Sample records for glioma tumor volume

  1. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading.

    PubMed

    Wu, Rongli; Watanabe, Yoshiyuki; Arisawa, Atsuko; Takahashi, Hiroto; Tanaka, Hisashi; Fujimoto, Yasunori; Watabe, Tadashi; Isohashi, Kayako; Hatazawa, Jun; Tomiyama, Noriyuki

    2017-10-01

    This study aimed to compare the tumor volume definition using conventional magnetic resonance (MR) and 11C-methionine positron emission tomography (MET/PET) images in the differentiation of the pre-operative glioma grade by using whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) maps. Thirty-four patients with histopathologically proven primary brain low-grade gliomas (n = 15) and high-grade gliomas (n = 19) underwent pre-operative or pre-biopsy MET/PET, fluid-attenuated inversion recovery, dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging, and contrast-enhanced T1-weighted at 3.0 T. The histogram distribution derived from the nCBV maps was obtained by co-registering the whole tumor volume delineated on conventional MR or MET/PET images, and eight histogram parameters were assessed. The mean nCBV value had the highest AUC value (0.906) based on MET/PET images. Diagnostic accuracy significantly improved when the tumor volume was measured from MET/PET images compared with conventional MR images for the parameters of mean, 50th, and 75th percentile nCBV value (p = 0.0246, 0.0223, and 0.0150, respectively). Whole-tumor histogram analysis of CBV map provides more valuable histogram parameters and increases diagnostic accuracy in the differentiation of pre-operative cerebral gliomas when the tumor volume is derived from MET/PET images.

  2. Gliomas: Application of Cumulative Histogram Analysis of Normalized Cerebral Blood Volume on 3 T MRI to Tumor Grading

    PubMed Central

    Kim, Hyungjin; Choi, Seung Hong; Kim, Ji-Hoon; Ryoo, Inseon; Kim, Soo Chin; Yeom, Jeong A.; Shin, Hwaseon; Jung, Seung Chai; Lee, A. Leum; Yun, Tae Jin; Park, Chul-Kee; Sohn, Chul-Ho; Park, Sung-Hye

    2013-01-01

    Background Glioma grading assumes significant importance in that low- and high-grade gliomas display different prognoses and are treated with dissimilar therapeutic strategies. The objective of our study was to retrospectively assess the usefulness of a cumulative normalized cerebral blood volume (nCBV) histogram for glioma grading based on 3 T MRI. Methods From February 2010 to April 2012, 63 patients with astrocytic tumors underwent 3 T MRI with dynamic susceptibility contrast perfusion-weighted imaging. Regions of interest containing the entire tumor volume were drawn on every section of the co-registered relative CBV (rCBV) maps and T2-weighted images. The percentile values from the cumulative nCBV histograms and the other histogram parameters were correlated with tumor grades. Cochran’s Q test and the McNemar test were used to compare the diagnostic accuracies of the histogram parameters after the receiver operating characteristic curve analysis. Using the parameter offering the highest diagnostic accuracy, a validation process was performed with an independent test set of nine patients. Results The 99th percentile of the cumulative nCBV histogram (nCBV C99), mean and peak height differed significantly between low- and high-grade gliomas (P = <0.001, 0.014 and <0.001, respectively) and between grade III and IV gliomas (P = <0.001, 0.001 and <0.001, respectively). The diagnostic accuracy of nCBV C99 was significantly higher than that of the mean nCBV (P = 0.016) in distinguishing high- from low-grade gliomas and was comparable to that of the peak height (P = 1.000). Validation using the two cutoff values of nCBV C99 achieved a diagnostic accuracy of 66.7% (6/9) for the separation of all three glioma grades. Conclusion Cumulative histogram analysis of nCBV using 3 T MRI can be a useful method for preoperative glioma grading. The nCBV C99 value is helpful in distinguishing high- from low-grade gliomas and grade IV from III gliomas. PMID:23704910

  3. A novel magnetic resonance imaging segmentation technique for determining diffuse intrinsic pontine glioma tumor volume.

    PubMed

    Singh, Ranjodh; Zhou, Zhiping; Tisnado, Jamie; Haque, Sofia; Peck, Kyung K; Young, Robert J; Tsiouris, Apostolos John; Thakur, Sunitha B; Souweidane, Mark M

    2016-11-01

    OBJECTIVE Accurately determining diffuse intrinsic pontine glioma (DIPG) tumor volume is clinically important. The aims of the current study were to 1) measure DIPG volumes using methods that require different degrees of subjective judgment; and 2) evaluate interobserver agreement of measurements made using these methods. METHODS Eight patients from a Phase I clinical trial testing convection-enhanced delivery (CED) of a therapeutic antibody were included in the study. Pre-CED, post-radiation therapy axial T2-weighted images were analyzed using 2 methods requiring high degrees of subjective judgment (picture archiving and communication system [PACS] polygon and Volume Viewer auto-contour methods) and 1 method requiring a low degree of subjective judgment (k-means clustering segmentation) to determine tumor volumes. Lin's concordance correlation coefficients (CCCs) were calculated to assess interobserver agreement. RESULTS The CCCs of measurements made by 2 observers with the PACS polygon and the Volume Viewer auto-contour methods were 0.9465 (lower 1-sided 95% confidence limit 0.8472) and 0.7514 (lower 1-sided 95% confidence limit 0.3143), respectively. Both were considered poor agreement. The CCC of measurements made using k-means clustering segmentation was 0.9938 (lower 1-sided 95% confidence limit 0.9772), which was considered substantial strength of agreement. CONCLUSIONS The poor interobserver agreement of PACS polygon and Volume Viewer auto-contour methods highlighted the difficulty in consistently measuring DIPG tumor volumes using methods requiring high degrees of subjective judgment. k-means clustering segmentation, which requires a low degree of subjective judgment, showed better interobserver agreement and produced tumor volumes with delineated borders.

  4. A novel magnetic resonance imaging segmentation technique for determining diffuse intrinsic pontine glioma tumor volume

    PubMed Central

    Singh, Ranjodh; Zhou, Zhiping; Tisnado, Jamie; Haque, Sofia; Peck, Kyung K.; Young, Robert J.; Tsiouris, Apostolos John; Thakur, Sunitha B.; Souweidane, Mark M.

    2017-01-01

    OBJECTIVE Accurately determining diffuse intrinsic pontine glioma (DIPG) tumor volume is clinically important. The aims of the current study were to 1) measure DIPG volumes using methods that require different degrees of subjective judgment; and 2) evaluate interobserver agreement of measurements made using these methods. METHODS Eight patients from a Phase I clinical trial testing convection-enhanced delivery (CED) of a therapeutic antibody were included in the study. Pre-CED, post–radiation therapy axial T2-weighted images were analyzed using 2 methods requiring high degrees of subjective judgment (picture archiving and communication system [PACS] polygon and Volume Viewer auto-contour methods) and 1 method requiring a low degree of subjective judgment (k-means clustering segmentation) to determine tumor volumes. Lin’s concordance correlation coefficients (CCCs) were calculated to assess interobserver agreement. RESULTS The CCCs of measurements made by 2 observers with the PACS polygon and the Volume Viewer auto-contour methods were 0.9465 (lower 1-sided 95% confidence limit 0.8472) and 0.7514 (lower 1-sided 95% confidence limit 0.3143), respectively. Both were considered poor agreement. The CCC of measurements made using k-means clustering segmentation was 0.9938 (lower 1-sided 95% confidence limit 0.9772), which was considered substantial strength of agreement. CONCLUSIONS The poor interobserver agreement of PACS polygon and Volume Viewer auto-contour methods high-lighted the difficulty in consistently measuring DIPG tumor volumes using methods requiring high degrees of subjective judgment. k-means clustering segmentation, which requires a low degree of subjective judgment, showed better interob-server agreement and produced tumor volumes with delineated borders. PMID:27391980

  5. Preoperative prognostic value of dynamic contrast-enhanced MRI-derived contrast transfer coefficient and plasma volume in patients with cerebral gliomas.

    PubMed

    Nguyen, T B; Cron, G O; Mercier, J F; Foottit, C; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Caudrelier, J M; Sinclair, J; Hogan, M J; Thornhill, R E; Cameron, I G

    2015-01-01

    The prognostic value of dynamic contrast-enhanced MR imaging-derived plasma volume obtained in tumor and the contrast transfer coefficient has not been well-established in patients with gliomas. We determined whether plasma volume and contrast transfer coefficient in tumor correlated with survival in patients with gliomas in addition to other factors such as age, type of surgery, preoperative Karnofsky score, contrast enhancement, and histopathologic grade. This prospective study included 46 patients with a new pathologically confirmed diagnosis of glioma. The contrast transfer coefficient and plasma volume obtained in tumor maps were calculated directly from the signal-intensity curve without T1 measurements, and values were obtained from multiple small ROIs placed within tumors. Survival curve analysis was performed by dichotomizing patients into groups of high and low contrast transfer coefficient and plasma volume. Univariate analysis was performed by using dynamic contrast-enhanced parameters and clinical factors. Factors that were significant on univariate analysis were entered into multivariate analysis. For all patients with gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). In subgroups of high- and low-grade gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). Univariate analysis showed that factors associated with lower survival were age older than 50 years, low Karnofsky score, biopsy-only versus resection, marked contrast enhancement versus no/mild enhancement, high contrast transfer coefficient, and high plasma volume obtained in tumor (P < .05). In multivariate analysis, a low Karnofsky score, biopsy versus resection in combination with marked contrast enhancement, and a high contrast transfer coefficient were associated with lower survival rates (P < .05). In patients with glioma

  6. MiR-592 functions as a tumor suppressor in glioma by targeting IGFBP2.

    PubMed

    Peng, Tao; Zhou, Lixiang; Qi, Hui; Wang, Guangming; Luan, Yongxin; Zuo, Ling

    2017-07-01

    A growing body of evidence suggests that microRNA-592 is involved in tumor initiation and development in several types of human cancers. However, the biological functions and molecular mechanism of microRNA-592 in glioma remain unclear. In this study, we explored the potential role of microRNA-592 in glioma as well as the possible molecular mechanisms. Our results proved that microRNA-592 expression was significantly downregulated in glioma tissues and cell lines (p < 0.01). Functional assays revealed that overexpression of microRNA-592 dramatically reduced the cell proliferation, migration, and invasion and induced cell arrest at G1/G0 phase in vitro. Mechanistic investigations defined insulin-like growth factor binding protein 2 as a direct and functional downstream target of microRNA-592, which was involved in the microRNA-592-mediated tumor-suppressive effects in glioma cells. Moreover, the in vivo study showed that microRNA-592 overexpression produced the smaller tumor volume and weight in nude mice. In summary, these results elucidated the function of microRNA-592 in glioma progression and suggested a promising application of it in glioma treatment.

  7. Brain tumor modeling: glioma growth and interaction with chemotherapy

    NASA Astrophysics Data System (ADS)

    Banaem, Hossein Y.; Ahmadian, Alireza; Saberi, Hooshangh; Daneshmehr, Alireza; Khodadad, Davood

    2011-10-01

    In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.

  8. Flow cytometric characterization of tumor-associated macrophages in experimental gliomas.

    PubMed

    Badie, B; Schartner, J M

    2000-04-01

    Although microglia have been suggested to be a component of the inflammatory reaction to tumors of the central nervous system, their role in glioma biology remains unknown. One obstacle to studying the function of microglia is the inability to effectively separate them from macrophages. Because flow cytometry can effectively discern immune cells with similar surface antigens, we evaluated its role in characterizing the mononuclear cell infiltration in experimental gliomas. Freshly prepared rat C6, 9L, and RG-2 tumor specimens were labeled ex vivo with monoclonal antibodies against CD11b/c, CD45, and CD8a antigens and analyzed by flow cytometry. The extent of microglia (CD11b/c(high), CD45(low)), macrophage (CD11b/c(high), CD45(high)), and lymphocyte (CD11b/c(negative), CD45(high)) infiltration into tumors, tumor periphery, and contralateral tumor-free hemispheres was measured for each glioma type. Microglia, which accounted for 13 to 34% of viable cells, were distributed throughout the central nervous system and were present in the tumors, tumor periphery, and contralateral tumor-free hemispheres. In contrast, macrophages were less prominent within the tumors and tumor periphery (4.2-12%) and were scarce in the contralateral tumor-free hemispheres (0.9-1.1%). Among the tumor types, RG-2 gliomas had the least microglia/macrophage infiltration. The frequency and the distribution pattern of lymphocytes also varied among tumor models. Whereas lymphocytes accounted for more than one-third of the cells in C6 and 9L tumors, they represented only 1% of cells in RG-2 gliomas. More abundant than macrophages and scattered throughout the central nervous system, microglia account for a significant component of the inflammatory response to experimental gliomas. A better understanding of microglial function in gliomas may be important in the development of immunotherapy strategies.

  9. Electrophysiology of glioma: a Rho GTPase-activating protein reduces tumor growth and spares neuron structure and function.

    PubMed

    Vannini, Eleonora; Olimpico, Francesco; Middei, Silvia; Ammassari-Teule, Martine; de Graaf, Erik L; McDonnell, Liam; Schmidt, Gudula; Fabbri, Alessia; Fiorentini, Carla; Baroncelli, Laura; Costa, Mario; Caleo, Matteo

    2016-12-01

    Glioblastomas are the most aggressive type of brain tumor. A successful treatment should aim at halting tumor growth and protecting neuronal cells to prevent functional deficits and cognitive deterioration. Here, we exploited a Rho GTPase-activating bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1), to interfere with glioma cell growth in vitro and vivo. We also investigated whether this toxin spares neuron structure and function in peritumoral areas. We performed a microarray transcriptomic and in-depth proteomic analysis to characterize the molecular changes triggered by CNF1 in glioma cells. We also examined tumor cell senescence and growth in vehicle- and CNF1-treated glioma-bearing mice. Electrophysiological and morphological techniques were used to investigate neuronal alterations in peritumoral cortical areas. Administration of CNF1 triggered molecular and morphological hallmarks of senescence in mouse and human glioma cells in vitro. CNF1 treatment in vivo induced glioma cell senescence and potently reduced tumor volumes. In peritumoral areas of glioma-bearing mice, neurons showed a shrunken dendritic arbor and severe functional alterations such as increased spontaneous activity and reduced visual responsiveness. CNF1 treatment enhanced dendritic length and improved several physiological properties of pyramidal neurons, demonstrating functional preservation of the cortical network. Our findings demonstrate that CNF1 reduces glioma volume while at the same time maintaining the physiological and structural properties of peritumoral neurons. These data indicate a promising strategy for the development of more effective antiglioma therapies. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Family History of Cancer in Benign Brain Tumor Subtypes Versus Gliomas

    PubMed Central

    Ostrom, Quinn T.; McCulloh, Christopher; Chen, Yanwen; Devine, Karen; Wolinsky, Yingli; Davitkov, Perica; Robbins, Sarah; Cherukuri, Rajesh; Patel, Ashokkumar; Gupta, Rajnish; Cohen, Mark; Barrios, Jaime Vengoechea; Brewer, Cathy; Schilero, Cathy; Smolenski, Kathy; McGraw, Mary; Denk, Barbara; Naska, Theresa; Laube, Frances; Steele, Ruth; Greene, Dale; Kastl, Alison; Bell, Susan; Aziz, Dina; Chiocca, E. A.; McPherson, Christopher; Warnick, Ronald; Barnett, Gene H.; Sloan, Andrew E.; Barnholtz-Sloan, Jill S.

    2012-01-01

    Purpose: Family history is associated with gliomas, but this association has not been established for benign brain tumors. Using information from newly diagnosed primary brain tumor patients, we describe patterns of family cancer histories in patients with benign brain tumors and compare those to patients with gliomas. Methods: Newly diagnosed primary brain tumor patients were identified as part of the Ohio Brain Tumor Study. Each patient was asked to participate in a telephone interview about personal medical history, family history of cancer, and other exposures. Information was available from 33 acoustic neuroma (65%), 78 meningioma (65%), 49 pituitary adenoma (73.1%), and 152 glioma patients (58.2%). The association between family history of cancer and each subtype was compared with gliomas using unconditional logistic regression models generating odds ratios (ORs) and 95% confidence intervals. Results: There was no significant difference in family history of cancer between patients with glioma and benign subtypes. Conclusion: The results suggest that benign brain tumor may have an association with family history of cancer. More studies are warranted to disentangle the potential genetic and/or environmental causes for these diseases. PMID:22649779

  11. Meta-analysis of diffusion metrics for the prediction of tumor grade in gliomas.

    PubMed

    Miloushev, V Z; Chow, D S; Filippi, C G

    2015-02-01

    Diffusion tensor metrics are potential in vivo quantitative neuroimaging biomarkers for the characterization of brain tumor subtype. This meta-analysis analyzes the ability of mean diffusivity and fractional anisotropy to distinguish low-grade from high-grade gliomas in the identifiable tumor core and the region of peripheral edema. A meta-analysis of articles with mean diffusivity and fractional anisotropy data for World Health Organization low-grade (I, II) and high-grade (III, IV) gliomas, between 2000 and 2013, was performed. Pooled data were analyzed by using the odds ratio and mean difference. Receiver operating characteristic analysis was performed for patient-level data. The minimum mean diffusivity of high-grade gliomas was decreased compared with low-grade gliomas. High-grade gliomas had decreased average mean diffusivity values compared with low-grade gliomas in the tumor core and increased average mean diffusivity values in the peripheral region. High-grade gliomas had increased FA values compared with low-grade gliomas in the tumor core, decreased values in the peripheral region, and a decreased fractional anisotropy difference between the tumor core and peripheral region. The minimum mean diffusivity differs significantly with respect to the World Health Organization grade of gliomas. Statistically significant effects of tumor grade on average mean diffusivity and fractional anisotropy were observed, supporting the concept that high-grade tumors are more destructive and infiltrative than low-grade tumors. Considerable heterogeneity within the literature may be due to systematic factors in addition to underlying lesion heterogeneity. © 2015 by American Journal of Neuroradiology.

  12. Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy.

    PubMed

    Rieken, Stefan; Habermehl, Daniel; Giesel, Frederik L; Hoffmann, Christoph; Burger, Ute; Rief, Harald; Welzel, Thomas; Haberkorn, Uwe; Debus, Jürgen; Combs, Stephanie E

    2013-12-01

    Modern radiotherapy (RT) techniques such as stereotactic RT, intensity-modulated RT, or particle irradiation allow local dose escalation with simultaneous sparing of critical organs. Several trials are currently investigating their benefit in glioma reirradiation and boost irradiation. Target volume definition is of critical importance especially when steep dose gradient techniques are employed. In this manuscript we investigate the impact of O-(2-(F-18)fluoroethyl)-l-tyrosine-positron emission tomography/computer tomography (FET-PET/CT) on target volume definition in low and high grade glioma patients undergoing either first or re-irradiation with particles. We investigated volumetric size and uniformity of magnetic resonance imaging (MRI)- vs. FET-PET/CT-derived gross tumor volumes (GTVs) and planning target volumes (PTVs) of 41 glioma patients. Clinical cases are presented to demonstrate potential benefits of integrating FET-PET/CT-planning into daily routine. Integrating FET-uptake into the delineation of GTVs yields larger volumes. Combined modality-derived PTVs are significantly enlarged in high grade glioma patients and in case of primary RT. The congruence of MRI and FET signals for the identification of glioma GTVs is poor with mean uniformity indices of 0.39. MRI-based PTVs miss 17% of FET-PET/CT-based GTVs. Non significant alterations were detected in low grade glioma patients and in those undergoing reirradiation. Target volume definition for malignant gliomas during initial RT may yield significantly differing results depending upon the imaging modality, which the contouring process is based upon. The integration of both MRI and FET-PET/CT may help to improve GTV coverage by avoiding larger incongruences between physical and biological imaging techniques. In low grade gliomas and in cases of reirradiation, more studies are needed in order to investigate a potential benefit of FET-PET/CT for planning of RT. Copyright © 2013 Elsevier Ireland Ltd. All

  13. RAGE Expression in Tumor-associated Macrophages Promotes Angiogenesis in Glioma

    PubMed Central

    Zhang, Ian Y.; Liang, Junling; Wang, Huaqing; Ouyang, Mao; Wu, Shihua; da Fonseca, Anna Carolina Carvalho; Weng, Lihong; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Natarajan, Rama; Badie, Behnam

    2014-01-01

    Interaction of RAGE with its ligands can promote tumor progression, invasion and angiogenesis. Although blocking RAGE signaling has been proposed as a potential anti-cancer strategy, functional contributions of RAGE expression in the tumor microenvironment (TME) has not been investigated in detail. Here, we evaluated the effect of genetic depletion of RAGE in TME on the growth of gliomas. In both invasive and non-invasive glioma models, animal survival was prolonged in RAGE knockout (Ager−/−) mice. However, the improvement in survival in Ager−/− mice was not due to changes in tumor growth rate but rather to a reduction in tumor-associated inflammation. Furthermore, RAGE ablation in the TME abrogated angiogenesis by downregulating the expression of pro-angiogenic factors which prevented normal vessel formation, thereby generating a leaky vasculature. These alterations were most prominent in non-invasive gliomas, where the expression of VEGF and pro-inflammatory cytokines were also lower in tumor-associated macrophages (TAM) in Ager−/− mice. Interestingly, reconstitution of Ager−/− TAM with wild-type microglia or macrophages normalized tumor vascularity. Our results establish that RAGE signaling in glioma-associated microglia and TAM drives angiogenesis, underscoring the complex role of RAGE and its ligands in gliomagenesis. PMID:25326491

  14. RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma.

    PubMed

    Chen, Xuebo; Zhang, Leying; Zhang, Ian Y; Liang, Junling; Wang, Huaqing; Ouyang, Mao; Wu, Shihua; da Fonseca, Anna Carolina Carvalho; Weng, Lihong; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Natarajan, Rama; Badie, Behnam

    2014-12-15

    Interaction of RAGE (the receptor for advanced glycation endproducts) with its ligands can promote tumor progression, invasion, and angiogenesis. Although blocking RAGE signaling has been proposed as a potential anticancer strategy, functional contributions of RAGE expression in the tumor microenvironment (TME) have not been investigated in detail. Here, we evaluated the effect of genetic depletion of RAGE in TME on the growth of gliomas. In both invasive and noninvasive glioma models, animal survival was prolonged in RAGE knockout (Ager(-/-)) mice. However, the improvement in survival in Ager(-/-) mice was not due to changes in tumor growth rate but rather to a reduction in tumor-associated inflammation. Furthermore, RAGE ablation in the TME abrogated angiogenesis by downregulating the expression of proangiogenic factors, which prevented normal vessel formation, thereby generating a leaky vasculature. These alterations were most prominent in noninvasive gliomas, in which the expression of VEGF and proinflammatory cytokines were also lower in tumor-associated macrophages (TAM) in Ager(-/-) mice. Interestingly, reconstitution of Ager(-/-) TAM with wild-type microglia or macrophages normalized tumor vascularity. Our results establish that RAGE signaling in glioma-associated microglia and TAM drives angiogenesis, underscoring the complex role of RAGE and its ligands in gliomagenesis. ©2014 American Association for Cancer Research.

  15. Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas.

    PubMed

    Alizadeh, Darya; Zhang, Leying; Hwang, Jungyeon; Schluep, Thomas; Badie, Behnam

    2010-04-01

    The goal of this study was to evaluate the mechanism of cyclodextrin-based nanoparticle (CDP-NP) uptake into a murine glioma model. Using mixed in vitro culture systems, we demonstrated that CDP-NPs were preferentially taken up by BV2 and N9 microglia (MG) cells compared with GL261 glioma cells. Fluorescent microscopy and flow cytometry analysis of intracranial GL261 gliomas confirmed these findings and demonstrated a predominant CDP-NP uptake by macrophages (MPs) and MG within and around the tumor site. Notably, in mice bearing bilateral intracranial tumor, MG and MPs carrying CDP-NPs were able to migrate to the contralateral tumors. In conclusion, these studies better characterize the cellular distribution of CDP-NPs in intracranial tumors and demonstrate that MPs and MG could potentially be used as nanoparticle drug carriers into malignant brain tumors. The goal of this study was to evaluate the mechanism of cyclodextrin-based nanoparticle (CDP-NP) uptake into a murine glioma model. CDP-NP was preferentially taken up microglia (MG) cells as compared to glioma cells. A predominant CDP-NP uptake by macrophages and MG was also shown in and around the tumor site. Macrophages and MG could potentially be used as nanoparticle drug carriers into malignant brain tumors. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Correlation of Tumor Immunohistochemistry with Dynamic Contrast-Enhanced and DSC-MRI Parameters in Patients with Gliomas.

    PubMed

    Nguyen, T B; Cron, G O; Bezzina, K; Perdrizet, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Thornhill, R E; Zanette, B; Cameron, I G

    2016-12-01

    Tumor CBV is a prognostic and predictive marker for patients with gliomas. Tumor CBV can be measured noninvasively with different MR imaging techniques; however, it is not clear which of these techniques most closely reflects histologically-measured tumor CBV. Our aim was to investigate the correlations between dynamic contrast-enhanced and DSC-MR imaging parameters and immunohistochemistry in patients with gliomas. Forty-three patients with a new diagnosis of glioma underwent a preoperative MR imaging examination with dynamic contrast-enhanced and DSC sequences. Unnormalized and normalized cerebral blood volume was obtained from DSC MR imaging. Two sets of plasma volume and volume transfer constant maps were obtained from dynamic contrast-enhanced MR imaging. Plasma volume obtained from the phase-derived vascular input function and bookend T1 mapping (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function and bookend T1 mapping (K trans _Φ) were determined. Plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K trans _SI) were acquired, without T1 mapping. Using CD34 staining, we measured microvessel density and microvessel area within 3 representative areas of the resected tumor specimen. The Mann-Whitney U test was used to test for differences according to grade and degree of enhancement. The Spearman correlation was performed to determine the relationship between dynamic contrast-enhanced and DSC parameters and histopathologic measurements. Microvessel area, microvessel density, dynamic contrast-enhanced, and DSC-MR imaging parameters varied according to the grade and degree of enhancement (P < .05). A strong correlation was found between microvessel area and Vp_Φ and between microvessel area and unnormalized blood volume (r s ≥ 0.61). A moderate correlation was found between microvessel area and normalized blood

  17. The Value of 5-Aminolevulinic Acid in Low-grade Gliomas and High-grade Gliomas Lacking Glioblastoma Imaging Features: An Analysis Based on Fluorescence, Magnetic Resonance Imaging, 18F-Fluoroethyl Tyrosine Positron Emission Tomography, and Tumor Molecular Factors.

    PubMed

    Jaber, Mohammed; Wölfer, Johannes; Ewelt, Christian; Holling, Markus; Hasselblatt, Martin; Niederstadt, Thomas; Zoubi, Tarek; Weckesser, Matthias; Stummer, Walter

    2016-03-01

    Approximately 20% of grade II and most grade III gliomas fluoresce after 5-aminolevulinic acid (5-ALA) application. Conversely, approximately 30% of nonenhancing gliomas are actually high grade. The aim of this study was to identify preoperative factors (ie, age, enhancement, 18F-fluoroethyl tyrosine positron emission tomography [F-FET PET] uptake ratios) for predicting fluorescence in gliomas without typical glioblastomas imaging features and to determine whether fluorescence will allow prediction of tumor grade or molecular characteristics. Patients harboring gliomas without typical glioblastoma imaging features were given 5-ALA. Fluorescence was recorded intraoperatively, and biopsy specimens collected from fluorescing tissue. World Health Organization (WHO) grade, Ki-67/MIB-1 index, IDH1 (R132H) mutation status, O-methylguanine DNA methyltransferase (MGMT) promoter methylation status, and 1p/19q co-deletion status were assessed. Predictive factors for fluorescence were derived from preoperative magnetic resonance imaging and F-FET PET. Classification and regression tree analysis and receiver-operating-characteristic curves were generated for defining predictors. Of 166 tumors, 82 were diagnosed as WHO grade II, 76 as grade III, and 8 as glioblastomas grade IV. Contrast enhancement, tumor volume, and F-FET PET uptake ratio >1.85 predicted fluorescence. Fluorescence correlated with WHO grade (P < .001) and Ki-67/MIB-1 index (P < .001), but not with MGMT promoter methylation status, IDH1 mutation status, or 1p19q co-deletion status. The Ki-67/MIB-1 index in fluorescing grade III gliomas was higher than in nonfluorescing tumors, whereas in fluorescing and nonfluorescing grade II tumors, no differences were noted. Age, tumor volume, and F-FET PET uptake are factors predicting 5-ALA-induced fluorescence in gliomas without typical glioblastoma imaging features. Fluorescence was associated with an increased Ki-67/MIB-1 index and high-grade pathology. Whether

  18. Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice.

    PubMed

    Zhang, Leying; Alizadeh, Darya; Van Handel, Michelle; Kortylewski, Marcin; Yu, Hua; Badie, Behnam

    2009-10-01

    As the main effector-cell population of the central nervous system, microglia (MG) are considered to play an important immunoregulatory function in a number of pathological conditions such as inflammation, trauma, degenerative disease, and brain tumors. Recent studies, however, have suggested that the anti-neoplastic function of MG may be suppressed in malignant brain tumors. Considering the proposed suppressive role of signal transducers and activators of transcription 3 (Stat3) in antitumor immunity, we evaluated the role of Stat3 inhibition on MG and macrophage (MP) activation and tumor growth in a murine glioma model. N9 MG cells were exposed to GL261 glioma conditioned medium (GL261-CM) and evaluated for Stat3 activity and cytokine expression. Furthermore, the role of Stat3 inhibition on MG and MP activation was studied both in vitro and in vivo. Finally, the effect of Stat3 inhibition on tumor growth was assessed in intracranial GL261 gliomas. GL261-CM increased Stat3 activity in N9 cells in vitro and resulted in overexpression of IL-10 and IL-6, and downregulation of IL1-beta, a pro-inflammatory cytokine. Inhibition of Stat3 by CPA-7 or siRNA reversed glioma-induced cytokine expression profile in N9 cells. Furthermore, inactivation of Stat3 in intracranial GL261 tumors by siRNA resulted in MG/MP activation and tumor growth inhibition. Glioma-induced MG and MP suppression may be mediated thorough Stat3. Inhibition of Stat3 function in tumor MG/MP may result in their activation and can potentially be used as an adjunct immunotherapy approach for gliomas.

  19. Tumor volumetric measurements in surgically inaccessible pediatric low-grade glioma.

    PubMed

    Kilday, John-Paul; Branson, Helen; Rockel, Conrad; Laughlin, Suzanne; Mabbott, Donald; Bouffet, Eric; Bartels, Ute

    2015-01-01

    Tumor measurement is important in unresectable pediatric low-grade gliomas (pLGGs) to determine either the need for treatment or assess response. Standard methods measure the product of the largest 2 lengths from transverse, anterior-posterior, and cranio-caudal dimensions (SM, cm). This single-institution study evaluated tumor volume measurements (VM, cm) in such pLGGs. Of 50 patients treated with chemotherapy for surgically inaccessible pLGG, 8 met the inclusion criteria of having 2 or more sequential MRI studies of T1-weighted Fast-Spoiled Gradient Recalled acquisition. SM and VM were performed by 2 independent neuroradiologists. Associations of measurement methods with defined therapeutic response criteria and patient clinical status were assessed. The mean tumor size at the first MRI scan was 20 cm and 398 cm according to SM and VM, respectively. VM results did not differ significantly from SM-derived spherical volume calculations (Pearson correlation, P<0.0001) with a high interrater reliability. Both methods were concordant in defining the tumor response according to the current criteria, although radiologic progressive disease was not associated with clinical status (SM: P=0.491, VM: P=0.208). In this limited experience, volumetric analysis of unresectable pLGGs did not seem superior to the standard linear measurements for defining tumor response.

  20. Histogram analysis of T2*-based pharmacokinetic imaging in cerebral glioma grading.

    PubMed

    Liu, Hua-Shan; Chiang, Shih-Wei; Chung, Hsiao-Wen; Tsai, Ping-Huei; Hsu, Fei-Ting; Cho, Nai-Yu; Wang, Chao-Ying; Chou, Ming-Chung; Chen, Cheng-Yu

    2018-03-01

    To investigate the feasibility of histogram analysis of the T2*-based permeability parameter volume transfer constant (K trans ) for glioma grading and to explore the diagnostic performance of the histogram analysis of K trans and blood plasma volume (v p ). We recruited 31 and 11 patients with high- and low-grade gliomas, respectively. The histogram parameters of K trans and v p , derived from the first-pass pharmacokinetic modeling based on the T2* dynamic susceptibility-weighted contrast-enhanced perfusion-weighted magnetic resonance imaging (T2* DSC-PW-MRI) from the entire tumor volume, were evaluated for differentiating glioma grades. Histogram parameters of K trans and v p showed significant differences between high- and low-grade gliomas and exhibited significant correlations with tumor grades. The mean K trans derived from the T2* DSC-PW-MRI had the highest sensitivity and specificity for differentiating high-grade gliomas from low-grade gliomas compared with other histogram parameters of K trans and v p . Histogram analysis of T2*-based pharmacokinetic imaging is useful for cerebral glioma grading. The histogram parameters of the entire tumor K trans measurement can provide increased accuracy with additional information regarding microvascular permeability changes for identifying high-grade brain tumors. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Senescence from glioma stem cell differentiation promotes tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouchi, Rie; Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550; Okabe, Sachiko

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such asmore » IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.« less

  2. Glioma Selectivity of Magnetically Targeted Nanoparticles: A Role of Abnormal Tumor Hydrodynamics

    PubMed Central

    Chertok, Beata; David, Allan E.; Huang, Yongzhuo; Yang, Victor C.

    2007-01-01

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma-versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting. PMID:17628157

  3. Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics.

    PubMed

    Chertok, Beata; David, Allan E; Huang, Yongzhuo; Yang, Victor C

    2007-10-08

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma- versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting.

  4. Upfront chemotherapy and subsequent resection for molecularly defined gliomas.

    PubMed

    Sasaki, Hikaru; Hirose, Yuichi; Yazaki, Takahito; Kitamura, Yohei; Katayama, Makoto; Kimura, Tokuhiro; Fujiwara, Hirokazu; Toda, Masahiro; Ohira, Takayuki; Yoshida, Kazunari

    2015-08-01

    Functional preservation is critical in glioma surgery, and the extent of resection influences survival outcome. Neoadjuvant chemotherapy is a promising option because of its potential to facilitate tumor shrinkage and maximum tumor resection. The object of this study was to assess the utility of the neoadjuvant strategy in a prospective series of gliomas with favorable molecular status. Twenty-six consecutive cases of diffuse gliomas of WHO grade II or III with either 1p19q codeletion or MGMT methylation were treated with upfront chemotherapy following maximal safe removal. In cases of incomplete initial surgery, second-look resection was intended after tumor volume decrease by chemotherapy. Among 22 evaluable cases, chemotherapy led to a median change in the sum of the product of perpendicular diameters of -35 %, and 14 out of the 22 cases (64 %) showed objective response. Second-look resection after tumor volume decrease was performed in 12 out of 19 cases of incomplete initial surgery (GTR/STR 9, removal of residual methionine PET uptake 3). The median progression-free survival among the 22 patients with grade II tumors was 57 months, with some cases showing durable progression-free survival after second-look resection. MIB-1 indices of the second-look resected tumors were lower than those of the initial tumors, and the methylation status of the MGMT gene was unchanged. Neoadjuvant chemotherapy based on molecular guidance often produces significant volume decrease of incompletely resected gliomas. Radical second-look resection is an optional advantage of upfront chemotherapy for chemosensitive gliomas compared with initial radiotherapy.

  5. The Value of 5-Aminolevulinic Acid in Low-grade Gliomas and High-grade Gliomas Lacking Glioblastoma Imaging Features: An Analysis Based on Fluorescence, Magnetic Resonance Imaging, 18F-Fluoroethyl Tyrosine Positron Emission Tomography, and Tumor Molecular Factors

    PubMed Central

    Jaber, Mohammed; Wölfer, Johannes; Ewelt, Christian; Holling, Markus; Hasselblatt, Martin; Niederstadt, Thomas; Zoubi, Tarek; Weckesser, Matthias

    2015-01-01

    BACKGROUND: Approximately 20% of grade II and most grade III gliomas fluoresce after 5-aminolevulinic acid (5-ALA) application. Conversely, approximately 30% of nonenhancing gliomas are actually high grade. OBJECTIVE: The aim of this study was to identify preoperative factors (ie, age, enhancement, 18F-fluoroethyl tyrosine positron emission tomography [18F-FET PET] uptake ratios) for predicting fluorescence in gliomas without typical glioblastomas imaging features and to determine whether fluorescence will allow prediction of tumor grade or molecular characteristics. METHODS: Patients harboring gliomas without typical glioblastoma imaging features were given 5-ALA. Fluorescence was recorded intraoperatively, and biopsy specimens collected from fluorescing tissue. World Health Organization (WHO) grade, Ki-67/MIB-1 index, IDH1 (R132H) mutation status, O6-methylguanine DNA methyltransferase (MGMT) promoter methylation status, and 1p/19q co-deletion status were assessed. Predictive factors for fluorescence were derived from preoperative magnetic resonance imaging and 18F-FET PET. Classification and regression tree analysis and receiver-operating-characteristic curves were generated for defining predictors. RESULTS: Of 166 tumors, 82 were diagnosed as WHO grade II, 76 as grade III, and 8 as glioblastomas grade IV. Contrast enhancement, tumor volume, and 18F-FET PET uptake ratio >1.85 predicted fluorescence. Fluorescence correlated with WHO grade (P < .001) and Ki-67/MIB-1 index (P < .001), but not with MGMT promoter methylation status, IDH1 mutation status, or 1p19q co-deletion status. The Ki-67/MIB-1 index in fluorescing grade III gliomas was higher than in nonfluorescing tumors, whereas in fluorescing and nonfluorescing grade II tumors, no differences were noted. CONCLUSION: Age, tumor volume, and 18F-FET PET uptake are factors predicting 5-ALA-induced fluorescence in gliomas without typical glioblastoma imaging features. Fluorescence was associated with an increased

  6. Class A1 scavenger receptor modulates glioma progression by regulating M2-like tumor-associated macrophage polarization

    PubMed Central

    Zhang, Hanwen; Zhang, Wenbin; Sun, Xuan; Dang, Ruoyu; Zhou, Rongmei; Bai, Hui; Ben, Jingjing; Zhu, Xudong; Zhang, Yan; Yang, Qing; Xu, Yong; Chen, Qi

    2016-01-01

    Macrophages enhance glioma development and progression by shaping the tumor microenvironment. Class A1 scavenger receptor (SR-A1), a pattern recognition receptor primarily expressed in macrophages, is up-regulated in many human solid tumors. We found that SR-A1 expression in 136 human gliomas was positively correlated with tumor grade (P<0.01), but not prognosis or tumor recurrence. SR-A1-expressing macrophages originated primarily from circulating monocytes attracted to tumor tissue, and were almost twice as numerous as resident microglia in glioma tissues (P<0.001). The effects of SR-A1 on glioma proliferation and invasion were assessed in vivo using an SR-A1-deficient murine orthotopic glioma model. SR-A1 deletion promoted M2-like tumor-associated macrophage (TAM) polarization in mice by activating STAT3 and STAT6, which resulted in robust orthotopic glioma proliferation and angiogenesis. Finally, we found that HSP70 might be an endogenous ligand that activates SR-A1-dependent anti-tumorigenic pathways in gliomas, although its expression does not appear informative for diagnostic purposes. Our findings demonstrate a relationship between TAMs, SR-A1 expression and glioma growth and provide new insights into the pathogenic role of TAMs in glioma. PMID:27367025

  7. GLISTRboost: Combining Multimodal MRI Segmentation, Registration, and Biophysical Tumor Growth Modeling with Gradient Boosting Machines for Glioma Segmentation.

    PubMed

    Bakas, Spyridon; Zeng, Ke; Sotiras, Aristeidis; Rathore, Saima; Akbari, Hamed; Gaonkar, Bilwaj; Rozycki, Martin; Pati, Sarthak; Davatzikos, Christos

    2016-01-01

    We present an approach for segmenting low- and high-grade gliomas in multimodal magnetic resonance imaging volumes. The proposed approach is based on a hybrid generative-discriminative model. Firstly, a generative approach based on an Expectation-Maximization framework that incorporates a glioma growth model is used to segment the brain scans into tumor, as well as healthy tissue labels. Secondly, a gradient boosting multi-class classification scheme is used to refine tumor labels based on information from multiple patients. Lastly, a probabilistic Bayesian strategy is employed to further refine and finalize the tumor segmentation based on patient-specific intensity statistics from the multiple modalities. We evaluated our approach in 186 cases during the training phase of the BRAin Tumor Segmentation (BRATS) 2015 challenge and report promising results. During the testing phase, the algorithm was additionally evaluated in 53 unseen cases, achieving the best performance among the competing methods.

  8. Tumor-Associated Macrophages Are Predominant Carriers of Cyclodextrin-Based Nanoparticles into Gliomas

    PubMed Central

    Alizadeh, Darya; Zhang, Leying; Hwang, Jungyeon; Schluep, Thomas; Badie, Behnam

    2009-01-01

    The goal of this study was to evaluate the mechanism of cyclodextrin-based nanoparticle (CDP-NP) uptake into a murine glioma model. Using mixed in vitro culture systems, we demonstrated that CDP-NP was preferentially taken up by BV2 and N9 microglia (MG) cells as compared to GL261 glioma cells. Fluorescent microscopy and flow cytometry analysis of intracranial (i.c.) GL261 gliomas confirmed these findings and demonstrated a predominant CDP-NP uptake by macrophages (MP) and MG within and around the tumor site. Interestingly, in mice bearing bilateral i.c. tumor, MG and MP carrying CDP-NP were able to migrate to the contralateral tumors. In conclusion, these studies better characterize the cellular distribution of CDP-NP in i.c. tumors and demonstrate that MP and MG could potentially be used as nanoparticle drug carriers into malignant brain tumors. PMID:19836468

  9. Detection of IDH1 mutation in the plasma of patients with glioma.

    PubMed

    Boisselier, Blandine; Gállego Pérez-Larraya, Jaime; Rossetto, Marta; Labussière, Marianne; Ciccarino, Pietro; Marie, Yannick; Delattre, Jean-Yves; Sanson, Marc

    2012-10-16

    The IDH1(R132H) mutation is both a strong prognostic predictor and a diagnostic hallmark of gliomas and therefore has major clinical relevance. Here, we developed a new technique to detect the IDH1(R132H) mutation in the plasma of patients with glioma. Small-size DNA (150-250 base pairs) was extracted from the plasma of 31 controls and 80 patients with glioma with known IDH1(R132H) status and correlated with MRI data. The IDH1(R132H) mutation was detected by a combination of coamplification at lower denaturation temperature and digital PCR. The small size DNA concentration was 1.2 ng/mL (range 0.1-6.6) in controls vs 1.2 ng/mL (range 0.1-50.3) in patients with glioma (p = not significant) and 0.9 ng/mL (0.0-3.0) in low-grade gliomas vs 1.5 ng/mL in high-grade gliomas (p < 0.01). The small size DNA concentration correlated with enhancing tumor volume (1.6 ng/mL [0.4-24.9] when <10 cm(3) and 14.0 ng/mL [0.6-50.3] when ≥10 cm(3)). The IDH1(R132H) mutation was detected in 15 out of 25 plasma DNA mixtures (60%) from patients with mutated tumors and in none of the 14 patients with a nonmutated tumor. The sensitivity increased with enhancing tumor volume (3/9 in nonenhancing tumors, 6/10 for enhancing volume <10 cm(3), and 6/6 for enhancing volume ≥10 cm(3)). With a specificity of 100% and a sensitivity related to the tumor volume and contrast enhancement, IDH1(R132H) identification has a valuable diagnostic accuracy in patients not amenable to biopsy.

  10. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity.

    PubMed

    Zhao, Yang; Ren, Wei; Zhong, Ting; Zhang, Shuang; Huang, Dan; Guo, Yang; Yao, Xin; Wang, Chao; Zhang, Wei-Qiang; Zhang, Xuan; Zhang, Qiang

    2016-01-28

    The pH environment in gliomas is acidic. Therefore, in the present research, we selected our previously reported tumor-specific pH-responsive peptide H7K(R2)2 as a targeting ligand, which could respond to the acidic pH environment in gliomas, possessing CPP characteristics. The pH-sensitive liposomes were selected as carriers which could also respond to the acidic pH environment in gliomas triggering encapsulated drug release from these pH-sensitive liposomes. The H7K(R2)2-modified pH-sensitive liposomes containing doxorubicin (DOX-PSL-H7K(R2)2) were designed and prepared in order to evaluate their potential targeting of glioma tumor cells and their anti-tumor activity in mice with glioma tumor cells. DOX-PSL-H7K(R2)2 was prepared by the thin-film hydration method followed by remote loading using an ammonium sulfate gradient method. The in vitro release of DOX from pH-sensitive liposomes was tested and the in vitro targeting characteristics of H7K(R2)2-modified liposomes regarding C6 (rat C6 glioma cells) and U87-MG (human glioblastoma cells) were evaluated. The in vivo anti-tumor activity of DOX-PSL-H7K(R2)2 was also investigated in C6 tumor-bearing mice and in U87-MG orthotopic tumor-bearing nude mice. A specific targeting effect triggered by an acidic pH was observed in our in vitro experiments in C6 and U87-MG glioma cells. The pH-triggered DOX release from the pH-sensitive liposomes under acidic conditions was also confirmed in our in vitro experiment. Anti-tumor activity of DOX-PSL-H7K(R2)2 was found in C6 tumor-bearing mice and U87-MG orthotopic tumor-bearing nude mice in in vivo experiments. The antiangiogenic activity of DOX-PSL-H7K(R2)2 was confirmed in C6 tumor-bearing mice in the in vivo experiment. These H7K(R2)2-modified pH-sensitive liposomes containing anti-tumor drugs developed in this study are a promising delivery system involving the response stimuli at the acidic pH in the glioma tumor microenvironment and are suitable for anti-tumor therapy

  11. Volumetric glioma quantification: comparison of manual and semi-automatic tumor segmentation for the quantification of tumor growth.

    PubMed

    Odland, Audun; Server, Andres; Saxhaug, Cathrine; Breivik, Birger; Groote, Rasmus; Vardal, Jonas; Larsson, Christopher; Bjørnerud, Atle

    2015-11-01

    Volumetric magnetic resonance imaging (MRI) is now widely available and routinely used in the evaluation of high-grade gliomas (HGGs). Ideally, volumetric measurements should be included in this evaluation. However, manual tumor segmentation is time-consuming and suffers from inter-observer variability. Thus, tools for semi-automatic tumor segmentation are needed. To present a semi-automatic method (SAM) for segmentation of HGGs and to compare this method with manual segmentation performed by experts. The inter-observer variability among experts manually segmenting HGGs using volumetric MRIs was also examined. Twenty patients with HGGs were included. All patients underwent surgical resection prior to inclusion. Each patient underwent several MRI examinations during and after adjuvant chemoradiation therapy. Three experts performed manual segmentation. The results of tumor segmentation by the experts and by the SAM were compared using Dice coefficients and kappa statistics. A relatively close agreement was seen among two of the experts and the SAM, while the third expert disagreed considerably with the other experts and the SAM. An important reason for this disagreement was a different interpretation of contrast enhancement as either surgically-induced or glioma-induced. The time required for manual tumor segmentation was an average of 16 min per scan. Editing of the tumor masks produced by the SAM required an average of less than 2 min per sample. Manual segmentation of HGG is very time-consuming and using the SAM could increase the efficiency of this process. However, the accuracy of the SAM ultimately depends on the expert doing the editing. Our study confirmed a considerable inter-observer variability among experts defining tumor volume from volumetric MRIs. © The Foundation Acta Radiologica 2014.

  12. Dynamic-contrast-enhanced-MRI with extravasating contrast reagent: Rat cerebral glioma blood volume determination

    NASA Astrophysics Data System (ADS)

    Li, Xin; Rooney, William D.; Várallyay, Csanád G.; Gahramanov, Seymur; Muldoon, Leslie L.; Goodman, James A.; Tagge, Ian J.; Selzer, Audrey H.; Pike, Martin M.; Neuwelt, Edward A.; Springer, Charles S.

    2010-10-01

    The accurate mapping of the tumor blood volume (TBV) fraction ( vb) is a highly desired imaging biometric goal. It is commonly thought that achieving this is difficult, if not impossible, when small molecule contrast reagents (CRs) are used for the T1-weighted (Dynamic-Contrast-Enhanced) DCE-MRI technique. This is because angiogenic malignant tumor vessels allow facile CR extravasation. Here, a three-site equilibrium water exchange model is applied to DCE-MRI data from the cerebrally-implanted rat brain U87 glioma, a tumor exhibiting rapid CR extravasation. Analyses of segments of the (and the entire) DCE data time-course with this "shutter-speed" pharmacokinetic model, which admits finite water exchange kinetics, allow TBV estimation from the first-pass segment. Pairwise parameter determinances were tested with grid searches of 2D parametric error surfaces. Tumor blood volume ( vb), as well as ve (the extracellular, extravascular space volume fraction), and Ktrans (a CR extravasation rate measure) parametric maps are presented. The role of the Patlak Plot in DCE-MRI is also considered.

  13. Tipifarnib in Treating Young Patients With Recurrent or Progressive High-Grade Glioma, Medulloblastoma, Primitive Neuroectodermal Tumor, or Brain Stem Glioma

    ClinicalTrials.gov

    2013-10-07

    Childhood High-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  14. A new anti-glioma therapy, AG119: pre-clinical assessment in a mouse GL261 glioma model.

    PubMed

    Towner, Rheal A; Ihnat, Michael; Saunders, Debra; Bastian, Anja; Smith, Nataliya; Pavana, Roheeth Kumar; Gangjee, Aleem

    2015-07-17

    High grade gliomas (HGGs; grades III and IV) are the most common primary brain tumors in adults, and their malignant nature ranks them fourth in incidence of cancer death. Standard treatment for glioblastomas (GBM), involving surgical resection followed by radiation and chemotherapy with temozolomide (TMZ) and the anti-angiogenic therapy bevacizumab, have not substantially improved overall survival. New therapeutic agents are desperately needed for this devastating disease. Here we study the potential therapeutic agent AG119 in a pre-clinical model for gliomas. AG119 possesses both anti-angiogenic (RTK inhibition) and antimicrotubule cytotoxic activity in a single molecule. GL261 glioma-bearing mice were either treated with AG119, anti-VEGF (vascular endothelial growth factor) antibody, anti c-Met antibody or TMZ, and compared to untreated tumor-bearing mice. Animal survival was assessed, and tumor volumes and vascular alterations were monitored with morphological magnetic resonance imaging (MRI) and perfusion-weighted imaging, respectively. Percent survival of GL261 HGG-bearing mice treated with AG119 was significantly higher (p < 0.001) compared to untreated tumors. Tumor volumes (21-31 days following intracerebral implantation of GL261 cells) were found to be significantly lower for AG119 (p < 0.001), anti-VEGF (p < 0.05) and anti-c-Met (p < 0.001) antibody treatments, and TMZ-treated (p < 0.05) mice, compared to untreated controls. Perfusion data indicated that both AG119 and TMZ were able to reduce the effect of decreasing perfusion rates significantly (p < 0.05 for both), when compared to untreated tumors. It was also found that IC50 values for AG119 were much lower than those for TMZ in T98G and U251 cells. These data support further exploration of the anticancer activity AG119 in HGG, as this compound was able to increase animal survival and decrease tumor volumes in a mouse GL261 glioma model, and that AG119 is also not subject to methyl guanine

  15. Roles of purinergic P2X7 receptor in glioma and microglia in brain tumors.

    PubMed

    McLarnon, James G

    2017-08-28

    This review considers evidence suggesting that activation of the ionotropic purinergic receptor P2X 7 (P2X 7 R) is a contributing factor in the growth of brain tumors. Importantly, expression of P2X 7 R may be upregulated in both glioma cells and in immune responding microglial cells with possible differential effects on tumor progression. The recruitment of immune cells into tumor regions may not only be involved in supporting an immunosuppressive environment aiding tumor growth but activated microglia could secrete inflammatory factors promoting neoangiogenesis in expanding tumors. The subtype P2X 7 R exhibits a number of unique properties including activation of the receptor in pathological conditions associated with developing brain tumors. In particular, the tumor microenvironment includes elevated levels of ATP required for activation of P2X 7 R and the sustained tumor and immune cell P2X 7 R-mediated responses which in total contribute to overall tumor growth and viability. Studies on cultured rat and human glioma show marked increases in expression of P2X 7 R and enhanced cell mobility relative to control. Glioma cell animal models demonstrate enhanced expression of P2X 7 R in both glioma and microglia with antagonism of receptor showing differential effects on tumor growth. Overall, P2X 7 R activation is associated with a complexity of modulatory actions on tumor growth in part due to ubiquitous expression of the receptor in glioma and immune responsive cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. Functional analysis of the DEPDC1 oncoantigen in malignant glioma and brain tumor initiating cells.

    PubMed

    Kikuchi, Ryogo; Sampetrean, Oltea; Saya, Hideyuki; Yoshida, Kazunari; Toda, Masahiro

    2017-06-01

    DEP domain containing 1 (DEPDC1) is a novel oncoantigen expressed in cancer cells, which presents oncogenic activity and high immunogenicity. Although DEPDC1 has been predicted to be a useful antigen for the development of a cancer vaccine, its pathophysiological roles in glioma have not been investigated. Here, we analyzed the expression and function of DEPDC1 in malignant glioma. DEPDC1 expression in glioma cell lines, glioma tissues, and brain tumor initiating cells (BTICs) was assessed by western blot and quantitative polymerase chain reaction (PCR). The effect of DEPDC1 downregulation on cell growth and nuclear factor kappa B (NFκB) signaling in glioma cells was investigated. Overall survival was assessed in mouse glioma models using human glioma cells and induced mouse brain tumor stem cells (imBTSCs) to determine the effect of DEPDC1 suppression in vivo. DEPDC1 expression was increased in glioma cell lines, tissues, and BTICs. Suppression of endogenous DEPDC1 expression by small interfering RNA (siRNA) inhibited glioma cell viability and induced apoptosis through NFκB signaling. In mouse glioma models using human glioma cells and imBTSCs, downregulation of DEPDC1 expression prolonged overall survival. These results suggest that DEPDC1 represents a target molecule for the treatment of glioma.

  17. Tumor-related neurocognitive dysfunction in patients with diffuse glioma: a systematic review of neurocognitive functioning prior to anti-tumor treatment.

    PubMed

    van Kessel, Emma; Baumfalk, Anniek E; van Zandvoort, Martine J E; Robe, Pierre A; Snijders, Tom J

    2017-08-01

    Deficits in neurocognitive functioning (NCF) frequently occur in glioma patients. Both treatment and the tumor itself contribute to these deficits. Data about the role of the tumor are scarce, because NCF has mostly been studied postoperatively. We aimed to summarize data on pre-treatment NCF in glioma patients and to determine the overall and domain-specific prevalence of neurocognitive dysfunction. We searched PubMed and Embase according to PRISMA-P protocol for studies that evaluated pre-treatment NCF in glioma patients (1995-November 2016) and extracted information about NCF. We performed analysis of data for two main outcome measures; mean cognitive functioning of the study sample (at group level) and the percentage of impaired patients (at individual level). We included 23 studies. Most studies were small observational prospective cohort studies. In 11 (47.5%) studies, patient selection was based on tumor location. NCF was analyzed at the group level in 14 studies, of which 13 (92.9%) found decreased NCF at group level, compared to normative data or matched controls. The proportion of individuals with decreased NCF was reported in 15 studies. NCF was impaired (in any domain) in 62.6% of the individuals (median; interquartile range 31.0-79.0). Cognitive impairments were more common in patients with high-grade glioma than with low-grade glioma (OR 2.50; 95% CI 1.71-3.66). Cognitive impairment occurs in the majority of treatment-naive glioma patients, suggesting that neurocognitive dysfunction is related to the tumor. However, the literature about pre-treatment NCF in glioma patients is characterized by small-scale studies and strong heterogeneity in patient selection, resulting in high risk of bias.

  18. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue.

    PubMed

    Zhang, Xuemei; Li, Xuejuan; Hua, Hongchen; Wang, Aiping; Liu, Wanhui; Li, Youxin; Fu, Fenghua; Shi, Yanan; Sun, Kaoxiang

    2017-01-01

    Glioma has one of the highest mortality rates among primary brain tumors. The clinical treatment for glioma is very difficult due to its infiltration and specific growth locations. To achieve improved drug delivery to a brain tumor, we report the preparation and in vitro and in vivo evaluation of curcumin nanoparticles (Cur-NPs). The cyclic hexapeptide c(RGDf(N-me) VK)-C (cHP) has increased affinity for cells that overexpress integrins and was designed to target Cur-NPs to tumors. Functional polyethyleneglycol-modified poly(d,l-lactide-co-glycolide) (PEG-PLGA) conjugated to cHP was synthesized, and targeted Cur-NPs were prepared using a self-assembly nanoprecipitation process. The physicochemical properties and the in vitro cytotoxicity, accuracy, and penetration capabilities of Cur-NPs targeting cells with high levels of integrin expression were investigated. The in vivo targeting and penetration capabilities of the NPs were also evaluated against glioma in rats using in vivo imaging equipment. The results showed that the in vitro cytotoxicity of the targeted cHP-modified curcumin nanoparticles (cHP/Cur-NPs) was higher than that of either free curcumin or non-targeted Cur-NPs due to the superior ability of the cHP/Cur-NPs to target tumor cells. The targeted cHP/Cur-NPs, c(RGDf(N-me)VK)-C-modified Cur-NPs, exhibited improved binding, uptake, and penetration abilities than non-targeting NPs for glioma cells, cell spheres, and glioma tissue. In conclusion, c(RGDf(N-me)VK)-C can serve as an effective targeting ligand, and cHP/Cur-NPs can be exploited as a potential drug delivery system for targeting gliomas.

  19. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue

    PubMed Central

    Zhang, Xuemei; Li, Xuejuan; Hua, Hongchen; Wang, Aiping; Liu, Wanhui; Li, Youxin; Fu, Fenghua; Shi, Yanan; Sun, Kaoxiang

    2017-01-01

    Glioma has one of the highest mortality rates among primary brain tumors. The clinical treatment for glioma is very difficult due to its infiltration and specific growth locations. To achieve improved drug delivery to a brain tumor, we report the preparation and in vitro and in vivo evaluation of curcumin nanoparticles (Cur-NPs). The cyclic hexapeptide c(RGDf(N-me) VK)-C (cHP) has increased affinity for cells that overexpress integrins and was designed to target Cur-NPs to tumors. Functional polyethyleneglycol-modified poly(d,l-lactide-co-glycolide) (PEG-PLGA) conjugated to cHP was synthesized, and targeted Cur-NPs were prepared using a self-assembly nanoprecipitation process. The physicochemical properties and the in vitro cytotoxicity, accuracy, and penetration capabilities of Cur-NPs targeting cells with high levels of integrin expression were investigated. The in vivo targeting and penetration capabilities of the NPs were also evaluated against glioma in rats using in vivo imaging equipment. The results showed that the in vitro cytotoxicity of the targeted cHP-modified curcumin nanoparticles (cHP/Cur-NPs) was higher than that of either free curcumin or non-targeted Cur-NPs due to the superior ability of the cHP/Cur-NPs to target tumor cells. The targeted cHP/Cur-NPs, c(RGDf(N-me)VK)-C-modified Cur-NPs, exhibited improved binding, uptake, and penetration abilities than non-targeting NPs for glioma cells, cell spheres, and glioma tissue. In conclusion, c(RGDf(N-me)VK)-C can serve as an effective targeting ligand, and cHP/Cur-NPs can be exploited as a potential drug delivery system for targeting gliomas. PMID:28848349

  20. Glioma-associated stem cells: a novel class of tumor-supporting cells able to predict prognosis of human low-grade gliomas.

    PubMed

    Bourkoula, Evgenia; Mangoni, Damiano; Ius, Tamara; Pucer, Anja; Isola, Miriam; Musiello, Daniela; Marzinotto, Stefania; Toffoletto, Barbara; Sorrentino, Marisa; Palma, Anita; Caponnetto, Federica; Gregoraci, Giorgia; Vindigni, Marco; Pizzolitto, Stefano; Falconieri, Giovanni; De Maglio, Giovanna; Pecile, Vanna; Ruaro, Maria Elisabetta; Gri, Giorgia; Parisse, Pietro; Casalis, Loredana; Scoles, Giacinto; Skrap, Miran; Beltrami, Carlo Alberto; Beltrami, Antonio Paolo; Cesselli, Daniela

    2014-05-01

    Translational medicine aims at transferring advances in basic science research into new approaches for diagnosis and treatment of diseases. Low-grade gliomas (LGG) have a heterogeneous clinical behavior that can be only partially predicted employing current state-of-the-art markers, hindering the decision-making process. To deepen our comprehension on tumor heterogeneity, we dissected the mechanism of interaction between tumor cells and relevant components of the neoplastic environment, isolating, from LGG and high-grade gliomas (HGG), proliferating stem cell lines from both the glioma stroma and, where possible, the neoplasm. We isolated glioma-associated stem cells (GASC) from LGG (n=40) and HGG (n=73). GASC showed stem cell features, anchorage-independent growth, and supported the malignant properties of both A172 cells and human glioma-stem cells, mainly through the release of exosomes. Finally, starting from GASC obtained from HGG (n=13) and LGG (n=12) we defined a score, based on the expression of 9 GASC surface markers, whose prognostic value was assayed on 40 subsequent LGG-patients. At the multivariate Cox analysis, the GASC-based score was the only independent predictor of overall survival and malignant progression free-survival. The microenvironment of both LGG and HGG hosts non-tumorigenic multipotent stem cells that can increase in vitro the biological aggressiveness of glioma-initiating cells through the release of exosomes. The clinical importance of this finding is supported by the strong prognostic value associated with the characteristics of GASC. This patient-based approach can provide a groundbreaking method to predict prognosis and to exploit novel strategies that target the tumor stroma. © 2013 AlphaMed Press.

  1. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma.

    PubMed

    Jiang, Yan; Lv, Lingyan; Shi, Huihui; Hua, Yabing; Lv, Wei; Wang, Xiuzhen; Xin, Hongliang; Xu, Qunwei

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system (CNS) tumor with a short survival time. The failure of chemotherapy is ascribed to the low transport of chemotherapeutics across the Blood Brain Tumor Barrier (BBTB) and poor penetration into tumor tissue. In order to overcome the two barriers, small nanoparticles with active targeted capability are urgently needed for GBM drug delivery. In this study, we proposed PEGylated Polyamidoamine (PAMAM) dendrimer nanoparticles conjugated with glioma homing peptides (Pep-1) as potential glioma targeting delivery system (Pep-PEG-PAMAM), where PEGylated PAMAM dendrimer nanoparticle was utilized as carrier due to its small size and perfect penetration into tumor and Pep-1 was used to overcome BBTB via interleukin 13 receptor α2 (IL-13Rα2) mediated endocytosis. The preliminary availability and safety of Pep-PEG-PAMAM as a nanocarrier for glioma was evaluated. In vitro results indicated that a significantly higher amount of Pep-PEG-PAMAM was endocytosed by U87 MG cells. In vivo fluorescence imaging of U87MG tumor-bearing mice confirmed that the fluorescence intensity at glioma site of targeted group was 2.02 folds higher than that of untargeted group (**p<0.01), and glioma distribution experiment further revealed that Pep-PEG-PAMAM exhibited a significantly enhanced accumulation and improved penetration at tumor site. In conclusion, Pep-1 modified PAMAM was a promising nanocarrier for targeted delivery of brain glioma. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Glioma

    MedlinePlus

    ... cells are called mixed gliomas. Tumors such as “optic nerve glioma” and “brain stem glioma” are named ... Oligodendroglioma: Click here to learn more about oligodendroglioma. Optic Glioma: These tumors may involve any part of ...

  3. Temozolomide combined with PD-1 Antibody therapy for mouse orthotopic glioma model.

    PubMed

    Dai, Bailing; Qi, Na; Li, Junchao; Zhang, Guilong

    2018-07-02

    Temozolomide (TMZ) is the most frequent adjuvant chemotherapy drug in gliomas. PDL1 expresses on various tumors, including gliomas, and anti-PD-1 antibodies have been approved for treating some tumors by FDA. This study was to evaluate the therapeutical potential of combined TMZ with anti-PD-1 antibody therapy for mouse orthotopic glioma model. We performed C57BL/6 mouse orthotopic glioma model by stereotactic intracranial implantation of glioma cell line GL261, mice were randomly divided into four groups: (1) control group; (2) TMZ group; (3) anti-PD-1 antibody group; (4) TMZ combined with anti-PD-1 antibody group. Then the volume or size of tumor was assessed by 7.0 T MRI and immunohistochemistry, and the number of CD4 and CD8 infiltrating cells in brain tumor and spleen was evaluated by immunohistochemistry. Western blot was used to evaluate the expression of PDL1. Furthermore, Overall survival of each group mice was also evaluated. Overall survival was significantly improved in combined group compared to other groups (χ2 = 32.043, p < 0.01). The volume or size of tumor was significantly decreased in combined group compared with other groups (F = 42.771, P < 0.01). And the number of CD4 and CD8 infiltrating cells in brain tumor was also obviously increased in combined group (CD4 F = 45.67, P < 0.01; CD8 F = 53.75, P < 0.01). Anti-PD1 antibody combined with TMZ therapy for orthotopic mouse glioma model could significantly improve the survival time of tumor-bear mice. Thus, this study provides the effective preclinical evidence for support clinical chemotherapy combined with immunotherapy for glioma patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Intrinsic Astrocyte Heterogeneity Influences Tumor Growth in Glioma Mouse Models.

    PubMed

    Irvin, David M; McNeill, Robert S; Bash, Ryan E; Miller, C Ryan

    2017-01-01

    The influence of cellular origin on glioma pathogenesis remains elusive. We previously showed that mutations inactivating Rb and Pten and activating Kras transform astrocytes and induce tumorigenesis throughout the adult mouse brain. However, it remained unclear whether astrocyte subpopulations were susceptible to these mutations. We therefore used genetic lineage tracing and fate mapping in adult conditional, inducible genetically engineered mice to monitor transformation of glial fibrillary acidic protein (GFAP) and glutamate aspartate transporter (GLAST) astrocytes and immunofluorescence to monitor cellular composition of the tumor microenvironment over time. Because considerable regional heterogeneity exists among astrocytes, we also examined the influence of brain region on tumor growth. GFAP astrocyte transformation induced uniformly rapid, regionally independent tumor growth, but transformation of GLAST astrocytes induced slowly growing tumors with significant regional bias. Transformed GLAST astrocytes had reduced proliferative response in culture and in vivo and malignant progression was delayed in these tumors. Recruited glial cells, including proliferating astrocytes, oligodendrocyte progenitors and microglia, were the majority of GLAST, but not GFAP astrocyte-derived tumors and their abundance dynamically changed over time. These results suggest that intrinsic astrocyte heterogeneity, and perhaps regional brain microenvironment, significantly contributes to glioma pathogenesis. © 2016 International Society of Neuropathology.

  5. Measurable Supratentorial White Matter Volume Changes in Patients with Diffuse Intrinsic Pontine Glioma Treated with an Anti-Vascular Endothelial Growth Factor Agent, Steroids, and Radiation.

    PubMed

    Svolos, P; Reddick, W E; Edwards, A; Sykes, A; Li, Y; Glass, J O; Patay, Z

    2017-06-01

    Assessing the response to treatment in infiltrative brain tumors by using lesion volume-based response criteria is challenging. We hypothesized that in such tumors, volume measurements alone may not accurately capture changes in actual tumor burden during treatment. We longitudinally evaluated volume changes in both normal-appearing supratentorial white matter and the brain stem lesions in patients treated for diffuse intrinsic pontine glioma to determine to what extent adjuvant systemic therapies may skew the accuracy of tumor response assessments based on volumetric analysis. The anatomic MR imaging and diffusion tensor imaging data of 26 patients with diffuse intrinsic pontine glioma were retrospectively analyzed. Treatment included conformal radiation therapy in conjunction with vandetanib and dexamethasone. Volumetric and diffusion data were analyzed with time, and differences between time points were evaluated statistically. Normalized brain stem lesion volume decreased during combined treatment (slope = -0.222, P < .001) and increased shortly after completion of radiation therapy (slope = 0.422, P < .001). Supratentorial white matter volume steadily and significantly decreased with time (slope = -0.057, P < .001). Longitudinal changes in brain stem lesion volume are robust; less pronounced but measurable changes occur in the supratentorial white matter. Volume changes in nonirradiated supratentorial white matter during the disease course reflect the effects of systemic medication on the water homeostasis of normal parenchyma. Our data suggest that adjuvant nontumor-targeted therapies may have a more substantial effect on lesion volume changes than previously thought; hence, an apparent volume decrease in infiltrative tumors receiving combined therapies may lead to overestimation of the actual response and tumor control. © 2017 by American Journal of Neuroradiology.

  6. HOXB1 Is a Tumor Suppressor Gene Regulated by miR-3175 in Glioma

    PubMed Central

    Han, Liang; Liu, Dehua; Li, Zhaohui; Tian, Nan; Han, Ziwu; Wang, Guang; Fu, Yao; Guo, Zhigang; Zhu, Zifeng

    2015-01-01

    The HOXB1 gene plays a critical role as an oncogene in diverse tumors. However, the functional role of HOXB1 and the mechanism regulating HOXB1 expression in glioma are not fully understood. A preliminary bioinformatics analysis showed that HOXB1 is ectopically expressed in glioma, and that HOXB1 is a possible target of miR-3175. In this study, we investigated the function of HOXB1 and the relationship between HOXB1 and miR-3175 in glioma. We show that HOXB1 expression is significantly downregulated in glioma tissues and cell lines, and that its expression may be closely associated with the degree of malignancy. Reduced HOXB1 expression promoted the proliferation and invasion of glioma cells, and inhibited their apoptosis in vitro, and the downregulation of HOXB1 was also associated with worse survival in glioma patients. More importantly, HOXB1 was shown experimentally to be a direct target of miR-3175 in this study. The downregulated expression of miR-3175 inhibited cell proliferation and invasion, and promoted apoptosis in glioma. The oncogenicity induced by low HOXB1 expression was prevented by an miR-3175 inhibitor in glioma cells. Our results suggest that HOXB1 functions as a tumor suppressor, regulated by miR-3175 in glioma. These results clarify the pathogenesis of glioma and offer a potential target for its treatment. PMID:26565624

  7. Re-evaluating TTF-1 immunohistochemistry in diffuse gliomas: Expression is clone-dependent and associated with tumor location.

    PubMed

    Pratt, Drew; Afsar, Nina; Allgauer, Michael; Fetsch, Patricia; Palisoc, Maryknoll; Pittaluga, Stefania; Quezado, Martha

    TTF-1 is widely used as a marker in routine surgical pathology in the work-up of malignancy. Aberrant expression of TTF-1 in extrapulmonary and extrathyroidal malignancies is a frequently reported phenomenon. In addition to the recently characterized pituicyte-derived tumors of the sella, immunoreactivity has been reported in diffuse gliomas with the SPT24 clone. Here, we sought to evaluate TTF-1 expression with three commercially available clones in a large series of gliomas. Expression was compared across the newly defined diagnostic entities in the 2016 WHO Classification of CNS Tumors. Using tissue microarrays (TMA), 212 diffuse gliomas (WHO grades II - IV) were systematically evaluated with TTF-1 immunohistochemistry using three clones: SPT24, 8G7G3/1, and SP141, and results correlated with clinicopathologic features. 14 high-grade diffuse gliomas demonstrated nuclear staining with the SP141 and SPT24 clones. Two tumors showed weak positivity with the 8G7G3/1 clone. All tumors were high grade by histology (WHO grades III and IV). 86% (12/14) of TTF-1-positive gliomas involved the frontal lobes at diagnosis. No relationship with IDH R132H, ATRX, p53, H3K27M, or EGFR immunohistochemistry was identified. TTF-1 expression in gliomas was not independently prognostic of overall survival. TTF-1 expression in diffuse gliomas is a rare but potentially misleading occurrence. In our cohort, staining occurred with both the SPT24 and SP141 clones at equal intensity and frequency. Clustering of TTF-1-positive tumors in the frontal lobe(s) suggests lineage-specific expression. Due to clone-specific expression in diffuse gliomas, caution must be exercised in the work-up of intracranial tumors with TTF-1.
.

  8. Suppression of miR-184 in malignant gliomas upregulates SND1 and promotes tumor aggressiveness

    PubMed Central

    Emdad, Luni; Janjic, Aleksandar; Alzubi, Mohammad A.; Hu, Bin; Santhekadur, Prasanna K.; Menezes, Mitchell E.; Shen, Xue-Ning; Das, Swadesh K.; Sarkar, Devanand; Fisher, Paul B.

    2015-01-01

    Background Malignant glioma is an aggressive cancer requiring new therapeutic targets. MicroRNAs (miRNAs) regulate gene expression post transcriptionally and are implicated in cancer development and progression. Deregulated expressions of several miRNAs, specifically hsa-miR-184, correlate with glioma development. Methods Bioinformatic approaches were used to identify potential miR-184-regulated target genes involved in malignant glioma progression. This strategy identified a multifunctional nuclease, SND1, known to be overexpressed in multiple cancers, including breast, colon, and hepatocellular carcinoma, as a putative direct miR-184 target gene. SND1 levels were evaluated in patient tumor samples and human-derived cell lines. We analyzed invasion and signaling in vitro through SND1 gain-of-function and loss-of-function. An orthotopic xenograft model with primary glioma cells demonstrated a role of miR-184/SND1 in glioma pathogenesis in vivo. Results SND1 is highly expressed in human glioma tissue and inversely correlated with miR-184 expression. Transfection of glioma cells with a miR-184 mimic inhibited invasion, suppressed colony formation, and reduced anchorage-independent growth in soft agar. Similar phenotypes were evident when SND1 was knocked down with siRNA. Additionally, knockdown (KD) of SND1 induced senescence and improved the chemoresistant properties of malignant glioma cells. In an orthotopic xenograft model, KD of SND1 or transfection with a miR-184 mimic induced a less invasive tumor phenotype and significantly improved survival of tumor bearing mice. Conclusions Our study is the first to show a novel regulatory role of SND1, a direct target of miR-184, in glioma progression, suggesting that the miR-184/SND1 axis may be a useful diagnostic and therapeutic tool for malignant glioma. PMID:25216670

  9. The Ubiquitin Ligase COP1 Promotes Glioma Cell Proliferation by Preferentially Downregulating Tumor Suppressor p53.

    PubMed

    Zou, Shenshan; Zhu, Yufu; Wang, Bin; Qian, Fengyuan; Zhang, Xiang; Wang, Lei; Fu, Chunling; Bao, Hanmo; Xie, Manyi; Gao, Shangfeng; Yu, Rutong; Shi, Hengliang

    2017-09-01

    Human glioma causes substantial morbidity and mortality worldwide. However, the molecular mechanisms underlying glioma progression are still largely unknown. COP1 (constitutively photomorphogenic 1), an E3 ubiquitin ligase, is important in cell survival, development, cell growth, and cancer biology by regulating different substrates. As is well known, both tumor suppressor p53 and oncogenic protein c-JUN could be ubiquitinated and degraded by ubiquitin ligase COP1, which may be the reason that COP1 serves as an oncogene or a tumor suppressor in different cancer types. Up to now, the possible role of COP1 in human glioma is still unclear. In the present study, we found that the expression of COP1 was upregulated in human glioma tissues. The role of COP1 in glioma cell proliferation was investigated using COP1 loss- and gain-of-function. The results showed that downregulation of COP1 by short hairpin RNA (shRNA) inhibited glioma cell proliferation, while overexpression of COP1 significantly promoted it. Furthermore, we demonstrated that COP1 only interacted with and regulated p53, but not c-JUN. Taken together, these results indicate that COP1 may play a role in promoting glioma cell proliferation by interacting with and downregulating tumor suppressor p53 rather than oncogenic protein c-JUN.

  10. Seizure control as a new metric in assessing efficacy of tumor treatment in low-grade glioma trials

    PubMed Central

    Chamberlain, Marc; Schiff, David; Reijneveld, Jaap C.; Armstrong, Terri S.; Ruda, Roberta; Wen, Patrick Y.; Weller, Michael; Koekkoek, Johan A. F.; Mittal, Sandeep; Arakawa, Yoshiki; Choucair, Ali; Gonzalez-Martinez, Jorge; MacDonald, David R.; Nishikawa, Ryo; Shah, Aashit; Vecht, Charles J.; Warren, Paula; van den Bent, Martin J.; DeAngelis, Lisa M.

    2017-01-01

    Patients with low-grade glioma frequently have brain tumor–related epilepsy, which is more common than in patients with high-grade glioma. Treatment for tumor-associated epilepsy usually comprises a combination of surgery, anti-epileptic drugs (AEDs), chemotherapy, and radiotherapy. Response to tumor-directed treatment is measured primarily by overall survival and progression-free survival. However, seizure frequency has been observed to respond to tumor-directed treatment with chemotherapy or radiotherapy. A review of the current literature regarding seizure assessment for low-grade glioma patients reveals a heterogeneous manner in which seizure response has been reported. There is a need for a systematic approach to seizure assessment and its influence on health-related quality-of-life outcomes in patients enrolled in low-grade glioma therapeutic trials. In view of the need to have an adjunctive metric of tumor response in these patients, a method of seizure assessment as a metric in brain tumor treatment trials is proposed. PMID:27651472

  11. Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment.

    PubMed

    Kievit, Forrest M; Florczyk, Stephen J; Leung, Matthew C; Veiseh, Omid; Park, James O; Disis, Mary L; Zhang, Miqin

    2010-08-01

    Despite recent advances in the understanding of its cell biology, glioma remains highly lethal. Development of effective therapies requires a cost-effective in vitro tumor model that more accurately resembles the in vivo tumor microenvironment as standard two-dimensional (2D) tissue culture conditions do so poorly. Here we report on the use of a three-dimensional (3D) chitosan-alginate (CA) scaffold to serve as an extracellular matrix that promotes the conversion of cultured cancer cells to a more malignant in vivo-like phenotype. Human U-87 MG and U-118 MG glioma cells and rat C6 glioma cells were chosen for the study. In vitro tumor cell proliferation and secretion of factors that promote tumor malignancy, including VEGF, MMP-2, fibronectin, and laminin, were assessed. The scaffolds pre-cultured with U-87 MG and C6 cells were then implanted into nude mice to evaluate tumor growth and blood vessel recruitment compared to the standard 2D cell culture and 3D Matrigel matrix xenograft controls. Our results indicate that while the behavior of C6 cells showed minimal differences due to their highly malignant and invasive nature, U-87 MG and U-118 MG cells exhibited notably higher malignancy when cultured in CA scaffolds. CA scaffolds provide a 3D microenvironment for glioma cells that is more representative of the in vivo tumor, thus can serve as a more effective platform for development and study of anticancer therapeutics. This unique CA scaffold platform may offer a valuable alternative strategy to the time-consuming and costly animal studies for a wide variety of experimental designs. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Characterization of PD-1 upregulation on tumor-infiltrating lymphocytes in human and murine gliomas and preclinical therapeutic blockade.

    PubMed

    Dejaegher, Joost; Verschuere, Tina; Vercalsteren, Ellen; Boon, Louis; Cremer, Jonathan; Sciot, Raf; Van Gool, Stefaan W; De Vleeschouwer, Steven

    2017-11-01

    Blockade of the immune checkpoint molecule programmed-cell-death-protein-1 (PD-1) yielded promising results in several cancers. To understand the therapeutic potential in human gliomas, quantitative data describing the expression of PD-1 are essential. Moreover, due the immune-specialized region of the brain in which gliomas arise, differences between tumor-infiltrating and circulating lymphocytes should be acknowledged. In this study we have used flow cytometry to quantify PD-1 expression on tumor-infiltrating T cells of 25 freshly resected glioma cell suspensions (10 newly and 5 relapsed glioblastoma, 10 lower grade gliomas) and simultaneously isolated circulating T cells. A strong upregulation of PD-1 expression in the tumor microenvironment compared to the blood circulation was seen in all glioma patients. Additionally, circulating T cells were isolated from 15 age-matched healthy volunteers, but no differences in PD-1 expression were found compared to glioma patients. In the murine GL261 malignant glioma model, there was a similar upregulation of PD-1 on brain-infiltrating lymphocytes. Using a monoclonal PD-1 blocking antibody, we found a marked prolonged survival with 55% of mice reaching long-term survival. Analysis of brain-infiltrating cells 21 days after GL261 tumor implantation showed a shift in infiltrating lymphocyte subgroups with increased CD8+ T cells and decreased regulatory T cells. Together, our results suggest an important role of PD-1 in glioma-induced immune escape, and provide translational evidence for the use of PD-1 blocking antibodies in human malignant gliomas. © 2017 UICC.

  13. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Si-Jian; Wu, Yue-Bing; Cai, Shang

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitromore » proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation.« less

  14. FTIR spectro-imaging of collagen scaffold formation during glioma tumor development.

    PubMed

    Noreen, Razia; Chien, Chia-Chi; Chen, Hsiang-Hsin; Bobroff, Vladimir; Moenner, Michel; Javerzat, Sophie; Hwu, Yeukuang; Petibois, Cyril

    2013-11-01

    Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8-11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12-15; 9/10 of tumors; 94 % of variance) and β-turns (day 18-21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P < 0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes.

  15. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model.

    PubMed

    Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand

    2012-01-01

    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg(9)BK (LDBK) and SarLys[dPhe(8)]desArg(9)BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T(1)-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites.

  16. Antitumor effect of fibrin glue containing temozolomide against malignant glioma

    PubMed Central

    Anai, Shigeo; Hide, Takuichiro; Takezaki, Tatsuya; Kuroda, Jun-ichiro; Shinojima, Naoki; Makino, Keishi; Nakamura, Hideo; Yano, Shigetoshi; Kuratsu, Jun-ichi

    2014-01-01

    Temozolomide (TMZ), used to treat glioblastoma and malignant glioma, induces autophagy, apoptosis and senescence in cancer cells. We investigated fibrin glue (FG) as a drug delivery system for the local administration of high-concentration TMZ aimed at preventing glioma recurrence. Our high-power liquid chromatography studies indicated that FG containing TMZ (TMZ-FG) manifested a sustained drug release potential. We prepared a subcutaneous tumor model by injecting groups of mice with three malignant glioma cell lines and examined the antitumor effect of TMZ-FG. We estimated the tumor volume and performed immunostaining and immunoblotting using antibodies to Ki-67, cleaved caspase 3, LC3 and p16. When FG sheets containing TMZ (TMZ-FGS) were inserted beneath the tumors, their growth was significantly suppressed. In mice treated with peroral TMZ plus TMZ-FGS the tumors tended to be smaller than in mice whose tumors were treated with TMZ-FGS or peroral TMZ alone. The TMZ-FGS induced autophagy, apoptosis and senescence in subcutaneous glioma tumor cells. To assess the safety of TMZ-FG for normal brain, we placed it directly on the brain of living mice and stained tissue sections obtained in the acute and chronic phase immunohistochemically. In both phases, TMZ-FG failed to severely damage normal brain tissue. TMZ-FG may represent a safe new drug delivery system with sustained drug release potential to treat malignant glioma. PMID:24673719

  17. High-Grade Glioma Radiation Therapy Target Volumes and Patterns of Failure Obtained From Magnetic Resonance Imaging and {sup 18}F-FDOPA Positron Emission Tomography Delineations From Multiple Observers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosztyla, Robert, E-mail: rkosztyla@bccancer.bc.ca; Chan, Elisa K.; Hsu, Fred

    Purpose: The objective of this study was to compare recurrent tumor locations after radiation therapy with pretreatment delineations of high-grade gliomas from magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[{sup 18}F]fluoro-L-phenylalanine ({sup 18}F-FDOPA) positron emission tomography (PET) using contours delineated by multiple observers. Methods and Materials: Nineteen patients with newly diagnosed high-grade gliomas underwent computed tomography (CT), gadolinium contrast-enhanced MRI, and {sup 18}F-FDOPA PET/CT. The image sets (CT, MRI, and PET/CT) were registered, and 5 observers contoured gross tumor volumes (GTVs) using MRI and PET. Consensus contours were obtained by simultaneous truth and performance level estimation (STAPLE). Interobserver variability was quantified bymore » the percentage of volume overlap. Recurrent tumor locations after radiation therapy were contoured by each observer using CT or MRI. Consensus recurrence contours were obtained with STAPLE. Results: The mean interobserver volume overlap for PET GTVs (42% ± 22%) and MRI GTVs (41% ± 22%) was not significantly different (P=.67). The mean consensus volume was significantly larger for PET GTVs (58.6 ± 52.4 cm{sup 3}) than for MRI GTVs (30.8 ± 26.0 cm{sup 3}, P=.003). More than 95% of the consensus recurrence volume was within the 95% isodose surface for 11 of 12 (92%) cases with recurrent tumor imaging. Ten (91%) of these cases extended beyond the PET GTV, and 9 (82%) were contained within a 2-cm margin on the MRI GTV. One recurrence (8%) was located outside the 95% isodose surface. Conclusions: High-grade glioma contours obtained with {sup 18}F-FDOPA PET had similar interobserver agreement to volumes obtained with MRI. Although PET-based consensus target volumes were larger than MRI-based volumes, treatment planning using PET-based volumes may not have yielded better treatment outcomes, given that all but 1 recurrence extended beyond the PET GTV and most were contained by a 2

  18. DICER governs characteristics of glioma stem cells and the resulting tumors in xenograft mouse models of glioblastoma.

    PubMed

    Mansouri, Sheila; Singh, Sanjay; Alamsahebpour, Amir; Burrell, Kelly; Li, Mira; Karabork, Merve; Ekinci, Can; Koch, Elizabeth; Solaroglu, Ihsan; Chang, Jeffery T; Wouters, Bradly; Aldape, Kenneth; Zadeh, Gelareh

    2016-08-30

    The RNAse III endonuclease DICER is a key regulator of microRNA (miRNA) biogenesis and is frequently decreased in a variety of malignancies. We characterized the role of DICER in glioblastoma (GB), specifically demonstrating its effects on the ability of glioma stem-like cells (GSCs) to form tumors in a mouse model of GB. DICER silencing in GSCs reduced their stem cell characteristics, while tumors arising from these cells were more aggressive, larger in volume, and displayed a higher proliferation index and lineage differentiation. The resulting tumors, however, were more sensitive to radiation treatment. Our results demonstrate that DICER silencing enhances the tumorigenic potential of GSCs, providing a platform for analysis of specific relevant miRNAs and development of potentially novel therapies against GB.

  19. Purine synthesis promotes maintenance of brain tumor initiating cells in glioma.

    PubMed

    Wang, Xiuxing; Yang, Kailin; Xie, Qi; Wu, Qiulian; Mack, Stephen C; Shi, Yu; Kim, Leo J Y; Prager, Briana C; Flavahan, William A; Liu, Xiaojing; Singer, Meromit; Hubert, Christopher G; Miller, Tyler E; Zhou, Wenchao; Huang, Zhi; Fang, Xiaoguang; Regev, Aviv; Suvà, Mario L; Hwang, Tae Hyun; Locasale, Jason W; Bao, Shideng; Rich, Jeremy N

    2017-05-01

    Brain tumor initiating cells (BTICs), also known as cancer stem cells, hijack high-affinity glucose uptake active normally in neurons to maintain energy demands. Here we link metabolic dysregulation in human BTICs to a nexus between MYC and de novo purine synthesis, mediating glucose-sustained anabolic metabolism. Inhibiting purine synthesis abrogated BTIC growth, self-renewal and in vivo tumor formation by depleting intracellular pools of purine nucleotides, supporting purine synthesis as a potential therapeutic point of fragility. In contrast, differentiated glioma cells were unaffected by the targeting of purine biosynthetic enzymes, suggesting selective dependence of BTICs. MYC coordinated the control of purine synthetic enzymes, supporting its role in metabolic reprogramming. Elevated expression of purine synthetic enzymes correlated with poor prognosis in glioblastoma patients. Collectively, our results suggest that stem-like glioma cells reprogram their metabolism to self-renew and fuel the tumor hierarchy, revealing potential BTIC cancer dependencies amenable to targeted therapy.

  20. EG-07CELL CYCLE SIGNATURE AND TUMOR PHYLOGENY ARE ENCODED IN THE EVOLUTIONARY DYNAMICS OF DNA METHYLATION IN GLIOMA

    PubMed Central

    Mazor, Tali; Pankov, Aleksandr; Johnson, Brett E.; Hong, Chibo; Bell, Robert J.A.; Smirnov, Ivan V.; Reis, Gerald F.; Phillips, Joanna J.; Barnes, Michael; Bollen, Andrew W.; Taylor, Barry S.; Molinaro, Annette M.; Olshen, Adam B.; Song, Jun S.; Berger, Mitchel S.; Chang, Susan M.; Costello, Joseph F.

