Sample records for global carbon management

  1. An introduction to global carbon cycle management

    USGS Publications Warehouse

    Sundquist, Eric T.; Ackerman, Katherine V.; Parker, Lauren; Huntzinger, Deborah N.

    2009-01-01

    Past and current human activities have fundamentally altered the global carbon cycle. Potential future efforts to control atmospheric CO2 will also involve significant changes in the global carbon cycle. Carbon cycle scientists and engineers now face not only the difficulties of recording and understanding past and present changes but also the challenge of providing information and tools for new management strategies that are responsive to societal needs. The challenge is nothing less than managing the global carbon cycle.

  2. [Roles of forest management in global carbon dioxide mitigation].

    PubMed

    Hu, Huifeng; Liu, Guohua

    2006-04-01

    This paper summarized the roles of current forest management measures, e. g., reducing deforestation rate, increasing afforestation and reforestation, strengthening the management of nutrient fertilization, fire hazard, and disease and pest injury, and substituting fossils fuels with charcoal, in global carbon dioxide migration, and analyzed the advantage and insufficiency of China's forest management. The authors indicated that the current forest ecosystems in China, mainly their vegetation carbon pool, played a smaller role of carbon sink in global carbon cycle, and thus, it was important to strengthen the tending of newly cultivated plantation and the management of fire hazard and disease and pest injury, and to increase the carbon sequestration of our forests. PMID:16836107

  3. Global potential of biospheric carbon management for climate mitigation

    NASA Astrophysics Data System (ADS)

    Canadell, Josep G.; Schulze, E. Detlef

    2014-11-01

    Elevated concentrations of atmospheric greenhouse gases (GHGs), particularly carbon dioxide (CO2), have affected the global climate. Land-based biological carbon mitigation strategies are considered an important and viable pathway towards climate stabilization. However, to satisfy the growing demands for food, wood products, energy, climate mitigation and biodiversity conservation—all of which compete for increasingly limited quantities of biomass and land—the deployment of mitigation strategies must be driven by sustainable and integrated land management. If executed accordingly, through avoided emissions and carbon sequestration, biological carbon and bioenergy mitigation could save up to 38 billion tonnes of carbon and 3–8% of estimated energy consumption, respectively, by 2050.

  4. Global potential of biospheric carbon management for climate mitigation.

    PubMed

    Canadell, Josep G; Schulze, E Detlef

    2014-01-01

    Elevated concentrations of atmospheric greenhouse gases (GHGs), particularly carbon dioxide (CO2), have affected the global climate. Land-based biological carbon mitigation strategies are considered an important and viable pathway towards climate stabilization. However, to satisfy the growing demands for food, wood products, energy, climate mitigation and biodiversity conservation-all of which compete for increasingly limited quantities of biomass and land-the deployment of mitigation strategies must be driven by sustainable and integrated land management. If executed accordingly, through avoided emissions and carbon sequestration, biological carbon and bioenergy mitigation could save up to 38 billion tonnes of carbon and 3-8% of estimated energy consumption, respectively, by 2050. PMID:25407959

  5. The Century-Long Challenge of Global Carbon Management

    NASA Astrophysics Data System (ADS)

    Socolow, R.

    2002-05-01

    The time scale of the global carbon management is a century, not a decade and not a millennium. A century is the ratio of 1000 billion metric tons of carbon [Gt(C)] to 10 Gt(C)/yr. 1000 Gt(C) is the future emissions that will lead to approximately a doubling of the pre-industrial atmospheric CO2 concentration, 280 ppm, assuming the total net ocean plus terrestrial sink remains at half the strength of this source - since 2.1 Gt (C) = 1 ppm, and the concentration today is already 370 ppm. Doubling is the most widely used boundary between acceptable and unacceptable Greenhouse-related environmental disruption, or, in the language of the Framework Convention on Climate Change, the onset of "dangerous anthropogenic interference with the climate system." And 10 Gt(C)/yr is a conservative estimate of the average annual fossil-fuel carbon source over the century; it is now between 6 and 7 Gt(C). Conventional oil and gas are not sufficiently abundant to generate a serious Greenhouse problem on their own. Well before their cumulative carbon emissions reach 1000 Gt(C), both are expected to become non-competitive as a result of growing costs of access (costs related to resources being very deep underground, or below very deep water, or very remote, or very small.) But several times 1000 Gt(C) of coal resources will probably be competitive with non-fossil fuel alternatives, as will "unconventional" oil and gas resources, such as tar sands. The world will not be saved from a serious Greenhouse problem by fossil fuel depletion. There are four mitigation strategies for avoiding dangerous interference with the climate system. Fossil fuels can cease to dominate the global energy system well before the end of the century, yielding large market share to some combination of renewable energy and nuclear (fission and fusion) energy sources. Fossil fuels can continue to dominate, but most of the carbon in the century's fossil fuels can be prevented from reaching the atmosphere (fossil-carbon sequestration). Carbon can be removed directly from the air by biological or chemical processes. Or the climate system can become so well understood that effective compensating actions can be implemented. If human beings implement none of these strategies, we will have chosen, in effect, to adapt to climate change. Not unlikely will be a mix of all four mitigation strategies plus adaptation. In recent years, as the intrinsic complexity and monumental scale of global carbon management has become better appreciated, new coalitions supportive of policies intended to mitigate climate change have emerged.

  6. CONSERVATION AGRICULTURE: GLOBAL ENVIRONMENTAL BENEFITS OF SOIL CARBON MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural carbon (C) sequestration may be one of the most cost effective ways to slow processes of global warming. Numerous environmental benefits may result from agricultural activities that sequester soil C and contribute to environmental security. As part of no-regret strategies, practices tha...

  7. Global climate change and carbon management in multifunctional forests

    Microsoft Academic Search

    Deep Narayan Pandey

    Fossil-fuel burning and deforestation have emerged as principal anthropogenic sources of rising atmospheric CO2 and consequential global warming. Variability in temperature, precipitation, snow cover, sea level and extreme weather events provide collateral evi- dence of global climate change. I review recent advances on causes and consequences of global climate change and its impact on nature and society. I also examine

  8. Fingerprinting global climate change and forest management within rhizosphere carbon and nutrient cycling processes.

    PubMed

    Xu, Zhihong; Chen, Chengrong

    2006-09-01

    As one of the two Principal Subject Editors for ESPR Subject Area 1 'Terrestrial Ecology and Biology / Soil and Sediments: Toxicology-related Subjects' (see pp 287-293), the senior author and his colleague, Dr Chen, present an example of sub-category 4 'Environmental studies of pesticides, air pollution, and management strategies for forestry and plant ecosystems'. Thereby, they inform the ESPR community about the new Australian research project concerning the fingerprints of global climate change (GCC) and forest management on rhizosphere carbon and nutrient cycling and, subsequently, present an overview on the GCC and forest management fingerprints. PMID:17067023

  9. Information management for global environmental change, including the Carbon Dioxide Information Analysis Center

    SciTech Connect

    Stoss, F.W. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center

    1994-06-01

    The issue of global change is international in scope. A body of international organizations oversees the worldwide coordination of research and policy initiatives. In the US the National Science and Technology Council (NSTC) was established in November of 1993 to provide coordination of science, space, and technology policies throughout the federal government. NSTC is organized into nine proposed committees. The Committee on Environmental and Natural Resources (CERN) oversees the US Department of Energy`s Global Change Research Program (USGCRP). As part of the USGCRP, the US Department of Energy`s Global Change Research Program aims to improve the understanding of Earth systems and to strengthen the scientific basis for the evaluation of policy and government action in response to potential global environmental changes. This paper examines the information and data management roles of several international and national programs, including Oak Ridge National Laboratory`s (ORNL`s) global change information programs. An emphasis will be placed on the Carbon Dioxide Information Analysis Center (CDIAC), which also serves as the World Data Center-A for Atmospheric Trace Gases.

  10. ESTIMATING THE GLOBAL POTENTIAL OF FOREST AND AGROFOREST MANAGEMENT PRACTICES TO SEQUESTER CARBON

    EPA Science Inventory

    Forests play a prominent role in the global C cycle. ccupying one-third of the earth's land area, forest vegetation nd soils contain about 60% of the total terrestrial C. Forest biomass productivity can be enhanced by management practices,, which suggests that by this means, fore...

  11. GLOBAL TERRESTRIAL CARBON CYCLE

    EPA Science Inventory

    There is great uncertainty with regard to the future role of the terrestrial biosphere in the global carbon cycle, arising from both an inadequate understanding of current pools and fluxes as well as the potential effects of rising atmospheric concentrations of CO, on natural eco...

  12. Global carbon budget 2013

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Peters, G. P.; Andres, R. J.; Andrew, R. M.; Boden, T. A.; Ciais, P.; Friedlingstein, P.; Houghton, R. A.; Marland, G.; Moriarty, R.; Sitch, S.; Tans, P.; Arneth, A.; Arvanitis, A.; Bakker, D. C. E.; Bopp, L.; Canadell, J. G.; Chini, L. P.; Doney, S. C.; Harper, A.; Harris, I.; House, J. I.; Jain, A. K.; Jones, S. D.; Kato, E.; Keeling, R. F.; Klein Goldewijk, K.; Körtzinger, A.; Koven, C.; Lefèvre, N.; Maignan, F.; Omar, A.; Ono, T.; Park, G.-H.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Schwinger, J.; Segschneider, J.; Stocker, B. D.; Takahashi, T.; Tilbrook, B.; van Heuven, S.; Viovy, N.; Wanninkhof, R.; Wiltshire, A.; Zaehle, S.

    2014-06-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). All uncertainties are reported as ±1?, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), EFF was 8.6 ± 0.4 GtC yr-1, ELUC 0.9 ± 0.5 GtC yr-1, GATM 4.3 ± 0.1 GtC yr-1, SOCEAN 2.5 ± 0.5 GtC yr-1, and SLAND 2.8 ± 0.8 GtC yr-1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr-1, 2.2% above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr-1, SOCEAN was 2.9 ± 0.5 GtC yr-1, and assuming an ELUC of 1.0 ± 0.5 GtC yr-1 (based on the 2001-2010 average), SLAND was 2.7 ± 0.9 GtC yr-1. GATM was high in 2012 compared to the 2003-2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1% (1.1-3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870-2013, about 70% from EFF (390 ± 20 GtC) and 30% from ELUC (145 ± 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quéré et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2013_V2.3).

  13. Global Managers' Career Competencies

    ERIC Educational Resources Information Center

    Cappellen, Tineke; Janssens, Maddy

    2008-01-01

    Purpose: This study aims to empirically examine the career competencies of global managers having world-wide coordination responsibility: knowing-why, knowing-how and knowing-whom career competencies. Design/methodology/approach: Based on in-depth interviews with 45 global managers, the paper analyzes career stories from a content analysis…

  14. Trends in Global Demonstrations of Carbon Management Technologies to Advance Coal- Based Power Generation With Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Cohen, K. K.; Plasynski, S.; Feeley, T. J.

    2008-05-01

    Atmospheric CO2 concentrations increased an estimated 35% since preindustrial levels two centuries ago, reportedly due to the burning of fossil fuels combined with increased deforestation. In the U.S., energy-related activities account for 75% of anthropogenic greenhouse gas (GHG) emissions, with more than 50% from large stationary sources such as power plants and about one-third from transportation. Mitigation technologies for CO2 atmospheric stabilization based on energy and economic scenarios include coal-based power plant- carbon capture and storage (CCS), and the U.S. Department of Energy (DOE) is assessing CCS operations and supporting technologies at U.S. locations and opportunities abroad reported here. The Algerian In Salah Joint Industry Project injecting 1 million tons CO2 (MtCO2)/year into a gas field sandstone, and the Canadian Weyburn-Midale CO2 Monitoring and Storage Project injecting over 1.8 MtCO2/year into carbonate oil reservoirs are ongoing industrial-scale storage operations DOE participates in. DOE also supports mid-scale CCS demonstrations at the Australian Otway Project and CO2SINK in Germany. Enhanced oil recovery operations conducted for decades in west Texas and elsewhere have provided the industrial experience to build on, and early pilots such as Frio-I Texas in 2004 have spearheaded technology deployment. While injecting 1,600 tons of CO2 into a saline sandstone at Frio, time-lapse borehole and surface seismic detected P-wave velocity decreases and reflection amplitude changes resulting from the replacement of brine with CO2 in the reservoir. Just two of many cutting-edge technologies tested at Frio, these and others are now deployed by U.S. researchers with international teams to evaluate reservoir injectivity, capacity, and integrity, as well as to assess CO2 spatial distribution, trapping, and unlikely leakage. Time-lapse Vertical Seismic Profiling at Otway and microseismic at In Salah and Otway, monitor injection and reservoir conditions with geophysics. Borehole-based technologies include a novel geochemical two-phase reservoir sampler deployed at Otway, and thermal-based measurements at CO2SINK for coupled hydrologic-geochemical reservoir analyses. Seismic, geomechanical, hydrologic, geochemical, and core studies are used in a multidisciplinary approach to assess CO2 trapping and reservoir integrity at In Salah. With estimated lifetime storage of 17 MtCO2 at In Salah, this and other CCS demonstrations provide opportunities to gain commercial experience for advancing coal-based power generation-CCS for carbon management.

  15. Global carbon budget 2014

    NASA Astrophysics Data System (ADS)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Peters, G. P.; Ciais, P.; Friedlingstein, P.; Jones, S. D.; Sitch, S.; Tans, P.; Arneth, A.; Boden, T. A.; Bopp, L.; Bozec, Y.; Canadell, J. G.; Chevallier, F.; Cosca, C. E.; Harris, I.; Hoppema, M.; Houghton, R. A.; House, J. I.; Jain, A.; Johannessen, T.; Kato, E.; Keeling, R. F.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landa, C. S.; Landschützer, P.; Lenton, A.; Lima, I. D.; Marland, G.; Mathis, J. T.; Metzl, N.; Nojiri, Y.; Olsen, A.; Ono, T.; Peters, W.; Pfeil, B.; Poulter, B.; Raupach, M. R.; Regnier, P.; Rödenbeck, C.; Saito, S.; Salisbury, J. E.; Schuster, U.; Schwinger, J.; Séférian, R.; Segschneider, J.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Werf, G. R.; Viovy, N.; Wang, Y.-P.; Wanninkhof, R.; Wiltshire, A.; Zeng, N.

    2014-09-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe datasets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from Land-Use Change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent Dynamic Global Vegetation Models forced by observed climate, CO2 and land cover change (some including nitrogen-carbon interactions). We compare the variability and mean land and ocean fluxes to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1?, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004-2013), EFF was 8.9 ± 0.4 GtC yr-1, ELUC 0.9 ± 0.5 GtC yr-1, GATM 4.3 ± 0.1 GtC yr-1, SOCEAN 2.6 ± 0.5 GtC yr-1, and SLAND 2.9 ± 0.8 GtC yr-1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr-1, 2.3% above 2012, contining the growth trend in these emissions. ELUC was 0.9 ± 0.5 GtC yr-1, GATM was 5.4 ± 0.2 GtC yr-1, SOCEAN was 2.9 ± 0.5 GtC yr-1 and SLAND was 2.5 ± 0.9 GtC yr-1. GATM was high in 2013 reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004-2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3-3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr-1), 65% above emissions in 1990, based on projections of World Gross Domestic Product and recent changes in the carbon intensity of the economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870-2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and datasets used in this new carbon budget compared with previous publications of this living dataset (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014). Italic font highlights significant methodological changes and results compared to the Le Quéré et al. (2014) manuscript that accompanies the previous version of this living data.

  16. Global climate change and carbon dioxide: Assessing weed biology and management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both increasing carbon dioxide and climate change are likely to alter weed biology in a myriad of ways. In this chapter, I provide an overview of the methodology by which rising carbon dioxide and climate uncertainty are likely to effect weed establishment, growth and fecundity, the implications fo...

  17. Globalization of Management Education

    ERIC Educational Resources Information Center

    Bruner, Robert F.; Iannarelli, Juliane

    2011-01-01

    A new study, sponsored by the Association to Advance Collegiate Schools of Business, presented a comprehensive new perspective on the globalization of management education, (AACSB International, 2011). Its findings are sobering: with regard to emerging global trends in higher education and cross-border business, the report reveals a sizable gap…

  18. China's terrestrial carbon balance: Contributions from multiple global change factors

    Microsoft Academic Search

    Hanqin Tian; Jerry Melillo; Chaoqun Lu; David Kicklighter; Mingliang Liu; Wei Ren; Xiaofeng Xu; Guangsheng Chen; Chi Zhang; Shufen Pan; Jiyuan Liu; Steven Running

    2011-01-01

    The magnitude, spatial, and temporal patterns of the terrestrial carbon sink and the underlying mechanisms remain uncertain and need to be investigated. China is important in determining the global carbon balance in terms of both carbon emission and carbon uptake. Of particular importance to climate-change policy and carbon management is the ability to evaluate the relative contributions of multiple environmental

  19. Globalizing carbon lock-in

    Microsoft Academic Search

    Gregory C. Unruh; Javier Carrillo-Hermosilla

    2006-01-01

    This paper extends the arguments surrounding carbon lock-in elaborated in Unruh (Energy Policy 28 (2000) 817; 30 (2002) 317) to countries currently undergoing industrialization. It argues that, for numerous reasons, industrializing countries are unlikely to leapfrog carbon intensive energy development. On the contrary, carbon lock-in may be globalizing and could further constrain climate change mitigation options. It is then argued

  20. Carbon sequestration and its role in the global carbon cycle

    USGS Publications Warehouse

    McPherson, Brian J.; Sundquist, Eric T.

    2009-01-01

    For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: • The global carbon cycle and verification and assessment of global carbon sources and sinks • Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage • Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage • Predicting, monitoring, and verifying effectiveness of different forms of carbon storage • Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.

  1. GLOBAL ASSESSMENT OF PROMISING FOREST MANAGEMENT PRACTICES FOR SEQUESTRATION OF CARBON

    EPA Science Inventory

    The assessment produced productivity and cost data for forest and agroforestry management practices in 94 nations. hat is, out of a total of 140 nations in the world with forest resources, about two-thirds are represented in the database at present. he total forest and woodland a...

  2. Final Report for ''SOURCES AND SINKS OF CARBON FROM LAND-USE CHANGE AND MANAGEMENT: A GLOBAL SYNTHESIS'' Project Period September 15, 2001--September 14, 2003

    SciTech Connect

    Houghton, R.A.

