 in the developing brain. E2 provides significant neuroprotection both in the cortical plate and the white matter in neonatal rats subjected to excitotoxic insult mimicking white matter and cortical damages frequently observed in very preterm infants. E2 promotes significant changes in microglial phenotypes balance in response to brain injury and the acceleration of oligodendrocyte maturation. Maturational effects of E2 on myelination process were observed both in vivo and in vitro. Altogether, these data demonstrate that response of glial cells to E2 could be responsible for its neuroprotective properties in neonatal excitotoxic brain injury. PMID:27222132

  11. Nogo receptor 1 is expressed in both primary cultured glial cells and neurons.

    PubMed

    Ukai, Junichi; Imagama, Shiro; Ohgomori, Tomohiro; Ito, Zenya; Ando, Kei; Ishiguro, Naoki; Kadomatsu, Kenji

    2016-08-01

    Nogo receptor (NgR) is common in myelin-derived molecules, i.e., Nogo, MAG, and OMgp, and plays important roles in both axon fasciculation and the inhibition of axonal regeneration. In contrast to NgR's roles in neurons, its roles in glial cells have been poorly explored. Here, we found a dynamic regulation of NgR1 expression during development and neuronal injury. NgR1 mRNA was consistently expressed in the brain from embryonic day 18 to postnatal day 25. In contrast, its expression significantly decreased in the spinal cord during development. Primary cultured neurons, microglia, and astrocytes expressed NgR1. Interestingly, a contusion injury in the spinal cord led to elevated NgR1 mRNA expression at the injury site, but not in the motor cortex, 14 days after injury. Consistent with this, astrocyte activation by TGFβ1 increased NgR1 expression, while microglia activation rather decreased NgR1 expression. These results collectively suggest that NgR1 expression is enhanced in a milieu of neural injury. Our findings may provide insight into the roles of NgR1 in glial cells. PMID:27578914

  12. Galactosphingolipids and axono-glial interaction in myelin of the central nervous system.

    PubMed

    Bosio, A; Büssow, H; Adam, J; Stoffel, W

    1998-05-01

    The myelin of central and peripheral nervous system of UDP-galactose-ceramide galactosyltransferase deficient mice (cgt-/-) is completely depleted of its major lipid constituents, galactocerebrosides and sulfatides. The deficiency of these glycolipids affects the biophysical properties of the myelin sheath and causes the loss of the rapid saltatory conduction velocity of myelinated axons. With the onset of myelination, null mutant cgt-/- mice develop fatal neurological defects. CNS and PNS analysis of cgt-/- mice revealed (1) hypomyelination of axons of the spinal cord and optic nerves, but no apoptosis of oligodendrocytes, (2) redundant myelin in younger mice leading to vacuolated nerve fibers in cgt-/- mice, (3) the occurrence of multiple myelinated CNS axons, and (4) severely distorted lateral loops in CNS paranodes. The loss of saltatory conduction is not associated with a randomization of voltage-gated sodium channels in the axolemma of PNS fibers. We conclude that cerebrosides (GalC) and sulfatides (sGalC) play a major role in CNS axono-glial interaction. A close axono-glial contact is not a prerequisite for the spiraling and compaction process of myelin. Axonal sodium channels remain clustered at the nodes of Ranvier independent of the change in the physical properties of myelin membrane devoid of galactosphingolipids. Increased intracellular concentrations of free ceramides do not trigger apoptosis of oligodendrocytes. PMID:9560463

  13. Neuronal-glial populations form functional networks in a biocompatible 3D scaffold.

    PubMed

    Smith, Imogen; Haag, Marcus; Ugbode, Christopher; Tams, Daniel; Rattray, Marcus; Przyborski, Stefan; Bithell, Angela; Whalley, Benjamin J

    2015-11-16

    Monolayers of neurons and glia have been employed for decades as tools for the study of cellular physiology and as the basis for a variety of standard toxicological assays. A variety of three dimensional (3D) culture techniques have been developed with the aim to produce cultures that recapitulate desirable features of intact. In this study, we investigated the effect of preparing primary mouse mixed neuron and glial cultures in the inert 3D scaffold, Alvetex. Using planar multielectrode arrays, we compared the spontaneous bioelectrical activity exhibited by neuroglial networks grown in the scaffold with that seen in the same cells prepared as conventional monolayer cultures. Two dimensional (monolayer; 2D) cultures exhibited a significantly higher spike firing rate than that seen in 3D cultures although no difference was seen in total signal power (<50Hz) while pharmacological responsiveness of each culture type to antagonism of GABAAR, NMDAR and AMPAR was highly comparable. Interestingly, correlation of burst events, spike firing and total signal power (<50Hz) revealed that local field potential events were associated with action potential driven bursts as was the case for 2D cultures. Moreover, glial morphology was more physiologically normal in 3D cultures. These results show that 3D culture in inert scaffolds represents a more physiologically normal preparation which has advantages for physiological, pharmacological, toxicological and drug development studies, particularly given the extensive use of such preparations in high throughput and high content systems. PMID:26493605

  14. Molecular Profiling of Clear Cell Ovarian Cancers

    PubMed Central

    Friedlander, Michael L.; Russell, Kenneth; Millis, Sherri; Gatalica, Zoran; Bender, Ryan; Voss, Andreas

    2016-01-01

    Background Advanced stage/recurrent clear cell ovarian cancers (CCOCs) are characterized by a low response to chemotherapy and a poor prognosis. There is growing interest in investigating novel/molecular targeted therapies in patients with CCOC in histotype-specific trials. However, CCOCs are not a uniform entity and comprise a number of molecular subtypes and it is unlikely that a single approach to treatment will be appropriate for all patients. The aim of this study was to analyze the results of a multiplatform profiling panel in CCOCs to identify potential therapeutic targets. Patients and Methods Tumor profiling was performed on 521 CCOCs. They were grouped into pure (n = 422) and mixed (n = 99) CCOC for analysis. Testing included a combination of DNA sequencing (including next-generation sequencing) using a 46-gene panel, immunohistochemistry, fluorescent or chromogenic in situ hybridization, and RNA fragment analysis. Results The most common findings were in the PIK3CA/Akt/mTOR pathway, with 61% of all CCOCs showing a molecular alteration in one of these pathway components. Next-generation sequencing revealed PIK3CA mutations in 50% of pure CCOCs. Significant differences were observed between pure and mixed CCOCs with respect to hormone receptor expression (9% vs 34.7% for ER, 13.45 vs 26.4% for PR), cMET (24.1% vs 11.6%), PD-1 tumor infiltrating lymphocytes (48.1% vs 100%), expression of PD-L1 (7.4% vs 25%), and TOPO1 (41% vs 27.1%) on immunohistochemistry, whereas next-generation sequencing revealed significant differences in mutation frequency in PIK3CA (50% vs 18.5%), TP53 (18.1% vs 57.7%), KRAS (12.4% vs 3.7%), and cMET (1.9% vs 11.1%). Conclusions This large study confirms that the PIK3CA/Akt/mTOR pathway is commonly altered in CCOCs, and highlights the significant differences between pure and mixed CCOCs. Clear cell ovarian cancers are molecularly heterogeneous and there are a number of potential therapeutic targets which could be tested in clinical