    2014-01-01

    The clonal evolution of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast, tumor epigenetic states, including DNA methylation, are reversible and sensitive to the tumor microenvironment, presumably precluding the use of epigenetics to discover tumor phylogeny. Here we examined the spatial and temporal dynamics of DNA methylation in a clinically and genetically characterized cohort of IDH1-mutant low-grade gliomas and their patient-matched recurrences. WHO grade II gliomas are diffuse, infiltrative tumors that frequently recur and may undergo malignant progression to a higher grade with a worse prognosis. The extent to which epigenetic alterations contribute to the evolution of low-grade gliomas, including malignant progression, is unknown. While all gliomas in the cohort exhibited the hypermethylation signature associated with IDH1 mutation, low-grade gliomas that underwent malignant progression to high-grade glioblastoma (GBM) had a unique signature of DNA hypomethylation enriched for active enhancers, as well as sites of age-related hypermethylation in the brain. Genes with promoter hypomethylation and concordant transcriptional upregulation during evolution to GBM were enriched in cell cycle function, evolving in concert with genetic alterations that deregulate the G1/S cell cycle checkpoint. Despite the plasticity of tumor epigenetic states, phyloepigenetic trees robustly recapitulated phylogenetic trees derived from somatic mutations in the same patients. These findings highlight widespread co-dependency of genetic and epigenetic events throughout the clonal evolution of initial and recurrent glioma.

  1. A role for ion channels in perivascular glioma invasion

    PubMed Central

    Thompson, Emily G.

    2017-01-01

    Malignant gliomas are devastating tumors, frequently killing those diagnosed in little over a year. The profuse infiltration of glioma cells into healthy tissue surrounding the main tumor mass is one of the major obstacles limiting the improvement of patient survival. Migration along the abluminal side of blood vessels is one of the salient features of glioma cell invasion. Invading glioma cells are attracted to the vascular network, in part by the neuro-peptide bradykinin, where glioma cells actively modify the gliovascular interface and undergo volumetric alterations to navigate the confined space. Critical to these volume modifications is a proposed hydrodynamic model that involves the flux of ions in and out of the cell, followed by osmotically obligated water. Ion and water channels expressed by the glioma cell are essential in this model of invasion and make opportune therapeutic targets. Lastly, there is growing evidence that vascular-associated glioma cells are able to control the vascular tone, presumably to free up space for invasion and growth. The unique mechanisms that enable perivascular glioma invasion may offer critical targets for therapeutic intervention in this devastating disease. Indeed, a chloride channel-blocking peptide has already been successfully tested in human clinical trials. PMID:27424110

  2. Homozygously deleted gene DACH1 regulates tumor-initiating activity of glioma cells

    PubMed Central

    Watanabe, Akira; Ogiwara, Hideki; Ehata, Shogo; Mukasa, Akitake; Ishikawa, Shumpei; Maeda, Daichi; Ueki, Keisuke; Ino, Yasushi; Todo, Tomoki; Yamada, Yasuhiro; Fukayama, Masashi; Saito, Nobuhito; Miyazono, Kohei; Aburatani, Hiroyuki

    2011-01-01

    Loss or reduction in function of tumor suppressor genes contributes to tumorigenesis. Here, by allelic DNA copy number analysis using single-nucleotide polymorphism genotyping array and mass spectrometry, we report homozygous deletion in glioblastoma multiformes at chromosome 13q21, where DACH1 gene is located. We found decreased cell proliferation of a series of glioma cell lines by forced expression of DACH1. We then generated U87TR-Da glioma cells, where DACH1 expression could be activated by exposure of the cells to doxycycline. Both ex vivo cellular proliferation and in vivo growth of s.c. transplanted tumors in mice are reduced in U87TR-Da cells with DACH1 expression (U87-DACH1-high), compared with DACH1-nonexpressing U87TR-Da cells (U87-DACH1-low). U87-DACH1-low cells form spheroids with CD133 and Nestin expression in serum-free medium but U87-DACH1-high cells do not. Compared with spheroid-forming U87-DACH1-low cells, adherent U87-DACH1-high cells display lower tumorigenicity, indicating DACH1 decreases the number of tumor-initiating cells. Gene expression analysis and chromatin immunoprecipitation assay reveal that fibroblast growth factor 2 (FGF2/bFGF) is transcriptionally repressed by DACH1, especially in cells cultured in serum-free medium. Exogenous bFGF rescues spheroid-forming activity and tumorigenicity of the U87-DACH1-high cells, suggesting that loss of DACH1 increases the number of tumor-initiating cells through transcriptional activation of bFGF. These results illustrate that DACH1 is a distinctive tumor suppressor, which does not only suppress growth of tumor cells but also regulates bFGF-mediated tumor-initiating activity of glioma cells. PMID:21750150

  3. Induction of Selective Blood-Tumor Barrier Permeability and Macromolecular Transport by a Biostable Kinin B1 Receptor Agonist in a Glioma Rat Model

    PubMed Central

    Côté, Jérôme; Bovenzi, Veronica; Savard, Martin; Dubuc, Céléna; Fortier, Audrey; Neugebauer, Witold; Tremblay, Luc; Müller-Esterl, Werner; Tsanaclis, Ana-Maria; Lepage, Martin; Fortin, David; Gobeil, Fernand

    2012-01-01

    Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg9BK (LDBK) and SarLys[dPhe8]desArg9BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T 1-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites. PMID:22629405

  4. Radiogenomic analysis of lower grade glioma: a pilot multi-institutional study shows an association between quantitative image features and tumor genomics

    NASA Astrophysics Data System (ADS)

    Mazurowski, Maciej A.; Clark, Kal; Czarnek, Nicholas M.; Shamsesfandabadi, Parisa; Peters, Katherine B.; Saha, Ashirbani

    2017-03-01

    Recent studies showed that genomic analysis of lower grade gliomas can be very effective for stratification of patients into groups with different prognosis and proposed specific genomic classifications. In this study, we explore the association of one of those genomic classifications with imaging parameters to determine whether imaging could serve a similar role to genomics in cancer patient treatment. Specifically, we analyzed imaging and genomics data for 110 patients from 5 institutions from The Cancer Genome Atlas and The Cancer Imaging Archive datasets. The analyzed imaging data contained preoperative FLAIR sequence for each patient. The images were analyzed using the in-house algorithms which quantify 2D and 3D aspects of the tumor shape. Genomic data consisted of a cluster of clusters classification proposed in a very recent and leading publication in the field of lower grade glioma genomics. Our statistical analysis showed that there is a strong association between the tumor cluster-of-clusters subtype and two imaging features: bounding ellipsoid volume ratio and angular standard deviation. This result shows high promise for the potential use of imaging as a surrogate measure for genomics in the decision process regarding treatment of lower grade glioma patients.

  5. Single-session Gamma Knife radiosurgery for optic pathway/hypothalamic gliomas.

    PubMed

    El-Shehaby, Amr M N; Reda, Wael A; Abdel Karim, Khaled M; Emad Eldin, Reem M; Nabeel, Ahmed M

    2016-12-01

    OBJECTIVE Because of their critical and central location, it is deemed necessary to fractionate when considering irradiating optic pathway/hypothalamic gliomas. Stereotactic fractionated radiotherapy is considered safer when dealing with gliomas in this location. In this study, the safety and efficacy of single-session stereotactic radiosurgery for optic pathway/hypothalamic gliomas were reviewed. METHODS Between December 2004 and June 2014, 22 patients with optic pathway/hypothalamic gliomas were treated by single-session Gamma Knife radiosurgery. Twenty patients were available for follow-up for a minimum of 1 year after treatment. The patients were 5 to 43 years (median 16 years) of age. The tumor volume was 0.15 to 18.2 cm 3 (median 3.1 cm 3 ). The prescription dose ranged from 8 to 14 Gy (median 11.5 Gy). RESULTS The mean follow-up period was 43 months. Five tumors involved the optic nerve only, and 15 tumors involved the chiasm/hypothalamus. Two patients died during the follow-up period. The tumors shrank in 12 cases, remained stable in 6 cases, and progressed in 2 cases, thereby making the tumor control rate 90%. Vision remained stable in 12 cases, improved in 6 cases, and worsened in 2 cases in which there was tumor progression. Progression-free survival was 83% at 3 years. CONCLUSIONS The initial results indicate that single-session Gamma Knife radiosurgery is a safe and effective treatment option for optic pathway/hypothalamic gliomas.

  6. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas.

    PubMed

    Pyka, Thomas; Gempt, Jens; Hiob, Daniela; Ringel, Florian; Schlegel, Jürgen; Bette, Stefanie; Wester, Hans-Jürgen; Meyer, Bernhard; Förster, Stefan

    2016-01-01

    Amino acid positron emission tomography (PET) with [18F]-fluoroethyl-L-tyrosine (FET) is well established in the diagnostic work-up of malignant brain tumors. Analysis of FET-PET data using tumor-to-background ratios (TBR) has been shown to be highly valuable for the detection of viable hypermetabolic brain tumor tissue; however, it has not proven equally useful for tumor grading. Recently, textural features in 18-fluorodeoxyglucose-PET have been proposed as a method to quantify the heterogeneity of glucose metabolism in a variety of tumor entities. Herein we evaluate whether textural FET-PET features are of utility for grading and prognostication in patients with high-grade gliomas. One hundred thirteen patients (70 men, 43 women) with histologically proven high-grade gliomas were included in this retrospective study. All patients received static FET-PET scans prior to first-line therapy. TBR (max and mean), volumetric parameters and textural parameters based on gray-level neighborhood difference matrices were derived from static FET-PET images. Receiver operating characteristic (ROC) and discriminant function analyses were used to assess the value for tumor grading. Kaplan-Meier curves and univariate and multivariate Cox regression were employed for analysis of progression-free and overall survival. All FET-PET textural parameters showed the ability to differentiate between World Health Organization (WHO) grade III and IV tumors (p < 0.001; AUC 0.775). Further improvement in discriminatory power was possible through a combination of texture and metabolic tumor volume, classifying 85 % of tumors correctly (AUC 0.830). TBR and volumetric parameters alone were correlated with tumor grade, but showed lower AUC values (0.644 and 0.710, respectively). Furthermore, a correlation of FET-PET texture but not TBR was shown with patient PFS and OS, proving significant in multivariate analysis as well. Volumetric parameters were predictive for OS, but this correlation

  7. Anatomical location differences between mutated and wild-type isocitrate dehydrogenase 1 in low-grade gliomas.

    PubMed

    Yu, Jinhua; Shi, Zhifeng; Ji, Chunhong; Lian, Yuxi; Wang, Yuanyuan; Chen, Liang; Mao, Ying

    2017-10-01

    Anatomical location of gliomas has been considered as a factor implicating the contributions of a specific precursor cells during the tumor growth. Isocitrate dehydrogenase 1 (IDH1) is a pathognomonic biomarker with a significant impact on the development of gliomas and remarkable prognostic effect. The correlation between anatomical location of tumor and IDH1 states for low-grade gliomas was analyzed quantitatively in this study. Ninety-two patients diagnosed of low-grade glioma pathologically were recruited in this study, including 65 patients with IDH1-mutated glioma and 27 patients with wide-type IDH1. A convolutional neural network was designed to segment the tumor from three-dimensional magnetic resonance imaging images. Voxel-based lesion symptom mapping was then employed to study the tumor location distribution differences between gliomas with mutated and wild-type IDH1. In order to characterize the location differences quantitatively, the Automated Anatomical Labeling Atlas was used to partition the standard brain atlas into 116 anatomical volumes of interests (AVOIs). The percentages of tumors with different IDH1 states in 116 AVOIs were calculated and compared. Support vector machine and AdaBoost algorithms were used to estimate the IDH1 status based on the 116 location features of each patient. Experimental results proved that the quantitative tumor location measurement could be a very important group of imaging features in biomarker estimation based on radiomics analysis of glioma.

  8. A pragmatic clinicopathobiological grouping/staging system for gliomas: proposal of the Indian TNM subcommittee on brain tumors.

    PubMed

    Gupta, Tejpal; Sarin, Rajiv; Jalali, Rakesh; Sharma, Suash; Kurkure, Purna; Goel, Atul

    2009-01-01

    There is no universally accepted staging system for primary brain tumors wherein prognostication is mainly based on complex composite indices. To develop a simple, pragmatic, and widely applicable grouping/staging system for gliomas, the most common primary brain tumor. An expert neurooncology panel with representation from radiation oncology, neurosurgery, pathology, radiology, and medical oncology had several rounds of discussion on issues pertinent to brain tumor staging. The trade off was between the accuracy of prognostic categorization and a pragmatic, widely applicable approach. The Tumor-Node-Metastasis staging was considered irrelevant for gliomas that seldom metastasize to lymphatics or outside the neuraxis. Instead, a 4-point staging/grouping system is proposed, using histological grade as the main prognostic variable and at least one stage migration based on other unfavorable features such as tumor location (brainstem); age (<5 years for all grades, >50 years for high-grade, and >40 years for low-grade gliomas); poor neurological performance status (NPS 2-4); multicentricity and/or gliomatosis; and adverse biological parameters (proliferative index, angiogenesis markers, apoptotic index, cytogenetic abnormalities, and molecular markers). In absence of a grouping/staging system for primary brain tumors, prognostification is mostly based on complex composite indices. The proposed clinicopathobiological grouping/staging system for gliomas is a simple, pragmatic, and user-friendly tool with a potential to fulfill the objectives of staging classification.

  9. Early Cerebral Blood Volume Changes Predict Progression After Convection-Enhanced Delivery of Topotecan for Recurrent Malignant Glioma.

    PubMed

    Surapaneni, Krishna; Kennedy, Benjamin C; Yanagihara, Ted K; DeLaPaz, Robert; Bruce, Jeffrey N

    2015-07-01

    To assess whether early changes in enhancing tumor volume (eTV) and relative cerebral blood volume (rCBV) 1 month after convection-enhanced delivery of topotecan in patients with recurrent malignant glioma correlated with 6-month disease progression status. Sixteen patients were enrolled in a Phase Ib trial of convection-enhanced delivery of topotecan for recurrent malignant glioma. Each patient was evaluated with serial follow-up magnetic resonance imaging at baseline and at 4- to 8-week intervals. Changes at 1 month compared with baseline in eTV and rCBV were evaluated as potential predictors of 6-month progression status, classified as either progressive disease or nonprogressive disease. Relationships between percent changes in eTV and rCBV at 1 month with the probability of progressive disease at 6 months were estimated by the use of logistic regression analysis. Receiver operating characteristic curves for varying percent change thresholds in eTV and rCBV were evaluated by the use of 6-month progressive disease as the reference. There was a significant difference in the percent change in rCBV at 1 month in patients with progressive disease compared with those with nonprogressive disease at 6 months (+12% vs. -29%, P = 0.02). Logistic regression analysis demonstrated on average that a 10% increase in rCBV at 1 month after convection-enhanced delivery of topotecan was associated with 1.7 times the odds of developing progressive disease at 6 months (95% confidence interval [CI] 1.0-2.9 P = 0.05). Receiver operating characteristic analysis for determining progressive disease at 6 months showed a greater area under the curve with rCBV (0.867; 95% CI 0.66-1.00) than with change in enhancing tumor volume (0.767; 95% CI 0.51-1.00). In this selected population of patients with recurrent malignant glioma treated with convection-enhanced delivery of topotecan, early changes in rCBV at 4 weeks after therapy may help predict progression status at 6 months. Copyright

  10. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas.

    PubMed

    Ma, Huihui; Wang, Zhen; Hu, Lei; Zhang, Shangrong; Zhao, Chenggang; Yang, Haoran; Wang, Hongzhi; Fang, Zhiyou; Wu, Lijun; Chen, Xueran

    2018-02-19

    More than 40% of glioma patients have tumors that harbor PTEN (phosphatase and tensin homologue deleted on chromosome ten) mutations; this disease is associated with poor therapeutic resistance and outcome. Such mutations are linked to increased cell survival and growth, decreased apoptosis, and drug resistance; thus, new therapeutic strategies focusing on inhibiting glioma tumorigenesis and progression are urgently needed. Melatonin, an indolamine produced and secreted predominantly by the pineal gland, mediates a variety of physiological functions and possesses antioxidant and antitumor properties. Here, we analyzed the relationship between PTEN and the inhibitory effect of melatonin in primary human glioma cells and cultured glioma cell lines. The results showed that melatonin can inhibit glioma cell growth both in culture and in vivo. This inhibition was associated with PTEN levels, which significantly correlated with the expression level of MT1 in patients. In fact, c-fos-mediated MT1 was shown to be a key modulator of the effect of melatonin on gliomas that harbor wild type PTEN. Taken together, these data suggest that melatonin-MT1 receptor complexes represent a potential target for the treatment of glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Detection of Histone H3 mutations in cerebrospinal fluid-derived tumor DNA from children with diffuse midline glioma.

    PubMed

    Huang, Tina Y; Piunti, Andrea; Lulla, Rishi R; Qi, Jin; Horbinski, Craig M; Tomita, Tadanori; James, C David; Shilatifard, Ali; Saratsis, Amanda M

    2017-04-17

    Diffuse midline gliomas (including diffuse intrinsic pontine glioma, DIPG) are highly morbid glial neoplasms of the thalamus or brainstem that typically arise in young children and are not surgically resectable. These tumors are characterized by a high rate of histone H3 mutation, resulting in replacement of lysine 27 with methionine (K27M) in genes encoding H3 variants H3.3 (H3F3A) and H3.1 (HIST1H3B). Detection of these gain-of-function mutations has clinical utility, as they are associated with distinct tumor biology and clinical outcomes. Given the paucity of tumor tissue available for molecular analysis and relative morbidity of midline tumor biopsy, CSF-derived tumor DNA from patients with diffuse midline glioma may serve as a viable alternative for clinical detection of histone H3 mutation. We demonstrate the feasibility of two strategies to detect H3 mutations in CSF-derived tumor DNA from children with brain tumors (n = 11) via either targeted Sanger sequencing of H3F3A and HIST1H3B, or H3F3A c.83 A > T detection via nested PCR with mutation-specific primers. Of the six CSF specimens from children with diffuse midline glioma in our cohort, tumor DNA sufficient in quantity and quality for analysis was isolated from five (83%), with H3.3K27M detected in four (66.7%). In addition, H3.3G34V was identified in tumor DNA from a patient with supratentorial glioblastoma. Test sensitivity (87.5%) and specificity (100%) was validated via immunohistochemical staining and Sanger sequencing in available matched tumor tissue specimens (n = 8). Our results indicate that histone H3 gene mutation is detectable in CSF-derived tumor DNA from children with brain tumors, including diffuse midline glioma, and suggest the feasibility of "liquid biopsy" in lieu of, or to complement, tissue diagnosis, which may prove valuable for stratification to targeted therapies and monitoring treatment response.

  12. Glioma antigen.

    PubMed

    Toda, Masahiro

    2012-01-01

    Because several antigenic peptides of human tumors that are recognized by T-lymphocytes have been identified, immune responses against cancer can now be artificially manipulated. Furthermore, since T-lymphocytes have been found to play an important role in the rejection of tumors by the host and also to have antigen-specific proliferative potentials and memory mechanisms, T-lymphocytes are thought to play a central role in cancer vaccination. Although multidisciplinary therapies have been attempted for the treatment of gliomas, the results remain unsatisfactory. For the development of new therapies against gliomas, it is required to identify tumor antigens as targets for specific immunotherapy. In this chapter, recent progress in research on glioma antigens is described.

  13. Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies.

    PubMed

    Aboody, Karen S; Najbauer, Joseph; Metz, Marianne Z; D'Apuzzo, Massimo; Gutova, Margarita; Annala, Alexander J; Synold, Timothy W; Couture, Larry A; Blanchard, Suzette; Moats, Rex A; Garcia, Elizabeth; Aramburo, Soraya; Valenzuela, Valerie V; Frank, Richard T; Barish, Michael E; Brown, Christine E; Kim, Seung U; Badie, Behnam; Portnow, Jana

    2013-05-08

    High-grade gliomas are extremely difficult to treat because they are invasive and therefore not curable by surgical resection; the toxicity of current chemo- and radiation therapies limits the doses that can be used. Neural stem cells (NSCs) have inherent tumor-tropic properties that enable their use as delivery vehicles to target enzyme/prodrug therapy selectively to tumors. We used a cytosine deaminase (CD)-expressing clonal human NSC line, HB1.F3.CD, to home to gliomas in mice and locally convert the prodrug 5-fluorocytosine to the active chemotherapeutic 5-fluorouracil. In vitro studies confirmed that the NSCs have normal karyotype, tumor tropism, and CD expression, and are genetically and functionally stable. In vivo biodistribution studies demonstrated NSC retention of tumor tropism, even in mice pretreated with radiation or dexamethasone to mimic clinically relevant adjuvant therapies. We evaluated safety and toxicity after intracerebral administration of the NSCs in non-tumor-bearing and orthotopic glioma-bearing immunocompetent and immunodeficient mice. We detected no difference in toxicity associated with conversion of 5-fluorocytosine to 5-fluorouracil, no NSCs outside the brain, and no histological evidence of pathology or tumorigenesis attributable to the NSCs. The average tumor volume in mice that received HB1.F3.CD NSCs and 5-fluorocytosine was about one-third that of the average volume in control mice. On the basis of these results, we conclude that combination therapy with HB1.F3.CD NSCs and 5-fluorocytosine is safe, nontoxic, and effective in mice. These data have led to approval of a first-in-human study of an allogeneic NSC-mediated enzyme/prodrug-targeted cancer therapy in patients with recurrent high-grade glioma.

  14. Canine spontaneous glioma: A translational model system for convection-enhanced delivery

    PubMed Central

    Dickinson, Peter J.; LeCouteur, Richard A.; Higgins, Robert J.; Bringas, John R.; Larson, Richard F.; Yamashita, Yoji; Krauze, Michal T.; Forsayeth, John; Noble, Charles O.; Drummond, Daryl C.; Kirpotin, Dmitri B.; Park, John W.; Berger, Mitchel S.; Bankiewicz, Krystof S.

    2010-01-01

    Canine spontaneous intracranial tumors bear striking similarities to their human tumor counterparts and have the potential to provide a large animal model system for more realistic validation of novel therapies typically developed in small rodent models. We used spontaneously occurring canine gliomas to investigate the use of convection-enhanced delivery (CED) of liposomal nanoparticles, containing topoisomerase inhibitor CPT-11. To facilitate visualization of intratumoral infusions by real-time magnetic resonance imaging (MRI), we included identically formulated liposomes loaded with Gadoteridol. Real-time MRI defined distribution of infusate within both tumor and normal brain tissues. The most important limiting factor for volume of distribution within tumor tissue was the leakage of infusate into ventricular or subarachnoid spaces. Decreased tumor volume, tumor necrosis, and modulation of tumor phenotype correlated with volume of distribution of infusate (Vd), infusion location, and leakage as determined by real-time MRI and histopathology. This study demonstrates the potential for canine spontaneous gliomas as a model system for the validation and development of novel therapeutic strategies for human brain tumors. Data obtained from infusions monitored in real time in a large, spontaneous tumor may provide information, allowing more accurate prediction and optimization of infusion parameters. Variability in Vd between tumors strongly suggests that real-time imaging should be an essential component of CED therapeutic trials to allow minimization of inappropriate infusions and accurate assessment of clinical outcomes. PMID:20488958

  15. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    PubMed

    Lee, Hae Kyung; Bier, Ariel; Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Twito, Hodaya; Poisson, Laila M; Mikkelsen, Tom; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Rempel, Sandra A; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  16. miR-141-3p functions as a tumor suppressor modulating activating transcription factor 5 in glioma.

    PubMed

    Wang, Mengyuan; Hu, Ming; Li, Zhaohua; Qian, Dongmeng; Wang, Bin; Liu, David X

    2017-09-02

    Glioma is the most common malignant primary brain tumor which arises from the central nervous system. Our studies reported that an anti-apoptotic factor, activating transcription factor 5 (ATF5), is highly expressed in malignant glioma specimens and cell lines. Downregulation by dominant-negetive ATF5 could repress glioma cell proliferation and accelerate apoptosis. Here, we further investigate the upstream factor which regulates ATF5 expression. Bioinformatic analysis showed that ATF5 was a potential target of miR-141-3p. Luciferase reporter assay verified that miR-141-3p specifically targeted the ATF5 3'-UTR in glioma cells. Functional studied suggested that miR-141-3p overexpression inhibited proliferation and promoted apoptosis of glioma cells (U87MG and U251). Xenograft experiments proved the inhibition of miR-141-3p on glioma growth in vivo. Moreover, exogenous ATF5 without 3'-UTR restored the cell proliferation inhibition triggered by miR-141-3p. Taken together, we put forward that miR-141-3p is a new upstream target towards ATF5. It can serve as a crucial tumor suppressor in regulating the ATF5-regulated growth of malignant glioma. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Interventional fluorescence spectroscopy: preliminary results to detect tumor margins during glioma resection with two fluorescence spectra of PpIX

    NASA Astrophysics Data System (ADS)

    Alston, L. M.; Guyotat, J.; Mahieu-Williame, L.; Hebert, M.; Kantapareddy, P.; Meyronet, D.; Rousseau, D.; Montcel, B.

    2017-07-01

    We show the feasibility of using an intraoperative spectroscopic device to identify tumors margins during glioma resection. The collected fluorescence spectra is fitted with two reference spectra of PpIX and the contribution of each spectrum enables to overcome the sensitivity of current techniques by seeing tumor margins and low grade gliomas.

  18. Toward Distinguishing Recurrent Tumor From Radiation Necrosis: DWI and MTC in a Gamma Knife–Irradiated Mouse Glioma Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Torres, Carlos J.; Engelbach, John A.; Cates, Jeremy

    Purpose: Accurate noninvasive diagnosis is vital for effective treatment planning. Presently, standard anatomical magnetic resonance imaging (MRI) is incapable of differentiating recurring tumor from delayed radiation injury, as both lesions are hyperintense in both postcontrast T1- and T2-weighted images. Further studies are therefore necessary to identify an MRI paradigm that can differentially diagnose these pathologies. Mouse glioma and radiation injury models provide a powerful platform for this purpose. Methods and Materials: Two MRI contrasts that are widely used in the clinic were chosen for application to a glioma/radiation-injury model: diffusion weighted imaging, from which the apparent diffusion coefficient (ADC) ismore » obtained, and magnetization transfer contrast, from which the magnetization transfer ratio (MTR) is obtained. These metrics were evaluated longitudinally, first in each lesion type alone–glioma versus irradiation – and then in a combined irradiated glioma model. Results: MTR was found to be consistently decreased in all lesions compared to nonlesion brain tissue (contralateral hemisphere), with limited specificity between lesion types. In contrast, ADC, though less sensitive to the presence of pathology, was increased in radiation injury and decreased in tumors. In the irradiated glioma model, ADC also increased immediately after irradiation, but decreased as the tumor regrew. Conclusions: ADC is a better metric than MTR for differentiating glioma from radiation injury. However, MTR was more sensitive to both tumor and radiation injury than ADC, suggesting a possible role in detecting lesions that do not enhance strongly on T1-weighted images.« less

  19. Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion.

    PubMed

    Edwards, Lincoln A; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T; Zhang, Wei; Fine, Howard A

    2011-08-03

    Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Highly infiltrative patient-derived glioma tumor-initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1-TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF(200 ng/mL): 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF(200 ng/mL) + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most infiltrative glioma cells in situ

  20. Microglial SMAD4 regulated by microRNA-146a promotes migration of microglia which support tumor progression in a glioma environment

    PubMed Central

    Karthikeyan, Aparna; Gupta, Neelima; Tang, Carol; Mallilankaraman, Karthik; Silambarasan, Maskomani; Shi, Meng; Lu, Lei; Ang, Beng Ti; Ling, Eng-Ang; Dheen, S. Thameem

    2018-01-01

    Glioma tumors constitute a significant portion of microglial cells, which are known to support tumor progression. The present study demonstrates that transforming growth factor-β (TGFβ) signaling pathway in microglia in a glioma environment is involved in tumor progression and pathogenesis. It has been shown that the TGFβ level is elevated in higher grades of gliomas and its signaling pathway regulates tumor progression through phosphorylation of SMAD2 and SMAD3, which form a complex with SMAD4 to regulate target gene transcription. In an in vitro cell line-based model increased protein levels of pSMAD2/3, total SMAD2/3 and SMAD4 were observed in murine BV2 microglia cultured in glioma conditioned medium (GCM), indicative of the activated TGFβ signaling pathway in microglia associated with glioma environment. Immunofluorescence labeling further revealed the expression of SMAD4 in microglial and non-microglial cells of human glioblastomas tissue in vivo. Functional analysis through shRNA-mediated stable knockdown of SMAD4 in microglia revealed the downregulation of the expression of matrix metalloproteinase 9 (MMP9), which has been shown to be involved in tumor progression and cell migration. Further, knockdown of SMAD4 in microglia decreased the migration of microglial cells towards GCM, indicating that SMAD4 promotes microglial migration in glioma environment. In addition, SMAD4 has been shown to be post-transcriptionally regulated by microRNA-146a, which was downregulated in microglia treated with GCM. Overexpression of miR-146a resulted in decreased expression of SMAD4 together with tumor supportive gene MMP9 in microglia, and subsequently suppressed microglial migration towards GCM, possibly through regulation of SMAD4. On the other hand, the cell viability assay revealed decreased viability of glioma cells when they were treated with conditioned medium derived from SMAD4 knockdown microglia or miR-146a overexpressed microglia as compared to glioma cells

  1. IGFBP2 promotes glioma tumor stem cell expansion and survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, David, E-mail: dhs.zfs@gmail.com; Hsieh, Antony; Stea, Baldassarre

    2010-06-25

    IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance.more » These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.« less

  2. NI-16INTRA-OPERATIVE USE OF FLUORESCEIN FOR MALIGNANT GLIOMA RESECTION DIFFERENTIATES TUMOR FROM NORMAL BRAIN TISSUE BASED ON HISTOPATHOLOGIC ANALYSIS

    PubMed Central

    Decker, Matthew; Kresak, Jesse; Yachnis, Anthony; Bova, Frank; Rahman, Maryam

    2014-01-01

    OBJECTIVES: To determine whether the use of IV fluorescein during surgery for malignant glioma can reliably be used to differentiate between infiltrative tumor and normal brain tissue. BACKGROUND: Fluorescein sodium is a molecular compound with fluorescent capabilities between light wavelengths of 520-530nm, appearing yellow-green (1). Neurosurgical application of fluorescein has been studied primarily for increasing intra-operative visibility of malignant gliomas (1). The mechanism of action has been hypothesized to involve disruption of the blood brain barrier (BBB) (2). Cells in areas with disrupted BBB take up fluorescein with a sensitivity of 94% and specificity of 89% for high-grade gliomas (2). We performed histopathologic analysis on tissue obtained during fluorescein-guided tumor resections to evaluate the differences between fluorescent and non-fluorescent tissue. METHODS: Two adult patients with suspected high-grade gliomas underwent surgical resection. Prior to opening of the dura 3mg/kg of IV fluorescein was given. A Zeiss OPMI Pentero microscope (Carl Zeiss Meditech Inc.) with a yellow 560nm filter was used to visualize the tumor. At the tumor margins, tissue was identified as "bright" and "dark" and sent as separate specimens for histopathological analysis. RESULTS: Histological sections of specimens labeled "bright" contained infiltrating glioma with focal microvascular proliferation. Histological sections of specimens labeled "dark" contained gray matter and focal subcortical white matter with no high-grade glioma identified. Final grading for both patients was WHO Grade IV, glioblastoma. CONCLUSION: Intra-operative use of fluorescein in surgical resection of malignant gliomas can help to distinguish between infiltrating tumor and normal brain tissue based on histopathological analysis. Further evaluation of the utility of flurorescein during high and low-grade glioma surgery is necessary.

  3. Glioma-related seizures in relation to histopathological subtypes: a report from the glioma international case-control study.

    PubMed

    Berntsson, Shala G; Merrell, Ryan T; Amirian, E Susan; Armstrong, Georgina N; Lachance, Daniel; Smits, Anja; Zhou, Renke; Jacobs, Daniel I; Wrensch, Margaret R; Olson, Sara H; Il'yasova, Dora; Claus, Elizabeth B; Barnholtz-Sloan, Jill S; Schildkraut, Joellen; Sadetzki, Siegal; Johansen, Christoffer; Houlston, Richard S; Jenkins, Robert B; Bernstein, Jonine L; Lai, Rose; Shete, Sanjay; Amos, Christopher I; Bondy, Melissa L; Melin, Beatrice S

    2018-04-23

    The purpose of this study was to evaluate the distribution of glioma-related seizures and seizure control at the time of tumor diagnosis with respect to tumor histologic subtypes, tumor treatment and patient characteristics, and to compare seizure history preceding tumor diagnosis (or study enrollment) between glioma patients and healthy controls. The Glioma International Case Control study (GICC) risk factor questionnaire collected information on demographics, past medical/medication history, and occupational history. Cases from eight centers were also asked detailed questions on seizures in relation to glioma diagnosis; cases (n = 4533) and controls (n = 4171) were also asked about seizures less than 2 years from diagnosis and previous seizure history more than 2 years prior to tumor diagnosis, including childhood seizures. Low-grade gliomas (LGGs), particularly oligodendrogliomas/oligoastrocytomas, had the highest proportion of glioma-related seizures. Patients with low-grade astrocytoma demonstrated the most medically refractory seizures. A total of 83% of patients were using only one antiepileptic drug (AED), which was levetiracetam in 71% of cases. Gross total resection was strongly associated with reduced seizure frequency (p < 0.009). No significant difference was found between glioma cases and controls in terms of seizure occurring more than 2 years before diagnosis or during childhood. Our study showed that glioma-related seizures were most common in low-grade gliomas. Gross total resection was associated with lower seizure frequency. Additionally, having a history of childhood seizures is not a risk factor ***for developing glioma-related seizures or glioma.

  4. Progression of motor deficits in glioma-bearing mice: impact of CNF1 therapy at symptomatic stages

    PubMed Central

    Fabbri, Alessia; Costa, Mario; Caleo, Matteo; Baroncelli, Laura

    2017-01-01

    Glioblastoma (GBM) is the most aggressive type of brain tumor. In this context, animal models represent excellent tools for the early detection and longitudinal mapping of neuronal dysfunction, that are critical in the preclinical validation of new therapeutic strategies. In a mouse glioma model, we developed sensitive behavioral readouts that allow early recognizing and following neurological symptoms. We injected GL261 cells into the primary motor cortex of syngenic mice and we used a battery of behavioral tests to longitudinally monitor the dysfunction induced by tumor growth. Grip strength test revealed an early onset of functional deficit associated to the glioma growth, with a significant forelimb weakness appearing 9 days after tumor inoculation. A later deficit was observed in the rotarod and in the grid walk tasks. Using this model, we found reduced tumor growth and maintenance of behavioral functions following treatment with Cytotoxic Necrotizing Factor 1 (CNF1) at a symptomatic stage. Our data provide a detailed and precise examination of how tumor growth reverberates on the behavioral functions of glioma-bearing mice, providing normative data for the study of therapeutic strategies for glioma treatment. The reduced tumor volume and robust functional sparing observed in CNF1-treated, glioma-bearing mice strengthen the notion that CNF1 delivery is a promising strategy for glioma therapy. PMID:28212563

  5. Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma-Tailored Gene Panel.

    PubMed

    Zacher, Angela; Kaulich, Kerstin; Stepanow, Stefanie; Wolter, Marietta; Köhrer, Karl; Felsberg, Jörg; Malzkorn, Bastian; Reifenberger, Guido

    2017-03-01

    Current classification of gliomas is based on histological criteria according to the World Health Organization (WHO) classification of tumors of the central nervous system. Over the past years, characteristic genetic profiles have been identified in various glioma types. These can refine tumor diagnostics and provide important prognostic and predictive information. We report on the establishment and validation of gene panel next generation sequencing (NGS) for the molecular diagnostics of gliomas. We designed a glioma-tailored gene panel covering 660 amplicons derived from 20 genes frequently aberrant in different glioma types. Sensitivity and specificity of glioma gene panel NGS for detection of DNA sequence variants and copy number changes were validated by single gene analyses. NGS-based mutation detection was optimized for application on formalin-fixed paraffin-embedded tissue specimens including small stereotactic biopsy samples. NGS data obtained in a retrospective analysis of 121 gliomas allowed for their molecular classification into distinct biological groups, including (i) isocitrate dehydrogenase gene (IDH) 1 or 2 mutant astrocytic gliomas with frequent α-thalassemia/mental retardation syndrome X-linked (ATRX) and tumor protein p53 (TP53) gene mutations, (ii) IDH mutant oligodendroglial tumors with 1p/19q codeletion, telomerase reverse transcriptase (TERT) promoter mutation and frequent Drosophila homolog of capicua (CIC) gene mutation, as well as (iii) IDH wildtype glioblastomas with frequent TERT promoter mutation, phosphatase and tensin homolog (PTEN) mutation and/or epidermal growth factor receptor (EGFR) amplification. Oligoastrocytic gliomas were genetically assigned to either of these groups. Our findings implicate gene panel NGS as a promising diagnostic technique that may facilitate integrated histological and molecular glioma classification. © 2016 International Society of Neuropathology.

  6. Resonant Raman spectra of grades of human brain glioma tumors reveal the content of tryptophan by the 1588 cm-1 mode

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Zhou, Lixin; Zhu, Ke; Liu, Yulong; Zhang, Lin; Boydston-White, Susie; Cheng, Gangge; Pu, Yang; Bidyut, Das; Alfano, Robert R.

    2015-03-01

    RR spectra of brain normal tissue, gliomas in low grade I and II, and malignant glioma tumors in grade III and IV were measured using a confocal micro Raman spectrometer. This report focus on the relative contents of tryptophan (W) in various grades of brain glioma tumors by the intrinsic molecular resonance Raman (RR) spectroscopy method using the 1588cm-1 of tryptophan mode by 532 nm excitation. The RR spectra of key fingerprints of tryptophan, with a main vibrational mode at 1588cm-1 (W8b), were observed. It was found that tryptophan contribution was accumulated in grade I to IV gliomas and the mode of 1588cm-1 in grade III and IV malignant gliomas were enhanced by resonance.

  7. Preclinical Pharmacological Evaluation of Letrozole as a Novel Treatment for Gliomas

    PubMed Central

    Dave, Nimita; Chow, Lionel M.L.; Gudelsky, Gary A.; LaSance, Kathleen; Qi, Xiaoyang; Desai, Pankaj B.

    2015-01-01

    We present data that letrozole, an extensively used aromatase inhibitor in the treatment of estrogen receptor-positive breast tumors in postmenopausal women, may be potentially used in the treatment of glioblastomas. First, we measured the in vitro cytotoxicity of letrozole and aromatase (CYP19A1) expression and activity in human LN229, T98G, U373MG, U251MG, and U87MG, and rat C6 glioma cell lines. Estrogen receptor (ER)positive MCF-7 and ER-negative MDA-MB-231 cells served as controls. Cytotoxicity was determined employing the MTT assay, and aromatase activity using an immunoassay that measures the conversion of testosterone to estrogen. Second, in vivo activity of letrozole was assessed in Sprague-Dawley rats orthotopically implanted with C6 gliomas. The changes in tumor volume with letrozole treatment (4 mg/kg/day) were assessed employing μPET/CT imaging, employing [18F]-fluorodeoxyglucose (F18-FDG) as the radiotracer. Brain tissues were collected for histologic evaluations. All glioma cell lines included here expressed CYP19A1 and letrozole exerted considerable cytotoxicity and decrease in aromatase activity against these cells (IC50, 0.1–3.5 μmol/L). Imaging analysis employing F18-FDG μPET/CT demonstrated a marked reduction of active tumor volume (>75%) after 8 days of letrozole treatment. Immunohistochemical analysis revealed marked reduction in aromatase expression in tumoral regions of the brain after letrozole treatment. Thus, employing multifaceted tools, we demonstrate that aromatase may be a novel target for the treatment of gliomas and that letrozole, an FDA-approved drug with an outstanding record of safety may be repurposed for the treatment of such primary brain tumors, which currently have few therapeutic options. PMID:25695958

  8. Preclinical pharmacological evaluation of letrozole as a novel treatment for gliomas.

    PubMed

    Dave, Nimita; Chow, Lionel M L; Gudelsky, Gary A; LaSance, Kathleen; Qi, Xiaoyang; Desai, Pankaj B

    2015-04-01

    We present data that letrozole, an extensively used aromatase inhibitor in the treatment of estrogen receptor-positive breast tumors in postmenopausal women, may be potentially used in the treatment of glioblastomas. First, we measured the in vitro cytotoxicity of letrozole and aromatase (CYP19A1) expression and activity in human LN229, T98G, U373MG, U251MG, and U87MG, and rat C6 glioma cell lines. Estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cells served as controls. Cytotoxicity was determined employing the MTT assay, and aromatase activity using an immunoassay that measures the conversion of testosterone to estrogen. Second, in vivo activity of letrozole was assessed in Sprague-Dawley rats orthotopically implanted with C6 gliomas. The changes in tumor volume with letrozole treatment (4 mg/kg/day) were assessed employing μPET/CT imaging, employing [(18)F]-fluorodeoxyglucose (F18-FDG) as the radiotracer. Brain tissues were collected for histologic evaluations. All glioma cell lines included here expressed CYP19A1 and letrozole exerted considerable cytotoxicity and decrease in aromatase activity against these cells (IC50, 0.1-3.5 μmol/L). Imaging analysis employing F18-FDG μPET/CT demonstrated a marked reduction of active tumor volume (>75%) after 8 days of letrozole treatment. Immunohistochemical analysis revealed marked reduction in aromatase expression in tumoral regions of the brain after letrozole treatment. Thus, employing multifaceted tools, we demonstrate that aromatase may be a novel target for the treatment of gliomas and that letrozole, an FDA-approved drug with an outstanding record of safety may be repurposed for the treatment of such primary brain tumors, which currently have few therapeutic options. ©2015 American Association for Cancer Research.

  9. Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas

    PubMed Central

    Miyatake, Shin-Ichi; Kawabata, Shinji; Nonoguchi, Naosuke; Yokoyama, Kunio; Kuroiwa, Toshihiko; Matsui, Hideki; Ono, Koji

    2009-01-01

    Pseudoprogression has been recognized and widely accepted in the treatment of malignant gliomas, as transient increases in the volume of the enhanced area just after chemoradiotherapy, especially using temozolomide. We experienced a similar phenomenon in the treatment of malignant gliomas and meningiomas using boron neutron capture therapy (BNCT), a cell-selective form of particle radiation. Here, we introduce representative cases and analyze the pathogenesis. Fifty-two cases of malignant glioma and 13 cases of malignant meningioma who were treated by BNCT were reviewed retrospectively mainly via MR images. Eleven of 52 malignant gliomas and 3 of 13 malignant meningiomas showed transient increases of enhanced volume in MR images within 3 months after BNCT. Among these cases, five patients with glioma underwent surgery because of suspicion of relapse. In histology, most of the specimens showed necrosis with small amounts of residual tumor cells. Ki-67 labeling showed decreased positivity compared with previous samples from the individuals. Fluoride-labeled boronophenylalanine PET was applied in four and two cases of malignant gliomas and meningiomas, respectively, at the time of transient increase of lesions. These PET scans showed decreased lesion:normal brain ratios in all cases compared with scans obtained prior to BNCT. With or without surgery, all lesions were decreased or stable in size during observation. Transient increases in enhanced volume in malignant gliomas and meningiomas immediately after BNCT seemed to be pseudoprogression. This pathogenesis was considered as treatment-related intratumoral necrosis in the subacute phase after BNCT. PMID:19289492

  10. Antiangiogenic drugs synergize with a membrane macrophage colony-stimulating factor-based tumor vaccine to therapeutically treat rats with an established malignant intracranial glioma.

    PubMed

    Jeffes, Edward W B; Zhang, Jian Gang; Hoa, Neil; Petkar, Animesh; Delgado, Christina; Chong, Samuel; Obenaus, Andre; Sanchez, Ramon; Khalaghizadeh, Sakineh; Khomenko, Tetyana; Knight, Brandon A; Alipanah, Reza; Nguyen, Tuong-Vi; Shah, Chirag; Vohra, Seema; Zhuang, Jing-Li; Liu, Jessie; Wepsic, H Terry; Jadus, Martin R

    2005-03-01

    Combining a T9/9L glioma vaccine, expressing the membrane form of M-CSF, with a systemic antiangiogenic drug-based therapy theoretically targeted toward growth factor receptors within the tumor's vasculature successfully treated >90% of the rats bearing 7-day-old intracranial T9/9L gliomas. The antiangiogenic drugs included (Z)-3-[4-(dimethylamino)benzylidenyl]indolin-2-one (a platelet-derived growth factor receptor beta and a fibroblast growth factor receptor 1 kinase inhibitor) and oxindole (a vascular endothelial growth factor receptor 2 kinase inhibitor). A total of 20-40% of the animals treated with the antiangiogenic drugs alone survived, while all nontreated controls and tumor vaccine-treated rats died within 40 days. In vitro, these drugs inhibited endothelial cells from proliferating in response to the angiogenic factors produced by T9/9L glioma cells and prevented endothelial cell tubulogenesis. FITC-labeled tomato lectin staining demonstrated fewer and constricted blood vessels within the intracranial tumor after drug therapy. Magnetic resonance imaging demonstrated that the intracranial T9 glioma grew much slower in the presence of these antiangiogenic drugs. These drugs did not affect in vitro glioma cell growth nor T cell mitogenesis. Histological analysis revealed that the tumor destruction occurred at the margins of the tumor, where there was a heavy lymphocytic infiltrate. Real-time PCR showed more IL-2-specific mRNA was present within the gliomas in the vaccinated rats treated with the drugs. Animals that rejected the established T9/9L glioma by the combination therapy proved immune against an intracranial rechallenge by T9/9L glioma, but showed no resistance to an unrelated MADB106 breast cancer.

  11. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α.

    PubMed

    Hwang, Ji-Sun; Jung, Eun-Hye; Kwon, Mi-Youn; Han, Inn-Oc

    2016-09-15

    We aimed to elucidate the effect of soluble factors secreted by glioma on microglial activation. Conditioned medium (CM) from glioma cells, CRT-MG and C6, significantly induced nitric oxide (NO) production and stimulated the mRNA expression of inducible NO synthase (iNOS), interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2) in BV2 cells. Glioma CM stimulated p38 mitogen-activated protein kinase (MAPK) phosphorylation, and a p38 MAPK inhibitor, SB203580, suppressed CM-induced NO production in BV2 cells. In addition, CM stimulated nuclear factor-kappaB (NF-κB) DNA binding and transcriptional activity, which was repressed by SB203580. Gliomas displayed higher mRNA expression and release of TNF-α and IL-1β than primary astrocyte cells. Neutralization of TNF-α and IL-1β in C6-CM using a neutralizing antibody inhibited NO/iNOS expression in BV-2 cells. These results indicate potential contribution of diffusible tumor-derived factors to regulate microglial activation and subsequent tumor microenvironment. Copyright © 2016. Published by Elsevier B.V.

  12. Novel histone deacetylase inhibitor N25 exerts anti-tumor effects and induces autophagy in human glioma cells by inhibiting HDAC3

    PubMed Central

    Sun, Xin-Yuan; Qu, Yue; Ni, An-Ran; Wang, Gui-Xiang; Huang, Wei-Bin; Chen, Zhong-Ping; Lv, Zhu-Fen; Zhang, Song; Lindsay, Holly; Zhao, Sibo; Li, Xiao-Nan; Feng, Bing-Hong

    2017-01-01

    N25, a novel histone deacetylase inhibitor, was created through structural modification of suberoylanilide hydroxamic acid. To evaluate the anti-tumor activity of N25 and clarify its molecular mechanism of inducing autophagy in glioma cells, we investigated its in vitro anti-proliferative effect and in vivo anticancer effect. Moreover, we detected whether N25 induces autophagy in glioma cells by transmission electron microscope and analyzed the protein expression level of HDAC3, Tip60, LC3 in glioma samples by western blot. We additionally analyzed the protein expression level of HDAC3, Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment with N25 in glioma cells. Our results showed that the anti-tumor activity of N25 in glioma cells is slightly stronger than SAHA both in vitro and in vivo. We found that N25 induced autophagy, and HDAC3 was significantly elevated and Tip60 and LC3 significantly decreased in glioma samples compared with normal brain tissues. Nevertheless, N25 inhibited HDAC3 and up-regulated the protein expression of Tip60, ULK1 (Atg1), and Beclin-1 (Atg6) after treatment of glioma cells with N25. In conclusion, these data suggest that N25 has striking anti-tumor activity in part due to inhibition of HDAC3. Additionally, N25 may induce autophagy through inhibiting HDAC3. PMID:29088860

  13. MicroRNA-584-3p, a novel tumor suppressor and prognostic marker, reduces the migration and invasion of human glioma cells by targeting hypoxia-induced ROCK1

    PubMed Central

    Xue, Hao; Guo, Xing; Han, Xiao; Yan, Shaofeng; Zhang, Jinsen; Xu, Shugang; Li, Tong; Guo, Xiaofan; Zhang, Ping; Gao, Xiao; Liu, Qinglin; Li, Gang

    2016-01-01

    Here, we report that microRNA-584-3p (miR-584-3p) is up-regulated in hypoxic glioma cells and in high-grade human glioma tumors (WHO grades III–IV) relative to normoxic cells and to low-grade tumors (WHO grades I–II), respectively. The postoperative survival time was significantly prolonged in the high-grade glioma patients with high miR-584-3p expression compared with those with low miR-584-3p expression. miR-584-3p may function as a potent tumor suppressor and as a prognostic biomarker for malignant glioma. However, the molecular mechanisms underlying these properties remain poorly understood. Our mechanistic studies revealed that miR-584-3p suppressed the migration and invasion of glioma cells by disrupting hypoxia-induced stress fiber formation. Specifically, we have found that ROCK1 is a direct and functionally relevant target of miR-584-3p in glioma cells. Our results have demonstrated a tumor suppressive function of miR-584-3p in glioma, in which it inhibits the migration and invasion of tumor cells by antagonizing hypoxia-induced, ROCK1-dependent stress fiber formation. Our findings have potential implications for glioma gene therapy and suggest that miR-584-3p could represent a prognostic indicator for glioma. PMID:26715733

  14. Glioma-mediated microglial activation promotes glioma proliferation and migration: roles of Na+/H+ exchanger isoform 1

    PubMed Central

    Zhu, Wen; Carney, Karen E.; Pigott, Victoria M.; Falgoust, Lindsay M.; Clark, Paul A.; Kuo, John S.; Sun, Dandan

    2016-01-01

    Microglia play important roles in extracellular matrix remodeling, tumor invasion, angiogenesis, and suppression of adaptive immunity in glioma. Na+/H+ exchanger isoform 1 (NHE1) regulates microglial activation and migration. However, little is known about the roles of NHE1 in intratumoral microglial activation and microglia–glioma interactions. Our study revealed up-regulation of NHE1 protein expression in both glioma cells and tumor-associated Iba1+ microglia in glioma xenografts and glioblastoma multiforme microarrays. Moreover, we observed positive correlation of NHE1 expression with Iba1 intensity in microglia/macrophages. Glioma cells, via conditioned medium or non-contact glioma-microglia co-cultures, concurrently upregulated microglial expression of NHE1 protein and other microglial activation markers (iNOS, arginase-1, TGF-β, IL-6, IL-10 and the matrix metalloproteinases MT1-MMP and MMP9). Interestingly, glioma-stimulated microglia reciprocally enhanced glioma proliferation and migration. Most importantly, inhibition of microglial NHE1 activity via small interfering RNA (siRNA) knockdown or the potent NHE1-specific inhibitor HOE642 significantly attenuated microglial activation and abolished microglia-stimulated glioma migration and proliferation. Taken together, our findings provide the first evidence that NHE1 function plays an important role in glioma–microglia interactions, enhancing glioma proliferation and invasion by stimulating microglial release of soluble factors. NHE1 upregulation is a novel marker of the glioma-associated microglial activation phenotype. Inhibition of NHE1 represents a novel glioma therapeutic strategy by targeting tumor-induced microglial activation. PMID:27287871

  15. Effect of Brain- and Tumor-Derived Connective Tissue Growth Factor on Glioma Invasion

    PubMed Central

    Edwards, Lincoln A.; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A.; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T.; Zhang, Wei

    2011-01-01

    Background Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Methods Highly infiltrative patient-derived glioma tumor–initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Results Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1–TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF200 ng/mL: 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF200 ng/mL + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most

  16. A syngeneic glioma model to assess the impact of neural progenitor target cell age on tumor malignancy

    PubMed Central

    Mikheev, Andrei M; Stoll, Elizabeth A; Mikheeva, Svetlana A; Maxwell, John-Patrick; Jankowski, Pawel P; Ray, Sutapa; Uo, Takuma; Morrison, Richard S; Horner, Philip J; Rostomily, Robert C

    2010-01-01

    Summary Human glioma incidence, malignancy and treatment resistance are directly proportional to patient age. Cell intrinsic factors are reported to contribute to human age-dependent glioma malignancy but suitable animal models to examine the role of aging are lacking. Here we developed an orthotopic syngeneic glioma model to test the hypothesis that the age of neural progenitor cells (NPCs), presumed cells of glioma origin, influences glioma malignancy. Gliomas generated from transformed donor 3-, 12-, and 18-month-old NPCs in same-aged adult hosts all formed highly invasive glial tumors that phenocopied the human disease. Survival analysis indicated increased malignancy of gliomas generated from older 12- and 18-month-old transformed NPCs compared with their 3-month counterparts (median survival of 38.5 and 42.5 vs. 77 days, respectively). This study showed for the first time that age of target cells at the time of transformation can affect malignancy and demonstrated the feasibility of a syngeneic model using transformed NPCs for future examination of the relative impacts of age-related cell intrinsic and cell-extrinsic factors in glioma malignancy. PMID:19489742

  17. A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth.

    PubMed

    De Feyter, Henk M; Behar, Kevin L; Rao, Jyotsna U; Madden-Hennessey, Kirby; Ip, Kevan L; Hyder, Fahmeed; Drewes, Lester R; Geschwind, Jean-François; de Graaf, Robin A; Rothman, Douglas L

    2016-08-01

    The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models. Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue. The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas. These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location.

    PubMed

    Karremann, Michael; Gielen, Gerrit H; Hoffmann, Marion; Wiese, Maria; Colditz, Niclas; Warmuth-Metz, Monika; Bison, Brigitte; Claviez, Alexander; van Vuurden, Dannis G; von Bueren, André O; Gessi, Marco; Kühnle, Ingrid; Hans, Volkmar H; Benesch, Martin; Sturm, Dominik; Kortmann, Rolf-Dieter; Waha, Andreas; Pietsch, Torsten; Kramm, Christof M

    2018-01-10

    The novel entity of "diffuse midline glioma, H3 K27M-mutant" has been defined in the 2016 revision of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS). Tumors of this entity arise in CNS midline structures of predominantly pediatric patients and are associated with an overall dismal prognosis. They are defined by K27M mutations in H3F3A or HIST1H3B/C, encoding for histone 3 variants H3.3 and H3.1, respectively, which are considered hallmark events driving gliomagenesis. Here, we characterized 85 centrally reviewed diffuse gliomas on midline locations enrolled in the nationwide pediatric German HIT-HGG registry regarding tumor site, histone 3 mutational status, WHO grade, age, sex, and extent of tumor resection. We found 56 H3.3 K27M-mutant tumors (66%), 6 H3.1 K27M-mutant tumors (7%), and 23 H3-wildtype tumors (27%). H3 K27M-mutant gliomas shared an aggressive clinical course independent of their anatomic location. Multivariate regression analysis confirmed the significant impact of the H3 K27M mutation as the only independent parameter predictive of overall survival (P = 0.009). In H3 K27M-mutant tumors, neither anatomic midline location nor histopathological grading nor extent of tumor resection had an influence on survival. These results substantiate the clinical significance of considering diffuse midline glioma, H3 K27M-mutant, as a distinct entity corresponding to WHO grade IV, carrying a universally fatal prognosis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  19. Comparison of Allogeneic and Syngeneic Rat Glioma Models by Using MRI and Histopathologic Evaluation.

    PubMed

    Biasibetti, Elena; Valazza, Alberto; Capucchio, Maria T; Annovazzi, Laura; Battaglia, Luigi; Chirio, Daniela; Gallarate, Marina; Mellai, Marta; Muntoni, Elisabetta; Peira, Elena; Riganti, Chiara; Schiffer, Davide; Panciani, Pierpaolo; Lanotte, Michele

    2017-03-01

    Research in neurooncology traditionally requires appropriate in vivo animal models, on which therapeutic strategies are tested before human trials are designed and proceed. Several reproducible animal experimental models, in which human physiologic conditions can be mimicked, are available for studying glioblastoma multiforme. In an ideal rat model, the tumor is of glial origin, grows in predictable and reproducible patterns, closely resembles human gliomas histopathologically, and is weakly or nonimmunogenic. In the current study, we used MRI and histopathologic evaluation to compare the most widely used allogeneic rat glioma model, C6-Wistar, with the F98-Fischer syngeneic rat glioma model in terms of percentage tumor growth or regression and growth rate. In vivo MRI demonstrated considerable variation in tumor volume and frequency between the 2 rat models despite the same stereotactic implantation technique. Faster and more reproducible glioma growth occurred in the immunoresponsive environment of the F98-Fischer model, because the immune response is minimized toward syngeneic cells. The marked inability of the C6-Wistar allogeneic system to generate a reproducible model and the episodes of spontaneous tumor regression with this system may have been due to the increased humoral and cellular immune responses after tumor implantation.

  20. Comparison of Allogeneic and Syngeneic Rat Glioma Models by Using MRI and Histopathologic Evaluation

    PubMed Central

    Biasibetti, Elena; Valazza, Alberto; Capucchio, Maria T; Annovazzi, Laura; Battaglia, Luigi; Chirio, Daniela; Gallarate, Marina; Mellai, Marta; Muntoni, Elisabetta; Peira, Elena; Riganti, Chiara; Schiffer, Davide; Panciani, Pierpaolo; Lanotte, Michele

    2017-01-01

    Research in neurooncology traditionally requires appropriate in vivo animal models, on which therapeutic strategies are tested before human trials are designed and proceed. Several reproducible animal experimental models, in which human physiologic conditions can be mimicked, are available for studying glioblastoma multiforme. In an ideal rat model, the tumor is of glial origin, grows in predictable and reproducible patterns, closely resembles human gliomas histopathologically, and is weakly or nonimmunogenic. In the current study, we used MRI and histopathologic evaluation to compare the most widely used allogeneic rat glioma model, C6-Wistar, with the F98-Fischer syngeneic rat glioma model in terms of percentage tumor growth or regression and growth rate. In vivo MRI demonstrated considerable variation in tumor volume and frequency between the 2 rat models despite the same stereotactic implantation technique. Faster and more reproducible glioma growth occurred in the immunoresponsive environment of the F98-Fischer model, because the immune response is minimized toward syngeneic cells. The marked inability of the C6-Wistar allogeneic system to generate a reproducible model and the episodes of spontaneous tumor regression with this system may have been due to the increased humoral and cellular immune responses after tumor implantation. PMID:28381315

  1. Correlation of Tumor and Peritumoral Edema Volumes with Survival in Patients with Cerebral Metastases.

    PubMed

    Kerschbaumer, Johannes; Bauer, Marlies; Popovscaia, Marina; Grams, Astrid E; Thomé, Claudius; Freyschlag, Christian F

    2017-02-01

    Surgical resection in combination with radiotherapy in selected cases remains the best option for patients with cerebral metastases. Postoperative relapse of brain metastases occurs frequently and can be reduced by postoperative whole-brain radiotherapy (WBRT). Continuous spread of tumor cells from the primary lesions is debated as a cause of recurrence. It is well known that in gliomas, infiltration takes place within the surrounding edema. Obviously, most brain metastases are usually associated with peritumoral edema, which may act as an indicator of infiltration and more aggressive tumor biology. Therefore, we aimed to investigate the correlation of tumor and edema volumes with overall survival in patients with cerebral metastases. A total of 143 patients diagnosed with brain metastasis (male:female=1.1:1) who underwent surgical resection were included retrospectively in this analysis. Clinical data were retrieved from electronic patient files. The volumes of tumor and edema calculated by manual delineation. The ratio of edema to tumor volume was calculated, leading to dichotomization of the patients. The median tumor volume was 20.1 cc (range=0.8-90.8 cc) and the median volume of edema 49.5 cc (range=0-179.9 cc). The volume of metastases did not significantly correlate with overall survival. The ratio of edema to tumor volume was also not a prognostic factor in terms of overall survival. Only surgical resection, preoperative recursive partitioning analysis class, and postoperative addition of WBRT, as well as female sex, demonstrated beneficial effects. The extent of edema surrounding cerebral metastases does not appear to influence overall survival in patients suffering from brain metastases, although it seems to be responsible for most of the patients' symptoms. The hypothesis that the extent of edema was disadvantageous concerning survival was supported by our data. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios

  2. Knockdown of long non-coding RNA XIST increases blood–tumor barrier permeability and inhibits glioma angiogenesis by targeting miR-137

    PubMed Central

    Yu, H; Xue, Y; Wang, P; Liu, X; Ma, J; Zheng, J; Li, Z; Li, Z; Cai, H; Liu, Y

    2017-01-01

    Antiangiogenic therapy plays a significant role in combined glioma treatment. However, poor permeability of the blood–tumor barrier (BTB) limits the transport of chemotherapeutic agents, including antiangiogenic drugs, into tumor tissues. Long non-coding RNAs (lncRNAs) have been implicated in various diseases, especially malignant tumors. The present study found that lncRNA X-inactive-specific transcript (XIST) was upregulated in endothelial cells that were obtained in a BTB model in vitro. XIST knockdown increased BTB permeability and inhibited glioma angiogenesis. The analysis of the mechanism of action revealed that the reduction of XIST inhibited the expression of the transcription factor forkhead box C1 (FOXC1) and zonula occludens 2 (ZO-2) by upregulating miR-137. FOXC1 decreased BTB permeability by increasing the promoter activity and expression of ZO-1 and occludin, and promoted glioma angiogenesis by increasing the promoter activity and expression of chemokine (C–X–C motif) receptor 7b (CXCR7). Overall, the present study demonstrates that XIST plays a pivotal role in BTB permeability and glioma angiogenesis, and the inhibition of XIST may be a potential target for the clinical management of glioma. PMID:28287613

  3. Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells.

    PubMed

    Brown, Christine E; Starr, Renate; Aguilar, Brenda; Shami, Andrew F; Martinez, Catalina; D'Apuzzo, Massimo; Barish, Michael E; Forman, Stephen J; Jensen, Michael C

    2012-04-15

    To evaluate IL13Rα2 as an immunotherapeutic target for eliminating glioma stem-like cancer initiating cells (GSC) of high-grade gliomas, with particular focus on the potential of genetically engineered IL13Rα2-specific primary human CD8(+) CTLs (IL13-zetakine(+) CTL) to target this therapeutically resistant glioma subpopulation. A panel of low-passage GSC tumor sphere (TS) and serum-differentiated glioma lines were expanded from patient glioblastoma specimens. These glioblastoma lines were evaluated for expression of IL13Rα2 and for susceptibility to IL13-zetakine(+) CTL-mediated killing in vitro and in vivo. We observed that although glioma IL13Rα2 expression varies between patients, for IL13Rα2(pos) cases this antigen was detected on both GSCs and more differentiated tumor cell populations. IL13-zetakine(+) CTL were capable of efficient recognition and killing of both IL13Rα2(pos) GSCs and IL13Rα2(pos) differentiated cells in vitro, as well as eliminating glioma-initiating activity in an orthotopic mouse tumor model. Furthermore, intracranial administration of IL13-zetakine(+) CTL displayed robust antitumor activity against established IL13Rα2(pos) GSC TS-initiated orthotopic tumors in mice. Within IL13Rα2 expressing high-grade gliomas, this receptor is expressed by GSCs and differentiated tumor populations, rendering both targetable by IL13-zetakine(+) CTLs. Thus, our results support the potential usefullness of IL13Rα2-directed immunotherapeutic approaches for eradicating therapeutically resistant GSC populations. ©2012 AACR.

  4. Recent Advances in Targeted Therapy for Glioma.

    PubMed

    Lin, Lin; Cai, Jinquan; Jiang, Chuanlu

    2017-01-01

    Gliomas are the most common primary malignant brain tumors, which have a universally fatal outcome. Current standard treatment for glioma patients is surgical removal followed by radiotherapy and adjuvant chemotherapy. Due to therapeutic resistance and tumor recurrence, efforts are ongoing to identify the molecules that are fundamental to regulate the tumor progression and provide additional methods for individual treatment of glioma patients. By studying the initiation and maintenance of glioma, studies focused on the targets of tyrosine kinase receptors including EGFR, PDGFR and other crucial signal pathways such as PI3K/AKT and RAS/RAF/MAPK pathway. Furthermore, recent advances in targeting immunotherapy and stem cell therapy also brought numerous strategies to glioma treatment. This article reviewed the researches focused on the advanced strategies of various target therapies for improving the glioma treatment efficacy, and discussed the challenges and future directions for glioma therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Tissue Proteome Analysis of Different Grades of Human Gliomas Provides Major Cues for Glioma Pathogenesis.

    PubMed

    Gollapalli, Kishore; Ghantasala, Saicharan; Atak, Apurva; Rapole, Srikanth; Moiyadi, Aliasgar; Epari, Sridhar; Srivastava, Sanjeeva

    2017-05-01

    Gliomas are heterogeneous and most commonly occurring brain tumors. Blood-brain barrier restricts the entry of brain tumor proteins into blood stream thus limiting the usage of serum or plasma for proteomic analysis. Our study aimed at understanding the molecular basis of aggressiveness of various grades of brain tumors using isobaric tagging for relative and absolute quantification (iTRAQ) based mass spectrometry. Tissue proteomic analysis of various grades of gliomas was performed using four-plex iTRAQ. We labeled five sets (each set consists of control, grade-II, III, and IV tumor samples) of individual glioma patients using iTRAQ reagents. Significantly altered proteins were subjected to bioinformatics analysis using Database for Annotation, Visualization and Integrated Discovery (DAVID). Various metabolic pathways like glycolysis, TCA-cycle, electron transport chain, lactate metabolism, and blood coagulation pathways were majorly observed to be perturbed in gliomas. Most of the identified proteins involved in redox reactions, protein folding, pre-messenger RNA (mRNA) processing, antiapoptosis, and blood coagulation were found to be upregulated in gliomas. Transcriptomics data of glioblastoma multiforme (GBM), low-grade gliomas (LGGs), and controls were downloaded from The Cancer Genome Atlas (TCGA) data portal and further analyzed using BRB-Array tools. Expression levels of a few significantly altered proteins like lactate dehydrogenase, alpha-1 antitrypsin, fibrinogen alpha chain, nucleophosmin, annexin A5, thioredoxin, ferritin light chain, thymosin beta-4-like protein 3, superoxide dismutase-2, and peroxiredoxin-1 and 6 showed a positive correlation with increasing grade of gliomas thereby offering an insight into molecular basis behind their aggressive nature. Several proteins identified in different grades of gliomas are potential grade-specific markers, and perturbed pathways provide comprehensive overview of molecular cues involved in glioma

  6. Phase II Study of Aflibercept in Recurrent Malignant Glioma: A North American Brain Tumor Consortium Study

    PubMed Central

    de Groot, John F.; Lamborn, Kathleen R.; Chang, Susan M.; Gilbert, Mark R.; Cloughesy, Timothy F.; Aldape, Kenneth; Yao, Jun; Jackson, Edward F.; Lieberman, Frank; Robins, H. Ian; Mehta, Minesh P.; Lassman, Andrew B.; DeAngelis, Lisa M.; Yung, W.K. Alfred; Chen, Alice; Prados, Michael D.; Wen, Patrick Y.

    2011-01-01

    Purpose Antivascular endothelial growth factor (anti-VEGF) therapy is a promising treatment approach for patients with recurrent glioblastoma. This single-arm phase II study evaluated the efficacy of aflibercept (VEGF Trap), a recombinantly produced fusion protein that scavenges both VEGF and placental growth factor in patients with recurrent malignant glioma. Patients and Methods Forty-two patients with glioblastoma and 16 patients with anaplastic glioma who had received concurrent radiation and temozolomide and adjuvant temozolomide were enrolled at first relapse. Aflibercept 4 mg/kg was administered intravenously on day 1 of every 2-week cycle. Results The 6-month progression-free survival rate was 7.7% for the glioblastoma cohort and 25% for patients with anaplastic glioma. Overall radiographic response rate was 24% (18% for glioblastoma and 44% for anaplastic glioma). The median progression-free survival was 24 weeks for patients with anaplastic glioma (95% CI, 5 to 31 weeks) and 12 weeks for patients with glioblastoma (95% CI, 8 to 16 weeks). A total of 14 patients (25%) were removed from the study for toxicity, on average less than 2 months from treatment initiation. The main treatment-related National Cancer Institute Common Terminology Criteria grades 3 and 4 adverse events (38 total) included fatigue, hypertension, and lymphopenia. Two grade 4 CNS ischemias and one grade 4 systemic hemorrhage were reported. Aflibercept rapidly decreases permeability on dynamic contrast enhanced magnetic resonance imaging, and molecular analysis of baseline tumor tissue identified tumor-associated markers of response and resistance. Conclusion Aflibercept monotherapy has moderate toxicity and minimal evidence of single-agent activity in unselected patients with recurrent malignant glioma. PMID:21606416

  7. Revealing the potential pathogenesis of glioma by utilizing a glioma associated protein-protein interaction network.

    PubMed

    Pan, Weiran; Li, Gang; Yang, Xiaoxiao; Miao, Jinming

    2015-04-01

    This study aims to explore the potential mechanism of glioma through bioinformatic approaches. The gene expression profile (GSE4290) of glioma tumor and non-tumor samples was downloaded from Gene Expression Omnibus database. A total of 180 samples were available, including 23 non-tumor and 157 tumor samples. Then the raw data were preprocessed using robust multiarray analysis, and 8,890 differentially expressed genes (DEGs) were identified by using t-test (false discovery rate < 0.0005). Furthermore, 16 known glioma related genes were abstracted from Genetic Association Database. After mapping 8,890 DEGs and 16 known glioma related genes to Human Protein Reference Database, a glioma associated protein-protein interaction network (GAPN) was constructed. In addition, 51 sub-networks in GAPN were screened out through Molecular Complex Detection (score ≥ 1), and sub-network 1 was found to have the closest interaction (score = 3). What' more, for the top 10 sub-networks, Gene Ontology (GO) enrichment analysis (p value < 0.05) was performed, and DEGs involved in sub-network 1 and 2, such as BRMS1L and CCNA1, were predicted to regulate cell growth, cell cycle, and DNA replication via interacting with known glioma related genes. Finally, the overlaps of DEGs and human essential, housekeeping, tissue-specific genes were calculated (p value = 1.0, 1.0, and 0.00014, respectively) and visualized by Venn Diagram package in R. About 61% of human tissue-specific genes were DEGs as well. This research shed new light on the pathogenesis of glioma based on DEGs and GAPN, and our findings might provide potential targets for clinical glioma treatment.

  8. Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma.

    PubMed

    Wang, Yun; Huang, Nanxin; Li, Hongli; Liu, Shubao; Chen, Xianjun; Yu, Shichang; Wu, Nan; Bian, Xiu-Wu; Shen, Hai-Ying; Li, Chengren; Xiao, Lan

    2017-06-06

    As a major contributor of chemotherapy resistance and malignant recurrence, glioma stem cells (GSCs) have been proposed as a target for the treatment of gliomas. To evaluate the therapeutic potential of quetiapine (QUE), an atypical antipsychotic, for the treatment of malignant glioma, we established mouse models with GSCs-initiated orthotopic xenograft gliomas and subcutaneous xenograft tumors, using GSCs purified from glioblastoma cell line GL261. We investigated antitumor effects of QUE on xenograft gliomas and its underlying mechanisms on GSCs. Our data demonstrated that (i) QUE monotherapy can effectively suppress GSCs-initiated tumor growth; (ii) QUE has synergistic effects with temozolomide (TMZ) on glioma suppression, and importantly, QUE can effectively suppress TMZ-resistant (or -escaped) tumors generated from GSCs; (iii) mechanistically, the anti-glioma effect of QUE was due to its actions of promoting the differentiation of GSCs into oligodendrocyte (OL)-like cells and its inhibitory effect on the Wnt/β-catenin signaling pathway. Together, our findings suggest an effective approach for anti-gliomagenic treatment via targeting OL-oriented differentiation of GSCs. This also opens a door for repurposing QUE, an FDA approved drug, for the treatment of malignant glioma.

  9. Promoting oligodendroglial-oriented differentiation of glioma stem cell: a repurposing of quetiapine for the treatment of malignant glioma

    PubMed Central

    Li, Hongli; Liu, Shubao; Chen, Xianjun; Yu, Shichang; Wu, Nan; Bian, Xiu-Wu; Li, Chengren

    2017-01-01

    As a major contributor of chemotherapy resistance and malignant recurrence, glioma stem cells (GSCs) have been proposed as a target for the treatment of gliomas. To evaluate the therapeutic potential of quetiapine (QUE), an atypical antipsychotic, for the treatment of malignant glioma, we established mouse models with GSCs-initiated orthotopic xenograft gliomas and subcutaneous xenograft tumors, using GSCs purified from glioblastoma cell line GL261. We investigated antitumor effects of QUE on xenograft gliomas and its underlying mechanisms on GSCs. Our data demonstrated that (i) QUE monotherapy can effectively suppress GSCs-initiated tumor growth; (ii) QUE has synergistic effects with temozolomide (TMZ) on glioma suppression, and importantly, QUE can effectively suppress TMZ-resistant (or -escaped) tumors generated from GSCs; (iii) mechanistically, the anti-glioma effect of QUE was due to its actions of promoting the differentiation of GSCs into oligodendrocyte (OL)-like cells and its inhibitory effect on the Wnt/β-catenin signaling pathway. Together, our findings suggest an effective approach for anti-gliomagenic treatment via targeting OL-oriented differentiation of GSCs. This also opens a door for repurposing QUE, an FDA approved drug, for the treatment of malignant glioma. PMID:28415586

  10. Role of microglia in glioma biology.

    PubMed

    Badie, B; Schartner, J

    2001-07-15

    Microglia, a type of differentiated tissue macrophage, are considered to be the most plastic cell population of the central nervous system (CNS). In response to pathological conditions, resting microglia undergo a stereotypic activation process and become capable of phagocytosis, antigen presentation, and lymphocyte activation. Considering their immune effector function, it is not surprising to see microglia accumulation in almost every CNS disease process, including malignant brain tumors or malignant gliomas. Although the function of these cells in CNS inflammatory processes is being studied, their role in malignant glioma biology remains unclear. On one hand, microglia may represent a CNS anti-tumor response, which is inactivated by local secretion of immunosuppressive factors by glioma cells. On the other hand, taking into account that microglia are capable of secreting a variety of immunomodulatory cytokines, it is possible that they are attracted by gliomas to promote tumor growth. A better understanding of microglia-glioma interaction will be helpful in designing novel immune-based therapies against these fatal tumors. Copyright 2001 Wiley-Liss, Inc.

  11. Glioma Stem Cells but Not Bulk Glioma Cells Upregulate IL-6 Secretion in Microglia/Brain Macrophages via Toll-like Receptor 4 Signaling.

    PubMed

    a Dzaye, Omar Dildar; Hu, Feng; Derkow, Katja; Haage, Verena; Euskirchen, Philipp; Harms, Christoph; Lehnardt, Seija; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-05-01

    Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-) GL261 cells. In IL-6(-/-) mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  12. MiR-26b Mimic Inhibits Glioma Proliferation In Vitro and In Vivo Suppressing COX-2 Expression.

    PubMed

    Chen, Zheng-Gang; Zheng, Chuan-Yi; Cai, Wang-Qing; Li, Da-Wei; Ye, Fu-Yue; Zhou, Jian; Wu, Ran; Yang, Kun

    2017-08-11

    Glioma is the most common malignant tumor of the nervous system. Studies have shown the microRNA (miR)-26b/cyclooxygenase (COX)-2 axis in the development and progression in many tumor cells. Our study aims to investigate the effect and mechanism of miR-26b/COX-2 axis in glioma. Decreased expression of miR-26b with increased level of COX-2 was found in glioma tissues compared with matched normal tissues. A strong negative correlation was observed between the level of miR-26b and COX-2 in 30 glioma tissues. The miR-26b was then overexpressed by transfecting miR-26b mimic into U-373 cells. The invasive cell number and wounld closing rate were reduced in U-373 cells transfected with miR-26b mimic. Besides, COX2 siRNA enhanced the effect of miR-26b mimic in suppressing the expression of p-ERK1 and p-JNK. Finally, the in vivo experiment revealed that miR-26b mimic transfection strongly reduced the tumor growth, tumor volume and the expression of matrix metalloproteinase (MMP)-2, MMP-9). Taken together, our research indicated a miR-26b/COX-2/ERK/JNK axis in regulating the motility of glioma in vitro and in vivo, providing a new sight for treatment of glioma.

  13. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes.

    PubMed

    Gao, Jian-Qing; Lv, Qing; Li, Li-Ming; Tang, Xin-Jiang; Li, Fan-Zhu; Hu, Yu-Lan; Han, Min

    2013-07-01

    Effective chemotherapy for glioblastoma requires a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the glioma cells. Dual-targeting doxorubincin (Dox) liposomes were produced by conjugating liposomes with both folate (F) and transferrin (Tf), which were proven effective in penetrating the BBB and targeting tumors, respectively. The liposome was characterized by particle size, Dox entrapment efficiency, and in vitro release profile. Drug accumulation in cells, P-glycoprotein (P-gp) expression, and drug transport across the BBB in the dual-targeting liposome group were examined by using bEnd3 BBB models. In vivo studies demonstrated that the dual-targeting Dox liposomes could transport across the BBB and mainly distribute in the brain glioma. The anti-tumor effect of the dual-targeting liposome was also demonstrated by the increased survival time, decreased tumor volume, and results of both hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis. The dual-targeting Dox liposome could improve the therapeutic efficacy of brain glioma and were less toxic than the Dox solution, showing a dual-targeting effect. These results indicate that this dual-targeting liposome can be used as a potential carrier for glioma chemotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Trends and Outcomes in the Treatment of Gliomas Based on Data during 2001–2004 from the Brain Tumor Registry of Japan

    PubMed Central

    NARITA, Yoshitaka; SHIBUI, Soichiro

    2015-01-01

    The committee of Brain Tumor Registry of Japan (BTRJ) was founded in 1973 and conducts surveys and analyses of incidence, therapeutic methods, and treatment outcomes of primary and metastatic brain tumors with the cooperation of the Japan Neurosurgical Society members. Newly diagnosed 3,000–4,000 primary brain tumors and 600–1,000 brain metastases patients were enrolled in each year. This report describes the trends and treatment outcomes of gliomas from BTRJ volume 13, including 13,431 patients with primary brain tumors who newly started treatment from 2001 to 2004. Data from 382 diffuse astrocytomas (DAs), 121 oligodendrogliomas (OLs), 90 oligoastrocytomas (OAs), 513 anaplastic astrocytomas (AAs), 126 anaplastic oligodendrogliomas (AOs), 106 anaplastic oligoastrocytomas (AOAs), and 1,489 glioblastomas (GBMs) were analyzed for overall survival (OS) and progression free survival (PFS) depending on age, symptoms, Karnofsky performance status, location of the tumor, extent of resection (EOR), initial radiotherapy and chemotherapy. The 5-year PFS rates of the patients with DA, OL + OA, AA, AO + AOA, and GBM were 57.0%, 74.6%, 28.7%, 54.0%, and 9.2%, and the 5-year OS rates were 75.0%, 90.0%, 41.1%, 68.2%, and 10.1%, respectively. Higher EOR ≥ 75% in DA and OL + OA and that ≥ 50% in AA, AO + AOA, and GBM significantly prolonged OS. Complications and cause of death were also reported. BTRJ had been edited for all the patients, researchers, and especially for clinicians at bedside to give useful information about brain tumors and to contribute to the advances in brain tumor treatment. This report revealed various clinical problematic issues pertaining to the diagnosis and treatment of gliomas. PMID:25797780

  15. Single-Cell RNA-Sequencing in Glioma.

    PubMed

    Johnson, Eli; Dickerson, Katherine L; Connolly, Ian D; Hayden Gephart, Melanie

    2018-04-10

    In this review, we seek to summarize the literature concerning the use of single-cell RNA-sequencing for CNS gliomas. Single-cell analysis has revealed complex tumor heterogeneity, subpopulations of proliferating stem-like cells and expanded our view of tumor microenvironment influence in the disease process. Although bulk RNA-sequencing has guided our initial understanding of glioma genetics, this method does not accurately define the heterogeneous subpopulations found within these tumors. Single-cell techniques have appealing applications in cancer research, as diverse cell types and the tumor microenvironment have important implications in therapy. High cost and difficult protocols prevent widespread use of single-cell RNA-sequencing; however, continued innovation will improve accessibility and expand our of knowledge gliomas.

  16. Fluorescent Affibody Molecule Administered In Vivo at a Microdose Level Labels EGFR Expressing Glioma Tumor Regions.

    PubMed

    de Souza, Ana Luiza Ribeiro; Marra, Kayla; Gunn, Jason; Samkoe, Kimberley S; Hoopes, P Jack; Feldwisch, Joachim; Paulsen, Keith D; Pogue, Brian W

    2017-02-01

    Fluorescence guidance in surgical oncology provides the potential to realize enhanced molecular tumor contrast with dedicated targeted tracers, potentially with a microdose injection level. For most glioma tumors, the blood brain barrier is compromised allowing some exogenous drug/molecule delivery and accumulation for imaging. The aberrant overexpression and/or activation of epidermal growth factor receptor (EGFR) is associated with many types of cancers, including glioblastoma, and so the use of a near-infrared (NIR) fluorescent molecule targeted to the EGFR receptor provides the potential for improving tumor contrast during surgery. Fluorescently labeled affibody molecule (ABY-029) has high EGFR affinity and high potential specificity with reasonably fast plasma clearance. In this study, ABY-29 was evaluated in glioma versus normal brain uptake from intravenous injection at a range of doses, down to a microdose injection level. Nude rats were inoculated with the U251 human glioma cell line in the brain. Tumors were allowed to grow for 3-4 weeks. ABY-029 fluorescence ex vivo imaging of brain slices was acquired at different time points (1-48 h) and varying injection doses from 25 to 122 μg/kg (from human protein microdose equivalent to five times microdose levels). The tumor was most clearly visualized at 1-h post-injection with 8- to 16-fold average contrast relative to normal brain. However, the tumor still could be identified after 48 h. In all cases, the ABY-029 fluorescence appeared to localize preferentially in EGFR-positive regions. Increasing the injected dose from a microdose level to five times, a microdose level increased the signal by 10-fold, and the contrast was from 8 to 16, showing that there was value in doses slightly higher than the microdose restriction. Normal tissue uptake was found to be affected by the tumor size, indicating that edema was a likely factor affecting the expected tumor to normal tissue contrast. These results suggest

  17. Combination of photodynamic therapy and temozolomide on glioma in a rat C6 glioma model.

    PubMed

    Zhang, Xiaoming; Guo, Mian; Shen, Lei; Hu, Shaoshan

    2014-12-01

    For glioma, temozolomide (TMZ) is a commonly used chemotherapy drug and photodynamic therapy (PDT) is an important adjuvant therapy. The aim of this study was to evaluate the effect of their combination for the treatment of glioma. A rat C6 glioma model using male Wistar rats (n=180) weighing 280-300 g was established. Glioma-bearing rats (n=100) were treated with mock, hematoporphyrin monomethyl ether (HMME), laser or PDT. The expression of P-glycoprotein (P-gp) in endothelial cells of the blood-tumor-barrier and in glioma tissues was detected using immunohistochemistry and western blot, respectively. Glioma-bearing rats (n=40) were treated with normal saline, TMZ (60 mg/m(2) for five consecutive days), PDT (630 nm for 10 min) or a combination of TMZ and PDT. TMZ concentration in glioma tissues was detected using liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) and cell death was observed using transmission microscopy. Concurrently, another batch of 40 glioma-bearing rats was subjected to the same treatment, and the survival of these rats was estimated using Kaplan-Meier analysis. PDT significantly decreased the expression of P-gp in endothelial cells comprising the blood-tumor-barrier and in glioma tissues. The combination of TMZ with PDT significantly increased TMZ concentration in glioma tissues, enhanced glioma cell apoptosis and prolonged the median survival of glioma-bearing rats. The combination of PDT with TMZ shows synergistic effect in rat C6 glioma model, indicating its potential clinical use in glioma treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Spontaneous complete regression of a brain stem glioma pathologically diagnosed as a high-grade glioma.

    PubMed

    Ishihara, Masahiro; Yamamoto, Kazumi; Miwa, Hideaki; Nishi, Masaya

    2017-12-01

    Spontaneous regressions of brain stem gliomas are extremely rare. Only six cases have been reported in the literature. We describe the case of a patient who was diagnosed with a pontomedullary dorsal brain stem glioma at the age of 15 years. An open biopsy showed the presence of an anaplastic glioma. Because the patient and her parents refused conventional therapies, including radiation and chemotherapy, we followed up the patient by performing magnetic resonance imaging scans on her every 3 months. At 3 months after biopsy, we observed the radiological disappearance of her tumor. One year after biopsy, the tumor retained the spontaneous complete regression observed earlier. In this case report, we present the first report of the spontaneous complete regression of a brain stem glioma that was histologically proven to be a high-grade glioma and we believe that this regression was the natural progression of this case, as may be the scenario in a few other cases of brain stem gliomas.

  19. Terahertz reflectometry imaging for low and high grade gliomas

    NASA Astrophysics Data System (ADS)

    Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck

    2016-10-01

    Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes.

  20. The Effect of Antitumor Glycosides on Glioma Cells and Tissues as Studied by Proton HR-MAS NMR Spectroscopy

    PubMed Central

    García-Álvarez, Isabel; Garrido, Leoncio; Romero-Ramírez, Lorenzo; Nieto-Sampedro, Manuel; Fernández-Mayoralas, Alfonso; Campos-Olivas, Ramón

    2013-01-01

    The effect of the treatment with glycolipid derivatives on the metabolic profile of intact glioma cells and tumor tissues, investigated using proton high resolution magic angle spinning (1H HR-MAS) nuclear magnetic resonance (NMR) spectroscopy, is reported here. Two compounds were used, a glycoside and its thioglycoside analogue, both showing anti-proliferative activity on glioma C6 cell cultures; however, only the thioglycoside exhibited antitumor activity in vivo. At the drug concentrations showing anti-proliferative activity in cell culture (20 and 40 µM), significant increases in choline containing metabolites were observed in the 1H NMR spectra of the same intact cells. In vivo experiments in nude mice bearing tumors derived from implanted C6 glioma cells, showed that reduction of tumor volume was associated with significant changes in the metabolic profile of the same intact tumor tissues; and were similar to those observed in cell culture. Specifically, the activity of the compounds is mainly associated with an increase in choline and phosphocholine, in both the cell cultures and tumoral tissues. Taurine, a metabolite that has been considered a biomarker of apoptosis, correlated with the reduction of tumor volume. Thus, the results indicate that the mode of action of the glycoside involves, at least in part, alteration of phospholipid metabolism, resulting in cell death. PMID:24194925

  1. Pediatric Glioma at the Optic Pathway and Thalamus

    PubMed Central

    Park, Eun Suk; Park, Jun Bum; Ra, Young-Shin

    2018-01-01

    Gliomas are the most common pediatric tumors of the central nervous system. In this review, we discuss the clinical features, treatment paradigms, and evolving concepts related to two types of pediatric gliomas affecting two main locations: the optic pathway and thalamus. In particular, we discuss recently revised pathologic classification, which adopting molecular parameter. We believe that our review contribute to the readers’ better understanding of pediatric glioma because pediatric glioma differs in many ways from adult glioma according to the newest advances in molecular characterization of this tumor. A better understanding of current and evolving issues in pediatric glioma is needed to ensure effective management decision. PMID:29742884

  2. The H3.3 K27M mutation results in a poorer prognosis in brainstem gliomas than thalamic gliomas in adults.

    PubMed

    Feng, Jie; Hao, Shuyu; Pan, Changcun; Wang, Yu; Wu, Zhen; Zhang, Junting; Yan, Hai; Zhang, Liwei; Wan, Hong

    2015-11-01

    Brainstem and thalamic gliomas are rare, and they are poorly understood in adults. Genetic aberrations that occur in these tumors are still unknown. In this study, we investigated whether thalamic gliomas have different genetic aberrations and clinical outcomes compared with brainstem gliomas in adults. Forty-three glioma samples were selected, including 28 brainstem and 15 thalamic gliomas. The frequency of the K27M mutation in adult midline gliomas was 58.1%. High-grade gliomas in the thalamus were statistically significantly more numerous than brainstem gliomas. Patients with K27M mutant brainstem gliomas had a significantly shorter overall survival than patients with wild-type tumors (P = .020) by Cox regression after adjustment for other independent risk factors. However, there was no statistical tendency toward a poorer overall survival in thalamic gliomas containing the K27M mutation compared with wild-type tumors. The presence of the K27M mutation significantly corresponded with mutations in TP53 in thalamic gliomas. Interestingly, the K27M mutation was mutually exclusive with mutations in IDH1, which was detected only in brainstem gliomas. The microarray data identified 86 differentially expressed genes between brainstem and thalamic gliomas with the K27M mutation. The cyclin-dependent kinase 6 (CDK6) gene, which plays an important role in cancer pathways, was found to be differentially expressed between brainstem and thalamic gliomas with K27M mutations. Although the K27M mutation was frequently observed in adult brainstem and thalamic gliomas, this mutation tended to be associated with a poorer prognosis in brainstem gliomas but not in thalamic gliomas. Brainstem gliomas may present different genetic aberrations from thalamic gliomas. These differences may provide guidance for therapeutic decisions for the treatment of adult brainstem and thalamic gliomas, which may have different molecular targets. Copyright © 2015. Published by Elsevier Inc.