    2003-12-12

    Land management and land-use change can either release carbon (as CO{sub 2}) to the atmosphere, for example when forests are converted to agricultural lands, or withdraw carbon from the atmosphere as forests grow on cleared lands or as management practices sequester carbon in soil. The purpose of this work was to calculate the annual sources and sinks of carbon from changes in land use and management, globally and for nine world regions, over the period 1850 to 2000. The approach had three components. First, rates of land-use change were reconstructed from historical information on the areas of croplands, pastures, forests, and other lands and from data on wood harvests. In most regions, land-use change included the conversion of natural ecosystems to cultivated lands and pastures, including shifting cultivation, harvest of wood (for timber and fuel), and the establishment of tree plantations. In the U.S., woody encroachment and woodland thickening as a result of fire suppression were also included. Second, the amount of carbon per hectare in vegetation and soils and changes in that carbon as a result of land-use change were determined from data obtained in the ecological and forestry literature. These data on land-use change and carbon stocks were then used in a bookkeeping model (third component) to calculate regional and global changes in terrestrial carbon. The results indicate that for the period 1850-2000 the net flux of carbon from changes in land use was 156 PgC. For comparison, emissions of carbon from combustion of fossil fuels were approximately 280 PgC during the same interval. Annual emissions from land-use change exceeded emissions from fossil fuels before about 1920. Somewhat more that half (60%) of the long-term flux was from the tropics. Average annual fluxes during the 1980s and 1990s were 2.0 and 2.2 ({+-}0.8) PgC yr{sup -1} (30-40% of fossil fuel emissions), respectively. In these decades, the global sources of carbon were almost entirely from the tropics. Outside the tropics, the average net flux of carbon attributable to land-use change and management decreased from a source of 0.06 PgC yr{sup -1} during the 1980s to a sink of 0.03 PgC yr{sup -1} during the 1990s. According to these analyses, changes in land use were responsible for sinks in North America and Europe and for small sources in other non-tropical regions.

  3. Methane, carbon dioxide and nitrous oxide fluxes from a temperate salt marsh: Grazing management does not alter Global Warming Potential

    NASA Astrophysics Data System (ADS)

    Ford, Hilary; Garbutt, Angus; Jones, Laurence; Jones, Davey L.

    2012-11-01

    Soil greenhouse gas emissions from cattle grazed and un-grazed temperate upper salt marsh were measured using dark static chambers, monthly for one year. Below-ground gas sampling tubes were also used to measure soil methane (CH4) concentrations. CH4 efflux from grazed and un-grazed salt marsh did not differ significantly although grazing did lead to 'hotspots' of underground CH4 (up to 6% of total air volume) and CH4 efflux (peak of 9 mg m-2 h-1) significantly linked to high soil moisture content, low soil temperatures and the presence of Juncus gerardii. Carbon dioxide (CO2) efflux was greater from the un-grazed marsh (mean of 420 mg m-2 h-1) than the grazed marsh (mean of 333 mg m-2 h-1) throughout most of the year and was positively correlated with the deeper water table and greater soil temperatures. Grazing was not a significant predictor of nitrous oxide (N2O) soil emissions. Global Warming Potential (GWP; over 100 years), calculated from mean yearly chamber fluxes for CH4 and CO2, did not differ significantly with grazing treatment. Seasonal variation in the key drivers of soil greenhouse gas efflux; soil temperature, moisture and water table, plus the presence or absence of aerenchymatous plants such as J. gerardii were more important to the magnitude of greenhouse gas emissions than grazing management per se.

  4. The Global Carbon Cycle Radiative forcing

    E-print Network

    Follows, Mick

    The Global Carbon Cycle Radiative forcing Global carbon reservoirs Glacial-interglacial cycles Anthropogenic CO2 Ocean carbon cycle Carbonate chemistry and air-sea equilibrium "Solubility pump due to CO2 #12;Global carbon reservoirs #12;Geologic timescales #12;Pre-industrial Carbon Cycle

  5. Managing Global Problems.

    ERIC Educational Resources Information Center

    Stanley, C. Maxwell

    The book examines the historical background of and accomplishments in seven global problem areas. It is hypothesized that effective management within today's framework is the only way to progress toward the political and economic order that is necessary to assure peace and security, justice, and human rights, and to improve the quality of life. It…

  6. Understanding the Global Carbon Cycle

    NSDL National Science Digital Library

    The site offers charts and graphs to aid in a detailed explanation of where carbon comes from and where it goes. Supplementing the main topic, links lead to the topics Carbon and Land Use, Missing Carbon Sink, and Forest Sequestered Carbon Dioxide. Their conclusion is that the major contributor to climatic change, and hence the human activity most in need of change, is use of fossil fuels for energy. Advances in the technology of renewable energy sources, including wood-derived fuels, might reduce our reliance on fossil fuels and thus reduce global emissions of carbon dioxide significantly.

  7. Global Financial Management

    NSDL National Science Digital Library

    Harvey, Campbell R.

    1969-12-31

    Campbell Harvey, Professor of International Business in the Fuqua School of Business at Duke University, has created this web site as a supplement to his course in Global Financial Management. The course introduces students to the "fundamental principles of asset valuation and financing in competitive global financial market." Visitors will find a syllabus for the course, a short introduction to Financial Mathematics, and supplementary notes on topics covered in the course. Assignments and learning modules for the course can also be found at the site.

  8. The Global Carbon Cycle Radiative forcing

    E-print Network

    Follows, Mick

    The Global Carbon Cycle Radiative forcing Global carbon reservoirs Glacial-interglacial cycles Anthropogenic CO2 Ocean-atmosphere partitioning Ocean carbon cycle Carbon distribution in the ocean;Geological timescales #12;Present day carbon cycle Gruber & Sarmiento (2002) #12;Glacial

  9. Mapping Global Forest Carbon Stock

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Saatchi, S. S.; Seibt, U.; Lefsky, M. A.

    2011-12-01

    Current studies on the global carbon cycle as well as the UN-REDD initiatives place a great emphasis on the need for a global spatially explicit distribution of terrestrial carbon stock. Both the quantitative distribution and the errors associated are important for constraining the uncertainties in the carbon cycle and for reporting purposes. We use a combination of satellite data including optical sensors on MODIS (MODerate-resolution imaging Spectroradiometer), radar sensor on QSCAT (QuikSCAT/SeaWinds Scatterometer), topography from SRTM (Shuttle Radar Topography Mission), and forest structure and height from GLAS (Geoscience Laser Altimeter System) in a non-parametric statistical model to estimate global aboveground biomass distribution at 3 minute (~5km) resolution. The statistical model employed for this study is based on the Maximum Entropy optimization approach to quantify the forest biomass at the landscape scale with the aid of spatial data from remote sensing sensors. Forest Lorey's height derived from GLAS and its conversion to aboveground biomass via allometric equations serve as the global training and validation data in mapping the forest biomass. The model provide an error propagation scheme to quantify the uncertainty of the forest carbon at the pixel level.

  10. Managing global accounts.

    PubMed

    Yip, George S; Bink, Audrey J M

    2007-09-01

    Global account management--which treats a multinational customer's operations as one integrated account, with coherent terms for pricing, product specifications, and service--has proliferated over the past decade. Yet according to the authors' research, only about a third of the suppliers that have offered GAM are pleased with the results. The unhappy majority may be suffering from confusion about when, how, and to whom to provide it. Yip, the director of research and innovation at Capgemini, and Bink, the head of marketing communications at Uxbridge College, have found that GAM can improve customer satisfaction by 20% or more and can raise both profits and revenues by at least 15% within just a few years of its introduction. They provide guidelines to help companies achieve similar results. The first steps are determining whether your products or services are appropriate for GAM, whether your customers want such a program, whether those customers are crucial to your strategy, and how GAM might affect your competitive advantage. If moving forward makes sense, the authors' exhibit, "A Scorecard for Selecting Global Accounts," can help you target the right customers. The final step is deciding which of three basic forms to offer: coordination GAM (in which national operations remain relatively strong), control GAM (in which the global operation and the national operations are fairly balanced), and separate GAM (in which a new business unit has total responsibility for global accounts). Given the difficulty and expense of providing multiple varieties, the vast majority of companies should initially customize just one---and they should be careful not to start with a choice that is too ambitious for either themselves or their customers to handle. PMID:17886487

  11. (Managing the global environment)

    SciTech Connect

    Rayner, S.F.

    1989-10-03

    The conference was stimulated by concern that policy makers increasingly have to make environmental management decisions in the absence of solidly established scientific consensus about ecological processes and the consequences of human actions. Often, as in the case of climate change, some decisions may have to be made in the absence of information that is desirable but may not be available for years to come, if ever. Six topics were identified as running throughout the Congress. These were: the epistemology and history of the sciences or disciplines concerned with the environment, including the scientific basis of rationality and modes of dealing with uncertainty and complexity; the social, economic, and institutional conditions for the production of knowledge bearing on the environment, including the politics of research and the improvement of scientific data; the structuring and institutionalization of expert assessments on national and international levels, including the global distribution of expertise; the means of establishing scientific information, the role of the media in transmitting and processing knowledge about the environment, and the organization of public environmental debate; and decision making and management under conditions of uncertainty; and, finally the relationship between science and ethics. 13 refs.

  12. Global deforestation: contribution to atmospheric carbon dioxide

    SciTech Connect

    Woodwell, G.M.; Hobbie, J.E.; Houghton, R.A.; Melillo, J.M.; Moore, B.; Peterson, B.J.; Shaver, G.R.

    1983-12-09

    A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1960 and 1980 was between 135 X 10/sup 15/ and 228 X 10/sup 15/ grams. Between 1.8 X 10/sup 15/ and 4.7 X 10/sup 15/ grams of carbon were released in 1980, of which nearly 80 percent was due to deforestation, principally in the tropics. The annual release of carbon from the biota and soils exceeded the release from fossil fuels until about 1960. Because the biotic release has been and remains much larger than is commonly assumed, the airborne fraction, usually considered to be about 50 percent of the releases from fossil fuels, was probably between 22 and 43 percent of the total carbon released in 1980. The increase in carbon dioxide in the atmosphere is thought by some to be increasing the storage of carbon in the earth's remaining forests sufficiently to offset the release from deforestation. The interpretation of the evidence presented here suggests no such effect; deforestation appears to be the dominant biotic effect on atmospheric carbon dioxide. If deforestation increases in proportion to population, the biotic release of carbon will reach 9 X 10/sup 15/ grams per year before forests are exhausted early in the next century. The possibilities for limiting the accumulation of carbon dioxide in the atmosphere through reduction in use of fossil fuels and through management of forests may be greater than is commonly assumed.

  13. Assessing geochemical carbon management

    Microsoft Academic Search

    Jennie C. Stephens; David W. Keith

    2008-01-01

    The challenge of reversing rising atmospheric CO2 concentrations is growing with the continued expansion of CO2-emitting energy infrastructure throughout the world and with the lack of coordinated, effective measures to manage and reduce\\u000a emissions. Given this situation, it is prudent for society to explore all potential carbon management options, including those\\u000a with seemingly low probability for success. Recent initiatives for

  14. Global Energy Management System

    E-print Network

    Eidt, B. D.

    2005-01-01

    exist to improve energy efficiency in process units, major equipment, utilities systems, and project design. Everyone has a role to play ? from plant managers, to process engineers and equipment specialists, to console operators. Detailed plans... Management System GEMS MEASUREMENT Corporate and Plant Management Business Teams Process Engineers Equipment Specialists Shift Supervision Console Operators Field Operators Plant / Site Energy Index Energy Expense Profitability Unit / Equipment Targets...

  15. What is a global manager?

    PubMed

    Bartlett, C A; Ghoshal, S

    1992-01-01

    To compete around the world, a company needs three strategic capabilities: global-scale efficiency, local responsiveness, and the ability to leverage learning worldwide. No single "global" manager can build these capabilities. Rather, groups of specialized managers must integrate assets, resources, and people in diverse operating units. Such managers are made, not born. And how to make them is--and must be--the foremost question for corporate managers. Drawing on their research with leading transnational corporations, Christopher Bartlett and Sumantra Ghoshal identify three types of global managers. They also illustrate the responsibilities each position involves through a close look at the careers of successful executives: Leif Johansson of Electrolux, Howard Gottlieb of NEC, and Wahib Zaki of Procter & Gamble. The first type is the global business or product-division manager who must build worldwide efficiency and competitiveness. These managers recognize cross-border opportunities and risks as well as link activities and capabilities around the world. The second is the country manager whose unit is the building block for worldwide operations. These managers are responsible for understanding and interpreting local markets, building local resources and capabilities, and contributing to--and participating in--the development of global strategy. Finally, there are worldwide functional specialists--the managers whose potential is least appreciated in many traditional multinational companies. To transfer expertise from one unit to another and leverage learning, these managers must scan the company for good ideas and best practice, cross-pollinate among units, and champion innovations with worldwide applications. PMID:10121314

  16. Atmospheric carbon dioxide and the global carbon cycle

    SciTech Connect

    Trabalka, J R [ed.

    1985-12-01

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  17. Cumulative Carbon and Just Allocation of the Global Carbon Commons

    E-print Network

    Pierrehumbert, Raymond

    Cumulative Carbon and Just Allocation of the Global Carbon Commons R.T. Pierrehumbert* Abstract statistic, called cumulative carbon. This statistic is the aggregate amount ofcarbon emitted in theform such activitiespersist.In thispaper the conceptis usedto addressthe question offair allocation of carbon emissions

  18. Understanding Carbon Sequestration Options in the United States: Capabilities of a Carbon Management Geographic Information System

    Microsoft Academic Search

    Robert T. Dahowski; James J. Dooley; Daryl R. Brown; Akiyoshi Mizoguchi; Mai Shiozaki

    2001-01-01

    While one can discuss various sequestration options at a national or global level, the actual carbon management approach is highly site specific. In response to the need for a better understanding of carbon management options, Battelle in collaboration with Mitsubishi Corporation, has developed a state-of-the-art Geographic Information System (GIS) focused on carbon capture and sequestration opportunities in the United States.

  19. Global trends in mercury management.

    PubMed

    Kim, Dae-Seon; Choi, Kyunghee

    2012-11-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  20. Global Deforestation: Contribution to Atmospheric Carbon Dioxide

    Microsoft Academic Search

    G. M. Woodwell; J. E. Hobbie; R. A. Houghton; J. M. Melillo; B. Moore; B. J. Peterson; G. R. Shaver

    1983-01-01

    A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1860 and 1980 was between 135 × 1015 and 228 × 1015 grams. Between 1.8 × 1015 and 4.7 × 1015 grams of carbon were released in 1980, of which nearly

  1. GLOBAL CARBON CYCLE AND CLIMATE CHANGE

    EPA Science Inventory

    The production of greenhouse gases due to anthropogenic activities may have begun to change the global climate. he global carbon cycle plays a significant role in projected climate change. owever, considerable uncertainty exists regarding pools and flux in the global cycle. iven ...

  2. Authigenic Carbonate and the History of the Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Schrag, Daniel P.; Higgins, John. A.; Macdonald, Francis A.; Johnston, David T.

    2013-02-01

    We present a framework for interpreting the carbon isotopic composition of sedimentary rocks, which in turn requires a fundamental reinterpretation of the carbon cycle and redox budgets over Earth's history. We propose that authigenic carbonate, produced in sediment pore fluids during early diagenesis, has played a major role in the carbon cycle in the past. This sink constitutes a minor component of the carbon isotope mass balance under the modern, high levels of atmospheric oxygen but was much larger in times of low atmospheric O2 or widespread marine anoxia. Waxing and waning of a global authigenic carbonate sink helps to explain extreme carbon isotope variations in the Proterozoic, Paleozoic, and Triassic.

  3. Getting to Know Global Carbon

    NSDL National Science Digital Library

    2013-01-01

    GLOBE Carbon Cycle is focused on bringing the most cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students can collect data about their school field site through existing GLOBE protocols of phenology, land cover and soils as well as through new protocols focused on biomass and carbon stocks in vegetation.

  4. Joint MSc programme in Global Innovation Management

    E-print Network

    Mottram, Nigel

    understanding of innovation management that emphasises a highly multidisciplined process situated in global of internal processes for innovation, but the integration of multidisciplinary approaches which allowJoint MSc programme in Global Innovation Management Ross Maclachlan Teaching Associate Department

  5. University of Aberdeen Carbon Management Plan

    E-print Network

    Levi, Ran

    of Aberdeen is committed to reducing its carbon footprint and to playing its part in limiting the worstUniversity of Aberdeen Carbon Management Plan Higher Education Carbon Management Programme working with Page 1 The University of Aberdeen Carbon Management Programme Carbon Management Plan (CMP

  6. Carbon Management Plan 1. Executive summary 5

    E-print Network

    Haase, Markus

    Carbon Management Plan June 2011 #12;2 #12;3 CONTENTS 1. Executive summary 5 2. Introduction 15 3. Background and context 16 4. Carbon management strategy 18 5. Carbon emissions baseline and projections 22 6. Past actions and achievements 30 7. Carbon Management Plan implementation 33 8. Carbon Management Plan

  7. Carbon dioxide affects global ecology

    Microsoft Academic Search

    Eugene K. Peterson

    1969-01-01

    Man's activities are changing the carbon dioxide and oxygen content of the entire atmosphere. These changes may, in turn, affect worldwide weather and the growth of plants. Under normal conditions, the amounts of carbon dioxide and oxygen in the atmosphere remain approximately in equilibrium on a year-to-year basis. The atmosphere today contains about 21% oxygen and about 0.032% carbon dioxide

  8. Global deforestation: contribution to atmospheric carbon dioxide

    Microsoft Academic Search

    G. M. Woodwell; J. E. Hobbie; R. A. Houghton; J. M. Melillo; B. Moore; B. J. Peterson; G. R. Shaver

    1983-01-01

    A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1960 and 1980 was between 135 X 10¹⁵ and 228 X 10¹⁵ grams. Between 1.8 X 10¹⁵ and 4.7 X 10¹⁵ grams of carbon were released in 1980, of which nearly

  9. Carbon pools and flux of global forest ecosystems

    SciTech Connect

    Dixon, R.K.; Brown, S.; Houghton, R.A.; Solomon, A.M.; Trexler, M.C.