  15. Involvement of the PI3K/Akt/GSK3β pathway in photodynamic injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Komandirov, M. A.; Knyazeva, E. A.; Fedorenko, Y. P.; Rudkovskii, M. V.; Stetsurin, D. A.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment causes intense oxidative stress and kills cells. It is currently used in neurooncology. However, along with tumor it damages surrounding healthy neuronal and glial cells. In order to study the possible role of the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β signaling pathway in photodynamic damage to normal neurons and glia, we used isolated crayfish stretch receptor that consists only of a single neuron surrounded by glial cells. It was photosensitized with alumophthalocyanine Photosens (100 nM). The laser diode (670nm, 0.4W/cm2) was used as a light source. Application of specific inhibitors of the enzymes involved in this pathway showed that phosphatidylinositol 3-kinase did not participate in photoinduced death of neurons and glia. Protein kinase Akt was involved in photoinduced necrosis but not in apoptosis of neurons and glia. Glycogen synthase kinase-3β participated in photoinduced apoptosis of glial cells and in necrosis of neurons. Therefore, the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β pathway was not involved as a whole in photodynamic injury of crayfish neurons and glial cells but its components, protein kinase Akt and glycogen synthase kinase-3β, independently and cell-specifically regulated photoinduced death of neurons and glial cells. These data showed that in this system necrosis was not non-regulated and catastrophic mode of cell death. It was controlled by some signaling proteins. The obtained results may be used for search of pharmacological agents that selectively modulate injury of normal neurons and glial cells during photodynamic therapy of brain tumors.

  16. Involvement of the PI3K/Akt/GSK3β pathway in photodynamic injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Komandirov, M. A.; Knyazeva, E. A.; Fedorenko, Y. P.; Rudkovskii, M. V.; Stetsurin, D. A.; Uzdensky, A. B.

    2010-10-01

    Photodynamic treatment causes intense oxidative stress and kills cells. It is currently used in neurooncology. However, along with tumor it damages surrounding healthy neuronal and glial cells. In order to study the possible role of the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β signaling pathway in photodynamic damage to normal neurons and glia, we used isolated crayfish stretch receptor that consists only of a single neuron surrounded by glial cells. It was photosensitized with alumophthalocyanine Photosens (100 nM). The laser diode (670nm, 0.4W/cm2) was used as a light source. Application of specific inhibitors of the enzymes involved in this pathway showed that phosphatidylinositol 3-kinase did not participate in photoinduced death of neurons and glia. Protein kinase Akt was involved in photoinduced necrosis but not in apoptosis of neurons and glia. Glycogen synthase kinase-3β participated in photoinduced apoptosis of glial cells and in necrosis of neurons. Therefore, the phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β pathway was not involved as a whole in photodynamic injury of crayfish neurons and glial cells but its components, protein kinase Akt and glycogen synthase kinase-3β, independently and cell-specifically regulated photoinduced death of neurons and glial cells. These data showed that in this system necrosis was not non-regulated and catastrophic mode of cell death. It was controlled by some signaling proteins. The obtained results may be used for search of pharmacological agents that selectively modulate injury of normal neurons and glial cells during photodynamic therapy of brain tumors.

  17. The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury.

    PubMed

    Chen, Chun-Hong; Sung, Chun-Sung; Huang, Shi-Ying; Feng, Chien-Wei; Hung, Han-Chun; Yang, San-Nan; Chen, Nan-Fu; Tai, Ming-Hong; Wen, Zhi-Hong; Chen, Wu-Fu

    2016-04-01

    Several studies suggest that glial scars pose as physical and chemical barriers that limit neurite regeneration after spinal cord injury (SCI). Evidences suggest that the activation of the PI3K/Akt/mTOR signaling pathway is involved in glial scar formation. Therefore, inhibition of the PI3K/Akt/mTOR pathway may beneficially attenuate glial scar formation after SCI. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates the PI3K/Akt/mTOR pathway. Therefore, we hypothesized that the overexpression of PTEN in the spinal cord will have beneficial effects after SCI. In the present study, we intrathecally injected a recombinant adenovirus carrying the pten gene (Ad-PTEN) to cause overexpression of PTEN in rats with contusion injured spinal cords. The results suggest overexpression of PTEN in spinal cord attenuated glial scar formation and led to improved locomotor function after SCI. Overexpression of PTEN following SCI attenuated gliosis, affected chondroitin sulfate proteoglycan expression, and improved axon regeneration into the lesion site. Furthermore, we suggest that the activation of the PI3K/Akt/mTOR pathway in astrocytes at 3 days after SCI may be involved in glial scar formation. Because delayed treatment with Ad-PTEN enhanced motor function recovery more significantly than immediate treatment with Ad-PTEN after SCI, the results suggest that the best strategy to attenuate glial scar formation could be to introduce 3 days after SCI. This study's findings thus have positive implications for patients who are unable to receive immediate medical attention after SCI. PMID:26828688

  18. Studying the glial cell response to biomaterials and surface topography for improving the neural electrode interface

    NASA Astrophysics Data System (ADS)

    Ereifej, Evon S.

    Neural electrode devices hold great promise to help people with the restoration of lost functions, however, research is lacking in the biomaterial design of a stable, long-term device. Current devices lack long term functionality, most have been found unable to record neural activity within weeks after implantation due to the development of glial scar tissue (Polikov et al., 2006; Zhong and Bellamkonda, 2008). The long-term effect of chronically implanted electrodes is the formation of a glial scar made up of reactive astrocytes and the matrix proteins they generate (Polikov et al., 2005; Seil and Webster, 2008). Scarring is initiated when a device is inserted into brain tissue and is associated with an inflammatory response. Activated astrocytes are hypertrophic, hyperplastic, have an upregulation of intermediate filaments GFAP and vimentin expression, and filament formation (Buffo et al., 2010; Gervasi et al., 2008). Current approaches towards inhibiting the initiation of glial scarring range from altering the geometry, roughness, size, shape and materials of the device (Grill et al., 2009; Kotov et al., 2009; Kotzar et al., 2002; Szarowski et al., 2003). Literature has shown that surface topography modifications can alter cell alignment, adhesion, proliferation, migration, and gene expression (Agnew et al., 1983; Cogan et al., 2005; Cogan et al., 2006; Merrill et al., 2005). Thus, the goals of the presented work are to study the cellular response to biomaterials used in neural electrode fabrication and assess surface topography effects on minimizing astrogliosis. Initially, to examine astrocyte response to various materials used in neural electrode fabrication, astrocytes were cultured on platinum, silicon, PMMA, and SU-8 surfaces, with polystyrene as the control surface. Cell proliferation, viability, morphology and gene expression was measured for seven days in vitro. Results determined the cellular characteristics, reactions and growth rates of astrocytes