  3. EG-03EXPRESSION OF PRMT5 CORRELATES WITH MALIGNANT GRADE IN GLIOMAS AND PLAYS A PIVOTAL ROLE IN TUMOR GROWTH

    PubMed Central

    Han, Xiaosi; Li, Rong; Zhang, Wenbin; Yang, Xiuhua; Fathallah-Shaykh, Hassan; Gillespie, Yancey; Nabors, Burt

    2014-01-01

    Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of ω-NG,N′G-symmetric dimethylarginine residues on histones as well as other proteins. The modification play an important role in cell differentiation and tumor cell growth. However, the role of PRMT5 in human glioma cells has not been characterized. In this study, we assessed protein expression profiles of PRMT5 in control brain, WHO grade II astrocytomas, anaplastic astrocytomas, and glioblastoma multiforme (GBM) by immunohistochemistry. PRMT5 was low in glial cells in control brain tissues and low grade astrocytomas. Its expression increased in parallel with malignant progression, and was highly expressed in GBM. Knockdown of PRMT5 by small hairpin RNA caused alterations of p-ERK1/2 and significantly repressed the clonogenic potential and viability of glioma cells. These findings indicate that PRMT5 is a marker of malignant progression in glioma tumors and plays a pivotal role in tumor growth.

  4. A Distinct DNA Methylation Shift in a Subset of Glioma CpG Island Methylator Phenotypes during Tumor Recurrence.

    PubMed

    de Souza, Camila Ferreira; Sabedot, Thais S; Malta, Tathiane M; Stetson, Lindsay; Morozova, Olena; Sokolov, Artem; Laird, Peter W; Wiznerowicz, Maciej; Iavarone, Antonio; Snyder, James; deCarvalho, Ana; Sanborn, Zachary; McDonald, Kerrie L; Friedman, William A; Tirapelli, Daniela; Poisson, Laila; Mikkelsen, Tom; Carlotti, Carlos G; Kalkanis, Steven; Zenklusen, Jean; Salama, Sofie R; Barnholtz-Sloan, Jill S; Noushmehr, Houtan

    2018-04-10

    Glioma diagnosis is based on histomorphology and grading; however, such classification does not have predictive clinical outcome after glioblastomas have developed. To date, no bona fide biomarkers that significantly translate into a survival benefit to glioblastoma patients have been identified. We previously reported that the IDH mutant G-CIMP-high subtype would be a predecessor to the G-CIMP-low subtype. Here, we performed a comprehensive DNA methylation longitudinal analysis of diffuse gliomas from 77 patients (200 tumors) to enlighten the epigenome-based malignant transformation of initially lower-grade gliomas. Intra-subtype heterogeneity among G-CIMP-high primary tumors allowed us to identify predictive biomarkers for assessing the risk of malignant recurrence at early stages of disease. G-CIMP-low recurrence appeared in 9.5% of all gliomas, and these resembled IDH-wild-type primary glioblastoma. G-CIMP-low recurrence can be characterized by distinct epigenetic changes at candidate functional tissue enhancers with AP-1/SOX binding elements, mesenchymal stem cell-like epigenomic phenotype, and genomic instability. Molecular abnormalities of longitudinal G-CIMP offer possibilities to defy glioblastoma progression. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. PID1 (NYGGF4), a new growth-inhibitory gene in embryonal brain tumors and gliomas

    PubMed Central

    Erdreich-Epstein, Anat; Robison, Nathan; Ren, Xiuhai; Zhou, Hong; Xu, Jingying; Davidson, Tom B.; Schur, Mathew; Gilles, Floyd H.; Ji, Lingyun; Malvar, Jemily; Shackleford, Gregory M.; Margol, Ashley S.; Krieger, Mark D.; Judkins, Alexander R.; Jones, David T.W.; Pfister, Stefan; Kool, Marcel; Sposto, Richard; Asgharazadeh, Shahab

    2014-01-01

    Purpose We present here the first report of PID1 (Phosphotyrosine Interaction Domain containing 1; NYGGF4) in cancer. PID1 was identified in 2006 as a gene that modulates insulin signaling and mitochondrial function in adipocytes and muscle cells. Experimental Design and Results Using four independent medulloblastoma datasets, we show that mean PID1 mRNA levels were lower in unfavorable medulloblastomas (Groups 3 and 4, and anaplastic histology) compared with favorable medulloblastomas (SHH and WNT groups, and desmoplastic/nodular histology) and with fetal cerebellum. In two large independent glioma datasets PID1 mRNA was lower in glioblastomas (GBMs), the most malignant gliomas, compared to other astrocytomas, oligodendrogliomas and non-tumor brains. Neural and proneural GBM subtypes had higher PID1 mRNA compared to classical and mesenchymal GBM. Importantly, overall survival and radiation-free progression-free survival were longer in medulloblastoma patients with higher PID1 mRNA (univariate and multivariate analyses). Higher PID1 mRNA also correlated with longer overall survival in glioma and GBM patients. In cell culture, overexpression of PID1 inhibited colony formation in medulloblastoma, atypical teratoid rhabdoid tumor (ATRT) and GBM cell lines. Increasing PID1 also increased cell death and apoptosis, inhibited proliferation, induced mitochondrial depolarization, and decreased serum-mediated phosphorylation of AKT and ERK in medulloblastoma, ATRT and/or GBM cell lines, whereas siRNA to PID1 diminished mitochondrial depolarization. Conclusions These data are the first to link PID1 to cancer and suggest that PID1 may have a tumor inhibitory function in these pediatric and adult brain tumors. PMID:24300787

  6. Convection-enhanced Delivery of Therapeutics for Malignant Gliomas.

    PubMed

    Saito, Ryuta; Tominaga, Teiji

    2017-01-15

    Convection-enhanced delivery (CED) circumvents the blood-brain barrier by delivering agents directly into the tumor and surrounding parenchyma. CED can achieve large volumes of distribution by continuous positive-pressure infusion. Although promising as an effective drug delivery method in concept, the administration of therapeutic agents via CED is not without challenges. Limitations of distribution remain a problem in large brains, such as those of humans. Accurate and consistent delivery of an agent is another challenge associated with CED. Similar to the difficulties caused by immunosuppressive environments associated with gliomas, there are several mechanisms that make effective local drug distribution difficult in malignant gliomas. In this review, methods for local drug application targeting gliomas are discussed with special emphasis on CED. Although early clinical trials have failed to demonstrate the efficacy of CED against gliomas, CED potentially can be a platform for translating the molecular understanding of glioblastomas achieved in the laboratory into effective clinical treatments. Several clinical studies using CED of chemotherapeutic agents are ongoing. Successful delivery of effective agents should prove the efficacy of CED in the near future.

  7. Convection-enhanced Delivery of Therapeutics for Malignant Gliomas

    PubMed Central

    SAITO, Ryuta; TOMINAGA, Teiji

    2017-01-01

    Convection-enhanced delivery (CED) circumvents the blood–brain barrier by delivering agents directly into the tumor and surrounding parenchyma. CED can achieve large volumes of distribution by continuous positive-pressure infusion. Although promising as an effective drug delivery method in concept, the administration of therapeutic agents via CED is not without challenges. Limitations of distribution remain a problem in large brains, such as those of humans. Accurate and consistent delivery of an agent is another challenge associated with CED. Similar to the difficulties caused by immunosuppressive environments associated with gliomas, there are several mechanisms that make effective local drug distribution difficult in malignant gliomas. In this review, methods for local drug application targeting gliomas are discussed with special emphasis on CED. Although early clinical trials have failed to demonstrate the efficacy of CED against gliomas, CED potentially can be a platform for translating the molecular understanding of glioblastomas achieved in the laboratory into effective clinical treatments. Several clinical studies using CED of chemotherapeutic agents are ongoing. Successful delivery of effective agents should prove the efficacy of CED in the near future. PMID:27980285

  8. Inhibition of CYP4A by a novel flavonoid FLA-16 prolongs survival and normalizes tumor vasculature in glioma.

    PubMed

    Wang, Chenlong; Li, Ying; Chen, Honglei; Zhang, Jie; Zhang, Jing; Qin, Tian; Duan, Chenfan; Chen, Xuewei; Liu, Yanzhuo; Zhou, Xiaoyang; Yang, Jing

    2017-08-28

    Glioblastomas rapidly become refractory to anti-VEGF therapies. We previously showed that cytochrome P450 (CYP) 4A-derived 20-hydroxyeicosatetraenoic acid (20-HETE) promotes angiogenesis. Here, we tested whether a novel flavonoid (FLA-16) prolongs survival and normalizes tumor vasculature in glioma through CYP4A inhibition. FLA-16 improved survival, reduced tumor burden, and normalized vasculature, accompanied with the decreased secretion of 20-HETE, VEGF and TGF-β in tumor-associated macrophages (TAMs) and endothelial progenitor cells (EPCs) in C6 and U87 gliomas. FLA-16 attenuated vascular abnormalization induced by co-implantation of GL261 glioma cells with CYP4A10 high macrophages or EPCs. Mechanistically, the conditional medium from TAMs and EPCs treated with FLA-16 enhanced the migration of pericyte cells, and decreased the proliferation and migration of endothelial cells, which were reversed by CYP4A overexpression or exogenous addition of 20-HETE, VEGF and TGF-β. Furthermore, FLA-16 prevented crosstalk between TAMs and EPCs during angiogenesis. These results suggest that CYP4A inhibition by FLA-16 prolongs survival and normalizes vasculature in glioma through decreasing production of TAMs and EPCs-derived VEGF and TGF-β. This may represent a potential therapeutic strategy to overcome resistance to anti-VEGF treatment by effects on vessels and immune cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Molecular markers in glioma.

    PubMed

    Ludwig, Kirsten; Kornblum, Harley I

    2017-09-01

    Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.

  10. Microglia immunophenotyping in gliomas

    PubMed Central

    Annovazzi, Laura; Mellai, Marta; Bovio, Enrica; Mazzetti, Samanta; Pollo, Bianca; Schiffer, Davide

    2018-01-01

    Microglia, once assimilated to peripheral macrophages, in gliomas has long been discussed and currently it is hypothesized to play a pro-tumor role in tumor progression. Uncertain between M1 and M2 polarization, it exchanges signals with glioma cells to create an immunosuppressive microenvironment and stimulates cell proliferation and migration. Four antibodies are currently used for microglia/macrophage identification in tissues that exhibit different cell forms and cell localization. The aim of the present work was to describe the distribution of the different cell forms and to deduce their significance on the basis of what is known on their function from the literature. Normal resting microglia, reactive microglia, intermediate and bumpy forms and macrophage-like cells can be distinguished by Iba1, CD68, CD16 and CD163 and further categorized by CD11b, CD45, c-MAF and CD98. The number of microglia/macrophages strongly increased from normal cortex and white matter to infiltrating and solid tumors. The ramified microglia accumulated in infiltration areas of both high- and low-grade gliomas, when hypertrophy and hyperplasia occur. In solid tumors, intermediate and bumpy forms prevailed and there is a large increase of macrophage-like cells in glioblastoma. The total number of microglia cells did not vary among the three grades of malignancy, but macrophage-like cells definitely prevailed in high-grade gliomas and frequently expressed CD45 and c-MAF. CD98+ cells were present. Microglia favors tumor progression, but many aspects suggest that the phagocytosing function is maintained. CD98+ cells can be the product of fusion, but also of phagocytosis. Microglia correlated with poorer survival in glioblastoma, when considering CD163+ cells, whereas it did not change prognosis in isocitrate dehydrogenase-mutant low grade gliomas. PMID:29399160

  11. Glioma infiltration sign on high b-value diffusion-weighted imaging in gliomas and its prognostic value.

    PubMed

    Zeng, Qiang; Ling, Chenhan; Shi, Feina; Dong, Fei; Jiang, Biao; Zhang, Jianmin

    2018-03-01

    Glioma cells may infiltrate beyond the tumor margins revealed on conventional structural images. To investigate whether the presence of a glioma infiltration sign on high b-value diffusion-weighted imaging (DWI) can predict the prognosis of gliomas. Retrospective cohort. Fifty-two patients with gliomas (14 WHO grade II; 13 WHO grade III; 25 WHO grade IV). 3.0T, including a T 1 -weighted contrast-enhanced (T 1 w-CE) sequence, contrast-enhanced T 2 -flair sequence, and a DWI sequence. T 1 w-CE images and contrast-enhanced T 2 -flair images were used for identifying the tumor region for enhancing and nonenhancing gliomas, respectively. The glioma infiltration sign was defined as the presence of a peritumoral abnormal high signal region on DWI map, which was adjacent to the tumor region and had higher signal than surrounding areas. This sign was assessed on a high b-value DWI map with b = 3000 s/mm 2 . For patients with glioma infiltration sign, DWI3000 max , DWI1000 max , ADC3000 min , and ADC1000 min were measured by drawing a region of interest over the peritumoral abnormal high signal region. Survival analysis was conducted by using Cox regression. Glioma infiltration sign was observed in 28 (53.8%) patients. The occurrence rate of this sign was 92.0% in grade IV gliomas, 30.8% in grade III gliomas, and 7.1% in grade II gliomas. The glioma infiltration sign could independently predict both the progression-free survival (hazard ratio [HR], 95% confidence interval [CI] = 8.58 [3.19-23.03], P < 0.001) and overall survival (HR, 95% CI = 11.90 [3.41-41.55], P < 0.001) after adjustment. For patients with glioma infiltration sign, DWI3000 max (P = 0.005) and ADC3000 min (P = 0.008) were both independent predictors of overall survival after adjustment, while DWI1000 max and ADC1000 min were not. The glioma infiltration sign on high b-value DWI is an independent predictor of poor prognosis in glioma patients. High b-value DWI might be a

  12. Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging.

    PubMed

    Zhang, Liang; Habib, Amyn A; Zhao, Dawen

    2016-06-21

    Phosphatidylserine (PS), which is normally intracellular, becomes exposed on the outer surface of viable endothelial cells (ECs) of tumor vasculature. Utilizing a PS-targeting antibody, we have recently established a PS-targeted liposomal (PS-L) nanoplatform that has demonstrated to be highly tumor-selective. Because of the vascular lumen-exposed PS that is immediately accessible without a need to penetrate the intact blood brain barrier (BBB), we hypothesize that the systemically administered PS-L binds specifically to tumor vascular ECs, becomes subsequently internalized into the cells and then enables its cargos to be efficiently delivered to glioma parenchyma. To test this, we exploited the dual MRI/optical imaging contrast agents-loaded PS-L and injected it intravenously into mice bearing intracranial U87 glioma. At 24 h, both in vivo optical imaging and MRI depicted enhanced tumor contrast, distinct from the surrounding normal brain. Intriguingly, longitudinal MRI revealed temporal and spatial intratumoral distribution of the PS-L by following MRI contrast changes, which appeared punctate in tumor periphery at an earlier time point (4 h), but became clustering and disseminated throughout the tumor at 24 h post injection. Importantly, glioma-targeting specificity of the PS-L was antigen specific, since a control probe of irrelevant specificity showed minimal accumulation in the glioma. Together, these results indicate that the PS-L nanoplatform enables the enhanced, glioma-targeted delivery of imaging contrast agents by crossing the tumor BBB efficiently, which may also serve as a useful nanoplatform for anti-glioma drugs.

  13. Amide Proton Transfer Imaging Allows Detection of Glioma Grades and Tumor Proliferation: Comparison with Ki-67 Expression and Proton MR Spectroscopy Imaging.

    PubMed

    Su, C; Liu, C; Zhao, L; Jiang, J; Zhang, J; Li, S; Zhu, W; Wang, J

    2017-09-01

    Prognosis in glioma depends strongly on tumor grade and proliferation. In this prospective study of patients with untreated primary cerebral gliomas, we investigated whether amide proton transfer-weighted imaging could reveal tumor proliferation and reliably distinguish low-grade from high-grade gliomas compared with Ki-67 expression and proton MR spectroscopy imaging. This study included 42 patients with low-grade ( n = 28) or high-grade ( n = 14) glioma, all of whom underwent conventional MR imaging, proton MR spectroscopy imaging, and amide proton transfer-weighted imaging on the same 3T scanner within 2 weeks before surgery. We assessed metabolites of choline and N -acetylaspartate from proton MR spectroscopy imaging and the asymmetric magnetization transfer ratio at 3.5 ppm from amide proton transfer-weighted imaging and compared them with histopathologic grade and immunohistochemical expression of the proliferation marker Ki-67 in the resected specimens. The asymmetric magnetization transfer ratio at 3.5 ppm values measured by different readers showed good concordance and were significantly higher in high-grade gliomas than in low-grade gliomas (3.61% ± 0.155 versus 2.64% ± 0.185, P = .0016), with sensitivity and specificity values of 92.9% and 71.4%, respectively, at a cutoff value of 2.93%. The asymmetric magnetization transfer ratio at 3.5 ppm values correlated with tumor grade ( r = 0.506, P = .0006) and Ki-67 labeling index ( r = 0.502, P = .002). For all patients, the asymmetric magnetization transfer ratio at 3.5 ppm correlated positively with choline ( r = 0.43, P = .009) and choline/ N -acetylaspartate ratio ( r = 0.42, P = .01) and negatively with N -acetylaspartate ( r = -0.455, P = .005). These correlations held for patients with low-grade gliomas versus those with high-grade gliomas, but the correlation coefficients were higher in high-grade gliomas (choline: r = 0.547, P = .053; N -acetylaspartate: r = -0.644, P = .017; choline/ N

  14. An adjoint-based method for a linear mechanically-coupled tumor model: application to estimate the spatial variation of murine glioma growth based on diffusion weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Feng, Xinzeng; Hormuth, David A.; Yankeelov, Thomas E.

    2018-06-01

    We present an efficient numerical method to quantify the spatial variation of glioma growth based on subject-specific medical images using a mechanically-coupled tumor model. The method is illustrated in a murine model of glioma in which we consider the tumor as a growing elastic mass that continuously deforms the surrounding healthy-appearing brain tissue. As an inverse parameter identification problem, we quantify the volumetric growth of glioma and the growth component of deformation by fitting the model predicted cell density to the cell density estimated using the diffusion-weighted magnetic resonance imaging data. Numerically, we developed an adjoint-based approach to solve the optimization problem. Results on a set of experimentally measured, in vivo rat glioma data indicate good agreement between the fitted and measured tumor area and suggest a wide variation of in-plane glioma growth with the growth-induced Jacobian ranging from 1.0 to 6.0.

  15. Effects of the nitric oxide donor JS-K on the blood-tumor barrier and on orthotopic U87 rat gliomas assessed by MRI

    PubMed Central

    Weidensteiner, Claudia; Reichardt, Wilfried; Shami, Paul J.; Saavedra, Joseph E.; Keefer, Larry K.; Baumer, Brunhilde; Werres, Anna; Jasinski, Robert; Osterberg, Nadja; Weyerbrock, Astrid

    2013-01-01

    Nitric oxide (NO) released from NO donors can be cytotoxic in tumor cells and can enhance the transport of drugs into brain tumors by altering blood-tumor barrier permeability. The NO donor JS-K [O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] releases NO upon enzymatic activation selectively in cells overexpressing glutathione-S-transferases (GSTs) such as gliomas. Thus, JS-K-dependent NO effects - especially on cell viability and vascular permeability - were investigated in U87 glioma cells in vitro and in an orthotopic U87 xenograft model in vivo by magnetic resonance imaging (MRI). In vitro experiments showed dose-dependent antiproliferative and cytotoxic effects in U87 cells. In addition, treatment of U87 cells with JS-K resulted in a dose-dependent activation of soluble guanylate cyclase and intracellular accumulation of cyclic guanosine monophosphate (cGMP) which was irreversibly inhibited by the selective inhibitor of soluble guanylate cyclase ODQ (1H-[1,2,4]oxadiazolo(4,3a)quinoxaline-1-one). Using dynamic contrast enhanced MRI (DCE-MRI) as a minimally invasive technique, we demonstrated for the first time a significant increase in the DCE-MRI read-out initial area under the concentration curve (iAUC60) indicating an acute increase in blood-tumor barrier permeability after i.v. treatment with JS-K. Repeated MR imaging of animals with intracranial U87 gliomas under treatment with JS-K (3.5 μmol/kg JS-K 3×/week) and of untreated controls on day 12 and 19 after tumor inoculation revealed no significant changes in tumor growth, edema formation or tumor perfusion. Immunohistochemical workup of the brains showed a significant antiproliferative effect of JS-K in the gliomas. Taken together, in vitro and in vivo data suggest that JS-K has antiproliferative effects in U87 gliomas and opens the blood-tumor barrier by activation of the NO/cGMP signaling pathway. This might be a novel approach to facilitate entry of therapeutic

  16. Effects of the nitric oxide donor JS-K on the blood-tumor barrier and on orthotopic U87 rat gliomas assessed by MRI.

    PubMed

    Weidensteiner, Claudia; Reichardt, Wilfried; Shami, Paul J; Saavedra, Joseph E; Keefer, Larry K; Baumer, Brunhilde; Werres, Anna; Jasinski, Robert; Osterberg, Nadja; Weyerbrock, Astrid

    2013-04-01

    Nitric oxide (NO) released from NO donors can be cytotoxic in tumor cells and can enhance the transport of drugs into brain tumors by altering blood-tumor barrier permeability. The NO donor JS-K [O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] releases NO upon enzymatic activation selectively in cells overexpressing glutathione-S-transferases (GSTs) such as gliomas. Thus, JS-K-dependent NO effects - especially on cell viability and vascular permeability - were investigated in U87 glioma cells in vitro and in an orthotopic U87 xenograft model in vivo by magnetic resonance imaging (MRI). In vitro experiments showed dose-dependent antiproliferative and cytotoxic effects in U87 cells. In addition, treatment of U87 cells with JS-K resulted in a dose-dependent activation of soluble guanylate cyclase and intracellular accumulation of cyclic guanosine monophosphate (cGMP) which was irreversibly inhibited by the selective inhibitor of soluble guanylate cyclase ODQ (1H-[1,2,4]oxadiazolo(4,3a)quinoxaline-1-one). Using dynamic contrast enhanced MRI (DCE-MRI) as a minimally invasive technique, we demonstrated for the first time a significant increase in the DCE-MRI read-out initial area under the concentration curve (iAUC60) indicating an acute increase in blood-tumor barrier permeability after i.v. treatment with JS-K. Repeated MR imaging of animals with intracranial U87 gliomas under treatment with JS-K (3.5 μmol/kg JS-K 3×/week) and of untreated controls on day 12 and 19 after tumor inoculation revealed no significant changes in tumor growth, edema formation or tumor perfusion. Immunohistochemical workup of the brains showed a significant antiproliferative effect of JS-K in the gliomas. Taken together, in vitro and in vivo data suggest that JS-K has antiproliferative effects in U87 gliomas and opens the blood-tumor barrier by activation of the NO/cGMP signaling pathway. This might be a novel approach to facilitate entry of therapeutic

  17. Glioma epidemiology in the central Tunisian population: 1993-2012.

    PubMed

    Trabelsi, Saoussen; Brahim, Dorra H'mida-Ben; Ladib, Mohamed; Mama, Nadia; Harrabi, Imed; Tlili, Kalthoum; Yacoubi, Mohamed Tahar; Krifa, Hedi; Hmissa, Sihem; Saad, Ali; Mokni, Moncef

    2014-01-01

    Glioma is a heterogeneous central nervous system (CNS) tumor group that encompasses different histological subtypes with high variability in prognosis. The lesions account for almost 80% of primary malignant brain tumors. The aim of this study is to extend our understanding of the glioma epidemiology in the central Tunisian region. We analyzed 393 gliomas recorded in cancer registry of central Tunisia from 1993 to 2012. Crude incidence rates (CR) and world age-standardized rates (ASR) were estimated using annual population data size and age structure. Statistic correlations were established using Chi-square and Kaplan-Meier test. Tunisian glioma patients were identified with a mean age at diagnosis of 48 years and 1.5 sex ratio (male/female). During the 19 years period of study the highest incidence value was observed in male group between 1998 and 2002 (CR: 0.28, ASR: 0.3). Incidence results underline increasing high grade glioma occurring in the adulthood in the last period (2007-2012). Median survival was 27 months, with 1-, 2- and 5-year survival rates of 42%, 30% and 26%, respectively. Survival was greater in patients with younger age, lower tumor grade, infratentrial tumor location and undergoing a palliative treatment. This central Tunisia gliomas registry study provides important information that could improve glioma management and healthcare practice.

  18. Metabolic Reprogramming in Glioma

    PubMed Central

    Strickland, Marie; Stoll, Elizabeth A.

    2017-01-01

    Many cancers have long been thought to primarily metabolize glucose for energy production—a phenomenon known as the Warburg Effect, after the classic studies of Otto Warburg in the early twentieth century. Yet cancer cells also utilize other substrates, such as amino acids and fatty acids, to produce raw materials for cellular maintenance and energetic currency to accomplish cellular tasks. The contribution of these substrates is increasingly appreciated in the context of glioma, the most common form of malignant brain tumor. Multiple catabolic pathways are used for energy production within glioma cells, and are linked in many ways to anabolic pathways supporting cellular function. For example: glycolysis both supports energy production and provides carbon skeletons for the synthesis of nucleic acids; meanwhile fatty acids are used both as energetic substrates and as raw materials for lipid membranes. Furthermore, bio-energetic pathways are connected to pro-oncogenic signaling within glioma cells. For example: AMPK signaling links catabolism with cell cycle progression; mTOR signaling contributes to metabolic flexibility and cancer cell survival; the electron transport chain produces ATP and reactive oxygen species (ROS) which act as signaling molecules; Hypoxia Inducible Factors (HIFs) mediate interactions with cells and vasculature within the tumor environment. Mutations in the tumor suppressor p53, and the tricarboxylic acid cycle enzymes Isocitrate Dehydrogenase 1 and 2 have been implicated in oncogenic signaling as well as establishing metabolic phenotypes in genetically-defined subsets of malignant glioma. These pathways critically contribute to tumor biology. The aim of this review is two-fold. Firstly, we present the current state of knowledge regarding the metabolic strategies employed by malignant glioma cells, including aerobic glycolysis; the pentose phosphate pathway; one-carbon metabolism; the tricarboxylic acid cycle, which is central to amino acid

  19. Comparative expression analysis reveals lineage relationships between human and murine gliomas and a dominance of glial signatures during tumor propagation in vitro.

    PubMed

    Henriquez, Nico V; Forshew, Tim; Tatevossian, Ruth; Ellis, Matthew; Richard-Loendt, Angela; Rogers, Hazel; Jacques, Thomas S; Reitboeck, Pablo Garcia; Pearce, Kerra; Sheer, Denise; Grundy, Richard G; Brandner, Sebastian

    2013-09-15

    Brain tumors are thought to originate from stem/progenitor cell populations that acquire specific genetic mutations. Although current preclinical models have relevance to human pathogenesis, most do not recapitulate the histogenesis of the human disease. Recently, a large series of human gliomas and medulloblastomas were analyzed for genetic signatures of prognosis and therapeutic response. Using a mouse model system that generates three distinct types of intrinsic brain tumors, we correlated RNA and protein expression levels with human brain tumors. A combination of genetic mutations and cellular environment during tumor propagation defined the incidence and phenotype of intrinsic murine tumors. Importantly, in vitro passage of cancer stem cells uniformly promoted a glial expression profile in culture and in brain tumors. Gene expression profiling revealed that experimental gliomas corresponded to distinct subclasses of human glioblastoma, whereas experimental supratentorial primitive neuroectodermal tumors (sPNET) correspond to atypical teratoid/rhabdoid tumor (AT/RT), a rare childhood tumor. ©2013 AACR.

  20. Regulation of cAMP and GSK3 signaling pathways contributes to the neuronal conversion of glioma

    PubMed Central

    Kim, Yongbo; Che, Lihua; Kim, Jeong Beom; Chang, Gyeong Eon; Cheong, Eunji; Kang, Seok-Gu; Ha, Yoon

    2017-01-01

    Glioma is the most malignant type of primary central nervous system tumors, and has an extremely poor prognosis. One potential therapeutic approach is to induce the terminal differentiation of glioma through the forced expression of pro-neural factors. Our goal is to show the proof of concept of the neuronal conversion of C6 glioma through the combined action of small molecules. We investigated the various changes in gene expression, cell-specific marker expression, signaling pathways, physiological characteristics, and morphology in glioma after combination treatment with two small molecules (CHIR99021, a glycogen synthase kinase 3 [GSK3] inhibitor and forskolin, a cyclic adenosine monophosphate [cAMP] activator). Here, we show that the combined action of CHIR99021 and forskolin converted malignant glioma into fully differentiated neurons with no malignant characteristics; inhibited the proliferation of malignant glioma; and significantly down-regulated gene ontology and gene expression profiles related to cell division, gliogenesis, and angiogenesis in small molecule–induced neurons. In vivo, the combined action of CHIR99021 and forskolin markedly delayed neurological deficits and significantly reduced the tumor volume. We suggest that reprogramming technology may be a potential treatment strategy replacing the therapeutic paradigm of traditional treatment of malignant glioma, and a combination molecule comprising a GSK3 inhibitor and a cAMP inducer could be the next generation of anticancer drugs. PMID:29161257

  1. The molecular profile of microglia under the influence of glioma

    PubMed Central

    Li, Wei; Graeber, Manuel B.

    2012-01-01

    Microglia, which contribute substantially to the tumor mass of glioblastoma, have been shown to play an important role in glioma growth and invasion. While a large number of experimental studies on functional attributes of microglia in glioma provide evidence for their tumor-supporting roles, there also exist hints in support of their anti-tumor properties. Microglial activities during glioma progression seem multifaceted. They have been attributed to the receptors expressed on the microglia surface, to glioma-derived molecules that have an effect on microglia, and to the molecules released by microglia in response to their environment under glioma control, which can have autocrine effects. In this paper, the microglia and glioma literature is reviewed. We provide a synopsis of the molecular profile of microglia under the influence of glioma in order to help establish a rational basis for their potential therapeutic use. The ability of microglia precursors to cross the blood–brain barrier makes them an attractive target for the development of novel cell-based treatments of malignant glioma. PMID:22573310

  2. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells

    PubMed Central

    Li, Xue-tao; Tang, Wei; Jiang, Ying; Wang, Xiao-min; Wang, Yan-hong; Cheng, Lan; Meng, Xian-sheng

    2016-01-01

    Malignant brain glioma is the most lethal and aggressive type of cancer. Surgery and radiotherapy cannot eliminate all glioma stem cells (GSCs) and blood–brain barrier (BBB) restricts the movement of antitumor drugs from blood to brain, thus leading to the poor prognosis with high recurrence rate. In the present study, the targeting conjugates of cholesterol polyethylene glycol polyethylenimine (CHOL-PEG2000-PEI) and D-a-tocopheryl polyethylene glycol 1000 succinate vapreotide (TPGS1000-VAP) were newly synthesized for transporting drugs across the BBB and targeting glioma cells and GSCs. The multifunctional targeting vinorelbine plus tetrandrine liposomes were constructed by modifying the targeting conjugates. The studies were undertaken on BBB model, glioma cells, GSCs, and glioma-bearing mice. In vitro results showed that multifunctional targeting drugs-loaded liposomes with suitable physicochemical property could enhance the transport drugs across the BBB, increase the intracellular uptake, inhibit glioma cells and GSCs, penetrate and destruct the GSCs spheroids, and induce apoptosis via activating related apoptotic proteins. In vivo results demonstrated that multifunctional targeting drugs-loaded liposomes could significantly accumulate into brain tumor location, show the specificity to tumor sites, and result in a robust overall antitumor efficacy in glioma-bearing mice. These data suggested that the multifunctional targeting vinorelbine plus tetrandrine liposomes could offer a promising strategy for treating brain glioma. PMID:27029055

  3. Epstein–Barr Virus in Gliomas: Cause, Association, or Artifact?

    PubMed Central

    Akhtar, Saghir; Vranic, Semir; Cyprian, Farhan Sachal; Al Moustafa, Ala-Eddin

    2018-01-01

    Gliomas are the most common malignant brain tumors and account for around 60% of all primary central nervous system cancers. Glioblastoma multiforme (GBM) is a grade IV glioma associated with a poor outcome despite recent advances in chemotherapy. The etiology of gliomas is unknown, but neurotropic viruses including the Epstein–Barr virus (EBV) that is transmitted via salivary and genital fluids have been implicated recently. EBV is a member of the gamma herpes simplex family of DNA viruses that is known to cause infectious mononucleosis (glandular fever) and is strongly linked with the oncogenesis of several cancers, including B-cell lymphomas, nasopharyngeal, and gastric carcinomas. The fact that EBV is thought to be the causative agent for primary central nervous system (CNS) lymphomas in immune-deficient patients has led to its investigations in other brain tumors including gliomas. Here, we provide a review of the clinical literature pertaining to EBV in gliomas and discuss the possibilities of this virus being simply associative, causative, or even an experimental artifact. We searched the PubMed/MEDLINE databases using the following key words such as: glioma(s), glioblastoma multiforme, brain tumors/cancers, EBV, and neurotropic viruses. Our literature analysis indicates conflicting results on the presence and role of EBV in gliomas. Further comprehensive studies are needed to fully implicate EBV in gliomagenesis and oncomodulation. Understanding the role of EBV and other oncoviruses in the etiology of gliomas, would likely open up new avenues for the treatment and management of these, often fatal, CNS tumors. PMID:29732319

  4. ¹⁸F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas.

    PubMed

    Hirata, Kenji; Terasaka, Shunsuke; Shiga, Tohru; Hattori, Naoya; Magota, Keiichi; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Houkin, Kiyohiro; Tanaka, Shinya; Kuge, Yuji; Tamaki, Nagara

    2012-05-01

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that (18)F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas. This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and (18)F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated. Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p ≤ 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 ± 0.60, range 1.71-3.81) than in non-GBM patients (1.22 ± 0.06, range 1.09-1.29, p ≤ 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also higher in GBM

  5. Receptor-Mediated Drug Delivery Systems Targeting to Glioma

    PubMed Central

    Wang, Shanshan; Meng, Ying; Li, Chengyi; Qian, Min; Huang, Rongqin

    2015-01-01

    Glioma has been considered to be the most frequent primary tumor within the central nervous system (CNS). The complexity of glioma, especially the existence of the blood-brain barrier (BBB), makes the survival and prognosis of glioma remain poor even after a standard treatment based on surgery, radiotherapy, and chemotherapy. This provides a rationale for the development of some novel therapeutic strategies. Among them, receptor-mediated drug delivery is a specific pattern taking advantage of differential expression of receptors between tumors and normal tissues. The strategy can actively transport drugs, such as small molecular drugs, gene medicines, and therapeutic proteins to glioma while minimizing adverse reactions. This review will summarize recent progress on receptor-mediated drug delivery systems targeting to glioma, and conclude the challenges and prospects of receptor-mediated glioma-targeted therapy for future applications. PMID:28344260

  6. Long non-coding RNA DANCR facilitates glioma malignancy by sponging miR-33a-5p.

    PubMed

    Yang, J X; Sun, Y; Gao, L; Meng, Q; Yang, B Y

    2018-06-26

    Glioma is among the most fatal brain tumors characterized by a highly malignancy and rapid progression and early metastasis. Dysregulation of long non-coding RNA differentiation antagonizing non-protein coding RNA (LncRNA DANCR) is associated with the development, progression and metastasis of various cancers. In the present study, we investigated functional role of LncRNA DANCR in the malignancy of glioma. The results showed that LncRNA DANCR was increased in glioma tissues and cells compared with normal brain tissues and cells. DANCR expression was positively correlated with the malignancy and poor prognosis of glioma patients. DANCR contained a binding site of miR-33a-5p. miR-33a-5p was decreased in glioma tissues and cells compared with normal brain tissues and cells. Downregulation of miR-33a-5p was positively correlated with the malignancy and poor prognosis of glioma patients. In glioma tissues, the expression of DANCR was negatively correlated with the expression of miR-33a-5p. Downregulation of DANCR increased miR-33a-5p expression. miR-33a-5p mimic reduced the luciferase of DANCR-WT but not DANCR-MUT. DANCR pull-down showed the expression of miR-33a-5p. miR-33a-5p mimic enhanced knockdown of DANCR -induced inhibition of cell proliferation, migration, and EMT, and increase of apoptosis. Anti-miR-33a-5p reversed the effects of si- DANCR on cell malignancy. Knockdown of DANCR remarkably reduced the increase of tumor volumes in xenograft mouse models. In tumor tissues, knockdown of DANCR increased the expression of miR-33a-5p, reduced EMT and increased apoptosis. Our study provides novel insights in the functions of LncRNA DANCR-miR-33a-5p axis in tumorigenesis of glioma.

  7. Diagnostic Accuracy of Centrally Restricted Diffusion in the Differentiation of Treatment-Related Necrosis from Tumor Recurrence in High-Grade Gliomas.

    PubMed

    Zakhari, N; Taccone, M S; Torres, C; Chakraborty, S; Sinclair, J; Woulfe, J; Jansen, G H; Nguyen, T B

    2018-02-01

    Centrally restricted diffusion has been demonstrated in recurrent high-grade gliomas treated with bevacizumab. Our purpose was to assess the accuracy of centrally restricted diffusion in the diagnosis of radiation necrosis in high-grade gliomas not treated with bevacizumab. In this prospective study, we enrolled patients with high-grade gliomas who developed a new ring-enhancing necrotic lesion and who underwent re-resection. The presence of a centrally restricted diffusion within the ring-enhancing lesion was assessed visually on diffusion trace images and by ADC measurements on 3T preoperative diffusion tensor examination. The percentage of tumor recurrence and radiation necrosis in each surgical specimen was defined histopathologically. The association between centrally restricted diffusion and radiation necrosis was assessed using the Fisher exact test. Differences in ADC and the ADC ratio between the groups were assessed via the Mann-Whitney U test, and receiver operating characteristic curve analysis was performed. Seventeen patients had re-resected ring-enhancing lesions: 8 cases of radiation necrosis and 9 cases of tumor recurrence. There was significant association between centrally restricted diffusion by visual assessment and radiation necrosis ( P = .015) with a sensitivity of 75% and a specificity of 88.9%, a positive predictive value 85.7%, and a negative predictive value of 80% for the diagnosis of radiation necrosis. There was a statistically significant difference in the ADC and ADC ratio between radiation necrosis and tumor recurrence ( P = .027). The presence of centrally restricted diffusion in a new ring-enhancing lesion might indicate radiation necrosis rather than tumor recurrence in high-grade gliomas previously treated with standard chemoradiation without bevacizumab. © 2018 by American Journal of Neuroradiology.

  8. Synergistic inhibition of glioma cell proliferation by Withaferin A and tumor treating fields.

    PubMed

    Chang, Edwin; Pohling, Christoph; Beygui, Nooshin; Patel, Chirag B; Rosenberg, Jarrett; Ha, Dong Ho; Gambhir, Sanjiv S

    2017-09-01

    Glioblastoma (GBM) is the most aggressive and lethal form of brain cancer. Standard therapies are non-specific and often of limited effectiveness; thus, efforts are underway to uncover novel, unorthodox therapies against GBM. In previous studies, we investigated Withaferin A, a steroidal lactone from Ayurvedic medicine that inhibits proliferation in cancers including GBM. Another novel approach, tumor treating fields (TTFields), is thought to disrupt mitotic spindle formation and stymie proliferation of actively dividing cells. We hypothesized that combining TTFields with Withaferin A would synergistically inhibit proliferation in glioblastoma. Human glioblastoma cells (GBM2, GBM39, U87-MG) and human breast adenocarcinoma cells (MDA-MB-231) were isolated from primary tumors. The glioma cell lines were genetically engineered to express firefly luciferase. Proliferative potential was assessed either by bioluminescence imaging or cell counting via hemocytometer. TTFields (4 V/cm) significantly inhibited growth of the four cancer cell lines tested (n = 3 experiments per time point, four measurements per sample, p < 0.02 at least; 2-way ANOVA, control vs. treatment). The combination of Withaferin A (10-100 nM) with TTFields significantly inhibited the growth of the glioma cells to a degree beyond that of Withaferin A or TTFields alone. The interaction of the Withaferin A and TTFields on glioma cells was found to be synergistic in nature (p < 0.01, n = 3 experiments). These findings were validated by both bioluminescence and hemocytometric measurements. The combination of Withaferin A with TTFields represents a novel approach to treat GBM in a manner that is likely better than either treatment alone and that is synergistic.

  9. Brainstem angiocentric glioma: report of 2 cases.

    PubMed

    Weaver, Kristin J; Crawford, Lexi M; Bennett, Jeffrey A; Rivera-Zengotita, Marie L; Pincus, David W

    2017-10-01

    Angiocentric glioma is a rare tumor that was recognized by the WHO Classification of Tumours of the Central Nervous System as a distinct clinicopathological entity in 2007. Since this initial description, the vast majority of cases of angiocentric glioma reported in the literature have involved tumors of the cerebral hemispheres. To date, only 1 case of angiocentric glioma arising from the posterior midbrain has been reported. The authors present the cases of 2 pediatric patients who were found to have brainstem angiocentric gliomas. The clinical course, radiological and pathological features, treatment, and follow-up are described. The first case is one of a 5-year-old girl who presented with double vision, headache, and nausea and was found to have a midbrain lesion with pathological features consistent with angiocentric glioma. She was treated with resection and endoscopic third ventriculostomy (ETV), followed by close observation and serial neuroimaging. The second case is one of a 6-year-old boy who presented with progressive mouth drooping and problems with balance. He was found to have a pontine lesion with pathological features consistent with angiocentric glioma. This patient was treated with ETV, followed by close observation and serial neuroimaging. This report includes 6 and 1.5 years of follow-up of the patients, respectively. While there are limited data regarding the prognosis or long-term management of patients with brainstem angiocentric gliomas, the cases described in this report suggest an indolent course for this tumor, similar to the course of angiocentric gliomas located in the cerebral hemispheres.

  10. Whole-Tumor Histogram and Texture Analyses of DTI for Evaluation of IDH1-Mutation and 1p/19q-Codeletion Status in World Health Organization Grade II Gliomas.

    PubMed

    Park, Y W; Han, K; Ahn, S S; Choi, Y S; Chang, J H; Kim, S H; Kang, S-G; Kim, E H; Lee, S-K

    2018-04-01

    Prediction of the isocitrate dehydrogenase 1 (IDH1)-mutation and 1p/19q-codeletion status of World Health Organization grade ll gliomas preoperatively may assist in predicting prognosis and planning treatment strategies. Our aim was to characterize the histogram and texture analyses of apparent diffusion coefficient and fractional anisotropy maps to determine IDH1 -mutation and 1p/19q-codeletion status in World Health Organization grade II gliomas. Ninety-three patients with World Health Organization grade II gliomas with known IDH1- mutation and 1p/19q-codeletion status (18 IDH1 wild-type, 45 IDH1 mutant and no 1p/19q codeletion, 30 IDH1- mutant and 1p/19q codeleted tumors) underwent DTI. ROIs were drawn on every section of the T2-weighted images and transferred to the ADC and the fractional anisotropy maps to derive volume-based data of the entire tumor. Histogram and texture analyses were correlated with the IDH1 -mutation and 1p/19q-codeletion status. The predictive powers of imaging features for IDH1 wild-type tumors and 1p/19q-codeletion status in IDH1 -mutant subgroups were evaluated using the least absolute shrinkage and selection operator. Various histogram and texture parameters differed significantly according to IDH1 -mutation and 1p/19q-codeletion status. The skewness and energy of ADC, 10th and 25th percentiles, and correlation of fractional anisotropy were independent predictors of an IDH1 wild-type in the least absolute shrinkage and selection operator. The area under the receiver operating curve for the prediction model was 0.853. The skewness and cluster shade of ADC, energy, and correlation of fractional anisotropy were independent predictors of a 1p/19q codeletion in IDH1 -mutant tumors in the least absolute shrinkage and selection operator. The area under the receiver operating curve was 0.807. Whole-tumor histogram and texture features of the ADC and fractional anisotropy maps are useful for predicting the IDH1 -mutation and 1p/19q

  11. S100B promotes glioma growth through chemoattraction of myeloid-derived macrophages.

    PubMed

    Wang, Huaqing; Zhang, Leying; Zhang, Ian Y; Chen, Xuebo; Da Fonseca, Anna; Wu, Shihua; Ren, Hui; Badie, Sam; Sadeghi, Sam; Ouyang, Mao; Warden, Charles D; Badie, Behnam

    2013-07-15

    S100B is member of a multigenic family of Ca(2+)-binding proteins, which is overexpressed by gliomas. Recently, we showed that low concentrations of S100B attenuated microglia activation through the induction of Stat3. We hypothesized that overexpression of S100B in gliomas could promote tumor growth by modulating the activity of tumor-associated macrophages (TAM). We stably transfected GL261 glioma cell lines with constructs that overexpressed (S100B(high)) or underexpressed (S100B(low)) S100B and compared their growth characteristics to intracranial wild-type (S100B(wt)) tumors. Downregulation of S100B in gliomas had no impact on cell division in vitro but abrogated tumor growth in vivo. Interestingly, compared to S100B(low) tumors, S100B(wt) and S100B(high) intracranial gliomas exhibited higher infiltration of TAMs, stronger inflammatory cytokine expression, and increased vascularity. To identify the potential mechanisms involved, the expression of the S100B receptor, receptor for advanced glycation end products (RAGE), was evaluated in gliomas. Although S100B expression induced RAGE in vivo, RAGE ablation in mice did not significantly inhibit TAM infiltration into gliomas, suggesting that other pathways were involved in this process. To evaluate other mechanisms responsible for TAM chemoattraction, we then examined chemokine pathways and found that C-C motif ligand 2 (CCL2) was upregulated in S100B(high) tumors. Furthermore, analysis of The Cancer Genome Atlas's glioma data bank showed a positive correlation between S100B and CCL2 expression in human proneural and neural glioma subtypes, supporting our finding. These observations suggest that S100B promotes glioma growth by TAM chemoattraction through upregulation of CCL2 and introduces the potential utility of S100B inhibitors for glioma therapy.

  12. S100B Promotes Glioma Growth through Chemoattraction of Myeloid-Derived Macrophages

    PubMed Central

    Wang, Huaqing; Zhang, Leying; Zhang, Ian Y.; Chen, Xuebo; Da Fonseca, Anna; Wu, Shihua; Ren, Hui; Badie, Sam; Sadeghi, Sam; Ouyang, Mao; Warden, Charles D.; Badie, Behnam

    2013-01-01

    Purpose S100B is member of a multigenic family of Ca2+-binding proteins that is overexpressed by gliomas. Recently, we demonstrated that low concentrations of S100B attenuated microglia activation through the induction of Stat3. We hypothesized that overexpression of S100B in gliomas could promote tumor growth by modulating the activity of tumor-associated macrophages (TAMs). Experimental Design We stably transfected GL261 glioma cell lines with constructs that overexpressed (S100Bhigh) or underexpressed (S100Blow) S100B and compared their growth characteristics to intracranial wild-type (S100Bwt) tumors. Results Downregulation of S100B in gliomas had no impact on cell division in vitro but abrogated tumor growth in vivo. Interestingly, compared to S100Blow tumors, S100Bwt and S100Bhigh intracranial gliomas exhibited higher infiltration of TAMs, stronger inflammatory cytokine expression, and increased vascularity. To identify the potential mechanisms involved, the expression of the S100B receptor, RAGE (receptor for advanced glycation end products), was evaluated in gliomas. Although S100B expression induced RAGE in vivo, RAGE ablation in mice did not significantly inhibit TAM infiltration into gliomas, suggesting that other pathways were involved in this process. To evaluate other mechanisms responsible for TAM chemoattraction, we then examined chemokine pathways and found that CCL2 was upregulated in S100Bhigh tumors. Furthermore, analysis of TCGA’s glioma data bank demonstrated a positive correlation between S100B and CCL2 expression in human proneural and neural glioma subtypes, supporting our finding. Conclusions These observations suggest that S100B promotes glioma growth by TAM chemoattraction through upregulation of CCL2 and introduces the potential utility of S100B inhibitors for glioma therapy. PMID:23719262

  13. Handedness and the risk of glioma.

    PubMed

    Miller, Briana; Peeri, Noah C; Nabors, Louis Burt; Creed, Jordan H; Thompson, Zachary J; Rozmeski, Carrie M; LaRocca, Renato V; Chowdhary, Sajeel; Olson, Jeffrey J; Thompson, Reid C; Egan, Kathleen M

    2018-05-01

    Gliomas are the most common type of malignant primary brain tumor and few risk factors have been linked to their development. Handedness has been associated with several pathologic neurological conditions such as schizophrenia, autism, and epilepsy, but few studies have evaluated a connection between handedness and risk of glioma. In this study, we examined the relationship between handedness and glioma risk in a large case-control study (1849 glioma cases and 1354 healthy controls) and a prospective cohort study (326,475 subjects with 375 incident gliomas). In the case-control study, we found a significant inverse association between left handedness and glioma risk, with left-handed persons exhibiting a 35% reduction in the risk of developing glioma [odds ratio (OR) = 0.65, 95% confidence interval (CI) 0.51-0.83] after adjustment for age, gender, race, education, and state of residence; similar inverse associations were observed for GBM (OR = 0.69, 95% CI 0.52-0.91), and non-GBM (OR = 0.59, 95% CI 0.42-0.82) subgroups. The association was consistent in both males and females, and across age strata, and was observed in both glioblastoma and in lower grade tumors. In the prospective cohort study, we found no association between handedness and glioma risk (hazards ratio = 0.92, 95% CI 0.67-1.28) adjusting for age, gender, and race. Further studies on this association may help to elucidate mechanisms of pathogenesis in glioma.

  14. 18F-FDOPA PET/CT or PET/MRI in Measuring Tumors in Patients With Newly-Diagnosed or Recurrent Gliomas

    ClinicalTrials.gov

    2017-01-30

    Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Oligoastrocytoma; Recurrent Childhood Oligodendroglioma; Recurrent Childhood Pilomyxoid Astrocytoma; Recurrent Childhood Protoplasmic Astrocytoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Anaplastic Oligoastrocytoma; Untreated Childhood Anaplastic Oligodendroglioma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Cerebellar Astrocytoma; Untreated Childhood Cerebral Astrocytoma; Untreated Childhood Diffuse Astrocytoma; Untreated Childhood Fibrillary Astrocytoma; Untreated Childhood Gemistocytic Astrocytoma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliomatosis Cerebri; Untreated Childhood Gliosarcoma; Untreated Childhood

  15. Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model.

    PubMed

    Huhndorf, Monika; Moussavi, Amir; Kramann, Nadine; Will, Olga; Hattermann, Kirsten; Stadelmann, Christine; Jansen, Olav; Boretius, Susann

    2016-01-01

    Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement) were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology. Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.

  16. Setting the Stage for Personalized Treatment of Glioma | Center for Cancer Research

    Cancer.gov

    Gliomas, the most common type of primary brain tumors in adults, arise from different types of glial cells, which support and protect the neurons of the central nervous system. How a patient’s glioma is treated depends in part on the type of glial cell from which the tumor developed. Classification of gliomas has traditionally been done by microscopic analysis of tumor

  17. Immunotherapy Approaches for Malignant Glioma From 2007 to 2009

    PubMed Central

    Sampson, John H.

    2012-01-01

    Malignant glioma is a deadly disease for which there have been few therapeutic advances over the past century. Although previous treatments were largely unsuccessful, glioma may be an ideal target for immune-based therapy. Recently, translational research led to several clinical trials based on tumor immunotherapy to treat patients with malignant glioma. Here we review 17 recent glioma immunotherapy clinical trials, published over the past 3 years. Various approaches were used, including passive transfer of naked and radiolabeled antibodies, tumor antigen-specific peptide immunization, and the use of patient tumor cells with or without dendritic cells as vaccines. We compare and discuss the current state of the art of clinical immunotherapy treatment, as well as its limited successes, pitfalls, and future potential. PMID:20424975

  18. 14-3-3β exerts glioma-promoting effects and is associated with malignant progression and poor prognosis in patients with glioma.

    PubMed

    Liu, Liang; Liu, Zhixiong; Wang, Hao; Chen, Long; Ruan, Fuqiang; Zhang, Jihui; Hu, Yi; Luo, Hengshan; Wen, Shuai

    2018-03-01

    Glioma is a type of tumor that affects the central nervous system. It has been demonstrated that 14-3-3β, a protein that is mainly concentrated in the brain, serves an important role in tumor regulation. However, the mechanism of action of 14-3-3β that underlies the pathogenesis of glioma remains to be elucidated. In the present study, 14-3-3β was silenced by RNA interference in the human glioma cell line U373-MG. Following knockdown of 14-3-3β, the proliferation, colony formation, cell cycle progression, migration and invasion of U373-MG cells were significantly decreased (P<0.01), whereas cell apoptosis was increased (P<0.01). Furthermore, in a tumor xenograft experiment, silencing 14-3-3β significantly inhibited the in vivo tumor growth of U373-MG cells (P<0.01). The results demonstrated that 14-3-3β levels were significantly higher in human glioma tissues compared with normal brain tissues (P<0.01) and high 14-3-3β expression was significantly associated with advanced pathological grade (P<0.03) and low Karnofsky performance scale (P<0.003). Patients with glioma who had high 14-3-3β levels had a significantly shorter survival time compared with those with low expression of 14-3-3β (P=0.031), suggesting that 14-3-3β may be an effective predictor of the prognosis of patients with glioma. The results of the present study indicate that 14-3-3β serves an oncogenic role in glioma, suggesting that 14-3-3β may have potential as a promising therapeutic target for glioma.

  19. Proteomics of gliomas: Initial biomarker discovery and evolution of technology

    PubMed Central

    Kalinina, Juliya; Peng, Junmin; Ritchie, James C.; Van Meir, Erwin G.

    2011-01-01

    Gliomas are a group of aggressive brain tumors that diffusely infiltrate adjacent brain tissues, rendering them largely incurable, even with multiple treatment modalities and agents. Mostly asymptomatic at early stages, they present in several subtypes with astrocytic or oligodendrocytic features and invariably progress to malignant forms. Gliomas are difficult to classify precisely because of interobserver variability during histopathologic grading. Identifying biological signatures of each glioma subtype through protein biomarker profiling of tumor or tumor-proximal fluids is therefore of high priority. Such profiling not only may provide clues regarding tumor classification but may identify clinical biomarkers and pathologic targets for the development of personalized treatments. In the past decade, differential proteomic profiling techniques have utilized tumor, cerebrospinal fluid, and plasma from glioma patients to identify the first candidate diagnostic, prognostic, predictive, and therapeutic response markers, highlighting the potential for glioma biomarker discovery. The number of markers identified, however, has been limited, their reproducibility between studies is unclear, and none have been validated for clinical use. Recent technological advancements in methodologies for high-throughput profiling, which provide easy access, rapid screening, low sample consumption, and accurate protein identification, are anticipated to accelerate brain tumor biomarker discovery. Reliable tools for biomarker verification forecast translation of the biomarkers into clinical diagnostics in the foreseeable future. Herein we update the reader on the recent trends and directions in glioma proteomics, including key findings and established and emerging technologies for analysis, together with challenges we are still facing in identifying and verifying potential glioma biomarkers. PMID:21852429

  20. Extent of Resection in Glioma-A Review of the Cutting Edge.

    PubMed

    D'Amico, Randy S; Englander, Zachary K; Canoll, Peter; Bruce, Jeffrey N

    2017-07-01

    Modern glioma surgery has evolved from the principal belief that safe, maximal tumor resection improves symptom management, quality of life, progression-free survival, and overall survival in both low-grade and high-grade glioma. However, in the absence of level I data, the overwhelming support for this idea is derived largely from retrospective series. As a result, the influence of increasing extent of resection and reducing tumor burden on the efficacy of postoperative chemotherapy and radiotherapy, and survival, remains inadequately defined. This situation is particularly true because gliomas represent a widely heterogeneous group of tumors with varying behaviors and prognoses rooted in their complex molecular profile. The neurosurgical community has made a large effort to define the clinical benefits of maximizing tumor resection, with particular attention paid to the ever-evolving understanding of glioma molecular heterogeneity. Important new technologies have been developed concurrently to mitigate neurologic risks related to the pursuit of maximizing extent of resection. These advances reflect the modern goal of glioma surgery to find the optimal balance between tumor removal and neurologic compromise. We review the current literature supporting safe, maximal resection for gliomas. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pc 4 photodynamic therapy of U87 (human glioma) orthotopic tumor in nude rat brain

    NASA Astrophysics Data System (ADS)

    Dean, David; George, John E., III; Ahmad, Yusra; Wolfe, Michael S.; Lilge, Lothar; Morris, Rachel L.; Peterson, Allyn; Lust, W. D.; Totonchi, Ali; Varghai, Davood; Li, Xiaolin; Hoppel, Charles L.; Sun, Jiayang; Oleinick, Nancy L.

    2005-04-01

    Introduction: Photodynamic therapy (PDT) for Barrett"s esophagus, advanced esophageal cancer, and both early and late inoperable lung carcinoma is now FDA-approved using the first generation photosensitizer PhotofrinTM (Axcan Pharma, Birmingham, AL). Photofrin-mediated PDT of glioma is now in Phase III clinical trials. A variety of second generation photosensitizers have been developed to provide improved: (1) specificity for the target tissue, (2) tumoricidal capability, and (3) rapid clearance the vascular compartment, skin, and eyes. The phthalocyanine Pc 4 is a second generation photosensitizer that is in early phase I clinical trials for skin cancer. We have undertaken a preclinical study that seeks to determine if Pc 4-mediated PDT can be of benefit for the intra-operative localization and treatment of glioma. Methods: Using a stereotactic frame, 250,000 U87 cells were injected via Hamilton syringe through a craniotomy, and the dura, 1-2 mm below the cortical surface of nude (athymic) rat brains (N=91). The craniotomy was filled with a piece of surgical PVC and the scalp closed. After two weeks of tumor growth, the animals received 0.5 mg/kg Pc 4 via tail vein injection. One day later the scalp was re-incised, and the PVC removed. The tumor was then illuminated with either 5 or 30 Joule/cm2 of 672-nm light from a diode laser at 50 mW/cm2. The animals were sacrificed one day later and the brain was cold-perfused with formaldehyde. Two thirds of the explanted brains are now being histologically surveyed for necrosis after staining with hematoxylin and eosin and for apoptosis via immunohistochemistry (i.e., TUNEL assay). The other third were analyzed by HPLC-mass spectrometry for the presence of drug in tumor, normal brain, and plasma at sacrifice. Initial histological results show PDT-induced apoptosis and necrosis confined to the growing (live) portion of the tumor. Preliminary analysis shows an average selectivity of Pc 4 uptake in the bulk tumor to be 3

  2. Liposome-based glioma targeted drug delivery enabled by stable peptide ligands.

    PubMed

    Wei, Xiaoli; Gao, Jie; Zhan, Changyou; Xie, Cao; Chai, Zhilan; Ran, Danni; Ying, Man; Zheng, Ping; Lu, Weiyue

    2015-11-28

    The treatment of glioma is one of the most challenging tasks in clinic. As an intracranial tumor, glioma exhibits many distinctive characteristics from other tumors. In particular, various barriers including enzymatic barriers in the blood and brain capillary endothelial cells, blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) rigorously prevent drug and drug delivery systems from reaching the tumor site. To tackle this dilemma, we developed a liposomal formulation to circumvent multiple-barriers by modifying the liposome surface with proteolytically stable peptides, (D)CDX and c(RGDyK). (D)CDX is a D-peptide ligand of nicotine acetylcholine receptors (nAChRs) on the BBB, and c(RGDyK) is a ligand of integrin highly expressed on the BBTB and glioma cells. Lysosomal compartments of brain capillary endothelial cells are implicated in the transcytosis of those liposomes. However, both peptide ligands displayed exceptional stability in lysosomal homogenate, ensuring that intact ligands could exert subsequent exocytosis from brain capillary endothelial cells and glioma targeting. In the cellular uptake studies, dually labeled liposomes could target both brain capillary endothelial cells and tumor cells, effectively traversing the BBB and BBTB monolayers, overcoming enzymatic barrier and targeting three-dimensional tumor spheroids. Its targeting ability to intracranial glioma was further verified in vivo by ex vivo imaging and histological studies. As a result, doxorubicin liposomes modified with both (D)CDX and c(RGDyK) presented better anti-glioma effect with prolonged median survival of nude mice bearing glioma than did unmodified liposomes and liposomes modified with individual peptide ligand. In conclusion, the liposome suggested in the present study could effectively overcome multi-barriers and accomplish glioma targeted drug delivery, validating its potential value in improving the therapeutic efficacy of doxorubicin for glioma. Copyright © 2015

  3. Density-Dependent Regulation of Glioma Cell Proliferation and Invasion Mediated by miR-9.

    PubMed

    Katakowski, Mark; Charteris, Nicholas; Chopp, Michael; Khain, Evgeniy

    2016-12-01

    The phenotypic axis of invasion and proliferation in malignant glioma cells is a well-documented phenomenon. Invasive glioma cells exhibit a decreased proliferation rate and a resistance to apoptosis, and invasive tumor cells dispersed in brain subsequently revert to proliferation and contribute to secondary tumor formation. One miRNA can affect dozens of mRNAs, and some miRNAs are potent oncogenes. Multiple miRNAs are implicated in glioma malignancy, and several of which have been identified to regulate tumor cell motility and division. Using rat 9 L gliosarcoma and human U87 glioblastoma cell lines, we investigated miRNAs associated with the switch between glioma cell invasion and proliferation. Using micro-dissection of 9 L glioma tumor xenografts in rat brain, we identified disparate expression of miR-9 between cells within the periphery of the primary tumor, and those comprising tumor islets within the invasive zone. Modifying miR-9 expression in in vitro assays, we report that miR-9 controls the axis of glioma cell invasion/proliferation, and that its contribution to invasion or proliferation is biphasic and dependent upon local tumor cell density. In addition, immunohistochemistry revealed elevated hypoxia inducible factor 1 alpha (HIF-1α) in the invasive zone as compared to the primary tumor periphery. We also found that hypoxia promotes miR-9 expression in glioma cells. Based upon these findings, we propose a hypothesis for the contribution of miR-9 to the dynamics glioma invasion and satellite tumor formation in brain adjacent to tumor.

  4. Setting the Stage for Personalized Treatment of Glioma | Center for Cancer Research

    Cancer.gov

    Gliomas, the most common type of primary brain tumors in adults, arise from different types of glial cells, which support and protect the neurons of the central nervous system. How a patient’s glioma is treated depends in part on the type of glial cell from which the tumor developed. Classification of gliomas has traditionally been done by microscopic analysis of tumor sections. This process is subjective and prone to inconsistencies, which may explain in part the wide-ranging and often suboptimal responses of gliomas to treatment.  

  5. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway

    PubMed Central

    Rolón-Reyes, Kimberleve; Kucheryavykh, Yuriy V.; Cubano, Luis A.; Inyushin, Mikhail; Skatchkov, Serguei N.; Eaton, Misty J.; Harrison, Jeffrey K.; Kucheryavykh, Lilia Y.

    2015-01-01

    Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells. PMID:26098895

  6. Genetic Alterations in Glioma

    PubMed Central

    Bralten, Linda B. C.; French, Pim J.

    2011-01-01

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes. PMID:24212656

  7. Current state and future prospects of immunotherapy for glioma.

    PubMed

    Kamran, Neha; Alghamri, Mahmoud S; Nunez, Felipe J; Shah, Diana; Asad, Antonela S; Candolfi, Marianela; Altshuler, David; Lowenstein, Pedro R; Castro, Maria G

    2018-02-01

    There is a large unmet need for effective therapeutic approaches for glioma, the most malignant brain tumor. Clinical and preclinical studies have enormously expanded our knowledge about the molecular aspects of this deadly disease and its interaction with the host immune system. In this review we highlight the wide array of immunotherapeutic interventions that are currently being tested in glioma patients. Given the molecular heterogeneity, tumor immunoediting and the profound immunosuppression that characterize glioma, it has become clear that combinatorial approaches targeting multiple pathways tailored to the genetic signature of the tumor will be required in order to achieve optimal therapeutic efficacy.

  8. Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model.

    PubMed

    Hong, Xiaohua; Liu, Li; Wang, Meiyun; Ding, Kai; Fan, Ying; Ma, Bo; Lal, Bachchu; Tyler, Betty; Mangraviti, Antonella; Wang, Silun; Wong, John; Laterra, John; Zhou, Jinyuan

    2014-06-01

    The inability of structural MRI to accurately measure tumor response to therapy complicates care management for patients with gliomas. The purpose of this study was to assess the potential of several noninvasive functional and molecular MRI biomarkers for the assessment of glioma response to radiotherapy. Fourteen U87 tumor-bearing rats were irradiated using a small-animal radiation research platform (40 or 20 Gy), and 6 rats were used as controls. MRI was performed on a 4.7 T animal scanner, preradiation treatment, as well as at 3, 6, 9, and 14 days postradiation. Image features of the tumors, as well as tumor volumes and animal survival, were quantitatively compared. Structural MRI showed that all irradiated tumors still grew in size during the initial days postradiation. The apparent diffusion coefficient (ADC) values of tumors increased significantly postradiation (40 and 20 Gy), except at day 3 postradiation, compared with preradiation. The tumor blood flow decreased significantly postradiation (40 and 20 Gy), but the relative blood flow (tumor vs contralateral) did not show a significant change at most time points postradiation. The amide proton transfer weighted (APTw) signals of the tumor decreased significantly at all time points postradiation (40 Gy), and also at day 9 postradiation (20 Gy). The blood flow and APTw maps demonstrated tumor features that were similar to those seen on gadolinium-enhanced T1-weighted images. Tumor ADC, blood flow, and APTw were all useful imaging biomarkers by which to predict glioma response to radiotherapy. The APTw signal was most promising for early response assessment in this model. © The Author(s) 2013. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Bin; Hu, Zhiqiang, E-mail: zhiqhutg@126.com; Huang, Hui

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues.more » Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.« less

  10. The pathobiology of collagens in glioma

    PubMed Central

    Payne, Leo S.; Huang, Paul H.

    2013-01-01

    Malignant gliomas are characterised by diffuse infiltration into the surrounding brain parenchyma. Infiltrating glioma cells exist in close proximity with components of the tumour microenvironment, including the extracellular matrix (ECM). While levels of collagens in the normal adult brain are low, in glioma, collagen levels are elevated and play an important role in driving the tumor progression. In this review, we provide a comprehensive overview of the nature of collagens found in gliomas and offer insights into the mechanisms by which cancer cells interact with this ECM via receptors including the integrins, discoidin domain receptors and Endo180. We further describe the major remodelling pathways of brain tumour collagen mediated by the matrix metalloproteinases and highlight the reciprocal relationship between these enzymes and the collagen receptors. Finally, we conclude by offering a perspective on how the biophysical properties of the collagen ECM, in particular, mechanical stiffness and compliance may influence malignant outcome. Understanding the complex interactions between glioma cells and the collagen ECM may provide new avenues to combat the rampant tumor progression and chemoresistance in brain cancer patients. PMID:23861322

  11. Long non-coding RNA SNHG6 promotes glioma tumorigenesis by sponging miR-101-3p.

    PubMed

    Meng, Qiang; Yang, Bao-Ying; Liu, Bei; Yang, Ji-Xue; Sun, Yang

    2018-05-01

    Glioma is the most common primary brain tumor. The small nucleolar RNA host gene (SNHG) SNHG6 is a potential oncogene in the development of several types of cancers. In this study, we investigated the functional role of long non-coding RNA (lncRNA) SNHG6 in the malignancy of glioma in cell lines and transplanted nude mice. We found that the expression of lncRNA SNHG6 was higher in glioma tissues and cells than in normal brain tissues and cells. The expression of lncRNA SNHG6 was positively correlated with the malignancy and poor prognosis of glioma patients. microRNA (miR)-101-3p expression was decreased in glioma tissues and cells and was negatively correlated with the malignancy and poor prognosis of glioma patients. In glioma tissues, the expression of lncRNA SNHG6 was negatively correlated with the expression of miR-101-3p. SNHG6 contained a binding site of miR-101-3p. Knockdown of SNHG6 expression resulted in a significant increase of miR-101-3p expression. miR-101-3p mimic markedly decreased the luciferase activity of SNHG6. Knockdown of SNHG6 inhibited glioma cell proliferation, migration, and epithelial-mesenchymal transition (EMT), and increased apoptosis. miR-101-3p mimic enhanced knockdown of SNHG6-induced inhibition of cell proliferation, migration, and EMT, and an increase of apoptosis. Anti-miR-101-3p reversed the the effects of si-SNHG6 on cell malignancy. Knockdown of SNHG6 remarkably reduced the increase of tumor volumes in xenograft mouse models. In tumor tissues, knockdown of SNHG6 increased the expression of miR-101-3p and reduced EMT biomarker expression. Our study provides novel insights into the functions of lncRNA SNHG6/miR-101-3p axis in the tumorigenesis of glioma.

  12. Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats.

    PubMed

    Badie, B; Drazan, K E; Kramar, M H; Shaked, A; Black, K L

    1995-06-01

    Adenoviral vectors have recently been shown to effectively deliver genes into a variety of tissues. Since these vectors have some advantages over the more extensively investigated retroviruses, we studied the effect of two replication-defective adenovectors bearing human wild type tumor suppressor gene p53 (Adp53) and Escherichia coli beta-galactosidase gene (AdLacZ) on 9L glioma cells. Successful in vitro gene transfer was shown by DNA polymerase chain reaction (PCR), and expression was confirmed by reverse transcriptase RNA PCR and Western blot analyses. Transduction of 9L cells with the Adp53 inhibited cell growth and induced phenotypic changes consistent with cell death at low titers, while AdLacZ caused cytopathic changes only at high titers. Stereotactic injection of AdLacZ (10(7) plaque forming units) into tumor bed stained 25 to 30% of tumor cells at the site of vector delivery. Injection of Adp53 (10(7) plaque forming units), but not AdLacZ (controls), into established 4-day old 9L glioma brain tumors decreased tumor volume by 40% after 14 days. As a step toward gene therapy of brain tumors using replication-defective adenoviruses, these data support the use of tumor suppressor gene transfer for in vivo treatment of whole animal brain tumor models.

  13. Clinical Relevance of Prognostic and Predictive Molecular Markers in Gliomas.

    PubMed

    Siegal, Tali

    2016-01-01

    Sorting and grading of glial tumors by the WHO classification provide clinicians with guidance as to the predicted course of the disease and choice of treatment. Nonetheless, histologically identical tumors may have very different outcome and response to treatment. Molecular markers that carry both diagnostic and prognostic information add useful tools to traditional classification by redefining tumor subtypes within each WHO category. Therefore, molecular markers have become an integral part of tumor assessment in modern neuro-oncology and biomarker status now guides clinical decisions in some subtypes of gliomas. The routine assessment of IDH status improves histological diagnostic accuracy by differentiating diffuse glioma from reactive gliosis. It carries a favorable prognostic implication for all glial tumors and it is predictive for chemotherapeutic response in anaplastic oligodendrogliomas with codeletion of 1p/19q chromosomes. Glial tumors that contain chromosomal codeletion of 1p/19q are defined as tumors of oligodendroglial lineage and have favorable prognosis. MGMT promoter methylation is a favorable prognostic marker in astrocytic high-grade gliomas and it is predictive for chemotherapeutic response in anaplastic gliomas with wild-type IDH1/2 and in glioblastoma of the elderly. The clinical implication of other molecular markers of gliomas like mutations of EGFR and ATRX genes and BRAF fusion or point mutation is highlighted. The potential of molecular biomarker-based classification to guide future therapeutic approach is discussed and accentuated.

  14. Psychological consideration in patients with cerebral gliomas candidates for intra-operative radiation therapy based on tumor location.

    PubMed

    Seddighi, Afsoun; Akbari, Mohammad Esmaeil; Seddighi, Amir Saied; Nikouei, Amir

    2017-01-01

    Intra-operative Radiation Therapy (IORT) is gaining popularity as an adjuvant option to surgical resection, in treatment of glioblastoma multiforme (GBM) for increasing survival rate, which a highly aggressive cerebral tumor with poor prognosis. Τhe authors plan to investigate the effects of IORT combined with surgical resection on the psychological status of these patients based on tumor location. From December 2013 to February 2017, we have enrolled 109 patients with high grade cerebral gliomas, documented by Magnetic Resonance Spectroscopy (MRS). Patients with previous history of brain surgery or radiation, altered mental status and psychological content and patients diagnosed with metastases were excluded. Demographic data, tumor volume based on pre-operative Magnetic Resonance Imaging (MRI) and psychological status were recorded based on Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria. The remaining 56 patients, were equally randomized into conventional (surgical resection-group A), and trial (surgical resection with IORT-group B) who underwent IORT using the 50kV INTRABEAM® system (Carl Zeiss Meditec AG, Germany). Psychological profiles of both groups were re-evaluated in the 3 rd post-operative month. Group A consisted of 18 males and 10 females with mean age of 54.4 years, while group B consisted of 16 males and 12 females with mean age of 57.8 years. Tumor volumetry revealed mean 81.52cc and 82.8cc for group A and B respectively. (P value 0.14) Patients were classified based on glioma location on pre-operative MRI: a) left parietal lobe (6 in group A, 5 in group B); b) left temporal lobe (7 in group A, 5 in group B); c) right parietal lobe (5 in group A, 6 in group B); d) left fronto-temporal lobe (4 in group A, 6 in group B); e) left parieto-temporal lobe (4 in group A, 5 in group B); and, f) right frontal lobe (2 in group A, 1 in group B). Group B received mean 8.05 Gy radiation for mean 11.2 minutes. Post

  15. Perspectives in Intraoperative Diagnostics of Human Gliomas

    PubMed Central

    Tyurikova, O.; Dembitskaya, Y.; Yashin, K.; Mishchenko, M.; Vedunova, M.; Medyanik, I.; Kazantsev, V.

    2015-01-01

    Amongst large a variety of oncological diseases, malignant gliomas represent one of the most severe types of tumors. They are also the most common type of the brain tumors and account for over half of the astrocytic tumors. According to different sources, the average life expectancy of patients with various glioblastomas varies between 10 and 12 months and that of patients with anaplastic astrocytic tumors between 20 and 24 months. Therefore, studies of the physiology of transformed glial cells are critical for the development of treatment methods. Modern medical approaches offer complex procedures, including the microsurgical tumor removal, radiotherapy, and chemotherapy, supplemented with photodynamic therapy and immunotherapy. The most radical of them is surgical resection, which allows removing the largest part of the tumor, reduces the intracranial hypertension, and minimizes the degree of neurological deficit. However, complete removal of the tumor remains impossible. The main limitations are insufficient visualization of glioma boundaries, due to its infiltrative growth, and the necessity to preserve healthy tissue. This review is devoted to the description of advantages and disadvantages of modern intraoperative diagnostics of human gliomas and highlights potential perspectives for development of their treatment. PMID:26543495

  16. Single vs. combination immunotherapeutic strategies for glioma

    PubMed Central

    Chandran, Mayuri; Candolfi, Marianela; Shah, Diana; Mineharu, Yohei; Yadav, Vivek; Koschmann, Carl; Asad, Antonela S.; Lowenstein, Pedro R.; Castro, Maria G.

    2017-01-01

    Introduction Malignant gliomas are highly invasive tumors, associated with a dismal survival rate despite standard of care, which includes surgical resection, radiotherapy and chemotherapy with temozolomide (TMZ). Precision immunotherapies or combinations of immunotherapies that target unique tumor-specific featuresmay substantially improve upon existing treatments. Areas covered Clinical trials of single immunotherapies have shown therapeutic potential in high-grade glioma patients, and emerging preclinical studies indicate that combinations of immunotherapies may be more effective than monotherapies. In this review we discuss emerging combinations of immunotherapies and compare efficacy of single vs. combined therapies tested in preclinical brain tumor models. Expert opinion Malignant gliomas are characterized by a number of factors which may limit the success of single immunotherapies including inter-tumor and intra-tumor heterogeneity, intrinsic resistance to traditional therapies, immunosuppression, and immune selection for tumor cells with low antigenicity. Combination of therapies which target multiple aspects of tumor physiology are likely to be more effective than single therapies. While we describe a limited number of combination immunotherapies which are currently being tested in preclinical and clinical studies, the field is expanding at an astounding rate, and endless combinations remain open for exploration. PMID:28286975

  17. Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas.

    PubMed

    Tropine, A; Vucurevic, G; Delani, P; Boor, S; Hopf, N; Bohl, J; Stoeter, P

    2004-12-01

    To determine if the diffusion tensor imaging (DTI) parameters fractional anisotropy (FA) and mean diffusivity (MD) can differentiate between accompanying edema and tumor cell infiltration of white matter (WM) beyond the tumor edge as defined from conventional MRI in low- and high-grade gliomas. We examined 12 patients with high-grade gliomas/glioblastomas and eight patients with low-grade gliomas and compared them to 10 patients with meningiomas, in which no tumor infiltration is expected. The tumor was defined as the enhancing area in glioblastomas and meningiomas and as the area of increased T2-signal in low-grade gliomas. FA and MD were measured in the center of the tumor and in the adjacent WM. The contralateral WM and internal capsule were used as an internal standard. Comparing the WM areas of increased T2-signal adjacent to meningiomas and glioblastomas, we saw a trend (without significance) towards a reduction of FA, but not of MD, in glioblastomas. We found no changes of FA and MD in the WM adjacent to low-grade gliomas (without T2-signal increase) compared to the WM of the contralateral hemisphere. In meningiomas and high-grade gliomas/glioblastomas, a narrow rim of significantly (P < 0.01) increased FA and decreased MD values around the enhancing tumor area was seen, whereas in low-grade gliomas, such a rim could not be defined. There was no contribution of FA or MD to grading of gliomas. In glioblastomas, a reduction of FA in the edematous area surrounding the tumor may indicate tumor cell infiltration, but a reliable differentiation between infiltration and vasogenic edema is not yet possible on the basis of DTI. The additional finding of a narrow rim of increased FA and decreased MD at the edge of glioblastomas (as well as in meningiomas) may be caused by com-pressed WM fibers and/or increased vascularity, but does not contribute to exclude peripheral cellular infiltration. 2004 Wiley-Liss, Inc.

  18. Clinical characteristics associated with the intracranial dissemination of gliomas.

    PubMed

    Cai, Xu; Qin, Jun-Jie; Hao, Shu-Yu; Li, Huan; Zeng, Chun; Sun, Sheng-Jun; Yu, Lan-Bing; Gao, Zhi-Xian; Xie, Jian

    2018-03-01

    Glioma is the most common malignant tumor of the brain and the intracranial dissemination of gliomas is the late stage of the development of the tumor. However, there is little research in literature on the occurrence of intracranial dissemination of gliomas. In order to provide a reference for clinical work, we carried out this study on intracranial dissemination of glioma. A total of 629 patients with gliomas received tumor resection by the same surgeon from August 2010 to September 2015 were included in this study. The authors performed a retrospective review of the patients and the information regarding clinical features, histopathological results, molecular pathologic results and clinical outcomes was collected and analyzed. In this retrospective study, we found that the intracranial dissemination phenomenon occurred in 53 patients (8.43%). We analyzed the clinical characteristics of patients and found that the age at diagnosis (P = 0.011), WHO grade of the tumor (P < 0.001), and involvement of the corpus callosum (P = 0.010) were associated with the occurrence of dissemination. The higher grade of the tumor, the more prone to disseminate. Deletion of 1p/19q had no significant correlation with the intracranial dissemination. MMP9, Ki-67, and EGFR were highly expressed in tumor cells that caused dissemination, and the level of Ki-67 expression had significance in statistics (P < 0.01). In our study, older age (>40 years), high pathological grade, invasion of the corpus callosum and high levels of Ki-67 expression were risk factors associated with the intracranial dissemination of gliomas. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Concurrent Chemotherapy of Malignant Glioma in Rats by Using Multidrug-Loaded Biodegradable Nanofibrous Membranes

    NASA Astrophysics Data System (ADS)

    Tseng, Yuan-Yun; Huang, Yin-Chen; Yang, Tao-Chieh; Yang, Shun-Tai; Liu, Shou-Cheng; Chang, Tzu-Min; Kau, Yi-Chuan; Liu, Shih-Jung

    2016-07-01

    Glioblastoma multiforme has a poor prognosis and is highly chemoresistant. In this study, we implanted biodegradable 1,3-bis[2-chloroethyl]-1-nitroso-urea-, irinotecan-, and cisplatin-eluting poly[(d,l)-lactide-co-glycolide] (BIC/PLGA) and virgin nanofibrous membranes on the brain surface of C6 glioma-bearing rats in concurrent and virgin groups, respectively. The concentrations of all applied drugs were significantly higher in the brain than in the blood for more than 8 weeks in all studied rats. Tumor growth was more rapid in the vehicle-treated group, and tumor volumes were significantly higher in the vehicle-treated group. Moreover, the average survival time was significantly shorter in the vehicle-treated group (P = 0.026), and the BIC/PLGA nanofibrous membranes significantly reduced the risk of mortality (P < 0.001). Furthermore, the results suggested that the BIC/PLGA nanofibers reduced the malignancy of C6 glioma. The experimental findings indicate that the multianticancer drug (i.e., BIC)-eluting PLGA nanofibers are favorable candidates for treating malignant glioma.

  20. Concurrent Chemotherapy of Malignant Glioma in Rats by Using Multidrug-Loaded Biodegradable Nanofibrous Membranes

    PubMed Central

    Tseng, Yuan-Yun; Huang, Yin-Chen; Yang, Tao-Chieh; Yang, Shun-Tai; Liu, Shou-Cheng; Chang, Tzu-Min; Kau, Yi-Chuan; Liu, Shih-Jung

    2016-01-01

    Glioblastoma multiforme has a poor prognosis and is highly chemoresistant. In this study, we implanted biodegradable 1,3-bis[2-chloroethyl]-1-nitroso-urea-, irinotecan-, and cisplatin-eluting poly[(d,l)-lactide-co-glycolide] (BIC/PLGA) and virgin nanofibrous membranes on the brain surface of C6 glioma-bearing rats in concurrent and virgin groups, respectively. The concentrations of all applied drugs were significantly higher in the brain than in the blood for more than 8 weeks in all studied rats. Tumor growth was more rapid in the vehicle-treated group, and tumor volumes were significantly higher in the vehicle-treated group. Moreover, the average survival time was significantly shorter in the vehicle-treated group (P = 0.026), and the BIC/PLGA nanofibrous membranes significantly reduced the risk of mortality (P < 0.001). Furthermore, the results suggested that the BIC/PLGA nanofibers reduced the malignancy of C6 glioma. The experimental findings indicate that the multianticancer drug (i.e., BIC)-eluting PLGA nanofibers are favorable candidates for treating malignant glioma. PMID:27471070

  1. Beyond Alkylating Agents for Gliomas: Quo Vadimus?

    PubMed

    Puduvalli, Vinay K; Chaudhary, Rekha; McClugage, Samuel G; Markert, James

    2017-01-01

    Recent advances in therapies have yielded notable success in terms of improved survival in several cancers. However, such treatments have failed to improve outcome in patients with gliomas for whom surgery followed by radiation therapy and chemotherapy with alkylating agents remain the standard of care. Genetic and epigenetic studies have helped identify several alterations specific to gliomas. Attempts to target these altered pathways have been unsuccessful due to various factors, including tumor heterogeneity, adaptive resistance of tumor cells, and limitations of access across the blood-brain barrier. Novel therapies that circumvent such limitations have been the focus of intense study and include approaches such as immunotherapy, targeting of signaling hubs and metabolic pathways, and use of biologic agents. Immunotherapeutic approaches including tumor-targeted vaccines, immune checkpoint blockade, antibody-drug conjugates, and chimeric antigen receptor-expressing cell therapies are in various stages of clinical trials. Similarly, identification of key metabolic pathways or converging hubs of signaling pathways that are tumor specific have yielded novel targets for therapy of gliomas. In addition, the failure of conventional therapies against gliomas has led to a growing interest among patients in the use of alternative therapies, which in turn has necessitated developing evidence-based approaches to the application of such therapies in clinical studies. The development of these novel approaches bears potential for providing breakthroughs in treatment of more meaningful and improved outcomes for patients with gliomas.

  2. Stereotactic delivery of a recombinant adenovirus into a C6 glioma cell line in a rat brain tumor model.

    PubMed

    Badie, B; Hunt, K; Economou, J S; Black, K L

    1994-11-01

    The dismal results of conventional therapy for primary malignant brain tumors has justified exploring gene therapy approaches for this disease. Transduction of animal brain tumor models in vivo has been reported previously with retroviruses and herpes viruses. Because adenoviruses have the advantage of transducing quiescent and actively dividing tumor cells, they may prove to be more effective in such therapy. We used a replication-deficient recombinant adenovirus bearing the Escherichia coli beta-galactosidase gene in a rat C6 glioma tumor model. Transduced cells were detected by X-5-bromo-4-chloro-3-indolyl beta-D-galactoside staining to reveal beta-galactosidase activity. Initial experiments in vitro showed 50% and 90% transduction at vector titers of approximately 10(7) and 10(8) plaque-forming units/ml, respectively. Although no cytopathic effects were seen at 10(7) plaque-forming units/ml, more than 50% reduction in tumor cell growth was noted at 10(8) plaque-forming units/ml both in vitro and in vivo. Stereotactic delivery of the recombinant adenovirus into the frontal lobe of normal rat brains resulted in intense staining of all cell types, that is, neurons, astrocytes, and ependymal cells. Stereotactic injection into C6 glioma brain tumors in rats stained 25 to 30% of the tumor cells. We conclude that adenovirus vectors can be used to transfer genes to central nervous system tumors in vivo. Using stereotactic delivery, adenovirus vectors can transfer genes into the central nervous system intended for tumor therapy.

  3. Blood glutamate scavengers prolong the survival of rats and mice with brain-implanted gliomas.

    PubMed

    Ruban, Angela; Berkutzki, Tamara; Cooper, Itzik; Mohar, Boaz; Teichberg, Vivian I

    2012-12-01

    L-Glutamate (Glu) plays a crucial role in the growth of malignant gliomas. We have established the feasibility of accelerating a naturally occurring brain to-blood Glu efflux by decreasing blood Glu levels with intravenous oxaloacetate, the respective Glu co-substrate of the blood resident enzyme humane glutamate–oxaloacetate transaminase(hGOT). We wished to demonstrate that blood Glu scavenging provides neuroprotection in the case of glioma.We now describe the neuroprotective effects of blood Glu scavenging in a fatal condition such as brain-implanted C6 glioma in rats and brain-implanted human U87 MG glioma in nude mice. Rat (C-6) or human (U87) glioma cells were grafted stereotactically in the brain of rats or mice. After development of tumors, the animals were drinking oxaloacetate with or without injections of hGOT. In addition, mice were treated with combination treatment, which included drinking oxaloacetate with intracutaneous injections of hGOT and intraperitoneal injection of Temozolomide. Animals drinking oxaloacetate with or without injections of hGOT displayed a smaller tumor volume, reduced invasiveness and prolonged survival than control animals drinking saline. These effects were significantly enhanced by Temozolomide in mice, which increased survival by 237%. This is the first demonstration of blood Glu scavenging in brain cancer, and because of its safety, is likely to be of clinical significance for the future treatment of human gliomas. As we demonstrated, the blood glutamate scavenging treatment in combination with TMZ could be a good candidate or as an alternative treatment to the patients that do not respond to TMZ.