    1994-01-01

    Forest systems cover more than 4.1 x 10(9) hectares of the Earth's land area. Globally, forest vegetation and soils contain about 1146 petagrams of carbon, with approximately 37 percent of this carbon in low-latitude forests, 14 percent in mid-latitudes, and 49 percent in high latitudes. Over two-thirds of the carbon in forest ecosystems is contained in soils and associated peat deposits. In 1990, deforestation in the low latitudes emitted 1.6 + or - 0.4 petagrams of carbon per year, whereas forest area expansion and growth in mid- and high-latitude forest sequestered 0.7 + or - 0.2 petagrams of carbon per year, for a net flux to the atmosphere of 0.9 + or - 0.4 petagrams per year. Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon.

  10. The global carbon budget and its operationalization

    NASA Astrophysics Data System (ADS)

    Canadell, J.; Le Quere, C.; Friedlingstein, P.; Houghton, R. A.; Marland, G.; Ciais, P.; Raupach, M. R.; Sitch, S.; Kirschke, S.

    2010-12-01

    The presentation will cover two components: 1) the latest global carbon budget and 2) the requirements to operationalize its annual update and trend reanalysis to enhance policy relevance and scientific understanding of the current carbon cycle perturbation. First, we will present the new update of the global carbon-CO2 budget covering 1958-2009, including an analysis of the impact of the global financial crisis, new estimates on the emissions from land use change, and ensemble model results on the strength and dynamics of the ocean and land sinks. Second, we will discuss the requirements to make these annual updates a routing operation and to become more regionally explicit, in addition to the extension of the budget to include CH4-carbon.

  11. Africa and the global carbon cycle

    PubMed Central

    Williams, Christopher A; Hanan, Niall P; Neff, Jason C; Scholes, Robert J; Berry, Joseph A; Denning, A Scott; Baker, David F

    2007-01-01

    The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one of the weakest links in our understanding of the global carbon cycle. Here, we combine data from regional and global inventories as well as forward and inverse model analyses to appraise what is known about Africa's continental-scale carbon dynamics. With low fossil emissions and productivity that largely compensates respiration, land conversion is Africa's primary net carbon release, much of it through burning of forests. Savanna fire emissions, though large, represent a short-term source that is offset by ensuing regrowth. While current data suggest a near zero decadal-scale carbon balance, interannual climate fluctuations (especially drought) induce sizeable variability in net ecosystem productivity and savanna fire emissions such that Africa is a major source of interannual variability in global atmospheric CO2. Considering the continent's sizeable carbon stocks, their seemingly high vulnerability to anticipated climate and land use change, as well as growing populations and industrialization, Africa's carbon emissions and their interannual variability are likely to undergo substantial increases through the 21st century. PMID:17343752

  12. Black carbon contribution to global warming

    SciTech Connect

    Chylek, P.; Johnson, B.; Kou, L.; Wong, J.

    1996-12-31

    Before the onset of industrial revolution the only important source of black carbon in the atmosphere was biomass burning. Today, black carbon production is divided between the biomass and fossil fuel burning. Black carbon is a major agent responsible for absorption of solar radiation by atmospheric aerosols. Thus black carbon makes other aerosols less efficient in their role of reflecting solar radiation and cooling the earth-atmosphere system. Black carbon also contributes to the absorption of solar radiation by clouds and snow cover. The authors present the results of black carbon concentrations measurements in the atmosphere, in cloud water, in rain and snow melt water collected during the 1992--1996 time period over the southern Nova Scotia. Their results are put into the global and historical perspective by comparing them with the compilation of past measurements at diverse locations and with their measurements of black carbon concentrations in the Greenland and Antarctic ice cores. Black carbon contribution to the global warming is estimated, and compared to the carbon dioxide warming, using the radiative forcing caused by the black carbon at the top of the atmosphere.

  13. Carbon management and biodiversity

    Microsoft Academic Search

    Michael A. Huston; Gregg Marland

    2003-01-01

    International efforts to mitigate human-caused changes in the Earth's climate are considering a system of incentives (debits and credits) that would encourage specific changes in land use that can help to reduce the atmospheric concentration of carbon dioxide. The two primary land-based activities that would help to minimize atmospheric carbon dioxide are carbon storage in the terrestrial biosphere and the

  14. Global management competencies: a theoretical foundation

    Microsoft Academic Search

    Joost Bücker; Erik Poutsma

    2010-01-01

    Purpose – This paper aims to contribute to the understanding of the concept of “global management competencies”. Design\\/methodology\\/approach – An extensive review of most of the relevant literature on global management competencies was done. By investigating four constructs, i.e. the global mindset, cross-cultural competence, intercultural sensitivity and cultural intelligence, all related to “global management competencies” the authors made an in-depth

  15. Carbon pools and flux of global forest ecosystems

    SciTech Connect

    Dixon, R.K.; Solomon, A.M. (Global Change Research Program, Corvallis, OR (United States)); Brown, S. (Univ. of Illinois, Urbana, IL (United States)); Houghton, R.A. (Woods Hole Research Center, MA (United States)); Trexler, M.C. (Trexler and Associates, Inc., Oak Grove, OR (United States)); Wisniewski, J. (Wisniewski and Associates, Inc., Falls Church, VA (United States))

    1994-01-14

    Forest systems cover more than 4.1 x 10[sup 9] hectares of the Earth's land area. Globally, forest vegetation and soils contain about 1146 petagrams of carbon, with approximately 37 percent of this carbon in low-latitude forests, 14 percent in mid-latitudes, and 49 percent at high latitudes. Over two-thirds of the carbon in forest ecosystems is contained in soils and associated peat deposits. In 1990, deforestation in the low latitudes emitted 1.6 [+-] 0.4 petagrams of carbon per year, whereas forest area expansion and growth in mid- and high-latitude forest sequestered 0.7 [+-] 0.2 petagrams of carbon per year, for a net flux to the atmosphere of 0.9 [+-] 0.4 petagrams of carbon per year. Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon. Future forest carbon cycling trends attributable to losses and regrowth associated with global climate and land-use change are uncertain. Model projections and some results suggest that forests could be carbon sinks or sources in the future.

  16. Impact of carbon storage through restoration of drylands on the global carbon cycle

    SciTech Connect

    Keller, A.A. [Univ. of California, Santa Barbara, CA (United States). School of Environmental Science and Management] [Univ. of California, Santa Barbara, CA (United States). School of Environmental Science and Management; Goldstein, R.A. [Electric Power Research Inst., Palo Alto, CA (United States)] [Electric Power Research Inst., Palo Alto, CA (United States)

    1998-09-01

    The authors evaluate the potential for global carbon storage in drylands as one of several policy options to reduce buildup of carbon dioxide in the atmosphere. They use the GLOCO model, a global carbon cycle model with eight terrestrial biomes that are described mechanistically in detail in terms of the biological processes that involve carbon and nitrogen cycling and the effect of temperature on these processes. GLOCO also considers low-latitude and high-latitude oceans, each divided further into a surface layer and several deeper layers, with an explicit description of biogeochemical processes occurring in each layer, and exchanges among ocean reservoirs and the atmosphere. GLOCO is used to study the transient response of actual vegetation, which is more realistic than looking at equilibrium conditions of potential vegetation. Using estimates of land suitable for restoration in woodlands, grasslands, and deserts, as well as estimates of the rate at which restoration can proceed, the authors estimate that carbon storage in these biomes can range up to 0.8 billion tons of carbon per year for a combination of land management strategies. A global strategy for reducing atmospheric carbon dioxide concentration will require the implementation of multiple options. The advantage of carbon storage in restored drylands is that it comes as a side benefit to programs that are also justifiable in terms of land management.

  17. Authigenic carbonate and the history of the global carbon cycle.

    PubMed

    Schrag, Daniel P; Higgins, John A; Macdonald, Francis A; Johnston, David T

    2013-02-01

    We present a framework for interpreting the carbon isotopic composition of sedimentary rocks, which in turn requires a fundamental reinterpretation of the carbon cycle and redox budgets over Earth's history. We propose that authigenic carbonate, produced in sediment pore fluids during early diagenesis, has played a major role in the carbon cycle in the past. This sink constitutes a minor component of the carbon isotope mass balance under the modern, high levels of atmospheric oxygen but was much larger in times of low atmospheric O(2) or widespread marine anoxia. Waxing and waning of a global authigenic carbonate sink helps to explain extreme carbon isotope variations in the Proterozoic, Paleozoic, and Triassic. PMID:23372007

  18. Isotopic Simple Global Carbon Model: the Use of Carbon Isotopes for Model Development

    NASA Astrophysics Data System (ADS)

    Kwon, O. Yul

    Carbon dioxide is a major greenhouse gas in the atmosphere. Anthropogenic CO_2 emissions from fossil fuel use and deforestation have perturbed the natural global carbon cycle. As a result, the atmospheric CO_2 concentration has rapidly increased, causing the potential for global warming. A twenty four compartment isotopic simple global carbon model (ISGCM) has been developed for scenario analysis, research needs prioritization, and for recommending strategies to stabilize the atmospheric CO_2<=vel. CO_2 fertilization and temperature effects are included in the terrestrial biosphere, and the ocean includes inorganic chemistry which, with ocean water circulation, enables the calculation of time-variable oceanic carbon uptake. The eight compartment simple global carbon model (SGCM) served as the basis of the ISGCM model development. Carbon isotopes, ^{13}C (stable carbon) and ^{14}C (radiocarbon), were used for model constraints as well as results from SGCM that led to multiple compartments in ISGCM. ISGCM was calibrated with the observed CO _2 concentration, delta^ {13}C, and Delta^ {14}C in the atmosphere, Delta ^{14}C in the soil, and delta^{13}C and Delta^{14}C in the ocean. Also, ISGCM was constrained by literature values of oceanic carbon uptake (gas exchange) and CO_2 emissions from deforestation. Inputs (forcing functions in the model) were the CO_2 emissions from fossil fuel use and deforestation. Scenario analysis, together with emission strategies tests, indicate that urgent action to reduce anthropogenic emissions would need to be taken to stabilize atmospheric CO_2. Results showed that quantitatively, forest management is just as effective as the reduction of fossil fuel emissions in controlling atmospheric CO _2. Sensitivity analysis of temperature feedback suggests that future global warming would cause an additional perturbation in the global carbon cycle, resulting in depletion of soil organic carbon, accumulation of plant biomass, and the increase of atmospheric CO_2.

  19. University of Glasgow Carbon Management Programme Carbon Management Plan working with

    E-print Network

    Mottram, Nigel

    to a five year climate change action plan. This carbon management plan, along with other existingUniversity of Glasgow Carbon Management Programme Carbon Management Plan working with Page 1 Carbon Management Programme Carbon Management Plan (CMP) Albert Young, 3 November 2009 #12;University of Glasgow

  20. Sediments and the Global Carbon Cycle

    NSDL National Science Digital Library

    Elana Leithold

    A series of activities designed to introduce students to the role of sediments and sedimentary rocks in the global carbon cycle and the use of stable carbon isotopes to reconstruct ancient sedimentary environments. Students will make some simple calculations, think about the implications of their results, and see an optional demonstration of the density separation of a sediment sample into a light, organic and a heavier mineral fraction.

  1. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the

    E-print Network

    Berkowitz, Alan R.

    Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget J. J components of the carbon cycle at either global or regional scales. By taking published estimates of gas constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis

  2. Global agriculture and carbon trade-offs.

    PubMed

    Johnson, Justin Andrew; Runge, Carlisle Ford; Senauer, Benjamin; Foley, Jonathan; Polasky, Stephen

    2014-08-26

    Feeding a growing and increasingly affluent world will require expanded agricultural production, which may require converting grasslands and forests into cropland. Such conversions can reduce carbon storage, habitat provision, and other ecosystem services, presenting difficult societal trade-offs. In this paper, we use spatially explicit data on agricultural productivity and carbon storage in a global analysis to find where agricultural extensification should occur to meet growing demand while minimizing carbon emissions from land use change. Selective extensification saves ? 6 billion metric tons of carbon compared with a business-as-usual approach, with a value of approximately $1 trillion (2012 US dollars) using recent estimates of the social cost of carbon. This type of spatially explicit geospatial analysis can be expanded to include other ecosystem services and other industries to analyze how to minimize conflicts between economic development and environmental sustainability. PMID:25114254

  3. Global agriculture and carbon trade-offs

    PubMed Central

    Johnson, Justin Andrew; Runge, Carlisle Ford; Senauer, Benjamin; Foley, Jonathan; Polasky, Stephen

    2014-01-01

    Feeding a growing and increasingly affluent world will require expanded agricultural production, which may require converting grasslands and forests into cropland. Such conversions can reduce carbon storage, habitat provision, and other ecosystem services, presenting difficult societal trade-offs. In this paper, we use spatially explicit data on agricultural productivity and carbon storage in a global analysis to find where agricultural extensification should occur to meet growing demand while minimizing carbon emissions from land use change. Selective extensification saves ?6 billion metric tons of carbon compared with a business-as-usual approach, with a value of approximately $1 trillion (2012 US dollars) using recent estimates of the social cost of carbon. This type of spatially explicit geospatial analysis can be expanded to include other ecosystem services and other industries to analyze how to minimize conflicts between economic development and environmental sustainability. PMID:25114254

  4. Global Change Biology (2000) 6, 317328 Soil Carbon Sequestration and Land-Use Change: Processes and

    E-print Network

    Post, Wilfred M.

    2000-01-01

    Global Change Biology (2000) 6, 317­328 Soil Carbon Sequestration and Land-Use Change: Processes in enhanced soil carbon sequestration with changes in land-use and soil management. We review literature, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration

  5. Carbon dioxide emissions and global GDP

    Microsoft Academic Search

    Michael Tucker

    1995-01-01

    A positive relationship between carbon dioxide emissions, the most important greenhouse gas (GHG) implicated in global warming, and GDP is shown in this paper, examining per capita income and CO2 emissions of 137 countries across 21 years. It also appears that as per capita incomes accelerate across countries emissions increases, for the most part, tend to decelerate. It could be

  6. Integrated Estimates of Global Terrestrial Carbon Sequestration

    SciTech Connect

    Thomson, Allison M.; Izaurralde, R Cesar; Smith, Steven J.; Clarke, Leon E.

    2008-02-01

    Assessing the contribution of terrestrial carbon sequestration to international climate change mitigation requires integration across scientific and disciplinary boundaries. As part of a scenario analysis for the US Climate Change Technology Program, measurements and geographic data were used to develop terrestrial carbon sequestration estimates for agricultural soil carbon, reforestation and pasture management. These estimates were then applied in the MiniCAM integrated assessment model to evaluate mitigation strategies within policy and technology scenarios aimed at achieving atmospheric CO2 stabilization by 2100. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. Terrestrial sequestration reach a peak combined rate of 0.5 to 0.7 Gt carbon yr-1 in mid-century with contributions from agricultural soil (0.21 Gt carbon yr-1), reforestation (0.31 Gt carbon yr-1) and pasture (0.15 Gt carbon yr-1). Sequestration rates vary over time period and with different technology and policy scenarios. The combined contribution of terrestrial sequestration over the next century ranges from 31 to 41 GtC. The contribution of terrestrial sequestration to mitigation is highest early in the century, reaching up to 20% of total carbon mitigation. This analysis provides insight into the behavior of terrestrial carbon mitigation options in the presence and absence of climate change mitigation policies.

  7. Risk management practices in global manufacturing investment

    E-print Network

    Kumar, Mukesh

    2010-07-06

    This thesis explores risk management practices in global manufacturing investment. It reflects the growing internationalisation of manufacturing and the increasing complexity and fragmentation of manufacturing systems. Issues of risk management have...

  8. The global carbon dioxide budget

    SciTech Connect

    Sundquist, E.T. (Geological Survey, Woods Hole, MA (United States))

    1993-02-12

    The increase in atmospheric CO[sub 2] levels during the last deglaciation was comparable in magnitude to the recent historical increase. However, global CO[sub 2] budgets for these changes reflect fundamental differences in rates and in sources and sinks. The modern oceans are a rapid net CO[sub 2] sink, whereas the oceans were a gradual source during the deglaciation. Unidentified terrestrial CO[sub 2] sinks are important uncertainties in both the deglacial and recent CO[sub 2] budgets. The deglacial CO[sub 2] budget represents a complexity of long-term dynamic behavior that is not adequately addressed by current models used to forecast future atmospheric CO[sub 2] levels.

  9. Tropical deforestation and the global carbon budget

    SciTech Connect

    Melillo, J.M.; Kicklighter, D.W. [Ecosystems Center, Woods Hole, MA (United States). Marine Biological Lab.] [Ecosystems Center, Woods Hole, MA (United States). Marine Biological Lab.; Houghton, R.A. [Woods Hole Research Center, MA (United States)] [Woods Hole Research Center, MA (United States); McGuire, A.D. [Univ. of Alaska, Fairbanks, AK (United States)] [Univ. of Alaska, Fairbanks, AK (United States)

    1996-12-31

    The CO{sub 2} concentration of the atmosphere has increased by almost 30% since 1800. This increase is due largely to two factors: the combustion of fossil fuel and deforestation to create croplands and pastures. Deforestation results in a net flux of carbon to the atmospheric because forests contain 20--50 times more carbon per unit area than agricultural lands. In recent decades, the tropics have been the primary region of deforestation.The annual rate of CO{sub 2} released due to tropical deforestation during the early 1990s has been estimated at between 1.2 and 2.3 gigatons C. The range represents uncertainties about both the rates of deforestation and the amounts of carbon stored in different types of tropical forests at the time of cutting. An evaluation of the role of tropical regions in the global carbon budget must include both the carbon flux to the atmosphere due to deforestation and carbon accumulation, if any, in intact forests. In the early 1990s, the release of CO{sub 2} from tropical deforestation appears to have been mostly offset by CO{sub 2} uptake occurring elsewhere in the tropics, according to an analysis of recent trends in the atmospheric concentrations of O{sub 2} and N{sub 2}. Interannual variations in climate and/or CO{sub 2} fertilization may have been responsible for the CO{sub 2} uptake in intact forests. These mechanisms are consistent with site-specific measurements of net carbon fluxes between tropical forests and the atmosphere, and with regional and global simulations using process-based biogeochemistry models. 86 refs., 1 fig., 6 tabs.