  19. Evolutionary origin of Tbr2-expressing precursor cells and the subventricular zone in the developing cortex.

    PubMed

    Martínez-Cerdeño, Verónica; Cunningham, Christopher L; Camacho, Jasmin; Keiter, Janet A; Ariza, Jeanelle; Lovern, Matthew; Noctor, Stephen C

    2016-02-15

    The subventricular zone (SVZ) is greatly expanded in primates with gyrencephalic cortices and is thought to be absent from vertebrates with three-layered, lissencephalic cortices, such as the turtle. Recent work in rodents has shown that Tbr2-expressing neural precursor cells in the SVZ produce excitatory neurons for each cortical layer in the neocortex. Many excitatory neurons are generated through a two-step process in which Pax6-expressing radial glial cells divide in the VZ to produce Tbr2-expressing intermediate progenitor cells, which divide in the SVZ to produce cortical neurons. We investigated the evolutionary origin of SVZ neural precursor cells in the prenatal cerebral cortex by testing for the presence and distribution of Tbr2-expressing cells in the prenatal cortex of reptilian and avian species. We found that mitotic Tbr2(+) cells are present in the prenatal cortex of lizard, turtle, chicken, and dove. Furthermore, Tbr2(+) cells are organized into a distinct SVZ in the dorsal ventricular ridge (DVR) of turtle forebrain and in the cortices of chicken and dove. Our results are consistent with the concept that Tbr2(+) neural precursor cells were present in the common ancestor of mammals and reptiles. Our data also suggest that the organizing principle guiding the assembly of Tbr2(+) cells into an anatomically distinct SVZ, both developmentally and evolutionarily, may be shared across vertebrates. Finally, our results indicate that Tbr2 expression can be used to test for the presence of a distinct SVZ and to define the boundaries of the SVZ in developing cortices. PMID:26267763

  20. Probing Distinct Fullerene Formation Processes from Carbon Precursors of Different Sizes and Structures.

    PubMed

    Han, Jong Yoon; Choi, Tae Su; Kim, Soyoung; Lee, Jong Wha; Ha, Yoonhoo; Jeong, Kwang Seob; Kim, Hyungjun; Choi, Hee Cheul; Kim, Hugh I

    2016-08-16

    Fullerenes, cage-structured carbon allotropes, have been the subject of extensive research as new materials for diverse purposes. Yet, their formation process is still not clearly understood at the molecular level. In this study, we performed laser desorption ionization-ion mobility-mass spectrometry (LDI-IM-MS) of carbon substrates possessing different molecular sizes and structures to understand the formation process of fullerene. Our observations show that the formation process is strongly dependent on the size of the precursor used, with small precursors yielding small fullerenes and large graphitic precursors generally yielding larger fullerenes. These results clearly demonstrate that fullerene formation can proceed via both bottom-up and top-down processes, with the latter being favored for large precursors and more efficient at forming fullerenes. Furthermore, we observed that specific structures of carbon precursors could additionally affect the relative abundance of C60 fullerene. Overall, this study provides an advanced understanding of the mechanistic details underlying the formation processes of fullerene. PMID:27434606

  1. Swift Acetate Glial Assay (SAGA): An accelerated human 13C MRS brain exam for clinical diagnostic use

    NASA Astrophysics Data System (ADS)

    Sailasuta, Napapon; Tran, Thao T.; Harris, Kent C.; Ross, B. D.

    2010-12-01

    We demonstrate a robust procedure for the quantitative characterization of glial metabolism in human brain. In the past, the slope of the uptake and production of enriched label at steady state were used to determine metabolic rates, requiring the patient to be in the magnet for 120-160 min. In the present method, 13C cerebral metabolite profiles were acquired at steady state alone on a routine clinical MR scanner in 25.6 min. Results obtained from the new short method (SAGA) were comparable to those achieved in a conventional, long method and effective for determination of glial metabolic rate in posterior-parietal and frontal brain regions.

  2. Yeast secretory expression of insulin precursors.

    PubMed

    Kjeldsen, T

    2000-09-01

    Since the 1980s, recombinant human insulin for the treatment of diabetes mellitus has been produced using either the yeast Saccharomyces cerevisiae or the prokaryote Escherichia coli. Here, development of the insulin secretory expression system in S. cerevisiae and its subsequent optimisation is described. Expression of proinsulin in S. cerevisiae does not result in efficient secretion of proinsulin or insulin. However, expression of a cDNA encoding a proinsulin-like molecule with deletion of threonine(B30) as a fusion protein with the S. cerevisiae alpha-factor prepro-peptide (leader), followed either by replacement of the human proinsulin C-peptide with a small C-peptide (e.g. AAK), or by direct fusion of lysine(B29) to glycine(A1), results in the efficient secretion of folded single-chain proinsulin-like molecules to the culture supernatant. The secreted single-chain insulin precursor can then be purified and subsequently converted to human insulin by tryptic transpeptidation in organic aqueous medium in the presence of a threonine ester. The leader confers secretory competence to the insulin precursor, and constructed (synthetic) leaders have been developed for efficient secretory expression of the insulin precursor in the yeasts S. cerevisiae and Pichia pastories. The Kex2 endoprotease, specific for dibasic sites, cleaves the leader-insulin precursor fusion protein in the late secretory pathway and the folded insulin precursor is secreted to the culture supernatant. However, the Kex2 endoprotease processing of the pro-peptide-insulin precursor fusion protein is incomplete and a significant part of the pro-peptide-insulin precursor fusion protein is secreted to the culture supernatant in a hyperglycosylated form. A spacer peptide localised between the leader and the insulin precursor has been developed to optimise Kex2 endoprotease processing and insulin precursor fermentation yield. PMID:11030562

  3. Oligodendrocyte Precursor Cells Synthesize Neuromodulatory Factors

    PubMed Central

    Sakry, Dominik; Yigit, Hatice; Dimou, Leda; Trotter, Jacqueline

    2015-01-01

    NG2 protein-expressing oligodendrocyte progenitor cells (OPC) are a persisting and major glial cell population in the adult mammalian brain. Direct synaptic innervation of OPC by neurons throughout the brain together with their ability to sense neuronal network activity raises the question of additional physiological roles of OPC, supplementary to generating myelinating oligodendrocytes. In this study we investigated whether OPC express neuromodulatory factors, typically synthesized by other CNS cell types. Our results show that OPC express two well-characterized neuromodulatory proteins: Prostaglandin D2 synthase (PTGDS) and neuronal Pentraxin 2 (Nptx2/Narp). Expression levels of the enzyme PTGDS are influenced in cultured OPC by the NG2 intracellular region which can be released by cleavage and localizes to glial nuclei upon transfection. Furthermore PTGDS mRNA levels are reduced in OPC from NG2-KO mouse brain compared to WT cells after isolation by cell sorting and direct analysis. These results show that OPC can contribute to the expression of these proteins within the CNS and suggest PTGDS expression as a downstream target of NG2 signaling. PMID:25966014

  4. Synthesis and structures of metal chalcogenide precursors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.

    1990-01-01

    The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.