  4. Enhanced Anti-Tumor Effect of Zoledronic Acid Combined with Temozolomide against Human Malignant Glioma Cell Expressing O6-Methylguanine DNA Methyltransferase

    PubMed Central

    Fukai, Junya; Koizumi, Fumiaki; Nakao, Naoyuki

    2014-01-01

    Temozolomide (TMZ), a DNA methylating agent, is widely used in the adjuvant treatment of malignant gliomas. O6-methylguanine-DNA methyltranferase (MGMT), a DNA repair enzyme, is frequently discussed as the main factor that limits the efficacy of TMZ. Zoledronic acid (ZOL), which is clinically applied to treat cancer-induced bone diseases, appears to possess direct anti-tumor activity through apoptosis induction by inhibiting mevalonate pathway and prenylation of intracellular small G proteins. In this study, we evaluated whether ZOL can be effectively used as an adjuvant to TMZ in human malignant glioma cells that express MGMT. Malignant glioma cell lines, in which the expression of MGMT was detected, did not exhibit growth inhibition by TMZ even at a longer exposure. However, combination experiment of TMZ plus ZOL revealed that a supra-additive effect resulted in a significant decrease in cell growth. In combined TMZ/ZOL treatment, an increased apoptotic rate was apparent and significant activation of caspase-3 and cleavage of poly-(ADP-ribose) polymerase were observed compared with each single drug exposure. There were decreased amounts of Ras-GTP, MAPK and Akt phosphorylation and MGMT expression in the ZOL-treated cells. Subcutanous xenograft models showed significant decrease of tumor growth with combined TMZ/ZOL treatment. These results suggest that ZOL efficaciously inhibits activity of Ras in malignant glioma cells and potentiates TMZ-mediated cytotoxicity, inducing growth inhibition and apoptosis of malignant glioma cells that express MGMT and resistant to TMZ. Based on this work, combination of TMZ with ZOL might be a potential therapy in malignant gliomas that receive less therapeutic effects of TMZ due to cell resistance. PMID:25111384

  5. Proton Beam Radiation Therapy in Treating Patients With Low Grade Gliomas

    ClinicalTrials.gov

    2015-12-14

    Adult Brain Tumor; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Grade II Meningioma; Adult Melanocytic Lesion; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pineal Gland Astrocytoma; Adult Pineocytoma; Recurrent Adult Brain Tumor

  6. MicroRNA-1231 exerts a tumor suppressor role through regulating the EGFR/PI3K/AKT axis in glioma.

    PubMed

    Zhang, Jiale; Zhang, Jie; Qiu, Wenjin; Zhang, Jian; Li, Yangyang; Kong, Enjun; Lu, Ailin; Xu, Jia; Lu, Xiaoming

    2018-05-17

    MicroRNAs (miRNAs) have been shown to be involved in the initiation and progression of glioma. However, the underlying molecular mechanisms are still unclear. We performed microarray analysis to evaluate miRNA expression levels in 158 glioma tissue samples, and examined miR-1231 levels in glioma samples and healthy brain tissues using qRT-PCR. In vitro analyses were performed using miR-1231 mimics, inhibitors, and siRNA targeting EGFR. We used flow cytometry, CCK-8 assays, and colony formation assays to examine glioma proliferation and cell cycle analysis. A dual luciferase reporter assay was performed to examine miR-1231 regulation of EGFR, and the effect of upregulated miR-1231 was investigated in a subcutaneous GBM model. We found that miR-1231 expression was decreased in human glioma tissues and negatively correlated with EGFR levels. Moreover, the downregulation of miR-1231 negatively correlated with the clinical stage of human glioma patients. miR-1231 overexpression dramatically downregulated glioma cell proliferation, and suppressed tumor growth in a nude mouse model. Bioinformatics prediction and a luciferase assay confirmed EGFR as a direct target of miR-1231. EGFR overexpression abrogated the suppressive effect of miR-1231 on the PI3K/AKT pathway and G1 arrest. Taken together, these results demonstrated that EGFR is a direct target of miR-1231. Our findings suggest that the miR-1231/EGFR axis may be a helpful future diagnostic target for malignant glioma.

  7. Establishment and maintenance of a standardized glioma tissue bank: Huashan experience.

    PubMed

    Aibaidula, Abudumijiti; Lu, Jun-feng; Wu, Jin-song; Zou, He-jian; Chen, Hong; Wang, Yu-qian; Qin, Zhi-yong; Yao, Yu; Gong, Ye; Che, Xiao-ming; Zhong, Ping; Li, Shi-qi; Bao, Wei-min; Mao, Ying; Zhou, Liang-fu

    2015-06-01

    Cerebral glioma is the most common brain tumor as well as one of the top ten malignant tumors in human beings. In spite of the great progress on chemotherapy and radiotherapy as well as the surgery strategies during the past decades, the mortality and morbidity are still high. One of the major challenges is to explore the pathogenesis and invasion of glioma at various "omics" levels (such as proteomics or genomics) and the clinical implications of biomarkers for diagnosis, prognosis or treatment of glioma patients. Establishment of a standardized tissue bank with high quality biospecimens annotated with clinical information is pivotal to the solution of these questions as well as the drug development process and translational research on glioma. Therefore, based on previous experience of tissue banks, standardized protocols for sample collection and storage were developed. We also developed two systems for glioma patient and sample management, a local database for medical records and a local image database for medical images. For future set-up of a regional biobank network in Shanghai, we also founded a centralized database for medical records. Hence we established a standardized glioma tissue bank with sufficient clinical data and medical images in Huashan Hospital. By September, 2013, tissues samples from 1,326 cases were collected. Histological diagnosis revealed that 73 % were astrocytic tumors, 17 % were oligodendroglial tumors, 2 % were oligoastrocytic tumors, 4 % were ependymal tumors and 4 % were other central nervous system neoplasms.

  8. A Novel Candidate Molecule in Pathological Grading Of Gliomas: ELABELA.

    PubMed

    Artas, Gokhan; Ozturk, Sait; Kuloglu, Tuncay; Dagli, Adile Ferda; Gonen, Murat; Artas, Hakan; Aydin, Suleyman; Erol, Fatih Serhat

    2018-04-06

    This study aimed to investigate the possible role of ELABELA (ELA) in the histopathological grading of gliomas. We retrospectively assessed pathological specimens of patients who underwent surgery for intracranial space-occupying lesions. Only primary glioma specimens were included in this study. We enrolled 11 patients histologically diagnosed with low-grade glioma and 22 patients with high-grade glioma. The ELA antibody was applied to 4-6-µm-thick sections obtained from paraffin blocks. Histoscores were calculated using the distribution and intensity of staining immunoreactivity. An independent sample t-test was used for two-point inter-group assessments, whereas one-way analysis of variance was used for the other assessments. P 0.05 was considered statistically significant. The histoscores of the control brain, low-grade glioma, and high-grade glioma tissues were found to be 0.08, 0.37, and 0.92, respectively. The difference in ELA immunoreactivity between the control brain tissue and glioma tissue was statistically significant (p 0.05). In addition, a statistically significant increase was observed in ELA immunoreactivity in high-grade glioma tissues compared with that in low-grade glioma tissues (p 0.05). ELA has an angiogenetic role in the progression of glial tumors. ELA, which is an endogenous ligand of the apelin receptor, activates the apelinergic system and causes the progression of glial tumors. Further studies with a large number of patients are necessary to investigate the angiogenetic role of ELA in glial tumors.

  9. Signal transduction molecules in gliomas of all grades.

    PubMed

    Ermoian, Ralph P; Kaprealian, Tania; Lamborn, Kathleen R; Yang, Xiaodong; Jelluma, Nannette; Arvold, Nils D; Zeidman, Ruth; Berger, Mitchel S; Stokoe, David; Haas-Kogan, Daphne A

    2009-01-01

    To interrogate grade II, III, and IV gliomas and characterize the critical effectors within the PI3-kinase pathway upstream and downstream of mTOR. Experimental design Tissues from 87 patients who were treated at UCSF between 1990 and 2004 were analyzed. Twenty-eight grade II, 17 grade III glioma, 26 grade IV gliomas, and 16 non-tumor brain specimens were analyzed. Protein levels were assessed by immunoblots; RNA levels were determined by polymerase chain reaction amplification. To address the multiple comparisons, first an overall analysis was done comparing the four groups using Spearman's Correlation Coefficient. Only if this analysis was statistically significant were individual pairwise comparisons done. Multiple comparison analyses revealed a significant correlation with grade for all variables examined, except phosphorylated-S6. Expression of phosphorylated-4E-BP1, phosphorylated-PKB/Akt, PTEN, TSC1, and TSC2 correlated with grade (P < 0.01 for all). We extended our analyses to ask whether decreases in TSC proteins levels were due to changes in mRNA levels, or due to changes in post-transcriptional alterations. We found significantly lower levels of TSC1 and TSC2 mRNA in GBMs than in grade II gliomas or non-tumor brain (P < 0.01). Expression levels of critical signaling molecules upstream and downstream of mTOR differ between non-tumor brain and gliomas of any grade. The single variable whose expression did not differ between non-tumor brain and gliomas was phosphorylated-S6, suggesting that other protein kinases, in addition to mTOR, contribute significantly to S6 phosphorylation. mTOR provides a rational therapeutic target in gliomas of all grades, and clinical benefit may emerge as mTOR inhibitors are combined with additional agents.

  10. Statistical evaluation of manual segmentation of a diffuse low-grade glioma MRI dataset.

    PubMed

    Ben Abdallah, Meriem; Blonski, Marie; Wantz-Mezieres, Sophie; Gaudeau, Yann; Taillandier, Luc; Moureaux, Jean-Marie

    2016-08-01

    Software-based manual segmentation is critical to the supervision of diffuse low-grade glioma patients and to the optimal treatment's choice. However, manual segmentation being time-consuming, it is difficult to include it in the clinical routine. An alternative to circumvent the time cost of manual segmentation could be to share the task among different practitioners, providing it can be reproduced. The goal of our work is to assess diffuse low-grade gliomas' manual segmentation's reproducibility on MRI scans, with regard to practitioners, their experience and field of expertise. A panel of 13 experts manually segmented 12 diffuse low-grade glioma clinical MRI datasets using the OSIRIX software. A statistical analysis gave promising results, as the practitioner factor, the medical specialty and the years of experience seem to have no significant impact on the average values of the tumor volume variable.

  11. Enhancement of blood-tumor barrier permeability by Sar-[D-Phe8]des-Arg9BK, a metabolically resistant bradykinin B1 agonist, in a rat C6 glioma model

    PubMed Central

    Cardoso, Ronie Cleverson; Lobão-Soares, Bruno; Bianchin, Marino Muxfeldt; Carlotti, Carlos Gilberto; Walz, Roger; Alvarez-Silva, Márcio; Trentin, Andréa Gonçalves; Nicolau, Mauro

    2004-01-01

    Background While it is well known that bradykinin B2 agonists increase plasma protein extravasation (PPE) in brain tumors, the bradykinin B1 agonists tested thus far are unable to produce this effect. Here we examine the effect of the selective B1 agonist bradykinin (BK) Sar-[D-Phe8]des-Arg9BK (SAR), a compound resistant to enzymatic degradation with prolonged activity on PPE in the blood circulation in the C6 rat glioma model. Results SAR administration significantly enhanced PPE in C6 rat brain glioma compared to saline or BK (p < 0.01). Pre-administration of the bradykinin B1 antagonist [Leu8]-des-Arg (100 nmol/Kg) blocked the SAR-induced PPE in the tumor area. Conclusions Our data suggest that the B1 receptor modulates PPE in the blood tumor barrier of C6 glioma. A possible role for the use of SAR in the chemotherapy of gliomas deserves further study. PMID:15458573

  12. [Molecular Genetics as Best Evidence in Glioma Diagnostics].

    PubMed

    Masui, Kenta; Komori, Takashi

    2016-03-01

    The development of a genomic landscape of gliomas has led to the internally consistent, molecularly-based classifiers. However, development of a biologically insightful classification to guide therapy is still ongoing. Further, tumors are heterogeneous, and they change and adapt in response to drugs. The challenge of developing molecular classifiers that provide meaningful ways to stratify patients for therapy remains a major challenge for the field. Therefore, by incorporating molecular markers into the new World Health Organization (WHO) classification of tumors of the central nervous system, the traditional principle of diagnosis based on histologic criteria will be replaced by a multilayered approach combining histologic features and molecular information in an "integrated diagnosis", to define tumor entities as narrowly as possible. We herein review the current status of diagnostic molecular markers for gliomas, focusing on IDH mutation, ATRX mutation, 1p/19q co-deletion, and TERT promoter mutation in adult tumors, as well as BRAF and H3F3A aberrations in pediatric gliomas, the combination of which will be a promising endeavor to render molecular genetics as a best evidence in the glioma diagnositics.

  13. Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas.

    PubMed

    Fueger, Barbara J; Czernin, Johannes; Cloughesy, Timothy; Silverman, Daniel H; Geist, Cheri L; Walter, Martin A; Schiepers, Christiaan; Nghiemphu, Phioanh; Lai, Albert; Phelps, Michael E; Chen, Wei

    2010-10-01

    6-(18)F-fluoro-l-dopa ((18)F-FDOPA) measured with PET as a biomarker of amino acid uptake has been investigated in brain tumor imaging. The aims of the current study were to determine whether the degree of (18)F-FDOPA uptake in brain tumors predicted tumor grade and was associated with tumor proliferative activity in newly diagnosed and recurrent gliomas. Fifty-nine patients (40 men, 19 women; mean age ± SD, 44.4 ± 12.3 y) with newly diagnosed (n = 22) or recurrent (n = 37) gliomas underwent (18)F-FDOPA PET perioperatively. Tumor tissue was obtained by resection or biopsy in all patients. The tumor grade and Ki-67 proliferation index were obtained by standard pathology assays. Tumor (18)F-FDOPA uptake was quantified by determining various standardized uptake value (SUV) parameters (mean SUV, maximum SUV [SUVmax], mean values of voxels with top 20% SUVs, and tumor-to-normal-brain tissue ratios) that were then correlated with histopathologic grade and Ki-67 proliferation index. Fifty-nine lesions in 59 patients were analyzed. (18)F-FDOPA uptake was significantly higher in high-grade than in low-grade tumors for newly diagnosed tumors (SUVmax, 4.22 ± 1.30 vs. 2.34 ± 1.35, P = 0.005) but not for recurrent tumors that had gone through treatment previously (SUVmax, 3.36 ± 1.26 vs. 2.67 ± 1.18, P = 0.22). An SUVmax threshold of 2.72 differentiated low-grade from high-grade tumors, with a sensitivity and specificity of 85% and 89%, respectively, using receiver-operating-characteristic curve analysis (area under the curve, 0.86). (18)F-FDOPA PET uptake correlated significantly with Ki-67 tumor proliferation index in newly diagnosed tumors (r = 0.66, P = 0.001) but not in recurrent tumors (r = 0.14, P = 0.41). (18)F-FDOPA uptake is significantly higher in high-grade than in low-grade tumors in newly diagnosed but not recurrent tumors that had been treated previously. A significant correlation between (18)F-FDOPA uptake and tumor proliferation in newly diagnosed tumors

  14. Hu antigen R (HuR) multimerization contributes to glioma disease progression.

    PubMed

    Filippova, Natalia; Yang, Xiuhua; Ananthan, Subramaniam; Sorochinsky, Anastasia; Hackney, James R; Gentry, Zachery; Bae, Sejong; King, Peter; Nabors, L Burt

    2017-10-13

    Among primary brain cancers, gliomas are the most deadly and most refractory to current treatment modalities. Previous reports overwhelmingly support the role of the RNA-binding protein Hu antigen R (HuR) as a positive regulator of glioma disease progression. HuR expression is consistently elevated in tumor tissues, and a cytoplasmic localization appears essential for HuR-dependent oncogenic transformation. Here, we report HuR aggregation (multimerization) in glioma and the analysis of this tumor-specific HuR protein multimerization in clinical brain tumor samples. Using a split luciferase assay, a bioluminescence resonance energy transfer technique, and site-directed mutagenesis, we examined the domains involved in HuR multimerization. Results obtained with the combination of the split HuR luciferase assay with the bioluminescence resonance energy transfer technique suggested that multiple (at least three) HuR molecules come together during HuR multimerization in glioma cells. Using these data, we developed a model of HuR multimerization in glioma cells. We also demonstrate that exposing glioma cells to the HuR inhibitor tanshinone group compound 15,16-dihydrotanshinone-I or to the newly identified compound 5 disrupts HuR multimerization modules and reduces tumor cell survival and proliferation. In summary, our findings provide new insights into HuR multimerization in glioma and highlight possible pharmacological approaches for targeting HuR domains involved in cancer cell-specific multimerization.

  15. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression.

    PubMed

    Kushal, Swati; Wang, Weijun; Vaikari, Vijaya Pooja; Kota, Rajesh; Chen, Kevin; Yeh, Tzu-Shao; Jhaveri, Niyati; Groshen, Susan L; Olenyuk, Bogdan Z; Chen, Thomas C; Hofman, Florence M; Shih, Jean C

    2016-03-22

    Glioblastoma (GBM) is an aggressive brain tumor which is currently treated with temozolomide (TMZ). Tumors usually become resistant to TMZ and recur; no effective therapy is then available. Monoamine Oxidase A (MAO A) oxidizes monoamine neurotransmitters resulting in reactive oxygen species which cause cancer. This study shows that MAO A expression is increased in human glioma tissues and cell lines. MAO A inhibitors, clorgyline or the near-infrared-dye MHI-148 conjugated to clorgyline (NMI), were cytotoxic for glioma and decreased invasion in vitro. Using the intracranial TMZ-resistant glioma model, clorgyline or NMI alone or in combination with low-dose TMZ reduced tumor growth and increased animal survival. NMI was localized specifically to the tumor. Immunocytochemistry studies showed that the MAO A inhibitor reduced proliferation, microvessel density and invasion, and increased macrophage infiltration. In conclusion, we have identified MAO A inhibitors as potential novel stand-alone drugs or as combination therapy with low dose TMZ for drug-resistant gliomas. NMI can also be used as a non-invasive imaging tool. Thus has a dual function for both therapy and diagnosis.

  16. Carbon Nanotubes Enhance CpG Uptake and Potentiate Anti-Glioma Immunity

    PubMed Central

    Zhao, Dongchang; Alizadeh, Darya; Zhang, Leying; Liu, Wei; Farrukh, Omar; Manuel, Edwin; Diamond, Don J.; Badie, Behnam

    2010-01-01

    Purpose Stimulation of toll-like receptor-9 (TLR9) by CpG oligodeoxynucleotides (CpG) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. Since TLR9 is located intracellularly, we hypothesized that methods that enhance its internalization may also potentiate its immunostimulatory response. The goal of this study was to evaluate carbon nanotubes (CNTs) as a CpG delivery vehicle in brain tumor models. Experimental Design Functionalized single-walled CNTs were conjugated with CpG (CNT-CpG) and evaluated in vitro and in mice bearing intracranial GL261 gliomas. Flow cytometry was used to assess CNT-CpG uptake and anti-glioma immune response. Tumor growth was measured by bioluminescent imaging, histology, and animal survival. Results CNT-CpG was nontoxic and enhanced CpG uptake both in vitro and intracranial gliomas. CNT-mediated CpG delivery also potentiated pro-inflammatory cytokine production by primary monocytes. Interestingly, a single intracranial injection of low-dose CNT-CpG (but not free CpG or blank CNT) eradicated intracranial GL261 gliomas in half of tumor-bearing mice. Moreover, surviving animals exhibited durable tumor-free remission (> 3 months), and were protected from intracranial tumor rechallenge, demonstrating induction of long-term anti-tumor immunity. Conclusions These findings suggest that CNTs can potentiate CpG immunopotency by enhancing its delivery into tumor-associated inflammatory cells. PMID:21088258

  17. Suprasellar chordoid neoplasm with expression of thyroid transcription factor 1: evidence that chordoid glioma of the third ventricle and pituicytoma may form part of a spectrum of lineage-related tumors of the basal forebrain.

    PubMed

    Hewer, Ekkehard; Beck, Jürgen; Kellner-Weldon, Frauke; Vajtai, Istvan

    2015-07-01

    Chordoid glioma of the third ventricle is a rare neuroepithelial tumor characterized by a unique histomorphology and exclusive association with the suprasellar/third ventricular compartment. Variously interpreted as either astrocytic- or ependymal-like, and speculatively ascribed to the lamina terminalis/subcommissural organ, its histogenesis remains, nevertheless, unsettled. Here, we report on a suprasellar chordoid glioma occurring in a 52-year-old man. Although displaying otherwise typical morphological features, the tumor was notable for expression of thyroid transcription factor 1, a marker of tumors of pituicytic origin in the context of the sellar region. We furthermore found overlapping immunoprofiles of this example of chordoid glioma and pituicytic tumors (pituicytoma and spindle cell oncocytoma), respectively. Specifically, phosphorylated ribosomal protein S6, a marker of mTOR pathway activation, was expressed in both groups. Based on these findings, we suggest that chordoid glioma and pituicytic tumors may form part of a spectrum of lineage-related neoplasms of the basal forebrain. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation.

    PubMed

    Unkelbach, Jan; Menze, Bjoern H; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A

    2014-02-07

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  19. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  20. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma

    NASA Astrophysics Data System (ADS)

    Ruan, Shaobo; He, Qin; Gao, Huile

    2015-05-01

    To improve glioma targeting delivery efficiency and to monitor drug delivery and treatment outcome, a novel tumor microenvironment sensitive size-shrinkable theranostic system was constructed and evaluated. The G-AuNPs-DC-RRGD system was constructed by fabricating small sized gold nanoparticles (AuNPs) onto matrix metalloproteinase-2 (MMP-2) degradable gelatin nanoparticles (GNPs), doxorubicin (DOX) and Cy5.5 were decorated onto AuNPs through a hydrazone bond to enable the system with pH triggered cargoes release, and RRGD, a tandem peptide of RGD and octarginine was surface-modified onto the system to enable it with glioma active targeting ability. In vitro, the size of G-AuNPs-DC-RRGD could effectively shrink from 188.2 nm to 55.9 nm after incubation with MMP-2, while DOX and Cy5.5 were released in a pH dependent manner. Cellular uptake demonstrated that G-AuNPs-DC-RRGD could be effectively taken up by cells with higher intensity than G-AuNPs-DC-PEG. A study of tumor spheroids further demonstrated that the particles with smaller size showed better penetration ability, while RRGD modification could further improve permeability. In vivo, G-AuNPs-DC-RRGD displayed the best glioma targeting and accumulation efficiency, with good colocalization with neovessels. Cy5.5 also was colocalized well with DOX, indicating that Cy5.5 could be used for imaging of DOX delivery.To improve glioma targeting delivery efficiency and to monitor drug delivery and treatment outcome, a novel tumor microenvironment sensitive size-shrinkable theranostic system was constructed and evaluated. The G-AuNPs-DC-RRGD system was constructed by fabricating small sized gold nanoparticles (AuNPs) onto matrix metalloproteinase-2 (MMP-2) degradable gelatin nanoparticles (GNPs), doxorubicin (DOX) and Cy5.5 were decorated onto AuNPs through a hydrazone bond to enable the system with pH triggered cargoes release, and RRGD, a tandem peptide of RGD and octarginine was surface-modified onto the system to

  1. Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model.

    PubMed

    VanHandel, Michelle; Alizadeh, Darya; Zhang, Leying; Kateb, Babak; Bronikowski, Michael; Manohara, Harish; Badie, Behnam

    2009-03-31

    Carbon nantotubes (CNTs) are emerging as a new family of nanovectors for drug and gene delivery into biological systems. To evaluate potential application of this technology for brain tumor therapy, we studied uptake and toxicity of multi-walled CNTs (MWCNTs) in the GL261 murine intracranial glioma model. Within 24 h of a single intratumoral injection of labeled MWCNTs (5 microg), nearly 10-20% of total cells demonstrated CNT internalization. Most CNT uptake, however, occurred by tumor-associated macrophages (MP), which accounted for most (75%) MWCNT-positive cells. Within 24 h of injection, nearly 30% of tumor MP became MWCNT-positive. Despite a transient increase in inflammatory cell infiltration into both normal and tumor-bearing brains following MWCNT injection, no significant toxicity was noted in mice, and minor changes in tumor cytokine expression were observed. This study suggests that MWCNTs could potentially be used as a novel and non-toxic vehicle for targeting MP in brain tumors.

  2. Intraoperative detection of glioma invasion beyond MRI enhancement with Raman spectroscopy in humans

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Mok, Kelvin; Mercier, Jeanne; Desroches, Joannie; Pichette, Julien; Saint-Arnaud, Karl; Guiot, Marie-Christine; Petrecca, Kevin; Leblond, Frédéric

    2015-03-01

    Cancer tissue is frequently impossible to distinguish from normal brain during surgery. Gliomas are a class of brain cancer which invade into the normal brain. If left unresected, these invasive cancer cells are the source of glioma recurrence. Moreover, these invasion areas do not show up on standard-of-care pre-operative Magnetic Resonance Imaging (MRI). This inability to fully visualize invasive brain cancers results in subtotal surgical resections, negatively impacting patient survival. To address this issue, we have demonstrated the efficacy of single-point in vivo Raman spectroscopy using a contact hand-held fiber optic probe for rapid detection of cancer invasion in 8 patients with low and high grade gliomas. Using a supervised machine learning algorithm to analyze the Raman spectra obtained in vivo, we were able to distinguish normal brain from the presence of cancer cells with sensitivity and specificity greater than 90%. Moreover, by correlating these results with pre-operative MRI we demonstrate the ability to detect low density cancer invasion up to 1.5cm beyond the cancer extent visible using MRI. This represents the potential for significant improvements in progression-free and overall patient survival, by identifying previously undetectable residual cancer cell populations and preventing the resection of normal brain tissue. While the importance of maximizing the volume of tumor resection is important for all grades of gliomas, the impact for low grade gliomas can be dramatic because surgery can even be curative. This convenient technology can rapidly classify cancer invasion in real-time, making it ideal for intraoperative use in brain tumor resection.

  3. Decreasing glioma recurrence through adjuvant cancer stem cell inhibition.

    PubMed

    Neman, Josh; Jandial, Rahul

    2010-06-24

    Gliomas remain one of the most challenging solid organ tumors to treat and are marked clinically by invariable recurrence despite multimodal intervention (surgery, chemotherapy, radiation). This recurrence perhaps, is as a consequence of the failure to eradicate a tumor cell subpopulation, termed cancer stem cells. Isolating, characterizing, and understanding these tumor-initiating cells through cellular and molecular markers, along with genetic and epigenetic understanding will allow for selective targeting through therapeutic agents and holds promise for decreasing glioma recurrence.

  4. Increasing the efficacy of antitumor glioma vaccines by photodynamic therapy and local injection of allogeneic glioma cells

    NASA Astrophysics Data System (ADS)

    Christie, Catherine E.; Peng, Qian; Madsen, Steen J.; Uzal, Francisco A.; Hirschberg, Henry

    2016-03-01

    Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage vaccines could be increased by: (1) PDT of the priming tumor cells, and (2) injection of allogeneic glioma cells directly into brain tumors. Experiments were conducted in an in vivo brain tumor model using Fisher rats and BT4C (allogeneic) and F98 (syngeneic) glioma cells. Preliminary results showed that vaccination alone had significantly less inhibitory effect on F98 tumor growth compared to the combination of vaccination and allogeneic cell (BT4C) injection.

  5. [Multidisciplinar approach to the management of gliomas].

    PubMed

    Moura, Bianca; Migliorini, Denis; Bourhis, Jean; Daniel, Roy; Levivier, Marc; Hottinger, Andreas F

    2016-04-27

    Gliomas represent two thirds of all primary brain tumors. Their prognosis depends directly upon their level of differentiation. On MRI, tumoral aggressivity is highlighted by contrast uptake and the infiltrative nature of the lesion. Clinical suspicion must however be confirmed by histology and molecular markers become essential to refine the diagnosis and tailor the treatment. Isocytrate dehydrogenase (IDH) mutations, codeletion of 1p and 19q and the presence of methylation of the MGMT promoter identify a subgroup of gliomas with better prognosis and may help predict response to treatment. Management of patients with primary brain tumors should always be defined in multidisciplinar tumor boards involving neurosurgeons, oncologists, radiation oncologists, neuropathologists and neuroradiologists.

  6. Brain Tumor Statistics

    MedlinePlus

    ... Scientific Advisory Council & Reviewers The International Low Grade Glioma Registry Get Involved Advocacy Breakthrough for Brain Tumors ... an estimated 29,320 new cases in 2018. Gliomas , a broad term which includes all tumors arising ...

  7. Effect of Nicotine on CYP2B1 Expression in a Glioma Animal Model and Analysis of CYP2B6 Expression in Pediatric Gliomas.

    PubMed

    Nava-Salazar, Sonia; Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Marhx-Bracho, Alfonso; Phillips-Farfán, Bryan V; Diaz-Avalos, Carlos; Vanoye-Carlo, America

    2018-06-16

    Cyclophosphamide (CPA) is a pro-drug commonly used in the chemotherapeutic schemes for glioma treatment but has high toxicity and the side effects include brain damage and even death. Since CPA is activated mainly by CY2B6, over-expression of the enzyme in the tumor cells has been proposed to enhance CPA activation. In this study, we explored the induction of the Cyp2b1 (homologous to CYP2B6 ) by nicotine in an animal rat model with glioma. Gene expression and protein levels were analyzed by RT-PCR and Western blot. Nicotine treatment increased CYP2B1 protein levels in the healthy animals’ brain tissue. In the brain tissue of animals with glioma, the CYP2B1 showed a high expression, even before nicotine treatment. Nicotine did not increase significantly the CYP2B1 protein expression in the tumor, but increased its expression in the tumor vicinity, especially around blood vessels in the cortex. We also explored CY2B6 expression in glioma samples derived from pediatric patients. Tumor tissue showed a variable expression of the enzyme, which could depend on the tumor malignancy grade. Induction of the CYP2B6 in pediatric gliomas with lower expression of the enzyme, could be an alternative to improve the antitumoral effect of CPA treatment.

  8. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-10

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixedmore » in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.« less

  9. Childhood Brain Stem Glioma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Childhood brain stem glioma presents as a diffuse intrinsic pontine glioma (DIPG; a fast-growing tumor that is difficult to treat and has a poor prognosis) or a focal glioma (grows more slowly, is easier to treat, and has a better prognosis). Learn about the diagnosis, cellular classification, staging, treatment, and clinical trials for pediatric brain stem glioma in this expert-reviewed summary.

  10. Response assessment challenges in clinical trials of gliomas.

    PubMed

    Wen, Patrick Y; Norden, Andrew D; Drappatz, Jan; Quant, Eudocia

    2010-01-01

    Accurate, reproducible criteria for determining tumor response and progression after therapy are critical for optimal patient care and effective evaluation of novel therapeutic agents. Currently, the most widely used criteria for determining treatment response in gliomas is based on two-dimensional tumor measurements using neuroimaging studies (Macdonald criteria). In recent years, the limitation of these criteria, which only address the contrast-enhancing component of the tumor, have become increasingly apparent. This review discusses challenges that have emerged in assessing response in patients with gliomas and approaches being introduced to address them.

  11. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas

    NASA Astrophysics Data System (ADS)

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K.; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69-80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene (IDH1), of which 83-90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice.

  12. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas

    PubMed Central

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K.; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    Abstract World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69–80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene (IDH1), of which 83–90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice. PMID:27877908

  13. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas.

    PubMed

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69-80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene ( IDH1 ), of which 83-90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice.

  14. GRP78 enabled micelle-based glioma targeted drug delivery.

    PubMed

    Ran, Danni; Mao, Jiani; Shen, Qing; Xie, Cao; Zhan, Changyou; Wang, Ruifeng; Lu, Weiyue

    2017-06-10

    GRP78, a specific cancer cell-surface marker, is implicated in cancer cells proliferation, apoptosis resistance, metastasis and drug resistance. l-VAP (SNTRVAP) is a tumor homing peptide exhibiting high binding affinity in vitro to GRP78 protein overexpressed on glioma, glioma stem cells, vasculogenic mimicry and neovasculature. Even though short peptides are often non-immunogenic and demonstrate high affinity to tumor cells, their targeting efficacy is always undermined by rapid blood clearance and enzymatic degradation. In the present study, two d peptides RI-VAP (retro inverso isomer of l-VAP) and d-VAP (retro isomer of l-VAP) were developed by structure-guided peptide design and retro-inverso isomerization technique for glioma targeting. RI-VAP and d-VAP were predicted to bind their receptor GRP78 protein with similar binding affinity, which was experimentally confirmed. The results of in vivo imaging demonstrated that RI-VAP and d-VAP had remarkably advantage over l-VAP for tumor accumulation. In addition, RI-VAP and d-VAP modified paclitaxel-loaded polymeric micelle had better anti-tumor efficacy in comparison to taxol, paclitaxel-loaded plain micelles and l-VAP modified micelles. Overall, the VAP modified micelles suggested in the present study could effectively achieve glioma-targeted drug delivery, validating the potential of the stable VAP peptides in improving the therapeutic efficacy of paclitaxel for glioma. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Microglia cyclooxygenase-2 activity in experimental gliomas: possible role in cerebral edema formation.

    PubMed

    Badie, Behnam; Schartner, Jill M; Hagar, Aaron R; Prabakaran, Sakthivel; Peebles, Todd R; Bartley, Becky; Lapsiwala, Samir; Resnick, Daniel K; Vorpahl, Jessica

    2003-02-01

    Cerebral edema is responsible for significant morbidity and mortality in patients harboring malignant gliomas. To examine the role of inflammatory cells in brain edema formation, we studied the expression cyclooxygenase (COX)-2, a key enzyme in arachidonic acid metabolism, by microglia in the C6 rodent glioma model. The expression of COX-2 in primary microglia cultures obtained from intracranial rat C6 gliomas was examined using reverse transcription-PCR, Western analysis, and prostaglandin E(2) (PGE(2)) enzyme immunoassay. Blood-tumor barrier permeability was studied in the same tumor model using magnetic resonance imaging. In contrast to C6 glioma cells, microglia isolated from intracranial C6 tumors produced high levels of PGE(2) through a COX-2-dependent pathway. To test whether the observed microglia COX-2 activity played a role in brain edema formation in gliomas, tumor-bearing rats were treated with rofecoxib, a selective COX-2 inhibitor. Rofecoxib was as effective as dexamethasone in decreasing the diffusion of contrast material into the brain parenchyma (P = 0.01, rofecoxib versus control animals), suggesting a reduction in blood-tumor barrier permeability. These findings suggest that glioma-infiltrating microglia are a major source of PGE(2) production through the COX-2 pathway and support the use of COX-2 inhibitors as possible alternatives to glucocorticoids in the treatment of peritumoral edema in patients with malignant brain tumors.

  16. [Experimental study of glioma stem cell-mediated immune tolerance in tumor microenvironment].

    PubMed

    Xie, T; Ma, J W; Liu, B; Dong, J; Huang, Q

    2017-11-23

    Objective: To investigate the tumor microenvironment of immune tolerance induced by glioma stem cells (GSC). Methods: Human GSC SU3 cells transfected with red fluorescent protein (SU3-RFP) gene were implanted into the brain, subcutis (armpit and foot), liver and abdominal cavity of transgenic green fluorescence protein (GFP) nude mice to establish RFP(+) /GFP(+) dual fluorescence solid tumor model. The re-cultured cells derived from implanted tumor tissues, SU3-RFP cells co-cultured with peritoneal fluid of transgenic GFP nude mice and malignant ascites of tumor-bearing mice were observed by fluorescence microscopy and real-time video image tracing to analyze the microenvironment of immune tolerance mediated by RFP(+) /GFP(+) implanted tumor. Results: Dual fluorescence labeled frozen section showed that all of cells in the tumor microenvironment were GFP(+) , while the pressed tissue-patch showed that the tumor blood vessels exhibited a RFP(+) /GFP(+) double-positioning yellow. In the GFP single fluorescence labeled tumor tissue, all of cells in the microenvironment were green, including tumor edge, necrotic foci and blood vessel. Among them, CD68(+) , F4/80(+) , CD11c(+) , CD11b(+) and CD80(+) cells were observed. In the dual fluorescence labeled co-cultured cells, the phagocytosis and fusion between green host cells and red tumor cells were also observed, and these fusion cells might transfer to the malignant dendritic cells and macrophages. Conclusions: The tumor microenvironment of immune tolerance induced by GSC is not affected by the tissue types of tumor-inoculated sites, and the immune tolerance mediated by inflammatory cells is associated with the inducible malignant transformation, which may be driven by cell fusion.

  17. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss.

    PubMed

    Sampson, John H; Choi, Bryan D; Sanchez-Perez, Luis; Suryadevara, Carter M; Snyder, David J; Flores, Catherine T; Schmittling, Robert J; Nair, Smita K; Reap, Elizabeth A; Norberg, Pamela K; Herndon, James E; Kuan, Chien-Tsun; Morgan, Richard A; Rosenberg, Steven A; Johnson, Laura A

    2014-02-15

    Chimeric antigen receptor (CAR) transduced T cells represent a promising immune therapy that has been shown to successfully treat cancers in mice and humans. However, CARs targeting antigens expressed in both tumors and normal tissues have led to significant toxicity. Preclinical studies have been limited by the use of xenograft models that do not adequately recapitulate the immune system of a clinically relevant host. A constitutively activated mutant of the naturally occurring epidermal growth factor receptor (EGFRvIII) is antigenically identical in both human and mouse glioma, but is also completely absent from any normal tissues. We developed a third-generation, EGFRvIII-specific murine CAR (mCAR), and performed tests to determine its efficacy in a fully immunocompetent mouse model of malignant glioma. At elevated doses, infusion with EGFRvIII mCAR T cells led to cures in all mice with brain tumors. In addition, antitumor efficacy was found to be dependent on lymphodepletive host conditioning. Selective blockade with EGFRvIII soluble peptide significantly abrogated the activity of EGFRvIII mCAR T cells in vitro and in vivo, and may offer a novel strategy to enhance the safety profile for CAR-based therapy. Finally, mCAR-treated, cured mice were resistant to rechallenge with EGFRvIII(NEG) tumors, suggesting generation of host immunity against additional tumor antigens. All together, these data support that third-generation, EGFRvIII-specific mCARs are effective against gliomas in the brain and highlight the importance of syngeneic, immunocompetent models in the preclinical evaluation of tumor immunotherapies. ©2013 AACR

  18. Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications.

    PubMed

    Malta, Tathiane M; de Souza, Camila F; Sabedot, Thais S; Silva, Tiago C; Mosella, Maritza S; Kalkanis, Steven N; Snyder, James; Castro, Ana Valeria B; Noushmehr, Houtan

    2018-04-09

    Gliomas are a heterogeneous group of brain tumors with distinct biological and clinical properties. Despite advances in surgical techniques and clinical regimens, treatment of high-grade glioma remains challenging and carries dismal rates of therapeutic success and overall survival. Challenges include the molecular complexity of gliomas, as well as inconsistencies in histopathological grading, resulting in an inaccurate prediction of disease progression and failure in the use of standard therapy. The updated 2016 World Health Organization (WHO) classification of tumors of the central nervous system reflects a refinement of tumor diagnostics by integrating the genotypic and phenotypic features, thereby narrowing the defined subgroups. The new classification recommends molecular diagnosis of isocitrate dehydrogenase (IDH) mutational status in gliomas. IDH-mutant gliomas manifest the cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP). Notably, the recent identification of clinically relevant subsets of G-CIMP tumors (G-CIMP-high and G-CIMP-low) provides a further refinement in glioma classification that is independent of grade and histology. This scheme may be useful for predicting patient outcome and may be translated into effective therapeutic strategies tailored to each patient. In this review, we highlight the evolution of our understanding of the G-CIMP subsets and how recent advances in characterizing the genome and epigenome of gliomas may influence future basic and translational research.

  19. EMP-induced BBB-disruption enhances drug delivery to glioma and increases treatment efficacy in rats.

    PubMed

    Li, Kangchu; Zhang, Keying; Xu, Shenglong; Wang, Xiaowu; Zhou, Yongchun; Zhou, Yan; Gao, Peng; Lin, Jiajin; Ding, Guirong; Guo, Guozhen

    2018-01-01

    Chemotherapy on gliomas is not satisfactorily efficient because the presence of blood-brain barriers (BBB) leads to inadequate exposure of tumor cells to administered drugs. In order to facilitate chemotherapeutics to penetrate BBB and increase the treatment efficacy of gliomas, electromagnetic pulse (EMP) was applied and the 1-(2-Chlorethyl)-cyclohexyl-nitrosourea (CCNU) lomustine concentration in tumor tissue, tumor size, tumor apoptosis, and side effects were measured in glioma-bearing rat model. The results showed that EMP exposure could enhance the delivery of CCNU to tumor tissue, facilitate tumor apoptosis, and inhibit tumor growth without obvious side effects. The data indicated that EMP-induced BBB disruption could enhance delivery of CCNU to glioblastoma multiforme and increase treatment efficacy in glioma-bearing rats. Bioelectromagnetics. 39:60-67, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Targeted Therapeutics in Patients With High-Grade Gliomas: Past, Present, and Future.

    PubMed

    Chen, Ricky; Cohen, Adam L; Colman, Howard

    2016-08-01

    High-grade gliomas remain incurable despite current therapies, which are plagued by high morbidity and mortality. Molecular categorization of glioma subtypes using mutations in isocitrate dehydrogenase 1/2 (IDH1/2), TP53, and ATRX; codeletion of chromosomes 1p and 19q; DNA methylation; and amplification of genes such as epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor, alpha polypeptide provides a more accurate prognostication and biologic classification than classical histopathological diagnoses, and a number of molecular markers are being incorporated in the new World Health Organization classification of gliomas. However, despite the improved understanding of the molecular subtypes of gliomas and the underlying alterations in specific signaling pathways, these observations have so far failed to result in the successful application of targeted therapies, as has occurred in other solid tumors. To date, the only targeted therapy for gliomas approved by the US Food and Drug Administration is bevacizumab, which targets vascular endothelial growth factor. EGFR remains a dominant molecular alteration in specific glioma subtypes and represents a potentially promising target, with drugs of multiple types targeting EGFR in development including vaccines, antibody drug conjugates, and chimeric antigen receptor (CAR) T cells, despite the prior failures of EGFR tyrosine kinase inhibitors. Immune therapies under investigation include checkpoint inhibitors, vaccines against tumor-associated antigens and tumor-specific antigens, pulsed dendritic cells, heat shock protein-tumor conjugates, and CAR T cells. Mutations in the IDH1/2 genes are central to gliomagenesis in a high proportion of grade II and III gliomas, and ongoing trials are examining vaccines against IDH1, small molecular inhibitors of IDH1 and IDH2, and metabolic components including NAD+ depletion to target IDH-mutated gliomas. The central role of DNA methylation in a subset of

  1. A choline derivate-modified nanoprobe for glioma diagnosis using MRI

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Huang, Shixian; Shao, Kun; Liu, Yang; An, Sai; Kuang, Yuyang; Guo, Yubo; Ma, Haojun; Wang, Xuxia; Jiang, Chen

    2013-04-01

    Gadolinium (Gd) chelate contrast-enhanced magnetic resonance imaging (MRI) is a preferred method of glioma detection and preoperative localisation because it offers high spatial resolution and non-invasive deep tissue penetration. Gd-based contrast agents, such as Gd-diethyltriaminepentaacetic acid (DTPA-Gd, Magnevist), are widely used clinically for tumor diagnosis. However, the Gd-based MRI approach is limited for patients with glioma who have an uncompromised blood-brain barrier (BBB). Moreover, the rapid renal clearance and non-specificity of such contrast agents further hinders their prevalence. We present a choline derivate (CD)-modified nanoprobe with BBB permeability, glioma specificity and a long blood half-life. Specific accumulation of the nanoprobe in gliomas and subsequent MRI contrast enhancement are demonstrated in vitro in U87 MG cells and in vivo in a xenograft nude model. BBB and glioma dual targeting by this nanoprobe may facilitate precise detection of gliomas with an uncompromised BBB and may offer better preoperative and intraoperative tumor localization.

  2. The epidemiology of glioma in adults: a “state of the science” review

    PubMed Central

    Ostrom, Quinn T.; Bauchet, Luc; Davis, Faith G.; Deltour, Isabelle; Fisher, James L.; Langer, Chelsea Eastman; Pekmezci, Melike; Schwartzbaum, Judith A.; Turner, Michelle C.; Walsh, Kyle M.; Wrensch, Margaret R.; Barnholtz-Sloan, Jill S.

    2014-01-01

    Gliomas are the most common primary intracranial tumor, representing 81% of malignant brain tumors. Although relatively rare, they cause significant mortality and morbidity. Glioblastoma, the most common glioma histology (∼45% of all gliomas), has a 5-year relative survival of ∼5%. A small portion of these tumors are caused by Mendelian disorders, including neurofibromatosis, tuberous sclerosis, and Li-Fraumeni syndrome. Genomic analyses of glioma have also produced new evidence about risk and prognosis. Recently discovered biomarkers that indicate improved survival include O6-methylguanine-DNA methyltransferase methylation, isocitrate dehydrogenase mutation, and a glioma cytosine–phosphate–guanine island methylator phenotype. Genome-wide association studies have identified heritable risk alleles within 7 genes that are associated with increased risk of glioma. Many risk factors have been examined as potential contributors to glioma risk. Most significantly, these include an increase in risk by exposure to ionizing radiation and a decrease in risk by history of allergies or atopic disease(s). The potential influence of occupational exposures and cellular phones has also been examined, with inconclusive results. We provide a “state of the science” review of current research into causes and risk factors for gliomas in adults. PMID:24842956

  3. Decreasing glioma recurrence through adjuvant cancer stem cell inhibition

    PubMed Central

    Neman, Josh; Jandial, Rahul

    2010-01-01

    Gliomas remain one of the most challenging solid organ tumors to treat and are marked clinically by invariable recurrence despite multimodal intervention (surgery, chemotherapy, radiation). This recurrence perhaps, is as a consequence of the failure to eradicate a tumor cell subpopulation, termed cancer stem cells. Isolating, characterizing, and understanding these tumor-initiating cells through cellular and molecular markers, along with genetic and epigenetic understanding will allow for selective targeting through therapeutic agents and holds promise for decreasing glioma recurrence. PMID:20631819

  4. Myristic Acid-Modified DA7R Peptide for Whole-Process Glioma-Targeted Drug Delivery.

    PubMed

    Ying, Man; Wang, Songli; Zhang, Mingfei; Wang, Ruifeng; Zhu, Hangchang; Ruan, Huitong; Ran, Danni; Chai, Zhilan; Wang, Xiaoyi; Lu, Weiyue

    2018-06-13

    The clinical treatment of aggressive glioma has been a great challenge, mainly because of the complexity of the glioma microenvironment and the existence of the blood-brain tumor barrier (BBTB)/blood-brain barrier (BBB), which severely hampers the effective accumulation of most therapeutic agents in the glioma region. Additionally, vasculogenic mimicry (VM), angiogenesis, and glioma stem cells (GSC) in malignant glioma also lead to the failure of clinical therapy. To address the aforementioned issues, a whole-process glioma-targeted drug delivery strategy was proposed. The D A7R peptide has effective BBTB-penetrating and notable glioma-, angiogenesis-, and VM-targeting abilities. Herein, we designed a myristic acid modified D A7R ligand (MC- D A7R), which combines tumor-homing D A7R with BBB-penetrable MC. MC- D A7R was then immobilized to PEGylated liposomes (MC- D A7R-LS) to form a whole-process glioma-targeting system. MC- D A7R-LS exhibited exceptional internalization in glioma, tumor neovascular, and brain capillary endothelial cells. Enhanced BBTB- and BBB-traversing efficiencies were also observed on MC- D A7R-LS. Ex vivo imaging on brain tumors also demonstrated the feasibility of MC- D A7R-LS in intracranial glioma-homing, whereas the immunofluorescence studies demonstrated its GSC and angiogenesis homing. Furthermore, doxorubicin-loaded MC- D A7R-LS accomplished a remarkable therapeutic outcome, as a result of a synergistic improvement on the glioma microenvironment. Our study highlights the potential of the MC-modified D A7R peptide as a great candidate for the whole-process glioma-targeted drug delivery.

  5. Methylation of the miR-126 gene associated with glioma progression.

    PubMed

    Cui, Hongwei; Mu, Yongping; Yu, Lei; Xi, Ya-guang; Matthiesen, Rune; Su, Xiulan; Sun, Wenjie

    2016-04-01

    Gliomas are the most common and the most malignant brain tumors, accouting for 45-55% of all intracranial tumors. The incidence of glioma worldwide is about 6-12 per 100,000. Recently, several studies showed that the activation of the oncogenes and the inactivation and/or loss of the tumor suppressor genes, especially for miRNA-21, let-7 and so on, are the most primary molecule event in gliomas. MicroRNAs (miRNAs) are a class of endogenously expressed small noncoding RNAs which are usually 21-23 nucleotides long. miRNAs regulate gene expression and play important roles in a variety of physiological and pathological processes, such as cell proliferation, differentiation and apoptosis. To date, Growing evidence has shown that mi RNAs are frequently dysregulated in human cancers and can act as both tumor suppressors and oncogenes. Along with the discovery of micro RNA, more and more research focusing on its relationship with glioma was carried out to investigate the biological features of glioma and to provide experimental evidence for glioma mechanism. In the present study, we aimed to verify the miRNA-126 down-regulation which showed in the results of glioma tissue miRNAs chip and discuss the miRNA-126 methylation in patients with glioma. A total of 50 samples from patients with glioma and 20 control samples from patients with cerebral trauma were included in this study. The expression levels of the miR-126 gene were detected using quantitative polymerase chain reaction (PCR), and the methylation status of miR-126 was examined using methylation-specific PCR-denaturing high-performance liquid chromatography (MSP-DHPLC). The expression level of miRNA-126 was found to be significantly higher in the control group (0.6134 ± 0.1214) than in the glioma group (0.2771 ± 0.1529; P < 0.05). The expression was also significantly elevated in low-grade gliomas (0.3117 ± 0.1474) compared with high-grade gliomas (0.1582 ± 0.1345; P < 0.05). In addition, increased methylation of

  6. Perfluorocarbon emulsions radiosensitise brain tumors in carbogen breathing mice with orthotopic GL261 gliomas

    PubMed Central

    Feldman, Lisa A.; Fabre, Marie-Sophie; Grasso, Carole; Reid, Dana; Broaddus, William C.; Lanza, Gregory M.; Spiess, Bruce D.; Garbow, Joel R.; McConnell, Melanie J.

    2017-01-01

    Background Tumour hypoxia limits the effectiveness of radiation therapy. Delivering normobaric or hyperbaric oxygen therapy elevates pO2 in both tumour and normal brain tissue. However, pO2 levels return to baseline within 15 minutes of stopping therapy. Aim To investigate the effect of perfluorocarbon (PFC) emulsions on hypoxia in subcutaneous and intracranial mouse gliomas and their radiosensitising effect in orthotopic gliomas in mice breathing carbogen (95%O2 and 5%CO2). Results PFC emulsions completely abrogated hypoxia in both subcutaneous and intracranial GL261 models and conferred a significant survival advantage orthotopically (Mantel Cox: p = 0.048) in carbogen breathing mice injected intravenously (IV) with PFC emulsions before radiation versus mice receiving radiation alone. Carbogen alone decreased hypoxia levels substantially and conferred a smaller but not statistically significant survival advantage over and above radiation alone. Conclusion IV injections of PFC emulsions followed by 1h carbogen breathing, radiosensitises GL261 intracranial tumors. PMID:28873460

  7. Recurrent high-grade glioma.

    PubMed

    Quant, Eudocia C; Drappatz, Jan; Wen, Patrick Y; Norden, Andrew D

    2010-07-01

    Opinions vary on the best treatment options for recurrent high-grade glioma. Some argue that bevacizumab should become standard of care for patients with recurrent glioblastoma, especially in light of recent FDA approval for this indication. However, this opinion is not uniformly accepted. Age, performance status, histology, tumor size and location, O6-methylguanine-DNA methyltransferase (MGMT) methylation status for glioblastoma, 1p/19q status for oligodendroglial tumors, and the number and types of prior therapies are important considerations. In addition, recurrent disease must be distinguished from "pseudoprogression" due to treatment effects. Enrollment in a clinical trial is the optimal choice for most patients with recurrent high-grade glioma after failure of radiation therapy and temozolomide. For patients who are ineligible or do not have access to clinical trials, then either bevacizumab monotherapy or bevacizumab in combination with a second agent such as irinotecan is recommended. Involved-field external beam radiation should be considered for patients with anaplastic gliomas who have not received radiation. For patients with anaplastic astrocytoma who progress after radiotherapy, temozolomide may be used. For patients with anaplastic oligodendroglioma who progress after radiotherapy, PCV chemotherapy and temozolomide are options. Oligodendroglial tumors with 1p/19q deletions are more likely to respond to treatment. In the past, carmustine was commonly used to treat recurrent high-grade glioma, but the utility of carmustine in the modern era is unknown because most studies were performed prior to the widespread use of temozolomide. High-precision re-irradiation such as stereotactic radiosurgery is another option in high-grade glioma, especially for patients with poor bone marrow reserve or inability to tolerate chemotherapy, but there is a paucity of studies with adequate controls. Surgery may be useful as adjuvant treatment for patients with symptoms

  8. [Expression and mechanism of Twist2 in glioma].

    PubMed

    Wang, L Z; Wang, W J; Xiong, Y F; Xu, S; Wang, S S; Tu, Y; Wang, Z Y; Yan, X L; Mei, J H; Wang, C L

    2017-12-08

    Objective: To investigate the significance of Twist2 in glioma and whether it is involved in the malignant transformation of glioma by epithelial-mesenchymal transition (EMT). Methods: Using immunohistochemical method detected the expression level of Twist2 in 60 cases of gliomas (including WHO grades Ⅱ, Ⅲ and Ⅳ, each for 20 cases) and 20 cases of non-tumor brain tissues. Real-time fluorescence quantitative PCR and Western blot were used to detect the expression level of Twist2 mRNA and protein in 61 cases of fresh glioma tissue (WHO grade Ⅱ 16 cases, Ⅲ 21 cases, Ⅳ 24 cases) and 12 cases of adjacent tissues, and the expression levels of E-cadherin, N-cadherin and vimentin were also investigated in fresh glioma tissue. Results: Immunohistochemistry results showed that the percentages of Twist2 expression in glioma was 90%(54/60) compared with 30%(6/20) in non-tumor brain tissues( P <0.01). The percentages of Twist2 expression were 75% (15/20), 95% (19/20), and 100% (20/20) in the WHO gradesⅡ, Ⅲ and Ⅳ gliomas, respectively. WHO grades Ⅳ and Ⅲ were significantly higher than that of WHO grade Ⅱ ( P <0.01). There was no significant difference between WHO grade Ⅳand WHO Ⅲ glioma ( P >0.05). Real-time fluorescence quantitative PCR and Western blot showed that the expression level of Twist 2 in gliomas was significantly higher than that in para-cancerous tissues ( P <0.01), and those in WHO grades Ⅳ and Ⅲ gliomas were significantly higher than that in WHO grade Ⅱ glioma ( P <0.01). There was no significant difference between WHO grade Ⅳand grade Ⅲ glioma ( P >0.05). Detection of key protein expression in EMT by Western blot displayed that the expression of E-cadherin was negatively associated with Twist2 in glioma ( r =-0.972, P <0.01). The expression of N-cadherin and vimentin was positively associated with Twist2 in glioma( r =0.971, P <0.01; r =0.968, P <0.01). Conclusions: The expression of Twist2 in human glioma is positively

  9. Isocitrate dehydrogenase-mutant glioma: Evolving clinical and therapeutic implications.

    PubMed

    Miller, Julie J; Shih, Helen A; Andronesi, Ovidiu C; Cahill, Daniel P

    2017-12-01

    The metabolic genes isocitrate dehydrogenase 1 (IDH1) and IDH2 are commonly mutated in low-grade glioma and in a subset of glioblastoma. These mutations co-occur with other recurrent molecular alterations, including 1p/19q codeletions and tumor suppressor protein 53 (TP53) and alpha thalassemia/mental retardation (ATRX) mutations, which together help to define a molecular signature that aids in the classification of gliomas and helps to better predict clinical behavior. A confluence of research suggests that glioma development in IDH-mutant and IDH wild-type tumors is driven by different oncogenic processes and responds differently to current treatment paradigms. Herein, the authors discuss the discovery of IDH mutations and associated molecular alterations in glioma, review clinical features common to patients with IDH-mutant glioma, and highlight current understanding of IDH mutation-driven gliomagenesis with implications for emerging treatment strategies. Cancer 2017;123:4535-4546. © 2017 American Cancer Society. © 2017 American Cancer Society.

  10. Tumor-Specific Chromosome Mis-Segregation Controls Cancer Plasticity by Maintaining Tumor Heterogeneity

    PubMed Central

    Hu, Yuanjie; Ru, Ning; Xiao, Huasheng; Chaturbedi, Abhishek; Hoa, Neil T.; Tian, Xiao-Jun; Zhang, Hang; Ke, Chao; Yan, Fengrong; Nelson, Jodi; Li, Zhenzhi; Gramer, Robert; Yu, Liping; Siegel, Eric; Zhang, Xiaona; Jia, Zhenyu; Jadus, Martin R.; Limoli, Charles L.; Linskey, Mark E.; Xing, Jianhua; Zhou, Yi-Hong

    2013-01-01

    Aneuploidy with chromosome instability is a cancer hallmark. We studied chromosome 7 (Chr7) copy number variation (CNV) in gliomas and in primary cultures derived from them. We found tumor heterogeneity with cells having Chr7-CNV commonly occurs in gliomas, with a higher percentage of cells in high-grade gliomas carrying more than 2 copies of Chr7, as compared to low-grade gliomas. Interestingly, all Chr7-aneuploid cell types in the parental culture of established glioma cell lines reappeared in single-cell-derived subcultures. We then characterized the biology of three syngeneic glioma cultures dominated by different Chr7-aneuploid cell types. We found phenotypic divergence for cells following Chr7 mis-segregation, which benefited overall tumor growth in vitro and in vivo. Mathematical modeling suggested the involvement of chromosome instability and interactions among cell subpopulations in restoring the optimal equilibrium of tumor cell types. Both our experimental data and mathematical modeling demonstrated that the complexity of tumor heterogeneity could be enhanced by the existence of chromosomes with structural abnormality, in addition to their mis-segregations. Overall, our findings show, for the first time, the involvement of chromosome instability in maintaining tumor heterogeneity, which underlies the enhanced growth, persistence and treatment resistance of cancers. PMID:24282558

  11. Essential role of TRPC6 channels in G2/M phase transition and development of human glioma.

    PubMed

    Ding, Xia; He, Zhuohao; Zhou, Kechun; Cheng, Ju; Yao, Hailan; Lu, Dongliang; Cai, Rong; Jin, Yening; Dong, Bin; Xu, Yinghui; Wang, Yizheng

    2010-07-21

    Patients with glioblastoma multiforme, the most aggressive form of glioma, have a median survival of approximately 12 months. Calcium (Ca(2+)) signaling plays an important role in cell proliferation, and some members of the Ca(2+)-permeable transient receptor potential canonical (TRPC) family of channel proteins have demonstrated a role in the proliferation of many types of cancer cells. In this study, we investigated the role of TRPC6 in cell cycle progression and in the development of human glioma. TRPC6 protein and mRNA expression were assessed in glioma (n = 33) and normal (n = 17) brain tissues from patients and in human glioma cell lines U251, U87, and T98G. Activation of TRPC6 channels was tested by platelet-derived growth factor-induced Ca(2+) imaging. The effect of inhibiting TRPC6 activity or expression using the dominant-negative mutant TRPC6 (DNC6) or RNA interference, respectively, was tested on cell growth, cell cycle progression, radiosensitization of glioma cells, and development of xenografted human gliomas in a mouse model. The green fluorescent protein (GFP) and wild-type TRPC6 (WTC6) were used as controls. Survival of mice bearing xenografted tumors in the GFP, DNC6, and WTC6 groups (n = 13, 15, and 13, respectively) was compared using Kaplan-Meier analysis. All statistical tests were two-sided. Functional TRPC6 was overexpressed in human glioma cells. Inhibition of TRPC6 activity or expression attenuated the increase in intracellular Ca(2+) by platelet-derived growth factor, suppressed cell growth and clonogenic ability, induced cell cycle arrest at the G2/M phase, and enhanced the antiproliferative effect of ionizing radiation. Cyclin-dependent kinase 1 activation and cell division cycle 25 homolog C expression regulated the cell cycle arrest. Inhibition of TRPC6 activity also reduced tumor volume in a subcutaneous mouse model of xenografted human tumors (P = .014 vs GFP; P < .001 vs WTC6) and increased mean survival in mice in an intracranial

  12. Selective enrichment of hypericin in malignant glioma: pioneering in vivo results.

    PubMed

    Noell, Susan; Mayer, Daniel; Strauss, Wolfgang S L; Tatagiba, Marcos S; Ritz, Rainer

    2011-05-01

    Malignant gliomas are diffuse infiltrative growing tumors with a poor prognosis despite treatment with a combination of surgery, radiotherapy and chemotherapy. It has been shown recently that complete tumor resection improves the survival time significantly. Hypericin, a component of St. Johns Wort, is one of the most powerful photosensitizers in nature. The aim of the present study was to investigate accumulation of hypericin in intracerebral implanted malignant glioma in vivo. Rats underwent stereotactic implantation of C6 glioma cells. After intravenous administration of hypericin (5 mg per kg body weight), accumulation of the compound was studied in tumor, the infiltration zone surrounding the tumor and healthy brain (contralateral hemisphere) by fluorescence microscopy between 0 and 48 h after injection. Results were compared by one-way analysis of variance. For post hoc pair-wise comparison the Tukey-Kramer HSD test was used. Accumulation of hypericin was significantly higher in C6 glioma as compared to normal tissue. Maximum hypericin uptake was achieved at 24 h after injection. Ratios of fluorescence intensity between tumor and normal tissue as well as infiltration zone and normal tissue of about 6.1:1 and 1.4:1 were found. Considering tissue auto-fluorescence, fluorescence ratios of about 19.8:1 and 2.5:1 were calculated, respectively. Therefore, hypericin seems to be quite an effective fluorescence marker for the detection of glioma in vivo. To the best of our knowledge, the present study demonstrates for the first time that hypericin accumulates selectively in intracerebral implanted C6 glioma in vivo after systemic (intravenous) administration.

  13. In vivo detection of inducible nitric oxide synthase in rodent gliomas.

    PubMed

    Towner, Rheal A; Smith, Nataliya; Doblas, Sabrina; Garteiser, Philippe; Watanabe, Yasuko; He, Ting; Saunders, Debra; Herlea, Oana; Silasi-Mansat, Robert; Lupu, Florea

    2010-03-01

    Increased iNOS expression is often found in brain tumors, such as gliomas. The goal of this study was to develop and assess a novel molecular MRI (mMRI) probe for in vivo detection of iNOS in rodent models for gliomas (intracerebral implantation of rat C6 or RG2 cells or ethyl nitrosourea-induced glioma). The probe we used incorporated a Gd-DTPA (gadolinium(III) complex of diethylenetriamine-N,N,N',N'',N''-pentaacetate) backbone with albumin and biotin moieties and covalent binding of an anti-iNOS antibody (Ab) to albumin (anti-iNOS probe). We used mMRI with the anti-iNOS probe to detect in vivo iNOS levels in gliomas. Nonimmune normal rat IgG coupled to albumin-Gd-DTPA-biotin was used as a control nonspecific contrast agent. By targeting the biotin component of the anti-iNOS probe with streptavidin Cy3, fluorescence imaging confirmed the specificity of the probe for iNOS in glioma tissue. iNOS levels in glioma tumors were also confirmed via Western blots and immunohistochemistry. The presence of plasma membrane-associated iNOS in glioma cells was established by transmission electron microscopy and gold-labeled anti-iNOS Ab. The more aggressive RG2 glioma was not found to have higher levels of iNOS compared to C6. Differences in glioma vascularization and blood-brain barrier permeability between the C6 and the RG2 gliomas are discussed. In vivo assessment of iNOS levels associated with tumor development is quite feasible in heterogeneous tissues with mMRI. (c) 2009 Elsevier Inc. All rights reserved.

  14. 18F-Fluorocholine PET/CT, Brain MRI, and 5-Aminolevulinic Acid for the Assessment of Tumor Resection in High-Grade Glioma.

    PubMed

    García Vicente, Ana María; Jiménez Aragón, Fátima; Villena Martín, Maikal; Jiménez Londoño, German Andrés; Borrás Moreno, Jose María

    2017-06-01

    High-grade glioma is a very aggressive and infiltrative tumor in which complete resection is a chance for a better outcome. We present the case of a 57-year-old man with a brain lesion suggestive of high-grade glioma. Brain MRI and F-fluorocholine PET/CT were performed previously to plan the surgery. Surgery was microscope assisted after the administration of 5-aminolevulinic acid. Postsurgery brain MRI and PET were blind evaluated to the surgery results and reported as probably gross total resection.

  15. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma.

    PubMed

    Morgan, Richard A; Johnson, Laura A; Davis, Jeremy L; Zheng, Zhili; Woolard, Kevin D; Reap, Elizabeth A; Feldman, Steven A; Chinnasamy, Nachimuthu; Kuan, Chien-Tsun; Song, Hua; Zhang, Wei; Fine, Howard A; Rosenberg, Steven A

    2012-10-01

    No curative treatment exists for glioblastoma, with median survival times of less than 2 years from diagnosis. As an approach to develop immune-based therapies for glioblastoma, we sought to target antigens expressed in glioma stem cells (GSCs). GSCs have multiple properties that make them significantly more representative of glioma tumors than established glioma cell lines. Epidermal growth factor receptor variant III (EGFRvIII) is the result of a novel tumor-specific gene rearrangement that produces a unique protein expressed in approximately 30% of gliomas, and is an ideal target for immunotherapy. Using PCR primers spanning the EGFRvIII-specific deletion, we found that this tumor-specific gene is expressed in three of three GCS lines. Based on the sequence information of seven EGFRvIII-specific monoclonal antibodies (mAbs), we assembled chimeric antigen receptors (CARs) and evaluated the ability of CAR-engineered T cells to recognize EGFRvIII. Three of these anti-EGFRvIII CAR-engineered T cells produced the effector cytokine, interferon-γ, and lysed antigen-expressing target cells. We concentrated development on a CAR produced from human mAb 139, which specifically recognized GSC lines and glioma cell lines expressing mutant EGFRvIII, but not wild-type EGFR and did not recognize any normal human cell tested. Using the 139-based CAR, T cells from glioblastoma patients could be genetically engineered to recognize EGFRvIII-expressing tumors and could be expanded ex vivo to large numbers, and maintained their antitumor activity. Based on these observations, a γ-retroviral vector expressing this EGFRvIII CAR was produced for clinical application.

  16. Tectal gliomas: assessment of malignant progression, clinical management, and quality of life in a supposedly benign neoplasm.

    PubMed

    Mohme, Malte; Fritzsche, Friederike S; Mende, Klaus C; Matschke, Jakob; Löbel, Ulrike; Kammler, Gertrud; Westphal, Manfred; Emami, Pedram; Martens, Tobias

    2018-06-01

    OBJECTIVE Tectal gliomas constitute a rare and inhomogeneous group of lesions with an uncertain clinical course. Because these supposedly benign tumors are frequently followed up by observation over many years, the authors undertook this analysis of their own case series in an effort to demonstrate that the clinical course is highly variable and that there is a potential for a progressive biology. METHODS Clinical data analysis of 23 cases of tectal glioma (involving 9 children and 14 adults) was performed retrospectively. Radiographic data were analyzed longitudinally and MR images were evaluated for tumor volume, contrast enhancement, and growth progression. Quality of life was assessed using the EORTC BN20 and C30 questionnaires during follow-up in a subgroup of patients. RESULTS The patients' mean age at diagnosis was 29.2 years. The main presenting symptom at diagnosis was hydrocephalus (80%). Six patients were treated by primary tumor resection (26.1%), 3 patients underwent biopsy followed by resection (13.1%), and 3 patients underwent biopsy only (13.1%). For additional treatment of hydrocephalus, 14 patients (60.9%) received shunts and/or endoscopic third ventriculostomy. Radiographic tumor progression was observed in 47.9% of the 23 cases. The mean time between diagnosis and growth progression was 51.5 months, and the mean time to contrast enhancement was 69.7 months. Histopathological analysis was obtained in 12 cases (52.2%), resulting in 5 cases of high-grade glioma (3 cases of glioblastoma multiforme [GBM], grade IV, and 2 of anaplastic astrocytoma, grade III), 5 cases of pilocytic astrocytoma, 1 diffuse astrocytoma, and 1 ganglioglioma. Malignant progression was observed in 2 cases, with 1 case progressing from a diffuse astrocytoma (grade II) to a GBM (grade IV) within a period of 13 years. Quality-of-life measurements demonstrated distinct functional deficits compared to a healthy sample as well as glioma control cohorts. CONCLUSIONS Analysis of

  17. MAb 806 Enhances the Efficacy of Ionizing Radiation in Glioma Xenografts Expressing the de2-7 Epidermal Growth Factor Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, Terrance G.; McKay, Michael J.; Cvrljevic, Anna N.

    2010-10-01

    Purpose: Mutations of the epidermal growth factor receptor (EGFR) are common in glioma. The most frequent mutation, de2-7 EGFR/EGFRvIII, occurs in approximately 40% of high-grade gliomas and confers resistance to ionizing radiation (IR). We have previously shown that mAb 806, a novel EGFR-specific antibody, is able to inhibit the growth of U87MG.{Delta}2-7 glioma xenografts expressing the de2-7 EGFR and may have potential as a therapeutic. Methods and Materials: Nude mice bearing U87MG.{Delta}2-7 xenografts were treated with mAb 806 and/or IR. Comparison of tumor volumes, the effect of treatment on angiogenesis as determined by mean vessel density, and expression changes inmore » prosurvival protein pAkt between treatment groups were undertaken. Results: Treatment of mice bearing U87MG.{Delta}2-7 xenografts with mAb 806 and IR resulted in schedule-dependent radiosensitization. Maximal benefit was obtained when antibody treatment was given before irradiation, with the greatest inhibition of both tumor angiogenesis and tumor growth. Combination treatment mediated radiosensitization by selectively blocking the phosphorylation of the prosurvival protein Akt at serine 473, a process that is independent of DNA-dependent protein kinase catalytic subunit. Conclusions: Our results provide a rationale for the use of mAb 806 in combination with IR for the treatment of glioma and potentially other solid tumors bearing the de2-7 EGFR.« less

  18. GLISTR: Glioma Image Segmentation and Registration

    PubMed Central

    Pohl, Kilian M.; Bilello, Michel; Cirillo, Luigi; Biros, George; Melhem, Elias R.; Davatzikos, Christos

    2015-01-01

    We present a generative approach for simultaneously registering a probabilistic atlas of a healthy population to brain magnetic resonance (MR) scans showing glioma and segmenting the scans into tumor as well as healthy tissue labels. The proposed method is based on the expectation maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the original atlas into one with tumor and edema adapted to best match a given set of patient’s images. The modified atlas is registered into the patient space and utilized for estimating the posterior probabilities of various tissue labels. EM iteratively refines the estimates of the posterior probabilities of tissue labels, the deformation field and the tumor growth model parameters. Hence, in addition to segmentation, the proposed method results in atlas registration and a low-dimensional description of the patient scans through estimation of tumor model parameters. We validate the method by automatically segmenting 10 MR scans and comparing the results to those produced by clinical experts and two state-of-the-art methods. The resulting segmentations of tumor and edema outperform the results of the reference methods, and achieve a similar accuracy from a second human rater. We additionally apply the method to 122 patients scans and report the estimated tumor model parameters and their relations with segmentation and registration results. Based on the results from this patient population, we construct a statistical atlas of the glioma by inverting the estimated deformation fields to warp the tumor segmentations of patients scans into a common space. PMID:22907965

  19. Fluorescein-guided surgery for grade IV gliomas with a dedicated filter on the surgical microscope: preliminary results in 12 cases.

    PubMed

    Acerbi, Francesco; Broggi, Morgan; Eoli, Marica; Anghileri, Elena; Cuppini, Lucia; Pollo, Bianca; Schiariti, Marco; Visintini, Sergio; Orsi, Chiara; Franzini, Angelo; Broggi, Giovanni; Ferroli, Paolo

    2013-07-01

    Fluorescein is widely used as a fluorescent tracer for many applications. Its capability to accumulate in cerebral areas with blood-brain barrier damage makes it an ideal dye for intraoperative visualization of malignant gliomas (MG). We report our preliminary experience in fluorescein-guided removal of grade IV gliomas using a dedicated filter on the surgical microscope. In September 2011 we started a prospective phase II trial (FLUOGLIO) to evaluate the safety and obtain initial indications about the efficacy of fluorescein-guided surgery for MG. Patients with suspected MG amenable to complete resection of contrast-enhancing areas were eligible to participate in this study. This report is based on a preliminary analysis of the results of 12 patients with grade IV gliomas out of 15 consecutive cases (age range 48-72 years) enrolled since September 2011. Fluorescein was injected intravenously (i.v.) after intubation (5-10 mg/kg). The tumor was removed using a microsurgical technique and fluorescence visualization by BLU 400 or YELLOW 560 filters on a Pentero microscope (Carl Zeiss, Germany). The study was approved by our ethics committee and registered on the European Regulatory Authorities website (EudraCT no. 2011-002527-18). Histological analysis confirmed grade IV gliomas in 12/15 cases. Median preoperative tumor volume was 33.15 cm(3) (9.6-87.8 cm(3)). No adverse reaction related to the administration of fluorescein was registered. Contrast-enhanced tumor was completely removed in 75 % of the patients. This preliminary analysis suggested that the use of intravenous fluorescein during surgery on grade IV gliomas is safe and allows a high rate of complete resection of contrast-enhanced tumor at the early postoperative MRI.

  20. Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells.

    PubMed

    Wang, Xue; Deng, Jiaojiao; Yuan, Jinxia; Tang, Xin; Wang, Yuelong; Chen, Haifeng; Liu, Yi; Zhou, Liangxue

    2017-08-01

    Glioblastoma is the most common brain cancer in adults. It represents one of the top ten malignant tumors with an average survival time of nine months despite treatments with surgery, radiotherapy and chemotherapy. Curcumin is a phytochemical turmeric isolated from root of the Curcuma longa plant. Accumulating evidence have proved that curcumin targets numerous cancer signaling pathways. The E3 ubiquitin ligase NEDD4, neural precursor cell expressed developmentally downregulated protein 4, is frequently overexpressed in various cancers. However, whether curcumin regulates NEDD4 expression has not been described in human cancers. Therefore, in this study, we explored the roles of NEDD4 in glioma cell proliferation, apoptosis and mobility. We further investigated whether curcumin exerts its antitumor activities via suppressing NEDD4 expression. We found that curcumin reduced the expression of NEDD4 and Notch1 and pAKT, leading to glioma cell growth inhibition, apoptosis, and suppression of migration and invasion. Moreover, deletion of NEDD4 expression enhanced the sensitivity of glioma cells to curcumin treatment. Thus, inactivation of NEDD4 by curcumin could be a promising approach for therapeutic intervention.

  1. Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells

    PubMed Central

    Wang, Xue; Deng, Jiaojiao; Yuan, Jinxia; Tang, Xin; Wang, Yuelong; Chen, Haifeng; Liu, Yi; Zhou, Liangxue

    2017-01-01

    Glioblastoma is the most common brain cancer in adults. It represents one of the top ten malignant tumors with an average survival time of nine months despite treatments with surgery, radiotherapy and chemotherapy. Curcumin is a phytochemical turmeric isolated from root of the Curcuma longa plant. Accumulating evidence have proved that curcumin targets numerous cancer signaling pathways. The E3 ubiquitin ligase NEDD4, neural precursor cell expressed developmentally downregulated protein 4, is frequently overexpressed in various cancers. However, whether curcumin regulates NEDD4 expression has not been described in human cancers. Therefore, in this study, we explored the roles of NEDD4 in glioma cell proliferation, apoptosis and mobility. We further investigated whether curcumin exerts its antitumor activities via suppressing NEDD4 expression. We found that curcumin reduced the expression of NEDD4 and Notch1 and pAKT, leading to glioma cell growth inhibition, apoptosis, and suppression of migration and invasion. Moreover, deletion of NEDD4 expression enhanced the sensitivity of glioma cells to curcumin treatment. Thus, inactivation of NEDD4 by curcumin could be a promising approach for therapeutic intervention. PMID:28627598

  2. Image-fusion of MR spectroscopic images for treatment planning of gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Jenghwa; Thakur, Sunitha; Perera, Gerard

    2006-01-15

    {sup 1}H magnetic resonance spectroscopic imaging (MRSI) can improve the accuracy of target delineation for gliomas, but it lacks the anatomic resolution needed for image fusion. This paper presents a simple protocol for fusing simulation computer tomography (CT) and MRSI images for glioma intensity-modulated radiotherapy (IMRT), including a retrospective study of 12 patients. Each patient first underwent whole-brain axial fluid-attenuated-inversion-recovery (FLAIR) MRI (3 mm slice thickness, no spacing), followed by three-dimensional (3D) MRSI measurements (TE/TR: 144/1000 ms) of a user-specified volume encompassing the extent of the tumor. The nominal voxel size of MRSI ranged from 8x8x10 mm{sup 3} to 12x12x10more » mm{sup 3}. A system was developed to grade the tumor using the choline-to-creatine (Cho/Cr) ratios from each MRSI voxel. The merged MRSI images were then generated by replacing the Cho/Cr value of each MRSI voxel with intensities according to the Cho/Cr grades, and resampling the poorer-resolution Cho/Cr map into the higher-resolution FLAIR image space. The FUNCTOOL processing software was also used to create the screen-dumped MRSI images in which these data were overlaid with each FLAIR MRI image. The screen-dumped MRSI images were manually translated and fused with the FLAIR MRI images. Since the merged MRSI images were intrinsically fused with the FLAIR MRI images, they were also registered with the screen-dumped MRSI images. The position of the MRSI volume on the merged MRSI images was compared with that of the screen-dumped MRSI images and was shifted until agreement was within a predetermined tolerance. Three clinical target volumes (CTVs) were then contoured on the FLAIR MRI images corresponding to the Cho/Cr grades. Finally, the FLAIR MRI images were fused with the simulation CT images using a mutual-information algorithm, yielding an IMRT plan that simultaneously delivers three different dose levels to the three CTVs. The image

  3. MicroRNA-105 inhibits human glioma cell malignancy by directly targeting SUZ12.

    PubMed

    Zhang, Jie; Wu, Weining; Xu, Shuo; Zhang, Jian; Zhang, Jiale; Yu, Qun; Jiao, Yuanyuan; Wang, Yingyi; Lu, Ailin; You, Yongping; Zhang, Junxia; Lu, Xiaoming

    2017-06-01

    Glioma accounts for the majority of primary malignant brain tumors in adults and is highly aggressive. Although various therapeutic approaches have been applied, outcomes of glioma treatment remain poor. MicroRNAs are a class of small noncoding RNAs that function as regulators of gene expression. Accumulating evidence shows that microRNAs are associated with tumorigenesis and tumor progression. In this study, we found that miR-105 is significantly downregulated in glioma tissues and glioma cell lines. We identified suppressor of Zeste 12 homolog as a novel direct target of miR-105 and showed that suppressor of Zeste 12 homolog protein levels were inversely correlated with the levels of miR-105 expression in clinical specimens. Overexpression of miR-105 inhibited cell proliferation, tumorigenesis, migration, invasion, and drug sensitivity, whereas overexpression of suppressor of Zeste 12 homolog antagonized the tumor-suppressive functions of miR-105. Taken together, our results indicate that miR-105 plays a significant role in tumor behavior and malignant progression, which may provide a novel therapeutic strategy for the treatment of glioma and other cancers.

  4. Anatomic Location of Tumor Predicts the Accuracy of Motor Function Localization in Diffuse Lower-Grade Gliomas Involving the Hand Knob Area.

    PubMed

    Fang, S; Liang, J; Qian, T; Wang, Y; Liu, X; Fan, X; Li, S; Wang, Y; Jiang, T

    2017-10-01

    The accuracy of preoperative blood oxygen level-dependent fMRI remains controversial. This study assessed the association between the anatomic location of a tumor and the accuracy of fMRI-based motor function mapping in diffuse lower-grade gliomas. Thirty-five patients with lower-grade gliomas involving motor areas underwent preoperative blood oxygen level-dependent fMRI scans with grasping tasks and received intraoperative direct cortical stimulation. Patients were classified into an overlapping group and a nonoverlapping group, depending on the extent to which blood oxygen level-dependent fMRI and direct cortical stimulation results concurred. Tumor location was quantitatively measured, including the shortest distance from the tumor to the hand knob and the deviation distance of the midpoint of the hand knob in the lesion hemisphere relative to the midline compared with the normal contralateral hemisphere. A 4-mm shortest distance from the tumor to the hand knob value was identified as optimal for differentiating the overlapping and nonoverlapping group with the receiver operating characteristic curve (sensitivity, 84.6%; specificity, 77.8%). The shortest distances from the tumor to the hand knob of ≤4 mm were associated with inaccurate fMRI-based localizations of the hand motor cortex. The shortest distances from the tumor to the hand knob were larger ( P = .002), and the deviation distances for the midpoint of the hand knob in the lesion hemisphere were smaller ( P = .003) in the overlapping group than in the nonoverlapping group. This study suggests that the shortest distance from the tumor to the hand knob and the deviation distance for the midpoint of the hand knob on the lesion hemisphere are predictive of the accuracy of blood oxygen level-dependent fMRI results. Smaller shortest distances from the tumor to the hand knob and larger deviation distances for the midpoint of hand knob on the lesion hemisphere are associated with less accuracy of motor cortex

  5. Expression of Fas ligand by microglia: possible role in glioma immune evasion.

    PubMed

    Badie, B; Schartner, J; Prabakaran, S; Paul, J; Vorpahl, J

    2001-11-01

    The immune-privileged status of the central nervous system is thought to limit the application of immunotherapy for treatment of malignant brain tumors. Because the Fas pathway has been proposed to play a role in immune evasion, we examined the effect of tumor environment on the expression of Fas ligand (FasL) in a mouse glioma model. Immunoblotting revealed the expression of membrane-bound FasL to nearly double when murine G26 gliomas were propagated intracranially (IC) as compared to subcutaneously (SC). Further analysis by flow cytometry revealed microglia, which were absent in the SC tumors, to account for half of the FasL expression in the IC tumors. Interestingly, when FasL activity was inhibited in IC tumors, the proportion of tumor-infiltrating leukocytes increased three-fold, reaching the same frequency as the SC tumors. These observations suggest that microglia are a major source of FasL expression in brain tumors and possibly contribute to the local immunosuppressive milieu of malignant gliomas.

  6. [Positron emission tomographic evaluations on hemodynamics and glucose metabolism of brain tumors and perifocal edematous tissues].

    PubMed

    Mizukawa, N; Hino, A; Imahori, Y; Tenjin, H; Yano, I; Yoshino, E; Hirakawa, K; Yamashita, M; Oki, F; Nakahashi, H

    1989-03-01

    Blood flow and glucose metabolism of the tumors and perifocal edematous tissues were evaluated using positron emission tomography (PET). Thirty-one brain tumor cases were investigated 12 non glial tumors (9 meningiomas and 3 metastatic tumors) and 19 gliomas (these were classified in 5 astrocytomas, 7 anaplastic astrocytomas and 7 glioblastomas, according to the malignancy). The diagnosis were confirmed pathologically in 30 cases. Cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were measured by O-15 labeled gases inhalation methods. Cerebral metabolic rate for glucose (CMFglu) were measured by F-18 Deoxyglucose intravenous injection method and calculated by Hutchins's formula. The rate constant (ks) and lumped constant (LC) used in this study were the same as those published by Phelps et al. in 1979. The blood flow and glucose metabolic rates of tumors were measured by the same methods. The results were as follows: 1) Meningiomas showed very high blood flow and blood volume with a wide range. The OEF and metabolic rate for glucose (MRglu) values were very low. 2) Metastatic tumors showed the low values of blood flow, metabolic rate for oxygen (MRO2) and OEF. 3) The blood flow and MRglu values on gliomas were varied with no significant differences between the three subgroups. On the other hands, as the malignancy of the glioma increased, a statistically significant increase in blood volume and a decrease in OEF were noted. 4) The OEF values from the various types of tumors studied were significantly lower than those obtained from the normal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Aberrant Expression of Retinoic Acid Signaling Molecules Influences Patient Survival in Astrocytic Gliomas

    PubMed Central

    Campos, Benito; Centner, Franz-Simon; Bermejo, Justo Lorenzo; Ali, Ramadan; Dorsch, Katharina; Wan, Feng; Felsberg, Jörg; Ahmadi, Rezvan; Grabe, Niels; Reifenberger, Guido; Unterberg, Andreas; Burhenne, Jürgen; Herold-Mende, Christel

    2011-01-01

    Undifferentiated cell populations may influence tumor growth in malignant glioma. We investigated potential disruptions in the retinoic acid (RA) differentiation pathway that could lead to a loss of differentiation capacity, influencing patient prognosis. Expression of key molecules belonging to the RA differentiation pathway was analyzed in 283 astrocytic gliomas and was correlated with tumor proliferation, tumor differentiation, and patient survival. In addition, in situ concentrations of retinoids were measured in tumors, and RA signaling events were studied in vitro. Unlike other tumors, in gliomas expression of most RA signaling molecules increased with malignancy and was associated with augmented intratumoral retinoid levels in high-grade gliomas. Aberrantly expressed RA signaling molecules included i) the retinol-binding protein CRBP1, which facilitates cellular retinoid uptake; ii) ALDH1A1, capable of activating RA precursors; iii) the RA-degrading enzyme CYP26B1; and iv) the RA-binding protein FABP5, which can inhibit RA-induced differentiation. In contrast, expression of the RA-binding protein CRABP2, which fosters differentiation, was decreased in high-grade tumors. Moreover, expression of CRBP1 correlated with tumor proliferation, and FABP5 expression correlated with an undifferentiated tumor phenotype. CRBP1 and ALDH1A1 were independent prognostic markers for adverse patient survival. Our data indicate a complex and clinically relevant deregulation of RA signaling, which seems to be a central event in glioma pathogenesis. PMID:21514413

  8. MiR-320 inhibits the growth of glioma cells through downregulating PBX3.

    PubMed

    Pan, Cuicui; Gao, Hua; Zheng, Ni; Gao, Qi; Si, Yuanquan; Zhao, Yueran

    2017-09-21

    MiR-320 is downregulated in multiple cancers, including glioma and acts as tumor suppressor through inhibiting tumor cells proliferation and inducing apoptosis. PBX3 (Pre-B cell leukemia homeobox 3), a putative target gene of miR-320, has been reported to be upregulated in various tumors and promote tumor cell growth through regulating MAKP/ERK pathway. This study aimed to verify whether miR-320 influences glioma cells growth through regulating PBX3. Twenty-four human glioma and paired adjacent nontumorous tissues were collected for determination of miR-320 and PBX3 expression using RT-qPCR and western blot assays. Luciferase reporter assay was performed to verify the interaction between miR-320 and its targeting sequence in the 3' UTR of PBX3 in glioma cells U87 and U251. Increased miR-320 level in U87 and U251 cells was achieved through miR-320 mimic transfection and the effect of which on glioma cells growth, proliferation, cell cycle, apoptosis and activation of Raf-1/MAPK pathway was determined using MTT, colony formation, flow cytometry and western blot assays. PBX3 knockdown was performed using shPBX3 and the influence on MAPK pathway activation was evaluated. MiR-320 downregulation and PBX3 upregulation was found in glioma tissues. Luciferase reporter assays identified miR-320 directly blinds to the 3' UTR of PBX3 in glioma cells. MiR-320 mimic transfection suppressed glioma cells proliferation, and induced cell cycle arrest and apoptosis. Both miR-320 overexpression and PBX3 knockdown inhibited Raf-1/MAPK activation. MiR-320 may suppress glioma cells growth and induced apoptosis through the PBX3/Raf-1/MAPK axis, and miR-320 oligonucleotides may be a potential cancer therapeutic for glioma.

  9. Autologous Tumor Lysate-pulsed Dendritic Cell Immunotherapy for Pediatric Patients with Newly Diagnosed or Recurrent High-grade Gliomas

    PubMed Central

    Lasky, Joseph L.; Panosyan, Eduard H.; Plant, Ashley; Davidson, Tom; Yong, William H.; Prins, Robert M.; Liau, Linda M.; Moore, Theodore B.

    2014-01-01

    Immunotherapy has the potential to improve clinical outcomes with little toxicity for pediatric patients with brain tumors. We conducted a pilot feasibility study of tumor lysate-pulsed dendritic cell (DC) vaccination in pediatric patients (1 to 18 years old) with newly diagnosed or recurrent high-grade glioma (HGG). A total of nine DC vaccine doses, each containing 1×106 cells per dose were administered to three out of the seven originally enrolled patients. Toxicities were limited to mild side-effects, except in one case of elevated alkaline phosphatase, which resolved without clinical consequences. Two patients with primary lesions amongst the three vaccinated were alive at the time of writing, both without evidence of disease. Pre- and post-vaccination tumor samples from a patient with an anaplastic oligoastrocytoma that recurred failed to demonstrate immune cell infiltration by immunohistochemistry. Peripheral cytokine levels were evaluated in one patient following DC vaccination and demonstrated some changes in relation to vaccination. DC vaccine is tolerable and feasible with some limitations for pediatric patients with HGG. Dendritic cell based immunotherapy may provide some clinical benefit in pediatric patients with glioma, especially for patients with minimal residual disease, but further investigation of this modality is required. PMID:23645755

  10. A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma.

    PubMed

    Söling, Ariane; Theiss, Christian; Jungmichel, Stephanie; Rainov, Nikolai G

    2004-08-04

    BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.