  10. SOILS AND THE GLOBAL CARBON CYCLE1 Susan E. Trumbore

    E-print Network

    Ajo-Franklin, Jonathan

    SOILS AND THE GLOBAL CARBON CYCLE1 Susan E. Trumbore and Margaret S. Torn§ Earth System Science in the global carbon cycle. Soil organic matter (SOM) is one of the largest carbon reservoirs that is in rapid present research on the soil C cycle include: Are soils now acting as a net source or sink of carbon

  11. Globalization Implications for Human Resource Management Roles

    Microsoft Academic Search

    Barry A. Friedman

    2007-01-01

    Globalization influences organizations that compete for customers with high expectations for performance, quality, and cost.\\u000a Globalization also exerts pressure on the Human Resource Management (HRM) function to adapt to changing organizational needs\\u000a and add greater value. This paper first reviews global trends, HRM roles, and the implications of globalization and culture\\u000a for HRM. Using Ulrich’s (Human resource champions: The new

  12. Global/Terrestrial Carbon Cycle Publications Baes, C. F., H. E. Goeller, J. S. Olson, and R. M. Rotty. 1977. Carbon dioxide and climate: The

    E-print Network

    Post, Wilfred M.

    . Rotty. 1977. Carbon dioxide and climate: The uncontrolled experiment. American Scientist 65.S. and the global carbon dioxide problem. Journal of Environmental Management 10:37­49. Gardner, R. H., J. B. Mankin Carbon. CONF-8108131. Carbon Dioxide Research Division, U.S. Department of Energy, Washington, D.C. Post

  13. 21 Sustainable Land Management and Global Development

    E-print Network

    Richner, Heinz

    427 21 Sustainable Land Management and Global Development: Factors Affecting Land Users' Efforts awareness of the dangers of land degradation, the value of sustainable land management (SLM) has become for improved land management. This article outlines the preconditions for adoption and on-the-ground imple

  14. Global atmospheric black carbon inferred from AERONET

    PubMed Central

    Sato, Makiko; Hansen, James; Koch, Dorothy; Lacis, Andrew; Ruedy, Reto; Dubovik, Oleg; Holben, Brent; Chin, Mian; Novakov, Tica

    2003-01-01

    AERONET, a network of well calibrated sunphotometers, provides data on aerosol optical depth and absorption optical depth at >250 sites around the world. The spectral range of AERONET allows discrimination between constituents that absorb most strongly in the UV region, such as soil dust and organic carbon, and the more ubiquitously absorbing black carbon (BC). AERONET locations, primarily continental, are not representative of the global mean, but they can be used to calibrate global aerosol climatologies produced by tracer transport models. We find that the amount of BC in current climatologies must be increased by a factor of 2–4 to yield best agreement with AERONET, in the approximation in which BC is externally mixed with other aerosols. The inferred climate forcing by BC, regardless of whether it is internally or externally mixed, is ?1 W/m2, most of which is probably anthropogenic. This positive forcing (warming) by BC must substantially counterbalance cooling by anthropogenic reflective aerosols. Thus, especially if reflective aerosols such as sulfates are reduced, it is important to reduce BC to minimize global warming. PMID:12746494

  15. Terrestrial Carbon Management Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Terrestrial Carbon Management are organized as Carbon Accumulation with Cropland Management, Carbon Accumulation with Grassland Management, Carbon Loss Following Cultivation, Carbon Accumulation Following Afforestation, and Carbon Sources and Sinks Associated with U.S. Cropland Production.

  16. Market timing by global fund managers

    Microsoft Academic Search

    Debra A. Glassman; Leigh A. Riddick

    2006-01-01

    We analyze the market timing ability of US global equity fund managers in the late 1980s and early 1990s, before hedge funds became prominent in global investing. We examine both portfolio weights and returns to distinguish between world market timing (movements of funds between all equity markets and cash) and national market timing (movements out of one country's equity market

  17. The Global Carbon Cycle: It's a Small World!

    E-print Network

    The Global Carbon Cycle: It's a Small World! Phil Ineson University of York UK #12;An "Empty" #12;The Global Carbon Cycle (Pg C and Pg C/yr) Atmosphere 730 Accumulation + 3.2 Fossil fuels & cement uptake in different coupled models of the carbon cycle-climate system, from Heimann & Reichstein (2008

  18. Management of Philippine tropical forests: Implications to global warming

    SciTech Connect

    Lasco, R.D.

    1997-12-31

    The first part of the paper presents the massive changes in tropical land management in the Philippines as a result of a {open_quotes}paradigm shift{close_quotes} in forestry. The second part of the paper analyzes the impacts of the above management strategies on global warming, in general, preserved forests are neither sinks not sources of greenhouse gasses (GHG). Reforestation activities are primarily net sinks of carbon specially the use of fast growing reforestation species. Estimates are given for the carbon-sequestering ability of some commonly used species. The last part of the paper policy recommendations and possible courses of action by the government to maximize the role of forest lands in the mitigation of global warming. Private sector initiatives are also explored.

  19. Global Warming and Marine Carbon Cycle Feedbacks on

    E-print Network

    Schmittner, Andreas

    Global Warming and Marine Carbon Cycle Feedbacks on Future Atmospheric CO2 Fortunat Joos,* Gian-biogeochemical climate model was used to project at- mospheric carbon dioxide and global warming for scenarios developed by the Intergovernmental Panel on Climate Change. The North Atlantic thermohaline circulation weakens in all global warming

  20. Carbon Dioxide, Global Warming, and Michael Crichton's "State of Fear"

    E-print Network

    Rust, Bert W.

    Carbon Dioxide, Global Warming, and Michael Crichton's "State of Fear" Bert W. Rust Mathematical- tioned the connection between global warming and increasing atmospheric carbon dioxide by pointing out of these plots to global warming have spilled over to the real world, inviting both praise [4, 17] and scorn [15

  1. The CharXive Challenge. Regulation of global carbon cycles by vegetation fires

    E-print Network

    Ball, R

    2010-01-01

    It is an open, but not unanswerable, question as to how much atmospheric CO2 is sequestered globally by vegetation fires. In this work I conceptualise the question in terms of the general CharXive Challenge, discuss a mechanism by which thermoconversion of biomass may regulate the global distribution of carbon between reservoirs, show how suppression of vegetation fires by human activities may increase the fraction of carbon in the atmospheric pool, and pose three specific CharXive Challenges of crucial strategic significance to our management of global carbon cycles.

  2. Management practices affects soil carbon dioxide emission and carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural practices contribute about 25% of total anthropogenic carbon dioxide emission, a greenhouse gas responsible for global warming. Soil can act both as sink or source of atmospheric carbon dioxide. Carbon dioxide fixed in plant biomass through photosynthesis can be stored in soil as organi...

  3. Global supply chain risk management strategies

    Microsoft Academic Search

    Ila Manuj; John T. Mentzer

    2008-01-01

    Purpose – Global supply chains are more risky than domestic supply chains due to numerous links interconnecting a wide network of firms. These links are prone to disruptions, bankruptcies, breakdowns, macroeconomic and political changes, and disasters leading to higher risks and making risk management difficult. The purpose of this paper is to explore the phenomenon of risk management and risk

  4. Knowledge Management and Global Information Dissemination

    ERIC Educational Resources Information Center

    Umunadi, Ejiwoke Kennedy

    2014-01-01

    The paper looked at knowledge management and global information dissemination. Knowledge is a very powerful tool for survival, growth and development. It can be seen as the information, understanding and skills that you gain through education or experience. The paper was addressed under the following sub-headings: Knowledge management knowledge…

  5. The global waste management challenge

    Microsoft Academic Search

    Goldstein

    1987-01-01

    The author states that the problem of solid waste management is not unique to the USA, and that almost all industrial nations are having to modify their policies regarding waste management. Many countries are having policy changes about heavy metals, dioxins, acid gases, ash disposal, and waste-facility operator training.

  6. Global managers’ perceptions of cultural competence

    Microsoft Academic Search

    Christine Uber Grosse

    2011-01-01

    To work effectively in the global business arena, managers need a strong set of intercultural management skills. When dealing with clients, co-workers, and other stakeholders at home or abroad, managers with cross-cultural competence have a distinct competitive advantage in the multicultural marketplace. Although generally accepted as a valuable asset for doing business, cross-cultural competence defies easy definition. This study attempts

  7. Poker Chip Model: Global Carbon Pools and Fluxes

    NSDL National Science Digital Library

    Great Lakes Bioenergy Research Center

    This short activity provides a way to improve understanding of a frequently-published diagram of global carbon pools and fluxes. Students create a scaled 3-D visual of carbon pools and net fluxes between pools.

  8. Expanding global forest management: An easy first' proposal

    SciTech Connect

    Winjum, J.K. (Environmental Protection Agency, Corvallis, OR (United States)); Meganck, R.A. (United Nations Environment Programme, Kingston (Jamaica)); Dixon, R.K.

    1993-04-01

    World leaders have become increasingly aware of the contributions of sustainable forest resources to political, social, economic, and environmental health. As a result, interest is growing for a world treaty or protocol on forest management and protection. This article focuses on global forest management. The first section discusses the current situtation in global forest management (10-12% of the total). Benefits of global benefit to management included sustained and even increased yield, slowing of atmospheric carbon dioxide, and conservation of biodiversity and increase sustainable use options. The Noordwijk Goal is discussed as one example of concrete global action. Finally, the easy first approach is presented in detail. It involves starting in areas where the obstacles are minimal to develop early momentum and a can do outlook for implementation. Difficulties of this approach involve dealing with the political, social, and economic aspects of resource constraints that many nations face daily. But the easy first approach attempts to demonstrate that not all financial commitments, political agreements and forest management techniques must be in place for work to start.

  9. Permafrost carbon-climate feedbacks accelerate global warming

    E-print Network

    in wetland extent. carbon cycle land surface models cryosphere soil organic matter active layer Boreal are crucial to the global carbon cycle because they are rich in soil organic carbon, which has built up stock. This carbon stock is presently not actively cycling, but might become available for respiration

  10. (The ocean's role in the global carbon cycle)

    SciTech Connect

    Joos, L.F.

    1990-12-20

    The traveler collaborated with Dr. J. L. Sarmiento of the Program in Atmospheric Sciences, Princeton University, and Dr. U. Siegenthaler of the University of Bern in box-model studies of the potential enhancement of oceanic CO{sub 2} uptake by fertilizing the southern ocean with iron. As a result of this collaboration, a letter describing the results was submitted to the journal Nature. Sensitivity studies were carried out to gain a better understanding of the processes involved for a hypothetical iron fertilization of the ocean. An article that describes this work has been submitted to the journal Global Biogeochemical Cycles. The traveler and U. Siegenthaler are preparing a journal article describing a box model of the global carbon cycle that is an extension of the one-dimensional box-diffusion model. The traveler attended Oceanography 590b at the University of Washington in Friday Harbor. While at Friday Harbor, he started to collaborate with Drs. M. Warner, R. Gammon, and J. Bullister, all from the University of Washington, Seattle, to calibrate the global carbon cycle model with chlorofluorocarbon (CFC)-11 and CFC-12. The traveler started collaboration with Drs. J. C. Orr and J. L. Sarmiento to calculate apparent eddy diffusivities from the Princeton three-dimensional ocean model. The work is conducted by the University of Bern, Switzerland (the traveler is principal investigator), for a US Department of Energy program managed by Oak Ridge National Laboratory.

  11. Model-based estimation of the global carbon budget and its uncertainty from carbon dioxide and carbon isotope records

    E-print Network

    Jain, Atul K.

    Model-based estimation of the global carbon budget and its uncertainty from carbon dioxide and the terrestrial biosphere based on carbon dioxide and carbon isotope records, and prior information on model of carbon dioxide and the resulting atmospheric concentration of carbon dioxide determined from the behavior

  12. Global Coastal Carbon Program Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC provides data management support for the Global Coastal Carbon Data Project. The coastal regions data are very important for the understanding of carbon cycle on the continental margins. The Coastal Project data include the bottle (discrete) and surface (underway) carbon-related measurements from coastal research cruises, the data from time series cruises, and coastal moorings. The data from US East Coast, US West Coast, and European Coastal areas are available. CDIAC provides a map interface with vessel or platform names. Clicking on the name brings up information about the vessel or the scientific platform, the kinds of measurements collected and the timeframe, links to project pages, when available, and the links to the data files themselves.

  13. Carbon Management In the Post-Cap-and-Trade Carbon Economy

    NASA Astrophysics Data System (ADS)

    DeGroff, F. A.

    2012-12-01

    Global carbon management is a pressing issue and will remain so for the balance of the 21st century. Without a worldwide comprehensive carbon management strategy in place,the economic, social, military, and humanitarian impact of excess carbon in our biosphere will preoccupy humanity until an efficient and effective strategy for carbon pricing can be implemented. In this paper, we discuss a possible strategy and construct model for comprehensive carbon management for the balance of this century. The focus of our strategy is an economic model with a carbon construct and metric that assigns a value to all states and forms of carbon involved with any anthropogenic activity. Any changes in the state or form of carbon due to anthropogenic activity will thereby generate discrete, finite, and measurable economic costs, or tolls, for the associated activity. All activities within a jurisdiction (or between jurisdictions with equivalent carbon toll treatment) that lack any change in the state or form of carbon will be free of any carbon toll. All goods and services crossing jurisdictions with dissimilar toll treatment will be assessed (or credited) to reflect the carbon toll differential. This model has three clear advantages. First, the carbon pricing and cost scheme uses existing and generally accepted accounting and economic methodologies to ensure the veracity and verifiability of carbon management efforts with minimal effort and expense using standard, existing auditing protocols. Implementing this model will not require any new, special, unique, or additional training, tools, or systems for any entity to achieve their minimum carbon target goals within their jurisdictional framework. Second, given the wide spectrum of carbon affinities across jurisdictions worldwide, our strategy recognizes and provides for flexible carbon pricing regimes, but does not undermine or penalize domestic carbon-consuming producers subject to imports from exporters in lower carbon pricing jurisdictions. Thus, this strategy avoids a key shortcoming of cap-and-trade carbon pricing, and eliminates any incentive to shift carbon consumption to jurisdictions with lower carbon tolls. Third, the model is a comprehensive, efficient, and effective strategy that allows for the implementation of a carbon pricing structure without the complete, explicit agreement of carbon consumers worldwide.

  14. Merck Global Energy Management Program

    E-print Network

    Williams, K.

    2005-01-01

    automation system (BAS) management, insulation programs, employee awareness, and implementation of best practices. MERIT set an aggressive target of 3.5% savings over 2003 consumption and expects to achieve a 4.37 percent savings in 2004. The major... in place an aggressive implementation plan to achieve the GEMP goals/objectives by 2005. The GEMP contains four basic elements to achieve the energy consumption targets. They include strategic planning, annual reporting and communications, best...

  15. Carbon Input and Soil Carbon Dioxide Emission Affected by Land Use and Management Practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use and management practices may influence C inputs and soil CO2 emission, a greenhouse gas responsible for global warming. Carbon inputs and soil CO2 emission were monitored from crop- and grassland with various irrigation and cropping systems from 2006 to 2008 in western North Dakota, USA. Tr...

  16. Isotropic simple global carbon model: The use of carbon isotopes for model development. Ph.D. Thesis

    SciTech Connect

    Kwon, O.Y.

    1994-01-01

    Carbon dioxide is a major greenhouse gas in the atmosphere. Anthropogenic CO2 emissions from fossil fuel use and deforestation have perturbed the natural global carbon cycle. As a result, the atmospheric CO2 concentration has rapidly increased, causing the potential for global warming. A twenty four compartment isotopic simple global carbon model (IS-GCM) has been developed for scenario analysis, research needs prioritization, and for recommending strategies to stabilize the atmospheric CO2 level. CO2 fertilization and temperature effects are included in the terrestrial biosphere, and the ocean includes inorganic chemistry which, with ocean water circulation, enables the calculation of time-variable oceanic carbon uptake. The eight compartment simple global carbon model (SGCM) served as the basis of the ISGCM model development. Carbon isotopes, C-13 (stable carbon) and C-14(radiocarbon), were used for model constraints as well as results from SGCM that led to multiple compartments in ISGCM. The ISGCM was calibrated with the observed CO2 concentrations, delta C-13, and Delta C-14 in the atmosphere, Delta C-14 in the soil and Delta C-14 in the ocean. Also, ISGCM was constrained by literature values of oceanic carbon uptake (gas exchange) and CO2 emissions from deforestation. Inputs (forcing functions in the model) were the CO2 emissions from fossil fuel use and deforestation. Scenario analysis, together with emission strategies tests, indicate that urgent action to reduce anthropogenic emissions would need to be taken to stabilize atmospheric CO2. Results showed that quantitatively, forest management is just as effective as the reduction of fossil fuel emissions in controlling atmospheric CO2. Sensitivity analysis of temperature feedback suggests that future global warming would cause an additional perturbation in the global-carbon cycle, resulting in depletion of soil organic carbon, accumulation of plant biomass, and the increase of atmospheric CO2.

  17. Towards understanding global variability in ocean carbon-13

    Microsoft Academic Search

    Alessandro Tagliabue; Laurent Bopp

    2008-01-01

    We include a prognostic parameterization of carbon-13 into a global ocean-biogeochemistry model to investigate the spatiotemporal variability in ocean carbon-13 between 1860 and 2000. Carbon-13 was included in all 10 existing carbon pools, with dynamic fractionations occurring during photosynthesis, gas exchange and carbonate chemistry. We find that ocean distributions of ?13CDIC at any point in time are controlled by the

  18. Global patterns of carbon dioxide emissions from soils

    Microsoft Academic Search

    James W. Raich; Christopher S. Potter

    1995-01-01

    We use semi-mechanistic, empirically based statistical models to predict the spatial and temporal patterns of global carbon dioxide emissions from terrestrial soils. Emissions include the respiration of both soil organisms and plant roots. At the global scale, rates of soil COâ efflux correlate significantly with temperature and precipitation; they do not correlated well with soil carbon pools, soil nitrogen pools,

  19. Introduction: globalizing international human resource management

    Microsoft Academic Search

    Chris Rowley; Malcolm Warner

    2007-01-01

    In this Introduction, we have sought to explain the rationales in putting together a ‘Special Issue’ on Globalizing International Human Resource Management (IHRM). These include, first, coverage of as wide a range of regional and national cultures as possible; second, presentation of as wide a set as perspectives as possible; and last, discussion of how these may shape both theory

  20. Internationalizing Business Education for Globally Competent Managers

    ERIC Educational Resources Information Center

    Kedia, Ben L.; Englis, Paula D.