  5. MI Gap Clearing Kicker Magnet Design Review

    SciTech Connect

    Jensen, Chris; /Fermilab

    2008-10-01

    The kicker system requirements were originally conceived for the NOvA project. NOvA is a neutrino experiment located in Minnesota. To achieve the desired neutrino flux several upgrades are required to the accelerator complex. The Recycler will be used as a proton pre-injector for the Main Injector (MI). As the Recycler is the same size as the MI, it is possible to do a single turn fill ({approx}11 {micro}sec), minimizing the proton injection time in the MI cycle and maximizing the protons on target. The Recycler can then be filled with beam while the MI is ramping to extract beam to the target. To do this requires two new transfer lines. The existing Recycler injection line was designed for 10{pi} pbar beams, not the 20{pi} proton beams we anticipate from the Booster. The existing Recycler extraction line allows for proton injection through the MI, while we want direct injection from the Booster. These two lines will be decommissioned. The new injection line from the MI8 line into the Recycler will start at 848 and end with injection kickers at RR104. The new extraction line in the RR30 straight section will start with a new extraction kicker at RR232 and end with new MI injection kickers at MI308. Finally, to reduce beam loss activation in the enclosure, a new gap clearing kicker will be used to extract uncaptured beam created during the slip stack injection process down the existing dump line. It was suggested that the MI could benefit from this type of system immediately. This led to the early installation of the gap clearing system in the MI, followed by moving the system to Recycler during NOvA. The specifications also changed during this process. Initially the rise and fall time requirements were 38 ns and the field stability was {+-}1%. The 38 ns is based on having a gap of 2 RF buckets between injections. (There are 84 RF buckets that can be filled from the Booster for each injection, but 82 would be filled with beam. MI and Recycler contain 588 RF buckets

  6. 17 CFR 22.16 - Disclosures to Cleared Swaps Customers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) of this section, relating to use of Cleared Swaps Customer Collateral, transfer, neutralization of... use of Cleared Swaps Customer Collateral, transfer, neutralization of the risks, or liquidation...

  7. 17 CFR 22.16 - Disclosures to Cleared Swaps Customers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) of this section, relating to use of Cleared Swaps Customer Collateral, transfer, neutralization of... use of Cleared Swaps Customer Collateral, transfer, neutralization of the risks, or liquidation...

  8. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice

    PubMed Central

    Mozafari, Sabah; Laterza, Cecilia; Roussel, Delphine; Bachelin, Corinne; Marteyn, Antoine; Deboux, Cyrille; Martino, Gianvito; Evercooren, Anne Baron-Van

    2015-01-01

    Induced pluripotent stem cell–derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent–derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin–derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS. PMID:26301815

  9. When a Cleared Rape Is Not Cleared: A Multilevel Study of Arrest and Exceptional Clearance.

    PubMed

    Walfield, Scott M

    2016-05-01

    As rape remains one of the most underreported and least likely to be cleared of the violent crimes, it is of paramount importance to understand the factors associated with the likelihood of a case being cleared by law enforcement. This study uses data from the National Incident-Based Reporting System (NIBRS) and the Law Enforcement Management and Administrative Statistics (LEMAS), and a multilevel modeling approach to examine the relationship between victim, offender, incident, and police department characteristics contrasting the two types of clearance: arrest and exceptional clearance. The latter occurs due to reasons outside of law enforcement's control and despite being considered cleared, the offender is not arrested, charged, nor turned over for prosecution. Of the 16,231 cleared rapes in 238 departments, nearly half (47%) results in exceptional clearance when the victim refuses to cooperate or when prosecution is declined. Incident-level variables have a greater effect on the likelihood of exceptional clearance than victim and offender variables. The department explained a nontrivial amount of variation in the dependent variable, as 37% of the variance in type of clearance was between-department variation. Implications for future research on exceptional clearance and NIBRS are discussed. PMID:25646164

  10. Clear cell renal cell tumors: Not all that is "clear" is cancer.

    PubMed

    Williamson, Sean R; Cheng, Liang

    2016-07-01

    Continued improvement of our understanding of the clinical, histologic, and genetic features of renal cell tumors has progressively evolved renal tumor classification, revealing an expanding array of distinct tumor types with different implications for prognosis, patient counseling, and treatment. Although clear cell renal cell carcinoma is unequivocally the most common adult renal tumor, there is growing evidence that some "clear cell" renal neoplasms, such as exemplified by multilocular cystic clear cell renal neoplasm of low malignant potential (formerly multilocular cystic renal cell carcinoma), do not have the same potential for insidious progression and metastasis, warranting reclassification as low malignant potential tumors or benign neoplasms. Still other novel tumor types such as clear cell papillary renal cell carcinoma have been more recently recognized, which similarly have shown a conspicuous absence of aggressive behavior to date, suggesting that these too may be recategorized as noncancerous or may be premalignant neoplasms. This importance for prognosis is increasingly significant in the modern era, in which renal masses are increasingly found incidentally by imaging techniques at a small tumor size, raising consideration for less aggressive management options guided by renal mass biopsy diagnosis, including imaging surveillance, tumor ablation, or partial nephrectomy. PMID:26988177

  11. MODIS Collection 6 Clear Sky Restoral (CSR): Filtering Cloud Mast 'Not Clear' Pixels

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry G.; Platnick, Steven Edward; Wind, Galina; Riedi, Jerome

    2014-01-01

    Correctly identifying cloudy pixels appropriate for the MOD06 cloud optical and microphysical property retrievals is accomplished in large part using results from the MOD35 1km cloud mask tests (note there are also two 250m subpixel cloud mask tests that can convert the 1km cloudy designations to clear sky). However, because MOD35 is by design clear sky conservative (i.e., it identifies "not clear" pixels), certain situations exist in which pixels identified by MOD35 as "cloudy" are nevertheless likely to be poor retrieval candidates. For instance, near the edge of clouds or within broken cloud fields, a given 1km MODIS field of view (FOV) may in fact only be partially cloudy. This can be problematic for the MOD06 retrievals because in these cases the assumptions of a completely overcast homogenous cloudy FOV and 1-dimensional plane-parallel radiative transfer no longer hold, and subsequent retrievals will be of low confidence. Furthermore, some pixels may be identified by MOD35 as "cloudy" for reasons other than the presence of clouds, such as scenes with thick smoke or lofted dust, and should therefore not be retrieved as clouds. With such situations in mind, a Clear Sky Restoral (CSR) algorithm was introduced in C5 that attempts to identify pixels expected to be poor retrieval candidates. Table 1 provides SDS locations for CSR and partly cloudy (PCL) pixels.