  11. MiR-200c Inhibits the Tumor Progression of Glioma via Targeting Moesin

    PubMed Central

    Qin, Yuanyuan; Chen, Weilong; Liu, Bingjie; Zhou, Lei; Deng, Lu; Niu, Wanxiang; Bao, Dejun; Cheng, Chuandong; Li, Dongxue; Liu, Suling; Niu, Chaoshi

    2017-01-01

    We attempt to demonstrate the regulatory role of miR-200c in glioma progression and its mechanisms behind. Here, we show that miR-200c expression was significantly reduced in the glioma tissues compared to paratumor tissues, especially in malignant glioma. Exogenous overexpression of miR-200c inhibited the proliferation and invasion of glioma cells. In addition, the in vivo mouse xenograft model showed that miR-200c inhibited glioma growth and liver metastasis, which is mainly regulated by targeting moesin (MSN). We demonstrated that the expression of MSN in glioma specimens were negatively correlated with miR-200c expression, and MSN overexpression rescued the phenotype about cell proliferation and invasion induced by miR-200c. Moreover, knockdown of MSN was able to mimic the effects induced by miR-200c in glioma cells. These results indicate that miR-200c plays an important role in the regulation of glioma through targeting MSN. PMID:28529643

  12. Pediatric low-grade gliomas and the need for new options for therapy: why and how?

    PubMed Central

    Qaddoumi, Ibrahim; Sultan, Iyad; Broniscer, Alberto

    2009-01-01

    Pediatric low-grade gliomas are the most common tumors of the central nervous system in children, accounting for almost 50% of all childhood brain tumors. They are a heterogeneous group of tumors with different histologic subtypes. Most treatment studies address low-grade gliomas as a single entity, depriving us of histology-specific treatment outcomes. This is mostly due to a lack of understanding of tumor biology at the molecular level. Pediatric low-grade gliomas are not benign, and most incompletely resected tumors will progress and negatively affect quality of life. The advancements made in understanding sporadic pilocytic astrocytoma and neurofibromatosis 1-associated pilocytic astrocytoma in particular have paved the way for potential targeted therapy and biological stratification. Such progress in pilocytic astrocytoma needs to be consolidated and expanded to other histologic varieties of pediatric low-grade gliomas. PMID:19164945

  13. Silver nanoparticles: a novel radiation sensitizer for glioma?

    NASA Astrophysics Data System (ADS)

    Liu, Peidang; Huang, Zhihai; Chen, Zhongwen; Xu, Ruizhi; Wu, Hao; Zang, Fengchao; Wang, Cailian; Gu, Ning

    2013-11-01

    Malignant gliomas are the most common primary intracranial tumors with a dismal prognosis. Previous investigations by our group demonstrated the radiosensitizing effect of silver nanoparticles (AgNPs) on glioma cells in vitro. The goal of the present study was to evaluate the efficacy of intratumoral administration of AgNPs in combination with a single dose of ionizing radiation at clinically relevant MV energies for the treatment of C6 glioma-bearing rats. AgNPs (10 or 20 μg/10 μl) were stereotactically administered on day 8 after tumor implantation. One day after AgNP injection, rats bearing glioma received 10 Gy radiation. The mean survival times were 100.5 and 98 days, the corresponding percent increase in life spans was 513.2% and 497.7%, and the cure rates were 41.7 and 38.5% at 200 days for the 10 and 20 μg AgNPs and radiation combination groups, respectively. In contrast, the mean survival times for irradiated controls, 10 and 20 μg AgNPs alone, and untreated controls were 24.5, 16.1, 19.4, and 16.4 days, respectively. Furthermore, a cooperative antiproliferative and proapoptotic effect was obtained when gliomas were treated with AgNPs followed by radiotherapy. Our results showed the therapeutic efficacy of AgNPs in combination with radiotherapy without apparent systemic toxicity, suggesting the clinical potential of AgNPs in improving the outcome of malignant glioma radiotherapy.Malignant gliomas are the most common primary intracranial tumors with a dismal prognosis. Previous investigations by our group demonstrated the radiosensitizing effect of silver nanoparticles (AgNPs) on glioma cells in vitro. The goal of the present study was to evaluate the efficacy of intratumoral administration of AgNPs in combination with a single dose of ionizing radiation at clinically relevant MV energies for the treatment of C6 glioma-bearing rats. AgNPs (10 or 20 μg/10 μl) were stereotactically administered on day 8 after tumor implantation. One day after Ag

  14. Safety and maximum tolerated dose of superselective intraarterial cerebral infusion of bevacizumab after osmotic blood-brain barrier disruption for recurrent malignant glioma. Clinical article.

    PubMed

    Boockvar, John A; Tsiouris, Apostolos J; Hofstetter, Christoph P; Kovanlikaya, Ilhami; Fralin, Sherese; Kesavabhotla, Kartik; Seedial, Stephen M; Pannullo, Susan C; Schwartz, Theodore H; Stieg, Philip; Zimmerman, Robert D; Knopman, Jared; Scheff, Ronald J; Christos, Paul; Vallabhajosula, Shankar; Riina, Howard A

    2011-03-01

    The authors assessed the safety and maximum tolerated dose of superselective intraarterial cerebral infusion (SIACI) of bevacizumab after osmotic disruption of the blood-brain barrier (BBB) with mannitol in patients with recurrent malignant glioma. A total of 30 patients with recurrent malignant glioma were included in the current study. The authors report no dose-limiting toxicity from a single dose of SIACI of bevacizumab up to 15 mg/kg after osmotic BBB disruption with mannitol. Two groups of patients were studied; those without prior bevacizumab exposure (naïve patients; Group I) and those who had received previous intravenous bevacizumab (exposed patients; Group II). Radiographic changes demonstrated on MR imaging were assessed at 1 month postprocedure. In Group I patients, MR imaging at 1 month showed a median reduction in the area of tumor enhancement of 34.7%, a median reduction in the volume of tumor enhancement of 46.9%, a median MR perfusion (MRP) reduction of 32.14%, and a T2-weighted/FLAIR signal decrease in 9 (47.4%) of 19 patients. In Group II patients, MR imaging at 1 month showed a median reduction in the area of tumor enhancement of 15.2%, a median volume reduction of 8.3%, a median MRP reduction of 25.5%, and a T2-weighted FLAIR decrease in 0 (0%) of 11 patients. The authors conclude that SIACI of mannitol followed by bevacizumab (up to 15 mg/kg) for recurrent malignant glioma is safe and well tolerated. Magnetic resonance imaging shows that SIACI treatment with bevacizumab can lead to reduction in tumor area, volume, perfusion, and T2-weighted/FLAIR signal.

  15. [Antitumor effect of baicalin on rat brain glioma].

    PubMed

    Hu, Yong-zhen; Wang, Dian-hong; Luan, Yu; Gong, Hai-dong

    2013-01-01

    To investigate the therapeutic mechanism of baicalin on rat brain glioma. Deep brain glioma models were established by injection of glioma cell line C6 cells into the brain of Wistar rats. The rats at 7 days after modeling were randomly divided into tumor control group (0.9% NaCl solution 30 mg×kg(-1)×d(-1) gavage)and experimental groups. The experimental rats was divided into 3 groups: low dose group (50 mg×kg(-1)×d(-1)), middle dose group (100 mg×kg(-1)×d(-1)) and high dose group (200 mg×kg(-1)×d(-1)), given the baicalin by gavage. Pathological and electron microscopic changes were observed. The expressions of p53 and Bcl-2 were determined by immunohistochemistry, and the changes of MRI, the average survival time and body weight of the rats in each group after treatments were analyzed. Compared with the control group, the tumor diameter and volume of high dose group rats before sacrifice were significantly reduced (P < 0.01), and the survival time was significantly prolonged (P < 0.01). Immunohistochemistry revealed strong positive expression rate of mutant p53 (84.47 ± 3.74)% and moderately positive rate (47.28 ± 2.38)% in the control group, significantly higher than that in the negative group (12.91 ± 1.07)% (P < 0.01). The positive rate of mutant p53 of the high dose group was (46.42 ± 2.19)%, significantly lower than that of the control group (84.47 ± 3.74)% (P < 0.01). The expression rate of Bcl-2 in the control group was strongly positive (86.51 ± 4.17)% and moderate positive (48.19 ± 2.11)%, significantly higher than that of the negative group (10.36 ± 1.43)% (P < 0.01). Electron microscopy revealed that baicalin caused damages of the cell nuclei and organelles in the gliomas. Baicalin has significant inhibitory effect on glioma in vivo, and its mechanism may be related to cell apoptosis induced by down-regulated expression of mutant p53, but not related with Bcl-2 expression.

  16. Long Non-Coding RNA in Glioma: Target miRNA and Signaling Pathways.

    PubMed

    Dang, Yuan; Wei, Xudong; Xue, Laien; Wen, Fuli; Gu, Jianjun; Zheng, Heping

    2018-06-01

    Glioma is one of the most common and aggressive malignant tumors of the central nervous system. Here, we review and explore the use of long noncoding RNA (lncRNA) as a therapeutic strategy for the targeting of gliomas. LncRNA is a functional RNA molecule with no protein coding function and is involved in the occurrence and progression of glioma. It is reported that the activation of several signaling pathways, including the MAPK, p53, Wnt/β-catenin, PI3K/AKT/mTOR, and epithelial mesenchymal transformation (EMT) pathways, are involved in the regulation of gliomas. In addition, microRNAs in glioma may also interact with lncRNAs and affect tumor growth and progression. Therefore, the exploration of lncRNA participation in signaling pathway regulatory mechanisms and the determination of the interaction between lncRNA and miRNA may help to develop new effective therapies for the treatment of glioma.

  17. Recognition of Glioma Stem Cells by Genetically Modified T Cells Targeting EGFRvIII and Development of Adoptive Cell Therapy for Glioma

    PubMed Central

    Johnson, Laura A.; Davis, Jeremy L.; Zheng, Zhili; Woolard, Kevin D.; Reap, Elizabeth A.; Feldman, Steven A.; Chinnasamy, Nachimuthu; Kuan, Chien-Tsun; Song, Hua; Zhang, Wei; Fine, Howard A.; Rosenberg, Steven A.

    2012-01-01

    Abstract No curative treatment exists for glioblastoma, with median survival times of less than 2 years from diagnosis. As an approach to develop immune-based therapies for glioblastoma, we sought to target antigens expressed in glioma stem cells (GSCs). GSCs have multiple properties that make them significantly more representative of glioma tumors than established glioma cell lines. Epidermal growth factor receptor variant III (EGFRvIII) is the result of a novel tumor-specific gene rearrangement that produces a unique protein expressed in approximately 30% of gliomas, and is an ideal target for immunotherapy. Using PCR primers spanning the EGFRvIII-specific deletion, we found that this tumor-specific gene is expressed in three of three GCS lines. Based on the sequence information of seven EGFRvIII-specific monoclonal antibodies (mAbs), we assembled chimeric antigen receptors (CARs) and evaluated the ability of CAR-engineered T cells to recognize EGFRvIII. Three of these anti-EGFRvIII CAR-engineered T cells produced the effector cytokine, interferon-γ, and lysed antigen-expressing target cells. We concentrated development on a CAR produced from human mAb 139, which specifically recognized GSC lines and glioma cell lines expressing mutant EGFRvIII, but not wild-type EGFR and did not recognize any normal human cell tested. Using the 139-based CAR, T cells from glioblastoma patients could be genetically engineered to recognize EGFRvIII-expressing tumors and could be expanded ex vivo to large numbers, and maintained their antitumor activity. Based on these observations, a γ-retroviral vector expressing this EGFRvIII CAR was produced for clinical application. PMID:22780919

  18. Comparison of O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography and Perfusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Patients with Progressive and Recurrent Glioma: A Hybrid Positron Emission Tomography/Magnetic Resonance Study.

    PubMed

    Verger, Antoine; Filss, Christian P; Lohmann, Philipp; Stoffels, Gabriele; Sabel, Michael; Wittsack, Hans-J; Kops, Elena Rota; Galldiks, Norbert; Fink, Gereon R; Shah, Nadim J; Langen, Karl-Josef

    2018-05-01

    To compare the diagnostic performance of O-(2- 18 F-fluoroethyl)-L-tyrosine ( 18 F-FET) positron emission tomography (PET) and perfusion-weighted magnetic resonance imaging (PWI) for the diagnosis of progressive or recurrent glioma. Thirty-two pretreated gliomas (25 progressive or recurrent tumors, 7 treatment-related changes) were investigated with 18 F-FET PET and PWI via a hybrid PET/magnetic resonance scanner. Volumes of interest with a diameter of 16 mm were centered on the maximum of abnormality in the tumor area in PET and PWI maps (relative cerebral blood volume, relative cerebral blood flow, mean transit time) and the contralateral unaffected hemisphere. Mean and maximum tumor-to-brain ratios as well as dynamic data for 18 F-FET uptake were calculated. Diagnostic accuracies were evaluated by receiver operating characteristic analyses, calculating the area under the curve. 18 F-FET PET showed a significant greater sensitivity to detect abnormalities in pretreated gliomas than PWI (76% vs. 52%, P = 0.03). The maximum tumor-to-brain ratio of 18 F-FET PET was the only parameter that discriminated treatment-related changes from progressive or recurrent gliomas (area under the curve, 0.78; P = 0.03, best cut-off 2.61; sensitivity 80%, specificity 86%, accuracy 81%). Among patients with signal abnormality in both modalities, 75% revealed spatially incongruent local hot spots. This pilot study suggests that 18 F-FET PET is superior to PWI to diagnose progressive or recurrent glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Canine ocular gliomas: a retrospective study.

    PubMed

    Naranjo, Carolina; Schobert, Charles; Dubielzig, Richard

    2008-01-01

    The purpose of this paper is to classify glial tumors observed in the canine retina and optic nerve, describe the histopathological features and provide prognostic information on these neoplasms. The database of the Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW) was searched to collect canine glioma cases. Clinical and follow-up information was gathered from submission forms and an extensive follow-up survey. Slides were reviewed to describe the histopathological characteristics of the neoplasm and classify them. Immunohistochemistry for Glial Fibrillary Acidic Protein (GFAP) was performed in all cases. 18 canine glioma cases were found in the COPLOW database. There was no breed or gender predilection. The mean age was 9.33 +/- 3.67 years. Follow-up information was available for 12 dogs, 8 of which were dead at the time of most recent contact, with a survival time ranging from 0 days (globes received after euthanasia) up to 20 months post-enucleation. In 6 of the 8 dogs that had died during this stud), tumor extended to the margin where the optic nerve had been sectioned. Light microscopic examination of the optic nerve of the affected eyes of four dogs that were still alive during this study revealed no tumor at this surgical margin. One neoplasm was classified as low-grade astrocytoma, 5 tumors as medium-grade astrocytoma, 11 tumors as high grade-astrocytoma and 1 tumor as oligodendroglioma. GFAP was positive in all but two tumors. Retinal and optic nerve gliomas may be considered as differential diagnoses of intraocular and orbital masses. The metastatic potential appears to be low, but ascending invasion into the ventral aspect of the brain is possible.

  20. Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation.

    PubMed

    Jiang, Rifeng; Jiang, Jingjing; Zhao, Lingyun; Zhang, Jiaxuan; Zhang, Shun; Yao, Yihao; Yang, Shiqi; Shi, Jingjing; Shen, Nanxi; Su, Changliang; Zhang, Ju; Zhu, Wenzhen

    2015-12-08

    Conventional diffusion imaging techniques are not sufficiently accurate for evaluating glioma grade and cellular proliferation, which are critical for guiding glioma treatment. Diffusion kurtosis imaging (DKI), an advanced non-Gaussian diffusion imaging technique, has shown potential in grading glioma; however, its applications in this tumor have not been fully elucidated. In this study, DKI and diffusion weighted imaging (DWI) were performed on 74 consecutive patients with histopathologically confirmed glioma. The kurtosis and conventional diffusion metric values of the tumor were semi-automatically obtained. The relationships of these metrics with the glioma grade and Ki-67 expression were evaluated. The diagnostic efficiency of these metrics in grading was further compared. It was demonstrated that compared with the conventional diffusion metrics, the kurtosis metrics were more promising imaging markers in distinguishing high-grade from low-grade gliomas and distinguishing among grade II, III and IV gliomas; the kurtosis metrics also showed great potential in the prediction of Ki-67 expression. To our best knowledge, we are the first to reveal the ability of DKI to assess the cellular proliferation of gliomas, and to employ the semi-automatic method for the accurate measurement of gliomas. These results could have a significant impact on the diagnosis and subsequent therapy of glioma.

  1. miR-489 inhibits proliferation, cell cycle progression and induces apoptosis of glioma cells via targeting SPIN1-mediated PI3K/AKT pathway.

    PubMed

    Li, Yan; Ma, Xiaolin; Wang, Yanpeng; Li, Guohua

    2017-09-01

    microRNA-489 (miR-489), a newly identified tumor-related miRNA, functions as an oncogene or tumor suppressor via regulating growth and metastasis of human cancers. But, the clinical significance, biological function and underlying mechanisms of miR-489 in glioma remain rarely known. Here, we showed that the levels of miR-489 in glioma tissues were notably underexpressed compared to corresponding non-tumor tissues. In accordance, the relative levels of miR-489 were decreased in glioma cell lines compared with NHA cells. Kaplan-Meier plots indicated that miR-489 low expressing glioma patients showed a prominent shorter overall survival. In addition, miR-489 overexpression prohibited proliferation and cell cycle progression, and promoted apoptosis in U251 cells. While, miR-489 knockdown showed opposite effects on these cellular processes of U87 cells. In vivo experiments demonstrated that miR-489 restoration reduced the tumor volume and weight of subcutaneous glioma xenografts in nude mice. Notably, Spindlin 1 (SPIN1) was inversely and directly regulated by miR-489 in glioma cells. A negative correlation between the expression of miR-489 and SPIN1 mRNA was confirmed in glioma tissues. Interestingly, miR-489 inversely modulated activation of PI3K/AKT pathway and expression of downstream targets including p-mTOR, Cyclin D1 and BCL-XL. SPIN1 re-expression abolished the effects of miR-489 on U251 cells with enhanced activation of PI3K/AKT pathway and malignant phenotype. Meanwhile, AKT inhibitor MK-2206 blocked activation of PI3K/AKT pathway and resulted in reduced proliferation, cell cycle arrest and increased apoptosis in miR-489 down-regulating U87 cells. Altogether, our data support that miR-489 loss facilitates malignant phenotype of glioma cells probably via SPIN1-mediated PI3K/AKT pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Incubation and application of transgenic green fluorescent nude mice in visualization studies on glioma tissue remodeling.

    PubMed

    Dong, Jun; Dai, Xing-liang; Lu, Zhao-hui; Fei, Xi-feng; Chen, Hua; Zhang, Quan-bin; Zhao, Yao-dong; Wang, Zhi-min; Wang, Ai-dong; Lan, Qing; Huang, Qiang

    2012-12-01

    The primary reasons for local recurrence and therapeutic failure in the treatment of malignant gliomas are the invasion and interactions of tumor cells with surrounding normal brain cells. However, these tumor cells are hard to be visualized directly in histopathological preparations, or in experimental glioma models. Therefore, we developed an experimental human dual-color in vivo glioma model, which made tracking solitary invasive glioma cells possible, for the purpose of visualizing the interactions between red fluorescence labeled human glioma cells and host brain cells. This may offer references for further studying the roles of tumor microenvironment during glioma tissue remodeling. Transgenic female C57BL/6 mice expressing enhanced green fluorescent protein (EGFP) were crossed with male Balb/c nude mice. Then sib mating was allowed to occur continuously in order to establish an inbred nude mice strain with 50% of their offspring that are EGFP positive. Human glioma cell lines U87-MG and SU3 were transfected with red fluorescent protein (RFP) gene, and a rat C6 glioma cell line was stained directly with CM-DiI, to establish three glioma cell lines emitting red fluorescence (SU3-RFP, U87-RFP, and C6-CM-DiI). Red fluorescence tumor cells were inoculated via intra-cerebral injection into caudate nucleus of the EGFP nude mice. Tumor-bearing mice were sacrificed when their clinical symptoms appeared, and the whole brain was harvested and snap frozen for further analysis. Confocal laser scanning microscopy was performed to monitor the mutual interactions between tumor cells and host brain cells. Almost all the essential tissues of the established EGFP athymic Balb/c nude mice, except hair and erythrocytes, fluoresced green under excitation using a blue light-emitting flashlight with a central peak of 470 nm, approximately 50% of the offsprings were nu/nu EGFP+. SU3-RFP, U87-RFP, and C6-CM-DiI almost 100% expressed red fluorescence under the fluorescence microscope

  3. Characterization of Arginase Expression in Glioma-Associated Microglia and Macrophages

    PubMed Central

    Zhang, Leying; Gao, Hang; Song, Yanyan; Ren, Hui; Ouyang, Mao; Wu, Xiwei; D’Apuzzo, Massimo; Badie, Behnam

    2016-01-01

    Microglia (MG) and macrophages (MPs) represent a significant component of the inflammatory response to gliomas. When activated, MG/MP release a variety of pro-inflammatory cytokines, however, they also secrete anti-inflammatory factors that limit their cytotoxic function. The balance between pro and anti-inflammatory functions dictates their antitumor activity. To evaluate potential variations in MG and MP function in gliomas, we isolated these cells (and other Gr1+ cells) from intracranial GL261 murine gliomas by FACS and evaluated their gene expression profiles by microarray analysis. As expected, arginase 1 (Arg1, M2 marker) was highly expressed by tumor-associated Gr1+, MG and MP. However, in contrast to MP and Gr1+ cells that expressed Arg1 shortly after tumor trafficking, Arg1 expression in MG was delayed and occurred in larger tumors. Interestingly, depletion of MPs in tumors did not prevent MG polarization, suggesting direct influence of tumor-specific factors on MG Arg1 upregulation. Finally, Arg1 expression was confirmed in human GBM samples, but most Arg1+ cells were neutrophils and not MPs. These findings confirm variations in tumor MG and MP polarization states and its dependency on tumor microenvironmental factors. PMID:27936099

  4. Characterization of Arginase Expression in Glioma-Associated Microglia and Macrophages.

    PubMed

    Zhang, Ian; Alizadeh, Darya; Liang, Junling; Zhang, Leying; Gao, Hang; Song, Yanyan; Ren, Hui; Ouyang, Mao; Wu, Xiwei; D'Apuzzo, Massimo; Badie, Behnam

    2016-01-01

    Microglia (MG) and macrophages (MPs) represent a significant component of the inflammatory response to gliomas. When activated, MG/MP release a variety of pro-inflammatory cytokines, however, they also secrete anti-inflammatory factors that limit their cytotoxic function. The balance between pro and anti-inflammatory functions dictates their antitumor activity. To evaluate potential variations in MG and MP function in gliomas, we isolated these cells (and other Gr1+ cells) from intracranial GL261 murine gliomas by FACS and evaluated their gene expression profiles by microarray analysis. As expected, arginase 1 (Arg1, M2 marker) was highly expressed by tumor-associated Gr1+, MG and MP. However, in contrast to MP and Gr1+ cells that expressed Arg1 shortly after tumor trafficking, Arg1 expression in MG was delayed and occurred in larger tumors. Interestingly, depletion of MPs in tumors did not prevent MG polarization, suggesting direct influence of tumor-specific factors on MG Arg1 upregulation. Finally, Arg1 expression was confirmed in human GBM samples, but most Arg1+ cells were neutrophils and not MPs. These findings confirm variations in tumor MG and MP polarization states and its dependency on tumor microenvironmental factors.

  5. Effects of anticancer drugs on glia-glioma brain tumor model characterized by acoustic impedance microscopy

    NASA Astrophysics Data System (ADS)

    Soon, Thomas Tiong Kwong; Chean, Tan Wei; Yamada, Hikari; Takahashi, Kenta; Hozumi, Naohiro; Kobayashi, Kazuto; Yoshida, Sachiko

    2017-07-01

    An ultrasonic microscope is a useful tool for observing living tissue without chemical fixation or histochemical processing. Two-dimensional (2D) acoustic impedance microscopy developed in our previous study for living cell observation was employed to visualize intracellular changes. We proposed a brain tumor model by cocultivating rat glial cells and C6 gliomas to quantitatively analyze the effects of two types of anticancer drugs, cytochalasin B (CyB) and temozolomide (TMZ), when they were applied. We reported that CyB treatment (25 µg/ml, T = 90 min) significantly reduced the acoustic impedance of gliomas and has little effect on glial cells. Meanwhile, TMZ treatment (2 mg/ml, T = 90 min) impacted both cells equally, in which both cells’ acoustic impedances were decreased. As CyB targets the actin filament polymerization of the cells, we have concluded that the decrease in acoustic impedance was in fact due to actin filament depolymerization and the data can be quantitatively assessed for future studies in novel drug development.

  6. A Hypoxia-Targeted Boron Neutron Capture Therapy Agent for the Treatment of Glioma.

    PubMed

    Luderer, Micah John; Muz, Barbara; de la Puente, Pilar; Chavalmane, Sanmathi; Kapoor, Vaishali; Marcelo, Raymundo; Biswas, Pratim; Thotala, Dinesh; Rogers, Buck; Azab, Abdel Kareem

    2016-10-01

    Boron neutron capture therapy (BNCT) has the potential to become a viable cancer treatment modality, but its clinical translation has been limited by the poor tumor selectivity of agents. To address this unmet need, a boronated 2-nitroimidazole derivative (B-381) was synthesized and evaluated for its capability of targeting hypoxic glioma cells. B-381 has been synthesized from a 1-step reaction. Using D54 and U87 glioma cell lines, the in vitro cytotoxicity and cellular accumulation of B-381 has been evaluated under normoxic and hypoxic conditions compared to L-boronophenylalanine (BPA). Furthermore, tumor retention of B-381 was evaluated in vivo. B-381 had low cytotoxicity in normal and cancer cells. Unlike BPA, B-381 illustrated preferential retention in hypoxic glioma cells compared to normoxic glioma cells and normal tissues in vitro. In vivo, B-381 illustrated significantly higher long-term tumor retention compared to BPA, with 9.5-fold and 6.5-fold higher boron levels at 24 and 48 h, respectively. B-381 represents a new class of BNCT agents in which their selectivity to tumors is based on hypoxic tumor metabolism. Further studies are warranted to evaluate B-381 and similar compounds as preclinical candidates for future BNCT clinical trials for the treatment of glioma.

  7. Development of a Sox2 reporter system modeling cellular heterogeneity in glioma.

    PubMed

    Stoltz, Kevin; Sinyuk, Maksim; Hale, James S; Wu, Qiulian; Otvos, Balint; Walker, Kiera; Vasanji, Amit; Rich, Jeremy N; Hjelmeland, Anita B; Lathia, Justin D

    2015-03-01

    Malignant gliomas are complex systems containing a number of factors that drive tumor initiation and progression, including genetic aberrations that lead to extensive cellular heterogeneity within the neoplastic compartment. Mouse models recapitulate these genetic aberrations, but readily observable heterogeneity remains challenging. To interrogate cellular heterogeneity in mouse glioma models, we utilized a replication-competent avian sarcoma-leukosis virus long terminal repeat with splice acceptor/tumor virus A (RCAS-tva) system to generate spontaneous mouse gliomas that contained a Sox2-enhanced green fluorescent protein (EGFP) reporter. Glial fibrillary acidic protein-tva mice were crossed with Sox2-EGFP mice, and tumors were initiated that contained a subpopulation of Sox2-EGFP-high cells enriched for tumor-initiating cell properties such as self-renewal, multilineage differentiation potential, and perivascular localization. Following implantation into recipient mice, Sox2-EGFP-high cells generated tumors containing Sox2-EGFP-high and Sox2-EGFP-low cells. Kinomic analysis of Sox2-EGFP-high cells revealed activation of known glioma signaling pathways that are strongly correlated with patient survival including platelet-derived growth factor receptor beta, phosphoinositide-3 kinase, and vascular endothelial growth factor. Our functional analysis identified active feline sarcoma (Fes) signaling in Sox2-EGFP-high cells. Fes negatively correlated with glioma patient survival and was coexpressed with Sox2-positive cells in glioma xenografts and primary patient-derived tissue. Our RCAS-tva/Sox2-EGFP model will empower closer examination of cellular heterogeneity and will be useful for identifying novel glioma pathways as well as testing preclinical treatment efficacy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. [Imaging of gliomas].

    PubMed

    Martin-Duverneuil, N; Guillevin, R; Chiras, J

    2008-11-01

    The imaging of gliomas, as well as diffuse infiltrative gliomas or as more recently individualized entities, has been profoundly modified these last years. Correlated with the classic morphological MRI, numerous new sequences have appeared that allowed a more metabolic approach of the tumors, such as diffusion, perfusion--related to angiogenesis--and spectroscopy--reflecting metabolic data. Their development in daily practice allows to precise the diagnostic, to definite the more active areas (correlated with the hyperperfused or more metabolic active areas in relation with the Ki67 index) and so optimize the biopsy and/or evaluate the evolution of the lesion. When associated, they allow also and perhaps especially to precise the diagnostic, particularly with other tumoral masses such as lymphomas or metastases that can present misleading patterns, but also with other more benign lesions such as abcesses. Always critically analysed, and reevaluated along the time if necessary, they can sometimes help the histological diagnosis, but never can be used in place of it.

  9. Rapid Intraoperative Molecular Characterization of Glioma

    PubMed Central

    Shankar, Ganesh M.; Francis, Joshua M.; Rinne, Mikael L.; Ramkissoon, Shakti H.; Huang, Franklin W.; Venteicher, Andrew S.; Akama-Garren, Elliot H.; Kang, Yun Jee; Lelic, Nina; Kim, James C.; Brown, Loreal E.; Charbonneau, Sarah K.; Golby, Alexandra J.; Pedamallu, Chandra Sekhar; Hoang, Mai P.; Sullivan, Ryan J.; Cherniack, Andrew D.; Garraway, Levi A.; Stemmer-Rachamimov, Anat; Reardon, David A.; Wen, Patrick Y.; Brastianos, Priscilla K.; Curry, William T.; Barker, Fred G.; Hahn, William C.; Nahed, Brian V.; Ligon, Keith L.; Louis, David N.; Cahill, Daniel P.; Meyerson, Matthew

    2016-01-01

    IMPORTANCE Conclusive intraoperative pathologic confirmation of diffuse infiltrative glioma guides the decision to pursue definitive neurosurgical resection. Establishing the intraoperative diagnosis by histologic analysis can be difficult in low-cellularity infiltrative gliomas. Therefore, we developed a rapid and sensitive genotyping assay to detect somatic single-nucleotide variants in the telomerase reverse transcriptase (TERT) promoter and isocitrate dehydrogenase 1 (IDH1). OBSERVATIONS This assay was applied to tissue samples from 190 patients with diffuse gliomas, including archived fixed and frozen specimens and tissue obtained intraoperatively. Results demonstrated 96% sensitivity (95% CI, 90%–99%) and 100% specificity (95% CI, 95%–100%) for World Health Organization grades II and III gliomas. In a series of live cases, glioma-defining mutations could be identified within 60 minutes, which could facilitate the diagnosis in an intraoperative timeframe. CONCLUSIONS AND RELEVANCE The genotyping method described herein can establish the diagnosis of low-cellularity tumors like glioma and could be adapted to the point-of-care diagnosis of other lesions that are similarly defined by highly recurrent somatic mutations. PMID:26181761

  10. Surgical benefits of combined awake craniotomy and intraoperative magnetic resonance imaging for gliomas associated with eloquent areas.

    PubMed

    Motomura, Kazuya; Natsume, Atsushi; Iijima, Kentaro; Kuramitsu, Shunichiro; Fujii, Masazumi; Yamamoto, Takashi; Maesawa, Satoshi; Sugiura, Junko; Wakabayashi, Toshihiko

    2017-10-01

    OBJECTIVE Maximum extent of resection (EOR) for lower-grade and high-grade gliomas can increase survival rates of patients. However, these infiltrative gliomas are often observed near or within eloquent regions of the brain. Awake surgery is of known benefit for the treatment of gliomas associated with eloquent regions in that brain function can be preserved. On the other hand, intraoperative MRI (iMRI) has been successfully used to maximize the resection of tumors, which can detect small amounts of residual tumors. Therefore, the authors assessed the value of combining awake craniotomy and iMRI for the resection of brain tumors in eloquent areas of the brain. METHODS The authors retrospectively reviewed the records of 33 consecutive patients with glial tumors in the eloquent brain areas who underwent awake surgery using iMRI. Volumetric analysis of MRI studies was performed. The pre-, intra-, and postoperative tumor volumes were measured in all cases using MRI studies obtained before, during, and after tumor resection. RESULTS Intraoperative MRI was performed to check for the presence of residual tumor during awake surgery in a total of 25 patients. Initial iMRI confirmed no further tumor resection in 9 patients (36%) because all observable tumors had already been removed. In contrast, intraoperative confirmation of residual tumor during awake surgery led to further tumor resection in 16 cases (64%) and eventually an EOR of more than 90% in 8 of 16 cases (50%). Furthermore, EOR benefiting from iMRI by more than 15% was found in 7 of 16 cases (43.8%). Interestingly, the increase in EOR as a result of iMRI for tumors associated mainly with the insular lobe was significantly greater, at 15.1%, than it was for the other tumors, which was 8.0% (p = 0.001). CONCLUSIONS This study revealed that combining awake surgery with iMRI was associated with a favorable surgical outcome for intrinsic brain tumors associated with eloquent areas. In particular, these benefits were

  11. Probing the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway in gliomas: A phase 2 study of everolimus for recurrent adult low-grade gliomas.

    PubMed

    Wahl, Michael; Chang, Susan M; Phillips, Joanna J; Molinaro, Annette M; Costello, Joseph F; Mazor, Tali; Alexandrescu, Sanda; Lupo, Janine M; Nelson, Sarah J; Berger, Mitchel; Prados, Michael; Taylor, Jennie W; Butowski, Nicholas; Clarke, Jennifer L; Haas-Kogan, Daphne

    2017-12-01

    Activation of the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway is common in patients with low-grade gliomas (LGGs), but agents that inhibit this pathway, including mTOR inhibitors, have not been studied in this population. Fifty-eight patients with pathologic evidence of recurrence after they had initially been diagnosed with World Health Organization (WHO) grade II gliomas were enrolled into a prospective phase 2 clinical trial and received daily everolimus (RAD001) for 1 year or until progression. Tissue at the time of enrollment was analyzed for markers of PI3K/mTOR pathway activation. Thirty-eight patients underwent serial multiparametric magnetic resonance imaging, with the tumor volume and the perfusion metrics (the fractional blood volume [fBV] for capillary density and the transfer coefficient [K ps ] for vascular permeability) measured during treatment. The primary endpoint was progression-free survival at 6 months (PFS-6) in patients with WHO II disease at enrollment. For patients with WHO II gliomas at enrollment, the PFS-6 rate was 84%, and this met the primary endpoint (P < .001 for an improvement from the historical rate of 17%). Evidence of PI3K/mTOR activation by immunohistochemistry for phosphorylated ribosomal S6 Ser240/244 (p-S6 Ser240/244 ) was associated with worse progression-free survival (PFS; hazard ratio [HR], 3.03; P = .004) and overall survival (HR, 12.7; P = .01). Tumor perfusion decreased after 6 months (median decrease in fBV, 15%; P = .03; median decrease in K ps , 12%; P = .09), with greater decreases associated with improved PFS (HR for each 10% fBV decrease, 0.71; P = .01; HR for each 10% K ps decrease, 0.82; P = .04). Patients with recurrent LGGs demonstrated a high degree of disease stability during treatment with everolimus. PI3K/mTOR activation, as measured by immunohistochemistry for p-S6, was associated with a worse prognosis. Tumor vascular changes were

  12. Involvement of estrogen receptor β5 in the progression of glioma.

    PubMed

    Li, Wenjun; Winters, Ali; Poteet, Ethan; Ryou, Myoung-Gwi; Lin, Song; Hao, Shuyu; Wu, Zhen; Yuan, Fang; Hatanpaa, Kimmo J; Simpkins, James W; Yang, Shao-Hua

    2013-03-29

    Emerging evidence suggests a decline of ERβ expression in various peripheral cancers. ERβ has been proposed as a cancer brake that inhibits tumor proliferation. In the current study, we have identified ERβ5 as the predominant isoform of ERβ in human glioma and its expression was significantly increased in human glioma as compared with non-neoplastic brain tissue. Hypoxia and activation of hypoxia inducible factor (HIF) increased ERβ transcription in U87 cells, suggesting elevated ERβ expression in glioma might be induced by the hypoxic stress in the tumor. Over-expression of either ERβ1 or ERβ5 increased PTEN expression and inhibited activation of the PI3K/AKT/mTOR pathway. In addition, ERβ5 inhibited the MAPK/ERK pathway. In U87 cells, ERβ1 and ERβ5 inhibit cell proliferation and reduced cells in the S+G2/M phase. Our findings suggest hypoxia induced ERβ5 expression in glioma as a self-protective mechanism against tumor proliferation and that ERβ5 might serve as a therapeutic target for the treatment of glioma. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Induction of anti-glioma NK cell response following multiple low-dose intracerebral CpG therapy

    PubMed Central

    Alizadeh, Darya; Zhang, Leying; Brown, Christine E.; Farrukh, Omar; Jensen, Michael C.; Badie, Behnam

    2010-01-01

    Purpose Stimulation of toll-like receptor-9 (TLR9) by CpG oligodeoxynucleotides (CpG-ODN) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. These studies, however, have used high doses of CpG-ODN which can induce toxicity in a clinical setting. The goal of this study was to evaluate the anti-tumor efficacy of multiple low-dose intratumoral CpG- ODN in a glioma model. Experimental Design Mice bearing four-day old intracranial GL261 gliomas received a single or multiple (two or four) intratumoral injections of CpG-ODN (3 μg) every 4 days. Tumor growth was measured by bioluminescent imaging, brain histology, and animal survival. Flow cytometry and cytotoxicity assays were used to assess anti-glioma immune response. Results Two and four intracranial injections of low-dose CpG-ODN, but not a single injection, eradicated gliomas in 70% of mice. Moreover, surviving animals exhibited durable tumor free remission (> 3 months), and were protected from intracranial rechallenge with GL21 gliomas, demonstrating the capacity for long-term anti-tumor immunity. Although most inflammatory cells appeared to increase, activated NK cells (i.e. NK+CD107a+) were more frequent than CD8+CD107a+ in the brains of rechallenged CpG-ODN-treated animals and demonstrated a stronger in vitro cytotoxicity against GL261 target cells. Leukocyte depletion studies confirmed that NK cells played an important role in the initial CpG-ODN anti-tumor response, but both CD8 and NK cells were equally important in long-term immunity against gliomas. Conclusions These findings suggest that multiple low-dose intratumoral injections of CpG-ODN can eradicate intracranial gliomas possibly through mechanisms involving NK mediated effector function. PMID:20570924

  14. Cellular immunotherapy for malignant gliomas.

    PubMed

    Lin, Yi; Okada, Hideho

    2016-10-01

    Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy.

  15. Evaluation of 188Re-labeled PEGylated nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model.

    PubMed

    Huang, Feng-Yun J; Lee, Te-Wei; Chang, Chih-Hsien; Chen, Liang-Cheng; Hsu, Wei-Hsin; Chang, Chien-Wen; Lo, Jem-Mau

    2015-01-01

    In this study, the (188)Re-labeled PEGylated nanoliposome ((188)Re-liposome) was prepared and evaluated as a therapeutic agent for glioma. The reporter cell line, F98(luc) was prepared via Lentivector expression kit system and used to set up the orthotopic glioma-bearing rat model for non-invasive bioluminescent imaging. The maximum tolerated dose applicable in Fischer344 rats was explored via body weight monitoring of the rats after single intravenous injection of (188)Re-liposome with varying dosages before the treatment study. The OLINDA/EXM 1.1 software was utilized for estimating the radiation dosimetry. To assess the therapeutic efficacy, tumor-bearing rats were intravenously administered (188)Re-liposome or normal saline followed by monitoring of the tumor growth and animal survival time. In addition, the histopathological examinations of tumors were conducted on the (188)Re-liposome-treated rats. By using bioluminescent imaging, the well-established reporter cell line (F98(luc)) showed a high relationship between cell number and its bioluminescent intensity (R(2)=0.99) in vitro; furthermore, it could also provide clear tumor imaging for monitoring tumor growth in vivo. The maximum tolerated dose of (188)Re-liposome in Fischer344 rats was estimated to be 333 MBq. According to the dosimetry results, higher equivalent doses were observed in spleen and kidneys while very less were in normal brain, red marrow, and thyroid. For therapeutic efficacy study, the progression of tumor growth in terms of tumor volume and/or tumor weight was significantly slower for the (188)Re-liposome-treated group than the control group (P<0.05). As a result, the lifespan of glioma-bearing rats treated with (188)Re-liposome was prolonged 10.67% compared to the control group. The radiotherapeutic evaluation by dosimetry and survival studies have demonstrated that passive targeting (188)Re-liposome via systemic administration can significantly prolong the lifespan of orthotopic glioma

  16. Attention dysfunction of postoperative patients with glioma.

    PubMed

    Fang, Dazhao; Jiang, Jian; Sun, Xiaoyang; Wang, Weijie; Dong, Nan; Fu, Xianhua; Pang, Cong; Chen, Xingui; Ding, Lianshu

    2014-10-15

    Attention dysfunction has been observed among many kinds of nervous system diseases, including glioma. This study aimed to investigate the correlation between glioma localization, malignancy, postoperative recovery time and attention deficit. A total of 45 patients with glioma who underwent surgical resection and 18 healthy volunteers were enrolled. The attention network test, digital span test, color trail test II and Stroop test were used to detect the characteristics of attention deficit. Orientation network dysfunction was detected in the parietal lobe tumor group, and execution network deficit was detected in both the frontal and parietal lobe groups, while no significant difference was detected in the temporal lobe group compared to healthy controls. The high-grade glioma group (grade III-IV) exhibited more serious functional impairment than the low-grade group (grade I-II). No significant correlation was observed between postoperative recovery time and attention impairment. High-grade glioma patients suffer more severe attention impairment. In addition, the frontal and parietal lobe glioma patients suffer attention dysfunction in dissimilar manner. These findings will provide important guidance on the care of glioma patients after therapy.

  17. NOS2 expression in glioma cell lines and glioma primary cell cultures: correlation with neurosphere generation and SOX-2 expression.

    PubMed

    Palumbo, Paola; Miconi, Gianfranca; Cinque, Benedetta; Lombardi, Francesca; La Torre, Cristina; Dehcordi, Soheila Raysi; Galzio, Renato; Cimini, Annamaria; Giordano, Antonio; Cifone, Maria Grazia

    2017-04-11

    Nitric oxide has been implicated in biology and progression of glioblastoma (GBM) being able to influence the cellular signal depending on the concentration and duration of cell exposure. NOS2 (inducible nitric oxide synthase) have been proposed as a component of molecular profile of several tumors, including glioma, one of the most aggressive primary brain tumor featuring local cancer stem cells responsible for enhanced resistance to therapies and for tumor recurrence. Here, we investigated the NOS2 mRNA expression by reverse transcription-PCR in human glioma primary cultures at several grade of malignancy and glioma stem cell (GSC) derived neurospheres. Glioma cell lines were used as positive controls both in terms of stemness marker expression that of capacity of generating neurospheres. NOS2 expression was detected at basal levels in cell lines and primary cultures and appeared significantly up-regulated in cultures kept in the specific medium for neurospheres. The immunofluorescence analysis of all cell cultures to evaluate the levels of SOX-2, a stemness marker aberrantly up-regulated in GBM, was also performed. The potential correlation between NOS2 expression and ability to generate neurospheres and between NOS2 and SOX-2 levels was also verified. The results show that the higher NOS2 expression is detected in all primary cultures able to arise neurosphere. A high and significant correlation between NOS2 expression and SOX-2 positive cells (%) in all cell cultures maintained in standard conditions has been observed. The results shed light on the potential relevance of NOS2 as a prognostic factor for glioma malignancy and recurrence.

  18. Intratumor distribution and test-retest comparisons of physiological parameters quantified by dynamic contrast-enhanced MRI in rat U251 glioma.

    PubMed

    Aryal, Madhava P; Nagaraja, Tavarekere N; Brown, Stephen L; Lu, Mei; Bagher-Ebadian, Hassan; Ding, Guangliang; Panda, Swayamprava; Keenan, Kelly; Cabral, Glauber; Mikkelsen, Tom; Ewing, James R

    2014-10-01

    The distribution of dynamic contrast-enhanced MRI (DCE-MRI) parametric estimates in a rat U251 glioma model was analyzed. Using Magnevist as contrast agent (CA), 17 nude rats implanted with U251 cerebral glioma were studied by DCE-MRI twice in a 24 h interval. A data-driven analysis selected one of three models to estimate either (1) plasma volume (vp), (2) vp and forward volume transfer constant (K(trans)) or (3) vp, K(trans) and interstitial volume fraction (ve), constituting Models 1, 2 and 3, respectively. CA distribution volume (VD) was estimated in Model 3 regions by Logan plots. Regions of interest (ROIs) were selected by model. In the Model 3 ROI, descriptors of parameter distributions--mean, median, variance and skewness--were calculated and compared between the two time points for repeatability. All distributions of parametric estimates in Model 3 ROIs were positively skewed. Test-retest differences between population summaries for any parameter were not significant (p ≥ 0.10; Wilcoxon signed-rank and paired t tests). These and similar measures of parametric distribution and test-retest variance from other tumor models can be used to inform the choice of biomarkers that best summarize tumor status and treatment effects. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma

    PubMed Central

    Venkatesh, Humsa S.; Tam, Lydia T.; Woo, Pamelyn J.; Lennon, James; Nagaraja, Surya; Gillespie, Shawn M.; Ni, Jing; Duveau, Damien Y.; Morris, Patrick J.; Zhao, Jean J.; Thomas, Craig J.; Monje, Michelle

    2017-01-01

    Summary High-grade gliomas (HGG) are a devastating group of cancers, representing the leading cause of brain tumor-related death in both children and adults. Therapies aimed at mechanisms intrinsic to the glioma cell have translated to only limited success; effective therapeutic strategies will need to also target elements of the tumor microenvironment that promote glioma progression. We recently demonstrated that neuronal activity robustly promotes the growth of a range of molecularly and clinically distinct HGG types, including adult glioblastoma (GBM), anaplastic oligodendroglioma, pediatric GBM, and diffuse intrinsic pontine glioma (DIPG)1. An important mechanism mediating this neural regulation of brain cancer is activity-dependent cleavage and secretion of the synaptic molecule neuroligin-3 (NLGN3), which promotes glioma proliferation through the PI3K-mTOR pathway1. However, neuroligin-3 necessity to glioma growth, proteolytic mechanism of secretion and further molecular consequences in glioma remain to be clarified. Here, we demonstrate a striking dependence of HGG growth on microenvironmental neuroligin-3, elucidate signaling cascades downstream of neuroligin-3 binding in glioma and determine a therapeutically targetable mechanism of secretion. Patient-derived orthotopic xenografts of pediatric GBM, DIPG and adult GBM fail to grow in Nlgn3 knockout mice. Neuroligin-3 stimulates numerous oncogenic pathways, including early focal adhesion kinase activation upstream of PI3K-mTOR, and induces transcriptional changes including upregulation of numerous synapse-related genes in glioma cells. Neuroligin-3 is cleaved from both neurons and oligodendrocyte precursor cells via the ADAM10 sheddase. ADAM10 inhibitors prevent release of neuroligin-3 into the tumor microenvironment and robustly block HGG xenograft growth. This work defines a promising strategy for targeting neuroligin-3 secretion, which could prove transformative for HGG therapy. PMID:28959975

  20. Different response of human glioma tumor-initiating cells to epidermal growth factor receptor kinase inhibitors.

    PubMed

    Griffero, Fabrizio; Daga, Antonio; Marubbi, Daniela; Capra, Maria Cristina; Melotti, Alice; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adriana; Porcile, Carola; Barbieri, Federica; Favoni, Roberto E; Lo Casto, Michele; Zona, Gianluigi; Spaziante, Renato; Florio, Tullio; Corte, Giorgio

    2009-03-13

    Because a subpopulation of cancer stem cells (tumor-initiating cells, TICs) is believed to be responsible for the development, progression, and recurrence of many tumors, we evaluated the in vitro sensitivity of human glioma TICs to epidermal growth factor receptor (EGFR) kinase inhibitors (erlotinib and gefitinib) and possible molecular determinants for their effects. Cells isolated from seven glioblastomas (GBM 1-7) and grown using neural stem cell permissive conditions were characterized for in vivo tumorigenicity, expression of tumor stem cell markers (CD133, nestin), and multilineage differentiation properties, confirming that these cultures are enriched in TICs. TIC cultures were challenged with increasing concentrations of erlotinib and gefitinib, and their survival was evaluated after 1-4 days. In most cases, a time- and concentration-dependent cell death was observed, although GBM 2 was completely insensitive to both drugs, and GBM 7 was responsive only to the highest concentrations tested. Using a radioligand binding assay, we show that all GBM TICs express EGFR. Erlotinib and gefitinib inhibited EGFR and ERK1/2 phosphorylation/activation in all GBMs, irrespective of the antiproliferative response observed. However, under basal conditions GBM 2 showed a high Akt phosphorylation that was completely insensitive to both drugs, whereas GBM 7 was completely insensitive to gefitinib, and Akt inactivation occurred only for the highest erlotinib concentration tested, showing a precise relationship with the antiproliferative effects of the drug. Interestingly, in GBM 2, phosphatase and tensin homolog expression was significantly down-regulated, possibly accounting for the insensitivity to the drugs. In conclusion, glioma TICs are responsive to anti-EGFR drugs, but phosphatase and tensin homolog expression and Akt inhibition seem to be necessary for such effect.

  1. Podoplanin increases migration and angiogenesis in malignant glioma

    PubMed Central

    Grau, Stefan J; Trillsch, Fabian; Tonn, Joerg-Christian; Goldbrunner, Roland H; Noessner, Elfriede; Nelson, Peter J; von Luettichau, Irene

    2015-01-01

    Expression of podoplanin in glial brain tumors is grade dependent. While serving as a marker for tumor progression and modulating invasion in various neoplasms, little is known about podoplanin function in gliomas. Therefore we stably transfected two human glioma cell lines (U373MG and U87MG) with expression plasmids encoding podoplanin. The efficacy of transfection was confirmed by FACS analysis, PCR and immunocytochemistry. Cells were then sorted for highly podoplanin expressing cells (U373Phigh/U87Phigh). Transfection did not influence the production of pro-angiogenic factors including VEGF, VEGF-C and D. Also, expression of VEGF receptors (VEGFR) remained unchanged except for U87Phigh, where a VEGFR3 expression was induced. U373Phigh showed significantly reduced proliferation as compared to mock transfected group. By contrast, podoplanin significantly increased migration and invasion into collagen matrix. Furthermore, conditioned media from Phigh glioma cells strongly induced tube formation on matrigel. In conclusion, podoplanin increased migration of tumor cells and enhanced tube formation activity in endothelial cells independent from VEGF. Thus, podoplanin expression may be an important step in tumor progression. PMID:26339454

  2. Quantitative in vivo imaging of tissue factor expression in glioma using dynamic contrast-enhanced MRI derived parameters.

    PubMed

    Chen, Xiao; Xie, Tian; Fang, Jingqin; Xue, Wei; Tong, Haipeng; Kang, Houyi; Wang, Sumei; Yang, Yizeng; Xu, Minhui; Zhang, Weiguo

    2017-08-01

    Tissue Factor (TF) has been well established in angiogenesis, invasion, metastasis, and prognosis in glioma. A noninvasive assessment of TF expression status in glioma is therefore of obvious clinical relevance. Dynamic contrast-enhanced (DCE) MRI parameters have been used to evaluate microvascular characteristics and predict molecular expression status in tumors. Our aim is to investigate whether quantitative DCE-MRI parameters could assess TF expression in glioma. Thirty-two patients with histopathologically diagnosed supratentorial glioma who underwent DCE-MRI were retrospectively recruited. Extended Tofts linear model was used for DCE-MRI post-processing. Hot-spot, whole tumor cross-sectional approaches, and histogram were used for analysis of model based parameters. Four serial paraffin sections of each case were stained with TF, CD105, CD34 and α-Sooth Muscle Actin, respectively for evaluating the association of TF and microvascular properties. Pearson correlation was performed between percentage of TF expression area and DCE-MRI parameters, multiple microvascular indexes. Volume transfer constant (K trans ) hot-spot value best correlated with TF (r=0.886, p<0.001), followed by 90th percentile K trans value (r=0.801, p<0.001). Moreover, histogram analysis of K trans value demonstrated that weak TF expression was associated with less heterogeneous and positively skewed distribution. Finally, pathology analysis revealed TF was associated with glioma grade and significantly correlated with these two dynamic angiogenic indexes which could be used to explain the strong correlation between K trans and TF expression. Our results indicate that K trans may serve as a potential clinical imaging biomarker to predict TF expression status preoperatively in gliomas. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Endothelial Cell Implantation and Survival within Experimental Gliomas

    NASA Astrophysics Data System (ADS)

    Lal, Bachchu; Indurti, Ravi R.; Couraud, Pierre-Olivier; Goldstein, Gary W.; Laterra, John

    1994-10-01

    The delivery of therapeutic genes to primary brain neoplasms opens new opportunities for treating these frequently fatal tumors. Efficient gene delivery to tissues remains an important obstacle to therapy, and this problem has unique characteristics in brain tumors due to the blood-brain and blood-tumor barriers. The presence of endothelial mitogens and vessel proliferation within solid tumors suggests that genetically modified endothelial cells might efficiently transplant to brain tumors. Rat brain endothelial cells immortalized with the adenovirus E1A gene and further modified to express the β-galactosidase reporter were examined for their ability to survive implantation to experimental rat gliomas. Rats received 9L, F98, or C6 glioma cells in combination with endothelial cells intracranially to caudate/putamen or subcutaneously to flank. Implanted endothelial cells were identified by β-galactosidase histochemistry or by polymerase chain reaction in all tumors up to 35 days postimplantation, the latest time examined. Implanted endothelial cells appeared to cooperate in tumor vessel formation and expressed the brain-specific endothelial glucose transporter type 1 as identified by immunohistochemistry. The proliferation of implanted endothelial cells was supported by their increased number within tumors between postimplantation days 14 and 21 (P = 0.015) and by their expression of the proliferation antigen Ki67. These findings establish that genetically modified endothelial cells can be stably engrafted to growing gliomas and suggest that endothelial cell implantation may provide a means of delivering therapeutic genes to brain neoplasms and other solid tumors. In addition, endothelial implantation to brain may be useful for defining mechanisms of brain-specific endothelial differentiation.

  4. Distinct molecular profile of diffuse cerebellar gliomas.

    PubMed

    Nomura, Masashi; Mukasa, Akitake; Nagae, Genta; Yamamoto, Shogo; Tatsuno, Kenji; Ueda, Hiroki; Fukuda, Shiro; Umeda, Takayoshi; Suzuki, Tomonari; Otani, Ryohei; Kobayashi, Keiichi; Maruyama, Takashi; Tanaka, Shota; Takayanagi, Shunsaku; Nejo, Takahide; Takahashi, Satoshi; Ichimura, Koichi; Nakamura, Taishi; Muragaki, Yoshihiro; Narita, Yoshitaka; Nagane, Motoo; Ueki, Keisuke; Nishikawa, Ryo; Shibahara, Junji; Aburatani, Hiroyuki; Saito, Nobuhito

    2017-12-01

    Recent studies have demonstrated that tumor-driving alterations are often different among gliomas that originated from different brain regions and have underscored the importance of analyzing molecular characteristics of gliomas stratified by brain region. Therefore, to elucidate molecular characteristics of diffuse cerebellar gliomas (DCGs), 27 adult, mostly glioblastoma cases were analyzed. Comprehensive analysis using whole-exome sequencing, RNA sequencing, and Infinium methylation array (n = 17) demonstrated their distinct molecular profile compared to gliomas in other brain regions. Frequent mutations in chromatin-modifier genes were identified including, noticeably, a truncating mutation in SETD2 (n = 4), which resulted in loss of H3K36 trimethylation and was mutually exclusive with H3F3A K27M mutation (n = 3), suggesting that epigenetic dysregulation may lead to DCG tumorigenesis. Alterations that cause loss of p53 function including TP53 mutation (n = 9), PPM1D mutation (n = 2), and a novel type of PPM1D fusion (n = 1), were also frequent. On the other hand, mutations and copy number changes commonly observed in cerebral gliomas were infrequent. DNA methylation profile analysis demonstrated that all DCGs except for those with H3F3A mutations were categorized in the "RTK I (PDGFRA)" group, and those DCGs had a gene expression signature that was highly associated with PDGFRA. Furthermore, compared with the data of 315 gliomas derived from different brain regions, promoter methylation of transcription factors genes associated with glial development showed a characteristic pattern presumably reflecting their tumor origin. Notably, SOX10, a key transcription factor associated with oligodendroglial differentiation and PDGFRA regulation, was up-regulated in both DCG and H3 K27M-mutant diffuse midline glioma, suggesting their developmental and biological commonality. In contrast, SOX10 was silenced by promoter methylation in most cerebral gliomas. These

  5. Insights into molecular therapy of glioma: current challenges and next generation blueprint

    PubMed Central

    Rajesh, Y; Pal, Ipsita; Banik, Payel; Chakraborty, Sandipan; Borkar, Sachin A; Dey, Goutam; Mukherjee, Ahona; Mandal, Mahitosh

    2017-01-01

    Glioma accounts for the majority of human brain tumors. With prevailing treatment regimens, the patients have poor survival rates. In spite of current development in mainstream glioma therapy, a cure for glioma appears to be out of reach. The infiltrative nature of glioma and acquired resistance substancially restrict the therapeutic options. Better elucidation of the complicated pathobiology of glioma and proteogenomic characterization might eventually open novel avenues for the design of more sophisticated and effective combination regimens. This could be accomplished by individually tailoring progressive neuroimaging techniques, terminating DNA synthesis with prodrug-activating genes, silencing gliomagenesis genes (gene therapy), targeting miRNA oncogenic activity (miRNA-mRNA interaction), combining Hedgehog-Gli/Akt inhibitors with stem cell therapy, employing tumor lysates as antigen sources for efficient depletion of tumor-specific cancer stem cells by cytotoxic T lymphocytes (dendritic cell vaccination), adoptive transfer of chimeric antigen receptor-modified T cells, and combining immune checkpoint inhibitors with conventional therapeutic modalities. Thus, the present review captures the latest trends associated with the molecular mechanisms involved in glial tumorigenesis as well as the limitations of surgery, radiation and chemotherapy. In this article we also critically discuss the next generation molecular therapeutic strategies and their mechanisms for the successful treatment of glioma. PMID:28317871

  6. ATRX Loss Promotes Tumor Growth and Impairs Non-Homologous End Joining DNA Repair in Glioma

    PubMed Central

    Koschmann, Carl; Calinescu, Anda-Alexandra; Nunez, Felipe J.; Mackay, Alan; Fazal-Salom, Janet; Thomas, Daniel; Mendez, Flor; Kamran, Neha; Dzaman, Marta; Mulpuri, Lakshman; Krasinkiewicz, Johnathon; Doherty, Robert; Lemons, Rosemary; Brosnan-Cashman, Jackie A.; Li, Youping; Roh, Soyeon; Zhao, Lili; Appelman, Henry; Ferguson, David; Gorbunova, Vera; Meeker, Alan; Jones, Chris; Lowenstein, Pedro R.; Castro, Maria G.

    2017-01-01

    Recent work in human glioblastoma (GBM) has documented recurrent mutations in the histone chaperone protein ATRX. We developed an animal model of ATRX-deficient GBM and show that loss of ATRX reduces median survival and increases genetic instability. Further, analysis of genome-wide data for human gliomas showed that ATRX mutation is associated with increased mutation rate at the single nucleotide variant (SNV) level. In mouse tumors, ATRX deficiency impairs non-homologous end joining (NHEJ) and increases sensitivity to DNA-damaging agents that induce double-stranded DNA breaks. We propose that ATRX loss results in a genetically unstable tumor, which is more aggressive when left untreated, but is more responsive to double-stranded DNA-damaging agents, resulting in improved overall survival. PMID:26936505

  7. Prognostic role of mitochondrial pyruvate carrier in isocitrate dehydrogenase-mutant glioma.

    PubMed

    Karsy, Michael; Guan, Jian; Huang, L Eric

    2018-03-16

    OBJECTIVE Gliomas are one of the most common types of primary brain tumors. Recent studies have supported the importance of key genetic alterations, including isocitrate dehydrogenase (IDH) mutations and 1p19q codeletion, in glioma prognosis. Mutant IDH produces 2-hydroxyglutarate from α-ketoglutarate, a key metabolite of the Krebs cycle. The mitochondrial pyruvate carrier (MPC) is composed of MPC1 and MPC2 subunits and is functionally essential for the Krebs cycle. The authors sought to explore the impact of MPC1 and MPC2 expression on patient prognosis. METHODS Genomic and clinical data in patients with lower-grade glioma (WHO grades II and III) from The Cancer Genome Atlas (TCGA) were evaluated using Kaplan-Meier analysis and hazards modeling. Validation was conducted with additional data sets, including glioblastoma. RESULTS A total of 286 patients with lower-grade glioma (mean age 42.7 ± 13.5 years, 55.6% males) included 54 cases of IDH-wild type (18.9%); 140 cases of IDH-mutant, 1p19q-intact (49.0%); and 85 cases of IDH-mutant, 1p19q-codeleted (29.7%) tumors. Kaplan-Meier analysis showed that an MPC1 z-score > 0 distinguished better survival, particularly in IDH-mutant (p < 0.01) but not IDH-wild type tumors. Conversely, an MPC2 z-score > 0 identified worsened survival, particularly in IDH-mutant (p < 0.01) but not IDH-wild type tumors. Consistently, neither MPC1 nor MPC2 was predictive in a glioblastoma data set containing 5% IDH-mutant cases. Within the IDH-stratified lower-grade glioma data set, MPC1 status distinguished improved survival in 1p19q-codeleted tumors (p < 0.05), whereas MPC2 expression delineated worsened survival in 1p19q-intact tumors (p < 0.01). A hazards model identified IDH and 1p19q status, age (p = 0.01, HR = 1.03), Karnofsky Performance Scale (KPS) score (p = 0.03, HR = 0.97), and MPC1 (p = 0.003, HR = 0.52) but not MPC2 (p = 0.38) as key variables affecting overall survival. Further validation confirmed MPC1 as an independent

  8. Upregulation of B23 promotes tumor cell proliferation and predicts poor prognosis in glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jianguo; Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province; Sun, Jie

    B23 (also known as Nucleophosmin, NPM, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. In this study we intended to investigate the clinical significance of B23 expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that B23 was overexpressed in glioma tissues and glioma cell lines. In addition, the expression level of B23 was positively correlated with glioma pathological grade and Ki-67 expression. Kaplan–Meier analysis revealed that a higher B23 expression in patients with glioma was associated with a poorer prognosis. In vitro, after the releasemore » of glioma cell lines from serum starvation, the expression of B23 was upregulated, as well as PCNA (Proliferating Cell Nuclear Antigen) and cyclin A. In addition, knockdown of B23 by small interfering RNA transfection diminished the expression of PCNA, cyclin D1 and arrested cell growth at G1 phase. Taken together, our results implied that B23 could be a candidate prognostic biomarker as well as a potential therapeutical target of glioma. - Highlights: • B23 expression increased as the malignant degree of glioma increased, which was consistent with Ki-67 expression. • High expression of B23 could be a strong determinant of poor prognosis in glioma. • B23 may be involved in the proliferation of glioma in a cell-cycle-dependent pathway. • Knockdown of B23 expression by siRNA could affect the progression of glioma. • B23 may be a potential prognosis biomarker and a possible therapeutic target for glioma.« less

  9. Epidemiologic evidence on mobile phones and tumor risk: a review.

    PubMed

    Ahlbom, Anders; Feychting, Maria; Green, Adele; Kheifets, Leeka; Savitz, David A; Swerdlow, Anthony J

    2009-09-01

    This review summarizes and interprets epidemiologic evidence bearing on a possible causal relation between radiofrequency field exposure from mobile phone use and tumor risk. In the last few years, epidemiologic evidence on mobile phone use and the risk of brain and other tumors of the head in adults has grown in volume, geographic diversity of study settings, and the amount of data on longer-term users. However, some key methodologic problems remain, particularly with regard to selective nonresponse and inaccuracy and bias in recall of phone use. Most studies of glioma show small increased or decreased risks among users, although a subset of studies show appreciably elevated risks. We considered methodologic features that might explain the deviant results, but found no clear explanation. Overall the studies published to date do not demonstrate an increased risk within approximately 10 years of use for any tumor of the brain or any other head tumor. Despite the methodologic shortcomings and the limited data on long latency and long-term use, the available data do not suggest a causal association between mobile phone use and fast-growing tumors such as malignant glioma in adults (at least for tumors with short induction periods). For slow-growing tumors such as meningioma and acoustic neuroma, as well as for glioma among long-term users, the absence of association reported thus far is less conclusive because the observation period has been too short.

  10. The status of the art of human malignant glioma management: the promising role of targeting tumor-initiating cells.

    PubMed

    Florio, Tullio; Barbieri, Federica

    2012-10-01

    Glioblastoma is the most prevalent and malignant form of brain cancer, but the current available multimodality treatments yield poor survival improvement. Thus, innovative therapeutic strategies represent the challenging topic for glioblastoma management. Multidisciplinary advances, supporting current standard of care therapies and investigational trials that reveal potential drug targets for glioblastoma are reviewed. A radical change in glioblastoma therapeutic approaches could arise from the identification of cancer stem cells, putative tumor-initiating cells involved in tumor initiation, progression and resistance, as innovative drug target. Still controversial identification of markers and molecular regulators in glioma tumor-initiating cells and novel approaches targeting these cells are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma

    PubMed Central

    Blaes, Jonas; Osswald, Matthias; Rübmann, Petra; Milford, David; Urban, Severino; Jestaedt, Leonie; Heiland, Sabine; Bendszus, Martin; Hertenstein, Anne; Pfenning, Philipp-Niclas; de Almodóvar, Carmen Ruiz; Wick, Antje; Winkler, Frank; von Deimling, Andreas; Platten, Michael; Wick, Wolfgang; Weiler, Markus

    2015-01-01

    Loss of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a prerequisite for tumor cell-specific expression of vascular endothelial growth factor receptor (VEGFR)-2 in glioblastoma defining a subgroup prone to develop evasive resistance towards antiangiogenic treatments. Immunohistochemical analysis of human tumor tissues showed VEGFR-2 expression in glioma cells in 19% of specimens examined, mainly in the infiltration zone. Glioma cell VEGFR-2 positivity was restricted to PTEN-deficient tumor specimens. PTEN overexpression reduced VEGFR-2 expression in vitro, as well as knock-down of raptor or rictor. Genetic interference with VEGFR-2 revealed proproliferative, antiinvasive and chemoprotective functions for VEGFR-2 in glioma cells. VEGFR-2-dependent cellular effects were concomitant with activation of 'kappa-light-chain-enhancer’ of activated B-cells, protein kinase B, and N-myc downstream regulated gene 1. Two-photon in vivo microscopy revealed that expression of VEGFR-2 in glioma cells hampers antiangiogenesis. Bevacizumab induces a proinvasive response in VEGFR-2-positive glioma cells. Patients with PTEN-negative glioblastomas had a shorter survival after initiation of bevacizumab therapy compared with PTEN-positive glioblastomas. Conclusively, expression of VEGFR-2 in glioma cells indicates an aggressive glioblastoma subgroup developing early resistance to temozolomide or bevacizumab. Loss of PTEN may serve as a biomarker identifying those tumors upfront by routine neuropathological methods. PMID:25682871

  12. Dissecting dysfunctional crosstalk pathways regulated by miRNAs during glioma progression

    PubMed Central

    Li, Feng; Li, Xiang; Feng, Li; Shi, Xinrui; Wang, Lihua; Li, Xia

    2016-01-01

    Glioma is a malignant nervous system tumor with a high fatality rate and poor prognosis. MicroRNAs (miRNAs) are important post-transcriptional modulators of glioma initiation and progression. Tumor progression often results from dysfunctional co-operation between pathways regulated by miRNAs. We therefore constructed a glioma progression-related miRNA-pathway crosstalk network that not only revealed some key miRNA-pathway patterns, but also helped characterize the functional roles of miRNAs during glioma progression. Our data indicate that crosstalk between cell cycle and p53 pathways is associated with grade II to grade III progression, while cell communications-related pathways involving regulation of actin cytoskeleton and adherens junctions are associated with grade IV glioblastoma progression. Furthermore, miRNAs and their crosstalk pathways may be useful for stratifying glioma and glioblastoma patients into groups with short or long survival times. Our data indicate that a combination of miRNA and pathway crosstalk information can be used for survival prediction. PMID:27013589

  13. A Hypoxia-Targeted Boron Neutron Capture Therapy Agent for the Treatment of Glioma

    PubMed Central

    Luderer, Micah John; Muz, Barbara; de la Puente, Pilar; Chavalmane, Sanmathi; Kapoor, Vaishali; Marcelo, Raymundo; Biswas, Pratim; Thotala, Dinesh; Rogers, Buck; Azab, Abdel Kareem

    2016-01-01

    Purpose Boron neutron capture therapy (BNCT) has the potential to become a viable cancer treatment modality, but its clinical translation has been limited by the poor tumor selectivity of agents. To address this unmet need, a boronated 2-nitroimidazole derivative (B-381) was synthesized and evaluated for its capability of targeting hypoxic glioma cells. Methods B-381 has been synthesized from a 1-step reaction. Using D54 and U87 glioma cell lines, the in vitro cytotoxicity and cellular accumulation of B-381 has been evaluated under normoxic and hypoxic conditions compared to L-boronophenylalanine (BPA). Furthermore, tumor retention of B-381 was evaluated in vivo. Results B-381 had low cytotoxicity in normal and cancer cells. Unlike BPA, B-381 illustrated preferential retention in hypoxic glioma cells compared to normoxic glioma cells and normal tissues in vitro. In vivo, B-381 illustrated significantly higher long-term tumor retention compared to BPA, with 9.5-fold and 6.5-fold higher boron levels at 24 and 48 h, respectively. Conclusions B-381 represents a new class of BNCT agents in which their selectivity to tumors is based on tumor hypoxic metabolism, and further studies are warranted to evaluate this compound and similar compounds as preclinical candidates for future BNCT clinical trials for the treatment of glioma. PMID:27401411

  14. Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients.

    PubMed

    Jansen, Nathalie L; Suchorska, Bogdana; Wenter, Vera; Eigenbrod, Sabina; Schmid-Tannwald, Christine; Zwergal, Andreas; Niyazi, Maximilian; Drexler, Mark; Bartenstein, Peter; Schnell, Oliver; Tonn, Jörg-Christian; Thon, Niklas; Kreth, Friedrich-Wilhelm; la Fougère, Christian

    2014-02-01

    Because the clinical course of low-grade gliomas in the individual adult patient varies considerably and is unpredictable, we investigated the prognostic value of dynamic (18)F-fluorethyltyrosine ((18)F-FET) PET in the early diagnosis of astrocytic low-grade glioma (World Health Organization grade II). Fifty-nine patients with newly diagnosed low-grade glioma and dynamic (18)F-FET PET before histopathologic assessment were retrospectively investigated. (18)F-FET PET analysis comprised a qualitative visual classification of lesions; assessment of the semiquantitative parameters maximal, mean, and total standardized uptake value as ratio to background and biologic tumor volume; and dynamic analysis of intratumoral (18)F-FET uptake over time (increasing vs. decreasing time-activity curves). The correlation between PET parameters and progression-free survival, overall survival, and time to malignant transformation was investigated. (18)F-FET uptake greater than the background level was found in 34 of 59 tumors. Dynamic (18)F-FET uptake analysis was available for 30 of these 34 patients. Increasing and decreasing time-activity curves were found in 18 and 12 patients, respectively. Neither the qualitative factor presence or absence of (18)F-FET uptake nor any of the semiquantitative uptake parameters significantly influenced clinical outcome. In contrast, decreasing time-activity curves in the kinetic analysis were highly prognostic for shorter progression-free survival and time to malignant transformation (P < 0.001). Absence of (18)F-FET uptake in newly diagnosed astrocytic low-grade glioma does not generally indicate an indolent disease course. Among the (18)F-FET-positive gliomas, decreasing time-activity curves in dynamic (18)F-FET PET constitute an unfavorable prognostic factor in astrocytic low-grade glioma and, by identifying high-risk patients, may ease treatment decisions.

  15. Histogram analysis of diffusion kurtosis imaging estimates for in vivo assessment of 2016 WHO glioma grades: A cross-sectional observational study.

    PubMed

    Hempel, Johann-Martin; Schittenhelm, Jens; Brendle, Cornelia; Bender, Benjamin; Bier, Georg; Skardelly, Marco; Tabatabai, Ghazaleh; Castaneda Vega, Salvador; Ernemann, Ulrike; Klose, Uwe

    2017-10-01

    To assess the diagnostic performance of histogram analysis of diffusion kurtosis imaging (DKI) maps for in vivo assessment of the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO) integrated glioma grades. Seventy-seven patients with histopathologically-confirmed glioma who provided written informed consent were retrospectively assessed between 01/2014 and 03/2017 from a prospective trial approved by the local institutional review board. Ten histogram parameters of mean kurtosis (MK) and mean diffusivity (MD) metrics from DKI were independently assessed by two blinded physicians from a volume of interest around the entire solid tumor. One-way ANOVA was used to compare MK and MD histogram parameter values between 2016 CNS WHO-based tumor grades. Receiver operating characteristic analysis was performed on MK and MD histogram parameters for significant results. The 25th, 50th, 75th, and 90th percentiles of MK and average MK showed significant differences between IDH1/2 wild-type gliomas, IDH1/2 mutated gliomas, and oligodendrogliomas with chromosome 1p/19q loss of heterozygosity and IDH1/2 mutation (p<0.001). The 50th, 75th, and 90th percentiles showed a slightly higher diagnostic performance (area under the curve (AUC) range; 0.868-0.991) than average MK (AUC range; 0.855-0.988) in classifying glioma according to the integrated approach of 2016 CNS WHO. Histogram analysis of DKI can stratify gliomas according to the integrated approach of 2016 CNS WHO. The 50th (median), 75th , and the 90th percentiles showed the highest diagnostic performance. However, the average MK is also robust and feasible in routine clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Impact of meriolins, a new class of cyclin-dependent kinase inhibitors, on malignant glioma proliferation and neo-angiogenesis

    PubMed Central

    Jarry, Marie; Lecointre, Céline; Malleval, Céline; Desrues, Laurence; Schouft, Marie-Thérèse; Lejoncour, Vadim; Liger, François; Lyvinec, Gildas; Joseph, Benoît; Loaëc, Nadège; Meijer, Laurent; Honnorat, Jérôme; Gandolfo, Pierrick; Castel, Hélène

    2014-01-01

    Background Glioblastomas are the most frequent and most aggressive primary brain tumors in adults. The median overall survival is limited to a few months despite surgery, radiotherapy, and chemotherapy. It is now clearly established that hyperactivity of cyclin-dependent kinases (CDKs) is one of the processes underlying hyperproliferation and tumoral growth. The marine natural products meridianins and variolins, characterized as CDK inhibitors, display a kinase-inhibitory activity associated with cytotoxic effects. In order to improve selectivity and efficiency of these CDK inhibitors, a series of hybrid compounds called meriolins have been synthesized. Methods The potential antitumoral activity of meriolins was investigated in vitro on glioma cell lines (SW1088 and U87), native neural cells, and a human endothelial cell line (HUV-EC-C). The impact of intraperitoneal or intratumoral administrations of meriolin 15 was evaluated in vivo on 2 different nude mice-xenografted glioma models. Results Meriolins 3, 5, and 15 exhibited antiproliferative properties with nanomolar IC50 and induced cell-cycle arrest and CDK inhibition associated with apoptotic events in human glioma cell lines. These meriolins blocked the proliferation rate of HUV-EC-C through cell cycle arrest and apoptosis. In vivo, meriolin 15 provoked a robust reduction in tumor volume in spite of toxicity for highest doses, associated with inhibition of cell division, activation of caspase 3, reduction of CD133 cells, and modifications of the vascular architecture. Conclusion Meriolins, and meriolin 15 in particular, exhibit antiproliferative and proapoptotic activities on both glioma and intratumoral endothelial cells, constituting key promising therapeutic lead compounds for the treatment of glioblastoma. PMID:24891448

  17. Genotype-based gene signature of glioma risk.

    PubMed

    Huang, Yen-Tsung; Zhang, Yi; Wu, Zhijin; Michaud, Dominique S

    2017-07-01

    Glioma accounts for 80% of malignant brain tumors, but its etiologic determinants remain elusive. Despite genetic susceptibility loci identified by genome-wide association study (GWAS), the agnostic approach leaves open the possibility that other susceptibility genes remain to be discovered. Here we conduct a gene-centric integrative GWAS (iGWAS) of glioma risk that combines transcriptomics and genetics. We synthesized a brain transcriptomics dataset (n = 354), a GWAS dataset (n = 4203), and an advanced glioma tumor transcriptomic dataset (n = 483) to conduct an iGWAS. Using the expression quantitative trait loci (eQTL) dataset, we built models to predict gene expression for the GWAS data, based on eQTL genotypes. With the predicted gene expression, iGWAS analyses were performed using a novel statistical method. Gene signature risk score was constructed using a penalized logistic regression model. A total of 30527 transcripts were analyzed using the iGWAS approach. Four novel glioma susceptibility genes were identified with internal and external validation, including DRD5 (P = 3.0 × 10-79), WDR1 (P = 8.4 × 10-77), NOMO1 (P = 1.3 × 10-25), and PDXDC1 (P = 8.3 × 10-24). The genotype-predicted transcription pattern between cases and controls is consistent with that between tumor and its matched normal tissue. The genotype-based 4-gene signature improved the classification between glioma cases and controls based on age, gender, and population stratification, with area under the receiver operating characteristic curve increasing from 0.77 to 0.85 (P = 8.1 × 10-23). A new genotype-based gene signature of glioma was identified using a novel iGWAS approach, which integrates multiplatform genomic data as well as different genetic association studies. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. CD147 and glioma: a meta-analysis.

    PubMed

    Li, Hui; Xi, Zhouhuan; Dai, Xuejiao; Wu, Wenyue; Li, Yanwen; Liu, Yanting; Zhang, Hanwen

    2017-08-01

    Gliomas are the most common primary brain tumors. This meta-analysis aimed to systematically evaluate the relationship between CD147 expression in tissues and the clinicopathological features of patients with glioma. We searched PubMed (1966-2016), EMBASE (1980-2016), Cochrane Library (1996-2016), Web of Science (1945-2016), China National Knowledge Infrastructure (1982-2016), and Wan Fang databases (1988-2016). Quality assessment of the literature was performed using the Newcastle-Ottawa Scale, with Revman 5.3 and Stata 14.0 for analysis. In total, 1806 glioma patients from 19 studies were included, and patients with CD147 overexpression had poorer overall survival [hazard ratio (HR) = 2.211, P < 0.0001], a higher risk of recurrence (HR = 2.20, P = 0.0025), and a lower 5-year survival rate [odds ratio (OR) 0.12; 95% CI 0.08-0.19; P < 0.00001]. We observed significant differences in CD147 expression when comparing glioma tissues versus non-cancerous brain tissues (OR 20.42; 95% CI 13.94-29.91; P < 0.00001), tumor grades III-IV versus grades I-II (OR 5.88, 95% CI 4.15-8.34; P < 0.00001), and large versus small tumors (OR 1.58, 95% CI 1.04-2.40; P = 0.03). We also observed a significant correlation with matrix metalloproteinase (MMP) 2 (OR 39.11, 95% CI 11.47-133.34; P < 0.00001) and MMP9 (OR 13.35, 95% CI 4.67-38.18; P < 0.00001). CD147 expression did not differ based on patient's age (young vs. old, P = 0.89) or gender (female vs. male, P = 0.57). CD147 expression may be a potential prognostic biomarker for poorer overall and relapse-free survival, and may affect the 5-year survival rate in glioma patients. CD147 expression is also closely correlated with poor clinical characteristics in glioma patients.

  19. Increased Expression of Stress Inducible Protein 1 in Glioma-Associated Microglia/Macrophages

    PubMed Central

    da Fonseca, Anna Carolina Carvalho; Wang, Huaqing; Fan, Haitao; Chen, Xuebo; Zhang, Ian; Zhang, Leying; Lima, Flavia Regina Souza; Badie, Behnam

    2014-01-01

    Factors released by glioma-associated microglia/macrophages (GAMs) play an important role in the growth and infiltration of tumors. We have previously demonstrated that the co-chaperone stress-inducible protein 1 (STI1) secreted by microglia promotes proliferation and migration of human glioblastoma (GBM) cell lines in vitro. In the present study, in order to investigate the role of STI1 in a physiological context, we used a glioma model to evaluate STI1 expression in vivo. Here, we demonstrate that STI1 expression in both the tumor and in the infiltrating GAMs and lymphocytes significantly increased with tumor progression. Interestingly, high expression of STI1 was observed in macrophages and lymphocytes that infiltrated brain tumors, whereas STI1 expression in the circulating blood monocytes and lymphocytes remained unchanged. Our results correlate, for the first time, the expression of STI1 and glioma progression, and suggest that STI1 expression in GAMs and infiltrating lymphocytes is modulated by the brain tumor microenvironment. PMID:25042352

  20. IDH1 Mutation in Brain Stem Glioma: Case Report and Review of Literature.

    PubMed

    Javadi, Seyed Amirhossein; Hartmann, Christian; Walter, Gerhard Franz; Banan, Roozbeh; Samii, Amir

    2018-01-01

    The role of isocitrate dehydrogenase 1 (IDH1) mutation in brain stem glioma is not clear. To the best of our knowledge, six cases of brain stem gliomas carrying IDH1/2 mutations are currently reported in the literature. One case of diffuse brain stem glioma with IDH1 mutation, which was followed for 2 years, is presented and compared with IDH1 negative tumors. A 22-year-old lady was referred with diplopia and left arm palsy. Neuroimaging detected a nonenhancing, nonhomogeneous diffuse infiltrating brain stem tumor extending from pons to medulla. Microsurgical debulking was performed. Microscopic evaluation of the tissue specimen and immunohistochemistry revealed an astrocytoma WHO Grade II with proliferation rate of 3% and glial fibrillary acidic protein (GFAP)-positive tumor cells. Interestingly, the tumor cells expressed mutated IDH1 R132H protein. The patient underwent adjuvant radiation and chemotherapy. The primary and 2 years' clinical/radiological characteristics did not indicate any significant difference from other cases without IDH1 mutation. the prognostic value of IDH1/2 mutation in brain stem glioma is unclear. Brain stem biopsies may allow determination of a tissue-based tumor diagnosis for further investigations.

  1. Characterizing invading glioma cells based on IDH1-R132H and Ki-67 immunofluorescence.

    PubMed

    Sabit, Hemragul; Nakada, Mitsutoshi; Furuta, Takuya; Watanabe, Takuya; Hayashi, Yutaka; Sato, Hiroshi; Kato, Yukinari; Hamada, Jun-ichiro

    2014-10-01

    Glioma, the most common primary brain tumor, is characterized by proliferative-invasive growth. However, the detailed biological characteristics of invading glioma cells remain to be elucidated. A monoclonal antibody (clone HMab-1) that specifically and sensitively recognizes the isocitrate dehydrogenase-1 (IDH1) protein carrying the R132H mutation can identify invading glioma cells by immunostaining. To investigate the degree of invasion in gliomas of distinct grades and the proliferative capacity of the invading cells, immunofluorescent staining was conducted using antibodies against IDH1-R132H and Ki-67 on 11 surgical and autopsy specimens of the tumor core and the invading area. Higher numbers of IDH1-R132H-positive cells in the invading area correlated with a higher tumor grade. Double staining for IDH1-R132H and Ki-67 demonstrated that most invading cells that expressed IDH1-R132H were not stained by the Ki-67 antibody, and the ratio of Ki-67-positive cells among IDH1-R132H-positive cells was significantly lower in the invasion area than in the tumor core in all grades of glioma. These data suggest that higher grade gliomas have a greater invasive potential and that invading cells possess low proliferative capacity.

  2. Exosomes from Glioma-Associated Mesenchymal Stem Cells Increase the Tumorigenicity of Glioma Stem-like Cells via Transfer of miR-1587.

    PubMed

    Figueroa, Javier; Phillips, Lynette M; Shahar, Tal; Hossain, Anwar; Gumin, Joy; Kim, Hoon; Bean, Andrew J; Calin, George A; Fueyo, Juan; Walters, Edgar T; Kalluri, Raghu; Verhaak, Roel G; Lang, Frederick F

    2017-11-01

    Tumor-stromal communications impact tumorigenesis in ways that are incompletely understood. Here, we show that glioma-associated human mesenchymal stem cells (GA-hMSC), a newly identified stromal component of glioblastoma, release exosomes that increase the proliferation and clonogenicity of tumor-initiating glioma stem-like cells (GSC). This event leads to a significantly greater tumor burden and decreased host survival compared with untreated GSCs in orthotopic xenografts. Analysis of the exosomal content identified miR-1587 as a mediator of the exosomal effects on GSCs, in part via downregulation of the tumor-suppressive nuclear receptor corepressor NCOR1. Our results illuminate the tumor-supporting role for GA-hMSCs by identifying GA-hMSC-derived exosomes in the intercellular transfer of specific miRNA that enhance the aggressiveness of glioblastoma. Cancer Res; 77(21); 5808-19. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Global and Targeted Pathway Impact of Gliomas on White Matter Integrity Based on Lobar Localization.

    PubMed

    Ormond, David R; D'Souza, Shawn; Thompson, John A

    2017-09-07

    Primary brain tumors comprise 28% of all tumors and 80% of malignant tumors. Pathophysiology of high-grade gliomas includes significant distortion of white matter architecture, necrosis, the breakdown of the blood brain barrier, and increased intracranial pressure. Diffusion tensor imaging (DTI), a diffusion weighted imaging technique, can be used to assess white matter architecture. Use of DTI as a non-invasive pathophysiological tool to analyze glioma impact on white matter microstructure has yet to be fully explored. Preliminary assessment of DTI tractography was done as a measure of intracranial tumor impact on white matter architecture. Specifically, we addressed three questions: 1) whether glioma differentially affects local white matter structure compared to metastasis, 2) whether glioma affects tract integrity of major white matter bundles, 3) whether glioma lobe localization affects tract integrity of different white matter bundles. In this study, we retrospectively investigated preoperative DTI scans from 24 patients undergoing tumor resection. Fiber tractography was estimated using a deterministic fiber tracking algorithm in DSI (diffusion spectrum imaging) Studio. The automatic anatomical labeling (AAL) atlas was used to define the left and right (L/R)   hemisphere regions of interest (ROI). In addition, the John Hopkins University (JHU) White Matter Atlas was used to auto-segment major white matter bundle ROIs. For all tracts derived from ROI seed targets, we computed the following parameters: tract number, tract length, fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD). The DTI tractography analysis revealed that white matter integrity in the hemisphere ipsilateral to intracranial tumor was significantly compromised compared to the control contralateral hemisphere. No differences were observed between high vs low-grade gliomas, however, gliomas induced significantly greater white matter

  4. New insights into susceptibility to glioma.

    PubMed

    Liu, Yanhong; Shete, Sanjay; Hosking, Fay J; Robertson, Lindsay B; Bondy, Melissa L; Houlston, Richard S

    2010-03-01

    The study of inherited susceptibility to cancer has been one of the most informative areas of research in the past decade. Most of the cancer genetics studies have been focused on the common tumors such as breast and colorectal cancers. As the allelic architecture of these tumors is unraveled, research attention is turning to other rare cancers such as glioma, which are also likely to have a major genetic component as the basis of their development. In this brief review we discuss emerging data on glioma whole genome-association searches to identify risk loci. Two glioma genome-wide association studies have so far been reported. Our group identified 5 risk loci for glioma susceptibility (TERT rs2736100, CCDC26 rs4295627, CDKN2A/CDKN2B rs4977756, RTEL1 rs6010620, and PHLDB1 rs498872). Wrensch and colleagues provided further evidence to 2 risk loci (CDKN2B rs1412829 and RTEL1 rs6010620) for GBM and anaplastic astrocytoma. Although these data provide the strongest evidence to date for the role of common low-risk variants in the etiology of glioma, the single-nucleotide polymorphisms identified alone are unlikely to be candidates for causality. Identifying the causal variant at each specific locus and its biological impact now poses a significant challenge, contingent on a combination of fine mapping and functional analyses. Finally, we hope that a greater understanding of the biological basis of the disease will lead to the development of novel therapeutic interventions.