    2011-01-01

    The world is shrinking as developments in technology and transportation rapidly increase global opportunities and challenges for businesses. Furthermore, developing markets are becoming increasingly important, creating new challenges for managers. Business education must step in and prepare graduates to work in and with these markets. This article…

  1. Global and regional climate changes due to black carbon

    Microsoft Academic Search

    V. Ramanathan; G. Carmichael

    2008-01-01

    Black carbon in soot is the dominant absorber of visible solar radiation in the atmosphere. Anthropogenic sources of black carbon, although distributed globally, are most concentrated in the tropics where solar irradiance is highest. Black carbon is often transported over long distances, mixing with other aerosols along the way. The aerosol mix can form transcontinental plumes of atmospheric brown clouds,

  2. AN APPROACH TO ASSESSMENT OF MANAGEMENT IMPACTS ON AGRICULTURAL SOIL CARBON

    EPA Science Inventory

    Agroecosystems contain about 12% of the terrestrial soil carbon and play an important role in the global carbon cycle. e describe a project to evaluate the degree to which management practices can affect soil carbon in agroecosystems. he objectives of the project are to determine...

  3. Carbon's corner in the global climate challange

    NASA Astrophysics Data System (ADS)

    Liddicoat, Joseph

    2010-05-01

    Unlike on other planets in the Solar System, most of the carbon in carbon dioxide (CO2) that degassed from Earth during its formation nearly 4.5 billion years ago is in limestone as the mineral calcite (CaCO3). Consequently, the small percentage (about 0.04) of CO2 in Earth's atmosphere can be changed easily by the combustion of fossil fuels. Since the early 1950s when accurate measurements of atmospheric CO2 began, it has been documented that the amount of CO2 in Earth's atmosphere is increasing at an exponential rate (Report of U.S. National Academy of Science, 2007). This course is a science elective that embraces the ideals of SENCER (Science Education for New Civic Engagements and Responsibilities) that connects science and civic engagement by teaching through complex, contested, current, and unresolved societal issues to basic science. Specifically, the instruction invites students to put scientific knowledge and the scientific method to practical use on matters of immediate interest not only to the students but also to the general public. This is done through a careful examination of the ecological and environmental issues surrounding the build-up of CO2 in the atmosphere as presented in CO2 Rising - The World's Greatest Environmental Challenge by Tyler Volk. A reflective reading of Volk's non-technical but engaging book, complemented by weekly 180-minutes of in-class instruction, results in an understanding of topics that are necessary for an informed public that continues the discussion about catastrophic global warming that might result from unchecked burning of fossil fuels by humans.

  4. Integrated Global Nuclear Materials Management - Preliminary Concepts -

    SciTech Connect

    Dreicer, M; Jones, E; Richardson, J

    2006-07-13

    Approach to Connect Global Objectives and Local Actions: (1) Articulate global objectives into a hierarchy of subsystem requirements and local attributes and measures; (2) Establish a baseline system and viable alternatives through the interactions and relationships (e.g., networks) of local system elements and their options; (3) Evaluate performance of system alternatives and develop improved nuclear material management strategies and technologies; and (4) The need to address greatest concerns first (prioritized or graded approach) and to make tradeoffs among implementation options and competing objectives entails a risk-based approach. IGNMM could provide a systematic understanding of global nuclear materials management and evolutionarily improve and integrate the management through an active architecture, using for example, situation awareness, system models, methods, technologies, and international cooperation. Different tools would be used within the overall framework to address individual issues on the desired geographic scale that could be easily linked to broader analyses. Life-cycle system analyses would allow for evaluating material path alternatives on an integrated global scale. Disconnects, overlaps, technical options, and alternatives for optimizing nuclear materials processes could be evaluated in an integrated manner.

  5. Global civil aviation black carbon emissions.

    PubMed

    Stettler, Marc E J; Boies, Adam M; Petzold, Andreas; Barrett, Steven R H

    2013-09-17

    Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions. PMID:23844612

  6. Systematic long-term observations of the global carbon cycle.

    PubMed

    Scholes, R J; Monteiro, P M S; Sabine, C L; Canadell, J G

    2009-08-01

    Imagine a meeting convened to avert a global financial crisis where none of the finance ministers had access to reliable information on changes in the stock market, national gross domestic product or international trade flows. It is hardly conceivable. Yet the infinitely more existence-threatening planetary social and ecological crisis we refer to as 'global change' (comprising the linked issues of biogeochemical, climate, biotic and human system change) is in an analogous situation. Our information on the profound and accelerating changes currently depends to an unacceptable degree on serendipity, individual passion, redirected funding and the largely uncoordinated efforts of a few nations. The thesis of this paper is that navigation of the very narrow 'safe passages' that lie ahead requires a comprehensive and systematic approach to Earth observations, supported by a globally coordinated long-term funding mechanism. We developed the argument based on observations of the carbon cycle, because the issues there are compelling and easily demonstrated, but we believe the conclusions also to be true for many other types of observations relating to the state and management of the biosphere. PMID:19409653

  7. Investigations into Wetland Carbon Sequestration as Remediation for Global Warming

    SciTech Connect

    Thom, Ronald M.; Blanton, Susan L.; Borde, Amy B.; Williams, Greg D.; Woodruff, Dana L.; Huesemann, Michael H.; KW Nehring and SE Brauning

    2002-01-01

    Wetlands can potentially sequester vast amounts of carbon. However, over 50% of wetlands globally have been degraded or lost. Restoration of wetland systems may therefore result in increased sequestration of carbon. Preliminary results of our investigations into atmospheric carbon sequestration by restored coastal wetlands indicate that carbon can be sequestered in substantial quantities in the first 2-50 years after restoration of natural hydrology and sediment accretion processes.

  8. Fate of fossil fuel carbon dioxide and the global carbon budget

    Microsoft Academic Search

    W. S. Broecker; T. Takahashi; H. J. Simpson; T.-H. Peng

    1979-01-01

    The fate of fossil fuel carbon dioxide released into the atmosphere depends on the exchange rates of carbon between the atmosphere and three major carbon reservoirs, namely, the oceans, shallow-water sediments, and the terrestrial biosphere. Various assumptions and models used to estimate the global carbon budget for the last 20 years are reviewed and evaluated. Several versions of recent atmosphere-ocean

  9. Carbon sequestration, biological diversity, and sustainable development: Integrated forest management

    SciTech Connect

    Cairns, M.A.; Meganck, R.A.

    1994-01-01

    Tropical deforestation provides a significant contribution to anthropogenic increases in atmospheric CO2 concentration that may lead to global warming. Forestation and other forest management options to sequester CO2 in the tropical latitudes may fail unless they address local economic, social, environmental, and political needs of people in the developing world. Forest management is discussed in terms of three objectives: carbon sequestration; sustainable development; and biodiversity conservation. An integrated forest management strategy of land-use planning is proposed to achieve these objectives, and is centered around: preservation of primary forests; intensified use of non-timber resources; agroforestry, and selective use of plantation forestry.

  10. Forest biomes are major reserves for terrestrial carbon, and major components of global primary productivity.

    E-print Network

    Malhi, Yadvinder

    a large impact on the global carbon cycle. In this paper, we discuss the climatic influences on the carbon interactions; carbon di- oxide; eddy covariance; forests; global carbon cycle; global change. INTRODUCTION be emphasized that the above figures for the global carbon cycle, although fre- quently quoted, are the mean

  11. Data Management for Meeting Global Health Challenges Tapan S. Parikh

    E-print Network

    Parikh, Tapan S.

    Data Management for Meeting Global Health Challenges Tapan S. Parikh UC Berkeley School global health challenges are becoming increasingly data driven. Governments and donors are demanding activities, and responding to remote outbreaks of disease. Data challenges in global health intersect

  12. Challenges in global ballast water management.

    PubMed

    Endresen, Øyvind; Lee Behrens, Hanna; Brynestad, Sigrid; Bjørn Andersen, Aage; Skjong, Rolf

    2004-04-01

    Ballast water management is a complex issue raising the challenge of merging international regulations, ship's specific configurations along with ecological conservation. This complexity is illustrated in this paper by considering ballast water volume, discharge frequency, ship safety and operational issues aligned with regional characteristics to address ecological risk for selected routes. A re-estimation of ballast water volumes gives a global annual level of 3500 Mton. Global ballast water volume discharged into open sea originating from ballast water exchange operations is estimated to approximately 2800 Mton. Risk based decision support systems coupled to databases for different ports and invasive species characteristics and distributions can allow for differentiated treatment levels while maintaining low risk levels. On certain routes, the risk is estimated to be unacceptable and some kind of ballast water treatment or management should be applied. PMID:15041419

  13. In Brief: Reducing black carbon emissions could immediately reduce global temperature increases

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-03-01

    A new assessment by the United Nations Environment Programme (UNEP) shows that measures to reduce emissions of black carbon, or soot, which is produced through burning of wood and other biofuels as well as by some industrial processes, could improve public health and help to significantly reduce projected global temperature increases. The Integrated Assessment of Black Carbon and Tropospheric Ozone highlights how specific measures targeting black carbon and other emissions from fossil fuel extraction, residential wood-burning cooking, diesel vehicles, waste management, agriculture, and small industries could affect climate. Full implementation of a variety of measures to reduce black carbon and methane emissions could reduce future global warming by about 0.5°C, the assessment found. Reducing black carbon could have substantial benefits in the Arctic, the Himalayas, and other snow-covered regions because black carbon that settles on top of snow absorbs heat, speeding melting of snow and ice. Black carbon emission reductions would affect global temperatures more quickly than carbon dioxide emission reductions. Furthermore, reducing black carbon emissions would improve public health in the regions that emit large amounts of the harmful air pollutant.

  14. Integrated Global Nuclear Materials Management Preliminary Concepts

    SciTech Connect

    Jones, E; Dreicer, M

    2006-06-19

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective policy, science/technology, and intelligence elements are all crucial and must be harmonized. It is envisioned that integrated solutions will include reducing and securing nuclear/radiological materials at their source; improved monitoring and tracking; and enhancing detection, interdiction, and response. An active architecture, artfully combined of many synergistic elements, would support national actions and international collaboration in nuclear materials management, and it would help navigate a transition toward global nuclear sustainability.

  15. Ecological value of soil carbon management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of soil carbon is critical to the climate change debate, as well as to the long-term productivity and ecosystem resilience of the biosphere. Soil organic carbon is a key ecosystem property that indicates inherent productivity of land, controls soil biological functioning and diversity, r...

  16. Cumulative Carbon and Just Allocation of the Global Carbon Commons

    E-print Network

    Pierrehumbert, Raymond

    America, and in particular the United States, has a strong moral obligation to take the lead in actions of carbon emitted in the form of carbon dioxide by activities such as fossil fuel burning and deforestation the question of fair allocation of carbon emissions amongst nations or other emitting units. It is concluded

  17. The potential to mitigate global warming with no-tillage management is only realized when practised in the

    E-print Network

    Six, Johan

    The potential to mitigate global warming with no-tillage management is only realized when practised impact of NT adoption reduces the net global warming potential (GWP) determined by fluxes of the three is essential to realize the full benefit from carbon storage in the soil for purposes of global warming

  18. University of Bath Carbon Management Plan working with

    E-print Network

    Burton, Geoffrey R.

    Change Levy CHP Combined Heat and Power CIF2 Capital Investment Framework 2 CMB Carbon Management BoardUniversity of Bath Carbon Management Plan working with Page 1 University of Bath Carbon Management Programme Carbon Management Plan (CMP) Date: March 2011 Version number: Final, approved by Council, March

  19. The carbon-sequestration potential of a global afforestation program

    Microsoft Academic Search

    Sten Nilsson; Wolfgang Schopfhauser

    1995-01-01

    We analyzed the changes in the carbon cycle that could be achieved with a global, largescale afforestation program that is economically, politically, and technically feasible. We estimated that of the areas regarded as suitable for large-scale plantations, only about 345 million ha would actually be available for plantations and agroforestry for the sole purpose of sequestering carbon. The maximum annual

  20. Modeling changes in the global carbon cycle-climate system

    E-print Network

    Steinacher, Marco

    , predomi- nantly the emissions of CO2, is summarized and discussed with respect to ocean acidification presenting projections of ocean acidification with a special focus on the Arctic Ocean. The global coupled carbon cycle-climate model NCAR CSM1.4-carbon is applied to simulate ocean acidification

  1. Can reducing black carbon emissions counteract global warming?

    Microsoft Academic Search

    Tami C. Bond; Haolin Sun

    2005-01-01

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. Black carbon is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The

  2. Global Impacts (Carbon Cycle 2.0)

    SciTech Connect

    Gadgil, Ashok [EETD and UC Berkeley] [EETD and UC Berkeley

    2010-02-02

    Ashok Gadgil, Faculty Senior Scientist and Acting Director, EETD, also Professor of Environmental Engineering, UC Berkeley, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  3. Global Impacts (Carbon Cycle 2.0)

    ScienceCinema

    Gadgil, Ashok [EETD and UC Berkeley

    2011-06-08

    Ashok Gadgil, Faculty Senior Scientist and Acting Director, EETD, also Professor of Environmental Engineering, UC Berkeley, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  4. Carbon pools and flux of global forest ecosystems

    Microsoft Academic Search

    R. K. Dixon; A. M. Solomon; R. A. Houghton; M. C. Trexler; J. Wisniewski

    1994-01-01

    Forest systems cover more than 4.1 x 10[sup 9] hectares of the Earth's land area. Globally, forest vegetation and soils contain about 1146 petagrams of carbon, with approximately 37 percent of this carbon in low-latitude forests, 14 percent in mid-latitudes, and 49 percent at high latitudes. Over two-thirds of the carbon in forest ecosystems is contained in soils and associated

  5. Seagrass meadows as a globally significant carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Mazarrasa, I.; Marbà, N.; Lovelock, C. E.; Serrano, O.; Lavery, P. S.; Fourqurean, J. W.; Kennedy, H.; Mateo, M. A.; Krause-Jensen, D.; Steven, A. D. L.; Duarte, C. M.

    2015-03-01

    There has been a growing interest in quantifying the capacity of seagrass ecosystems to act as carbon sinks as a natural way of offsetting anthropogenic carbon emissions to the atmosphere. However, most of the efforts have focused on the organic carbon (POC) stocks and accumulation rates and ignored the inorganic carbon (PIC) fraction, despite important carbonate pools associated with calcifying organisms inhabiting the meadows, such as epiphytes and benthic invertebrates, and despite the relevance that carbonate precipitation and dissolution processes have in the global carbon cycle. This study offers the first assessment of the global PIC stocks in seagrass sediments using a synthesis of published and unpublished data on sediment carbonate concentration from 402 vegetated and 34 adjacent un-vegetated sites. PIC stocks in the top 1 m sediments ranged between 3 and 1660 Mg PIC ha-1, with an average of 654 ± 24 Mg PIC ha-1, exceeding about 5 fold those of POC reported in previous studies. Sedimentary carbonate stocks varied across seagrass communities, with meadows dominated by Halodule, Thalassia or Cymodocea supporting the highest PIC stocks, and tended to decrease polewards at a rate of -8 ± 2 Mg PIC ha-1 degree-1 of latitude (GLM, p < 0.0003). Using PIC concentration and estimates of sediment accretion in seagrass meadows, mean PIC accumulation rates in seagrass sediments is 126.3 ± 0.7 g PIC m-2 y-1. Based on the global extent of seagrass meadows (177 000 to 600 000 km2), these ecosystems globally store between 11 and 39 Pg of PIC in the top meter of sediment and accumulate between 22 and 76 Tg PIC y-1, representing a significant contribution to the carbonate dynamics of coastal areas. Despite that these high rates of carbonate accumulation imply CO2 emissions from precipitation, seagrass meadows are still strong CO2 sinks as demonstrates the comparison of carbon (POC and POC) stocks between vegetated and adjacent un-vegetated sediments.

  6. Toward a global low carbon fuel standard

    Microsoft Academic Search

    Daniel Sperling; Sonia Yeh

    2010-01-01

    A new policy instrument, known as a low carbon fuel standard (LCFS), is a promising approach to decarbonize transportation fuels. An LCFS has several important features: it applies a lifecycle carbon intensity standard, incorporates market mechanisms by allowing credit trading and targets all transport fuels. A harmonized international framework is needed that builds on newly enacted LCFS policies adopted in

  7. Achieving Carbon Neutrality in the Global Aluminum Industry

    NASA Astrophysics Data System (ADS)

    Das, Subodh

    2012-02-01

    In the 21st century, sustainability is widely regarded as the new corporate culture, and leading manufacturing companies (Toyota, GE, and Alcoa) and service companies (Google and Federal Express) are striving towards carbon neutrality. The current carbon footprint of the global aluminum industry is estimated at 500 million metric tonnes carbon dioxide equivalent (CO2eq), representing about 1.7% of global emissions from all sources. For the global aluminum industry, carbon neutrality is defined as a state where the total "in-use" CO2eq saved from all products in current use, including incremental process efficiency improvements, recycling, and urban mining activities, equals the CO2eq expended to produce the global output of aluminum. This paper outlines an integrated and quantifiable plan for achieving "carbon neutrality" in the global aluminum industry by advocating five actionable steps: (1) increase use of "green" electrical energy grid by 8%, (2) reduce process energy needs by 16%, (3) deploy 35% of products in "in-use" energy saving applications, (4) divert 6.1 million metric tonnes/year from landfills, and (5) mine 4.5 million metric tonnes/year from aluminum-rich "urban mines." Since it takes 20 times more energy to make aluminum from bauxite ore than to recycle it from scrap, the global aluminum industry could set a reasonable, self-imposed energy/carbon neutrality goal to incrementally increase the supply of recycled aluminum by at least 1.05 metric tonnes for every tonne of incremental production via primary aluminum smelter capacity. Furthermore, the aluminum industry can and should take a global leadership position by actively developing internationally accepted and approved carbon footprint credit protocols.

  8. A global urban carbon monitoring system

    NASA Astrophysics Data System (ADS)

    Duren, R.; Miller, C. E.; Gurney, K. R.

    2013-05-01

    Carbon emissions associated with cities - including megacities, smaller urban areas, and power plants - represent the single largest human contribution to climate change. Robust validation of emission changes due to growth or stabilization policies requires that we establish measurement baselines today and begin monitoring representative megacities immediately. An observing system designed to monitor urban carbon emissions must include a tiered set of surface, airborne, and satellite sensors. We present a vision, strategy, requirements, and roadmap for an international framework to assess directly the carbon emission trends of the world's urban areas and megacities.