  12. Transplantation of subventricular zone neural precursors induces an endogenous precursor cell response in a rat model of Parkinson’s disease

    PubMed Central

    Madhavan, Lalitha; Daley, Brian F; Paumier, Katrina L; Collier, Timothy J

    2009-01-01

    Realistically, future stem cell therapies for neurological conditions including Parkinson’s disease (PD) will most probably entail combination treatment strategies, involving both the stimulation of endogenous cells and transplantation. Therefore, this study investigates these two modes of neural precursor cell (NPC) therapy in concert in order to determine their interrelationships in a rat PD model. Human placental alkaline phosphatase (hPAP) labeled NPCs were transplanted unilaterally into host rats which were subsequently infused ipsilaterally with 6-hydroxydopamine (6-OHDA). The reaction of host NPCs to the transplantation and 6-OHDA was tracked by bromodeoxyuridine labeling. Two weeks after transplantation, in animals transplanted with NPCs, we found evidence of elevated host subventricular zone NPC proliferation, neurogenesis, and migration to the graft site. In these animals, we also observed a significant preservation of striatal tyrosine hydroxylase (TH) expression and substantia nigra TH cell number. We have seen no evidence that neuroprotection is a product of DA neuron replacement by NPC-derived cells. Rather, the NPCs expressed glial cell line-derived neurotrophic factor (GDNF), sonic hedgehog (Shh) and stromal cell derived factor 1 alpha (SDF1α) providing a molecular basis for the observed neuroprotection and endogenous NPC response to transplantation. In summary, our data suggests plausible synergy between exogenous and endogenous NPC actions, and that NPC implantation before the 6-OHDA insult can create a host microenvironment conducive to stimulation of endogenous NPCs, and protection of mature nigral neurons. PMID:19399899

  13. Apixaban and atrial fibrillation: no clear advantage.

    PubMed

    2014-02-01

    For the prevention of thromboembolic events in patients with atrial fibrillation and a high thrombotic risk, the standard treatment is warfarin, an anticoagulant. Dabigatran, a thrombin inhibitor, is the alternative when warfarin fails to maintain the INR within the therapeutic range. Patients with a moderate thrombotic risk may receive either warfarin or low-dose aspirin. Apixaban, a factor Xa inhibitor anticoagulant, has been authorised in the European Union for use in patients with non-valvular atrial fibrillation and a moderate or high risk of thrombosis. In a double-blind, randomised non-inferiority trial versus warfarin in 18 201 patients, the incidence of stroke or systemic embolism was lower in the apixaban group (average 1.3 versus 1.6 events per 100 patient-years; p = 0.01). This difference was mainly due to a lower incidence of haemorrhagic stroke and did not result in a clear decline in mortality. In addition, these results are undermined by multiple methodological flaws. Clinical evaluation included no trials comparing apixaban with dabigatran; any indirect comparison would be risky given the poor quality of the clinical assessment of both drugs in atrial fibrillation. A double-blind, randomised trial including 5598 patients compared apixaban with aspirin but provided little information on these options in patients with a moderate risk of thrombosis, as most patients were at high risk. In clinical trials, major bleeding events were less frequent with apixaban than with warfarin (average 2.1 versus 3.1 events per 100 patient-years), but they were more frequent with apixaban than with aspirin (1.4 versus 0.9 events per 100 patient-years). In 2013, there is no way of monitoring the anticoagulant activity of apixaban in routine clinical practice, and there is no antidote in case of overdose; the same is true for dabigatran. Apixaban is a substrate for various cytochrome P450 isoenzymes and for P-glycoprotein, creating a risk of multiple drug

  14. Biochemical Removal of HAP Precursors From Coal

    SciTech Connect

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  15. Progress in molecular precursors for electronic materials

    SciTech Connect

    Buhro, W.E.

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  16. Explorations Precursor Robotic Missions (xPRM)

    NASA Video Gallery

    Jay Jenkins delivers a presentation from the Exploration Precursor Robotic Missions (xPRM) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose...

  17. AN INACTIVE PRECURSOR OF STREPTOCOCCAL PROTEINASE

    PubMed Central

    Elliott, Stuart D.; Dole, Vincent P.

    1947-01-01

    1. Streptococcal proteinase is derived from an inactive precursor found in culture filtrates of proteinase-producing streptococci. 2. The precursor can be converted into the proteinase by low concentrations of trypsin but not by chymotrypsin. 3. In cultures grown in suitable media the conversion of precursor to proteinase is effected autocatalytically. This reaction occurs under reducing conditions and is initiated by active proteinase present in low concentrations with the precursor. 4. The autocatalytic reaction is suppressed or retarded by conditions which decrease the activity of the proteinase, e.g. by growing cultures at 22°C. instead of at 37°C. or by growing them under markedly aerobic conditions. It is also retarded in the presence of casein. PMID:19871616

  18. [Structure and functions of bacterial proteinase precursors].

    PubMed

    Serkina, A V; Shevelev, A B; Chestukhina, G G

    2001-01-01

    The data on the precursors of bacterial proteases were generalized. The structure and special features of processing of the precursors of bacillary subtilisins, the alpha-lytic protease from Lysobacter enzymogenes and the related chymotrypsin-like proteases from Streptomyces griseus, and the metalloproteases from bacilli and Pseudomonas aeruginosa were discussed. The approaches to producing the precursors and the protease propeptides and to in vitro characterizing them were particularly analyzed. The following physiological functions of the propeptides within the protease precursors were considered probable: (a) inhibition of the proteases to protect the host cells from the proteolytic damage; (b) participation in the folding of the mature enzyme; and (c) providing for the protease interaction with the bacterial cell surveillance mechanisms, including protease translocation through the cell wall. PMID:11641907

  19. Bioinformatic analysis of peptide precursor proteins.

    PubMed

    Baggerman, G; Liu, F; Wets, G; Schoofs, L

    2005-04-01

    Neuropeptides are among the most important signal molecules in animals. Traditional identification of peptide hormones through peptide purification is a tedious and time-consuming process. With the advent of the genome sequencing projects, putative peptide precursor can be mined from the genome. However, because bioactive peptides are usually quite short in length and because the active core of a peptide is often limited to only a few amino acids, using the BLAST search engine to identify neuropeptide precursors in the genome is difficult and sometimes impossible. To overcome these shortcomings, we subject the entire set of all known Drosophila melanogaster peptide precursor sequences to motif-finding algorithms in search of a motif that is common for all prepropeptides and that could be used in the search for new peptide precursors. PMID:15891006

  20. The Proteome of Native Adult Müller Glial Cells From Murine Retina*

    PubMed Central

    Hauser, Alexandra; Lepper, Marlen Franziska; Mayo, Rebecca

    2016-01-01

    To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial

  1. The Proteome of Native Adult Müller Glial Cells From Murine Retina.

    PubMed

    Grosche, Antje; Hauser, Alexandra; Lepper, Marlen Franziska; Mayo, Rebecca; von Toerne, Christine; Merl-Pham, Juliane; Hauck, Stefanie M