  5. Up-regulation of plakophilin-2 is correlated with the progression of glioma.

    PubMed

    Zhang, Degeng; Qian, Yuxia; Liu, Xiaoxing; Yu, Hong; Zhao, Niangao; Wu, Zhengdong

    2017-06-01

    Glioma is the most common type of primary brain tumor in the CNS. Due to its poor prognosis and high mortality rates, it is urgent to find out more effective therapies. Plakophilin-2 (PKP2) is a widespread desmosomal plaque protein. Recently, the important roles of PKP2 in the proliferation and migration of cancer cells and tumor progression has been shown. However, the expression and potential function of PKP2 in glioma was still unclear. In this study, we demonstrated that PKP2 protein expression level was increased in glioma tissues compared with normal brain tissues, and its level was significantly associated with the Ki-67 expression and WHO grade by Western blot analysis and immunohistochemistry. Clinically, high PKP2 expression was tightly related to poor prognosis of glioma patients. Interestingly, we found that down-regulated PKP2 expression was shown to inhibit the migration of cells in glioma. Moreover, cell counting kit (CCK)-8 and colony formation analyses proved that reduced expression of PKP2 could weaken glioma cell proliferation. Taken together, these data uncover a potential role for PKP2 in the pathogenic process of glioma, suggesting that PKP2 may be a promising therapeutic target of glioma. © 2017 Japanese Society of Neuropathology.

  6. PAQR3 inhibits the proliferation, migration and invasion in human glioma cells.

    PubMed

    Tang, Shi-Lei; Gao, Yuan-Lin; Hu, Wen-Zhong

    2017-08-01

    Progestin and AdipoQ Receptor 3 (PAQR3), a member of the PAQR family, is down-regulated in several types of cancers and has been closely associated with tumor progression and development. However, little is known about the functions of PAQR3 in the tumorigenesis of human glioma. Therefore, in this report, we investigated the role of PAQR3 in human glioma. Our results showed that the expression of PAQR3 was significantly reduced in human glioma tissues and cell lines. PAQR3 overexpression inhibited the proliferation of glioma cells in vitro and attenuated tumor xenograft growth in vivo. In addition, PAQR3 overexpression suppressed the migration and invasion of glioma cells, as well as prevented the EMT process. Mechanistic studies demonstrated that PAQR3 overexpression significantly down-regulated the levels of phosphorylated PI3K and Akt in U251 cells. In conclusion, these results demonstrated that PAQR3 inhibited the proliferation, migration and invasion in glioma cells, at least in part, through the inactivation of PI3K/Akt signaling pathway. Therefore, PAQR3 may be a therapeutic target for the treatment of glioma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. EMMPRIN Is an Independent Negative Prognostic Factor for Patients with Astrocytic Glioma

    PubMed Central

    Chen, Yu; Cai, Min; Dong, Hailong; Xiong, Lize

    2013-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as CD147, is a member of the immunoglobulin superfamily that is present on the surface of tumor cells and stimulates adjacent fibroblasts to produce matrix metalloproteinases (MMPs). It has been proved to be associated with tumor invasion and metastasis in various human malignancies. In our study, the protein expression level of EMMPRIN in 306 cases of astrocytic glioma is investigated by immunohistochemistry assay. Statistical analysis was utilized to evaluate the association of EMMPRIN with clinicopathological characteristics and prognosis of patients. It was proved that EMMPRIN protein expression was increased in glioma compared with that in normal brain tissue. Moreover, EMMPRIN immunohistochemical staining was correlated with WHO grade and Karnofsky performance score for strong positive EMMPRIN staining is more frequently detected in glioma of advanced grade or low KPS score. It is also demonstrated that EMMPRIN could be an independent negative prognostic factor in glioma for patients with glioma of strong EMMPRIN staining tend to have high risk of death. These results proved that EMMPRIN is associated with prognosis of glioma, which may also suggest the potential role of EMMPRIN in glioma management. PMID:23516431

  8. EMMPRIN is an independent negative prognostic factor for patients with astrocytic glioma.

    PubMed

    Tian, Li; Zhang, Yang; Chen, Yu; Cai, Min; Dong, Hailong; Xiong, Lize

    2013-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as CD147, is a member of the immunoglobulin superfamily that is present on the surface of tumor cells and stimulates adjacent fibroblasts to produce matrix metalloproteinases (MMPs). It has been proved to be associated with tumor invasion and metastasis in various human malignancies. In our study, the protein expression level of EMMPRIN in 306 cases of astrocytic glioma is investigated by immunohistochemistry assay. Statistical analysis was utilized to evaluate the association of EMMPRIN with clinicopathological characteristics and prognosis of patients. It was proved that EMMPRIN protein expression was increased in glioma compared with that in normal brain tissue. Moreover, EMMPRIN immunohistochemical staining was correlated with WHO grade and Karnofsky performance score for strong positive EMMPRIN staining is more frequently detected in glioma of advanced grade or low KPS score. It is also demonstrated that EMMPRIN could be an independent negative prognostic factor in glioma for patients with glioma of strong EMMPRIN staining tend to have high risk of death. These results proved that EMMPRIN is associated with prognosis of glioma, which may also suggest the potential role of EMMPRIN in glioma management.

  9. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery.

    PubMed

    Guo, Jianwei; Gao, Xiaoling; Su, Lina; Xia, Huimin; Gu, Guangzhi; Pang, Zhiqing; Jiang, Xinguo; Yao, Lei; Chen, Jun; Chen, Hongzhuan

    2011-11-01

    Targeted delivery of therapeutic nanoparticles in a disease-specific manner represents a potentially powerful technology especially when treating infiltrative brain tumors such as gliomas. We developed a nanoparticulate drug delivery system decorated with AS1411 (Ap), a DNA aptamer specifically binding to nucleolin which was highly expressed in the plasma membrane of both cancer cells and endothelial cells in angiogenic blood vessels, as the targeting ligand to facilitate anti-glioma delivery of paclitaxel (PTX). Ap was conjugated to the surface of PEG-PLGA nanoparticles (NP) via an EDC/NHS technique. With the conjugation confirmed by Urea PAGE and XPS, the resulting Ap-PTX-NP was uniformly round with particle size at 156.0 ± 54.8 nm and zeta potential at -32.93 ± 3.1 mV. Ap-nucleolin interaction significantly enhanced cellular association of nanoparticles in C6 glioma cells, and increased the cytotoxicity of its payload. Prolonged circulation and enhanced PTX accumulation at the tumor site was achieved for Ap-PTX-NP, which eventually obtained significantly higher tumor inhibition on mice bearing C6 glioma xenografts and prolonged animal survival on rats bearing intracranial C6 gliomas when compared with PTX-NP and Taxol(®). The results of this contribution demonstrated the potential utility of AS1411-functionalized nanoparticles for a therapeutic application in the treatment of gliomas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment

    PubMed Central

    Silva, André C; Oliveira, Tiago R; Mamani, Javier B; Malheiros, Suzana MF; Malavolta, Luciana; Pavon, Lorena F; Sibov, Tatiana T; Amaro, Edson; Tannús, Alberto; Vidoto, Edson LG; Martins, Mateus J; Santos, Ricardo S; Gamarra, Lionel F

    2011-01-01

    Gliomas are a group of heterogeneous primary central nervous system (CNS) tumors arising from the glial cells. Malignant gliomas account for a majority of malignant primary CNS tumors and are associated with high morbidity and mortality. Glioblastoma is the most frequent and malignant glioma, and despite the recent advances in diagnosis and new treatment options, its prognosis remains dismal. New opportunities for the development of effective therapies for malignant gliomas are urgently needed. Magnetic hyperthermia (MHT), which consists of heat generation in the region of the tumor through the application of magnetic nanoparticles subjected to an alternating magnetic field (AMF), has shown positive results in both preclinical and clinical assays. The aim of this review is to assess the relevance of hyperthermia induced by magnetic nanoparticles in the treatment of gliomas and to note the possible variations of the technique and its implication on the effectiveness of the treatment. We performed an electronic search in the literature from January 1990 to October 2010, in various databases, and after application of the inclusion criteria we obtained a total of 15 articles. In vitro studies and studies using animal models showed that MHT was effective in the promotion of tumor cell death and reduction of tumor mass or increase in survival. Two clinical studies showed that MHT could be applied safely and with few side effects. Some studies suggested that mechanisms of cell death, such as apoptosis, necrosis, and antitumor immune response were triggered by MHT. Based on these data, we could conclude that MHT proved to be efficient in most of the experiments, and that the improvement of the nanocomposites as well as the AMF equipment might contribute toward establishing MHT as a promising tool in the treatment of malignant gliomas. PMID:21674016

  11. Knockdown of HDAC1 expression suppresses invasion and induces apoptosis in glioma cells.

    PubMed

    Wang, Xiao-Qiang; Bai, Hong-Min; Li, Shi-Ting; Sun, Hui; Min, Ling-Zhao; Tao, Bang-Bao; Zhong, Jun; Li, Bin

    2017-07-18

    Glioma is the most common malignant tumor of the central nervous system, with a low survival rate of five years worldwide. Although high expression and prognostic value of histone deacetylase 1 (HDAC1) have been recently reported in various types of human tumors, the molecular mechanism underlying the biological function of HDAC1 in glioma is still unclear. We found that HDAC1 was elevated in glioma tissues and cell lines. HDAC1 expression was closely related with pathological grade and overall survival of patients with gliomas. Downregulation of HDAC1 inhibited cell proliferation, prevented invasion of glioma cell lines, and induced cell apoptosis. The expression of apoptosis and metastasis related molecules were detected by RT-PCR and Western blot, respectively, in U251 and T98G cells with HDAC1 knockdown. We found that HDAC1 knockdown upregulated expression of BIM, BAX, cleaved CASPASE3 and E-CADHERIN, and decreased expression of TWIST1, SNAIL and MMP9 in U251 and T98G cells with HDAC1 knockdown. In vivo data showed that knockdown of HDAC1 inhibited tumor growth in nude mice. In summary, HDAC1 may therefore be considered an unfavorable progression indicator for glioma patients, and may also serve as a potential therapeutic target.

  12. Cellular immunotherapy for malignant gliomas

    PubMed Central

    Lin, Yi

    2016-01-01

    Introduction Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. Areas covered Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. Expert opinion While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy. PMID:27434205

  13. Dynamic perfusion CT in brain tumors.

    PubMed

    Yeung, Timothy Pok Chi; Bauman, Glenn; Yartsev, Slav; Fainardi, Enrico; Macdonald, David; Lee, Ting-Yim

    2015-12-01

    Dynamic perfusion CT (PCT) is an imaging technique for assessing the vascular supply and hemodynamics of brain tumors by measuring blood flow, blood volume, and permeability-surface area product. These PCT parameters provide information complementary to histopathologic assessments and have been used for grading brain tumors, distinguishing high-grade gliomas from other brain lesions, differentiating true progression from post-treatment effects, and predicting prognosis after treatments. In this review, the basic principles of PCT are described, and applications of PCT of brain tumors are discussed. The advantages and current challenges, along with possible solutions, of PCT are presented. Copyright © 2015. Published by Elsevier Ireland Ltd.

  14. NUMB does not impair growth and differentiation status of experimental gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Euskirchen, Philipp, E-mail: philipp.euskirchen@charite.de; Laboratory for Gene Therapy and Molecular Imaging, Max-Planck-Institute for Neurological Research, Cologne; Skaftnesmo, Kai-Ove

    2011-12-10

    The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiationmore » as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers.« less

  15. D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate.

    PubMed

    El Sayed, S M; Abou El-Magd, R M; Shishido, Y; Chung, S P; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-01-01

    Glioma tumors are refractory to conventional treatment. Glioblastoma multiforme is the most aggressive type of primary brain tumors in humans. In this study, we introduce oxidative stress-energy depletion (OSED) therapy as a new suggested treatment for glioblastoma. OSED utilizes D-amino acid oxidase (DAO), which is a promising therapeutic protein that induces oxidative stress and apoptosis through generating hydrogen peroxide (H2O2). OSED combines DAO with 3-bromopyruvate (3BP), a hexokinase II (HK II) inhibitor that interferes with Warburg effect, a metabolic alteration of most tumor cells that is characterized by enhanced aerobic glycolysis. Our data revealed that 3BP induced depletion of energetic capabilities of glioma cells. 3BP induced H2O2 production as a novel mechanism of its action. C6 glioma transfected with DAO and treated with D-serine together with 3BP-sensitized glioma cells to 3BP and decreased markedly proliferation, clonogenic power and viability in a three-dimensional tumor model with lesser effect on normal astrocytes. DAO gene therapy using atelocollagen as an in vivo transfection agent proved effective in a glioma tumor model in Sprague-Dawley (SD) rats, especially after combination with 3BP. OSED treatment was safe and tolerable in SD rats. OSED therapy may be a promising therapeutic modality for glioma.

  16. EG-13GENOME-WIDE METHYLATION ANALYSIS IDENTIFIES GENOMIC DNA DEMETHYLATION DURING MALIGNANT PROGRESSION OF GLIOMAS

    PubMed Central

    Saito, Kuniaki; Mukasa, Akitake; Nagae, Genta; Aihara, Koki; Otani, Ryohei; Takayanagi, Shunsaku; Omata, Mayu; Tanaka, Shota; Shibahara, Junji; Takahashi, Miwako; Momose, Toshimitsu; Shimamura, Teppei; Miyano, Satoru; Narita, Yoshitaka; Ueki, Keisuke; Nishikawa, Ryo; Nagane, Motoo; Aburatani, Hiroyuki; Saito, Nobuhito

    2014-01-01

    Low-grade gliomas often undergo malignant progression, and these transformations are a leading cause of death in patients with low-grade gliomas. However, the molecular mechanisms underlying malignant tumor progression are still not well understood. Recent evidence indicates that epigenetic deregulation is an important cause of gliomagenesis; therefore, we examined the impact of epigenetic changes during malignant progression of low-grade gliomas. Specifically, we used the Illumina Infinium Human Methylation 450K BeadChip to perform genome-wide DNA methylation analysis of 120 gliomas and four normal brains. This study sample included 25 matched-pairs of initial low-grade gliomas and recurrent tumors (temporal heterogeneity) and 20 of the 25 recurring tumors recurred as malignant progressions, and one matched-pair of newly emerging malignant lesions and pre-existing lesions (spatial heterogeneity). Analyses of methylation profiles demonstrated that most low-grade gliomas in our sample (43/51; 84%) had a CpG island methylator phenotype (G-CIMP). Remarkably, approximately 50% of secondary glioblastomas that had progressed from low-grade tumors with the G-CIMP status exhibited a characteristic partial demethylation of genomic DNA during malignant progression, but other recurrent gliomas showed no apparent change in DNA methylation pattern. Interestingly, we found that most loci that were demethylated during malignant progression were located outside of CpG islands. The information of histone modifications patterns in normal human astrocytes and embryonal stem cells also showed that the ratio of active marks at the site corresponding to DNA demethylated loci in G-CIMP-demethylated tumors was significantly lower; this finding indicated that most demethylated loci in G-CIMP-demethylated tumors were likely transcriptionally inactive. A small number of the genes that were upregulated and had demethylated CpG islands were associated with cell cycle-related pathway. In

  17. Patterns of Invasive Growth in Malignant Gliomas-The Hippocampus Emerges as an Invasion-Spared Brain Region.

    PubMed

    Mughal, Awais A; Zhang, Lili; Fayzullin, Artem; Server, Andres; Li, Yuping; Wu, Yingxi; Glass, Rainer; Meling, Torstein; Langmoen, Iver A; Leergaard, Trygve B; Vik-Mo, Einar O

    2018-05-21

    Widespread infiltration of tumor cells into surrounding brain parenchyma is a hallmark of malignant gliomas, but little data exist on the overall invasion pattern of tumor cells throughout the brain. We have studied the invasive phenotype of malignant gliomas in two invasive mouse models and patients. Tumor invasion patterns were characterized in a patient-derived xenograft mouse model using brain-wide histological analysis and magnetic resonance (MR) imaging. Findings were histologically validated in a cdkn2a-/- PDGF-β lentivirus-induced mouse glioblastoma model. Clinical verification of the results was obtained by analysis of MR images of malignant gliomas. Histological analysis using human-specific cellular markers revealed invasive tumors with a non-radial invasion pattern. Tumors cells accumulated in structures located far from the transplant site, such as the optic white matter and pons, whereas certain adjacent regions were spared. As such, the hippocampus was remarkably free of infiltrating tumor cells despite the extensive invasion of surrounding regions. Similarly, MR images of xenografted mouse brains displayed tumors with bihemispheric pathology, while the hippocampi appeared relatively normal. In patients, most malignant temporal lobe gliomas were located lateral to the collateral sulcus. Despite widespread pathological fluid-attenuated inversion recovery signal in the temporal lobe, 74% of the "lateral tumors" did not show signs of involvement of the amygdalo-hippocampal complex. Our data provide clear evidence for a compartmental pattern of invasive growth in malignant gliomas. The observed invasion patterns suggest the presence of preferred migratory paths, as well as intra-parenchymal boundaries that may be difficult for glioma cells to traverse supporting the notion of compartmental growth. In both mice and human patients, the hippocampus appears to be a brain region that is less prone to tumor invasion. Copyright © 2018 The Authors. Published

  18. Ferritin heavy chain as a molecular imaging reporter gene in glioma xenografts.

    PubMed

    Cheng, Sen; Mi, Ruifang; Xu, Yu; Jin, Guishan; Zhang, Junwen; Zhou, Yiqiang; Chen, Zhengguang; Liu, Fusheng

    2017-06-01

    The development of glioma therapy in clinical practice (e.g., gene therapy) calls for efficiently visualizing and tracking glioma cells in vivo. Human ferritin heavy chain is a novel gene reporter in magnetic resonance imaging. This study proposes hFTH as a reporter gene for MR molecular imaging in glioma xenografts. Rat C6 glioma cells were infected by packaged lentivirus carrying hFTH and EGFP genes and obtained by fluorescence-activated cell sorting. The iron-loaded ability was analyzed by the total iron reagent kit. Glioma nude mouse models were established subcutaneously and intracranially. Then, in vivo tumor bioluminescence was performed via the IVIS spectrum imaging system. The MR imaging analysis was analyzed on a 7T animal MRI scanner. Finally, the expression of hFTH was analyzed by western blotting and histological analysis. Stable glioma cells carrying hFTH and EGFP reporter genes were successfully obtained. The intracellular iron concentration was increased without impairing the cell proliferation rate. Glioma cells overexpressing hFTH showed significantly decreased signal intensity on T 2 -weighted MRI both in vitro and in vivo. EGFP fluorescent imaging could also be detected in the subcutaneous and intracranial glioma xenografts. Moreover, the expression of the transferritin receptor was significantly increased in glioma cells carrying the hFTH reporter gene. Our study illustrated that hFTH generated cellular MR imaging contrast efficiently in glioma via regulating the expression of transferritin receptor. This might be a useful reporter gene in cell tracking and MR molecular imaging for glioma diagnosis, gene therapy and tumor metastasis.

  19. Frequent Nek1 overexpression in human gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jun; Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai; Cai, Yu, E-mail: aihaozuqiu22@163.com

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG,more » U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.« less

  20. Convection-enhanced delivery of a hydrophilic nitrosourea ameliorates deficits and suppresses tumor growth in experimental spinal cord glioma models.

    PubMed

    Ogita, Shogo; Endo, Toshiki; Sugiyama, Shinichiro; Saito, Ryuta; Inoue, Tomoo; Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta; Sonoda, Yukihiko; Tominaga, Teiji

    2017-05-01

    Convection-enhanced delivery (CED) is a technique allowing local infusion of therapeutic agents into the central nervous system, circumventing the blood-brain or spinal cord barrier. To evaluate the utility of nimustine hydrochloride (ACNU) CED in controlling tumor progression in an experimental spinal cord glioma model. Toxicity studies were performed in 42 rats following the administration of 4 μl of ACNU CED into the mid-thoracic spinal cord at concentrations ranging from 0.1 to 10 mg/ml. Behavioral analyses and histological evaluations were performed to assess ACNU toxicity in the spinal cord. A survival study was performed in 32 rats following the implantation of 9 L cells into the T8 spinal cord. Seven days after the implantation, rats were assigned to four groups: ACNU CED (0.25 mg/ml; n = 8); ACNU intravenous (i.v.) (0.4 mg; n = 8); saline CED (n = 8); saline i.v. (n = 8). Hind limb movements were evaluated daily in all rats for 21 days. Tumor sizes were measured histologically. The maximum tolerated ACNU concentration was 0.25 mg/ml. Preservation of hind limb motor function and tumor growth suppression was observed in the ACNU CED (0.25 mg/ml) and ACNU i.v. groups. Antitumor effects were more prominent in the ACNU CED group especially in behavioral analyses (P < 0.05; log-rank test). ACNU CED had efficacy in controlling tumor growth and preserving neurological function in an experimental spinal cord tumor model. ACNU CED can be a viable treatment option for spinal cord high-grade glioma.

  1. Pembrolizumab in Treating Younger Patients With Recurrent, Progressive, or Refractory High-Grade Gliomas, Diffuse Intrinsic Pontine Gliomas, Hypermutated Brain Tumors, Ependymoma or Medulloblastoma

    ClinicalTrials.gov

    2018-06-28

    Constitutional Mismatch Repair Deficiency Syndrome; Lynch Syndrome; Malignant Glioma; Progressive Ependymoma; Progressive Medulloblastoma; Recurrent Brain Neoplasm; Recurrent Childhood Ependymoma; Recurrent Diffuse Intrinsic Pontine Glioma; Recurrent Medulloblastoma; Refractory Brain Neoplasm; Refractory Diffuse Intrinsic Pontine Glioma; Refractory Ependymoma; Refractory Medulloblastoma

  2. Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma

    PubMed Central

    Arrieta, O; Guevara, P; Escobar, E; García-Navarrete, R; Pineda, B; Sotelo, J

    2005-01-01

    Angiotensin II (Ang II) is a main effector peptide in the renin–angiotensin system and participates in the regulation of vascular tone. It also has a role in the expression of growth factors that induce neovascularisation which is closely associated to the growth of malignant gliomas. We have shown that the selective blockage of the AT1 receptor of angiotensin inhibites tumour growth, cell proliferation and angiogenesis of C6 rat glioma. The aim of this study was to study the effects of the blockage of AT1 receptor on the synthesis of growth factors, and in the genesis of apoptosis in cultured C6 glioma cells and in rats with C6 glioma. Administration of losartan at doses of 40 or 80 mg kg−1 to rats with C6 glioma significantly decreased tumoral volume and production of platelet-derived growth factor, vascular endothelial growth factor and basic fibroblast growth factor. It also induced apoptosis in a dose-dependent manner. Administration of Ang II increased cell proliferation of cultured C6 cells which decreased by the administration of losartan. Our results suggest that the selective blockage of AT1 diminishes tumoral growth through inhibition of growth factors and promotion of apoptosis. PMID:15785746

  3. Passive antibody-mediated immunotherapy for the treatment of malignant gliomas.

    PubMed

    Mitra, Siddhartha; Li, Gordon; Harsh, Griffith R

    2010-01-01

    Despite advances in understanding the molecular mechanisms of brain cancer, the outcome of patients with malignant gliomas treated according to the current standard of care remains poor. Novel therapies are needed, and immunotherapy has emerged with great promise. The diffuse infiltration of malignant gliomas is a major challenge to effective treatment; immunotherapy has the advantage of accessing the entire brain with specificity for tumor cells. Therapeutic immune approaches include cytokine therapy, passive immunotherapy, and active immunotherapy. Cytokine therapy involves the administration of immunomodulatory cytokines to activate the immune system. Active immunotherapy is the generation or augmentation of an immune response, typically by vaccination against tumor antigens. Passive immunotherapy connotes either adoptive therapy, in which tumor-specific immune cells are expanded ex vivo and reintroduced into the patient, or passive antibody-mediated therapy. In this article, the authors discuss the preclinical and clinical studies that have used passive antibody-mediated immunotherapy, otherwise known as serotherapy, for the treatment of malignant gliomas.

  4. Novel, improved grading system(s) for IDH-mutant astrocytic gliomas.

    PubMed

    Shirahata, Mitsuaki; Ono, Takahiro; Stichel, Damian; Schrimpf, Daniel; Reuss, David E; Sahm, Felix; Koelsche, Christian; Wefers, Annika; Reinhardt, Annekathrin; Huang, Kristin; Sievers, Philipp; Shimizu, Hiroaki; Nanjo, Hiroshi; Kobayashi, Yusuke; Miyake, Yohei; Suzuki, Tomonari; Adachi, Jun-Ichi; Mishima, Kazuhiko; Sasaki, Atsushi; Nishikawa, Ryo; Bewerunge-Hudler, Melanie; Ryzhova, Marina; Absalyamova, Oksana; Golanov, Andrey; Sinn, Peter; Platten, Michael; Jungk, Christine; Winkler, Frank; Wick, Antje; Hänggi, Daniel; Unterberg, Andreas; Pfister, Stefan M; Jones, David T W; van den Bent, Martin; Hegi, Monika; French, Pim; Baumert, Brigitta G; Stupp, Roger; Gorlia, Thierry; Weller, Michael; Capper, David; Korshunov, Andrey; Herold-Mende, Christel; Wick, Wolfgang; Louis, David N; von Deimling, Andreas

    2018-04-23

    According to the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO), IDH-mutant astrocytic gliomas comprised WHO grade II diffuse astrocytoma, IDH-mutant (AII IDHmut ), WHO grade III anaplastic astrocytoma, IDH-mutant (AAIII IDHmut ), and WHO grade IV glioblastoma, IDH-mutant (GBM IDHmut ). Notably, IDH gene status has been made the major criterion for classification while the manner of grading has remained unchanged: it is based on histological criteria that arose from studies which antedated knowledge of the importance of IDH status in diffuse astrocytic tumor prognostic assessment. Several studies have now demonstrated that the anticipated differences in survival between the newly defined AII IDHmut and AAIII IDHmut have lost their significance. In contrast, GBM IDHmut still exhibits a significantly worse outcome than its lower grade IDH-mutant counterparts. To address the problem of establishing prognostically significant grading for IDH-mutant astrocytic gliomas in the IDH era, we undertook a comprehensive study that included assessment of histological and genetic approaches to prognosis in these tumors. A discovery cohort of 211 IDH-mutant astrocytic gliomas with an extended observation was subjected to histological review, image analysis, and DNA methylation studies. Tumor group-specific methylation profiles and copy number variation (CNV) profiles were established for all gliomas. Algorithms for automated CNV analysis were developed. All tumors exhibiting 1p/19q codeletion were excluded from the series. We developed algorithms for grading, based on molecular, morphological and clinical data. Performance of these algorithms was compared with that of WHO grading. Three independent cohorts of 108, 154 and 224 IDH-mutant astrocytic gliomas were used to validate this approach. In the discovery cohort several molecular and clinical parameters were of prognostic relevance. Most relevant for overall survival (OS

  5. Remote intracranial recurrence of IDH mutant gliomas is associated with TP53 mutations and an 8q gain

    PubMed Central

    Nakae, Shunsuke; Kato, Takema; Murayama, Kazuhiro; Sasaki, Hikaru; Abe, Masato; Kumon, Masanobu; Kumai, Tadashi; Yamashiro, Kei; Inamasu, Joji; Hasegawa, Mitsuhiro; Kurahashi, Hiroki; Hirose, Yuichi

    2017-01-01

    Most IDH mutant gliomas harbor either 1p/19q co-deletions or TP53 mutation; 1p/19q co-deleted tumors have significantly better prognoses than tumors harboring TP53 mutations. To investigate the clinical factors that contribute to differences in tumor progression of IDH mutant gliomas, we classified recurrent tumor patterns based on MRI and correlated these patterns with their genomic characterization. Accordingly, in IDH mutant gliomas (N = 66), 1p/19 co-deleted gliomas only recurred locally, whereas TP53 mutant gliomas recurred both locally and in remote intracranial regions. In addition, diffuse tensor imaging suggested that remote intracranial recurrence in the astrocytomas, IDH-mutant with TP53 mutations may occur along major fiber bundles. Remotely recurrent tumors resulted in a higher mortality and significantly harbored an 8q gain; astrocytomas with an 8q gain resulted in significantly shorter overall survival than those without an 8q gain. OncoScan® arrays and next-generation sequencing revealed specific 8q regions (i.e., between 8q22 and 8q24) show a high copy number. In conclusion, only tumors with TP53 mutations showed patterns of remote recurrence in IDH mutant gliomas. Furthermore, an 8q gain was significantly associated with remote intracranial recurrence and can be considered a poor prognostic factor in astrocytomas, IDH-mutant. PMID:29156679

  6. Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis

    PubMed Central

    Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael

    2014-01-01

    Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc −; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage. PMID:24714627

  7. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature.

    PubMed

    Huang, Ning; Cheng, Si; Zhang, Xiang; Tian, Qi; Pi, Jiangli; Tang, Jun; Huang, Qing; Wang, Feng; Chen, Jin; Xie, Zongyi; Xu, Zhongye; Chen, Weifu; Zheng, Huzhi; Cheng, Yuan

    2017-01-01

    Delivery of imaging agents to brain glioma is challenging because the blood-brain barrier (BBB) functions as a physiological checkpoint guarding the central nervous system from circulating large molecules. Moreover, the ability of existing probes to target glioma has been insufficient and needs to be improved. In present study, PEG-based long circulation, CdSe/ZnS quantum dots (QDs)-based nanoscale and fluorescence, asparagines-glycine-arginine peptides (NGR)-based specific CD13 recognition were integrated to design and synthesize a novel nanoprobe by conjugating biotinylated NGR peptides to avidin-PEG-coated QDs. Our data showed that the NGR-PEG-QDs were nanoscale with less than 100 nm and were stable in various pH (4.0~8.0). These nanomaterials with non-toxic concentrations could cross the BBB and target CD13-overexpressing glioma and tumor vasculature in vitro and in vivo, contributing to fluorescence imaging of this brain malignancy. These achievements allowed groundbreaking technological advances in targeted fluorescence imaging for the diagnosis and surgical removal of glioma, facilitating potential transformation toward clinical nanomedicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Cortical GABAergic excitation contributes to epileptic activities around human glioma

    PubMed Central

    Pallud, Johan; Varlet, Pascale; Cresto, Noemie; Baulac, Michel; Duyckaerts, Charles; Kourdougli, Nazim; Chazal, Geneviève; Devaux, Bertrand; Rivera, Claudio; Miles, Richard; Capelle, Laurent; Huberfeld, Gilles

    2015-01-01

    Rationale Diffuse brain gliomas induce seizures in a majority of patients. As in most epileptic disorders, excitatory glutamatergic mechanisms are involved in the generation of epileptic activities in the neocortex surrounding gliomas. However, chloride homeostasis is known to be perturbed in glial tumor cells. Thus the contribution of GABAergic mechanisms which depend on intracellular chloride and which are defective or pro-epileptic in other structural epilepsies merits closer study. Objective We studied in neocortical slices from the peritumoral security margin resected around human brain gliomas, the occurrence, networks, cells and signaling basis of epileptic activities. Results Postoperative glioma tissue from 69% of patients spontaneously generated interictal-like discharges. These events were synchronized, with a high frequency oscillation signature, in superficial layers of neocortex around glioma areas with tumor infiltration. Interictal-like events depended on both glutamatergic transmission and on depolarizing GABAergic signaling. About 65% of pyramidal cells were depolarized by GABA released by interneurons. This effect was related to perturbations in Chloride homeostasis, due to changes in expression of chloride co-transporters: KCC2 was reduced and expression of NKCC1 increased. Ictal-like activities were initiated by convulsant stimuli exclusively in these epileptogenic areas. Conclusions Epileptic activities are sustained by excitatory effects of GABA in the peritumoral human neocortex, as in temporal lobe epilepsies. Glutamate and GABA signaling are involved in oncogenesis and chloride homeostasis is perturbed. These same factors, induce an imbalance between synaptic excitatory and inhibition underly epileptic discharges in tumor patients. PMID:25009229

  9. Current update of adoptive immunotherapy using cytokine-induced killer cells to eliminate malignant gliomas.

    PubMed

    Ryu, Je Il; Han, Myung Hoon; Cheong, Jin Hwan; Kim, Jae Min; Kim, Choong Hyun

    2017-03-01

    The therapeutic outcome for those with malignant glioma is poor, even though diverse therapeutic modalities have been developed. Immunotherapy has emerged as a therapeutic approach for malignant gliomas, making it possible to selectively treat tumors while sparing normal tissue. Here, we review clinical trials of adoptive immunotherapy approaches for malignant gliomas. We also describe a clinical trial that examined the efficacy and safety of autologous cytokine-induced killer (CIK) cells along with concomitant chemoradiotherapy for newly diagnosed glioblastoma. These CIK cells identify and kill autologous tumor cells. This review focuses on the use of adoptive immunotherapy for malignant gliomas and reviews the current literature on the concept of antitumor activity mediated by CIK cells.

  10. Brain Gliomas: Multicenter Standardized Assessment of Dynamic Contrast-enhanced and Dynamic Susceptibility Contrast MR Images.

    PubMed

    Anzalone, Nicoletta; Castellano, Antonella; Cadioli, Marcello; Conte, Gian Marco; Cuccarini, Valeria; Bizzi, Alberto; Grimaldi, Marco; Costa, Antonella; Grillea, Giovanni; Vitali, Paolo; Aquino, Domenico; Terreni, Maria Rosa; Torri, Valter; Erickson, Bradley J; Caulo, Massimo

    2018-06-01

    Purpose To evaluate the feasibility of a standardized protocol for acquisition and analysis of dynamic contrast material-enhanced (DCE) and dynamic susceptibility contrast (DSC) magnetic resonance (MR) imaging in a multicenter clinical setting and to verify its accuracy in predicting glioma grade according to the new World Health Organization 2016 classification. Materials and Methods The local research ethics committees of all centers approved the study, and informed consent was obtained from patients. One hundred patients with glioma were prospectively examined at 3.0 T in seven centers that performed the same preoperative MR imaging protocol, including DCE and DSC sequences. Two independent readers identified the perfusion hotspots on maps of volume transfer constant (K trans ), plasma (v p ) and extravascular-extracellular space (v e ) volumes, initial area under the concentration curve, and relative cerebral blood volume (rCBV). Differences in parameters between grades and molecular subtypes were assessed by using Kruskal-Wallis and Mann-Whitney U tests. Diagnostic accuracy was evaluated by using receiver operating characteristic curve analysis. Results The whole protocol was tolerated in all patients. Perfusion maps were successfully obtained in 94 patients. An excellent interreader reproducibility of DSC- and DCE-derived measures was found. Among DCE-derived parameters, v p and v e had the highest accuracy (are under the receiver operating characteristic curve [A z ] = 0.847 and 0.853) for glioma grading. DSC-derived rCBV had the highest accuracy (A z = 0.894), but the difference was not statistically significant (P > .05). Among lower-grade gliomas, a moderate increase in both v p and rCBV was evident in isocitrate dehydrogenase wild-type tumors, although this was not significant (P > .05). Conclusion A standardized multicenter acquisition and analysis protocol of DCE and DSC MR imaging is feasible and highly reproducible. Both techniques showed a

  11. Altered intraoperative cerebrovascular reactivity in brain areas of high-grade glioma recurrence.

    PubMed

    Fierstra, Jorn; van Niftrik, Bas; Piccirelli, Marco; Burkhardt, Jan Karl; Pangalu, Athina; Kocian, Roman; Valavanis, Antonios; Weller, Michael; Regli, Luca; Bozinov, Oliver

    2016-07-01

    Current MRI sequences are limited in identifying brain areas at risk for high grade glioma recurrence. We employed intraoperative 3-Tesla functional MRI to assess cerebrovascular reactivity (CVR) after high-grade glioma resection and analyzed regional CVR responses in areas of tumor recurrence on clinical follow-up imaging. Five subjects with high-grade glioma that underwent an intraoperative Blood Oxygen-Level Dependent (BOLD) MRI CVR examination and had a clinical follow-up of at least 18months were selected from a prospective database. For this study, location of tumor recurrence was spatially matched to the intraoperative imaging to assess CVR response in that particular area. CVR is defined as the percent BOLD signal change during repeated cycles of apnea. Of the 5 subjects (mean age 44, 2 females), 4 were diagnosed with a WHO grade III and 1 subject with a WHO grade IV glioma. Three subjects exhibited a tumor recurrence on clinical follow-up MRI (mean: 15months). BOLD CVR measured in the spatially matched area of tumor recurrence was on average 94% increased (range-32% to 183%) as compared to contralateral hemisphere CVR response, 1.50±0.81 versus 1.03±0.46 respectively (p=0.31). For this first analysis in a small cohort, we found altered intraoperative CVR in brain areas exhibiting high grade glioma recurrence on clinical follow-up imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Sustained Radiosensitization of Hypoxic Glioma Cells after Oxygen Pretreatment in an Animal Model of Glioblastoma and In Vitro Models of Tumor Hypoxia

    PubMed Central

    Clarke, Ryon H.; Moosa, Shayan; Anzivino, Matthew; Wang, Yi; Floyd, Desiree Hunt; Purow, Benjamin W.; Lee, Kevin S.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia during radiotherapy are limited by an attendant increase in the sensitivity of healthy brain tissue to radiation. However, the presence of heightened levels of molecular oxygen during radiotherapy, while conventionally deemed critical for adjuvant oxygen therapy to sensitize hypoxic tumor tissue, might not actually be necessary. We evaluated the concept that pre-treating tumor tissue by transiently elevating tissue oxygenation prior to radiation exposure could increase the efficacy of radiotherapy, even when radiotherapy is administered after the return of tumor tissue oxygen to hypoxic baseline levels. Using nude mice bearing intracranial U87-luciferase xenografts, and in vitro models of tumor hypoxia, the efficacy of oxygen pretreatment for producing radiosensitization was tested. Oxygen-induced radiosensitization of tumor tissue was observed in GBM xenografts, as seen by suppression of tumor growth and increased survival. Additionally, rodent and human glioma cells, and human glioma stem cells, exhibited prolonged enhanced vulnerability to radiation after oxygen pretreatment in vitro, even when radiation was delivered under hypoxic conditions. Over-expression of HIF-1α reduced this radiosensitization, indicating that this effect is mediated, in part, via a change in HIF-1-dependent mechanisms. Importantly, an identical duration of transient hyperoxic exposure does not sensitize normal human astrocytes to radiation in vitro. Taken together, these results indicate that briefly pre-treating tumors with elevated levels of oxygen prior to radiotherapy may represent a means for selectively targeting radiation

  13. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma.

    PubMed

    Tang, Jiaze; Huang, Ning; Zhang, Xiang; Zhou, Tao; Tan, Ying; Pi, Jiangli; Pi, Li; Cheng, Si; Zheng, Huzhi; Cheng, Yuan

    2017-01-01

    The extent of resection is a significant prognostic factor in glioma patients. However, the maximum safe resection level is difficult to determine due to the inherent infiltrative character of tumors. Recently, fluorescence-guided surgery has emerged as a new technique that allows safe resection of glioma. In this study, we constructed a new kind of quantum dot (QD)-labeled aptamer (QD-Apt) nanoprobe by conjugating aptamer 32 (A32) to the QDs surface, which can specially bind to the tumors. A32 is a single-stranded DNA capable of binding to the epidermal growth factor receptor variant III (EGFRvIII) specially distributed on the surface of glioma cells. To detect the expression of EGFRvIII in human brain tissues, 120 specimens, including 110 glioma tissues and 10 normal brain tissues, were examined by immunohistochemistry, and the results showed that the rate of positive expression of EGFRvIII in the glioma tissues was 41.82%, and 0.00% in normal brain tissues. Besides, the physiochemical properties of QD-Apt nanoparticles (NPs) were thoroughly characterized. Biocompatibility of the NPs was evaluated, and the results suggested that the QD-Apt was nontoxic in vivo and vitro. Furthermore, the use of the QD-Apt in labeling glioma cell lines and human brain glioma tissues, and target gliomas in situ was also investigated. We found that not only could QD-Apt specially bind to the U87-EGFRvIII glioma cells but also bind to human glioma tissues in vitro. Fluorescence imaging in vivo with orthotopic glioma model mice bearing U87-EGFRvIII showed that QD-Apt could penetrate the blood-brain barrier and then selectively accumulate in the tumors through binding to EGFRvIII, and consequently, generate a strong fluorescence, which contributed to the margins of gliomas that were visualized clearly, and thus, help the surgeons realize the maximum safe resection of glioma. In addition, QD-Apt can also be applied in preoperative diagnosis and postoperative examination of glioma

  14. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma

    PubMed Central

    Tang, Jiaze; Huang, Ning; Zhang, Xiang; Zhou, Tao; Tan, Ying; Pi, Jiangli; Pi, Li; Cheng, Si; Zheng, Huzhi; Cheng, Yuan

    2017-01-01

    The extent of resection is a significant prognostic factor in glioma patients. However, the maximum safe resection level is difficult to determine due to the inherent infiltrative character of tumors. Recently, fluorescence-guided surgery has emerged as a new technique that allows safe resection of glioma. In this study, we constructed a new kind of quantum dot (QD)-labeled aptamer (QD-Apt) nanoprobe by conjugating aptamer 32 (A32) to the QDs surface, which can specially bind to the tumors. A32 is a single-stranded DNA capable of binding to the epidermal growth factor receptor variant III (EGFRvIII) specially distributed on the surface of glioma cells. To detect the expression of EGFRvIII in human brain tissues, 120 specimens, including 110 glioma tissues and 10 normal brain tissues, were examined by immunohistochemistry, and the results showed that the rate of positive expression of EGFRvIII in the glioma tissues was 41.82%, and 0.00% in normal brain tissues. Besides, the physiochemical properties of QD-Apt nanoparticles (NPs) were thoroughly characterized. Biocompatibility of the NPs was evaluated, and the results suggested that the QD-Apt was nontoxic in vivo and vitro. Furthermore, the use of the QD-Apt in labeling glioma cell lines and human brain glioma tissues, and target gliomas in situ was also investigated. We found that not only could QD-Apt specially bind to the U87-EGFRvIII glioma cells but also bind to human glioma tissues in vitro. Fluorescence imaging in vivo with orthotopic glioma model mice bearing U87-EGFRvIII showed that QD-Apt could penetrate the blood–brain barrier and then selectively accumulate in the tumors through binding to EGFRvIII, and consequently, generate a strong fluorescence, which contributed to the margins of gliomas that were visualized clearly, and thus, help the surgeons realize the maximum safe resection of glioma. In addition, QD-Apt can also be applied in preoperative diagnosis and postoperative examination of glioma

  15. Evaluation of 188Re-labeled PEGylated nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model

    PubMed Central

    Huang, Feng-Yun J; Lee, Te-Wei; Chang, Chih-Hsien; Chen, Liang-Cheng; Hsu, Wei-Hsin; Chang, Chien-Wen; Lo, Jem-Mau

    2015-01-01

    Purpose In this study, the 188Re-labeled PEGylated nanoliposome (188Re-liposome) was prepared and evaluated as a therapeutic agent for glioma. Materials and methods The reporter cell line, F98luc was prepared via Lentivector expression kit system and used to set up the orthotopic glioma-bearing rat model for non-invasive bioluminescent imaging. The maximum tolerated dose applicable in Fischer344 rats was explored via body weight monitoring of the rats after single intravenous injection of 188Re-liposome with varying dosages before the treatment study. The OLINDA/EXM 1.1 software was utilized for estimating the radiation dosimetry. To assess the therapeutic efficacy, tumor-bearing rats were intravenously administered 188Re-liposome or normal saline followed by monitoring of the tumor growth and animal survival time. In addition, the histopathological examinations of tumors were conducted on the 188Re-liposome-treated rats. Results By using bioluminescent imaging, the well-established reporter cell line (F98luc) showed a high relationship between cell number and its bioluminescent intensity (R2=0.99) in vitro; furthermore, it could also provide clear tumor imaging for monitoring tumor growth in vivo. The maximum tolerated dose of 188Re-liposome in Fischer344 rats was estimated to be 333 MBq. According to the dosimetry results, higher equivalent doses were observed in spleen and kidneys while very less were in normal brain, red marrow, and thyroid. For therapeutic efficacy study, the progression of tumor growth in terms of tumor volume and/or tumor weight was significantly slower for the 188Re-liposome-treated group than the control group (P<0.05). As a result, the lifespan of glioma-bearing rats treated with 188Re-liposome was prolonged 10.67% compared to the control group. Conclusion The radiotherapeutic evaluation by dosimetry and survival studies have demonstrated that passive targeting 188Re-liposome via systemic administration can significantly prolong the

  16. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas

    ClinicalTrials.gov

    2017-11-07

    Adult Anaplastic Astrocytoma; Recurrent Grade III Glioma; Recurrent Grade IV Glioma; Adult Anaplastic Oligodendroglioma; Adult Brain Tumor; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Adult Anaplastic Oligoastrocytoma; Recurrent High Grade Glioma

  17. Increased expression of stress inducible protein 1 in glioma-associated microglia/macrophages.

    PubMed

    Carvalho da Fonseca, Anna Carolina; Wang, Huaqing; Fan, Haitao; Chen, Xuebo; Zhang, Ian; Zhang, Leying; Lima, Flavia Regina Souza; Badie, Behnam

    2014-09-15

    Factors released by glioma-associated microglia/macrophages (GAMs) play an important role in the growth and infiltration of tumors. We have previously demonstrated that the co-chaperone stress-inducible protein 1 (STI1) secreted by microglia promotes proliferation and migration of human glioblastoma (GBM) cell lines in vitro. In the present study, in order to investigate the role of STI1 in a physiological context, we used a glioma model to evaluate STI1 expression in vivo. Here, we demonstrate that STI1 expression in both the tumor and in the infiltrating GAMs and lymphocytes significantly increased with tumor progression. Interestingly, high expression of STI1 was observed in macrophages and lymphocytes that infiltrated brain tumors, whereas STI1 expression in the circulating blood monocytes and lymphocytes remained unchanged. Our results correlate, for the first time, the expression of STI1 and glioma progression, and suggest that STI1 expression in GAMs and infiltrating lymphocytes is modulated by the brain tumor microenvironment. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Circulating anti-filamin C autoantibody as a potential serum biomarker for low-grade gliomas

    PubMed Central

    2014-01-01

    Background Glioma is the most common primary malignant central nervous system tumor in adult, and is usually not curable due to its invasive nature. Establishment of serum biomarkers for glioma would be beneficial both for early diagnosis and adequate therapeutic intervention. Filamins are an actin cross-linker and filamin C (FLNC), normally restricted in muscle tissues, offers many signaling molecules an essential communication fields. Recently, filamins have been considered important for tumorigenesis in cancers. Methods We searched for novel glioma-associated antigens by serological identification of antigens utilizing recombinant cDNA expression cloning (SEREX), and found FLNC as a candidate protein. Tissue expressions of FLNC (both in normal and tumor tissues) were examined by immunohistochemistry and quantitative RT-PCR analyses. Serum anti-FLNC autoantibody level was measured by ELISA in normal volunteers and in the patients with various grade gliomas. Results FLNC was expressed in glioma tissues and its level got higher as tumor grade advanced. Anti-FLNC autoantibody was also detected in the serum of glioma patients, but its levels were inversely correlated with the tissue expression. Serum anti-FLNC autoantibody level was significantly higher in low-grade glioma patients than in high-grade glioma patients or in normal volunteers, which was confirmed in an independent validation set of patients’ sera. The autoantibody levels in the patients with meningioma or cerebral infarction were at the same level of normal volunteers, and they were significantly lower than that of low-grade gliomas. Total IgG and anti-glutatione S-transferase (GST) antibody level were not altered among the patient groups, which suggest that the autoantibody response was specific for FLNC. Conclusions The present results suggest that serum anti-FLNC autoantibody can be a potential serum biomarker for early diagnosis of low-grade gliomas while it needs a large-scale clinical study

  19. The expression and significance of HIF-1alpha and GLUT-3 in glioma.

    PubMed

    Liu, Yang; Li, Yun-ming; Tian, Rui-feng; Liu, Wei-ping; Fei, Zhou; Long, Qian-fa; Wang, Xiao-an; Zhang, Xiang

    2009-12-22

    HIF-1alpha plays an indispensable role in tumor formation and histogenesis. Target genes involved in glucose transport are acutely transactivated by HIF-1alpha. GLUT-3 protein is the rate-limiting factor related to glucose transport, which is classified as brain-type glucose transporter. This study was the initial one aiming to probe into the co-expression and clinical significance of HIF-1alpha and GLUT-3 in glioma. One hundred and twenty cases of glioma tissues and ten human normal cerebral tissues decompressed in glioma excision were examined using immunohistochemistry and Western blot. The expression of HIF-1alpha and GLUT-3 increased gradually with the increase of pathological grade of glioma, respectively. There was significant difference in the expression of HIF-1alpha and GLUT-3 in every two groups, respectively. There was a positive correlation between HIF-1alpha and GLUT-3. In conclusion, the expression of HIF-1alpha and GLUT-3 in glioma was correlated significantly with tumors' pathological grade, which can be taken as a pair of useful markers for predicting the biological behavior of glioma.

  20. Formononetin sensitizes glioma cells to doxorubicin through preventing EMT via inhibition of histone deacetylase 5.

    PubMed

    Liu, Quan; Sun, Yan; Zheng, Jie-Min; Yan, Xian-Lei; Chen, Hong-Mou; Chen, Jia-Kang; Huang, He-Qing

    2015-01-01

    Chemoresistance is a major obstacle to successful chemotherapy for glioma. Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus and possesses antitumorigenic properties. In the present study, we investigated the anti-proliferative effects of formononetin on human glioma cells, and further elucidated the molecular mechanism underlying the anti-tumor property. We found that formononetin enhanced doxorubicin cytotoxicity in glioma cells. Combined treatment with formononetin reversed the doxorubicin-induced epithelial-mesenchymal transition (EMT) in tumor cells. Moreover, we found that formononetin treatment significantly decreased the expression of HDAC5. Overexpression of HDAC5 diminished the suppressive effects of formononetin on glioma cell viability. Furthermore, knockdown of HDAC5 by siRNA inhibited the doxorubicin-induced EMT in glioma cells. Taken together, these results demonstrated that formononetin-combined therapy may enhance the therapeutic efficacy of doxorubicin in glioma cells by preventing EMT through inhibition of HDAC5.

  1. Formononetin sensitizes glioma cells to doxorubicin through preventing EMT via inhibition of histone deacetylase 5

    PubMed Central

    Liu, Quan; Sun, Yan; Zheng, Jie-Min; Yan, Xian-Lei; Chen, Hong-Mou; Chen, Jia-Kang; Huang, He-Qing

    2015-01-01

    Chemoresistance is a major obstacle to successful chemotherapy for glioma. Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus and possesses antitumorigenic properties. In the present study, we investigated the anti-proliferative effects of formononetin on human glioma cells, and further elucidated the molecular mechanism underlying the anti-tumor property. We found that formononetin enhanced doxorubicin cytotoxicity in glioma cells. Combined treatment with formononetin reversed the doxorubicin-induced epithelial-mesenchymal transition (EMT) in tumor cells. Moreover, we found that formononetin treatment significantly decreased the expression of HDAC5. Overexpression of HDAC5 diminished the suppressive effects of formononetin on glioma cell viability. Furthermore, knockdown of HDAC5 by siRNA inhibited the doxorubicin-induced EMT in glioma cells. Taken together, these results demonstrated that formononetin-combined therapy may enhance the therapeutic efficacy of doxorubicin in glioma cells by preventing EMT through inhibition of HDAC5. PMID:26261519

  2. Feasibility of Using Bevacizumab With Radiation Therapy and Temozolomide in Newly Diagnosed High-Grade Glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayana, Ashwatha; Golfinos, John G.; Fischer, Ingeborg

    2008-10-01

    Introduction: Bevacizumab, a monoclonal antibody against vascular endothelial growth factor (VEGF), has shown promise in the treatment of patients with recurrent high-grade glioma. The purpose of this study is to test the feasibility of using bevacizumab with chemoradiation in the primary management of high-grade glioma. Methods and Materials: Fifteen patients with high-grade glioma were treated with involved field radiation therapy to a dose of 59.4 Gy at 1.8 Gy/fraction with bevacizumab 10 mg/kg on Days 14 and 28 and temozolomide 75 mg/m{sup 2}. Subsequently, bevacizumab 10 mg/kg was continued every 2 weeks with temozolomide 150 mg/m{sup 2} for 12 months.more » Changes in relative cerebral blood volume, perfusion-permeability index, and tumor volume measurement were measured to assess the therapeutic response. Immunohistochemistry for phosphorylated VEGF receptor 2 (pVEGFR2) was performed. Results: Thirteen patients (86.6%) completed the planned bevacizumab and chemoradiation therapy. Four Grade III/IV nonhematologic toxicities were seen. Radiographic responses were noted in 13 of 14 assessable patients (92.8%). The pVEGFR2 staining was seen in 7 of 8 patients (87.5%) at the time of initial diagnosis. Six patients have experienced relapse, 3 at the primary site and 3 as diffuse disease. One patient showed loss of pVEGFR2 expression at relapse. One-year progression-free survival and overall survival rates were 59.3% and 86.7%, respectively. Conclusion: Use of antiangiogenic therapy with radiation and temozolomide in the primary management of high-grade glioma is feasible. Perfusion imaging with relative cerebral blood volume, perfusion-permeability index, and pVEGFR2 expression may be used as a potential predictor of therapeutic response. Toxicities and patterns of relapse need to be monitored closely.« less

  3. Canine (Pet Dog) Tumor Microsurgery and Intratumoral Concentration and Safety of Metronomic Chlorambucil for Spontaneous Glioma: A Phase I Clinical Trial.

    PubMed

    Bentley, R Timothy; Thomovsky, Stephanie A; Miller, Margaret A; Knapp, Deborah W; Cohen-Gadol, Aaron A

    2018-06-04

    Metronomic (daily low-dose) chlorambucil requires further study before use in human patients with glioma. The aim of this study was to investigate distribution and safety of metronomic chlorambucil in naturally occurring canine glioma. Eight client-owned (pet) dogs with newly diagnosed spontaneous glioma were prospectively enrolled. Chlorambucil was administered preoperatively at 4 mg/m 2 every 24 hours for ≥3 days and continued postoperatively until death or dose-limiting adverse events. Chlorambucil concentrations in the surgical glioma specimen, cerebrospinal fluid, and serum were analyzed. Dogs additionally received lomustine postoperatively. Dogs were monitored for seizures, myoclonus, cytopenias, and tumor recurrence. Complete microsurgical resection was achieved in 7 oligodendrogliomas and 1 astrocytoma (6 high grade, 2 low grade). Median surgical glioma specimen chlorambucil concentration was 0.52 ng/g (range, 0-2.62 ng/g), or 37% (range, 0%-178%) of serum concentration. Median cerebrospinal fluid concentration was 0.1 ng/mL (range, 0-0.3 ng/mL). Chlorambucil was not associated with increase in seizure activity. Six dogs displayed prolonged seizure-free intervals. There was no myoclonus. Three dogs developed asymptomatic thrombocytopenia after 8-12 months of chlorambucil. Median progression-free survival was 253 days (range, 63-860 days). Median overall survival was 257 days (range, 64-860 days). The presence of intratumoral chlorambucil indicated an altered blood-brain barrier that varied from case to case. Despite sporadic previous reports of neurotoxicity, prolonged seizure-free intervals supported a high safety margin at this dose in this species. Metronomic chlorambucil was well tolerated. Spontaneous canine glioma offers a robust preclinical model. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Magnetic Labeling of Activated Microglia in Experimental Gliomas1

    PubMed Central

    Fleige, Gerrit; Nolte, Christiane; Synowitz, Michael; Seeberger, Florian; Kettenmann, Helmut; Zimmer, Claus

    2001-01-01

    Abstract Microglia, as intrinsic immunoeffector cells of the central nervous system (CNS), play a very sensitive, crucial role in the response to almost any brain pathology where they are activated to a phagocytic state. Based on the characteristic features of activated microglia, we investigated whether these cells can be visualized with magnetic resonance imaging (MRI) using ultrasmall superparamagnetic iron oxides (USPIOs). The hypothesis of this study was that MR microglia visualization could not only reveal the extent of the tumor, but also allow for assessing the status of immunologic defense. Using USPIOs in cell culture experiments and in a rat glioma model, we showed that microglia can be labeled magnetically. Labeled microglia are detected by confocal microscopy within and around tumors in a typical border-like pattern. Quantitative in vitro studies revealed that microglia internalize amounts of USPIOs that are significantly higher than those incorporated by tumor cells and astrocytes. Labeled microglia can be detected and quantified with MRI in cell phantoms, and the extent of the tumor can be seen in glioma-bearing rats in vivo. We conclude that magnetic labeling of microglia provides a potential tool for MRI of gliomas, which reflects tumor morphology precisely. Furthermore, the results suggest that MRI may yield functional data on the immunologic reaction of the CNS. PMID:11774031

  5. Compression stiffening of brain and its effect on mechanosensing by glioma cells

    NASA Astrophysics Data System (ADS)

    Pogoda, Katarzyna; Chin, LiKang; Georges, Penelope C.; Byfield, FitzRoy J.; Bucki, Robert; Kim, Richard; Weaver, Michael; Wells, Rebecca G.; Marcinkiewicz, Cezary; Janmey, Paul A.

    2014-07-01

    Many cell types, including neurons, astrocytes and other cells of the central nervous system, respond to changes in the extracellular matrix or substrate viscoelasticity, and increased tissue stiffness is a hallmark of several disease states, including fibrosis and some types of cancers. Whether the malignant tissue in brain, an organ that lacks the protein-based filamentous extracellular matrix of other organs, exhibits the same macroscopic stiffening characteristic of breast, colon, pancreatic and other tumors is not known. In this study we show that glioma cells, like normal astrocytes, respond strongly in vitro to substrate stiffness in the range of 100 to 2000 Pa, but that macroscopic (mm to cm) tissue samples isolated from human glioma tumors have elastic moduli in the order of 200 Pa that are indistinguishable from those of normal brain. However, both normal brain and glioma tissues increase their shear elastic moduli under modest uniaxial compression, and glioma tissue stiffens more strongly under compression than normal brain. These findings suggest that local tissue stiffness has the potential to alter glial cell function, and that stiffness changes in brain tumors might arise not from increased deposition or crosslinking of the collagen-rich extracellular matrix, but from pressure gradients that form within the tumors in vivo.

  6. Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth.

    PubMed

    Mathivet, Thomas; Bouleti, Claire; Van Woensel, Matthias; Stanchi, Fabio; Verschuere, Tina; Phng, Li-Kun; Dejaegher, Joost; Balcer, Marly; Matsumoto, Ken; Georgieva, Petya B; Belmans, Jochen; Sciot, Raf; Stockmann, Christian; Mazzone, Massimiliano; De Vleeschouwer, Steven; Gerhardt, Holger

    2017-12-01

    Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro-inflammatory M1-like macrophages in the early stages, followed by in situ repolarization to M2-like macrophages, which produced VEGF-A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti-CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Biodisposition and metabolism of [18F]fluorocholine in 9L glioma cells and 9L glioma-bearing Fisher rats

    PubMed Central

    Bansal, Aditya; Shuyan, Wang; Hara, Toshiko; Harris, Robert A.; DeGrado, Timothy R.

    2008-01-01

    Purpose [18F]Fluorocholine [18F]FCH) was developed as an analog of [11C]choline for tumor imaging, however, its metabolic handling remains ill-defined. In this study, the metabolism of [18F]FCH is evaluated in cultured 9L glioma cells and Fisher 344 rats bearing 9L glioma tumors. Methods 9L glioma cells were incubated with [18F]FCH and [14C]choline under normoxic and hypoxic (1% O2) conditions and analyzed for metabolic fate. [18F]FCH and [14C]choline kinetics and metabolism were studied in Fisher 344 rats bearing subcutaneous 9L tumors. Results [18F]FCH and [14C]choline were similarly metabolized in 9L cells in both normoxic and hypoxic conditions over a 2 hr incubation period. In normoxia, radioactivity was predominantly in phosphorylated form for both tracers after 5 min incubation. In hypoxia, the tracers remained mainly in nonmetabolized form at early timepoints (< 20 min). Slow dephosphorylation of intracellular [18F]phosphofluorocholine (0.043–0.060 min−1) and [14C]phosphocholine (0.072–0.088 min−1) was evidenced via efflux measurements. In rat, both [18F]FCH and [14C]choline showed high renal and hepatic uptake. Blood clearance of both tracers was rapid with oxidative metabolites, [18F]fluorobetaine and [14C]betaine, representing the majority of radiolabel in plasma after 5 min post-injection. Oxidation (in liver) and lipid incorporation (in lung) were somewhat slower for [18F]FCH relative to [14C]choline. The majority of radiolabel in hypoxic subcutaneous tumor, as in hypoxic cultured 9L cells, was found as nonmetabolized [18F]FCH and [14C]choline. Conclusions [18F]FCH mimics choline uptake and metabolism by 9L glioma cells and tumors. However, subtle changes in biodistribution, oxidative metabolism, dephosphorylation, lipid incorporation and renal excretion show moderate effects of the presence of the radiofluorine atom in [18F]FCH. The decrease in phosphorylation of exogenous choline by cancer cells should be considered in interpretation of PET

  8. Microglia and Macrophages in Malignant Gliomas: Recent Discoveries and Implications for Promising Therapies

    PubMed Central

    Carvalho da Fonseca, Anna Carolina; Badie, Behnam

    2013-01-01

    Malignant gliomas are the most common primary brain tumors. Their deadliest manifestation, glioblastoma multiforme (GBM), accounts for 15% of all primary brain tumors and is associated with a median survival of only 15 months even after multimodal therapy. There is substantial presence of microglia and macrophages within and surrounding brain tumors. These immune cells acquire an alternatively activated phenotype with potent tumor-tropic functions that contribute to glioma growth and invasion. In this review, we briefly summarize recent data that has been reported on the interaction of microglia/macrophages with brain tumors and discuss potential application of these findings to the development of future antiglioma therapies. PMID:23864876

  9. Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies.

    PubMed

    da Fonseca, Anna Carolina Carvalho; Badie, Behnam

    2013-01-01

    Malignant gliomas are the most common primary brain tumors. Their deadliest manifestation, glioblastoma multiforme (GBM), accounts for 15% of all primary brain tumors and is associated with a median survival of only 15 months even after multimodal therapy. There is substantial presence of microglia and macrophages within and surrounding brain tumors. These immune cells acquire an alternatively activated phenotype with potent tumor-tropic functions that contribute to glioma growth and invasion. In this review, we briefly summarize recent data that has been reported on the interaction of microglia/macrophages with brain tumors and discuss potential application of these findings to the development of future antiglioma therapies.

  10. Longitudinal DSC-MRI for Distinguishing Tumor Recurrence From Pseudoprogression in Patients With a High-grade Glioma.

    PubMed

    Boxerman, Jerrold L; Ellingson, Benjamin M; Jeyapalan, Suriya; Elinzano, Heinrich; Harris, Robert J; Rogg, Jeffrey M; Pope, Whitney B; Safran, Howard

    2017-06-01

    For patients with high-grade glioma on clinical trials it is important to accurately assess time of disease progression. However, differentiation between pseudoprogression (PsP) and progressive disease (PD) is unreliable with standard magnetic resonance imaging (MRI) techniques. Dynamic susceptibility contrast perfusion MRI (DSC-MRI) can measure relative cerebral blood volume (rCBV) and may help distinguish PsP from PD. A subset of patients with high-grade glioma on a phase II clinical trial with temozolomide, paclitaxel poliglumex, and concurrent radiation were assessed. Nine patients (3 grade III, 6 grade IV), with a total of 19 enhancing lesions demonstrating progressive enhancement (≥25% increase from nadir) on postchemoradiation conventional contrast-enhanced MRI, had serial DSC-MRI. Mean leakage-corrected rCBV within enhancing lesions was computed for all postchemoradiation time points. Of the 19 progressively enhancing lesions, 10 were classified as PsP and 9 as PD by biopsy/surgery or serial enhancement patterns during interval follow-up MRI. Mean rCBV at initial progressive enhancement did not differ significantly between PsP and PD (2.35 vs. 2.17; P=0.67). However, change in rCBV at first subsequent follow-up (-0.84 vs. 0.84; P=0.001) and the overall linear trend in rCBV after initial progressive enhancement (negative vs. positive slope; P=0.04) differed significantly between PsP and PD. Longitudinal trends in rCBV may be more useful than absolute rCBV in distinguishing PsP from PD in chemoradiation-treated high-grade gliomas with DSC-MRI. Further studies of DSC-MRI in high-grade glioma as a potential technique for distinguishing PsP from PD are indicated.

  11. Vorinostat and Bortezomib in Treating Young Patients With Refractory or Recurrent Solid Tumors, Including Central Nervous System Tumors and Lymphoma

    ClinicalTrials.gov

    2013-07-01

    Childhood Burkitt Lymphoma; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Medulloepithelioma; Childhood Meningioma; Childhood Mixed Glioma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Oligodendroglioma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific

  12. IGFBP6 Regulates Cell Apoptosis and Migration in Glioma.

    PubMed

    Bei, Yuanqi; Huang, Qingfeng; Shen, Jianhong; Shi, Jinlong; Shen, Chaoyan; Xu, Peng; Chang, Hao; Xia, Xiaojie; Xu, Li; Ji, Bin; Chen, JianGuo

    2017-07-01

    The insulin-like growth factor binding protein 6 (IGFBP6), as an inhibitor of IGF-II actions, plays an important role in inhibiting survival and migration of tumor cells. In our study, we intended to demonstrate the biological function of IGFBP6 in the development of glioma and its clinical significance. Firstly, Western blot and immunohistochemistry revealed that the expression of IGFBP6 inversely correlated with glioma grade. Secondly, multivariate analysis with the Cox proportional hazards model and Kaplan-Meier analysis indicated that IGFBP6 could be an independent prognostic factor for the survival of glioma patients. In addition, overexpression of IGFBP6 induced glioma cell apoptosis, and depletion of IGFBP6 had the opposite action. Finally, overexpression of IGFBP6 inhibited migration of glioma cells, and depletion of IGFBP6 had the opposite action. Together our findings suggest that IGFBP6 might be an important regulator and prognostic factor for glioma.

  13. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells

    PubMed Central

    Watkins, Stacey; Robel, Stefanie; Kimbrough, Ian F.; Robert, Stephanie M.; Ellis-Davies, Graham; Sontheimer, Harald

    2014-01-01

    Astrocytic endfeet cover the entire cerebral vasculature and serve as exchange sites for ions, metabolites, and energy substrates from the blood to the brain. They maintain endothelial tight junctions that form the blood-brain barrier (BBB) and release vasoactive molecules that regulate vascular tone. Malignant gliomas are highly invasive tumors that use the perivascular space for invasion and co-opt existing vessels as satellite tumors form. Here we use a clinically relevant mouse model of glioma and find that glioma cells, as they populate the perivascular space of pre-existing vessels, displace astrocytic endfeet from endothelial or vascular smooth muscle cells. This causes a focal breach in the BBB. Furthermore, astrocyte-mediated gliovascular coupling is lost, and glioma cells seize control over regulation of vascular tone through Ca2+-dependent release of K+. These findings have important clinical implications regarding blood flow in the tumor-associated brain and the ability to locally deliver chemotherapeutic drugs in disease. PMID:24943270

  14. Genetic therapy in gliomas: historical analysis and future perspectives.

    PubMed

    Mattei, Tobias Alécio; Ramina, Ricardo; Miura, Flavio Key; Aguiar, Paulo Henrique; Valiengo, Leandro da Costa

    2005-03-01

    High-grade gliomas are relatively frequent in adults, and consist of the most malignant kind of primary brain tumor. Being resistant to standard treatment modalities such as surgery, radiation, and chemotherapy, it is fatal within 1 to 2 years of onset of symptoms. Although several gene therapy systems proved to be efficient in controlling or eradicating these tumors in animal models, the clinical studies performed so far were not equally successful. Most clinical studies showed that methodologies that increase tumor infection/transduction and, consequently confer more permanent activity against the tumor, will lead to enhanced therapeutic results. Due to the promising practical clinical benefits that can be expected for the near future, an exposition to the practicing neurosurgeon about the basic issues in genetic therapy of gliomas seems convenient. Among the main topics, we shall discuss anti-tumoral mechanisms of various genes that can be transfected, the advantages and drawbacks of the different vectors utilized, the possibilities of tumor targeting by modifications in the native tropism of virus vectors, as well as the different physical methods for vector delivery to the tumors. Along with the exposition we will also review of the history of the genetic therapy for gliomas, with special focus on the main problems found during the advancement of scientific discoveries in this area. A general analysis is also made of the present state of this promising therapeutic modality, with reference to the problems that still must be solved and the new paradigms for future research in this area.

  15. Antitumor Activity of Rat Mesenchymal Stem Cells during Direct or Indirect Co-Culturing with C6 Glioma Cells.

    PubMed

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Mel'nikov, P A; Cherepanov, S A; Levinsky, A B; Chehonin, V P

    2016-02-01

    The tumor-suppressive effect of rat mesenchymal stem cells against low-differentiated rat C6 glioma cells during their direct and indirect co-culturing and during culturing of C6 glioma cells in the medium conditioned by mesenchymal stem cells was studied in an in vitro experiment. The most pronounced antitumor activity of mesenchymal stem cells was observed during direct co-culturing with C6 glioma cells. The number of live C6 glioma cells during indirect co-culturing and during culturing in conditioned medium was slightly higher than during direct co-culturing, but significantly differed from the control (C6 glioma cells cultured in medium conditioned by C6 glioma cells). The cytotoxic effect of medium conditioned by mesenchymal stem cells was not related to medium depletion by glioma cells during their growth. The medium conditioned by other "non-stem" cells (rat astrocytes and fibroblasts) produced no tumor-suppressive effect. Rat mesenchymal stem cells, similar to rat C6 glioma cells express connexin 43, the main astroglial gap junction protein. During co-culturing, mesenchymal stem cells and glioma C6 cells formed functionally active gap junctions. Gap junction blockade with connexon inhibitor carbenoxolone attenuated the antitumor effect observed during direct co-culturing of C6 glioma cells and mesenchymal stem cells to the level produced by conditioned medium. Cell-cell signaling mediated by gap junctions can be a mechanism of the tumor-suppressive effect of mesenchymal stem cells against C6 glioma cells. This phenomenon can be used for the development of new methods of cell therapy for high-grade malignant gliomas.

  16. Quantitative morphological magnetic resonance imaging follow-up of low-grade glioma: a plea for systematic measurement of growth rates.

    PubMed

    Pallud, Johan; Taillandier, Luc; Capelle, Laurent; Fontaine, Denys; Peyre, Matthieu; Ducray, François; Duffau, Hugues; Mandonnet, Emmanuel

    2012-09-01

    Supratentorial hemispheric diffuse low-grade gliomas (LGGs), i.e., World Health Organization grade II gliomas, are a heterogeneous group of tumors. During their natural course, LGGs tend to progress to a higher grade of malignancy, leading to neurological disability and ultimately to death. In this review, we will show, that during their low-grade period, these tumors exhibit systematically a spontaneous and continuous radiological growth, whatever their histological subtypes. The radiological tumor growth is easily quantified by measuring the evolution of the equivalent tumor diameter (calculated from the tumor volume), obtaining the velocity of diametric expansion (VDE). The spontaneous VDE of LGGs varies markedly with an average VDE of about 4 mm/year. It depends on intrinsic factors (1p19q codeletion status, P53 overexpression status) and can be modified by extrinsic factors (pregnancy). The spontaneous VDE carries a strong prognostic significance regarding progression-free and overall survivals. As a consequence, VDE should be integrated along with the other "static" parameters (multimodal imaging, histological and molecular analyses) in the initial investigations. In addition, the assessment of VDE obtained before, during, and after a particular oncological treatment helps in analyzing their effects on LGGs on an individual basis, helping to guide the decision making.

  17. Methylation Status of the RIZ1 Gene Promoter in Human Glioma Tissues and Cell Lines.

    PubMed

    Zhang, Chenran; Meng, Wei; Wang, Jiajia; Lu, Yicheng; Hu, Guohan; Hu, Liuhua; Ma, Jie

    2017-08-01

    Retinoblastoma protein-interacting zinc-finger gene 1 (RIZ1), a strong tumor suppressor, is silenced in many human cancers. Our previous studies showed that RIZ1 expression was negatively correlated with the grade of glioma and was a key predictor of patient survival. Therefore, RIZ1 could be a potential tumor suppressor during glioma pathogenesis, although the mechanism underlying RIZ1 gene inactivation in gliomas is unknown. We investigated the methylation status of the RIZ1 promoter in human glioma tissues and four glioblastoma (GBM) cell lines, and verified the effect of the methyltransferase inhibitor 5-aza-2-deoxycytidine (5-aza-CdR) on RIZ1 transcription and cell proliferation. Methylation-specific PCR (MSP) was performed to determine RIZ1 promoter methylation in human glioma specimens. The correlation between RIZ1 hypermethylation in tumors and clinicopathological features also was analyzed. 5-Aza-CdR treatment was used to reactivate gene expression silenced by hypermethylation in the U87 glioblastoma cell line, and real-time PCR was then used to measure RIZ1 expression. The ability of 5-aza-CdR to inhibit the proliferation of glioma cell lines whose RIZ1 promoters were hypermethylated was measured by bromodeoxyuridine (BrdU) incorporation. Among 51 human glioma specimens, RIZ1 promoter methylation was detected in 23 cases. Clinicopathological evaluation suggested that RIZ1 hypermethylation was negatively associated with tumor grade and patient age (P < 0.05). Hypermethylation of the RIZ1 promoter was detected in the U87 and U251 cell lines. RIZ1 mRNA expression in U87 cells was upregulated after treatment with 5-aza-Cdr, which correlated with inhibition of cell proliferation in a time- and concentration-dependent manner. Promoter hypermethylation may play an important role in the epigenetic silencing of RIZ1 expression in human glioma tissues and GBM cell lines.

  18. Stereotactic Radiosurgery in Treating Patients With Brain Tumors

    ClinicalTrials.gov

    2012-03-21

    Adult Central Nervous System Germ Cell Tumor; Adult Malignant Meningioma; Adult Medulloblastoma; Adult Noninfiltrating Astrocytoma; Adult Oligodendroglioma; Adult Craniopharyngioma; Adult Meningioma; Brain Metastases; Adult Ependymoma; Adult Pineal Parenchymal Tumor; Adult Brain Stem Glioma; Adult Infiltrating Astrocytoma; Mixed Gliomas; Stage IV Peripheral Primitive Neuroectodermal Tumor

  19. The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model.

    PubMed

    Awde, Ali R; Boisgard, Raphaël; Thézé, Benoit; Dubois, Albertine; Zheng, Jinzi; Dollé, Frédéric; Jacobs, Andreas H; Tavitian, Bertrand; Winkeler, Alexandra

    2013-12-01

    On the one hand, the translocator protein (TSPO) radioligand N,N-diethyl-2-(2-(4-(2-(18)F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ((18)F-DPA-714) has been suggested to serve as an alternative radiotracer to image human glioma, and on the other hand the alkylphosphocholine erufosine (ErPC3) has been reported to induce apoptosis in otherwise highly apoptosis-resistant glioma cell lines. The induction of apoptosis by ErPC3 requires TSPO, a mitochondrial membrane protein highly expressed in malignant gliomas. In this preclinical study, we monitored the effect of ErPC3 treatment in vivo using (18)F-DPA-714 PET. In vitro studies investigated the antitumor effect of ErPC3 in 9L rat gliosarcoma cells. In vivo, glioma-bearing rats were imaged with (18)F-DPA-714 for the time of treatment. A significant decrease in 9L cell proliferation and viability and a significant increase in apoptosis and caspase-3 activation were demonstrated on ErPC3 treatment in cell culture. In the rat model, ErPC3 administration resulted in significant changes in (18)F-DPA-714 tumor uptake over the course of the treatment. Immunohistochemistry revealed reduced tumor volume and increased cell death in ErPC3-treated animals accompanied by infiltration of the tumor core by CD11b-positive microglia/macrophages and glial fibrillary acidic protein-positive astrocytes. Our findings demonstrate a potent antitumor effect of ErPC3 in vitro, in vivo, and ex vivo. PET imaging of TSPO expression using (18)F-DPA-714 allows effective monitoring and quantification of disease progression and response to ErPC3 therapy in intracranial 9L gliomas.

  20. Metabolic brain imaging correlated with clinical features of brain tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alavi, J.; Alavi, A.; Dann, R.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1more » enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.« less

  1. Dihydroartemisinin increases temozolomide efficacy in glioma cells by inducing autophagy

    PubMed Central

    ZHANG, ZE-SHUN; WANG, JING; SHEN, YOU-BI; GUO, CHENG-CHENG; SAI, KE; CHEN, FU-RONG; MEI, XIN; HAN, FU; CHEN, ZHONG-PING

    2015-01-01

    Artemisinin, a powerful antimalarial medicine, is extracted from the Chinese herb, Artemisia annua L., and has the ability to inhibit the proliferation of cancer cells. Dihydroartemisinin (DHA), the major active metabolite of artemisinin, is able to inhibit the growth of a variety of types of human cancer. However, the effect of DHA on human glioma cells remains unclear. The aim of the present study was to investigate the effect of DHA on the proliferation of glioma cells, and whether DHA was able to enhance temozolomide (TMZ) sensitivity in vitro and in vivo. In total, 10 human glioma cell lines were used to analyze the growth inhibition ability of DHA by MTT assay. The typical autophagic vacuoles were monitored by the application of the autofluorescent agent, monodansylcadaverine. Western blotting was used to detect markers of apoptosis and autophagy, namely Caspase-3, Beclin-1 and LC3-B. The combination efficiency of DHA and TMZ was assessed in vitro and in vivo. The half maximal inhibitory concentration (IC50) of DHA differed among the ten human glioma cell lines. The number of autophagic vacuoles was higher in DHA-treated SKMG-4 cells; this was highest of all cell lines analyzed. The expression of autophagy molecular markers, Beclin-1 and LC3-B, was increased following DHA treatment, while no significant alteration was detected in the expression of apoptotic marker Caspase-3. When combined with DHA, the IC50 of TMZ decreased significantly in the four glioma cell lines analyzed. Furthermore, DHA enhanced the tumor inhibition ability of TMZ in tumor-burdened mice. The results of the present study demonstrated that DHA inhibited the proliferation of glioma cells and enhanced the tumor inhibition efficacy of TMZ in vitro and in vivo through the induction of autophagy. PMID:26171034

  2. Combinatorial therapy with adenoviral-mediated PTEN and a PI3K inhibitor suppresses malignant glioma cell growth in vitro and in vivo by regulating the PI3K/AKT signaling pathway.

    PubMed

    Nan, Yang; Guo, Liyun; Song, Yunpeng; Wang, Le; Yu, Kai; Huang, Qiang; Zhong, Yue

    2017-08-01

    Glioblastoma is a highly invasive and challenging tumor of the central nervous system. The mutation/deletion of the tumor suppressor phosphatase and tensin homolog (PTEN) gene is the main genetic change identified in glioblastomas. PTEN plays a critical role in tumorigenesis and has been shown to be an important therapeutic target. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 is commonly used to inhibit glioma cell growth via regulation of the PI3K/AKT signaling pathway. In this study, we examined the growth inhibitory effects of a combinatorial therapy of adenoviral-mediated PTEN (Ad-PTEN) and LY294002 on LN229 and U251 glioma cells in vitro and on tumor xenografts in vivo. In vitro, LN229 and U251 glioma cells were treated by combinatorial therapy with Ad-PTEN and LY294002. The growth ability was determined by MTT assay. The cell cycle distribution was analyzed by flow cytometry. Cell invasive ability was analyzed by transwell invasion assay and cell apoptosis analysis via FITC-Annexin V analysis. In vivo, U251 subcutaneous glioblastoma xenograft was used to assay anti-tumor effect of combinatorial therapy with Ad-PTEN and LY294002 by mean volume of tumors, immunohistochemistry and TUNEL method. The combinatorial treatment clearly suppressed cell proliferation, arrested the cell cycle, reduced cell invasion and promoted cell apoptosis compared with the Ad-PTEN or LY294002 treatment alone. The treatment worked by inhibiting the PI3K/AKT pathway. In addition, the growth of U251 glioma xenografts treated with the combination of Ad-PTEN and LY294002 was significantly inhibited compared with those treated with Ad-PTEN or LY294002 alone. Our data indicated that the combination of Ad-PTEN and LY294002 effectively suppressed the malignant growth of human glioma cells in vitro and in tumor xenografts, suggesting a promising new approach for glioma gene therapy that warrants further investigation.

  3. Antisense oligonucleotides as innovative therapeutic strategy in the treatment of high-grade gliomas.

    PubMed

    Caruso, Gerardo; Caffo, Mariella; Raudino, Giuseppe; Alafaci, Concetta; Salpietro, Francesco M; Tomasello, Francesco

    2010-01-01

    Despite the intensive recent research in cancer therapy, the prognosis in patients affected by high-grade gliomas is still very unfavorable. The efficacy of classical anti-cancer strategies is seriously limited by lack of specific therapies against malignant cells. The extracellular matrix plays a pivotal role in processes such as differentiation, apoptosis, and migration in both the normal and the pathologic nervous system. Glial tumors seem to be able to create a favorable environment for the invasion of glioma cells in cerebral parenchyma when they combine with the extracellular matrix via cell surface receptors. Glioma cells synthesize matrix proteins, such as tenascin, laminin, fibronectin that facilitate the tumor cell's motility. New treatments have shown to hit the acting molecules in the tumor growth and to increase the efficacy and minimize the toxicity. Antisense oligonucleotides are synthetic stretches of DNA which hybridize with specific mRNA strands. The specificity of hybridization makes antisense method an interesting strategy to selectively modulate the expression of genes involved in tumorigenesis. In this review we will focus on the mechanisms of action of antisense oligonucleotides and report clinical and experimental studies on the treatment of high-grade gliomas. We will also report the patents of preclinical and/or clinical studies that adopt the antisense oligonucleotide therapy list in cerebral gliomas.

  4. Collecting and Storing Blood and Brain Tumor Tissue Samples From Children With Brain Tumors

    ClinicalTrials.gov

    2017-12-11

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Newly Diagnosed Childhood Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma

  5. Enhancement in blood-tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles: evaluation during tumor progression in a rat glioma model

    NASA Astrophysics Data System (ADS)

    Aryal, Muna; Park, Juyoung; Vykhodtseva, Natalia; Zhang, Yong-Zhi; McDannold, Nathan

    2015-03-01

    Effective drug delivery to brain tumors is often challenging because of the heterogeneous permeability of the ‘blood tumor barrier’ (BTB) along with other factors such as increased interstitial pressure and drug efflux pumps. Focused ultrasound (FUS) combined with microbubbles can enhance the permeability of the BTB in brain tumors, as well as the blood-brain barrier in the surrounding tissue. In this study, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to characterize the FUS-induced permeability changes of the BTB in a rat glioma model at different times after implantation. 9L gliosarcoma cells were implanted in both hemispheres in male rats. At day 9, 14, or 17 days after implantation, FUS-induced BTB disruption using 690 kHz ultrasound and definity microbubbles was performed in one tumor in each animal. Before FUS, liposomal doxorubicin was administered at a dose of 5.67 mg kg-1. This chemotherapy agent was previously shown to improve survival in animal glioma models. The transfer coefficient Ktrans describing extravasation of the MRI contrast agent Gd-DTPA was measured via DCE-MRI before and after sonication. We found that tumor doxorubicin concentrations increased monotonically (823  ±  600, 1817  ±  732 and 2432  ±  448 ng g-1) in the control tumors at 9, 14 and 17 d. With FUS-induced BTB disruption, the doxorubicin concentrations were enhanced significantly (P < 0.05, P < 0.01, and P < 0.0001 at days 9, 14, and 17, respectively) and were greater than the control tumors by a factor of two or more (2222  ±  784, 3687  ±  796 and 5658  ±  821 ng g-1) regardless of the stage of tumor growth. The transfer coefficient Ktrans was significantly (P < 0.05) enhanced compared to control tumors only at day 9 but not at day 14 or 17. These results suggest that FUS-induced enhancements in tumor drug delivery are relatively consistent over time, at least in this tumor model. These results are

  6. Culture conditions tailored to the cell of origin are critical for maintaining native properties and tumorigenicity of glioma cells

    PubMed Central

    Ledur, Pítia F.; He, Hua; Harris, Alexandra R.; Minussi, Darlan C.; Zhou, Hai-Yan; Shaffrey, Mark E.; Asthagiri, Ashok; Lopes, Maria Beatriz S.; Schiff, David; Lu, Yi-Cheng; Mandell, James W.; Lenz, Guido; Zong, Hui

    2016-01-01

    Background Cell culture plays a pivotal role in cancer research. However, culture-induced changes in biological properties of tumor cells profoundly affect research reproducibility and translational potential. Establishing culture conditions tailored to the cancer cell of origin could resolve this problem. For glioma research, it has been previously shown that replacing serum with defined growth factors for neural stem cells (NSCs) greatly improved the retention of gene expression profile and tumorigenicity. However, among all molecular subtypes of glioma, our laboratory and others have previously shown that the oligodendrocyte precursor cell (OPC) rather than the NSC serves as the cell of origin for the proneural subtype, raising questions regarding the suitability of NSC-tailored media for culturing proneural glioma cells. Methods OPC-originated mouse glioma cells were cultured in conditions for normal OPCs or NSCs, respectively, for multiple passages. Gene expression profiles, morphologies, tumorigenicity, and drug responsiveness of cultured cells were examined in comparison with freshly isolated tumor cells. Results OPC media-cultured glioma cells maintained tumorigenicity, gene expression profiles, and morphologies similar to freshly isolated tumor cells. In contrast, NSC-media cultured glioma cells gradually lost their OPC features and most tumor-initiating ability and acquired heightened sensitivity to temozolomide. Conclusions To improve experimental reproducibility and translational potential of glioma research, it is important to identify the cell of origin, and subsequently apply this knowledge to establish culture conditions that allow the retention of native properties of tumor cells. PMID:27106408

  7. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma.

    PubMed

    Tsen, Andrew R; Long, Patrick M; Driscoll, Heather E; Davies, Matthew T; Teasdale, Benjamin A; Penar, Paul L; Pendlebury, William W; Spees, Jeffrey L; Lawler, Sean E; Viapiano, Mariano S; Jaworski, Diane M

    2014-03-15

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA-induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic and hypoacetylated mesenchymal glioma tumors. © 2013 UICC.

  8. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma

    PubMed Central

    Tsen, Andrew R.; Long, Patrick M.; Driscoll, Heather E.; Davies, Matthew T.; Teasdale, Benjamin A.; Penar, Paul L.; Pendlebury, William W.; Spees, Jeffrey L.; Lawler, Sean E.; Viapiano, Mariano S.; Jaworski, Diane M.

    2013-01-01

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic, and hypoacetylated mesenchymal glioma tumors. PMID:23996800

  9. Glioma Indian scenario: Is there a human leucocyte antigen association?

    PubMed

    Shankarkumar, U; Sridharan, B

    2011-07-01

    The central nervous system tumors are a rare neoplasm with little knowledge with Human Leukocyte Antigen (HLA) involvement. Primary brain tumors are cancers that originate in brain classified according to their appearance under a microscope as low grade (grade I and II) with diffuse astrocytomas, pliocytic astrocytomas, oligodendrogliomas, gangliogliomas, and mixed gliomas as common subtypes and high grade (grade III and IV). HLA associations in common glioma are reported from other parts of the world. The normal cancer treatment is surgery, followed by radiotherapy, and chemotherapy; nowadays immunotherapy is advised. HLA distribution in a Glioma patient was done based on serology and molecular techniques. The immune response gene studies have implicated the HLA allele association in most of the common diseases from India. Considerable variations are noted in HLA association with cancers; hence, we have summarized the HLA involvement in Glioma with respect to the literature. HLA A*030101, A*310102, B*350101, B*4406, Cw*040101, Cw*070101, DRB1*070101, and DRB1*1001. Ethnic diversity and HLA polymorphism precipitate differential immune response genes involved in variable disease manifestations. Therefore, caste-specific HLA allelic specificity needs to be identified, which may help in early identification of the associated HLA allele and establishing clinical practices among glioma patients.

  10. High expression of B7-H6 in human glioma tissues promotes tumor progression.

    PubMed

    Jiang, Tianwei; Wu, Wei; Zhang, Huasheng; Zhang, Xiangsheng; Zhang, Dingding; Wang, Qiang; Huang, Lei; Wang, Ye; Hang, Chunhua

    2017-06-06

    B7-H6, a new member of B7-family ligand, also known as NCR3LG1, plays an important role in NK cells mediated immune responses. Many studies have shown that it is highly expressed in various human cancers, and its expression levels are significantly associated with cancer patients' clinicopathological parameters and postoperative prognoses. But, still the exact role of B7-H6 expression in human glioma remains elusive. In the present study, we have characterized the B7-H6 expression in the human glioma tissues as well as glioma cell lines, U87 and U251. We observed that B7-H6 was highly expressed in the human glioma tissues, and its expression was significantly associated with cancer progression. By using the RNA interference technology, we successfully ablated B7-H6 expression in human glioma cell lines to further study its contribution towards various biological features of this malignancy. Our study identified that the B7-H6 knockdown in U87 and U251 glioma cells significantly suppressed cell proliferation, migration, invasion, and enhanced apoptosis along with induction of cell cycle arrest. It thus suggested that B7-H6 play an important role in the regulation of the biological behavior of these glioma cells. However, the detailed mechanism of B7-H6 mediated regulation of glioma cancer cell transformation and its prognostic value merits further investigation.