  9. A global urban carbon monitoring system

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Miller, C. E.

    2013-12-01

    Carbon emissions associated with cities - including megacities, smaller urban areas, and power plants - represent the single largest human contribution to climate change. Robust validation of emission changes due to growth or stabilization policies requires that we establish measurement baselines today and begin monitoring representative megacities immediately. An observing system designed to monitor urban carbon emissions must include a tiered set of surface, airborne, and satellite sensors. We present a vision, strategy, requirements, and roadmap for an international framework to assess directly the carbon emission trends of the world's urban areas and megacities. We discuss the LA Megacities Carbon Project as an example of a testbed for developing and validating multiple observational techniques ranging from continuous in-situ analysis to geostationary and polar orbiting sounders to mobile boundary layer profiling.

  10. The Global Carbon Budget 1960 - 2100

    NSDL National Science Digital Library

    Galen McKinley

    This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

  11. Strengthening bioterrorism prevention: global biological materials management.

    PubMed

    Salerno, Reynolds M; Hickok, Lauren T

    2007-06-01

    The anthrax attacks of 2001 demonstrated that bioterrorism poses a significant threat to U.S. national security. This threat is increasing as a result of the rapid expansion in scale and technical capabilities of the global biotechnology industry, which is broadening the availability of materials, technologies, and expertise needed to produce a biological weapon and is lowering the barriers to biological weapons terrorism and proliferation. At the same time, there has been a rise of sophisticated yet loosely networked transnational terrorist groups that have shown an interest in bioterrorism. The United States must confront this convergence. Although the U.S. government pursues many different biodefense programs to bolster its ability to detect and respond to a bioterrorist attack, these efforts must be augmented with preventive measures to meet today's international challenges. U.S. Homeland Security Presidential Directive 10 of April 2004 defines "Prevention and Protection" as one of the four essential pillars of the U.S. response to the bioterrorist threat. However, while bioscience and policy experts have proposed a variety of preventive initiatives, the creation of such programs has been slow and limited. Global biological materials management, which would focus on identifying and protecting those biological materials at the greatest risk of being used maliciously, is one potential solution. Such an approach would augment current U.S. biodefense efforts, provide the international community an effective means of mitigating the global threat of bioterrorism, and strengthen the international community's battle against emerging infectious disease. PMID:17608597

  12. Towards global environmental information and data management

    NASA Astrophysics Data System (ADS)

    Gurney, Robert; Allison, Lee; Cesar, Roberto; Cossu, Roberto; Dietz, Volkmar; Gemeinholzer, Birgit; Koike, Toshio; Mokrane, Mustapha; Peters, Dale; Thaller-Honold, Svetlana; Treloar, Andrew; Vilotte, Jean-Pierre; Waldmann, Christoph

    2014-05-01

    The Belmont Forum, a coalition of national science agencies from 13 countries, is supporting an 18-month effort to implement a 'Knowledge Hub' community-building and strategy development program as a first step to coordinate and streamline international efforts on community governance, interoperability and system architectures so that environmental data and information can be exchanged internationally and across subject domains easily and efficiently. This initiative represents a first step to build collaboratively an international capacity and e-infrastructure framework to address societally relevant global environmental change challenges. The project will deliver a community-owned strategy and implementation plan, which will prioritize international funding opportunities for Belmont Forum members to build pilots and exemplars in order to accelerate delivery of end-to end global change decision support systems. In 2012, the Belmont Forum held a series of public town hall meetings, and a two-day scoping meeting of scientists and program officers, which concluded that transformative approaches and innovative technologies are needed for heterogeneous data/information to be integrated and made interoperable for researchers in disparate fields and for myriad uses across international, institutional, disciplinary, spatial and temporal boundaries. Pooling Belmont Forum members' resources to bring communities together for further integration, cooperation, and leveraging of existing initiatives and resources has the potential to develop the e-infrastructure framework necessary to solve pressing environmental problems, and to support the aims of many international data sharing initiatives. The plan is expected to serve as the foundation of future Belmont Forum calls for proposals for e-Infrastructures and Data Management. The Belmont Forum is uniquely able to align resources of major national funders to support global environmental change research on specific technical and governance challenges, and the development of focused pilot systems that could be complementary to other initiatives such as GEOSS, ICSU World Data System, and Global Framework for Climate Services (GFCS). The development of this Belmont Forum Knowledge Hub represents an extraordinary effort to bring together international leaders in interoperability, governance and other fields pertinent to decision-support systems in global environmental change research. It is also addressing related issues such as ensuring a cohort of environmental scientists who can use up-to-date computing techniques for data and information management, and investigating which legal issues need common international attention.

  13. Global simulation of the carbon isotope exchange of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Ito, A.; Terao, Y.; Mukai, H.

    2009-12-01

    There remain large uncertainties in our quantification of global carbon cycle, which has close interactions with the climate system and is subject to human-induced global environmental change. Information on carbon isotopes is expected to reduce the uncertainty by providing additional constraints on net atmosphere-ecosystem exchange. This study attempted to simulate the dynamics of carbon isotopes at the global scale, using a process-based terrestrial ecosystem model: Vegetation Integrative SImulator for Trace gases (VISIT). The base-model of carbon cycle (Sim-CYCLE, Ito 2003) has already considered stable carbon isotope composition (13C/12C), and here radioactive carbon isotope (14C) was included. The isotope ratios characterize various aspects of terrestrial carbon cycle, which is difficult to be constrained by sole mass balance. For example, isotopic discrimination by photosynthetic assimilation is closely related with leaf stomatal conductance and composition of C3 and C4 plant in grasslands. Isotopic disequilibrium represents mean residence time of terrestrial carbon pools. In this study, global simulations (spatial resolution 0.5-deg, time-step 1-month) were conducted during the period 1901 to 2100 on the basis of observed and projected atmospheric CO2, climate, and land-use conditions. As anthropogenic CO2 accumulates in the atmosphere, heavier stable carbon isotope (13C) was diluted, while radioactive carbon isotope (14C) is strongly affected by atomic bomb experiments mainly in the 1950s and 1960s. The model simulated the decadal change in carbon isotope compositions. Leaf carbon with shorter mean residence time responded rapidly to the atmospheric change, while plant stems and soil humus showed substantial time-lag, leading to large isotopic disequilibrium. In the future, the isotopic disequilibrium was estimated to augment, due to accelerated rate of anthropogenic CO2 accumulation. Spatial distribution of stable isotope composition (12C/13C, or d13C) was primarily dominated by C3/C4 plant composition and then ancillary environmental conditions. Along latitude, plant and litter carbon pools in northern ecosystems have slower turnover rates (i.e., higher 14C/12C) than those in tropical ecosystems. However, humus carbon in northern ecosystems with very long mean residence times has lower 14C/12C ratio, most of bomb-derived radioactive carbon lingered still in plant biomass. Now, we are attempting to examine the model estimations by comparing with atmospheric measurements.

  14. Implementation of Emission Trading in Carbon Dioxide Sequestration Optimization Management

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Duncan, I.

    2013-12-01

    As an effective mid- and long- term solution for large-scale mitigation of industrial CO2 emissions, CO2 capture and sequestration (CCS) has been paid more and more attention in the past decades. A general CCS management system has complex characteristics of multiple emission sources, multiple mitigation technologies, multiple sequestration sites, and multiple project periods. Trade-off exists among numerous environmental, economic, political, and technical factors, leading to varied system features. Sound decision alternatives are thus desired for provide decision supports for decision makers or managers for managing such a CCS system from capture to the final geologic storage phases. Carbon emission trading has been developed as a cost-effective tool for reducing the global greenhouse gas emissions. In this study, a carbon capture and sequestration optimization management model is proposed to address the above issues. The carbon emission trading is integrated into the model, and its impacts on the resulting management decisions are analyzed. A multi-source multi-period case study is provided to justify the applicability of the modeling approach, where uncertainties in modeling parameters are also dealt with.

  15. November 2012 Key Performance Indicator (KPI): Carbon Management

    E-print Network

    Evans, Paul

    November 2012 Key Performance Indicator (KPI): Carbon Management NTU report our carbon footprint provided. The carbon emissions are calculated using Carbon Trust conversion factors, as used in NTU's EMS.64 2011/2012 18,130 4.20 The recorded changes in emissions are a result of carbon management projects

  16. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

    PubMed Central

    Murray, Brian C.; Crooks, Stephen; Jenkins, W. Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W.; Kauffman, J. Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis

    2012-01-01

    Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats. PMID:22962585

  17. Global carbon sequestration in tidal, saline wetland soils

    USGS Publications Warehouse

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  18. Global carbon sequestration in tidal, saline wetland soils

    NASA Astrophysics Data System (ADS)

    Chmura, Gail L.; Anisfeld, Shimon C.; Cahoon, Donald R.; Lynch, James C.

    2003-12-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4°S in the Indian Ocean to 55.5°N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ± 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ± 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area.

  19. Is Atmospheric Carbon Dioxide Causing Global Warming?

    Microsoft Academic Search

    Peter Glanz

    2009-01-01

    Every knowledgeable scientist will stipulate that global temperatures are rising (0.7^o the last century). There are those that see a universal scientific consensus that atmospheric CO2 is the culprit; they have put in place a cap-and-trade system to forcibly reduce anthropogenic CO2 in the USA. What is the scientific evidence behind this volatile issue?

  20. Globalization at NTT DoCoMo : implementing global business management strategies

    E-print Network

    Takagi, Katsuyuki, 1964-

    2004-01-01

    Global business management has become one of the most important issues facing companies today, and global economic dynamics provide companies with both tremendous opportunities and formidable challenges. Countries are ...

  1. Effect of global climatic change on carbonation progress of concrete

    Microsoft Academic Search

    In-Seok Yoon; O?uzhan Çopuro?lu; Ki-Bong Park

    2007-01-01

    In the recent years, global warming has dramatically increased the atmospheric carbon-dioxide (CO2) concentration and temperature. As a consequence of this, carbonation has become one of the most critical durability issues for concrete structures in urban environment.In this study, the climate scenario IS92a recommended by Intergovernmental Panel on Climate Change (IPCC) is used for evaluating the effect of CO2 concentration

  2. Global passenger travel: implications for carbon dioxide emissions

    Microsoft Academic Search

    Andreas Schafer; David G. Victor

    1999-01-01

    Humans spend, on average, a constant fraction of their time and expenditure on travel. These and a few other constraints allow a new model for projecting regional and world travel, which we use to develop a scenario for carbon emissions from passenger transport. Globally, carbon emissions rise from 0.8 GtC in 1990 to 2.7 GtC in 2050. In every industrialized

  3. Global cost estimates of reducing carbon emissions through avoided deforestation

    PubMed Central

    Kindermann, Georg; Obersteiner, Michael; Sohngen, Brent; Sathaye, Jayant; Andrasko, Kenneth; Rametsteiner, Ewald; Schlamadinger, Bernhard; Wunder, Sven; Beach, Robert

    2008-01-01

    Tropical deforestation is estimated to cause about one-quarter of anthropogenic carbon emissions, loss of biodiversity, and other environmental services. United Nations Framework Convention for Climate Change talks are now considering mechanisms for avoiding deforestation (AD), but the economic potential of AD has yet to be addressed. We use three economic models of global land use and management to analyze the potential contribution of AD activities to reduced greenhouse gas emissions. AD activities are found to be a competitive, low-cost abatement option. A program providing a 10% reduction in deforestation from 2005 to 2030 could provide 0.3–0.6 Gt (1 Gt = 1 × 105 g) CO2·yr?1 in emission reductions and would require $0.4 billion to $1.7 billion·yr?1 for 30 years. A 50% reduction in deforestation from 2005 to 2030 could provide 1.5–2.7 Gt CO2·yr?1 in emission reductions and would require $17.2 billion to $28.0 billion·yr?1. Finally, some caveats to the analysis that could increase costs of AD programs are described. PMID:18650377

  4. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2004-06-01

    The carbon sink capacity of the world's agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon. The rate of soil organic carbon sequestration with adoption of recommended technologies depends on soil texture and structure, rainfall, temperature, farming system, and soil management. Strategies to increase the soil carbon pool include soil restoration and woodland regeneration, no-till farming, cover crops, nutrient management, manuring and sludge application, improved grazing, water conservation and harvesting, efficient irrigation, agroforestry practices, and growing energy crops on spare lands. An increase of 1 ton of soil carbon pool of degraded cropland soils may increase crop yield by 20 to 40 kilograms per hectare (kg/ha) for wheat, 10 to 20 kg/ha for maize, and 0.5 to 1 kg/ha for cowpeas. As well as enhancing food security, carbon sequestration has the potential to offset fossil-fuel emissions by 0.4 to 1.2 gigatons of carbon per year, or 5 to 15% of the global fossil-fuel emissions.

  5. 76 FR 13666 - Pitney Bowes, Inc., Mailing Solutions Management, Global Engineering Group, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...Mailing Solutions Management, Global Engineering Group, Including On-Site...Mailing Solutions Management Division, Engineering Quality Assurance...Mailing Solutions Management, Global Engineering Group, including...

  6. A framework for identifying carbon hotspots and forest management drivers.

    PubMed

    Timilsina, Nilesh; Escobedo, Francisco J; Cropper, Wendell P; Abd-Elrahman, Amr; Brandeis, Thomas J; Delphin, Sonia; Lambert, Samuel

    2013-01-15

    Spatial analyses of ecosystem system services that are directly relevant to both forest management decision making and conservation in the subtropics are rare. Also, frameworks that identify and map carbon stocks and corresponding forest management drivers using available regional, national, and international-level forest inventory datasets could provide insights into key forest structural characteristics and management practices that are optimal for carbon storage. To address this need we used publicly available USDA Forest Service Forest Inventory and Analysis data and spatial analyses to develop a framework for mapping "carbon hotspots" (i.e. areas of significantly high tree and understory aboveground carbon stocks) across a range of forest types using the state of Florida, USA as an example. We also analyzed influential forest management variables (e.g. forest types, fire, hurricanes, tenure, management activities) using generalized linear mixed modeling to identify drivers associated with these hotspots. Most of the hotspots were located in the northern third of the state some in peri-urban areas, and there were no identifiable hotspots in South Florida. Forest silvicultural treatments (e.g. site preparation, thinning, logging, etc) were not significant predictors of hotspots. Forest types, site quality, and stand age were however significant predictors. Higher site quality and stand age increased the probability of forests being classified as a hotspot. Disturbance type and time since disturbance were not significant predictors in our analyses. This framework can use globally available forest inventory datasets to analyze and map ecosystems service provision areas and bioenergy supplies and identify forest management practices that optimize these services in forests. PMID:23171606

  7. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  8. Terrestrial nitrogen–carbon cycle interactions at the global scale

    PubMed Central

    Zaehle, S.

    2013-01-01

    Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen–carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001–2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr?1 (1.9 Pg C yr?1), of which 10 Tg N yr?1 (0.2 Pg C yr?1) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen–carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr?1 per 1°C degree climate warming) will add an important long-term climate forcing. PMID:23713123

  9. Soil organic carbon under pasture management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pastures are a significant land use in many eastern states of the USA (total of 31 Mha). Soil organic carbon (SOC) is generally greater under pastures than under row-cropping systems, and often equally as great as under forested land. There is great potential to improve the management of pastures,...

  10. TECHNOLOGICAL CONSIDERATIONS FOR PLANNING THE GLOBAL CARBON FUTURE

    EPA Science Inventory

    The atmospheric level of carbon dioxide (CO2) is the dominant variable in the anthropogenic influence of future global climate change. Thus, it is critical to understand the long-term factors affecting its level, especially the longer-range technological considerations. Most rece...

  11. Phase relation between global temperature and atmospheric carbon dioxide

    E-print Network

    Stallinga, Peter

    2013-01-01

    The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause for temperature variations. In this paper we discuss this assumption and analyze it on basis of bi-centenary measurements and using a relaxation model which causes phase shifts and delays.

  12. Global Warming: Carbon Dioxide and the Greenhouse Effect

    NSDL National Science Digital Library

    FRONTLINE/NOVA

    This video segment demonstrates carbon dioxide's role in the greenhouse effect and explains how increasing concentrations of C02 in the atmosphere may be contributing to global warming. Video includes an unusual demonstration of C02's heat-absorbing properties, using infrared film, a researcher's face, and a stream of C02 between them.

  13. The age of river-transported carbon: A global perspective

    NASA Astrophysics Data System (ADS)

    Marwick, Trent R.; Tamooh, Fredrick; Teodoru, Cristian R.; Borges, Alberto V.; Darchambeau, François; Bouillon, Steven

    2015-02-01

    The role played by river networks in regional and global carbon (C) budgets is receiving increasing attention. Despite the potential of radiocarbon measurements (?14C) to elucidate sources and cycling of different riverine C pools, there remain large regions for which no data are available and no comprehensive attempts to synthesize the available information and examine global patterns in the 14C content of different riverine C pools. Here we present new 14C data on particulate and dissolved organic C (POC and DOC) from six river basins in tropical and subtropical Africa and compiled >1400 literature ?14C data and ancillary parameters from rivers globally. Our analysis reveals a consistent pattern whereby POC is progressively older in systems carrying higher sediment loads, coinciding with a lower organic carbon content. At the global scale, this pattern leads to a proposed global median ?14C signature of -203‰, corresponding to an age of ~1800 years B.P. For DOC exported to the coastal zone, we predict a modern (decadal) age (?14C = +22 to +46‰), and paired data sets confirm that riverine DOC is generally more recent in origin than POC—in contrast to the situation in ocean environments. Weathering regimes complicate the interpretation of 14C ages of dissolved inorganic carbon, but the available data favor the hypothesis that in most cases, more recent organic C is preferentially mineralized.