    2016-02-01

    To date, the proteomic profiling of Müller cells, the dominant macroglia of the retina, has been hampered because of the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Müller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation - an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative liquid chromatography-mass spectrometry (LC-MSMS) comparing Müller cell-enriched to depleted neuronal fractions. Pathway enrichment analyses on both data sets enabled us to identify Müller cell-specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Müller cell genes by quantitative real time PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Müller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Müller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Müller glia specific proteins, which were validated as markers and for their functional impact in glial

  2. Decreased glial reactivity could be involved in the antipsychotic-like effect of cannabidiol.

    PubMed

    Gomes, Felipe V; Llorente, Ricardo; Del Bel, Elaine A; Viveros, Maria-Paz; López-Gallardo, Meritxell; Guimarães, Francisco S

    2015-05-01

    NMDA receptor hypofunction could be involved, in addition to the positive, also to the negative symptoms and cognitive deficits found in schizophrenia patients. An increasing number of data has linked schizophrenia with neuroinflammatory conditions and glial cells, such as microglia and astrocytes, have been related to the pathogenesis of schizophrenia. Cannabidiol (CBD), a major non-psychotomimetic constituent of Cannabis sativa with anti-inflammatory and neuroprotective properties induces antipsychotic-like effects. The present study evaluated if repeated treatment with CBD (30 and 60 mg/kg) would attenuate the behavioral and glial changes observed in an animal model of schizophrenia based on the NMDA receptor hypofunction (chronic administration of MK-801, an NMDA receptor antagonist, for 28 days). The behavioral alterations were evaluated in the social interaction and novel object recognition (NOR) tests. These tests have been widely used to study changes related to negative symptoms and cognitive deficits of schizophrenia, respectively. We also evaluated changes in NeuN (a neuronal marker), Iba-1 (a microglia marker) and GFAP (an astrocyte marker) expression in the medial prefrontal cortex (mPFC), dorsal striatum, nucleus accumbens core and shell, and dorsal hippocampus by immunohistochemistry. CBD effects were compared to those induced by the atypical antipsychotic clozapine. Repeated MK-801 administration impaired performance in the social interaction and NOR tests. It also increased the number of GFAP-positive astrocytes in the mPFC and the percentage of Iba-1-positive microglia cells with a reactive phenotype in the mPFC and dorsal hippocampus without changing the number of Iba-1-positive cells. No change in the number of NeuN-positive cells was observed. Both the behavioral disruptions and the changes in expression of glial markers induced by MK-801 treatment were attenuated by repeated treatment with CBD or clozapine. These data reinforces the proposal

  3. New insights into precursors of renal endothelium.

    PubMed

    Sequeira-Lopez, Maria Luisa S; Torban, Elena

    2016-08-01

    The kidney vasculature is extremely complex, yet, despite recent progress, our understanding of how the renal vascular system develops is limited. By using advanced tissue engineering techniques and in vivo and in vitro depletion of specific populations of endothelial cell precursors, Halt et al. have identified a CD146-expressing precursor as an important player in the development of the renal vasculature. PMID:27418087

  4. Hydridosiloxanes as precursors to ceramic products

    DOEpatents

    Blum, Yigal D.; Johnson, Sylvia M.; Gusman, Michael I.

    1997-01-01

    A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si--H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.

  5. Hydridosiloxanes as precursors to ceramic products

    DOEpatents

    Blum, Y.D.; Johnson, S.M.; Gusman, M.I.

    1997-06-03

    A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si-H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.

  6. Clear New View of a Classic Spiral

    NASA Astrophysics Data System (ADS)

    2010-05-01

    ESO is releasing a beautiful image of the nearby galaxy Messier 83 taken by the HAWK-I instrument on ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The picture shows the galaxy in infrared light and demonstrates the impressive power of the camera to create one of the sharpest and most detailed pictures of Messier 83 ever taken from the ground. The galaxy Messier 83 (eso0825) is located about 15 million light-years away in the constellation of Hydra (the Sea Serpent). It spans over 40 000 light-years, only 40 percent the size of the Milky Way, but in many ways is quite similar to our home galaxy, both in its spiral shape and the presence of a bar of stars across its centre. Messier 83 is famous among astronomers for its many supernovae: vast explosions that end the lives of some stars. Over the last century, six supernovae have been observed in Messier 83 - a record number that is matched by only one other galaxy. Even without supernovae, Messier 83 is one of the brightest nearby galaxies, visible using just binoculars. Messier 83 has been observed in the infrared part of the spectrum using HAWK-I [1], a powerful camera on ESO's Very Large Telescope (VLT). When viewed in infrared light most of the obscuring dust that hides much of Messier 83 becomes transparent. The brightly lit gas around hot young stars in the spiral arms is also less prominent in infrared pictures. As a result much more of the structure of the galaxy and the vast hordes of its constituent stars can be seen. This clear view is important for astronomers looking for clusters of young stars, especially those hidden in dusty regions of the galaxy. Studying such star clusters was one of the main scientific goals of these observations [2]. When compared to earlier images, the acute vision of HAWK-I reveals far more stars within the galaxy. The combination of the huge mirror of the VLT, the large field of view and great sensitivity of the camera, and the superb observing conditions

  7. QUANTIFICATION OF GLIAL FIBRILLARY ACIDIC PROTEIN: COMPARISON OF SLOT-IMMUNOBINDING ASSAYS WITH A NOVEL SANDWICH ELISA

    EPA Science Inventory

    Detailed protocols are presented for assaying glial fibrillary acidic protein (GFAP), an astrocyte localized protein rich serves as a quantitative marker of toxicant- induced injury to the central nervous system. wo different solid-phase assay procedures are described: 1) a nitro...

  8. A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC.

    PubMed

    Singhvi, Aakanksha; Liu, Bingqian; Friedman, Christine J; Fong, Jennifer; Lu, Yun; Huang, Xin-Yun; Shaham, Shai

    2016-05-01

    Neurons receive input from the outside world or from other neurons through neuronal receptive endings (NREs). Glia envelop NREs to create specialized microenvironments; however, glial functions at these sites are poorly understood. Here, we report a molecular mechanism by which glia control NRE shape and associated animal behavior. The C. elegans AMsh glial cell ensheathes the NREs of 12 neurons, including the thermosensory neuron AFD. KCC-3, a K/Cl transporter, localizes specifically to a glial microdomain surrounding AFD receptive ending microvilli, where it regulates K(+) and Cl(-) levels. We find that Cl(-) ions function as direct inhibitors of an NRE-localized receptor-guanylyl-cyclase, GCY-8, which synthesizes cyclic guanosine monophosphate (cGMP). High cGMP mediates the effects of glial KCC-3 on AFD shape by antagonizing the actin regulator WSP-1/NWASP. Components of this pathway are broadly expressed throughout the nervous system, suggesting that ionic regulation of the NRE microenvironment may be a conserved mechanism by which glia control neuron shape and function. PMID:27062922