  11. The role of microglia and macrophages in glioma maintenance and progression

    PubMed Central

    Hambardzumyan, Dolores; Gutmann, David H; Kettenmann, Helmut

    2016-01-01

    There is a growing recognition that gliomas are complex tumors composed of neoplastic and non-neoplastic cells, which each individually contribute to cancer formation, progression and response to treatment. The majority of the non-neoplastic cells are tumor-associated macrophages (TAMs), either of peripheral origin or representing brain-intrinsic microglia, that create a supportive stroma for neoplastic cell expansion and invasion. TAMs are recruited to the glioma environment, have immune functions, and can release a wide array of growth factors and cytokines in response to those factors produced by cancer cells. In this manner, TAMs facilitate tumor proliferation, survival and migration. Through such iterative interactions, a unique tumor ecosystem is established, which offers new opportunities for therapeutic targeting. PMID:26713745

  12. Ribociclib and Everolimus in Treating Children With Recurrent or Refractory Malignant Brain Tumors

    ClinicalTrials.gov

    2018-03-09

    Central Nervous System Embryonal Tumor, Not Otherwise Specified; Malignant Glioma; Recurrent Atypical Teratoid/Rhabdoid Tumor; Recurrent Childhood Ependymoma; Recurrent Diffuse Intrinsic Pontine Glioma; Recurrent Medulloblastoma; Refractory Diffuse Intrinsic Pontine Glioma

  13. Retinoids in the treatment of glioma: a new perspective.

    PubMed

    Mawson, Anthony R

    2012-01-01

    Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners) in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α (RARα) and reduced expression of retinoic acid receptor-β (RARβ). This suggests a potential new treatment strategy for gliomas, possibly even at a late stage of the disease, ie, to combine the use of a RARα antagonist and a RARβ agonist. According to this hypothesis, the RARα antagonist would be expected to inhibit RAR

  14. Isolated optic nerve gliomas: a multicenter historical cohort study.

    PubMed

    Shofty, Ben; Ben-Sira, Liat; Kesler, Anat; Jallo, George; Groves, Mari L; Iyer, Rajiv R; Lassaletta, Alvaro; Tabori, Uri; Bouffet, Eric; Thomale, Ulrich-Wilhelm; Hernáiz Driever, Pablo; Constantini, Shlomi

    2017-12-01

    OBJECTIVE Isolated optic nerve gliomas (IONGs) constitute a rare subgroup of optic pathway gliomas (OPGs). Due to the rarity of this condition and the difficulty in differentiating IONGs from other types of OPGs in most clinical series, little is known about these tumors. Currently, due to lack of evidence, they are managed the same as any other OPG. METHODS The authors conducted a multicenter retrospective cohort study aimed at determining the natural history of IONGs. Included were patients with clear-cut glioma of the optic nerve without posterior (chiasmatic/hypothalamic) involvement. At least 1 year of follow-up, 2 MRI studies, and 2 neuro-ophthalmological examinations were required for inclusion. RESULTS Thirty-six patients with 39 tumors were included in this study. Age at diagnosis ranged between 6 months and 16 years (average 6 years). The mean follow-up time was 5.6 years. Twenty-five patients had neurofibromatosis Type 1. During the follow-up period, 59% of the tumors progressed, 23% remained stable, and 18% (all with neurofibromatosis Type 1) displayed some degree of spontaneous regression. Fifty-one percent of the patients presented with visual decline, of whom 90% experienced further deterioration. Nine patients were treated with chemotherapy, 5 of whom improved visually. Ten patients underwent operation, and no local or distal recurrence was noted. CONCLUSIONS Isolated optic nerve gliomas are highly dynamic tumors. Radiological progression and visual deterioration occur in greater percentages than in the general population of patients with OPGs. Response to chemotherapy may be better in this group, and its use should be considered early in the course of the disease.

  15. Nanotechnology Applications for Diffuse Intrinsic Pontine Glioma.

    PubMed

    Bredlau, Amy Lee; Dixit, Suraj; Chen, Chao; Broome, Ann-Marie

    2017-01-01

    Diffuse intrinsic pontine gliomas (DIPGs) are invariably fatal tumors found in the pons of elementary school aged children. These tumors are grade II-IV gliomas, with a median survival of less than 1 year from diagnosis when treated with standard of care (SOC) therapy. Nanotechnology may offer therapeutic options for the treatment of DIPGs. Multiple nanoparticle formulations are currently being investigated for the treatment of DIPGs. Nanoparticles based upon stable elements, polymer nanoparticles, and organic nanoparticles are under development for the treatment of brain tumors, including DIPGs. Targeting of nanoparticles is now possible as delivery techniques that address the difficulty in crossing the blood brain barrier (BBB) are developed. Theranostic nanoparticles, a combination of therapeutics and diagnostic nanoparticles, improve imaging of the cancerous tissue while delivering therapy to the local region. However, additional time and attention should be directed to developing a nanoparticle delivery system for treatment of the uniformly fatal pediatric disease of DIPG.

  16. Nanotechnology Applications for Diffuse Intrinsic Pontine Glioma

    PubMed Central

    Bredlau, Amy Lee; Dixit, Suraj; Chen, Chao; Broome, Ann-Marie

    2017-01-01

    Diffuse intrinsic pontine gliomas (DIPGs) are invariably fatal tumors found in the pons of elementary school aged children. These tumors are grade II-IV gliomas, with a median survival of less than 1 year from diagnosis when treated with standard of care (SOC) therapy. Nanotechnology may offer therapeutic options for the treatment of DIPGs. Multiple nanoparticle formulations are currently being investigated for the treatment of DIPGs. Nanoparticles based upon stable elements, polymer nanoparticles, and organic nanoparticles are under development for the treatment of brain tumors, including DIPGs. Targeting of nanoparticles is now possible as delivery techniques that address the difficulty in crossing the blood brain barrier (BBB) are developed. Theranostic nanoparticles, a combination of therapeutics and diagnostic nanoparticles, improve imaging of the cancerous tissue while delivering therapy to the local region. However, additional time and attention should be directed to developing a nanoparticle delivery system for treatment of the uniformly fatal pediatric disease of DIPG. PMID:26903150

  17. nRGD modified lycobetaine and octreotide combination delivery system to overcome multiple barriers and enhance anti-glioma efficacy.

    PubMed

    Chen, Tijia; Song, Xu; Gong, Ting; Fu, Yao; Yang, Liuqing; Zhang, Zhirong; Gong, Tao

    2017-08-01

    For glioma as one of the most common and lethal primary brain tumors, the presence of BBB, BBTB, vasculogenic mimicry (VM) channels and tumor-associated macrophages (TAMs) are key biological barriers. Here, a novel drug delivery system which could efficiently deliver drugs to glioma by overcoming multi-barriers and increase antitumor efficacy through multi-therapeutic mechanisms was well developed. In this study, a multi-target peptide nRGD was used to transport across the BBB, mediate tumor penetration and target TAMs. Lycobetaine (LBT) was adopted to kill glioma cells and octreotide (OCT) was co-delivered to inhibit VM channels and prevent angiogenesis. LBT-OCT liposomes (LPs) showed controlled release profile in vitro, increased uptake efficiency, improved inhibitory effect against glioma cells and VM formation, and enhanced BBB-crossing capability. The median survival time of glioma-bearing mice administered with LBT-OCT LPs-nRGD was significantly longer than LBT-OCT LPs (P<0.01). Besides, nRGD achieved a stronger inhibitory effect against tumor associated macrophages (TAMs) compared to LPs-iRGD treatment groups in vivo. Thus, LPs-nRGD represented a promising versatile delivery platform for combination drug therapy in glioma treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy.

    PubMed

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-07-26

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways.

  19. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas.

    PubMed

    Sanai, Nader; Snyder, Laura A; Honea, Norissa J; Coons, Stephen W; Eschbacher, Jennifer M; Smith, Kris A; Spetzler, Robert F

    2011-10-01

    Greater extent of resection (EOR) for patients with low-grade glioma (LGG) corresponds with improved clinical outcome, yet remains a central challenge to the neurosurgical oncologist. Although 5-aminolevulinic acid (5-ALA)-induced tumor fluorescence is a strategy that can improve EOR in gliomas, only glioblastomas routinely fluoresce following 5-ALA administration. Intraoperative confocal microscopy adapts conventional confocal technology to a handheld probe that provides real-time fluorescent imaging at up to 1000× magnification. The authors report a combined approach in which intraoperative confocal microscopy is used to visualize 5-ALA tumor fluorescence in LGGs during the course of microsurgical resection. Following 5-ALA administration, patients with newly diagnosed LGG underwent microsurgical resection. Intraoperative confocal microscopy was conducted at the following points: 1) initial encounter with the tumor; 2) the midpoint of tumor resection; and 3) the presumed brain-tumor interface. Histopathological analysis of these sites correlated tumor infiltration with intraoperative cellular tumor fluorescence. Ten consecutive patients with WHO Grades I and II gliomas underwent microsurgical resection with 5-ALA and intraoperative confocal microscopy. Macroscopic tumor fluorescence was not evident in any patient. However, in each case, intraoperative confocal microscopy identified tumor fluorescence at a cellular level, a finding that corresponded to tumor infiltration on matched histological analyses. Intraoperative confocal microscopy can visualize cellular 5-ALA-induced tumor fluorescence within LGGs and at the brain-tumor interface. To assess the clinical value of 5-ALA for high-grade gliomas in conjunction with neuronavigation, and for LGGs in combination with intraoperative confocal microscopy and neuronavigation, a Phase IIIa randomized placebo-controlled trial (BALANCE) is underway at the authors' institution.

  20. Clinical Significance of SASH1 Expression in Glioma

    PubMed Central

    Yang, Liu; Zhang, Haitao; Yao, Qi; Yan, Yingying; Wu, Ronghua; Liu, Mei

    2015-01-01

    Objective. SAM and SH3 domain containing 1 (SASH1) is a recently discovered tumor suppressor gene. The role of SASH1 in glioma has not yet been described. We investigated SASH1 expression in glioma cases to determine its clinical significance on glioma pathogenesis and prognosis. Methods. We produced tissue microarrays using 121 patient-derived glioma samples and 30 patient-derived nontumor cerebral samples. Immunohistochemistry and Western blotting were used to evaluate SASH1 expression. We used Fisher's exact tests to determine relationships between SASH1 expression and clinicopathological characteristics; Cox regression analysis to evaluate the independency of different SASH1 expression; Kaplan-Meier analysis to determine any correlation of SASH1 expression with survival rate. Results. SASH1 expression was closely correlated with the WHO glioma grade. Of the 121 cases, 66.9% with low SASH1 expression were mostly grade III-IV cases, whereas 33.1% with high SASH1 expression were mostly grades I-II. Kaplan-Meier analysis revealed a significant positive correlation between SASH1 expression and postoperative survival. Conclusions. SASH1 was widely expressed in normal and low-grade glioma tissues. SASH1 expression strongly correlated with glioma grades, showing higher expression at a lower grade, which decreased significantly as grade increased. Furthermore, SASH1 expression was positively correlated with better postoperative survival in patients with glioma. PMID:26424902

  1. Clinical Significance of SASH1 Expression in Glioma.

    PubMed

    Yang, Liu; Zhang, Haitao; Yao, Qi; Yan, Yingying; Wu, Ronghua; Liu, Mei

    2015-01-01

    SAM and SH3 domain containing 1 (SASH1) is a recently discovered tumor suppressor gene. The role of SASH1 in glioma has not yet been described. We investigated SASH1 expression in glioma cases to determine its clinical significance on glioma pathogenesis and prognosis. We produced tissue microarrays using 121 patient-derived glioma samples and 30 patient-derived nontumor cerebral samples. Immunohistochemistry and Western blotting were used to evaluate SASH1 expression. We used Fisher's exact tests to determine relationships between SASH1 expression and clinicopathological characteristics; Cox regression analysis to evaluate the independency of different SASH1 expression; Kaplan-Meier analysis to determine any correlation of SASH1 expression with survival rate. SASH1 expression was closely correlated with the WHO glioma grade. Of the 121 cases, 66.9% with low SASH1 expression were mostly grade III-IV cases, whereas 33.1% with high SASH1 expression were mostly grades I-II. Kaplan-Meier analysis revealed a significant positive correlation between SASH1 expression and postoperative survival. SASH1 was widely expressed in normal and low-grade glioma tissues. SASH1 expression strongly correlated with glioma grades, showing higher expression at a lower grade, which decreased significantly as grade increased. Furthermore, SASH1 expression was positively correlated with better postoperative survival in patients with glioma.

  2. The role of drebrin in glioma migration and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terakawa, Yuzo; Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka; Agnihotri, Sameer

    Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite current advances in therapy consisting of surgery followed by chemotherapy and radiation, the overall survival rate still remains poor. Therapeutic failures are partly attributable to the highly infiltrative nature of tumor adjacent to normal brain parenchyma. Recently, evidence is mounting to suggest that actin cytoskeleton dynamics are critical components of the cell invasion process. Drebrin is an actin-binding protein involved in the regulation of actin filament organization, and plays a significant role in cell motility; however, the role of drebrin in glioma cell invasiveness has not yet beenmore » fully elucidated. Therefore, this study was aimed to clarify the role of drebrin in glioma cell morphology and cell motility. Here we show that drebrin is expressed in glioma cell lines and in operative specimens of GBM. We demonstrate that stable overexpression of drebrin in U87 cells leads to alterations in cell morphology, and induces increased invasiveness in vitro while knockdown of drebrin in U87 cells by small interfering RNA (siRNA) decreases invasion and migration. In addition, we show that depletion of drebrin by siRNA alters glioma cell morphology in A172 GBM cell line. Our results suggest that drebrin contributes to the maintenance of cell shape, and may play an important role in glioma cell motility. - Highlights: ► Drebrin is an actin-binding protein aberrantly expressed in several cancers. ► Role of drebrin in glioma cell morphology and motility is previously unknown. ► We demonstrate that drebrin is expressed in 40% of glioblastoma specimens. ► Drebrin plays a significant role in modulating glioma cell migration and invasion.« less

  3. Management of venous thromboembolism in patients with glioma.

    PubMed

    Al Megren, Mosaad; De Wit, Carine; Al Qahtani, Mohammad; Le Gal, Grégoire; Carrier, Marc

    2017-08-01

    Venous thromboembolism (VTE) is a common complication among patients with glioma. However, data on the safety of therapeutic doses of anticoagulation is scarce in this patient population. The purpose of this study is to evaluate the risk of intracranial hemorrhage (ICH) in glioma patients receiving therapeutic anticoagulation for VTE treatment. We conducted a case-control study including glioma patients with and without acute VTE from Jan 2010 to March 2015. Controls were matched based on age, gender and tumor grade. 569 patients with glioma were identified, 76 (13.3%) developed acute VTE. Of the 70 patients treated with full dose anticoagulant therapy, 14 (20%) patients had a major bleeding including 11 (15.7%) ICH. The odds ratio for ICH in patients with glioma and VTE who were treated with anticoagulation compared to the control group was 7.5 (95% CI, 1.6-34.9) p=0.01. Overall survival was similar for VTE and control group (36 vs. 42months, p=0.93). Therapeutic anticoagulation is associated with a 7-fold increase risk of ICH in glioma patients. Data emerging from this study support the need for high quality studies to evaluate the risk of ICH in patients with glioma and VTE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Impact of meriolins, a new class of cyclin-dependent kinase inhibitors, on malignant glioma proliferation and neo-angiogenesis.

    PubMed

    Jarry, Marie; Lecointre, Céline; Malleval, Céline; Desrues, Laurence; Schouft, Marie-Thérèse; Lejoncour, Vadim; Liger, François; Lyvinec, Gildas; Joseph, Benoît; Loaëc, Nadège; Meijer, Laurent; Honnorat, Jérôme; Gandolfo, Pierrick; Castel, Hélène

    2014-11-01

    Glioblastomas are the most frequent and most aggressive primary brain tumors in adults. The median overall survival is limited to a few months despite surgery, radiotherapy, and chemotherapy. It is now clearly established that hyperactivity of cyclin-dependent kinases (CDKs) is one of the processes underlying hyperproliferation and tumoral growth. The marine natural products meridianins and variolins, characterized as CDK inhibitors, display a kinase-inhibitory activity associated with cytotoxic effects. In order to improve selectivity and efficiency of these CDK inhibitors, a series of hybrid compounds called meriolins have been synthesized. The potential antitumoral activity of meriolins was investigated in vitro on glioma cell lines (SW1088 and U87), native neural cells, and a human endothelial cell line (HUV-EC-C). The impact of intraperitoneal or intratumoral administrations of meriolin 15 was evaluated in vivo on 2 different nude mice-xenografted glioma models. Meriolins 3, 5, and 15 exhibited antiproliferative properties with nanomolar IC50 and induced cell-cycle arrest and CDK inhibition associated with apoptotic events in human glioma cell lines. These meriolins blocked the proliferation rate of HUV-EC-C through cell cycle arrest and apoptosis. In vivo, meriolin 15 provoked a robust reduction in tumor volume in spite of toxicity for highest doses, associated with inhibition of cell division, activation of caspase 3, reduction of CD133 cells, and modifications of the vascular architecture. Meriolins, and meriolin 15 in particular, exhibit antiproliferative and proapoptotic activities on both glioma and intratumoral endothelial cells, constituting key promising therapeutic lead compounds for the treatment of glioblastoma. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Evaluation of neovascularization patterns in an orthotopic rat glioma model with dynamic contrast-enhanced MRI.

    PubMed

    Xuesong, Du; Wei, Xue; Heng, Liu; Xiao, Chen; Shunan, Wang; Yu, Guo; Weiguo, Zhang

    2017-09-01

    Background Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been proved useful in evaluating glioma angiogenesis, but the utility in evaluating neovascularization patterns has not been reported. Purpose To evaluate in vivo real-time glioma neovascularization patterns by measuring glioma perfusion quantitatively using DCE-MRI. Material and Methods Thirty Sprague-Dawley rats were used to establish C6 orthotopic glioma model and underwent MRI and pathology detections. As MRI and pathology were performed at six time points (i.e. 4, 8, 12, 16, 20, and 24 days) post transplantation, neovascularization patterns were evaluated via DCE-MRI. Results Four neovascularization patterns were observed in glioma tissues. Sprout angiogenesis and intussusceptive microvascular growth located inside tumor, while vascular co-option and vascular mimicry were found in the tumor margin and necrotic area, respectively. Sprout angiogenesis and intussusceptive microvascular growth increased with K trans , K ep , and V p inside tumor tissue. In addition, K ep and V p were positively correlated with sprout angiogenesis and intussusceptive microvascular growth. Vascular co-option was decreased at 12 and 16 days post transplantation and correlated negatively with K trans and K ep detected in the glioma margin, respectively. Changes of vascular mimicry showed no significant statistical difference at the six time points. Conclusion Our results indicate that DCE-MRI can evaluate neovascularization patterns in a glioma model. Furthermore, DCE-MRI could be an imaging biomarker for guidance of antiangiogenic treatments in humans in the future.

  6. Intrinsic protective mechanisms of the neuron-glia network against glioma invasion.

    PubMed

    Iwadate, Yasuo; Fukuda, Kazumasa; Matsutani, Tomoo; Saeki, Naokatsu

    2016-04-01

    Gliomas arising in the brain parenchyma infiltrate into the surrounding brain and break down established complex neuron-glia networks. However, mounting evidence suggests that initially the network microenvironment of the adult central nervous system (CNS) is innately non-permissive to glioma cell invasion. The main players are inhibitory molecules in CNS myelin, as well as proteoglycans associated with astrocytes. Neural stem cells, and neurons themselves, possess inhibitory functions against neighboring tumor cells. These mechanisms have evolved to protect the established neuron-glia network, which is necessary for brain function. Greater insight into the interaction between glioma cells and the surrounding neuron-glia network is crucial for developing new therapies for treating these devastating tumors while preserving the important and complex neural functions of patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Preclinical evaluation of convection-enhanced delivery of liposomal doxorubicin to treat pediatric diffuse intrinsic pontine glioma and thalamic high-grade glioma.

    PubMed

    Sewing, A Charlotte P; Lagerweij, Tonny; van Vuurden, Dannis G; Meel, Michaël H; Veringa, Susanna J E; Carcaboso, Angel M; Gaillard, Pieter J; Peter Vandertop, W; Wesseling, Pieter; Noske, David; Kaspers, Gertjan J L; Hulleman, Esther

    2017-05-01

    OBJECTIVE Pediatric high-grade gliomas (pHGGs) including diffuse intrinsic pontine gliomas (DIPGs) are primary brain tumors with high mortality and morbidity. Because of their poor brain penetrance, systemic chemotherapy regimens have failed to deliver satisfactory results; however, convection-enhanced delivery (CED) may be an alternative mode of drug delivery. Anthracyclines are potent chemotherapeutics that have been successfully delivered via CED in preclinical supratentorial glioma models. This study aims to assess the potency of anthracyclines against DIPG and pHGG cell lines in vitro and to evaluate the efficacy of CED with anthracyclines in orthotopic pontine and thalamic tumor models. METHODS The sensitivity of primary pHGG cell lines to a range of anthracyclines was tested in vitro. Preclinical CED of free doxorubicin and pegylated liposomal doxorubicin (PLD) to the brainstem and thalamus of naïve nude mice was performed. The maximum tolerated dose (MTD) was determined based on the observation of clinical symptoms, and brains were analyzed after H & E staining. Efficacy of the MTD was tested in adult glioma E98-FM-DIPG and E98-FM-thalamus models and in the HSJD-DIPG-007-Fluc primary DIPG model. RESULTS Both pHGG and DIPG cells were sensitive to anthracyclines in vitro. Doxorubicin was selected for further preclinical evaluation. Convection-enhanced delivery of the MTD of free doxorubicin and PLD in the pons was 0.02 mg/ml, and the dose tolerated in the thalamus was 10 times higher (0.2 mg/ml). Free doxorubicin or PLD via CED was ineffective against E98-FM-DIPG or HSJD-DIPG-007-Fluc in the brainstem; however, when applied in the thalamus, 0.2 mg/ml of PLD slowed down tumor growth and increased survival in a subset of animals with small tumors. CONCLUSIONS Local delivery of doxorubicin to the brainstem causes severe toxicity, even at doxorubicin concentrations that are safe in the thalamus. As a consequence, the authors could not establish a therapeutic

  8. Reirradiation of Large-Volume Recurrent Glioma With Pulsed Reduced-Dose-Rate Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adkison, Jarrod B.; Tome, Wolfgang; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI

    2011-03-01

    Purpose: Pulsed reduced-dose-rate radiotherapy (PRDR) is a reirradiation technique that reduces the effective dose rate and increases the treatment time, allowing sublethal damage repair during irradiation. Patients and Methods: A total of 103 patients with recurrent glioma underwent reirradiation using PRDR (86 considered to have Grade 4 at PRDR). PRDR was delivered using a series of 0.2-Gy pulses at 3-min intervals, creating an apparent dose rate of 0.0667 Gy/min to a median dose of 50 Gy (range, 20-60) delivered in 1.8-2.0-Gy fractions. The mean treatment volume was 403.5 {+-} 189.4 cm{sup 3} according to T{sub 2}-weighted magnetic resonance imaging andmore » a 2-cm margin. Results: For the initial or upgraded Grade 4 cohort (n = 86), the median interval from the first irradiation to PRDR was 14 months. Patients undergoing PRDR within 14 months of the first irradiation (n = 43) had a median survival of 21 weeks. Those treated {>=}14 months after radiotherapy had a median survival of 28 weeks (n = 43; p = 0.004 and HR = 1.82 with a 95% CI ranging from 1.25 to 3.10). These data compared favorably to historical data sets, because only 16% of the patients were treated at first relapse (with 46% treated at the second relapse, 32% at the third or fourth relapse, and 4% at the fourth or fifth relapse). The median survival since diagnosis and retreatment was 6.3 years and 11.4 months for low-grade, 4.1 years and 5.6 months for Grade 3, and 1.6 years and 5.1 months for Grade 4 tumors, respectively, according to the initial histologic findings. Multivariate analysis revealed age at the initial diagnosis, initial low-grade disease, and Karnofsky performance score of {>=}80 to be significant predictors of survival after initiation of PRDR. Conclusion: PRDR allowed for safe retreatment of larger volumes to high doses with palliative benefit.« less

  9. Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors

    ClinicalTrials.gov

    2013-05-01

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Extra-adrenal Paraganglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  10. Semi-automated and automated glioma grading using dynamic susceptibility-weighted contrast-enhanced perfusion MRI relative cerebral blood volume measurements.

    PubMed

    Friedman, S N; Bambrough, P J; Kotsarini, C; Khandanpour, N; Hoggard, N

    2012-12-01

    Despite the established role of MRI in the diagnosis of brain tumours, histopathological assessment remains the clinically used technique, especially for the glioma group. Relative cerebral blood volume (rCBV) is a dynamic susceptibility-weighted contrast-enhanced perfusion MRI parameter that has been shown to correlate to tumour grade, but assessment requires a specialist and is time consuming. We developed analysis software to determine glioma gradings from perfusion rCBV scans in a manner that is quick, easy and does not require a specialist operator. MRI perfusion data from 47 patients with different histopathological grades of glioma were analysed with custom-designed software. Semi-automated analysis was performed with a specialist and non-specialist operator separately determining the maximum rCBV value corresponding to the tumour. Automated histogram analysis was performed by calculating the mean, standard deviation, median, mode, skewness and kurtosis of rCBV values. All values were compared with the histopathologically assessed tumour grade. A strong correlation between specialist and non-specialist observer measurements was found. Significantly different values were obtained between tumour grades using both semi-automated and automated techniques, consistent with previous results. The raw (unnormalised) data single-pixel maximum rCBV semi-automated analysis value had the strongest correlation with glioma grade. Standard deviation of the raw data had the strongest correlation of the automated analysis. Semi-automated calculation of raw maximum rCBV value was the best indicator of tumour grade and does not require a specialist operator. Both semi-automated and automated MRI perfusion techniques provide viable non-invasive alternatives to biopsy for glioma tumour grading.

  11. Hypoxia promotes glioma-associated macrophage infiltration via periostin and subsequent M2 polarization by upregulating TGF-beta and M-CSFR

    PubMed Central

    Guo, Xiaofan; Xue, Hao; Shao, Qianqian; Wang, Jian; Guo, Xing; Chen, Xi; Zhang, Jinsen; Xu, Shugang; Li, Tong; Zhang, Ping; Gao, Xiao; Qiu, Wei

    2016-01-01

    Tumor-associated macrophages (TAMs) are enriched in gliomas and help create a tumor-immunosuppressive microenvironment. A distinct M2-skewed type of macrophages makes up the majority of glioma TAMs, and these cells exhibit pro-tumor functions. Gliomas contain large hypoxic areas, and the presence of a correlation between the density of M2-polarized TAMs and hypoxic areas suggests that hypoxia plays a supportive role during TAM recruitment and induction. Here, we investigated the effects of hypoxia on human macrophage recruitment and M2 polarization. We also investigated the influence of the HIF inhibitor acriflavine (ACF) on M2 TAM infiltration and tumor progression in vivo. We found that hypoxia increased periostin (POSTN) expression in glioma cells and promoted the recruitment of macrophages. Hypoxia-inducible POSTN expression was increased by TGF-α via the RTK/PI3K pathway, and this effect was blocked by treating hypoxic cells with ACF. We also demonstrated that both a hypoxic environment and hypoxia-treated glioma cell supernatants were capable of polarizing macrophages toward a M2 phenotype. ACF partially reversed the M2 polarization of macrophages by inhibiting the upregulation of M-CSFR in macrophages and TGF-β in glioma cells under hypoxic conditions. Administering ACF also ablated tumor progression in vivo. Our findings reveal a mechanism that underlies hypoxia-induced TAM enrichment and M2 polarization and suggest that pharmacologically inhibiting HIFs may reduce M2-polarized TAM infiltration and glioma progression. PMID:27602954

  12. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets

    PubMed Central

    Miranda-Gonçalves, Vera; Honavar, Mrinalini; Pinheiro, Céline; Martinho, Olga; Pires, Manuel M.; Pinheiro, Célia; Cordeiro, Michelle; Bebiano, Gil; Costa, Paulo; Palmeirim, Isabel; Reis, Rui M.; Baltazar, Fátima

    2013-01-01

    Background Gliomas exhibit high glycolytic rates, and monocarboxylate transporters (MCTs) play a major role in the maintenance of the glycolytic metabolism through the proton-linked transmembrane transport of lactate. However, their role in gliomas is poorly studied. Thus, we aimed to characterize the expression of MCT1, MCT4, and their chaperone CD147 and to assess the therapeutic impact of MCT inhibition in gliomas. Methods MCTs and CD147 expressions were characterized by immunohistochemistry in nonneoplastic brain and glioma samples. The effect of CHC (MCT inhibitor) and MCT1 silencing was assessed in in vitro and in vivo glioblastoma models. Results MCT1, MCT4, and CD147 were overexpressed in the plasma membrane of glioblastomas, compared with diffuse astrocytomas and nonneoplastic brain. CHC decreased glycolytic metabolism, migration, and invasion and induced cell death in U251 cells (more glycolytic) but only affected proliferation in SW1088 (more oxidative). The effectiveness of CHC in glioma cells appears to be dependent on MCT membrane expression. MCT1 downregulation showed similar effects on different glioma cells, supporting CHC as an MCT1 inhibitor. There was a synergistic effect when combining CHC with temozolomide treatment in U251 cells. In the CAM in vivo model, CHC decreased the size of tumors and the number of blood vessels formed. Conclusions This is the most comprehensive study reporting the expression of MCTs and CD147 in gliomas. The MCT1 inhibitor CHC exhibited anti-tumoral and anti-angiogenic activity in gliomas and, of importance, enhanced the effect of temozolomide. Thus, our results suggest that development of therapeutic approaches targeting MCT1 may be a promising strategy in glioblastoma treatment. PMID:23258846

  13. The neuropathological basis to the functional role of microglia/macrophages in gliomas.

    PubMed

    Schiffer, Davide; Mellai, Marta; Bovio, Enrica; Annovazzi, Laura

    2017-09-01

    The paper wants to be a tracking shot of the main recent acquisitions on the function and significance of microglia/macrophages in gliomas. The observations have been principally carried out on in vitro cultures and on tumor transplants in animals. Contrary to what is deduced from microglia in non-neoplastic pathologic conditions of central nervous system (CNS), most conclusions indicate that microglia acts favoring tumor proliferation through an immunosuppression induced by glioma cells. By immunohistochemistry, different microglia phenotypes are recognized in gliomas, from ramified microglia to frank macrophagic aspect. One wonders whether the functional conclusions drawn from many microglia studies, but not in conditions of human pathology, apply to all the phenotypes recognizable in them. It is difficult to verify in human pathology a prognostic significance of microglia. Only CD163-positive microglia/macrophages inversely correlate with glioma patients' survival, whereas the total number of microglia does not change with the malignancy grade.

  14. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in themore » malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.« less

  15. Chimeric adeno-associated virus and bacteriophage: a potential targeted gene therapy vector for malignant glioma.

    PubMed

    Asavarut, Paladd; O'Neill, Kevin; Syed, Nelofer; Hajitou, Amin

    2014-01-01

    The incipient development of gene therapy for cancer has fuelled its progression from bench to bedside in mere decades. Of all malignancies that exist, gliomas are the largest class of brain tumors, and are renowned for their aggressiveness and resistance to therapy. In order for gene therapy to achieve clinical success, a multitude of barriers ranging from glioma tumor physiology to vector biology must be overcome. Many viral gene delivery systems have been subjected to clinical investigation; however, with highly limited success. In this review, the current progress and challenges of gene therapy for malignant glioma are discussed. Moreover, we highlight the hybrid adeno-associated virus and bacteriophage vector as a potential candidate for targeted gene delivery to brain tumors.

  16. The effects of gene polymorphisms on glioma prognosis.

    PubMed

    Cui, Ying; Li, Guolin; Yan, Mengdan; Li, Jing; Jin, Tianbo; Li, Shanqu; Mu, Shijie

    2017-11-01

    Malignant gliomas are the most common primary brain tumors. Various genetic factors play important roles in the development and prognosis of glioma. The present study focuses on the impact of MPHOSPH6, TNIP1 and several other genes (ACYP2, NAF1, TERC, TERT, OBFC1, ZNF208 and RTEL1) on telomere length and how this affects the prognosis of glioma. Forty-three polymorphisms in nine genes from 605 glioma patients were selected. The association between genotype and survival outcome was analyzed using the Kaplan-Meier method, Cox regression analysis and the log-rank test. The 1-year overall survival (OS) rates of patients younger than 40 years of age was higher compared to those in patients older than 40 years of age. The 1-year OS rate of patients who underwent total resection was higher than that of patients whose gliomas were not completely resected. The 1-year OS rates of patients undergoing chemotherapy and of patients who did not undergo chemotherapy were 39.90% and 26.80%, respectively. Univariate analyses showed that ACYP2 rs12615793 and TERT rs2853676 loci affected progression-free survival in glioma patients; both ZNF208 rs8105767 and ACYP2 rs843720 affected the OS of patients with low-grade gliomas. Multivariate analyses suggested that MPHOSPH6 rs1056629 and rs1056654, and TERT rs2853676 loci were associated with good prognoses of patients with glioma or high-grade gliomas, whereas ZNF208 rs8105767 was associated with good prognosis of patients with low-grade glioma. Age, surgical resection and chemotherapy influenced the survival rates of glioma patients. TERT, MPHOSPH6, ACYP2 and ZNF208 genes were found to affect glioma prognosis. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Recombinant epidermal growth factor-like domain-1 from coagulation factor VII functionalized iron oxide nanoparticles for targeted glioma magnetic resonance imaging.

    PubMed

    Liu, Heng; Chen, Xiao; Xue, Wei; Chu, Chengchao; Liu, Yu; Tong, Haipeng; Du, Xuesong; Xie, Tian; Liu, Gang; Zhang, Weiguo

    The highly infiltrative and invasive nature of glioma cells often leads to blurred tumor margins, resulting in incomplete tumor resection and tumor recurrence. Accurate detection and precise delineation of glioma help in preoperative delineation, surgical planning and survival prediction. In this study, recombinant epidermal growth factor-like domain-1, derived from human coagulation factor VII, was conjugated to iron oxide nanoparticles (IONPs) for targeted glioma magnetic resonance (MR) imaging. The synthesized EGF1-EGFP-IONPs exhibited excellent targeting ability toward tissue factor (TF)-positive U87MG cells and human umbilical vein endothelial cells in vitro, and demonstrated persistent and efficient MR contrast enhancement up to 12 h for preclinical glioma models with high targeting specificity in vivo. They hold great potential for clinical translation and developing targeted theranostics against brain glioma.

  18. Pharmacological doses of daily ascorbate protect tumors from radiation damage after a single dose of radiation in an intracranial mouse glioma model.

    PubMed

    Grasso, Carole; Fabre, Marie-Sophie; Collis, Sarah V; Castro, M Leticia; Field, Cameron S; Schleich, Nanette; McConnell, Melanie J; Herst, Patries M

    2014-01-01

    Pharmacological ascorbate is currently used as an anti-cancer treatment, potentially in combination with radiation therapy, by integrative medicine practitioners. In the acidic, metal-rich tumor environment, ascorbate acts as a pro-oxidant, with a mode of action similar to that of ionizing radiation; both treatments kill cells predominantly by free radical-mediated DNA damage. The brain tumor, glioblastoma multiforme (GBM), is very resistant to radiation; radiosensitizing GBM cells will improve survival of GBM patients. Here, we demonstrate that a single fraction (6 Gy) of radiation combined with a 1 h exposure to ascorbate (5 mM) sensitized murine glioma GL261 cells to radiation in survival and colony-forming assays in vitro. In addition, we report the effect of a single fraction (4.5 Gy) of whole brain radiation combined with daily intraperitoneal injections of ascorbate (1 mg/kg) in an intracranial GL261 glioma mouse model. Tumor-bearing C57BL/6 mice were divided into four groups: one group received a single dose of 4.5 Gy to the brain 8 days after tumor implantation, a second group received daily intraperitoneal injections of ascorbate (day 8-45) after implantation, a third group received both treatments and a fourth control group received no treatment. While radiation delayed tumor progression, intraperitoneal ascorbate alone had no effect on tumor progression. Tumor progression was faster in tumor-bearing mice treated with radiation and daily ascorbate than in those treated with radiation alone. Histological analysis showed less necrosis in tumors treated with both radiation and ascorbate, consistent with a radio-protective effect of ascorbate in vivo. Discrepancies between our in vitro and in vivo results may be explained by differences in the tumor microenvironment, which determines whether ascorbate remains outside the cell, acting as a pro-oxidant, or whether it enters the cells and acts as an anti-oxidant.

  19. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas.

    PubMed

    Zhang, Lei; Kundu, Soumi; Feenstra, Tjerk; Li, Xiujuan; Jin, Chuan; Laaniste, Liisi; El Hassan, Tamador Elsir Abu; Ohlin, K Elisabet; Yu, Di; Olofsson, Tommie; Olsson, Anna-Karin; Pontén, Fredrik; Magnusson, Peetra U; Nilsson, Karin Forsberg; Essand, Magnus; Smits, Anja; Dieterich, Lothar C; Dimberg, Anna

    2015-12-08

    Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization. Copyright © 2015, American Association for the Advancement of Science.

  20. ER stress inducer tunicamycin suppresses the self-renewal of glioma-initiating cell partly through inhibiting Sox2 translation.

    PubMed

    Xing, Yang; Ge, Yuqing; Liu, Chanjuan; Zhang, Xiaobiao; Jiang, Jianhai; Wei, Yuanyan

    2016-06-14

    Glioma-initiating cells possess tumor-initiating potential and are relatively resistant to conventional chemotherapy and irradiation. Therefore, their elimination is an essential factor for the development of efficient therapy. Here, we report that endoplasmic reticulum (ER) stress inducer tunicamycin inhibits glioma-initiating cell self-renewal as determined by neurosphere formation assay. Moreover, tunicamycin decreases the efficiency of glioma-initiating cell to initiate tumor formation. Although tunicamycin induces glioma-initiating cell apoptosis, apoptosis inhibitor z-VAD-fmk only partly abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Indeed, tunicamycin reduces the expression of self-renewal regulator Sox2 at translation level. Overexpression of Sox2 obviously abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Taken together, tunicamycin suppresses the self-renewal and tumorigenic potential of glioma-initiating cell partly through reducing Sox2 translation. This finding provides a cue to potential effective treatment of glioblastoma through controlling stem cells.

  1. Adoptive cell transfer therapy for malignant gliomas.

    PubMed

    Ishikawa, Eiichi; Takano, Shingo; Ohno, Tadao; Tsuboi, Koji

    2012-01-01

    To date, various adoptive immunotherapies have been attempted for treatment of malignant gliomas using nonspecific and/or specific effector cells. Since the late 1980s, with the development of rIL-2, the efficacy of lymphokine-activated killer (LAK) cell therapy with or without rIL-2 for malignant gliomas had been tested with some modifications in therapeutic protocols. With advancements in technology, ex vivo expanded tumor specific cytotoxic T-lymphocytes (CTL) or those lineages were used in clinical trials with higher tumor response rates. In addition, combinations of those adoptive cell transfer using LAK cells, CTLs or natural killer (NK) cells with autologous tumor vaccine (ATV) therapy were attempted. Also, a strategy of high-dose (or lymphodepleting) chemotherapy followed by adoptive cell transfer has been drawing attentions recently. The most important role of these clinical studies using cell therapy was to prove that these ex vivo expanded effector cells could kill tumor cells in vivo. Although recent clinical results could demonstrate radiologic tumor shrinkage in a number of cases, cell transfer therapy alone has been utilized less frequently, because of the high cost of ex vivo cell expansion, the short duration of antitumor activity in vivo, and the recent shift of interest to vaccine immunotherapy. Nevertheless, NK cell therapy using specific feeder cells or allergenic NK cell lines have potentials to be a good choice of treatment because of easy ex vivo expansion and their efficacy especially when combined with vaccine therapy as they are complementary to each other. Also, further studies are expected to clarify the efficacy of the high-dose chemotherapy followed by a large scale cell transfer therapy as a new therapeutic strategy for malignant gliomas.

  2. CBX7 negatively regulates migration and invasion in glioma via Wnt/β-catenin pathway inactivation.

    PubMed

    Bao, Zhongyuan; Xu, Xiupeng; Liu, Yinlong; Chao, Honglu; Lin, Chao; Li, Zheng; You, Yongping; Liu, Ning; Ji, Jing

    2017-06-13

    CBX7, a member of the Polycomb-group proteins, plays a significant role in normal and cancerous tissues and has been defined as a tumor suppressor in thyroid, breast and pancreatic cancers. However, its function in glioma remains undefined. CBX7 expression is decreased in glioma, especially in higher grade cases, according to data in the CGGA, GSE16001 and TCGA databases. Further experimental evidence has shown that exogenous CBX7 overexpression induced apoptosis and inhibited cell proliferation, colony formation and migration of glioma cells. In this study, we show that the invasive ability of glioma cells was decreased following CBX7 overexpression and CBX7 overexpression was associated with Wnt/β-catenin pathway inhibition, which also decreased downstream expression of ZEB1, a core epithelial-to-mesenchymal transition factor. This reduction in Wnt signaling is controlled by DKK1, a specific Wnt/β-catenin inhibitor. CBX7 enhances DKK1 expression by binding the DKK1 promoter, as shown in Luciferase reporter assays. Our data confirm that CBX7 inhibits EMT and invasion in glioma, which is manifested by influencing the expression of MMP2, MMP9, E-cadherin, N-cadherin and Vimentin in LN229, T98G cells and primary glioma cells (PGC). Furthermore, as a tumor suppressor, CBX7 expression is pivotal to reduce tumor invasion and evaluate prognosis.

  3. Molecular classification of patients with grade II/III glioma using quantitative MRI characteristics.

    PubMed

    Bahrami, Naeim; Hartman, Stephen J; Chang, Yu-Hsuan; Delfanti, Rachel; White, Nathan S; Karunamuni, Roshan; Seibert, Tyler M; Dale, Anders M; Hattangadi-Gluth, Jona A; Piccioni, David; Farid, Nikdokht; McDonald, Carrie R

    2018-06-02

    Molecular markers of WHO grade II/III glioma are known to have important prognostic and predictive implications and may be associated with unique imaging phenotypes. The purpose of this study is to determine whether three clinically relevant molecular markers identified in gliomas-IDH, 1p/19q, and MGMT status-show distinct quantitative MRI characteristics on FLAIR imaging. Sixty-one patients with grade II/III gliomas who had molecular data and MRI available prior to radiation were included. Quantitative MRI features were extracted that measured tissue heterogeneity (homogeneity and pixel correlation) and FLAIR border distinctiveness (edge contrast; EC). T-tests were conducted to determine whether patients with different genotypes differ across the features. Logistic regression with LASSO regularization was used to determine the optimal combination of MRI and clinical features for predicting molecular subtypes. Patients with IDH wildtype tumors showed greater signal heterogeneity (p = 0.001) and lower EC (p = 0.008) within the FLAIR region compared to IDH mutant tumors. Among patients with IDH mutant tumors, 1p/19q co-deleted tumors had greater signal heterogeneity (p = 0.002) and lower EC (p = 0.005) compared to 1p/19q intact tumors. MGMT methylated tumors showed lower EC (p = 0.03) compared to the unmethylated group. The combination of FLAIR border distinctness, heterogeneity, and pixel correlation optimally classified tumors by IDH status. Quantitative imaging characteristics of FLAIR heterogeneity and border pattern in grade II/III gliomas may provide unique information for determining molecular status at time of initial diagnostic imaging, which may then guide subsequent surgical and medical management.

  4. IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma.

    PubMed

    Esmaeili, Morteza; Hamans, Bob C; Navis, Anna C; van Horssen, Remco; Bathen, Tone F; Gribbestad, Ingrid S; Leenders, William P; Heerschap, Arend

    2014-09-01

    Many patients with glioma harbor specific mutations in the isocitrate dehydrogenase gene IDH1 that associate with a relatively better prognosis. IDH1-mutated tumors produce the oncometabolite 2-hydroxyglutarate. Because IDH1 also regulates several pathways leading to lipid synthesis, we hypothesized that IDH1-mutant tumors have an altered phospholipid metabolite profile that would impinge on tumor pathobiology. To investigate this hypothesis, we performed (31)P-MRS imaging in mouse xenograft models of four human gliomas, one of which harbored the IDH1-R132H mutation. (31)P-MR spectra from the IDH1-mutant tumor displayed a pattern distinct from that of the three IDH1 wild-type tumors, characterized by decreased levels of phosphoethanolamine and increased levels of glycerophosphocholine. This spectral profile was confirmed by ex vivo analysis of tumor extracts, and it was also observed in human surgical biopsies of IDH1-mutated tumors by (31)P high-resolution magic angle spinning spectroscopy. The specificity of this profile for the IDH1-R132H mutation was established by in vitro (31)P-NMR of extracts of cells overexpressing IDH1 or IDH1-R132H. Overall, our results provide evidence that the IDH1-R132H mutation alters phospholipid metabolism in gliomas involving phosphoethanolamine and glycerophosphocholine. These new noninvasive biomarkers can assist in the identification of the mutation and in research toward novel treatments that target aberrant metabolism in IDH1-mutant glioma. ©2014 American Association for Cancer Research.

  5. TERT promoter mutation and its interaction with IDH mutations in glioma: Combined TERT promoter and IDH mutations stratifies lower-grade glioma into distinct survival subgroups-A meta-analysis of aggregate data.

    PubMed

    Vuong, Huy Gia; Altibi, Ahmed M A; Duong, Uyen N P; Ngo, Hanh T T; Pham, Thong Quang; Chan, Aden Ka-Yin; Park, Chul-Kee; Fung, Kar-Ming; Hassell, Lewis

    2017-12-01

    The clinical significance of telomerase reverse transcriptase (TERT) promoter mutation in glioma remains unclear. The aim of our meta-analysis is to investigate the prognostic impact TERT promoter mutation in glioma patients and its interaction with other molecular markers, particularly Isocitrate Dehydrogenase (IDH) mutation from aggregate level data. Relevant articles were searched in four electronic databases including PubMed, Scopus, Web of Science and Virtual Health Library. Pooled HRs were calculated using random effect model weighted by inverse variance method. From 1010 studies, we finally included 28 studies with 11519 patients for meta-analyses. TERT mutation is significantly associated with compromised overall survival (OS) (HR=1.38; 95% CI=1.15-1.67) and progression-free survival (PFS) (HR=1.31; 95% CI=1.06-1.63) in glioma patients. In studying its reaction with IDH, TERT promoter mutation was associated with reduced OS in both IDH-mutant (IDH-mut) and IDH-wild type (IDH-wt) glioblastomas but shown to have inverse effects on IDH-mut and IDH-wt grade II/III tumors. Our analysis categorized WHO grade II/III glioma patients into four distinct survival subgroups with descending survival as follow: TERT-mut/IDH-mut≫TERT-wt/IDH-mut≫TERT-wt/IDH-wt≫TERT-mut/IDH-wt. Prognostic value of TERT promoter mutations in gliomas is dependent on tumor grade and the IDH mutational status. With the same tumor grade in WHO grade II and III tumors and the same IDH mutation status, TERT-mut is a prognostic factor. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fusion genes with ALK as recurrent partner in ependymoma-like gliomas: a new brain tumor entity?

    PubMed Central

    Olsen, Thale Kristin; Panagopoulos, Ioannis; Meling, Torstein R.; Micci, Francesca; Gorunova, Ludmila; Thorsen, Jim; Due-Tønnessen, Bernt; Scheie, David; Lund-Iversen, Marius; Krossnes, Bård; Saxhaug, Cathrine; Heim, Sverre; Brandal, Petter

    2015-01-01

    Background We have previously characterized 19 ependymal tumors using Giemsa banding and high-resolution comparative genomic hybridization. The aim of this study was to analyze these tumors searching for fusion genes. Methods RNA sequencing was performed in 12 samples. Potential fusion transcripts were assessed by seed count and structural chromosomal aberrations. Transcripts of interest were validated using fluorescence in situ hybridization and PCR followed by direct sequencing. Results RNA sequencing identified rearrangements of the anaplastic lymphoma kinase gene (ALK) in 2 samples. Both tumors harbored structural aberrations involving the ALK locus 2p23. Tumor 1 had an unbalanced t(2;14)(p23;q22) translocation which led to the fusion gene KTN1-ALK. Tumor 2 had an interstitial del(2)(p16p23) deletion causing the fusion of CCDC88A and ALK. In both samples, the breakpoint of ALK was located between exons 19 and 20. Both patients were infants and both tumors were supratentorial. The tumors were well demarcated from surrounding tissue and had both ependymal and astrocytic features but were diagnosed and treated as ependymomas. Conclusions By combining karyotyping and RNA sequencing, we identified the 2 first ever reported ALK rearrangements in CNS tumors. Such rearrangements may represent the hallmark of a new entity of pediatric glioma characterized by both ependymal and astrocytic features. Our findings are of particular importance because crizotinib, a selective ALK inhibitor, has demonstrated effect in patients with lung cancer harboring ALK rearrangements. Thus, ALK emerges as an interesting therapeutic target in patients with ependymal tumors carrying ALK fusions. PMID:25795305

  7. Differential expression of MHC class II and B7 costimulatory molecules by microglia in rodent gliomas.

    PubMed

    Badie, Behnam; Bartley, Becky; Schartner, Jill

    2002-12-01

    To assess the immune function of microglia and macrophages in brain tumors, the expression of MHC class II and B7 costimulatory molecules in three rodent glioma models was examined. Microglia and macrophages, which accounted for 5-12% of total cells, expressed B7.1 and MHC class II molecules in the C6 and 9L tumors, but not RG2 gliomas. Interestingly, the expression of B7.1 and MHC class II molecules by microglia and macrophage was associated with an increase in the number of tumor-infiltrating lymphocytes in C6 and 9L tumors. B7.2 expression, which was present at low levels on microglia and macrophages in normal brain, did not significantly change in tumors. Interestingly, the expression of all three surface antigens increased after microglia were isolated from intracranial C6 tumors and cultured for a short period of time. We conclude that microglia immune activity may be suppressed in gliomas and directly correlates to the immunogenecity of experimental brain tumors.

  8. A Study of the Treatment of Recurrent Malignant Glioma With rQNestin34.5v.2

    ClinicalTrials.gov

    2018-04-09

    Malignant Glioma of Brain; Astrocytoma; Malignant Astrocytoma; Oligodendroglioma; Anaplastic Oligodendroglioma of Brain (Diagnosis); Mixed Oligo-Astrocytoma; Ependymoma; Ganglioglioma; Pylocytic/Pylomyxoid Astrocytoma; Brain Tumor; Glioma; Brain Cancer; Glioblastoma; Glioblastoma Multiforme

  9. Analysis of 11C-methionine uptake in low-grade gliomas and correlation with proliferative activity.

    PubMed

    Kato, T; Shinoda, J; Oka, N; Miwa, K; Nakayama, N; Yano, H; Maruyama, T; Muragaki, Y; Iwama, T

    2008-11-01

    The relationship of (11)C-methionine (MET) uptake and tumor activity in low-grade gliomas (those meeting the criteria for World Health Organization [WHO] grade II gliomas) remains uncertain. The aim of this study was to compare MET uptake in low-grade gliomas and to analyze whether MET positron-emission tomography (PET) can estimate tumor viability and provide evidence of malignant transformation. We studied glioma metabolic activity in 49 consecutive patients with newly diagnosed grade II gliomas by using MET PET before surgical resection. On MET PET, we measured tumor/normal brain uptake ratio (T/N ratio) in 21 diffuse astrocytomas (DAs), 12 oligodendrogliomas (ODs), and 16 oligoastrocytomas (OAs). We compared MET T/N ratio among these 3 tumors and investigated possible correlation with proliferative activity, as measured by Mib-1 labeling index (LI). MET T/N ratios of DA, OD, and OA were 2.11 +/- 0.87, 3.75 +/- 1.43, and 2.76 +/- 1.27, respectively. The MET T/N ratio of OD was significantly higher than that of DA (P < .005). In comparison of MET T/N ratios with the Mib-1 LI, a significant correlation was shown in DA (r = 0.63; P < .005) but not in OD and OA. MET uptake in DAs may be closely associated with tumor viability, which depends on increased amino acid transport by an activated carrier-mediated system. DAs with lower MET uptake were considered more quiescent lesions, whereas DA with higher MET uptake may act more aggressively.

  10. Involvement of the Kynurenine Pathway in Human Glioma Pathophysiology

    PubMed Central

    Adams, Seray; Teo, Charles; McDonald, Kerrie L.; Zinger, Anna; Bustamante, Sonia; Lim, Chai K.; Sundaram, Gayathri; Braidy, Nady; Brew, Bruce J.; Guillemin, Gilles J.

    2014-01-01

    The kynurenine pathway (KP) is the principal route of L-tryptophan (TRP) catabolism leading to the production of kynurenine (KYN), the neuroprotectants, kynurenic acid (KYNA) and picolinic acid (PIC), the excitotoxin, quinolinic acid (QUIN) and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD+). The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1), indoleamine 2,3-dioxygenase-2 (IDO-2) and tryptophan 2,3-dioxygenase (TDO-2) initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1) cultured human glioma cells and 2) plasma from patients with glioblastoma (GBM). Our data revealed that interferon-gamma (IFN-γ) stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU), kynurenine hydroxylase (KMO) and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD) and kynurenine aminotransferase-I (KAT-I) expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP) was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18) compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD+, which is necessary for energy production and DNA repair. PMID:25415278

  11. Coptis Chinensis affects the function of glioma cells through the down-regulation of phosphorylation of STAT3 by reducing HDAC3.

    PubMed

    Li, Jiangan; Ni, Lulu; Li, Bing; Wang, Mingdeng; Ding, Zhemin; Xiong, Chunrong; Lu, Xiaojie

    2017-12-06

    Glioma remains the most common cause of brain cancer-related mortality. Glioma accounts for 50-60% of brain cancer. Due to their low toxicity and infrequent side effects, traditional herbs have been increasingly popular. Coptis Chinensis is commonly used in cancer treatment in combination with other Chinese Medicine herbs. However, little is known about its biological functions and mechanisms in glioma cells. In this study, the anti-glioma cell effect of Coptis Chinensis was determined using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) method, plate clone test, scratch tests, flow cytometry, western blotting and a glioma xenograft tumor model. The results showed that Coptis Chinensis significantly suppressed glioma cell proliferation, tumor formation, migration and tumor growth, and prolonged the survival time of glioma cell-bearing mice. The flow cytometry result showed that Coptis Chinensis induced cell cycle arrest and apoptosis in glioma cells. Western blotting showed that Coptis Chinensis down-regulated the Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels and reduced the expression of Histone deacetylase 3 (HDAC3) and caspase 3. Coptis Chinensis can inhibit various aspects of glioma cell functions. This study provides favorable scientific evidence for the potential use of natural products such as Coptis Chinensis in the clinical treatment of patients with glioma.

  12. DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma

    PubMed Central

    Maes, Wim; Rosas, Georgina Galicia; Verbinnen, Bert; Boon, Louis; De Vleeschouwer, Steven; Ceuppens, Jan L.; Van Gool, Stefaan W.

    2009-01-01

    We studied the feasibility, efficacy, and mechanisms of dendritic cell (DC) immunotherapy against murine malignant glioma in the experimental GL261 intracranial (IC) tumor model. When administered prophylactically, mature DCs (DCm) ex vivo loaded with GL261 RNA (DCm-GL261-RNA) protected half of the vaccinated mice against IC glioma, whereas treatment with mock-loaded DCm or DCm loaded with irrelevant antigens did not result in tumor protection. In DCm-GL261-RNA–vaccinated mice, a tumor-specific cellular immune response was observed ex vivo in the spleen and tumor-draining lymph node cells. Specificity was also shown in vivo on the level of tumor challenge. Depletion of CD8+ T-cells by anti-CD8 treatment at the time of tumor challenge demonstrated their essential role in vaccine- mediated antitumor immunity. Depletion of CD25+ regulatory T-cells (Tregs) by anti-CD25 (aCD25) treatment strongly enhanced the efficacy of DC vaccination and was itself also protective, independently of DC vaccination. However, DC vaccination was essential to protect the animals from IC tumor rechallenge. No long-term protection was observed in animals that initially received aCD25 treatment only. In mice that received DC and/or aCD25 treatment, we retrieved tumor-specific brain-infiltrating cytotoxic T-lymphocytes. These data clearly demonstrate the effectiveness of DC vaccination for the induction of long-lasting immunological protection against IC glioma. They also show the beneficial effect of Treg depletion in this kind of glioma immunotherapy, even combined with DC vaccination. PMID:19336528

  13. Gap junctions modulate glioma invasion by direct transfer of microRNA.

    PubMed

    Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L; Naus, Christian C

    2015-06-20

    The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity.

  14. Gap junctions modulate glioma invasion by direct transfer of microRNA

    PubMed Central

    Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L.; Naus, Christian C.

    2015-01-01

    The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity. PMID:25978028

  15. PET AND SPECT STUDIES IN CHILDREN WITH HEMISPHERIC LOW-GRADE GLIOMAS

    PubMed Central

    Juhász, Csaba; Bosnyák, Edit

    2016-01-01

    Molecular imaging is playing an increasing role in the pre-treatment evaluation of low-grade gliomas. While glucose positron emission tomography (PET) can be helpful to differentiate low-grade from high-grade tumors, PET imaging with amino acid radiotracers has several advantages, such as better differentiation between tumors and non-tumorous lesions, optimized biopsy targeting and improved detection of tumor recurrence. This review provides a brief overview of single photon emission computed tomography (SPECT) studies followed by a more detailed review of clinical applications of glucose and amino acid PET imaging in low-grade hemispheric gliomas. We discuss key differences in the performance of the most commonly utilized PET radiotracers and highlight the advantage of PET/MRI fusion to obtain optimal information about tumor extent, heterogeneity and metabolism. Recent data also suggest that simultaneous acquisition of PET/MR images and the combination of advanced MRI techniques with quantitative PET can further improve the pre- and post-treatment evaluation of pediatric brain tumors. PMID:27659825

  16. PET and SPECT studies in children with hemispheric low-grade gliomas.

    PubMed

    Juhász, Csaba; Bosnyák, Edit

    2016-10-01

    Molecular imaging is playing an increasing role in the pretreatment evaluation of low-grade gliomas. While glucose positron emission tomography (PET) can be helpful to differentiate low-grade from high-grade tumors, PET imaging with amino acid radiotracers has several advantages, such as better differentiation between tumors and non-tumorous lesions, optimized biopsy targeting, and improved detection of tumor recurrence. This review provides a brief overview of single-photon emission computed tomography (SPECT) studies followed by a more detailed review of the clinical applications of glucose and amino acid PET imaging in low-grade hemispheric gliomas. We discuss key differences in the performance of the most commonly utilized PET radiotracers and highlight the advantage of PET/MRI fusion to obtain optimal information about tumor extent, heterogeneity, and metabolism. Recent data also suggest that simultaneous acquisition of PET/MR images and the combination of advanced MRI techniques with quantitative PET can further improve the pretreatment and post-treatment evaluation of pediatric brain tumors.

  17. Alisertib and Fractionated Stereotactic Radiosurgery in Treating Patients With Recurrent High Grade Gliomas

    ClinicalTrials.gov

    2017-10-25

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Recurrent Adult Brain Tumor

  18. Brain tumor locating in 3D MR volume using symmetry

    NASA Astrophysics Data System (ADS)

    Dvorak, Pavel; Bartusek, Karel

    2014-03-01

    This work deals with the automatic determination of a brain tumor location in 3D magnetic resonance volumes. The aim of this work is not the precise segmentation of the tumor and its parts but only the detection of its location. This work is the first step in the tumor segmentation process, an important topic in neuro-image processing. The algorithm expects 3D magnetic resonance volumes of brain containing a tumor. The detection is based on locating the area that breaks the left-right symmetry of the brain. This is done by multi-resolution comparing of corresponding regions in left and right hemisphere. The output of the computation is the probabilistic map of the tumor location. The created algorithm was tested on 80 volumes from publicly available BRATS databases containing 3D brain volumes afflicted by a brain tumor. These pathological structures had various sizes and shapes and were located in various parts of the brain. The locating performance of the algorithm was 85% for T1-weighted volumes, 91% for T1-weighted contrast enhanced volumes, 96% for FLAIR and T2-wieghted volumes and 95% for their combinations.

  19. Bafetinib in Treating Patients With Recurrent High-Grade Glioma or Brain Metastases

    ClinicalTrials.gov

    2018-04-12

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Tumors Metastatic to Brain; Adult Anaplastic Oligoastrocytoma

  20. Quantitative Analysis of Complex Glioma Cell Migration on Electrospun Polycaprolactone Using Time-Lapse Microscopy

    PubMed Central

    Johnson, Jed; Nowicki, M. Oskar; Lee, Carol H.; Chiocca, E. Antonio; Viapiano, Mariano S.; Lawler, Sean E.

    2009-01-01

    Malignant gliomas are the most common tumors originating within the central nervous system and account for over 15,000 deaths annually in the United States. The median survival for glioblastoma, the most common and aggressive of these tumors, is only 14 months. Therapeutic strategies targeting glioma cells migrating away from the tumor core are currently hampered by the difficulty of reproducing migration in the neural parenchyma in vitro. We utilized a tissue engineering approach to develop a physiologically relevant model of glioma cell migration. This revealed that glioma cells display dramatic differences in migration when challenged by random versus aligned electrospun poly-ɛ-caprolactone nanofibers. Cells on aligned fibers migrated at an effective velocity of 4.2 ± 0.39 μm/h compared to 0.8 ± 0.08 μm/h on random fibers, closely matching in vivo models and prior observations of glioma spread in white versus gray matter. Cells on random fibers exhibited extension along multiple fiber axes that prevented net motion; aligned fibers promoted a fusiform morphology better suited to infiltration. Time-lapse microscopy revealed that the motion of individual cells was complex and was influenced by cell cycle and local topography. Glioma stem cell–containing neurospheres seeded on random fibers did not show cell detachment and retained their original shape; on aligned fibers, cells detached and migrated in the fiber direction over a distance sixfold greater than the perpendicular direction. This chemically and physically flexible model allows time-lapse analysis of glioma cell migration while recapitulating in vivo cell morphology, potentially allowing identification of physiological mediators and pharmacological inhibitors of invasion. PMID:19199562

  1. Short-echo 3D H-1 Magnetic Resonance Spectroscopic Imaging of patients with glioma at 7T for characterization of differences in metabolite levels

    PubMed Central

    Li, Yan; Larson, Peder; Chen, Albert P.; Lupo, Janine M.; Ozhinsky, Eugene; Kelley, Douglas; Chang, Susan M.; Nelson, Sarah J.

    2014-01-01

    Purpose The purpose of this study was to evaluate the feasibility of using a short echo time, 3D H-1 magnetic resonance spectroscopic imaging (MRSI) sequence at 7T to assess the metabolic signature of lesions for patients with glioma. Materials and Methods 29 patients with glioma were studied. MRSI data were obtained using CHESS water suppression, spectrally-selective adiabatic inversion-recovery pulses and automatically prescribed outer-volume-suppression for lipid suppression, and spin echo slice selection (TE=30ms). An interleaved flyback echo-planar trajectory was applied to shorten the total acquisition time (~10min). Relative metabolite ratios were estimated in tumor and in normal-appearing white and gray matter (NAWM, GM). Results Levels of glutamine, myo-inositol, glycine and glutathione relative to total creatine (tCr) were significantly increased in the T2 lesions for all tumor grades compared to those in the NAWM (p < 0.05), while N-acetyl aspartate to tCr were significantly decreased (p < 0.05). In grade 2 gliomas, level of total choline-containing-compounds to tCr was significantly increased (p = 0.0137), while glutamate to tCr was significantly reduced (p = 0.0012). Conclusion The improved sensitivity of MRSI and the increased number of metabolites that can be evaluated using 7T MR scanners is of interest for evaluating patients with glioma. This study has successfully demonstrated the application of a short-echo spin-echo MRSI sequence to detect characteristic differences in regions of tumor versus normal appearing brain. PMID:24935758

  2. Seizure control following radiotherapy in patients with diffuse gliomas: a retrospective study

    PubMed Central

    Rudà, Roberta; Magliola, Umberto; Bertero, Luca; Trevisan, Elisa; Bosa, Chiara; Mantovani, Cristina; Ricardi, Umberto; Castiglione, Anna; Monagheddu, Chiara; Soffietti, Riccardo

    2013-01-01

    Background Little information is available regarding the effect of conventional radiotherapy on glioma-related seizures. Methods In this retrospective study, we analyzed the seizure response and outcome following conventional radiotherapy in a cohort of 43 patients with glioma (33 grade II, 10 grade III) and medically intractable epilepsy. Results At 3 months after radiotherapy, seizure reduction was significant (≥50% reduction of frequency compared with baseline) in 31/43 patients (72%) of the whole series and in 25/33 patients (76%) with grade II gliomas, whereas at 12 months seizure reduction was significant in 26/34 (76%) and in 19/25 (76%) patients, respectively. Seizure reduction was observed more often among patients displaying an objective tumor response on MRI, but patients with no change on MRI also had a significant seizure reduction. Seizure freedom (Engel class I) was achieved at 12 months in 32% of all patients and in 38% of patients with grade II tumors. Timing of radiotherapy and duration of seizures prior to radiotherapy were significantly associated with seizure reduction. Conclusions This study showed that a high proportion of patients with medically intractable epilepsy from diffuse gliomas derive a significant and durable benefit from radiotherapy in terms of epilepsy control and that this positive effect is not strictly associated with tumor shrinkage as shown on MRI. Radiotherapy at tumor progression seems as effective as early radiotherapy after surgery. Prospective studies must confirm and better characterize the response to radiotherapy. PMID:23897633

  3. Neurodevelopmental Outcomes of Children with Low-Grade Gliomas

    ERIC Educational Resources Information Center

    Ris, M. Douglas; Beebe, Dean W.

    2008-01-01

    As a group, children with low-grade gliomas (LGGs) enjoy a high rate of long-term survival and do not require the intensity of neurotoxic treatments used with higher risk pediatric brain tumors. Because they are generally considered to have favorable neurobehavioral outcomes, they have not been studied as thoroughly as higher-grade brain tumors by…

  4. Interactions between glioma and pregnancy: insight from a 52-case multicenter series.

    PubMed

    Peeters, Sophie; Pagès, Mélanie; Gauchotte, Guillaume; Miquel, Catherine; Cartalat-Carel, Stéphanie; Guillamo, Jean-Sébastien; Capelle, Laurent; Delattre, Jean-Yves; Beauchesne, Patrick; Debouverie, Marc; Fontaine, Denys; Jouanneau, Emmanuel; Stecken, Jean; Menei, Philippe; De Witte, Olivier; Colin, Philippe; Frappaz, Didier; Lesimple, Thierry; Bauchet, Luc; Lopes, Manuel; Bozec, Laurence; Moyal, Elisabeth; Deroulers, Christophe; Varlet, Pascale; Zanello, Marc; Chretien, Fabrice; Oppenheim, Catherine; Duffau, Hugues; Taillandier, Luc; Pallud, Johan

    2018-01-01

    OBJECTIVE The goal of this study was to provide insight into the influence of gliomas on gestational outcomes, the impact of pregnancy on gliomas, and the identification of patients at risk. METHODS In this multiinstitutional retrospective study, the authors identified 52 pregnancies in 50 women diagnosed with a glioma. RESULTS For gliomas known prior to pregnancy (n = 24), we found the following: 1) An increase in the quantified imaging growth rates occurred during pregnancy in 87% of cases. 2) Clinical deterioration occurred in 38% of cases, with seizures alone resolving after delivery in 57.2% of cases. 3) Oncological treatments were immediately performed after delivery in 25% of cases. For gliomas diagnosed during pregnancy (n = 28), we demonstrated the following: 1) The tumor was discovered during the second and third trimesters in 29% and 54% of cases, respectively, with seizures being the presenting symptom in 68% of cases. 2) The quantified imaging growth rates did not significantly decrease after delivery and before oncological treatment. 3) Clinical deterioration resolved after delivery in 21.4% of cases. 4) Oncological treatments were immediately performed after delivery in 70% of cases. Gliomas with a high grade of malignancy, negative immunoexpression of alpha-internexin, or positive immunoexpression for p53 were more likely to be associated with tumor progression during pregnancy. Deliveries were all uneventful (cesarean section in 54.5% of cases and vaginal delivery in 45.5%), and the infants were developmentally normal. CONCLUSIONS When a woman harboring a glioma envisions a pregnancy, or when a glioma is discovered in a pregnant patient, the authors suggest informing her and her partner that pregnancy may impact the evolution of the glioma clinically and radiologically. They strongly advise a multidisciplinary approach to management. ■ CLASSIFICATION OF EVIDENCE Type of question: association; study design: case series; evidence: Class IV.

  5. MRI Evaluation of Non-Necrotic T2-Hyperintense Foci in Pediatric Diffuse Intrinsic Pontine Glioma.

    PubMed

    Clerk-Lamalice, O; Reddick, W E; Li, X; Li, Y; Edwards, A; Glass, J O; Patay, Z

    2016-05-19

    The conventional MR imaging appearance of diffuse intrinsic pontine glioma suggests intralesional histopathologic heterogeneity, and various distinct lesion components, including T2-hypointense foci, have been described. Here we report the prevalence, conventional MR imaging semiology, and advanced MR imaging features of non-necrotic T2-hyperintense foci in diffuse intrinsic pontine glioma. Twenty-five patients with diffuse intrinsic pontine gliomas were included in this study. MR imaging was performed at 3T by using conventional and advanced MR imaging sequences. Perfusion (CBV), vascular permeability (v e , K trans ), and diffusion (ADC) metrics were calculated and used to characterize non-necrotic T2-hyperintense foci in comparison with other lesion components, namely necrotic T2-hyperintense foci, T2-hypointense foci, peritumoral edema, and normal brain stem. Statistical analysis was performed by using Kruskal-Wallis and Wilcoxon rank sum tests. Sixteen non-necrotic T2-hyperintense foci were found in 12 tumors. In these foci, ADC values were significantly higher than those in either T2-hypointense foci (P = .002) or normal parenchyma (P = .0002), and relative CBV values were significantly lower than those in either T2-hypointense (P = .0002) or necrotic T2-hyperintense (P = .006) foci. Volume transfer coefficient values in T2-hyperintense foci were lower than those in T2-hypointense (P = .0005) or necrotic T2-hyperintense (P = .0348) foci. Non-necrotic T2-hyperintense foci are common, distinct lesion components within diffuse intrinsic pontine gliomas. Advanced MR imaging data suggest low cellularity and an early stage of angioneogenesis with leaky vessels resulting in expansion of the extracellular space. Because of the lack of biopsy validation, the underlying histoarchitectural and pathophysiologic changes remain unclear; therefore, these foci may correspond to a poorly understood biologic event in tumor evolution. © 2016 American Society of Neuroradiology.

  6. Differentiation of Enhancing Glioma and Primary Central Nervous System Lymphoma by Texture-Based Machine Learning.

    PubMed

    Alcaide-Leon, P; Dufort, P; Geraldo, A F; Alshafai, L; Maralani, P J; Spears, J; Bharatha, A

    2017-06-01

    Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purpose of the study was to evaluate the diagnostic performance of a machine-learning algorithm by using texture analysis of contrast-enhanced T1-weighted images for differentiation of primary central nervous system lymphoma and enhancing glioma. Seventy-one adult patients with enhancing gliomas and 35 adult patients with primary central nervous system lymphomas were included. The tumors were manually contoured on contrast-enhanced T1WI, and the resulting volumes of interest were mined for textural features and subjected to a support vector machine-based machine-learning protocol. Three readers classified the tumors independently on contrast-enhanced T1WI. Areas under the receiver operating characteristic curves were estimated for each reader and for the support vector machine classifier. A noninferiority test for diagnostic accuracy based on paired areas under the receiver operating characteristic curve was performed with a noninferiority margin of 0.15. The mean areas under the receiver operating characteristic curve were 0.877 (95% CI, 0.798-0.955) for the support vector machine classifier; 0.878 (95% CI, 0.807-0.949) for reader 1; 0.899 (95% CI, 0.833-0.966) for reader 2; and 0.845 (95% CI, 0.757-0.933) for reader 3. The mean area under the receiver operating characteristic curve of the support vector machine classifier was significantly noninferior to the mean area under the curve of reader 1 ( P = .021), reader 2 ( P = .035), and reader 3 ( P = .007). Support vector machine classification based on textural features of contrast-enhanced T1WI is noninferior to expert human evaluation in the differentiation of primary central nervous system lymphoma and enhancing glioma. © 2017 by American Journal of Neuroradiology.

  7. Culture conditions tailored to the cell of origin are critical for maintaining native properties and tumorigenicity of glioma cells.

    PubMed

    Ledur, Pítia F; Liu, Chong; He, Hua; Harris, Alexandra R; Minussi, Darlan C; Zhou, Hai-Yan; Shaffrey, Mark E; Asthagiri, Ashok; Lopes, Maria Beatriz S; Schiff, David; Lu, Yi-Cheng; Mandell, James W; Lenz, Guido; Zong, Hui

    2016-10-01

    Cell culture plays a pivotal role in cancer research. However, culture-induced changes in biological properties of tumor cells profoundly affect research reproducibility and translational potential. Establishing culture conditions tailored to the cancer cell of origin could resolve this problem. For glioma research, it has been previously shown that replacing serum with defined growth factors for neural stem cells (NSCs) greatly improved the retention of gene expression profile and tumorigenicity. However, among all molecular subtypes of glioma, our laboratory and others have previously shown that the oligodendrocyte precursor cell (OPC) rather than the NSC serves as the cell of origin for the proneural subtype, raising questions regarding the suitability of NSC-tailored media for culturing proneural glioma cells. OPC-originated mouse glioma cells were cultured in conditions for normal OPCs or NSCs, respectively, for multiple passages. Gene expression profiles, morphologies, tumorigenicity, and drug responsiveness of cultured cells were examined in comparison with freshly isolated tumor cells. OPC media-cultured glioma cells maintained tumorigenicity, gene expression profiles, and morphologies similar to freshly isolated tumor cells. In contrast, NSC-media cultured glioma cells gradually lost their OPC features and most tumor-initiating ability and acquired heightened sensitivity to temozolomide. To improve experimental reproducibility and translational potential of glioma research, it is important to identify the cell of origin, and subsequently apply this knowledge to establish culture conditions that allow the retention of native properties of tumor cells. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. A role for intracellular zinc in glioma alteration of neuronal chloride equilibrium

    PubMed Central

    Di Angelantonio, S; Murana, E; Cocco, S; Scala, F; Bertollini, C; Molinari, M G; Lauro, C; Bregestovski, P; Limatola, C; Ragozzino, D

    2014-01-01

    Glioma patients commonly suffer from epileptic seizures. However, the mechanisms of glioma-associated epilepsy are far to be completely understood. Using glioma-neurons co-cultures, we found that tumor cells are able to deeply influence neuronal chloride homeostasis, by depolarizing the reversal potential of γ-aminobutyric acid (GABA)-evoked currents (EGABA). EGABA depolarizing shift is due to zinc-dependent reduction of neuronal KCC2 activity and requires glutamate release from glioma cells. Consistently, intracellular zinc loading rapidly depolarizes EGABA in mouse hippocampal neurons, through the Src/Trk pathway and this effect is promptly reverted upon zinc chelation. This study provides a possible molecular mechanism linking glioma invasion to excitation/inhibition imbalance and epileptic seizures, through the zinc–mediated disruption of neuronal chloride homeostasis. PMID:25356870

  9. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study.

    PubMed

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-07-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  10. Molecular and clinical characterization of PTPN2 expression from RNA-seq data of 996 brain gliomas.

    PubMed

    Wang, Peng-Fei; Cai, Hong-Qing; Zhang, Chuan-Bao; Li, Yan-Michael; Liu, Xiang; Wan, Jing-Hai; Jiang, Tao; Li, Shou-Wei; Yan, Chang-Xiang

    2018-05-15

    Immune checkpoint inhibitors have been shown to promote antitumor immunity and achieve durable tumor remissions. However, certain tumors are refractory to current immunotherapy. These negative results encouraged us to uncover other therapeutic targets and strategies. PTPN2 (protein tyrosine phosphatase, non-receptor type 2) has been newly identified as an immunotherapy target. Loss of PTPN2 sensitizes the tumor to immunotherapy via IFNγ signaling. Here, we investigated the relationship between PTPN2 mRNA levels and clinical characteristics in gliomas. RNA-seq data of a cohort of 325 patients with glioma were available from the Chinese Glioma Genome Atlas and 671 from The Cancer Genome Atlas. R language, GraphPad Prism 5, and SPSS 22.0 were used to analyze data and draw figures. PTPN2 transcript levels increased significantly with higher grades of glioma and in isocitrate dehydrogenase (IDH) wild-type and mesenchymal subtype gliomas. A comprehensive biological analysis was conducted, which indicated a crucial role of PTPN2 in the immune and inflammation responses in gliomas. Specifically, PTPN2 was positively associated with HCK, LCK, MHC II, and STAT1 but negatively related to IgG and interferon. Moreover, canonical correlation analysis showed a positive correlation of PTPN2 with infiltrating immune cells, such as macrophages, neutrophils, and CD8 + T cells. Clinically, higher levels of PTPN2 were associated with a worse overall survival both in patients with gliomas and glioblastomas. PTPN2 expression level was increased in glioblastomas and associated with gliomas of the IDH wild-type and mesenchymal subtype. There was a close correlation between PTPN2 and the immune response and inflammatory activity in gliomas. Our results show that PTPN2 is a promising immunotherapy target and may provide additional treatment strategies.

  11. Connexin 43-targeted T1 contrast agent for MRI diagnosis of glioma.

    PubMed

    Abakumova, Tatiana; Abakumov, Maxim; Shein, Sergey; Chelushkin, Pavel; Bychkov, Dmitry; Mukhin, Vladimir; Yusubalieva, Gaukhar; Grinenko, Nadezhda; Kabanov, Alexander; Nukolova, Natalia; Chekhonin, Vladimir

    2016-01-01

    Glioblastoma multiforme is the most aggressive form of brain tumor. Early and accurate diagnosis of glioma and its borders is an important step for its successful treatment. One of the promising targets for selective visualization of glioma and its margins is connexin 43 (Cx43), which is highly expressed in reactive astrocytes and migrating glioma cells. The purpose of this study was to synthesize a Gd-based contrast agent conjugated with specific antibodies to Cx43 for efficient visualization of glioma C6 in vivo. We have prepared stable nontoxic conjugates of monoclonal antibody to Cx43 and polylysine-DTPA ligands complexed with Gd(III), which are characterized by higher T1 relaxivity (6.5 mM(-1) s(-1) at 7 T) than the commercial agent Magnevist® (3.4 mM(-1) s(-1)). Cellular uptake of Cx43-specific T1 contrast agent in glioma C6 cells was more than four times higher than the nonspecific IgG-contrast agent, as detected by flow cytometry and confocal analysis. MRI experiments showed that the obtained agents could markedly enhance visualization of glioma C6 in vivo after their intravenous administration. Significant accumulation of Cx43-targeted contrast agents in glioma and the peritumoral zone led not only to enhanced contrast but also to improved detection of the tumor periphery. Fluorescence imaging confirmed notable accumulation of Cx43-specific conjugates in the peritumoral zone compared with nonspecific IgG conjugates at 24 h after intravenous injection. All these features of Cx43-targeted contrast agents might be useful for more precise diagnosis of glioma and its borders by MRI. Copyright © 2015 John Wiley & Sons, Ltd.

  12. GBP3 promotes glioma cell proliferation via SQSTM1/p62-ERK1/2 axis.

    PubMed

    Xu, Hui; Sun, Lili; Zheng, Yanwen; Yu, Shuye; Ou-Yang, Jia; Han, Hui; Dai, Xingliang; Yu, Xiaoting; Li, Ming; Lan, Qing

    2018-01-01

    Guanylate binding proteins (GBPs) are interferon-inducible large GTPases and play a crucial role in cell-autonomous immunity. However, the biology function of GBPs in cancer remains elusive. GBP3 is specifically expressed in adult brain. Here we show that GBP3 is highly elevated in human glioma tumors and glioma cell lines. Overexpression of GBP3 dramatically increased glioma cell proliferation whereas silencing GBP3 by RNA interference produced opposite effects. We further showed that GBP3 expression was able to induce sequestosome-1(SQSTM1, also named p62) expression and activate extracellular signal-regulated kinase (ERK1/2). The SQSTM1-ERK1/2 signaling cascade was essential for GBP3-promoted cell growth because depletion of SQSTM1 markedly reduced the phosphorylated ERK1/2 levels and GBP3-mediated cell growth, and inhibition of mitogen-activated protein kinase/ERK kinase abolished GBP3-induced glioma cell proliferation. Consistently, GBP3 overexpression significantly promoted glioma tumor growth in vivo and its expression was inversely correlated with the survival rate of glioma patients. Taken together, these results for the first time suggest that GBP3 contributes to the proliferation of glioma cells via regulating SQSTM1-ERK1/2 pathway, and GBP3 might represent as a new potential therapeutic target against glioma. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Flavopiridol in Treating Children With Relapsed or Refractory Solid Tumors or Lymphomas

    ClinicalTrials.gov

    2013-07-01

    Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Liver Cancer; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Neuroblastoma; Recurrent Osteosarcoma; Recurrent Retinoblastoma; Recurrent Wilms Tumor and Other Childhood Kidney Tumors; Recurrent/Refractory Childhood Hodgkin Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific

  14. Detection of ATRX and IDH1-R132H immunohistochemistry in the progression of 211 paired gliomas

    PubMed Central

    Li, Qingbin; Wang, Zhiliang; Li, Guanzhang; Wang, Guangzhi; Yang, Pei; Li, Jianlong; Han, Bo; Jiang, Chuanlu; Sun, Ying; Jiang, Tao

    2016-01-01

    Recurrence and progression to higher grade lesions are key biological events and characteristic behaviors in the evolution process of glioma. A small residual population of cells always escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence or progression. IDH mutation (isocitrate dehydrogenase) and ATRX (alpha-thalassemia/mental retardation, X-linked) loss/mutation occur in association and may represent early genetic alterations in the development of gliomas. However, their prognostic value in the evolution of gliomas still needs further investigation. Two hundreds and eleven serial sampling of gliomas were included in our study. We used immunohistochemistry (IHC) to detect IDH1-R132H mutation and ATRX status and showed that the IDH1-R132H and (or) ATRX status could be necessary to provide the basic molecular information for the “integrated diagnosis” of gliomas. We illustrated an evaluation formula for the evolution of gliomas by IDH1-R132H combined with ATRX immunohistochemistry and identified the association of IDH1-R132H/ATRX loss accompanied by longer progression time interval of patients with gliomas. Furthermore, we observed that most recurrences had a consistent IDH1 and ATRX status with their matched primary tumors and demonstrated the progressive pattern of grade II astrocytoma/oligodendroglial tumors and anaplastic oligoastrocytoma with or without IDH1-R132H. Identification of IDH1-R132H and ATRX loss status in the primary-recurrent gliomas may aid in treatment strategy selection, therapeutic trial design, and clinical prognosis evaluation. PMID:26918938

  15. Detection of ATRX and IDH1-R132H immunohistochemistry in the progression of 211 paired gliomas.

    PubMed

    Cai, Jinquan; Zhu, Ping; Zhang, Chuanbao; Li, Qingbin; Wang, Zhiliang; Li, Guanzhang; Wang, Guangzhi; Yang, Pei; Li, Jianlong; Han, Bo; Jiang, Chuanlu; Sun, Ying; Jiang, Tao

    2016-03-29

    Recurrence and progression to higher grade lesions are key biological events and characteristic behaviors in the evolution process of glioma. A small residual population of cells always escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence or progression. IDH mutation (isocitrate dehydrogenase) and ATRX (alpha-thalassemia/mental retardation, X-linked) loss/mutation occur in association and may represent early genetic alterations in the development of gliomas. However, their prognostic value in the evolution of gliomas still needs further investigation.Two hundreds and eleven serial sampling of gliomas were included in our study. We used immunohistochemistry (IHC) to detect IDH1-R132H mutation and ATRX status and showed that the IDH1-R132H and (or) ATRX status could be necessary to provide the basic molecular information for the "integrated diagnosis" of gliomas. We illustrated an evaluation formula for the evolution of gliomas by IDH1-R132H combined with ATRX immunohistochemistry and identified the association of IDH1-R132H/ATRX loss accompanied by longer progression time interval of patients with gliomas. Furthermore, we observed that most recurrences had a consistent IDH1 and ATRX status with their matched primary tumors and demonstrated the progressive pattern of grade II astrocytoma/oligodendroglial tumors and anaplastic oligoastrocytoma with or without IDH1-R132H. Identification of IDH1-R132H and ATRX loss status in the primary-recurrent gliomas may aid in treatment strategy selection, therapeutic trial design, and clinical prognosis evaluation.

  16. Comparison of Different Post-Processing Algorithms for Dynamic Susceptibility Contrast Perfusion Imaging of Cerebral Gliomas.

    PubMed

    Kudo, Kohsuke; Uwano, Ikuko; Hirai, Toshinori; Murakami, Ryuji; Nakamura, Hideo; Fujima, Noriyuki; Yamashita, Fumio; Goodwin, Jonathan; Higuchi, Satomi; Sasaki, Makoto

    2017-04-10

    The purpose of the present study was to compare different software algorithms for processing DSC perfusion images of cerebral tumors with respect to i) the relative CBV (rCBV) calculated, ii) the cutoff value for discriminating low- and high-grade gliomas, and iii) the diagnostic performance for differentiating these tumors. Following approval of institutional review board, informed consent was obtained from all patients. Thirty-five patients with primary glioma (grade II, 9; grade III, 8; and grade IV, 18 patients) were included. DSC perfusion imaging was performed with 3-Tesla MRI scanner. CBV maps were generated by using 11 different algorithms of four commercially available software and one academic program. rCBV of each tumor compared to normal white matter was calculated by ROI measurements. Differences in rCBV value were compared between algorithms for each tumor grade. Receiver operator characteristics analysis was conducted for the evaluation of diagnostic performance of different algorithms for differentiating between different grades. Several algorithms showed significant differences in rCBV, especially for grade IV tumors. When differentiating between low- (II) and high-grade (III/IV) tumors, the area under the ROC curve (Az) was similar (range 0.85-0.87), and there were no significant differences in Az between any pair of algorithms. In contrast, the optimal cutoff values varied between algorithms (range 4.18-6.53). rCBV values of tumor and cutoff values for discriminating low- and high-grade gliomas differed between software packages, suggesting that optimal software-specific cutoff values should be used for diagnosis of high-grade gliomas.

  17. Management of Elderly Patients With Gliomas

    PubMed Central

    Gállego Pérez-Larraya, Jaime

    2014-01-01

    The current progressive aging of the population is resulting in a continuous increase in the incidence of gliomas in elderly people, especially the most frequent subtype, glioblastoma (GBM). This sociohealth shift, known as the “silver tsunami,” has prompted the neuro-oncology community to investigate the role of specific antitumor treatments, such as surgery, radiotherapy, chemotherapy, and other targeted therapies, for these traditionally undertreated patients. Advanced age, a widely recognized poor prognostic factor in both low-grade glioma (LGG) and high-grade glioma patients, should no longer be the sole reason for excluding such older patients from receiving etiologic treatments. Far from it, results from recent prospective trials conducted on elderly patients with GBM demonstrate that active management of these patients can have a positive impact on survival without impairing either cognition or quality of life. Although prospective studies specifically addressing the management of grade 2 and 3 gliomas are lacking and thus needed, the aforementioned tendency toward acknowledging a therapeutic benefit for GBM patients might also apply to the treatment of patients with LGG and anaplastic gliomas. In order to optimize such etiologic treatment in conjunction with symptomatic management, neuro-oncology multidisciplinary boards must individually consider important features such as resectability of the tumor, functional and cognitive status, associated comorbidities, and social support. PMID:25342314

  18. Natural history of incidental World Health Organization grade II gliomas.

    PubMed

    Pallud, Johan; Fontaine, Denys; Duffau, Hugues; Mandonnet, Emmanuel; Sanai, Nader; Taillandier, Luc; Peruzzi, Philippe; Guillevin, Rémy; Bauchet, Luc; Bernier, Valérie; Baron, Marie-Hélène; Guyotat, Jacques; Capelle, Laurent

    2010-11-01

    Seizure is the presenting symptom in most of World Health Organization grade II gliomas (GIIGs). Rarely, a GIIG is discovered incidentally on imaging. Little is known about the natural course and prognosis of incidental GIIGs. The aim of the present study is to characterize their natural history and to investigate whether their clinical and radiological behaviors differ from those of symptomatic GIIGs. The clinical and radiological findings, treatments, and outcomes of 47 histologically-proven incidental GIIGs were compared with those of 1249 symptomatic GIIGs. Incidental GIIGs differ significantly from symptomatic GIIGs: they have a female predominance (p = 0.05), smaller initial tumor volumes (p < 0.001), lower incidence of contrast enhancement (p = 0.009), and are more likely to undergo gross total surgical removal (p < 0.001). Proliferation rates were similar to that observed among symptomatic GIIGs. Younger age at the time of discovery, frontal lobes, and noneloquent brain regions were associated with incidental GIIGs, as compared to their symptomatic counterparts. When not treated, incidental GIIGs demonstrated radiological growth (median velocity of diametric expansion at 3.5 mm/year), and became symptomatic at a median interval of 48 months after radiological discovery. Overall, incidental discovery was associated with a significant survival benefit (p = 0.04). Incidental GIIGs are progressive tumors leading to clinical transformation toward symptomatic GIIGs. They may represent an earlier step in the natural history of a glioma than the symptomatic GIIGs.