  14. Carbon Management working with the

    E-print Network

    Reading, University of

    fine tuning 65 Appendix C12: UoR20 Greenlands BMS 66 Appendix C13: UoR21 IT management software 67 Appendix C14: UoR30 Free cooling ­ telephone exchange 68 Appendix C15: UoR31 Data centre cooling control 69 Appendix C16: UoR32 Heating controls 70 Appendix C17: UoR33 Virtualisation/thin computer 71 Appendix C18

  15. The career capital of managers with global careers

    Microsoft Academic Search

    Vesa Suutari; Kristiina Mäkelä

    2007-01-01

    Purpose – The purpose of this paper is to address the research question of “How does a global career involving multiple international relocations influence the career capital of an individual manager?”, and to examine the typical career-capital-related characteristics, drivers and outcomes associated with global careers. The importance of understanding the careers of global leaders, whose work paths typically include various

  16. Global vulnerability of peatlands to fire and carbon loss

    NASA Astrophysics Data System (ADS)

    Turetsky, Merritt R.; Benscoter, Brian; Page, Susan; Rein, Guillermo; van der Werf, Guido R.; Watts, Adam

    2015-01-01

    Globally, the amount of carbon stored in peats exceeds that stored in vegetation and is similar in size to the current atmospheric carbon pool. Fire is a threat to many peat-rich biomes and has the potential to disturb these carbon stocks. Peat fires are dominated by smouldering combustion, which is ignited more readily than flaming combustion and can persist in wet conditions. In undisturbed peatlands, most of the peat carbon stock typically is protected from smouldering, and resistance to fire has led to a build-up of peat carbon storage in boreal and tropical regions over long timescales. But drying as a result of climate change and human activity lowers the water table in peatlands and increases the frequency and extent of peat fires. The combustion of deep peat affects older soil carbon that has not been part of the active carbon cycle for centuries to millennia, and thus will dictate the importance of peat fire emissions to the carbon cycle and feedbacks to the climate.

  17. Methane hydrate in the global organic carbon cycle

    USGS Publications Warehouse

    Kvenvolden, K.A.

    2002-01-01

    The global occurrence of methane hydrate in outer continental margins and in polar regions, and the magnitude of the amount of methane sequestered in methane hydrate suggest that methane hydrate is an important component in the global organic carbon cycle. Various versions of this cycle have emphasized the importance of methane hydrate, and in the latest version the role of methane hydrate is considered to be analogous to the workings of an electrical circuit. In this circuit the methane hydrate is a condenser and the consequences of methane hydrate dissociation are depicted as a resistor and inductor, reflecting temperature change and changes in earth surface history. These consequences may have implications for global change including global climate change.

  18. Timing of carbon emissions from global forest clearance

    NASA Astrophysics Data System (ADS)

    Mason Earles, J.; Yeh, Sonia; Skog, Kenneth E.

    2012-09-01

    Land-use change, primarily from conventional agricultural expansion and deforestation, contributes to approximately 17% of global greenhouse-gas emissions. The fate of cleared wood and subsequent carbon storage as wood products, however, has not been consistently estimated, and is largely ignored or oversimplified by most models estimating greenhouse-gas emissions from global land-use conversion. Here, we estimate the fate of cleared wood and timing of atmospheric carbon emissions for 169 countries. We show that 30 years after forest clearance the percentage of carbon stored in wood products and landfills ranges from about 0% to 62% globally. For 90 countries, less than 5% of carbon remains after 30 years, whereas 34 countries have more than 25% in storage. Higher storage rates result primarily from a greater percentage of long-lived products such as wood panels and lumber, and tend to occur in countries with predominantly temperate forests. Alternatively, lower storage rates are associated with a greater fraction of non-merchantable wood and more wood used for energy and paper production, which tend to occur in countries with predominantly tropical forests. Hence, the country and fate of cleared wood can considerably affect the timing of greenhouse-gas emissions from forest clearance.

  19. Can reducing black carbon emissions counteract global warming?

    SciTech Connect

    Tami C. Bond; Haolin Sun [University of Illinois at Urbana-Champaign, Urbana, IL (US)

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. Black carbon is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The authors review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. It is argued that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. Results from published climate-modeling studies are synthesized to obtain a global warming potential for black carbon relative to that of CO{sub 2} (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. It is found that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, a role for black carbon in climate mitigation strategies is proposed that is consistent with the apparently conflicting arguments raised during the discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement. 31 refs., 3 figs., 1 tab.

  20. Evaluation of NOAA Carbon Tracker Global Carbon Dioxide Products

    NASA Astrophysics Data System (ADS)

    Nayak, R. K.; Deepthi, E. N.; Dadhwal, V. K.; Rao, K. H.; Dutt, C. B. S.

    2014-11-01

    Inter-comparison between National Oceanic and Atmospheric Administration Carbon Tracker (NOAACT) CO2 with satellite observations were carried out in this study. The satellite observations used here are mid troposphere CO2 based on Atmosphere Infrared Sounder (AIRS) on board NASA's Aqua and lower troposphere CO2 based on Greenhouse-gas Observing Satellite (GOSAT) of Japanese Aerospace Exploration Agency (JAXA). There exists good agreement between the seasonal cycles as estimated by NOAACT and Satellite observations. The mid troposphere CO2 exhibits distinct annual cycle in the northern hemisphere with positive detrended value during January-June and negative values during July-December. In the southern hemisphere, the annual cycle is less prominent and opposite phase with respect to the northern hemisphere. The lower tropospheric CO2 in both the hemispheres exhibits mixed signature of annual and semi-annual cycle. The amplitudes of the variability are significantly larger in the northern hemisphere than the southern hemisphere. The inter-annual variability of annual growth rates from the NOAACT is comparable with satellite observations however NOAACT could not resolved the spatial patterns of long-term growth rate as observed in the satellite observations.

  1. Costs and global impacts of black carbon abatement strategies

    NASA Astrophysics Data System (ADS)

    Rypdal, Kristin; Rive, Nathan; Berntsen, Terje K.; Klimont, Zbigniew; Mideksa, Torben K.; Myhre, Gunnar; Skeie, Ragnhild B.

    2009-09-01

    Abatement of particulate matter has traditionally been driven by health concerns rather than its role in global warming. Here we assess future abatement strategies in terms of how much they reduce the climate impact of black carbon (BC) and organic carbon (OC) from contained combustion. We develop global scenarios which take into account regional differences in climate impact, costs of abatement and ability to pay, as well as both the direct and indirect (snow-albedo) climate impact of BC and OC. To represent the climate impact, we estimate consistent region-specific values of direct and indirect global warming potential (GWP) and global temperature potential (GTP). The indirect GWP has been estimated using a physical approach and includes the effect of change in albedo from BC deposited on snow. The indirect GWP is highest in the Middle East followed by Russia, Europe and North America, while the total GWP is highest in the Middle East, Africa and South Asia. We conclude that prioritizing emission reductions in Asia represents the most cost-efficient global abatement strategy for BC because Asia is (1) responsible for a large share of total emissions, (2) has lower abatement costs compared to Europe and North America and (3) has large health cobenefits from reduced PM10 emissions.

  2. Do Forests Have a Say in Global Carbon Markets for Climate Stabilization Policy ? Massimo Tavoni1

    E-print Network

    on global warming and on the potential damages it can spur. This has strengthened the need for concertedDo Forests Have a Say in Global Carbon Markets for Climate Stabilization Policy ? Massimo Tavoni1 sequestration could be large enough to influence carbon prices in a global carbon market. Clearly, if prices

  3. 2012 Global Management Education Graduate Survey. Survey Report

    ERIC Educational Resources Information Center

    Leach, Laura

    2012-01-01

    Each year for the past 13 years, the Graduate Management Admission Council (GMAC) has conducted a survey of graduate management education students in their final year of business school. The Global Management Education Graduate Survey is distributed to students at participating schools. The survey allows students to express their opinions about…

  4. Global Management Education Graduate Survey, 2011. Survey Report

    ERIC Educational Resources Information Center

    Schoenfeld, Gregg

    2011-01-01

    Each year for the past 12 years, the Graduate Management Admission Council[R] (GMAC[R]) has conducted a survey of graduate management education students in their final year of business school. This Global Management Education Graduate Survey is distributed to students at participating business schools. The survey allows students to express their…

  5. Uncertainty in atmospheric CO? predictions from a parametric uncertainty analysis of a global carbon cycle model

    E-print Network

    Holian, Gary L.; Sokolov, Andrei P.; Prinn, Ronald G.

    Key uncertainties in the global carbon cycle are explored with a 2-D model for the oceanic carbon sink. By calibrating the key parameters of this ocean carbon sink model to widely referenced values, it produces an average ...

  6. Lokales Denken, globales Handeln. Interkulturelle Zusammenarbeit und globales Management

    Microsoft Academic Search

    Geert Hofstede; Gert Jan Hofstede

    2006-01-01

    Geert Hofstedes Untersuchungen zum Thema kulturelle Unterschiede erschienen erstmals 1980 unter dem Titel „Culture’s Consequences“.\\u000a Das Buch „Lokales Denken, globales Handeln“ ist eine von ihm und seinem Sohn Gert Jan Hofstede komplett überarbeitete Version\\u000a und richtet sich an den „intelligenten Laien“.

  7. Theoretical analysis of the global land carbon cycle: what determines the trajectory of future carbon uptake?

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Smith, M. J.; Luo, Y.; Leite, M.; Agusto, F.; Chen, B.; Hoffman, F. M.; Medlyn, B. E.; Rasmussen, M.

    2013-12-01

    The global land surface has taken up about 29% of anthropogenic CO2 emissions since preindustrial times. Yet it remains uncertain whether this significant buffer to the effects of anthropogenic climate change will continue in future. Some models predict that the global land biosphere will remain a carbon sink by the end of this century, but others predict it to become a major source. It is therefore important to understand what causes this divergence in predictions. In this presentation, we combined numerical and mathematical analysis to reveal general behaviour of global land models. Our analysis is based on the recognition that the terrestrial carbon cycle generally can be mathematically expressed by a system of first-order linear ordinary differential equations subject to an initial condition as follows: dC/dt = x(t)AC+BU(t) with C(t=0)=C0 where C(t) is the C pool size, A is the C transfer matrix, U is the photosynthetic input, B is a vector of partitioning coefficients, C0 is the initial value of the C pool, and x is an environmental scalar. In this equation, the linear carbon transfer among pools within one ecosystem is represented by matrix A and vector B, and the nonlinearity of environmental influences is represented by environmental scalar x(t) on carbon transfer and U(t) for carbon influx. We investigate how important variation in parameters controlling terrestrial carbon cycling are for three key predictions of the dynamics of future land carbon: the maximum carbon uptake, Fmax, the number of years it takes to reach Fmax, tmax, and the year in which the land biosphere changes from a carbon sink to a source, t1 (if it happens). The parameters included the sensitivity of net primary production to atmospheric [CO2], ?, the temperature sensitivity of soil carbon decomposition, Q10, and the sensitivity of global mean land surface to atmospheric [CO2],?. Our theoretical analyses reveal that a theoretical maximal amount carbon accumulated by land biosphere can be estimated from Fmax and the residence times of the different carbon pools, and that an estimate on the time it takes for the system to approach its new equilibrium can be obtained from the residence time of the slowest pool. Our numerical analyses reveal that a 3-D parameter space can bound the range of land carbon uptake trajectories from 1850 to 2100 predicted by all Earth System Models for the 5th assessment report of the IPCC. The maximal amount of carbon accumulated, tmax and t1 increases with ? and decreases with Q10 and ?. The sensitivities of all three model predictions to ? and Q10 increase with ? .

  8. Derived crop management data for the LandCarbon Project

    USGS Publications Warehouse

    Schmidt, Gail; Liu, Shuguang; Oeding, Jennifer

    2011-01-01

    The LandCarbon project is assessing potential carbon pools and greenhouse gas fluxes under various scenarios and land management regimes to provide information to support the formulation of policies governing climate change mitigation, adaptation and land management strategies. The project is unique in that spatially explicit maps of annual land cover and land-use change are created at the 250-meter pixel resolution. The project uses vast amounts of data as input to the models, including satellite, climate, land cover, soil, and land management data. Management data have been obtained from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) and USDA Economic Research Service (ERS) that provides information regarding crop type, crop harvesting, manure, fertilizer, tillage, and cover crop (U.S. Department of Agriculture, 2011a, b, c). The LandCarbon team queried the USDA databases to pull historic crop-related management data relative to the needs of the project. The data obtained was in table form with the County or State Federal Information Processing Standard (FIPS) and the year as the primary and secondary keys. Future projections were generated for the A1B, A2, B1, and B2 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) scenarios using the historic data values along with coefficients generated by the project. The PBL Netherlands Environmental Assessment Agency (PBL) Integrated Model to Assess the Global Environment (IMAGE) modeling framework (Integrated Model to Assess the Global Environment, 2006) was used to develop coefficients for each IPCC SRES scenario, which were applied to the historic management data to produce future land management practice projections. The LandCarbon project developed algorithms for deriving gridded data, using these tabular management data products as input. The derived gridded crop type, crop harvesting, manure, fertilizer, tillage, and cover crop products are used as input to the LandCarbon models to represent the historic and the future scenario management data. The overall algorithm to generate each of the gridded management products is based on the land cover and the derived crop type. For each year in the land cover dataset, the algorithm loops through each 250-meter pixel in the ecoregion. If the current pixel in the land cover dataset is an agriculture pixel, then the crop type is determined. Once the crop type is derived, then the crop harvest, manure, fertilizer, tillage, and cover crop values are derived independently for that crop type. The following is the overall algorithm used for the set of derived grids. The specific algorithm to generate each management dataset is discussed in the respective section for that dataset, along with special data handling and a description of the output product.

  9. Meeting global health challenges through operational research and management science

    PubMed Central

    2011-01-01

    Abstract This paper considers how operational research and management science can improve the design of health systems and the delivery of health care, particularly in low-resource settings. It identifies some gaps in the way operational research is typically used in global health and proposes steps to bridge them. It then outlines some analytical tools of operational research and management science and illustrates how their use can inform some typical design and delivery challenges in global health. The paper concludes by considering factors that will increase and improve the contribution of operational research and management science to global health. PMID:21897489

  10. The impact of the permafrost carbon feedback on global climate

    NASA Astrophysics Data System (ADS)

    Schaefer, Kevin; Lantuit, Hugues; Romanovsky, Vladimir E.; Schuur, Edward A. G.; Witt, Ronald

    2014-08-01

    Degrading permafrost can alter ecosystems, damage infrastructure, and release enough carbon dioxide (CO2) and methane (CH4) to influence global climate. The permafrost carbon feedback (PCF) is the amplification of surface warming due to CO2 and CH4 emissions from thawing permafrost. An analysis of available estimates PCF strength and timing indicate 120 ± 85 Gt of carbon emissions from thawing permafrost by 2100. This is equivalent to 5.7 ± 4.0% of total anthropogenic emissions for the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathway (RCP) 8.5 scenario and would increase global temperatures by 0.29 ± 0.21 °C or 7.8 ± 5.7%. For RCP4.5, the scenario closest to the 2 °C warming target for the climate change treaty, the range of cumulative emissions in 2100 from thawing permafrost decreases to between 27 and 100 Gt C with temperature increases between 0.05 and 0.15 °C, but the relative fraction of permafrost to total emissions increases to between 3% and 11%. Any substantial warming results in a committed, long-term carbon release from thawing permafrost with 60% of emissions occurring after 2100, indicating that not accounting for permafrost emissions risks overshooting the 2 °C warming target. Climate projections in the IPCC Fifth Assessment Report (AR5), and any emissions targets based on those projections, do not adequately account for emissions from thawing permafrost and the effects of the PCF on global climate. We recommend the IPCC commission a special assessment focusing on the PCF and its impact on global climate to supplement the AR5 in support of treaty negotiation.

  11. Global carbon dioxide emission to the atmosphere by volcanoes

    Microsoft Academic Search

    S. N. Williams; S. J. Schaefer; M. L. Calvache V; D. Lopez

    1992-01-01

    Global emission of carbon dioxide by subaerial volcanoes is calculated, using COâ\\/SOâ from volcanic gas analyses and SOâ flux, to be 34 {plus minus} 24 à 10¹² g COâ\\/yr from passive degassing and 31 {plus minus} 22 à 10¹² g COâ\\/yr from eruptions. Volcanic COâ presently represents only 0.22% of anthropogenic emissions but may have contributed to significant greenhouse' effects

  12. Tropical wetlands: A missing link in the global carbon cycle?

    NASA Astrophysics Data System (ADS)

    Sjögersten, Sofie; Black, Colin R.; Evers, Stephanie; Hoyos-Santillan, Jorge; Wright, Emma L.; Turner, Benjamin L.

    2014-12-01

    Tropical wetlands are not included in Earth system models, despite being an important source of methane (CH4) and contributing a large fraction of carbon dioxide (CO2) emissions from land use, land use change, and forestry in the tropics. This review identifies a remarkable lack of data on the carbon balance and gas fluxes from undisturbed tropical wetlands, which limits the ability of global change models to make accurate predictions about future climate. We show that the available data on in situ carbon gas fluxes in undisturbed forested tropical wetlands indicate marked spatial and temporal variability in CO2 and CH4 emissions, with exceptionally large fluxes in Southeast Asia and the Neotropics. By upscaling short-term measurements, we calculate that approximately 90 ± 77 Tg CH4 year-1 and 4540 ± 1480 Tg CO2 year-1 are released from tropical wetlands globally. CH4 fluxes are greater from mineral than organic soils, whereas CO2 fluxes do not differ between soil types. The high CO2 and CH4 emissions are mirrored by high rates of net primary productivity and litter decay. Net ecosystem productivity was estimated to be greater in peat-forming wetlands than on mineral soils, but the available data are insufficient to construct reliable carbon balances or estimate gas fluxes at regional scales. We conclude that there is an urgent need for systematic data on carbon dynamics in tropical wetlands to provide a robust understanding of how they differ from well-studied northern wetlands and allow incorporation of tropical wetlands into global climate change models.

  13. Recent variability of the global ocean carbon sink

    NASA Astrophysics Data System (ADS)

    Landschützer, P.; Gruber, N.; Bakker, D. C. E.; Schuster, U.