  9. A label-free and high-throughput separation of neuron and glial cells using an inertial microfluidic platform.

    PubMed

    Jin, Tiantian; Yan, Sheng; Zhang, Jun; Yuan, Dan; Huang, Xu-Feng; Li, Weihua

    2016-05-01

    While neurons and glial cells both play significant roles in the development and therapy of schizophrenia, their specific contributions are difficult to differentiate because the methods used to separate neurons and glial cells are ineffective and inefficient. In this study, we reported a high-throughput microfluidic platform based on the inertial microfluidic technique to rapidly and continuously separate neurons and glial cells from dissected brain tissues. The optimal working condition for an inertial biochip was investigated and evaluated by measuring its separation under different flow rates. Purified and enriched neurons in a primary neuron culture were verified by confocal immunofluorescence imaging, and neurons performed neurite growth after separation, indicating the feasibility and biocompatibility of an inertial separation. Phencyclidine disturbed the neuroplasticity and neuron metabolism in the separated and the unseparated neurons, with no significant difference. Apart from isolating the neurons, purified and enriched viable glial cells were collected simultaneously. This work demonstrates that an inertial microchip can provide a label-free, high throughput, and harmless tool to separate neurological primary cells. PMID:27190569

  10. Activity-triggered tetrapartite neuron-glial interactions following peripheral injury.

    PubMed

    Ren, Ke; Dubner, Ronald

    2016-02-01

    Recent studies continue to support the proposition that non-neuronal components of the nervous system, mainly glial cells and associated chemical mediators, contribute to the development of neuronal hyperexcitability that underlies persistent pain conditions. In the event of peripheral injury, enhanced or abnormal nerve input is likely the most efficient way to activate simultaneously central neurons and glia. Injury induces phenotypic changes in glia and triggers signaling cascades that engage reciprocal interactions between presynaptic terminals, postsynaptic neurons, microglia and astrocytes. While some responses to peripheral injury may help the nervous system to adapt positively to counter the disastrous effect of injury, the net effect often leads to long-lasting sensitization of pain transmission pathways and chronic pain. PMID:26431645

  11. Effects of glial release and somatic receptors on bursting in synchronized neuronal networks

    NASA Astrophysics Data System (ADS)

    Zhan, Xuan; Lai, Pik-Yin; Chan, C. K.

    2011-07-01

    A model is constructed to study the phenomenon of bursting in cultured neuronal networks by considering the effects of glial release and the extrasynaptic receptors on neurons. In the frequently observed situations of synchronized bursting, the whole neuronal network can be described by a mean-field model. In this model, the dynamics of the synchronized network in the presence of glia is represented by an effective two-compartment neuron with stimulations on both the dendrite and soma. Numerical simulations of this model show that most of the experimental observations in bursting, in particular the high plateau and the slow repolarization, can be reproduced. Our findings suggest that the effects of glia release and extrasynaptic receptors, which are usually neglected in neuronal models, can become important in intense network activities. Furthermore, simulations of the model are also performed for the case of glia-suppressed cultures to compare with recent experimental results.

  12. Glial Lipid Droplets and ROS Induced by Mitochondrial Defects Promote Neurodegeneration

    PubMed Central

    Liu, Lucy; Zhang, Ke; Sandoval, Hector; Yamamoto, Shinya; Jaiswal, Manish; Sanz, Elisenda; Li, Zhihong; Hui, Jessica; Graham, Brett H.; Quintana, Albert; Bellen, Hugo J.

    2014-01-01

    Reactive oxygen species (ROS) and mitochondrial defects in neurons are implicated in neurodegenerative disease. Here we find that a key consequence of ROS and neuronal mitochondrial dysfunction is the accumulation of lipid droplets (LD) in glia. In Drosophila, ROS triggers c-Jun-N-terminal Kinase (JNK) and Sterol Regulatory Element Binding Protein (SREBP) activity in neurons leading to LD accumulation in glia prior to or at the onset of neurodegeneration. The accumulated lipids are peroxidated in the presence of ROS. Reducing LD accumulation in glia and lipid peroxidation via targeted lipase overexpression and/or lowering ROS significantly delays the onset of neurodegeneration. Furthermore, a similar pathway leads to glial LD accumulation in Ndufs4 mutant mice with neuronal mitochondrial defects, suggesting that LD accumulation following mitochondrial dysfunction is an evolutionarily conserved phenomenon, and represents an early, transient indicator and promoter of neurodegenerative disease. PMID:25594180

  13. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells.

    PubMed

    Li, Hedong; Chen, Gong

    2016-08-17

    Neuroregeneration in the CNS has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this Perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart, and liver and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient's own internal cells for tissue repair. PMID:27537482

  14. Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function

    PubMed Central

    De Zeeuw, Chris I.; Hoogland, Tycho M.

    2015-01-01

    Just as there is a huge morphological and functional diversity of neuron types specialized for specific aspects of information processing in the brain, astrocytes have equally distinct morphologies and functions that aid optimal functioning of the circuits in which they are embedded. One type of astrocyte, the Bergmann glial cell (BG) of the cerebellum, is a prime example of a highly diversified astrocyte type, the architecture of which is adapted to the cerebellar circuit and facilitates an impressive range of functions that optimize information processing in the adult brain. In this review we expand on the function of the BG in the cerebellum to highlight the importance of astrocytes not only in housekeeping functions, but also in contributing to plasticity and information processing in the cerebellum. PMID:26190972

  15. Glial Development: The Crossroads of Regeneration and Repair in the CNS

    PubMed Central

    Gallo, Vittorio; Deneen, Benjamin

    2014-01-01

    Given the complexities of the mammalian CNS, its regeneration is viewed as the holy grail of regenerative medicine. Extraordinary efforts have been made to understand developmental neurogenesis, with the hopes of clinically applying this knowledge. CNS regeneration also involves glia, which comprises at least 50% of the cellular constituency of the brain, and is involved in all forms of injury and disease response, recovery and regeneration. Recent developmental studies have given us unprecedented insight into the processes that regulate the generation of CNS glia. Because restorative processes often parallel those found in development, we will peer through the lens of developmental gliogenesis to gain a clearer understanding of the processes that underlie glial regeneration under pathological conditions. Specifically, this review will focus on key signaling pathways that regulate astrocyte and oligodendrocyte development, and describe how these mechanisms are reutilized in these populations during regeneration and repair after CNS injury. PMID:25033178

  16. Cypermethrin alters Glial Fibrillary Acidic Protein levels in the rat brain.

    PubMed

    Malkiewicz, Katarzyna; Koteras, Marcin; Folkesson, Ronnie; Brzezinski, Jacek; Winblad, Bengt; Szutowski, Miroslaw; Benedikz, Eirikur