  19. Dynamic imaging response following radiation therapy predicts long-term outcomes for diffuse low-grade gliomas.

    PubMed

    Pallud, Johan; Llitjos, Jean-François; Dhermain, Frédéric; Varlet, Pascale; Dezamis, Edouard; Devaux, Bertrand; Souillard-Scémama, Raphaëlle; Sanai, Nader; Koziak, Maria; Page, Philippe; Schlienger, Michel; Daumas-Duport, Catherine; Meder, Jean-François; Oppenheim, Catherine; Roux, François-Xavier

    2012-04-01

    Quantitative imaging assessment of radiation therapy (RT) for diffuse low-grade gliomas (DLGG) by measuring the velocity of diametric expansion (VDE) over time has never been studied. We assessed the VDE changes following RT and determined whether this parameter can serve as a prognostic factor. We reviewed a consecutive series of 33 adults with supratentorial DLGG treated with first-line RT with available imaging follow-up (median follow-up, 103 months). Before RT, all patients presented with a spontaneous tumor volume increase (positive VDE, mean 5.9 mm/year). After RT, all patients demonstrated a tumor volume decrease (negative VDE, mean, -16.7 mm/year) during a mean 49-month duration. In univariate analysis, initial tumor volume (>100 cm(3)), lack of IDH1 expression, p53 expression, high proliferation index, and fast post-RT tumor volume decrease (VDE at -10 mm/year or faster, fast responders) were associated with a significantly shorter overall survival (OS). The median OS was significantly longer (120.8 months) for slow responders (post-RT VDE slower than -10.0 mm/year) than for fast responders (47.9 months). In multivariate analysis, fast responders, larger initial tumor volume, lack of IDH1 expression, and p53 expression were independent poor prognostic factors for OS. A high proliferation index was significantly more frequent in the fast responder subgroup than in the slow responder subgroup. We conclude that the pattern of post-RT VDE changes is an independent prognostic factor for DLGG and offers a quantitative parameter to predict long-term outcomes. We propose to monitor individually the post-RT VDE changes using MRI follow-up, with particular attention to fast responders.

  20. Cilengitide in Treating Children With Refractory Primary Brain Tumors

    ClinicalTrials.gov

    2013-09-27

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  1. Clinical Presentation and Outcome of Patients With Optic Pathway Glioma.

    PubMed

    Robert-Boire, Viviane; Rosca, Lorena; Samson, Yvan; Ospina, Luis H; Perreault, Sébastien

    2017-10-01

    Optic pathway gliomas (OPGs) occur sporadically or in patients with neurofibromatosis type 1 (NF1). The purpose of this study was to evaluate the clinical presentation at diagnosis and at progression of patients with OPGs. We conducted a chart review of patients with OPGs diagnosed in a single center over a period of 15 years. Demographic data including age, sex, NF1 status, clinical presentation, and outcome were collected. Of the 40 patients who were identified, 23 had sporadic tumors (57.5%) and 17 had NF1-related tumors (42.5%). Among the children with NF1, there was a significant overrepresentation of girls (82.3%) (P = 0.02), while among the children without NF1, there were slightly more boys (56.5%) than girls (43.5%). The presence of nystagmus was strongly associated with sporadic optic pathway gliomas. Poor visual outcome was related to tumor affecting both optic pathways, hydrocephalus at diagnosis, and optic nerve atrophy. Of the 40 patients, five died of OPG complications (12.5%) and all had sporadic tumors. Our cohort is one of the largest with OPGs and a detailed description of the clinical presentation both at diagnosis and at progression. We observed a significant difference between sporadic and NF1 optic pathway gliomas in terms of demographics, clinical presentation, and outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cationizable lipid micelles as vehicles for intraarterial glioma treatment.

    PubMed

    Nguyen, Juliane; Cooke, Johann R N; Ellis, Jason A; Deci, Michael; Emala, Charles W; Bruce, Jeffrey N; Bigio, Irving J; Straubinger, Robert M; Joshi, Shailendra

    2016-05-01

    The relative abundance of anionic lipids on the surface of endothelia and on glioma cells suggests a workable strategy for selective drug delivery by utilizing cationic nanoparticles. Furthermore, the extracellular pH of gliomas is relatively acidic suggesting that tumor selectivity could be further enhanced if nanoparticles can be designed to cationize in such an environment. With these motivating hypotheses the objective of this study was to determine whether nanoparticulate (20 nm) micelles could be designed to improve their deposition within gliomas in an animal model. To test this, we performed intra-arterial injection of micelles labeled with an optically quantifiable dye. We observed significantly greater deposition (end-tissue concentration) of cationizable micelles as compared to non-ionizable micelles in the ipsilateral hemisphere of normal brains. More importantly, we noted enhanced deposition of cationizable as compared to non-ionizable micelles in glioma tissue as judged by semiquantitative fluorescence analysis. Micelles were generally able to penetrate to the core of the gliomas tested. Thus we conclude that cationizable micelles may be constructed as vehicles for facilitating glioma-selective delivery of compounds after intraarterial injection.

  3. A long noncoding RNA UCA1 promotes proliferation and predicts poor prognosis in glioma.

    PubMed

    Zhao, W; Sun, C; Cui, Z

    2017-06-01

    Acting as a proto-oncogene, long noncoding RNAs (lncRNAs) urothelial carcinoembryonic antigen 1 (UCA1) plays a key role in the occurrence and development of several human tumors. However, the expression and biological functions of UCA1 in glioma are less known. This study discussed the expression of UCA1 in glioma and its effect on the proliferation and cell cycle of glioma cells. LncRNA UCA1 expressions in 64 glioma samples (Grade I-II in 22 cases and Grade III-IV in 42 cases, according to WHO criteria) and 10 normal brain samples were detected using real-time fluorescence quantitative PCR. On this basis, the correlations of UCA1 to clinicopathological characteristics and prognosis of glioma were assessed. Then, using qPCR, the lncRNA UCA1 expressions in glioma cell lines and astrocytes were detected. UCA1-overexpressing glioma cell lines U87 and U251 were further detected after siRNA transfection of these two cell lines, and the impact on cell proliferation and cell cycle was assessed with CCK-8 (cell counting kit-8) assay and flow cytometry method (FCM), respectively. The expression of cyclin D1, a cell cycle-related protein, was detected using Western Blot. LncRNA UCA1 expression in the glioma samples was obviously higher as compared with the normal brain samples (P < 0.001), and the expression was correlated significantly with grading of the tumors (P < 0.05). However, lncRNA UCA1 expression was not correlated with age, gender, tumor size and KPS score (P > 0.05). After interference of UCA1 expression by siRNA transfection, the proliferation of both U251 and SHG-44 cells was inhibited (P < 0.05), with more cells arrested in G0/G1 (P < 0.05). Moreover, cyclin D1 expression was also downregulated considerably. LncRNA UCA1 can promote the proliferation and cell cycle progression of glioma cells by upregulating cyclin D1 transcription. So UCA1 may serve as an independent prognostic indicator and a novel therapeutic target for glioma.

  4. Growth inhibition and chemosensitization of exogenous nitric oxide released from NONOates in glioma cells in vitro.

    PubMed

    Weyerbrock, Astrid; Baumer, Brunhilde; Papazoglou, Anna

    2009-01-01

    Exogenous nitric oxide (NO) from NO donors has cytotoxic, chemosensitizing, and radiosensitizing effects, and increases vascular permeability and blood flow in tumors. Yet little is known about whether these cytotoxic and chemosensitizing effects can be observed in glioma cells at doses that alter tumor physiological characteristics in vivo and whether these effects are tumor selective. The effect of NO released from proline NONOate, diethylamine NONOate, spermine NONOate, and sodium nitrite on cell proliferation, apoptosis, and chemosensitivity to carboplatin of cultured glioma cells was studied in C6, U87 glioma cells, human glioblastoma cells, and human astrocytes and fibroblasts. Although proline NONOate failed to induce cell death, the other NO donors induced growth arrest when present in high concentrations (10(-2) M) in all cell lines. Chemosensitization was observed after concomitant incubation with spermine NONOate and carboplatin in C6 and human glioblastoma cells. There is strong evidence that cell death occurs primarily by necrosis and to a lesser degree by apoptosis. The NO doses, which altered tumor physiology in vivo, were not cytotoxic, indicating that NO alters vascular permeability and cell viability in vivo by different mechanisms. The authors found that NO-generating agents at high concentrations are potent growth inhibitors and might also be useful as chemosensitizers in glioma cells. These data corroborate the theory that the use of NOgenerating agents may play a role in the multimodal treatment of malignant gliomas but that the NO release must be targeted more specifically to tumor cells to improve selectivity and efficacy.

  5. DSE promotes aggressive glioma cell phenotypes by enhancing HB-EGF/ErbB signaling.

    PubMed

    Liao, Wen-Chieh; Liao, Chih-Kai; Tsai, You-Huan; Tseng, To-Jung; Chuang, Li-Ching; Lan, Chyn-Tair; Chang, Hung-Ming; Liu, Chiung-Hui

    2018-01-01

    Remodeling of the extracellular matrix (ECM) in the tumor microenvironment promotes glioma progression. Chondroitin sulfate (CS) proteoglycans appear in the ECM and on the cell surface, and can be catalyzed by dermatan sulfate epimerase to form chondroitin sulfate/dermatan sulfate (CS/DS) hybrid chains. Dermatan sulfate epimerase 1 (DSE) is overexpressed in many types of cancer, and CS/DS chains mediate several growth factor signals. However, the role of DSE in gliomas has never been explored. In the present study, we determined the expression of DSE in gliomas by consulting a public database and conducting immunohistochemistry on a tissue array. Our investigation revealed that DSE was upregulated in gliomas compared with normal brain tissue. Furthermore, high DSE expression was associated with advanced tumor grade and poor survival. We found high DSE expression in several glioblastoma cell lines, and DSE expression directly mediated DS chain formation in glioblastoma cells. Knockdown of DSE suppressed the proliferation, migration, and invasion of glioblastoma cells. In contrast, overexpression of DSE in GL261 cells enhanced these malignant phenotypes and in vivo tumor growth. Interestingly, we found that DSE selectively regulated heparin-binding EGF-like growth factor (HB-EGF)-induced signaling in glioblastoma cells. Inhibiting epidermal growth factor receptor (EGFR) and ErbB2 with afatinib suppressed DSE-enhanced malignant phenotypes, establishing the critical role of the ErbB pathway in regulating the effects of DSE expression. This evidence indicates that upregulation of DSE in gliomas contributes to malignant behavior in cancer cells. We provide novel insight into the significance of DS chains in ErbB signaling and glioma pathogenesis.

  6. Current status and future perspectives of sonodynamic therapy in glioma treatment.

    PubMed

    Wang, Xiaobing; Jia, Yali; Wang, Pan; Liu, Quanhon; Zheng, Hairong

    2017-07-01

    Malignant glioma is one of the most challenging central nervous system diseases to treat, and has high rates of recurrence and mortality. The current therapies include surgery, radiation therapy, and chemotherapy, although these approaches often failed to control tumor progression or improve patient survival. Sonodynamic therapy is a developing cancer treatment that uses ultrasound combined with a sonosensitizer to synergistically kill tumor cells, and has provided impressive results in both in vitro and in vivo studies. The ultrasound waves can penetrate deep tissues and reversibly open the blood-brain barrier to enhance drug delivery to the brain. Thus, sonodynamic therapy has a promising potential in glioma treatment. In this review, we summarize the studies that have confirmed the pre-clinical efficacy of sonodynamic therapy for glioma treatment, and discuss the future directions for this emerging treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Intra-lesional spatial correlation of static and dynamic FET-PET parameters with MRI-based cerebral blood volume in patients with untreated glioma.

    PubMed

    Göttler, Jens; Lukas, Mathias; Kluge, Anne; Kaczmarz, Stephan; Gempt, Jens; Ringel, Florian; Mustafa, Mona; Meyer, Bernhard; Zimmer, Claus; Schwaiger, Markus; Förster, Stefan; Preibisch, Christine; Pyka, Thomas

    2017-03-01

    18 F-fluorethyltyrosine-(FET)-PET and MRI-based relative cerebral blood volume (rCBV) have both been used to characterize gliomas. Recently, inter-individual correlations between peak static FET-uptake and rCBV have been reported. Herein, we assess the local intra-lesional relation between FET-PET parameters and rCBV. Thirty untreated glioma patients (27 high-grade) underwent simultaneous PET/MRI on a 3 T hybrid scanner obtaining structural and dynamic susceptibility contrast sequences. Static FET-uptake and dynamic FET-slope were correlated with rCBV within tumour hotspots across patients and intra-lesionally using a mixed-effects model to account for inter-individual variation. Furthermore, maximal congruency of tumour volumes defined by FET-uptake and rCBV was determined. While the inter-individual relationship between peak static FET-uptake and rCBV could be confirmed, our intra-lesional, voxel-wise analysis revealed significant positive correlations (median r = 0.374, p < 0.0001). Similarly, significant inter- and intra-individual correlations were observed between FET-slope and rCBV. However, rCBV explained only 12% of the static and 5% of the dynamic FET-PET variance and maximal overlap of respective tumour volumes was 37% on average. Our results show that the relation between peak values of MR-based rCBV and static FET-uptake can also be observed intra-individually on a voxel basis and also applies to a dynamic FET parameter, possibly determining hotspots of higher biological malignancy. However, just a small part of the FET-PET signal variance is explained by rCBV and tumour volumes determined by the two modalities showed only moderate overlap. These findings indicate that FET-PET and MR-based rCBV provide both congruent and complimentary information on glioma biology.

  8. Upregulation of Long Noncoding RNA Small Nucleolar RNA Host Gene 18 Promotes Radioresistance of Glioma by Repressing Semaphorin 5A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Rong; Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian; Yao, Qiwei

    Purpose: Although increasing evidence has shown that long noncoding RNAs play an important regulatory role in carcinogenesis and tumor progression, little is known about the role of small nucleolar RNA host gene 18 (SNHG18) in cancer. The goal of this study was to investigate the expression of SNHG18 and its clinical significance in glioma. Methods and Materials: Differences in the lncRNA expression profile between M059K and M059J cells were assessed by lncRNA expression microarray analysis. The expression and localization of SNHG18 in glioma cells or tissues was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH),more » respectively. the clinical associations of SNHG18 in glioma was evaluated by qRT-PCR, ISH and immunohistochemistry. The role of SNHG18 in glioma radiosensitivity was evaluated by colony formation assays, immunofluorescence, Western blot and tumor growth inhibition study. Results: The present study investigated the clinical associations of SNHG18 and its role in glioma. Our results showed that the expression of SNHG18 was remarkably upregulated in clinical glioma tissues compared with normal brain tissues. SNHG18 expression was associated with the clinical tumor grade and correlated negatively with isocitrate dehydrogenase 1 mutation. In addition, knockdown of SNHG18 with short hairpin RNA suppressed the radioresistance of glioma cells, and transgenic expression of SNHG18 had the opposite effect. Furthermore, xenograft tumors grown from cells with SNHG18 deletion were more radiosensitive than tumors grown from control cells. Further studies revealed that SNHG18 promotes radioresistance by inhibiting semaphorin 5A and that inhibition of semaphorin 5A expression abrogated the radiosensitizing effect caused by SNHG18 deletion. Conclusions: Our findings provide new insights into the role of SNHG18 in glioma and suggest its potential as a target for glioma therapy.« less

  9. The association between birth order, sibship size and glioma development in adulthood.

    PubMed

    Amirian, E; Scheurer, Michael E; Bondy, Melissa L

    2010-06-01

    The etiology of brain tumors is still largely unknown. Previous research indicates that infectious agents and immunological characteristics may influence adult glioma risk. The purpose of our study was to evaluate the effects of birth order and sibship size (total number of siblings), as indicators of the timing and frequency of early life infections, on adult glioma risk using a population of 489 cases and 540 cancer-free controls from the Harris County Brain Tumor Study. Odds ratios for birth order and sibship size were calculated separately from multivariable logistic regression models, adjusting for sex, family history of cancer, education, and age. Each one-unit increase in birth order confers a 13% decreased risk of glioma development in adulthood (OR = 0.87, 95% CI = 0.79-0.97). However, sibship size was not significantly associated with adult glioma status (OR = 0.97, 95% CI = 0.91-1.04). Our study indicates that individuals who were more likely to develop common childhood infections at an earlier age (those with a higher birth order) may be more protected against developing glioma in adulthood. More biological and epidemiological research is warranted to clarify the exact mechanisms through which the timing of common childhood infections and the course of early life immune development affect gliomagenesis.

  10. Metronomic cyclophosphamide schedule-dependence of innate immune cell recruitment and tumor regression in an implanted glioma model

    PubMed Central

    Wu, Junjie; Waxman, David J.

    2014-01-01

    Metronomic cyclophosphamide (CPA) treatment activates robust innate anti-tumor immunity and induces major regression of large, implanted brain tumor xenografts when administered on an intermittent, every 6-day schedule, but not on a daily low-dose or a maximum-tolerated dose CPA schedule. Here, we used an implanted GL261 glioma model to compare five intermittent metronomic CPA schedules to elucidate the kinetics and schedule dependence of innate immune cell recruitment and tumor regression. Tumor-recruited natural killer cells induced by two every 6-day treatment cycles were significantly ablated one day after a third CPA treatment, but largely recovered several days later. Natural killer and other tumor-infiltrating innate immune cells peaked 12 days after the last CPA treatment on the every 6-day schedule, suggesting that drug-free intervals longer than 6 days may show increased efficacy. Metronomic CPA treatments spaced 9 or 12 days apart, or on an alternating 6 and 9 day schedule, induced extensive tumor regression, similar to the 6-day schedule, however, the tumor-infiltrating natural killer cell responses were not sustained, leading to rapid resumption of tumor regrowth after day 24, despite ongoing metronomic CPA treatment. Increasing the CPA dose prolonged the period of tumor regression on the every 9-day schedule, but natural killer cell activation was markedly decreased. Thus, while several intermittent metronomic CPA treatment schedules can activate innate immune cell recruitment leading to major tumor regression, sustained immune and anti-tumor responses are only achieved on the 6-day schedule. However, even with this schedule, some tumors eventually relapse, indicating a need for further improvements in immunogenic metronomic therapies. PMID:25069038

  11. The top cited articles on glioma stem cells in Web of Science.

    PubMed

    Yi, Fuxin; Ma, Jun; Ni, Weimin; Chang, Rui; Liu, Wenda; Han, Xiubin; Pan, Dongxiao; Liu, Xingbo; Qiu, Jianwu

    2013-05-25

    Glioma is the most common intracranial tumor and has a poor patient prognosis. The presence of brain tumor stem cells was gradually being understood and recognized, which might be beneficial for the treatment of glioma. To use bibliometric indexes to track study focuses on glioma stem cell, and to investigate the relationships among geographic origin, impact factors, and highly cited articles indexed in Web of Science. A list of citation classics for glioma stem cells was generated by searching the database of Web of Science-Expanded using the terms "glioma stem cell" or "glioma, stem cell" or "brain tumor stem cell". The top 63 cited research articles which were cited more than 100 times were retrieved by reading the abstract or full text if needed. Each eligible article was reviewed for basic information on subject categories, country of origin, journals, authors, and source of journals. Inclusive criteria: (1) articles in the field of glioma stem cells which was cited more than 100 times; (2) fundamental research on humans or animals, clinical trials and case reports; (3) research article; (4) year of publication: 1899-2012; and (5) citation database: Science Citation Index-Expanded. Exclusive criteria: (1) articles needing to be manually searched or accessed only by telephone; (2) unpublished articles; and (3) reviews, conference proceedings, as well as corrected papers. Of 2 040 articles published, the 63 top-cited articles were published between 1992 and 2010. The number of citations ranged from 100 to 1 754, with a mean of 280 citations per article. These citation classics came from nineteen countries, of which 46 articles came from the United States. Duke University and University of California, San Francisco led the list of classics with seven papers each. The 63 top-cited articles were published in 28 journals, predominantly Cancer Research and Cancer Cell, followed by Cell Stem Cell and Nature. Our bibliometric analysis provides a historical perspective

  12. Non-standard radiotherapy fractionations delay the time to malignant transformation of low-grade gliomas.

    PubMed

    Henares-Molina, Araceli; Benzekry, Sebastien; Lara, Pedro C; García-Rojo, Marcial; Pérez-García, Víctor M; Martínez-González, Alicia

    2017-01-01

    Grade II gliomas are slowly growing primary brain tumors that affect mostly young patients. Cytotoxic therapies (radiotherapy and/or chemotherapy) are used initially only for patients having a bad prognosis. These therapies are planned following the "maximum dose in minimum time" principle, i. e. the same schedule used for high-grade brain tumors in spite of their very different behavior. These tumors transform after a variable time into high-grade gliomas, which significantly decreases the patient's life expectancy. In this paper we study mathematical models describing the growth of grade II gliomas in response to radiotherapy. We find that protracted metronomic fractionations, i.e. therapeutical schedules enlarging the time interval between low-dose radiotherapy fractions, may lead to a better tumor control without an increase in toxicity. Other non-standard fractionations such as protracted or hypoprotracted schemes may also be beneficial. The potential survival improvement depends on the tumor's proliferation rate and can be even of the order of years. A conservative metronomic scheme, still being a suboptimal treatment, delays the time to malignant progression by at least one year when compared to the standard scheme.

  13. A graphic method for identification of novel glioma related genes.

    PubMed

    Gao, Yu-Fei; Shu, Yang; Yang, Lei; He, Yi-Chun; Li, Li-Peng; Huang, GuaHua; Li, Hai-Peng; Jiang, Yang

    2014-01-01

    Glioma, as the most common and lethal intracranial tumor, is a serious disease that causes many deaths every year. Good comprehension of the mechanism underlying this disease is very helpful to design effective treatments. However, up to now, the knowledge of this disease is still limited. It is an important step to understand the mechanism underlying this disease by uncovering its related genes. In this study, a graphic method was proposed to identify novel glioma related genes based on known glioma related genes. A weighted graph was constructed according to the protein-protein interaction information retrieved from STRING and the well-known shortest path algorithm was employed to discover novel genes. The following analysis suggests that some of them are related to the biological process of glioma, proving that our method was effective in identifying novel glioma related genes. We hope that the proposed method would be applied to study other diseases and provide useful information to medical workers, thereby designing effective treatments of different diseases.

  14. Contrast Enhanced Maximum Intensity Projection Ultrasound Imaging for Assessing Angiogenesis in Murine Glioma and Breast Tumor Models: A Comparative Study

    PubMed Central

    Forsberg, Flemming; Ro, Raymond J.; Fox, Traci B; Liu, Ji-Bin; Chiou, See-Ying; Potoczek, Magdalena; Goldberg, Barry B

    2010-01-01

    The purpose of this study was to prospectively compare noninvasive, quantitative measures of vascularity obtained from 4 contrast enhanced ultrasound (US) techniques to 4 invasive immunohistochemical markers of tumor angiogenesis in a large group of murine xenografts. Glioma (C6) or breast cancer (NMU) cells were implanted in 144 rats. The contrast agent Optison (GE Healthcare, Princeton, NJ) was injected in a tail vein (dose: 0.4ml/kg). Power Doppler imaging (PDI), pulse-subtraction harmonic imaging (PSHI), flash-echo imaging (FEI), and Microflow imaging (MFI; a technique creating maximum intensity projection images over time) was performed with an Aplio scanner (Toshiba America Medical Systems, Tustin, CA) and a 7.5 MHz linear array. Fractional tumor neovascularity was calculated from digital clips of contrast US, while the relative area stained was calculated from specimens. Results were compared using a factorial, repeated measures ANOVA, linear regression and z-tests. The tortuous morphology of tumor neovessels was visualized better with MFI than with the other US modes. Cell line, implantation method and contrast US imaging technique were significant parameters in the ANOVA model (p<0.05). The strongest correlation determined by linear regression in the C6 model was between PSHI and percent area stained with CD31 (r=0.37, p<0.0001). In the NMU model the strongest correlation was between FEI and COX-2 (r=0.46, p<0.0001). There were no statistically significant differences between correlations obtained with the various US methods (p>0.05). In conclusion, the largest study of contrast US of murine xenografts to date has been conducted and quantitative contrast enhanced US measures of tumor neovascularity in glioma and breast cancer xenograft models appear to provide a noninvasive marker for angiogenesis; although the best method for monitoring angiogenesis was not conclusively established. PMID:21144542

  15. 4'-Acetoamido-4-hydroxychalcone, a chalcone derivative, inhibits glioma growth and invasion through regulation of the tropomyosin 1 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Bo Mi; Ryu, Hyung Won; Lee, Yeon Kyung

    2010-11-19

    Research highlights: {yields} 4'-Acetoamido-4-hydroxychalcone (AHC) has anti-cancer property for glioma. {yields} 4'-Acetoamido-4-hydroxychalcone (AHC) increased tropomyosin expreesion through activattion of PKA signaling. {yields} 4'-Acetoamido-4-hydroxychalcone (AHC) inhibits glioma cell migration and invasion. {yields} In vivo administration of 4'-acetoamido-4-hydroxychalcone (AHC) reduced tumor growth. -- Abstract: Chalcones are precursors of flavonoids and have been shown to have anti-cancer activity. Here, we identify the synthetic chalcone derivative 4'-acetoamido-4-hydroxychalcone (AHC) as a potential therapeutic agent for the treatment of glioma. Treatment with AHC reduced glioma cell invasion, migration, and colony formation in a concentration-dependent manner. In addition, AHC inhibited vascular endothelial growth factor-induced migration, invasion, andmore » tube formation in HUVECs. To determine the mechanism underlying the inhibitory effect of AHC on glioma cell invasion and migration, we investigated the effect of AHC on the gene expression change and found that AHC affects actin dynamics in U87MG glioma cells. In actin cytoskeleton regulating system, AHC increased tropomyosin expression and stress fiber formation, probably through activation of PKA. Suppression of tropomyosin expression by siRNA or treatment with the PKA inhibitor H89 reduced the inhibitory effects of AHC on glioma cell invasion and migration. In vivo experiments also showed that AHC inhibited tumor growth in a xenograft mouse tumor model. Together, these data suggest that the synthetic chalcone derivative AHC has potent anti-cancer activity through inhibition of glioma proliferation, invasion, and angiogenesis and is therefore a potential chemotherapeutic candidate for the treatment of glioma.« less

  16. Clinical multiplexed exome sequencing distinguishes adult oligodendroglial neoplasms from astrocytic and mixed lineage gliomas.

    PubMed

    Cryan, Jane B; Haidar, Sam; Ramkissoon, Lori A; Bi, Wenya Linda; Knoff, David S; Schultz, Nikolaus; Abedalthagafi, Malak; Brown, Loreal; Wen, Patrick Y; Reardon, David A; Dunn, Ian F; Folkerth, Rebecca D; Santagata, Sandro; Lindeman, Neal I; Ligon, Azra H; Beroukhim, Rameen; Hornick, Jason L; Alexander, Brian M; Ligon, Keith L; Ramkissoon, Shakti H

    2014-09-30

    Classifying adult gliomas remains largely a histologic diagnosis based on morphology; however astrocytic, oligodendroglial and mixed lineage tumors can display overlapping histologic features. We used multiplexed exome sequencing (OncoPanel) on 108 primary or recurrent adult gliomas, comprising 65 oligodendrogliomas, 28 astrocytomas and 15 mixed oligoastrocytomas to identify lesions that could enhance lineage classification. Mutations in TP53 (20/28, 71%) and ATRX (15/28, 54%) were enriched in astrocytic tumors compared to oligodendroglial tumors of which 4/65 (6%) had mutations in TP53 and 2/65 (3%) had ATRX mutations. We found that oligoastrocytomas harbored mutations in TP53 (80%, 12/15) and ATRX (60%, 9/15) at frequencies similar to pure astrocytic tumors, suggesting that oligoastrocytomas and astrocytomas may represent a single genetic or biological entity. p53 protein expression correlated with mutation status and showed significant increases in astrocytomas and oligoastrocytomas compared to oligodendrogliomas, a finding that also may facilitate accurate classification. Furthermore our OncoPanel analysis revealed that 15% of IDH1/2 mutant gliomas would not be detected by traditional IDH1 (p.R132H) antibody testing, supporting the use of genomic technologies in providing clinically relevant data. In all, our results demonstrate that multiplexed exome sequencing can support evaluation and classification of adult low-grade gliomas with a single clinical test.

  17. A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy.

    PubMed

    Qin, Li; Wang, Cheng-Zheng; Fan, Hui-Jie; Zhang, Chong-Jian; Zhang, Heng-Wei; Lv, Min-Hao; Cui, Shu-DE

    2014-11-01

    The treatment of a brain glioma remains one of the most difficult challenges in oncology. In the present study a delivery system was developed for targeted drug delivery across the blood-brain barrier (BBB) to the brain cancer cells. A cyclic arginine-glycine-aspartic acid (RGD) peptide and transferrin (TF) were utilized as targeting ligands. Cyclic RGD peptides are specific targeting ligands of cancer cells and TFs are ligands that specifically target the BBB and cancer cells. Liposome (LP) was used to conjugate the cyclic RGD and TFs to establish the brain glioma cascade delivery system (RGD/TF-LP). The LPs were prepared by the thin film hydration method and physicochemical characterization was conducted. In vitro cell uptake and three-dimensional tumor spheroid penetration studies demonstrated that the system could target endothelial and tumor cells, as well as penetrate the tumor cells to reach the core of the tumor spheroids. The results of the in vivo imaging further demonstrated that the RGD/TF-LP provided the highest brain distribution. As a result, the paclitaxel-loaded RGD/TF-LP presents the best antiproliferative activity against C6 cells and tumor spheroids. In conclusion, the RGD/TF-LP may precisely target brain glioma, which may be valuable for glioma imaging and therapy.

  18. Scanning Fiber Endoscope Improves Detection of 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence at the Boundary of Infiltrative Glioma.

    PubMed

    Belykh, Evgenii; Miller, Eric J; Hu, Danying; Martirosyan, Nikolay L; Woolf, Eric C; Scheck, Adrienne C; Byvaltsev, Vadim A; Nakaji, Peter; Nelson, Leonard Y; Seibel, Eric J; Preul, Mark C

    2018-05-01

    Fluorescence-guided surgery with protoporphyrin IX (PpIX) as a photodiagnostic marker is gaining acceptance for resection of malignant gliomas. Current wide-field imaging technologies do not have sufficient sensitivity to detect low PpIX concentrations. We evaluated a scanning fiber endoscope (SFE) for detection of PpIX fluorescence in gliomas and compared it to an operating microscope (OPMI) equipped with a fluorescence module and to a benchtop confocal laser scanning microscope (CLSM). 5-Aminolevulinic acid-induced PpIX fluorescence was assessed in GL261-Luc2 cells in vitro and in vivo after implantation in mouse brains, at an invading glioma growth stage, simulating residual tumor. Intraoperative fluorescence of high and low PpIX concentrations in normal brain and tumor regions with SFE, OPMI, CLSM, and histopathology were compared. SFE imaging of PpIX correlated to CLSM at the cellular level. PpIX accumulated in normal brain cells but significantly less than in glioma cells. SFE was more sensitive to accumulated PpIX in fluorescent brain areas than OPMI (P < 0.01) and dramatically increased imaging time (>6×) before tumor-to-background contrast was diminished because of photobleaching. SFE provides new endoscopic capabilities to view PpIX-fluorescing tumor regions at cellular resolution. SFE may allow accurate imaging of 5-aminolevulinic acid labeling of gliomas and other tumor types when current detection techniques have failed to provide reliable visualization. SFE was significantly more sensitive than OPMI to low PpIX concentrations, which is relevant to identifying the leading edge or metastasizing cells of malignant glioma or to treating low-grade gliomas. This new application has the potential to benefit surgical outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. The Effect of Molecular Diagnostics on the Treatment of Glioma.

    PubMed

    Bush, Nancy Ann Oberheim; Butowski, Nicholas

    2017-04-01

    This review summarizes the use of molecular diagnostics in glioma and its effect on the development of novel therapeutics and management decisions. Genomic and proteomic profiling of brain tumors has provided significant expansion of our understanding of oncogenesis, characterization, and prognostication of brain tumors. Molecular markers such as MGMT, EGFR, IDH, 1p19q, ATRX, TERT, FGFR-TACC, and BRAF are now being used to classify brain tumors as well as influence management decisions. Several of these markers are also being used as therapeutic targets. We review the use of several molecular diagnostics in gliomas and discuss their impact on drug development and clinical trial design. In the future, molecular characterization based on a specific genomic, proteomic as well as transcriptomes for bioformatics analysis will provide clinicians the ability to rationally select drugs with actionable targets for each patient.

  20. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study1

    PubMed Central

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-01-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity. PMID:21750656

  1. Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia

    ClinicalTrials.gov

    2014-11-04

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood Infratentorial Ependymoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Gonadotroph Adenoma; Pituitary Basophilic Adenoma; Pituitary Chromophobe Adenoma; Pituitary Eosinophilic Adenoma; Prolactin Secreting Adenoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Pituitary Tumor; Recurrent/Refractory Childhood Hodgkin Lymphoma; T-cell Childhood Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; TSH Secreting Adenoma; Unspecified Childhood Solid Tumor, Protocol Specific

  2. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  3. The construction of the multifunctional targeting ursolic acids liposomes and its apoptosis effects to C6 glioma stem cells

    PubMed Central

    Ying, Xue; Wang, Yahua; Xu, Haolun; Li, Xia; Yan, Helu; Tang, Hui; Wen, Chen; Li, Yingchun

    2017-01-01

    Brain gliomas, one of the most fatal tumors to human, severely threat the health and life of human. They are capable of extremely strong invasion ability. And invasive glioma cells could rapidly penetrate into normal brain tissues and break them. We prepared a kind of functional liposomes, which could be transported acrossing the blood-brain barrier (BBB) and afterwards induce the apoptosis of glioma stem cells. In this research, we chose ursolic acids (UA) as an anti-cancer drug to inhibit the growth of C6 glioma cells, while epigallocatechin 3-gallate(EGCG) as the agent that could induce the apoptosis of C6 glioma stem cells. With the targeting ability of MAN, the liposomes could be delivered through the BBB and finally were concentrated on the brain gliomas. Cell experiments in vitro demonstrated that the functional liposomes were able to significantly enhance the anti-cancer effects of the drugs due to promoting the apoptosis and endocytosis effects of C6 glioma cells and C6 glioma stem cells at the same time. Furthermore, the evaluations through animal models showed that the drugs could obviously prolong the survival period of brain glioma-bearing mice and inhibit the tumor growth. Consequently, multifunctional targeting ursolic acids liposomes could potentially improve the therapeutic effects on C6 glioma cells and C6 glioma stem cells. PMID:28969057

  4. Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire

    PubMed Central

    Sims, Jennifer S.; Grinshpun, Boris; Feng, Yaping; Ung, Timothy H.; Neira, Justin A.; Samanamud, Jorge L.; Canoll, Peter; Shen, Yufeng; Sims, Peter A.; Bruce, Jeffrey N.

    2016-01-01

    Although immune signaling has emerged as a defining feature of the glioma microenvironment, how the underlying structure of the glioma-infiltrating T-cell population differs from that of the blood from which it originates has been difficult to measure directly in patients. High-throughput sequencing of T-cell receptor (TCR) repertoires (TCRseq) provides a population-wide statistical description of how T cells respond to disease. We have defined immunophenotypes of whole repertoires based on TCRseq of the α- and β-chains from glioma tissue, nonneoplastic brain tissue, and peripheral blood from patients. Using information theory, we partitioned the diversity of these TCR repertoires into that from the distribution of VJ cassette combinations and diversity due to VJ-independent factors, such as selection due to antigen binding. Tumor-infiltrating lymphocytes (TILs) possessed higher VJ-independent diversity than nonneoplastic tissue, stratifying patients according to tumor grade. We found that the VJ-independent components of tumor-associated repertoires diverge more from their corresponding peripheral repertoires than T-cell populations in nonneoplastic brain tissue, particularly for low-grade gliomas. Finally, we identified a “signature” set of TCRs whose use in peripheral blood is associated with patients exhibiting low TIL divergence and is depleted in patients with highly divergent TIL repertoires. This signature is detectable in peripheral blood, and therefore accessible noninvasively. We anticipate that these immunophenotypes will be foundational to monitoring and predicting response to antiglioma vaccines and immunotherapy. PMID:27261081

  5. Prospective trial evaluating the sensitivity and specificity of 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-DOPA) PET and MRI in patients with recurrent gliomas.

    PubMed

    Youland, Ryan S; Pafundi, Deanna H; Brinkmann, Debra H; Lowe, Val J; Morris, Jonathan M; Kemp, Bradley J; Hunt, Christopher H; Giannini, Caterina; Parney, Ian F; Laack, Nadia N

    2018-05-01

    Treatment-related changes can be difficult to differentiate from progressive glioma using MRI with contrast (CE). The purpose of this study is to compare the sensitivity and specificity of 18F-DOPA-PET and MRI in patients with recurrent glioma. Thirteen patients with MRI findings suspicious for recurrent glioma were prospectively enrolled and underwent 18F-DOPA-PET and MRI for neurosurgical planning. Stereotactic biopsies were obtained from regions of concordant and discordant PET and MRI CE, all within regions of T2/FLAIR signal hyperintensity. The sensitivity and specificity of 18F-DOPA-PET and CE were calculated based on histopathologic analysis. Receiver operating characteristic curve analysis revealed optimal tumor to normal (T/N) and SUVmax thresholds. In the 37 specimens obtained, 51% exhibited MRI contrast enhancement (M+) and 78% demonstrated 18F-DOPA-PET avidity (P+). Imaging characteristics included M-P- in 16%, M-P+ in 32%, M+P+ in 46% and M+P- in 5%. Histopathologic review of biopsies revealed grade II components in 16%, grade III in 43%, grade IV in 30% and no tumor in 11%. MRI CE sensitivity for recurrent tumor was 52% and specificity was 50%. PET sensitivity for tumor was 82% and specificity was 50%. A T/N threshold > 2.0 altered sensitivity to 76% and specificity to 100% and SUVmax > 1.36 improved sensitivity and specificity to 94 and 75%, respectively. 18F-DOPA-PET can provide increased sensitivity and specificity compared with MRI CE for visualizing the spatial distribution of recurrent gliomas. Future studies will incorporate 18F-DOPA-PET into re-irradiation target volume delineation for RT planning.

  6. Tumor volume in insignificant prostate cancer: increasing threshold gains increasing risk.

    PubMed

    Schiffmann, Jonas; Connan, Judith; Salomon, Georg; Boehm, Katharina; Beyer, Burkhard; Schlomm, Thorsten; Tennstedt, Pierre; Sauter, Guido; Karakiewicz, Pierre I; Graefen, Markus; Huland, Hartwig

    2015-01-01

    An increased tumor volume threshold (<2.5 ml) is suggested to define insignificant prostate cancer (iPCa). We hypothesize that an increasing tumor volume within iPCa patients increases the risk of biochemical recurrence (BCR) after radical prostatectomy (RP). We relied on RP patients treated between 1992 and 2008. Multivariable Cox regression analyses predicting BCR within patients harboring favorable pathological characteristics (≤pT2, pN0/Nx, Gleason 3 + 3). Kaplan-Meier analysis was performed for BCR-free survival within iPCa patients (≤pT2, pN0/Nx, Gleason 3 + 3, tumor volume: <0.5 vs. 0.5-2.49 ml). From 1,829 patients, 141 (7.7%) and 310 (16.9%) harbored iPCa (tumor volume: <0.5 vs. 0.5-2.49 ml), respectively. Of those, 21 (14.9%) versus 31 (10.0%) had PSA >10 ng/ml. Tumor volume achieved independent predictor status for BCR. Specifically, iPCa patients with increasing tumor volume (0.5-2.49 ml) were at higher risk of BCR after RP than those with tumor volume <0.5 ml (HR: 8.8, 95% CI: 1.2-65.9, P = 0.04). Kaplan-Meier analysis recorded superior BCR-free survival in iPCa patients with lower tumor volume (<0.5 ml) (log-rank P = 0.009). The 10-year cancer-specific death rate was 0 versus 0.5%. Contemporary iPCa definition incorporates intermediate and high-risk patients (PSA: 10-20 and >20 ng/ml). Despite most favorable pathological characteristics, iPCa patients are not devoid of BCR after RP. Moreover, iPCa patients were at higher risk of BCR, when increasing tumor volume up to 2.49 ml was at play. Taken together the contemporary concept of iPCa is suboptimal. Especially, an increased tumor volume threshold for defining iPCa cannot be recommended according to our data. Clinicians might take these considerations into account during decision-making process. © 2014 Wiley Periodicals, Inc.

  7. Analysis of expression and prognostic significance of vimentin and the response to temozolomide in glioma patients.

    PubMed

    Lin, Lin; Wang, Guangzhi; Ming, Jianguang; Meng, Xiangqi; Han, Bo; Sun, Bo; Cai, Jinquan; Jiang, Chuanlu

    2016-11-01

    Gliomas are the most common primary intracranial malignant tumors in adults. Surgical resection followed by optional radiotherapy and chemotherapy is the current standard therapy for glioma patients. Vimentin, a protein of intermediate filament family, could maintain the cellular integrity and participate in several cell signal pathways to modulate the motility and invasion of cancer cells. The purpose of the present research was to identify the relationship between vimentin expression and clinical characteristics and detect the prognostic and predictive ability of vimentin in patients with glioma. To determine the expression of vimentin in glioma tissues, paraffin-embedded blocks from glioma patients by surgical resection were obtained and evaluated by immunohistochemistry. To further investigate the association of vimentin expression with survival, we employed mRNA expression of vimentin genes from the Chinese Glioma Genome Atlas (CGGA) and the GSE 16011 dataset. Kaplan-Meier analysis and Cox regression model were used to statistical analysis. We detected positive vimentin straining in 84 % of high-grade compared to 47 % in low-grade glioma patients. Additionally, vimentin mRNA expression was correlated with glioma grade in both CGGA and GSE16011 dataset. Patients with low vimentin expression have longer survival than high expression. In multivariate analysis, vimentin was an independent significant prognostic factor for high-grade glioma patients. We also identified that glioblastoma patients with low vimentin expression had a better response to temozolomide therapy. Vimentin expression has a significant association with tumor grade and overall survival of high-grade glioma patients. Low vimentin expression may benefit from temozolomide therapy.

  8. A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma.

    PubMed

    Huang, Yujie; Rajappa, Prajwal; Hu, Wenhuo; Hoffman, Caitlin; Cisse, Babacar; Kim, Joon-Hyung; Gorge, Emilie; Yanowitch, Rachel; Cope, William; Vartanian, Emma; Xu, Raymond; Zhang, Tuo; Pisapia, David; Xiang, Jenny; Huse, Jason; Matei, Irina; Peinado, Hector; Bromberg, Jacqueline; Holland, Eric; Ding, Bi-Sen; Rafii, Shahin; Lyden, David; Greenfield, Jeffrey

    2017-05-01

    Tumors are capable of coopting hematopoietic cells to create a suitable microenvironment to support malignant growth. Here, we have demonstrated that upregulation of kinase insert domain receptor (KDR), also known as VEGFR2, in a myeloid cell sublineage is necessary for malignant progression of gliomas in transgenic murine models and is associated with high-grade tumors in patients. KDR expression increased in myeloid cells as myeloid-derived suppressor cells (MDSCs) accumulated, which was associated with the transformation and progression of low-grade fibrillary astrocytoma to high-grade anaplastic gliomas. KDR deficiency in murine BM-derived cells (BMDCs) suppressed the differentiation of myeloid lineages and reduced granulocytic/monocytic populations. The depletion of myeloid-derived KDR compromised its proangiogenic function, which inhibited the angiogenic switch necessary for malignant progression of low-grade to high-grade tumors. We also identified inhibitor of DNA binding protein 2 (ID2) as a key upstream regulator of KDR activation during myeloid differentiation. Deficiency of ID2 in BMDCs led to downregulation of KDR, suppression of proangiogenic myeloid cells, and prevention of low-grade to high-grade transition. Tumor-secreted TGF-β and granulocyte-macrophage CSF (GM-CSF) enhanced the KDR/ID2 signaling axis in BMDCs. Our results suggest that modulation of KDR/ID2 signaling may restrict tumor-associated myeloid cells and could potentially be a therapeutic strategy for preventing transformation of premalignant gliomas.

  9. A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma

    PubMed Central

    Huang, Yujie; Rajappa, Prajwal; Hu, Wenhuo; Hoffman, Caitlin; Cisse, Babacar; Kim, Joon-Hyung; Gorge, Emilie; Yanowitch, Rachel; Cope, William; Vartanian, Emma; Xu, Raymond; Pisapia, David; Xiang, Jenny; Huse, Jason; Matei, Irina; Peinado, Hector; Bromberg, Jacqueline; Holland, Eric; Ding, Bi-sen; Rafii, Shahin; Lyden, David; Greenfield, Jeffrey

    2017-01-01

    Tumors are capable of coopting hematopoietic cells to create a suitable microenvironment to support malignant growth. Here, we have demonstrated that upregulation of kinase insert domain receptor (KDR), also known as VEGFR2, in a myeloid cell sublineage is necessary for malignant progression of gliomas in transgenic murine models and is associated with high-grade tumors in patients. KDR expression increased in myeloid cells as myeloid-derived suppressor cells (MDSCs) accumulated, which was associated with the transformation and progression of low-grade fibrillary astrocytoma to high-grade anaplastic gliomas. KDR deficiency in murine BM-derived cells (BMDCs) suppressed the differentiation of myeloid lineages and reduced granulocytic/monocytic populations. The depletion of myeloid-derived KDR compromised its proangiogenic function, which inhibited the angiogenic switch necessary for malignant progression of low-grade to high-grade tumors. We also identified inhibitor of DNA binding protein 2 (ID2) as a key upstream regulator of KDR activation during myeloid differentiation. Deficiency of ID2 in BMDCs led to downregulation of KDR, suppression of proangiogenic myeloid cells, and prevention of low-grade to high-grade transition. Tumor-secreted TGF-β and granulocyte-macrophage CSF (GM-CSF) enhanced the KDR/ID2 signaling axis in BMDCs. Our results suggest that modulation of KDR/ID2 signaling may restrict tumor-associated myeloid cells and could potentially be a therapeutic strategy for preventing transformation of premalignant gliomas. PMID:28394259

  10. Optimization of combination therapy of arsenic trioxide and fractionated radiotherapy for malignant glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning Shoucheng; Knox, Susan J.

    2006-06-01

    Purpose: The primary objective was to optimize the combined treatment regimen using arsenic trioxide (ATO) and fractionated radiotherapy for the treatment of malignant glioma. Methods and Materials: Nude mice with human glioma xenograft tumors were treated with fractionated local tumor radiation of 250 cGy/fraction/day and 5 mg/kg ATO for 5-10 days. Results: Time course experiments demonstrated that maximal tumor growth delay occurred when ATO was administered between 0 and 4 h after radiation. The combination treatment of ATO and radiation synergistically inhibited tumor growth and produced a tumor growth delay time of 13.2 days, compared with 1.4 days and 6.5more » days for ATO and radiation alone (p < 0.01), respectively. The use of concurrent therapy of radiation and ATO initially, followed by ATO as maintenance therapy, was superior to the use of preloading with ATO before combined therapy and produced a tumor growth delay time of 22.7 days as compared with 11.7 days for the ATO preloading regimen (p < 0.01). The maintenance dose of ATO after concurrent therapy was effective and important for continued inhibition of tumor growth. Conclusions: The combined use of fractionated radiation and ATO is effective for the treatment of glioma xenograft tumors. ATO was most effective when administered 0-4 h after radiation without pretreatment with ATO. These results have important implications for the optimization of treatment regimen using ATO and fractionated radiotherapy for the treatment of brain tumors.« less

  11. Induction of anti-glioma natural killer cell response following multiple low-dose intracerebral CpG therapy.

    PubMed

    Alizadeh, Darya; Zhang, Leying; Brown, Christine E; Farrukh, Omar; Jensen, Michael C; Badie, Behnam

    2010-07-01

    Stimulation of toll-like receptor-9 by CpG oligodeoxynucleotides (CpG-ODN) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. These studies, however, have used high doses of CpG-ODN, which can induce toxicity in a clinical setting. The goal of this study was to evaluate the antitumor efficacy of multiple low-dose intratumoral CpG-ODN in a glioma model. Mice bearing 4-day-old intracranial GL261 gliomas received a single or multiple (two or four) intratumoral injections of CpG-ODN (3 microg) every 4 days. Tumor growth was measured by bioluminescent imaging, brain histology, and animal survival. Flow cytometry and cytotoxicity assays were used to assess anti-glioma immune response. Two and four intracranial injections of low-dose CpG-ODN, but not a single injection, eradicated gliomas in 70% of mice. Moreover, surviving animals exhibited durable tumor-free remission (> 3 months) and were protected from intracranial rechallenge with GL261 gliomas, showing the capacity for long-term antitumor immunity. Although most inflammatory cells seemed to increase, activated natural killer (NK) cells (i.e., NK(+)CD107a(+)) were more frequent than CD8(+)CD107a(+) in the brains of rechallenged CpG-ODN-treated animals and showed a stronger in vitro cytotoxicity against GL261 target cells. Leukocyte depletion studies confirmed that NK cells played an important role in the initial CpG-ODN antitumor response, but both CD8 and NK cells were equally important in long-term immunity against gliomas. These findings suggest that multiple low-dose intratumoral injections of CpG-ODN can eradicate intracranial gliomas possibly through mechanisms involving NK-mediated effector function.

  12. Tunicamycin inhibits progression of glioma cells through downregulation of the MEG-3-regulated wnt/β-catenin signaling pathway.

    PubMed

    Li, Xin; Xue, Lei; Peng, Qin

    2018-06-01

    Glioma is derived from the oncogenic transformation of brain and spinal cord glial cells, and is one of the most common primary brain tumors. Tunicamycin (TUN) can significantly inhibit glioma growth and aggressiveness by promoting apoptosis in glioma cells. The purpose of the present study was to investigate the effects of TUN on growth of glioma cells and examine the TUN-mediated signaling pathway. The inhibitory effects of TUN on apoptosis, growth, aggressiveness and cell cycle arrest of glioma tumor cells were determined by western blotting, reverse transcription-quantitative polymerase chain reaction, apoptotic assays and immunofluorescence. The results demonstrated that treatment with TUN suppressed growth, migration and invasion of glioma carcinoma cells. In addition, TUN treatment induced apoptosis of glioma cells through downregulation of Bcl-2 and P53 expression levels. Findings also indicated that TUN suppressed proliferation and arrested the glioma cells in the S phase of the cell cycle. Further analysis of the mechanisms of TUN demonstrated that TUN treatment upregulated the expression levels of maternally expressed gene (MEG)-3, wnt and β-catenin in glioma cells. Furthermore, knockdown of MEG-3 expression reversed the TUN-decreased wnt/β-catenin signaling pathway, which subsequently also reversed the TUN-inhibited growth and aggressiveness of glioma cells. In conclusion, the findings in the present study indicated that TUN treatment inhibited growth and aggressiveness through MEG-3-mediated wnt/β-catenin signaling, suggesting that TUN may be an efficient anticancer agent for the treatment of glioma.

  13. Genomic copy number gains of ErbB family members predict poor clinical outcomes in glioma patients

    PubMed Central

    Liu, Rui; Qu, Yiping; Chen, Lihong; Pu, Jun; Ma, Sharui; Zhang, Xiaozhi; Yang, Qi; Shi, Bingyin; Hou, Peng; Ji, Meiju

    2017-01-01

    The aim of this study was to investigate copy number of ErbB family members (including EGFR, HER2, HER3 and HER4) in a cohort of gliomas and benign meningiomas (control subjects), and explore the associations of their copy number with clinicopathological characteristics and clinical outcomes of glioma patients. Using real-time quantitative PCR assay, we demonstrated that copy number of EGFR, HER2, HER3 and HER4 in glioma patients was significantly increased compared to control subjects. Moreover, our data also showed that the risk of cancer-related death was positively associated with copy number gain (CNG) of EGFR, HER3 and HER4, but not HER2. CNG of EGFR and HER2 was positively related to radiotherapy, while CNG of HER3 and HER4 was negatively related to chemotherapy. Importantly, EGFR CNG significantly shortened median survival times of glioma patients regardless of gender, tumor grade and therapeutic regimens. Stratified analysis showed that CNG of HER2-4 almost did not influence the survival of male patients, patients with high-grade tumors and patients receiving chemotherapy, but dramatically shortened median survival times of female patients, those with low-grade tumors and those receiving radiotherapy. Collectively, our data not only demonstrate that the members of ErbB family are frequently amplified in gliomas, but also suggest that these common genetic events may be prognostic factors for poor clinical outcomes in glioma patients. PMID:29190914

  14. Evaluation of radiation necrosis and malignant glioma in rat models using diffusion tensor MR imaging

    PubMed Central

    Wang, Silun; Chen, Yifei; Lal, Bachchu; Ford, Eric; Tryggestad, Erik; Armour, Michael; Yan, Kun; Laterra, John; Zhou, Jinyuan

    2011-01-01

    Standard MRI cannot distinguish between radiation necrosis and tumor progression; however, this distinction is critical in the assessment of tumor response to therapy. In this study, one delayed radiation necrosis model (dose, 40 Gy; radiation field, 10 × 10 mm2; n = 13) and two orthotopic glioma models in rats (9L gliosarcoma, n = 8; human glioma xenografts, n = 5) were compared using multiple DTI indices. A visible isotropic apparent diffusion coefficient (ADC) pattern was observed in the lesion due to radiation necrosis, which consisted of a hypointense central zone and a hyperintense peripheral zone. There were significantly lower ADC, parallel diffusivity, and perpendicular diffusivity in the necrotic central zone than in the peripheral zone (all p < 0.001). When radiation-induced necrosis was compared with viable tumor, radiation necrosis had significantly lower ADC than 9L gliosarcoma and human glioma xenografts (both p < 0.01) in the central zone, and significantly lower FA than 9L gliosarcoma (p = 0.005) and human glioma xenografts (p = 0.012) in the peripheral zone. Histological analysis revealed parenchymal coagulative necrosis in the central zone, and damaged vessels and reactive astrogliosis in the peripheral zone. These data suggest that qualitative and quantitative analysis of the DTI maps can provide useful information by which to distinguish between radiation necrosis and viable glioma. PMID:21948114

  15. Compound 331 selectively induces glioma cell death by upregulating miR-494 and downregulating CDC20

    PubMed Central

    Zhang, Lei; Niu, Tianhui; Huang, Yafei; Zhu, Haichuan; Zhong, Wu; Lin, Jian; Zhang, Yan

    2015-01-01

    Malignant gliomas are the most common malignant tumors in the central nervous system (CNS). Up to date, the prognosis of glioma is still very poor, effective therapy with less side-effect is very necessary. Herein, we identify a compound named as “331” selectively induced cell death in glioma cells but not in astrocytes. Compound 331 upregulated miR-494 and downregulated CDC20 in glioma cells but not in astrocytes. These results suggest that compound 331 could be a potential drug selectively targeting glioma cells through upregulating miR-494 and downregulating CDC20. PMID:26153143

  16. Glioma progression through the prism of heat shock protein mediated extracellular matrix remodeling and epithelial to mesenchymal transition.

    PubMed

    Rajesh, Y; Biswas, Angana; Mandal, Mahitosh

    2017-10-15

    Glial tumor is one of the intrinsic brain tumors with high migratory and infiltrative potential. This essentially contributes to the overall poor prognosis by circumvention of conventional treatment regimen in glioma. The underlying mechanism in gliomagenesis is bestowed by two processes- Extracellular matrix (ECM) Remodeling and Epithelial to mesenchymal transition (EMT). Heat Shock Family of proteins (HSPs), commonly known as "molecular chaperons" are documented to be upregulated in glioma. A positive correlation also exists between elevated expression of HSPs and invasive capacity of glial tumor. HSPs overexpression leads to mutational changes in glioma, which ultimately drive cells towards EMT, ECM modification, malignancy and invasion. Differential expression of HSPs - a factor providing cytoprotection to glioma cells, also contributes towards its radioresistance /chemoresistance. Various evidences also display upregulation of EMT and ECM markers by various heat shock inducing proteins e.g. HSF-1. The aim of this review is to study in detail the role of HSPs in EMT and ECM leading to radioresistance/chemoresistance of glioma cells. The existing treatment regimen for glioma could be enhanced by targeting HSPs through immunotherapy, miRNA and exosome mediated strategies. This could be envisaged by better understanding of molecular mechanisms underlying glial tumorigenesis in relation to EMT and ECM remodeling under HSPs influence. Our review might showcase fresh potential for the development of next generation therapeutics for effective glioma management. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Cellular phones, cordless phones, and the risks of glioma and meningioma (Interphone Study Group, Germany).

    PubMed

    Schüz, Joachim; Böhler, Eva; Berg, Gabriele; Schlehofer, Brigitte; Hettinger, Iris; Schlaefer, Klaus; Wahrendorf, Jürgen; Kunna-Grass, Katharina; Blettner, Maria

    2006-03-15

    The widespread use of cellular telephones has generated concern about possible adverse health effects, particularly brain tumors. In this population-based case-control study carried out in three regions of Germany, all incident cases of glioma and meningioma among patients aged 30-69 years were ascertained during 2000-2003. Controls matched on age, gender, and region were randomly drawn from population registries. In total, 366 glioma cases, 381 meningioma cases, and 1,494 controls were interviewed. Overall use of a cellular phone was not associated with brain tumor risk; the respective odds ratios were 0.98 (95% confidence interval (CI): 0.74, 1.29) for glioma and 0.84 (95% CI: 0.62, 1.13) for meningioma. Among persons who had used cellular phones for 10 or more years, increased risk was found for glioma (odds ratio = 2.20, 95% CI: 0.94, 5.11) but not for meningioma (odds ratio = 1.09, 95% CI: 0.35, 3.37). No excess of temporal glioma (p = 0.41) or meningioma (p = 0.43) was observed in cellular phone users as compared with nonusers. Cordless phone use was not related to either glioma risk or meningioma risk. In conclusion, no overall increased risk of glioma or meningioma was observed among these cellular phone users; however, for long-term cellular phone users, results need to be confirmed before firm conclusions can be drawn.

  18. Leptin enhances the invasive ability of glioma stem-like cells depending on leptin receptor expression.

    PubMed

    Han, Guosheng; Zhao, Wenyuan; Wang, Laixing; Yue, Zhijian; Zhao, Rui; Li, Yanan; Zhou, Xiaoping; Hu, Xiaowu; Liu, Jianmin

    2014-01-16

    Glioma stem-like cells have been demonstrated to have highly invasive activity, which is the major cause of glioma recurrence after therapy. Leptin plays a role in glioma invasion, however, whether and how leptin contributes to the biological properties of glioma stem-like cells, such as invasion, remains to be explored. In the current study, we aimed to explore the role of leptin during glioma stem-like cells invasion as well as the signaling pathway. We found that glioma stem-like cells exhibited high invasive potential, especially in the presence of leptin, Ob-R coexpressed with CD133 in glioma stem-like cells was showed to be responsible for leptin mediated invasion of glioma stem-like cells. Our results indicated that leptin served as a key intermediary linking the accumulation of excess adipokine to the invasion of glioma stem-like cells, which may be a novel therapeutic target for suppressing tumor invasion and recurrence. © 2013 Published by Elsevier B.V.

  19. Assessment of interpatient heterogeneity in tumor radiosensitivity for nonsmall cell lung cancer using tumor-volume variation data.

    PubMed

    Chvetsov, Alexei V; Yartsev, Slav; Schwartz, Jeffrey L; Mayr, Nina

    2014-06-01

    In our previous work, the authors showed that a distribution of cell surviving fractions S2 in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractions S2 and clearance half-lives of lethally damaged cells T(1/2) have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S2 for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S2 reconstructed from tumor volume variation agree with the PDF measured in vitro. The data obtained in this work, when taken together with the data obtained

  20. Flavopiridol induces apoptosis in glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a caspase-independent pathway.

    PubMed

    Alonso, Michelle; Tamasdan, Cristina; Miller, Douglas C; Newcomb, Elizabeth W

    2003-02-01

    Flavopiridol is a synthetic flavone, which inhibits growth in vitro and in vivo of several solid malignancies such as renal, prostate, and colon cancers. It is a potent cyclin-dependent kinase inhibitor presently in clinical trials. In this study, we examined the effect of flavopiridol on a panel of glioma cell lines having different genetic profiles: five of six have codeletion of p16(INK4a) and p14(ARF); three of six have p53 mutations; and one of six shows overexpression of mouse double minute-2 (MDM2) protein. Independent of retinoblastoma and p53 tumor suppressor pathway alterations, flavopiridol induced apoptosis in all cell lines but through a caspase-independent mechanism. No cleavage products for caspase 3 or its substrate poly(ADP-ribose) polymerase or caspase 8 were detected. The pan-caspase inhibitor Z-VAD-fmk did not inhibit flavopiridol-induced apoptosis. Mitochondrial damage measured by cytochrome c release and transmission electron microscopy was not observed in drug-treated glioma cells. In contrast, flavopiridol treatment induced translocation of apoptosis-inducing factor from the mitochondria to the nucleus. The proteins cyclin D(1) and MDM2 involved in the regulation of retinoblastoma and p53 activity, respectively, were down-regulated early after flavopiridol treatment. Given that MDM2 protein can confer oncogenic properties under certain circumstances, loss of MDM2 expression in tumor cells could promote increased chemosensitivity. After drug treatment, a low Bcl-2/Bax ratio was observed, a condition that may favor apoptosis. Taken together, the data indicate that flavopiridol has activity against glioma cell lines in vitro and should be considered for clinical development in the treatment of glioblastoma multiforme.

  1. The Role of Molecular Diagnostics in the Management of Patients with Gliomas.

    PubMed

    Wirsching, Hans-Georg; Weller, Michael

    2016-10-01

    The revised World Health Organization (WHO) classification of tumors of the central nervous system of 2016 combines biology-driven molecular marker diagnostics with classical histological cancer diagnosis. Reclassification of gliomas by molecular similarity beyond histological boundaries improves outcome prediction and will increasingly guide treatment decisions. This change in paradigms implies more personalized and eventually more efficient therapeutic approaches, but the era of molecular targeted therapies for gliomas is yet at its onset. Promising results of molecularly targeted therapies in genetically less complex gliomas with circumscribed growth such as subependymal giant cell astrocytoma or pilocytic astrocytoma support further development of molecularly targeted therapies. In diffuse gliomas, several molecular markers that predict benefit from alkylating agent chemotherapy have been identified in recent years. For example, co-deletion of chromosome arms 1p and 19q predicts benefit from polychemotherapy with procarbazine, CCNU (lomustine), and vincristine (PCV) in patients with anaplastic oligodendroglioma, and the presence of 1p/19q co-deletion was integrated as a defining feature of oligodendroglial tumors in the revised WHO classification. However, the tremendous increase in knowledge of molecular drivers of diffuse gliomas on genomic, epigenetic, and gene expression levels has not yet translated into effective molecular targeted therapies. Multiple reasons account for the failure of early clinical trials of molecularly targeted therapies in diffuse gliomas, including the lack of molecular entry controls as well as pharmacokinetic and pharmacodynamics issues, but the key challenge of specifically targeting the molecular backbone of diffuse gliomas is probably extensive clonal heterogeneity. A more profound understanding of clonal selection, alternative activation of oncogenic signaling pathways, and genomic instability is warranted to identify effective

  2. Antitumoral Cascade-Targeting Ligand for IL-6 Receptor-Mediated Gene Delivery to Glioma.

    PubMed

    Wang, Shanshan; Reinhard, Sören; Li, Chengyi; Qian, Min; Jiang, Huiling; Du, Yilin; Lächelt, Ulrich; Lu, Weiyue; Wagner, Ernst; Huang, Rongqin

    2017-07-05

    The effective treatment of glioma is largely hindered by the poor transfer of drug delivery systems across the blood-brain barrier (BBB) and the difficulty in distinguishing healthy and tumorous cells. In this work, for the first time, an interleukin-6 receptor binding I 6 P 7 peptide was exploited as a cascade-targeting ligand in combination with a succinoyl tetraethylene pentamine (Stp)-histidine oligomer-based nonviral gene delivery system (I 6 P 7 -Stp-His/DNA). The I 6 P 7 peptide provides multiple functions, including the cascade-targeting potential represented by a combined BBB-crossing and subsequent glioma-targeting ability, as well as a direct tumor-inhibiting effect. I 6 P 7 -Stp-His/DNA nanoparticles (NPs) mediated higher gene expression in human glioma U87 cells than in healthy human astrocytes and a deeper penetration into glioma spheroids than scrambled peptide-modified NPs. Transport of I 6 P 7 -modified, but not the control, NPs across the BBB was demonstrated in vitro in a transwell bEnd.3 cell model resulting in transfection of underlying U87 cells and also in vivo in glioma-bearing mice. Intravenous administration of I 6 P 7 -Stp-His/plasmid DNA (pDNA)-encoding inhibitor of growth 4 (pING4) significantly prolonged the survival time of orthotopic U87 glioma-bearing mice. The results denote that I 6 P 7 peptide is a roborant cascade-targeting ligand, and I 6 P 7 -modified NPs might be exploited for efficient glioma therapy. Copyright © 2017. Published by Elsevier Inc.

  3. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors.

    PubMed

    Guo, Lu; Wang, Gang; Feng, Yuanming; Yu, Tonggang; Guo, Yu; Bai, Xu; Ye, Zhaoxiang

    2016-09-21

    Accurate target volume delineation is crucial for the radiotherapy of tumors. Diffusion and perfusion magnetic resonance imaging (MRI) can provide functional information about brain tumors, and they are able to detect tumor volume and physiological changes beyond the lesions shown on conventional MRI. This review examines recent studies that utilized diffusion and perfusion MRI for tumor volume definition in radiotherapy of brain tumors, and it presents the opportunities and challenges in the integration of multimodal functional MRI into clinical practice. The results indicate that specialized and robust post-processing algorithms and tools are needed for the precise alignment of targets on the images, and comprehensive validations with more clinical data are important for the improvement of the correlation between histopathologic results and MRI parameter images.

  4. Inhibition of STAT3 and ErbB2 Suppresses Tumor Growth, Enhances Radiosensitivity, and Induces Mitochondria-Dependent Apoptosis in Glioma Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Ling; Li Fengsheng; Dong Bo

    2010-07-15

    Purpose: Constitutively activated signal transducer and activator of transcription 3 (STAT3) and ErbB2 are involved in the pathogenesis of many tumors, including astrocytoma. Inactivation of these molecules is reported to result in radiosensitization. The purpose of this study was to investigate whether inhibition of STAT3, ErbB2, or both could enhance radiotherapy in the human glioma model (U251 and U87 cell lines). Methods and Materials: The RNAi plasmids targeting STAT3 or ErbB2 were constructed, and their downregulatory effects on target proteins were examined by immunoblotting. After combination treatment of RNAi with or without irradiation, the cell viability was determined using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliummore » bromide (MTT) and clonogenic assays. The in vivo effect of combined treatment was determined using the U251 xenograft model. The apoptosis caused by the inhibition of STAT3 and ErbB2 was detected, and the mechanism involved in the apoptosis was investigated, including increases in caspase proteins, mitochondrial damage, and the expression of key modulating protein of different apoptosis pathways. Results: Transfection of U251 cells with STAT3 or ErbB2 siRNA plasmids specifically reduced their target gene expressions. Inhibition of STAT3 or ErbB2 greatly decreased glioma cell survival after 2, 4, or 6 Gy irradiation. Inhibition of STAT3 and ErbB2 also enhanced radiation-induced tumor growth inhibition in the U251 xenograft model. Furthermore, the suppression of either STAT3 or ErbB2 could induce U251 cell apoptosis, which was related primarily to the mitochondrial apoptotic pathway. Conclusions: These results indicated that simultaneous inhibition of STAT3 and ErbB2 expression can promote potent antitumor activity and radiosensitizing activity in human glioma.« less

  5. The histone deacetylase SIRT6 suppresses the expression of the RNA-binding protein PCBP2 in glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xin; Hao, Bin; Liu, Ying

    Highlights: • PCBP2 expression is over-expressed in human glioma tissues and cell lines. • SIRT6 is decreased in glioma and correlated with PCBP2. • SIRT6 inhibits PCBP2 expression by deacetylating H3K9. • SIRT6 inhibits glioma growth in vitro and in vivo. - Abstract: More than 80% of tumors that occur in the brain are malignant gliomas. The prognosis of glioma patients is still poor, which makes glioma an urgent subject of cancer research. Previous evidence and our present data show that PCBP2 is over-expressed in human glioma tissues and predicts poor outcome. However, the mechanism by which PCBP2 is regulatedmore » in glioma remains elusive. We find that SIRT6, one of the NAD{sup +}-dependent class III deacetylase SIRTUINs, is down-regulated in human glioma tissues and that the level of SIRT6 is negatively correlated with PCBP2 level while H3K9ac enrichment on the promoter of PCBP2 is positively correlated with PCBP2 expression. Furthermore, we identify PCBP2 as a target of SIRT6. We demonstrate that PCBP2 expression is inhibited by SIRT6, which depends upon deacetylating H3K9ac. Finally, our results reveal that SIRT6 inhibits glioma cell proliferation and colony formation in vitro and glioma cell growth in vivo in a PCBP2 dependent manner. In summary, our findings implicate that SIRT6 inhibits PCBP2 expression through deacetylating H3K9ac and SIRT6 acts as a tumor suppressor in human glioma.« less

  6. Irinotecan in Treating Children With Refractory Solid Tumors

    ClinicalTrials.gov

    2013-06-13

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood Infratentorial Ependymoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Previously Treated Childhood Rhabdomyosarcoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Neuroblastoma; Recurrent Osteosarcoma; Unspecified Childhood Solid Tumor, Protocol Specific

  7. Hypothalamic tumor

    MedlinePlus

    ... occur at any age. They are often more aggressive in adults than in children. In adults, tumors ... The treatment depends on how aggressive the tumor is, and whether it is a glioma or another type of cancer. Treatment may involve combinations of surgery, radiation , ...

  8. The role of myosin II in glioma invasion: A mathematical model

    PubMed Central

    Lee, Wanho; Lim, Sookkyung; Kim, Yangjin

    2017-01-01

    Gliomas are malignant tumors that are commonly observed in primary brain cancer. Glioma cells migrate through a dense network of normal cells in microenvironment and spread long distances within brain. In this paper we present a two-dimensional multiscale model in which a glioma cell is surrounded by normal cells and its migration is controlled by cell-mechanical components in the microenvironment via the regulation of myosin II in response to chemoattractants. Our simulation results show that the myosin II plays a key role in the deformation of the cell nucleus as the glioma cell passes through the narrow intercellular space smaller than its nuclear diameter. We also demonstrate that the coordination of biochemical and mechanical components within the cell enables a glioma cell to take the mode of amoeboid migration. This study sheds lights on the understanding of glioma infiltration through the narrow intercellular spaces and may provide a potential approach for the development of anti-invasion strategies via the injection of chemoattractants for localization. PMID:28166231

  9. Plexin-B2 promotes invasive growth of malignant glioma

    PubMed Central

    Pingle, Sandeep C.; Kesari, Santosh; Wang, Huaien; Yong, Raymund L.; Zou, Hongyan; Friedel, Roland H.

    2015-01-01

    Invasive growth is a major determinant of the high lethality of malignant gliomas. Plexin-B2, an axon guidance receptor important for mediating neural progenitor cell migration during development, is upregulated in gliomas, but its function therein remains poorly understood. Combining bioinformatic analyses, immunoblotting and immunohistochemistry of patient samples, we demonstrate that Plexin-B2 is consistently upregulated in all types of human gliomas and that its expression levels correlate with glioma grade and poor survival. Activation of Plexin-B2 by Sema4C ligand in glioblastoma cells induced actin-based cytoskeletal dynamics and invasive migration in vitro. This proinvasive effect was associated with activation of the cell motility mediators RhoA and Rac1. Furthermore, costimulation of Plexin-B2 and the receptor tyrosine kinase Met led to synergistic Met phosphorylation. In intracranial glioblastoma transplants, Plexin-B2 knockdown hindered invasive growth and perivascular spreading, and resulted in decreased tumor vascularity. Our results demonstrate that Plexin-B2 promotes glioma invasion and vascularization, and they identify Plexin-B2 as a potential novel prognostic marker for glioma malignancy. Targeting the Plexin-B2 pathway may represent a novel therapeutic approach to curtail invasive growth of glioblastoma. PMID:25762646

  10. Diffuse Gliomas for Nonneuropathologists: The New Integrated Molecular Diagnostics.

    PubMed

    Lee, Sunhee C

    2018-05-18

    Diffuse gliomas comprise the bulk of "brain cancer" in adults. The recent update to the 4th edition of the World Health Organization's classification of tumors of the central nervous system reflects an unprecedented change in the landscape of the diagnosis and management of diffuse gliomas that will affect all those involved in the management and care of patients. Of the recently discovered gene alterations, mutations in the Krebs cycle enzymes isocitrate dehydrogenases (IDHs) 1 and 2 have fundamentally changed the way the gliomas are understood and classified. Incorporating information on a few genetic parameters (IDH, ATRX and/or p53, and chromosome 1p19q codeletion), a relatively straightforward diagnostic algorithm has been generated with robust and reproducible results that correlate with patients' survival far better than relying on conventional histology alone. Evidence also supports the conclusion that the vast majority of diffuse gliomas without IDH mutations (IDH-wild-type astrocytomas) behave like IDH-wild-type glioblastomas ("molecular GBM"). Together, these changes reflect a big shift in the practice of diagnostic neuropathology in which tumor risk stratification aligns better with molecular information than histology/grading. The purpose of this review is to provide the readers with a brief synopsis of the changes in the 2016 World Health Organization update with an emphasis on diffuse gliomas and to summarize key gene abnormalities on which these classifications are based. Practical points involved in day-to-day diagnostic workup are also discussed, along with a comparison of the various diagnostic tests, including immunohistochemistry, with an emphasis on targeted next-generation sequencing panel technology as a future universal approach.

  11. ABT-510, a modified type 1 repeat peptide of thrombospondin, inhibits malignant glioma growth in vivo by inhibiting angiogenesis.

    PubMed

    Anderson, Joshua C; Grammer, J Robert; Wang, Wenquan; Nabors, L Burton; Henkin, Jack; Stewart, Jerry E; Gladson, Candece L

    2007-03-01

    Anti-angiogenic therapies would be particularly beneficial in the treatment of malignant gliomas. Peptides derived from the second type 1 repeat (TSR) of thrombospondin-1 (TSP-1) have been shown to inhibit angiogenesis in non-glioma tumor models and a modified TSR peptide, ABT-510, has now entered into Phase II clinical trials of its efficacy in non-glioma tumors. As microvascular endothelial cells (MvEC) exhibit heterogeneity, we evaluated the ability of the modified TSR peptide (NAcSarGlyValDallolleThrNvalleArgProNHE, ABT-510) to inhibit malignant glioma growth in vivo and to induce apoptosis of brain microvessel endothelial cells (MvEC) propagated in vitro. We found that daily administration of ABT-510 until euthanasia (days 7 to 19), significantly inhibited the growth of human malignant astrocytoma tumors established in the brain of athymic nude mice. The microvessel density was significantly lower and the number of apoptotic MvEC was significantly higher (3-fold) in the tumors of the ABT-510-treated animals. Similar results were found using a model in which the established tumor is an intracerebral malignant glioma propagated in a syngeneic mouse model. ABT-510 treatment of primary human brain MvEC propagated as a monolayer resulted in induction of apoptosis in a dose- and time-dependent manner through a caspase-8-dependent mechanism. It also inhibited tubular morphogenesis of MvEC propagated in collagen gels in a dose- and caspase-8 dependent manner through a mechanism that requires the TSP-1 receptor (CD36) on the MvEC. These findings indicate that ABT-510 should be evaluated as a therapeutic option for patients with malignant glioma.

  12. Seizures and the natural history of World Health Organization Grade II gliomas: a review.

    PubMed

    Smits, Anja; Duffau, Hugues

    2011-05-01

    The majority of adults with low-grade gliomas have seizures. Despite the frequency of seizures as initial symptoms and symptoms of later disease, seizures in relation to the natural course of low-grade gliomas have received little attention. In this review, we provide an update of the literature on the prognostic impact of preoperative seizures and discuss the tumor- and treatment-related factors affecting seizure control at later stages of the disease. Seizures occur most frequently at disease presentation and predict a more favorable outcome. Initial seizures are correlated with tumor location and possibly indirectly to the molecular profile of the tumor. About 50% of all patients with seizures at presentation continue to have seizures before surgery. Maximal tumor resection, including resection of epileptic foci, is a valuable strategy for improving seizure control. In addition, radiotherapy and chemotherapy, as single therapies or in combination with surgery, have shown beneficial effects in terms of seizure reduction. Recurrent seizures after macroscopically complete tumor resection may be a marker for accelerated tumor growth. Recurrent seizures after an initial transient stabilization after radiotherapy and/or chemotherapy may be a marker for anaplastic tumor transformation. Preoperative seizures likely reflect, apart from tumor location, intrinsic tumor properties as well. Change in seizure control in individual patients is frequently associated with altered tumor behavior. Including seizures and seizure control as clinical parameters is recommended in future trials of low-grade gliomas to further establish the prognostic value of these symptoms and to identify the factors affecting seizure control.

  13. Dynamic imaging response following radiation therapy predicts long-term outcomes for diffuse low-grade gliomas

    PubMed Central

    Pallud, Johan; Llitjos, Jean-François; Dhermain, Frédéric; Varlet, Pascale; Dezamis, Edouard; Devaux, Bertrand; Souillard-Scémama, Raphaëlle; Sanai, Nader; Koziak, Maria; Page, Philippe; Schlienger, Michel; Daumas-Duport, Catherine; Meder, Jean-François; Oppenheim, Catherine; Roux, François-Xavier

    2012-01-01

    Quantitative imaging assessment of radiation therapy (RT) for diffuse low-grade gliomas (DLGG) by measuring the velocity of diametric expansion (VDE) over time has never been studied. We assessed the VDE changes following RT and determined whether this parameter can serve as a prognostic factor. We reviewed a consecutive series of 33 adults with supratentorial DLGG treated with first-line RT with available imaging follow-up (median follow-up, 103 months). Before RT, all patients presented with a spontaneous tumor volume increase (positive VDE, mean 5.9 mm/year). After RT, all patients demonstrated a tumor volume decrease (negative VDE, mean, −16.7 mm/year) during a mean 49-month duration. In univariate analysis, initial tumor volume (>100 cm3), lack of IDH1 expression, p53 expression, high proliferation index, and fast post-RT tumor volume decrease (VDE at −10 mm/year or faster, fast responders) were associated with a significantly shorter overall survival (OS). The median OS was significantly longer (120.8 months) for slow responders (post-RT VDE slower than −10.0 mm/year) than for fast responders (47.9 months). In multivariate analysis, fast responders, larger initial tumor volume, lack of IDH1 expression, and p53 expression were independent poor prognostic factors for OS. A high proliferation index was significantly more frequent in the fast responder subgroup than in the slow responder subgroup. We conclude that the pattern of post-RT VDE changes is an independent prognostic factor for DLGG and offers a quantitative parameter to predict long-term outcomes. We propose to monitor individually the post-RT VDE changes using MRI follow-up, with particular attention to fast responders. PMID:22416109

  14. Laser versus traditional techniques in cerebral and brain stem gliomas

    NASA Astrophysics Data System (ADS)

    Lombard, Gian F.

    1996-01-01

    In medical literature no significant studies have been published on the effectiveness of laser compared with traditional procedures in two series of cerebral gliomas; for this reason we have studied 220 tumors (200 supratentorial -- 20 brain stem gliomas), 110 operated upon with laser, 100 with conventional techniques. Four surgical protocols have been carried out: (1) traditional techniques; (2) carbon dioxide laser free hand; (3) carbon dioxide laser plus microscope; (4) multiple laser sources plus microscope plus neurosector plus CUSA. Two laser sources have been used alone or in combination (carbon dioxide -- Nd:YAG 1.06 or 1.32). Patients have been monitored for Karnofsky scale before and after operation, 12 - 24 and 36 months later; and for survival rate. Tumors were classified by histological examination, dimensions, vascularization, topography (critical or non critical areas). Results for supratentorial gliomas: survival time is the same in both series (laser and traditional). Post- op morbidity is significantly improved in the laser group (high grade sub-group); long term follow-up shows an improvement of quality of life until 36 months in the low grade sub-group.

  15. Chromosomal Aberrations in Canine Gliomas Define Candidate Genes and Common Pathways in Dogs and Humans.

    PubMed

    Dickinson, Peter J; York, Dan; Higgins, Robert J; LeCouteur, Richard A; Joshi, Nikhil; Bannasch, Danika

    2016-07-01

    Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  16. Chromosomal Aberrations in Canine Gliomas Define Candidate Genes and Common Pathways in Dogs and Humans

    PubMed Central

    York, Dan; Higgins, Robert J.; LeCouteur, Richard A.; Joshi, Nikhil; Bannasch, Danika

    2016-01-01

    Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy. PMID:27251041

  17. Molecular Subtypes of Glioblastoma Are Relevant to Lower Grade Glioma

    PubMed Central

    Sloan, Andrew E.; Chen, Yanwen; Brat, Daniel J.; O’Neill, Brian Patrick; de Groot, John; Yust-Katz, Shlomit; Yung, Wai-Kwan Alfred; Cohen, Mark L.; Aldape, Kenneth D.; Rosenfeld, Steven; Verhaak, Roeland G. W.; Barnholtz-Sloan, Jill S.

    2014-01-01

    Background Gliomas are the most common primary malignant brain tumors in adults with great heterogeneity in histopathology and clinical course. The intent was to evaluate the relevance of known glioblastoma (GBM) expression and methylation based subtypes to grade II and III gliomas (ie. lower grade gliomas). Methods Gene expression array, single nucleotide polymorphism (SNP) array and clinical data were obtained for 228 GBMs and 176 grade II/II gliomas (GII/III) from the publically available Rembrandt dataset. Two additional datasets with IDH1 mutation status were utilized as validation datasets (one publicly available dataset and one newly generated dataset from MD Anderson). Unsupervised clustering was performed and compared to gene expression subtypes assigned using the Verhaak et al 840-gene classifier. The glioma-CpG Island Methylator Phenotype (G-CIMP) was assigned using prediction models by Fine et al. Results Unsupervised clustering by gene expression aligned with the Verhaak 840-gene subtype group assignments. GII/IIIs were preferentially assigned to the proneural subtype with IDH1 mutation and G-CIMP. GBMs were evenly distributed among the four subtypes. Proneural, IDH1 mutant, G-CIMP GII/III s had significantly better survival than other molecular subtypes. Only 6% of GBMs were proneural and had either IDH1 mutation or G-CIMP but these tumors had significantly better survival than other GBMs. Copy number changes in chromosomes 1p and 19q were associated with GII/IIIs, while these changes in CDKN2A, PTEN and EGFR were more commonly associated with GBMs. Conclusions GBM gene-expression and methylation based subtypes are relevant for GII/III s and associate with overall survival differences. A better understanding of the association between these subtypes and GII/IIIs could further knowledge regarding prognosis and mechanisms of glioma progression. PMID:24614622

  18. Grading of vestibular schwannomas and corresponding tumor volumes: ramifications for radiosurgery.

    PubMed

    Mindermann, T; Schlegel, I

    2013-01-01

    Patients with vestibular schwannomas (VS) are either assigned to watchful waiting, microsurgical resection, or radiosurgery. Decision making on how to proceed is based on parameters such as age, tumor growth, loss of hearing, and the tumor's Koos grading. In order to correlate Koos grading with tumor volume, patient records of 235 patients with VS who underwent Gamma Knife radiosurgery (GKRS) were retrospectively reviewed. From 1994 to 2009, 235 consecutive patients underwent GKRS for sporadic VS at the Zurich Gamma Knife Center. Median follow up was 62.8 ± 33.0 months. Of the 235 tumors, 32 (13.6 %) were graded Koos I with a volume of 0.25 ± 0.3 cc; 71 (30.2 %) were graded Koos II with a volume of 0.57 ± 0.54 cc; 70 (29.8 %) were graded Koos III with a volume of 1.82 ± 1.88 cc; and 62 (26.4 %) were graded Koos IV with a volume of 4.17 ± 2.75 cc. Tumor progression was defined as a volume increase > 20 % at 2 years or later following GKRS. Overall tumor progression occurred in 21/235 (8.9 %) patients at 3.4 ± 0.9 years. Tumor progression did not differ statistically significantly in the various Koos grades: 1/32 (3.1 %) patients with VS Koos Grade I, 7/71 (9.8 %) patients with VS Koos Grade II, 6/70 (8.6 %) patients with VS Koos Grade III, and 7/62 (11.3 %) patients with VS Koos Grade IV. To our knowledge, this is the first work correlating the various Koos grades of VS to their respective tumor volumes. In our patients, tumor volumes of VS Koos Grade IV were limited because all of our patients were eligible for radiosurgery. In our series, the outcome following GKRS for patients with VS Koos Grade IV tumors did not differ from patients with VS Koos Grades I-III. We therefore suggest to limit Koos Grade IV VS to tumor volumes < 6 cc that may be eligible for radiosurgery, and introduce an additional VS Grade V for large VS with tumor volumes of > 6 cc that may not be eligible for radiosurgery.

  19. Astragaloside IV inhibits progression of glioma via blocking MAPK/ERK signaling pathway.

    PubMed

    Li, Bin; Wang, Fei; Liu, Ningtao; Shen, Wen; Huang, Tao

    2017-09-09

    Glioma is one of the most common primary brain tumors in adults with a high mortality rate and relapse rate. Thus, finding better effective approaches to treat glioma has become very urgent. Astragaloside IV (AS-IV), the major active triterpenoid in Radix Astragali, has shown anti-tumorigenic properties in certain cancers. However, its role in glioma remains unclear. Here, we studied the effects of AS-IV on glioma in vitro and in vivo, and explored the underlying mechanisms. Our results revealed that AS-IV dose-dependently inhibited the proliferation of U251 cells in vitro and attenuated tumor growth in vivo. In addition, the migration and invasion ability of U251 cell has been suppressed in presence of AS-IV. The levels of proliferating cell nuclear antigen (PCNA), Ki67, matrix metallopeptidase (MMP) -2, MMP-9 and vascular endothelial growth factor (VEGF) were decreased significantly by the treatment of different concentrations AS-IV. Furthermore, AS-IV also significantly weakened the activation of Mitogen-activated protein kinase/Extracellular regulated protein kinase (MAPK/ERK) signaling pathway in vitro and in vivo. Taken together our study has identified a novel function of AS-IV and provided a molecular basis for AS-IV potential applications in the treatment of glioma and other cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach.

    PubMed

    Njeh, Ines; Sallemi, Lamia; Ayed, Ismail Ben; Chtourou, Khalil; Lehericy, Stephane; Galanaud, Damien; Hamida, Ahmed Ben

    2015-03-01

    This study investigates a fast distribution-matching, data-driven algorithm for 3D multimodal MRI brain glioma tumor and edema segmentation in different modalities. We learn non-parametric model distributions which characterize the normal regions in the current data. Then, we state our segmentation problems as the optimization of several cost functions of the same form, each containing two terms: (i) a distribution matching prior, which evaluates a global similarity between distributions, and (ii) a smoothness prior to avoid the occurrence of small, isolated regions in the solution. Obtained following recent bound-relaxation results, the optima of the cost functions yield the complement of the tumor region or edema region in nearly real-time. Based on global rather than pixel wise information, the proposed algorithm does not require an external learning from a large, manually-segmented training set, as is the case of the existing methods. Therefore, the ensuing results are independent of the choice of a training set. Quantitative evaluations over the publicly available training and testing data set from the MICCAI multimodal brain tumor segmentation challenge (BraTS 2012) demonstrated that our algorithm yields a highly competitive performance for complete edema and tumor segmentation, among nine existing competing methods, with an interesting computing execution time (less than 0.5s per image). Copyright © 2014 Elsevier Ltd. All rights reserved.