    2006-01-01

    Pyrethroids, widely used insecticides, are biologically active in neurons. Whether they act on the non-neuronal brain cells remains an open question. Thus, the aim of this study was to examine whether Cypermethrin intoxication affects astroglial cells in the rat brain. The levels of Glial Fibrillary Acidic Protein (GFAP) in different brain regions were measured by ELISA following oral treatment with 5 or 10% of LD(50) of Cypermethrin per day for 6 days. A significant decrease of GFAP was observed in different brain regions of treated animals. The cerebral cortex showed the most pronounced effect with GFAP levels reduced to 81% of the controls 2 days after treatment and 77% 21 days after treatment. Although we did not find profound changes in the morphology of astrocytes in Cypermethrin treated animals, the decrease in GFAP suggests that astrocytes were affected by low doses of pyrethroids. The possible consequences were discussed. PMID:21783638

  17. Enterocolitis induced by autoimmune targeting of enteric glial cells: A possible mechanism in Crohn's disease?

    NASA Astrophysics Data System (ADS)

    Cornet, Anne; Savidge, Tor C.; Cabarrocas, Julie; Deng, Wen-Lin; Colombel, Jean-Frederic; Lassmann, Hans; Desreumaux, Pierre; Liblau, Roland S.

    2001-11-01

    Early pathological manifestations of Crohn's disease (CD) include vascular disruption, T cell infiltration of nerve plexi, neuronal degeneration, and induction of T helper 1 cytokine responses. This study demonstrates that disruption of the enteric glial cell network in CD patients represents another early pathological feature that may be modeled after CD8+ T cell-mediated autoimmune targeting of enteric glia in double transgenic mice. Mice expressing a viral neoself antigen in astrocytes and enteric glia were crossed with specific T cell receptor transgenic mice, resulting in apoptotic depletion of enteric glia to levels comparable in CD patients. Intestinal and mesenteric T cell infiltration, vasculitis, T helper 1 cytokine production, and fulminant bowel inflammation were characteristic hallmarks of disease progression. Immune-mediated damage to enteric glia therefore may participate in the initiation and/or the progression of human inflammatory bowel disease.

  18. Glial Regulation of the Neuronal Connectome through Local and Long-Distant Communication

    PubMed Central

    Fields, R. Douglas; Woo, Dong Ho; Basser, Peter J.

    2015-01-01

    SUMMARY If “the connectome” represents a complete map of anatomical and functional connectivity in the brain, it should also include glia. Glia define and regulate both the brain’s anatomical and functional connectivity over a broad range of length scales, spanning the whole brain to subcellular domains of synaptic interactions. This Perspective article examines glial interactions with the neuronal connectome, including long-range networks, local circuits, and individual synaptic connections; and highlights opportunities for future research. Our understanding of the structure and function of the neuronal connectome would be incomplete without an understanding of how all types of glia contribute to neuronal connectivity and function, from single synapses to circuits. PMID:25905811

  19. Comparative effect of immature neuronal or glial cell transplantation on motor functional recovery following experimental traumatic brain injury in rats

    PubMed Central

    Quan, Fu-Shi; Chen, Jian; Zhong, Yuan; Ren, Wen-Zhi

    2016-01-01

    The present study evaluated the comparative effect of stereotaxically transplanted immature neuronal or glial cells in brain on motor functional recovery and cytokine expression after cold-induced traumatic brain injury (TBI) in adult rats. A total of 60 rats were divided into four groups (n=15/group): Sham group; TBI only group; TBI plus neuronal cells-transplanted group (NC-G); and TBI plus glial cells-transplanted group (GC-G). Cortical lesions were induced by a touching metal stamp, frozen with liquid nitrogen, to the dura mater over the motor cortex of adult rats. Neuronal and glial cells were isolated from rat embryonic and newborn cortices, respectively, and cultured in culture flasks. Rats received neurons or glia grafts (~1×106 cells) 5 days after TBI was induced. Motor functional evaluation was performed with the rotarod test prior to and following glial and neural cell grafts. Five rats from each group were sacrificed at 2, 4 and 6 weeks post-cell transplantation. Immunofluorescence staining was performed on brain section to identify the transplanted neuronal or glial cells using neural and astrocytic markers. The expression levels of cytokines, including transforming growth factor-β, glial cell-derived neurotrophic factor and vascular endothelial growth factor, which have key roles in the proliferation, differentiation and survival of neural cells, were analyzed by immunohistochemistry and western blotting. A localized cortical lesion was evoked in all injured rats, resulting in significant motor deficits. Transplanted cells successfully migrated and survived in the injured brain lesion, and the expression of neuronal and astrocyte markers were detected in the NC-G and GC-G groups, respectively. Rats in the NC-G and GC-G cell-transplanted groups exhibited significant motor functional recovery and reduced histopathologic lesions, as compared with the TBI-G rats that did not receive neural cells (P<0.05, respectively). Furthermore, GC-G treatment

  20. A novel tau mutation, p.K317N, causes globular glial tauopathy.

    PubMed

    Tacik, Pawel; DeTure, Michael; Lin, Wen-Lang; Sanchez Contreras, Monica; Wojtas, Aleksandra; Hinkle, Kelly M; Fujioka, Shinsuke; Baker, Matthew C; Walton, Ronald L; Carlomagno, Yari; Brown, Patricia H; Strongosky, Audrey J; Kouri, Naomi; Murray, Melissa E; Petrucelli, Leonard; Josephs, Keith A; Rademakers, Rosa; Ross, Owen A; Wszolek, Zbigniew K; Dickson, Dennis W

    2015-08-01

    Globular glial tauopathies (GGTs) are 4-repeat tauopathies neuropathologically characterized by tau-positive, globular glial inclusions, including both globular oligodendroglial inclusions and globular astrocytic inclusions. No mutations have been found in 25 of the 30 GGT cases reported in the literature who have been screened for mutations in microtubule associated protein tau (MAPT). In this report, six patients with GGT (four with subtype III and two with subtype I) were screened for MAPT mutations. They included 4 men and 2 women with a mean age at death of 73 years (55-83 years) and mean age at symptomatic onset of 66 years (50-77 years). Disease duration ranged from 5 to 14 years. All were homozygous for the MAPT H1 haplotype. Three patients had a positive family history of dementia, and a novel MAPT mutation (c.951G>C, p.K317N) was identified in one of them, a patient with subtype III. Recombinant tau protein bearing the lysine-to-asparagine substitution at amino acid residue 317 was used to assess functional significance of the variant on microtubule assembly and tau filament formation. Recombinant p.K317N tau had reduced ability to promote tubulin polymerization. Recombinant 3R and 4R tau bearing the p.K317N mutation showed decreased 3R tau and increased 4R tau filament assembly. These results strongly suggest that the p.K317N variant is pathogenic. Sequencing of MAPT should be considered in patients with GGT and a family history of dementia or movement disorder. Since several individuals in our series had a positive family history but no MAPT mutation, genetic factors other than MAPT may play a role in disease pathogenesis. PMID:25900293