    2014-09-01

    We present a new observation-based estimate of the global oceanic carbon dioxide (CO2) sink and its temporal variation on a monthly basis from 1998 through 2011 and at a spatial resolution of 1°×1°. This sink estimate rests upon a neural network-based mapping of global surface ocean observations of the partial pressure of CO2 (pCO2) from the Surface Ocean CO2 Atlas database. The resulting pCO2 has small biases when evaluated against independent observations in the different ocean basins, but larger randomly distributed differences exist particularly in high latitudes. The seasonal climatology of our neural network-based product agrees overall well with the Takahashi et al. (2009) climatology, although our product produces a stronger seasonal cycle at high latitudes. From our global pCO2 product, we compute a mean net global ocean (excluding the Arctic Ocean and coastal regions) CO2 uptake flux of -1.42 ± 0.53 Pg C yr-1, which is in good agreement with ocean inversion-based estimates. Our data indicate a moderate level of interannual variability in the ocean carbon sink (±0.12 Pg C yr-1, 1?) from 1998 through 2011, mostly originating from the equatorial Pacific Ocean, and associated with the El Niño-Southern Oscillation. Accounting for steady state riverine and Arctic Ocean carbon fluxes our estimate further implies a mean anthropogenic CO2 uptake of -1.99 ± 0.59 Pg C yr-1 over the analysis period. From this estimate plus the most recent estimates for fossil fuel emissions and atmospheric CO2 accumulation, we infer a mean global land sink of -2.82 ± 0.85 Pg C yr-1 over the 1998 through 2011 period with strong interannual variation.

  14. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget

    Microsoft Academic Search

    J. J. Cole; Y. T. Prairie; N. F. Caraco; W. H. McDowell; L. J. Tranvik; R. G. Striegl; C. M. Duarte; P. Kortelainen; J. A. Downing; J. J. Middelburg; J. Melack

    2007-01-01

    Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes,\\u000a rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at\\u000a either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport\\u000a for a variety of aquatic systems, we have constructed

  15. Some aspects of understanding changes in the global carbon cycle

    NASA Technical Reports Server (NTRS)

    Emanuel, W. R.; Moore, B., III; Shugart, H. H.

    1984-01-01

    The collective character of carbon exchanges between the atmosphere and other pools is partially revealed by comparing the record of CO2 concentration beginning in 1958 with estimates of the releases from fossil fuels during this period. In analyzing the secular increase in CO2 concentration induced by fossil fuel use, the atmosphere is generally treated as a single well-mixed reservoir; however, to study finer structure in the CO2 records, the influence of atmospheric circulation must be more carefully considered. The rate of carbon uptake by the oceans, the primary sink for fossil fuel CO2, is assessed more reliably than influences on the atmosphere due to interactions with other pools. Models of the global carbon cycle are being substantially refined while data that reflect the response of the cycle to fossil fuel use and other perturbations are being extended.

  16. Global Carbon Budget from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    The Global Carbon Project (GCP) was established in 2001 in recognition of the scientific challenge and critical importance of the carbon cycle for Earth's sustainability. The growing realization that anthropogenic climate change is a reality has focused the attention of the scientific community, policymakers and the general public on the rising concentration of greenhouse gases, especially carbon dioxide (CO2) in the atmosphere, and on the carbon cycle in general. Initial attempts, through the United Nations Framework Convention on Climate Change and its Kyoto Protocol, are underway to slow the rate of increase of greenhouse gases in the atmosphere. These societal actions require a scientific understanding of the carbon cycle, and are placing increasing demands on the international science community to establish a common, mutually agreed knowledge base to support policy debate and action. The Global Carbon Project is responding to this challenge through a shared partnership between the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme on Global Environmental Change (IHDP), the World Climate Research Programme (WCRP) and Diversitas. This partnership constitutes the Earth Systems Science Partnership (ESSP). This CDIAC collection includes datasets, images, videos, presentations, and archived data from previous years.

  17. Global estimate of net annual carbon flow to phenylpropanoid metabolism

    SciTech Connect

    Walton, A.B.; Norman, E.G.; Turpin, D.H. (Univ. of British Columbia, Vancouver (Canada))

    1993-05-01

    The steady increase in the concentration of CO[sub 2] in the atmosphere is the focus of renewed interest in the global carbon cycle. Current research is centered upon modeling the effects of the increasing CO[sub 2] concentrations, and thus global warning, on global plant homeostasis. It has been estimated that the annual net primary production (NPP) values for terrestrial and oceanic biomes are 59.9 and 35 Pg C-yr[sup [minus]1], respectively (Melillo et al., 1990). Based on these NPP values, we have estimated the annual C flow to phenlpropanoid metabolism. In our calculation, lignin was used as a surrogate for phenylpropanoid compounds, as lignin is the second most abundant plant polymer. This approach means that our estimate defines the lower limit of C flow to phenylpropanoid metabolism. Each biome was considered separately to determine the percent of the NPP which was directed to the biosynthesis of leaves, stems/branches, and roots. From published values of the lignin content of these organs, the total amount of C directed to the biosynthesis of lignin in each biome was determined. This was used to obtain a global value. Implications of these estimates will be discussed with reference to plant carbon and nitrogen metabolism.

  18. Global Biogeochemistry Models and Global Carbon Cycle Research at Lawrence Livermore National Laboratory

    SciTech Connect

    Covey, C; Caldeira, K; Guilderson, T; Cameron-Smith, P; Govindasamy, B; Swanston, C; Wickett, M; Mirin, A; Bader, D

    2005-05-27

    The climate modeling community has long envisioned an evolution from physical climate models to ''earth system'' models that include the effects of biology and chemistry, particularly those processes related to the global carbon cycle. The widely reproduced Box 3, Figure 1 from the 2001 IPCC Scientific Assessment schematically describes that evolution. The community generally accepts the premise that understanding and predicting global and regional climate change requires the inclusion of carbon cycle processes in models to fully simulate the feedbacks between the climate system and the carbon cycle. Moreover, models will ultimately be employed to predict atmospheric concentrations of CO{sub 2} and other greenhouse gases as a function of anthropogenic and natural processes, such as industrial emissions, terrestrial carbon fixation, sequestration, land use patterns, etc. Nevertheless, the development of coupled climate-carbon models with demonstrable quantitative skill will require a significant amount of effort and time to understand and validate their behavior at both the process level and as integrated systems. It is important to consider objectively whether the currently proposed strategies to develop and validate earth system models are optimal, or even sufficient, and whether alternative strategies should be pursued. Carbon-climate models are going to be complex, with the carbon cycle strongly interacting with many other components. Off-line process validation will be insufficient. As was found in coupled atmosphere-ocean GCMs, feedbacks between model components can amplify small errors and uncertainties in one process to produce large biases in the simulated climate. The persistent tropical western Pacific Ocean ''double ITCZ'' and upper troposphere ''cold pole'' problems are examples. Finding and fixing similar types of problems in coupled carbon-climate models especially will be difficult, given the lack of observations required for diagnosis and validation of biogeochemical processes.

  19. Globalization--Education and Management Agendas

    ERIC Educational Resources Information Center

    Cuadra-Montiel, Hector, Ed.

    2012-01-01

    Chapters in this book include: (1) Internationalization and Globalization in Higher Education (Douglas E. Mitchell and Selin Yildiz Nielsen); (2) Higher Educational Reform Values and the Dilemmas of Change: Challenging Secular Neo-Liberalism (James Campbell); (3) "Red Light" in Chile: Parents Participating as Consumers of Education Under Global…

  20. Forest management and agroforestry to sequester and conserve atmospheric carbon dioxide

    SciTech Connect

    Schriwder, P.E.; Dixon, R.K.; Winjum, J.K.

    1993-01-01

    As part of the Global Change Research Program of the United States Environmental Protection Agency (USEPA), an assessment was initiated in 1990 to evaluate forest establishment and management options to sequester carbon and reduce the accumulation of greenhouse gases in the atmosphere. Three specific objectives are to: identify site-suitable technologies and practices that could be utilized to manage forests and agroforestry systems to sequester and conserve carbon; assess available data on site-level costs of promising forest and agroforestry management practices; evaluate estimates of technically suitable land in forested nations and biomes of the world to help meet the Noordwijk forestation targets.

  1. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    SciTech Connect

    Post, W.M. III

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

  2. Financial Risk Management in a Volatile Global Environment

    Microsoft Academic Search

    Francis X. Diebold; Anthony M. Santomero

    1999-01-01

    The virtual collapse of several Asian markets has triggered a series of aftershocks in the global financial markets. From the alleged contagion that spread the crisis to Russia and South America to the de facto collapse of Long-Term Capital Management (LTCM), the repercussions of these events have led to endless debate. Even as participants in the global marketplace continue to

  3. POLICY FRAMEWORK AND SYSTEMS MANAGEMENT OF GLOBAL CLIMATE CHANGE

    E-print Network

    Paris-Sud XI, Université de

    1.4.7.0. POLICY FRAMEWORK AND SYSTEMS MANAGEMENT OF GLOBAL CLIMATE CHANGE Ha-Duong, M: Climate Change, Public Policy, Decision under Controversy, Global Commons, History, Negotiations, Kyoto quantitative targets 5. Concluding remarks Summary Climate change is representative of a general class

  4. Progress and challenges to the global waste management system.

    PubMed

    Singh, Jagdeep; Laurenti, Rafael; Sinha, Rajib; Frostell, Björn

    2014-09-01

    Rapid economic growth, urbanization and increasing population have caused (materially intensive) resource consumption to increase, and consequently the release of large amounts of waste to the environment. From a global perspective, current waste and resource management lacks a holistic approach covering the whole chain of product design, raw material extraction, production, consumption, recycling and waste management. In this article, progress and different sustainability challenges facing the global waste management system are presented and discussed. The study leads to the conclusion that the current, rather isolated efforts, in different systems for waste management, waste reduction and resource management are indeed not sufficient in a long term sustainability perspective. In the future, to manage resources and wastes sustainably, waste management requires a more systems-oriented approach that addresses the root causes for the problems. A specific issue to address is the development of improved feedback information (statistics) on how waste generation is linked to consumption. PMID:24938296

  5. Understanding Sequestration as a Means of Carbon Management Howard Herzog

    E-print Network

    difficult. C Carbon sequestration provides an alternate While many of the carbon management and nuclear Carbon sequestration is happening today. As part about climate change, the story is very different has imposed a carbon sequestration. They include enhancing natural tax of about $50 per tonne of CO

  6. A LEO Hyperspectral Mission Implementation for Global Carbon Cycle Observations

    NASA Technical Reports Server (NTRS)

    Gervin, Janette C.; Esper, Jaime; McClain, Charles R.; Hall, Forrest G.; Middleton, Elizabeth M.; Gregg, Watson W.; Mannino, Antonio; Knox, Robert G.; Huemmrich, K. Fred

    2004-01-01

    For both terrestrial and ocean carbon cycle science objectives, high resolution (less than l0 nm) imaging spectrometers capable of acquiring multiple regional to global scale observations per day should enable the development of new remote sensing measurements for important but as yet unobservable variables, with the overall goal of linking both terrestrial and ocean carbon cycle processes to climate variability. For terrestrial research, accurate estimates of carbon, water and energy (CWE) exchange between the terrestrial biosphere and atmosphere a needed to id- the geographical locations and temporal dynamics of carbon sources/sinks and to improve regional climate models and climate change assessments. It is an enormous challenge to estimate CWE exchange from the infrequent temporal coverage and sparse spectral information provided by most single polar-orbiting, earth-looking satellite. The available satellite observations lack a sufficient number of well-placed narrow bands from which to derive spectral indices that capture vegetation responses to stress conditions associated with down-regulation of photosynthesis. Physiological status can best be assessed with spectral indices based on continuous, narrow bands in the visible/near infrared spectra, as can seasonal and annual terrestrial productivity. For coastal and ocean constituents, narrow-band observations in the ultraviolet and visible are essential to investigate the variability, dynamics and biogeochemical cycles of the world's coastal and open ocean regions, which will in turn help in measuring ocean productivity and predicting the variability of ocean carbon uptake and its role in climate change.

  7. Propagation of uncertainty in carbon emission scenarios through the global carbon cycle

    SciTech Connect

    Keller, A.A.; Goldstein, R.A. (Electric Power Research Inst., Palo Alto, CA (United States))

    1994-09-01

    The authors used the GLOCO model, which is a carbon cycling model that considers seven terrestrial biomes, two oceans and one atmosphere, to evaluate the rise in atmospheric CO[sub 2] concentration, (pCO[sub 2]) and the partitioning of carbon to the global compartments (ocean, atmosphere and terrestrial) as a function of time for a number of possible anthropogenic carbon emission scenarios, based on different energy policies as developed by the Energy Modeling Forum (EMF-12). The authors then evaluated the possible uncertainty in carbon emission scenarios and the propagation of this uncertainty in carbon emission scenarios and the propagation of this uncertainty throughout the model to obtain an envelope for the rise in pCO[sub 2]. Large fluctuations in the input signal are smoothed by the carbon cycle, resulting in more than a four-fold reduction in uncertainty in the output signal (pCO[sub 2]). In addition, they looked at the effect that other model variables have on the pCO[sub 2] envelope, specifically the ratio of carbon to nitrogen in the emissions. The carbon to nitrogen ratio (C:N) will vary throughout the next century depending on the mix on energy sources chosen. More nitrogen in the emissions can produce a cofertilization effect in the terrestrial biomes, which would lead to sequestration of additional carbon. The uncertainty in C:N will enlarge the pCO[sub 2] uncertainty envelope by up to 20 ppm.

  8. Assessment of carbon stores in tree biomass for two management scenarios in Russia

    NASA Astrophysics Data System (ADS)

    Shuman, Jacquelyn K.; Shugart, Herman H.; Krankina, Olga N.

    2013-12-01

    Accurate quantification of terrestrial carbon storage and its change is of key importance to improved understanding of global carbon dynamics. Forest management influences carbon sequestration and release patterns, and gap models are well suited for evaluating carbon storage. An individual-based gap model of forest dynamics, FAREAST, is applied across Russia to estimate aboveground carbon storage under management scenarios. Current biomass from inventoried forests across Russia is compared to model-based estimates and potential levels of biomass are estimated for a set of simplified forestry practices. Current carbon storage in eastern Russia was lower than for the northwest and south, and lower than model estimates likely due to high rates of disturbance. Model-derived carbon storage in all regions was not significantly different between the simulated ‘current’ and hypothetical ‘even-aged’ management strategies using rotations of 150 and 210 years. Simulations allowing natural maturation and harvest after 150 years show a significant increase in aboveground carbon in all regions. However, it is unlikely that forests would be left unharvested to 150 years of age to attain this condition. These applications indicate the value of stand simulators, applied over broad regions such as Russia, as tools to evaluate the effect of management regimes on aboveground carbon storage.

  9. Permafrost carbon-climate feedbacks accelerate global warming.

    PubMed

    Koven, Charles D; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles

    2011-09-01

    Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent. PMID:21852573

  10. Permafrost carbon-climate feedbacks accelerate global warming

    PubMed Central

    Koven, Charles D.; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles

    2011-01-01

    Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41–70 Tg CH4/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent. PMID:21852573

  11. Effects of land management on large trees and carbon stocks

    NASA Astrophysics Data System (ADS)

    Kauppi, P. E.; Birdsey, R. A.; Pan, Y.; Ihalainen, A.; Nöjd, P.; Lehtonen, A.

    2015-02-01

    Large trees are important and unique organisms in forests, providing ecosystem services including carbon dioxide removal from the atmosphere and long-term storage. Some reports have raised concerns about the global decline of large trees. Based on observations from two regions in Finland and three regions in the United States we report that trends of large trees during recent decades have been surprisingly variable among regions. In southern Finland, the growing stock volume of trees larger than 30 cm at breast height increased nearly five-fold during the second half of the 20th century, yet more recently ceased to expand. In the United States, large hardwood trees have become increasingly common in the Northeast since the 1950s, while large softwood trees declined until the mid 1990s as a consequence of harvests in the Pacific region, and then rebounded when harvesting there was reduced. We conclude that in the regions studied, the history of land use and forest management governs changes of the diameter-class distributions of tree populations. Large trees have significant benefits; for example, they can constitute a large proportion of the carbon stock and affect greatly the carbon density of forests. Large trees usually have deeper roots and long lifetimes. They affect forest structure and function and provide habitats for other species. An accumulating stock of large trees in existing forests may have negligible direct biophysical effects on climate through transpiration or forest albedo. Understanding changes in the demography of tree populations makes a contribution to estimating the past impact and future potential of forests in the global carbon budget and to assessing other ecosystem services of forests.

  12. Effects of land management on large trees and carbon stocks

    NASA Astrophysics Data System (ADS)

    Kauppi, P. E.; Birdsey, R. A.; Pan, Y.; Ihalainen, A.; Nöjd, P.; Lehtonen, A.

    2014-02-01

    Large trees are important and unique organisms in forests, providing ecosystem services including carbon dioxide removal from the atmosphere and long-term storage. There is concern about reports of global decline of big trees. Based on observations from Finland and the United States we report that trends of big trees during recent decades have been surprisingly variable among regions. In southern Finland, the growing stock volume of trees larger than 30 cm at breast height increased nearly five-fold during the second half of the 20th century, yet more recently ceased to expand. In the United States, large hardwood trees have become increasingly common since the 1950s, while large softwood trees declined until the mid 1990's as a consequence of harvests in the Pacific region, and then rebounded when harvesting there was reduced. We conclude that in the regions studied, the history of land use and forest management governs changes of tree populations especially with reference to large trees. Large trees affect greatly the carbon density of forests and usually have deeper roots and relatively lower mortality than small trees. An accumulating stock of large trees in forests may have negligible direct biophysical effects on climate because from changes in transpiration or forest albedo. Large trees have particular ecological importance and often constitute an unusually large proportion of biomass carbon stocks in a forest. Understanding the changes in big tree distributions in different regions of the world and the demography of tree populations makes a contribution to estimating the past impact and future potential of the role of forests in the global carbon budget.

  13. Expanding global forest management: An easy first proposal

    SciTech Connect

    Winjum, J.K.; Meganck, R.A.; Dixon, R.K.

    1993-01-01

    Interest is growing in the international community for a world treaty or protocol on forest management and protection. World leaders have become increasingly aware of the relationship between sustainable forest resources and healthy social, economic, and environmental conditions in all nations. As a result, international discussions toward a global forest agreement (GFA) are underway with the impetus stemming from a number of significant conditions related to global forests. The paper briefly reviews the status of the GFA and suggests an approach for expanding programs within forested nations to contribute to global forest management goals.

  14. Meta-Management System for GENI: Global Environment for

    E-print Network

    Ng, T. S. Eugene

    Meta-Management System for GENI GDD-06-37 GENI: Global Environment for Network Innovations April 20 to evolve rapidly. Certain aspects of the GENI architecture are not yet addressed at all, and, for those with others. #12;Meta-Management System for GENI April 20, 2007 This document is prepared by the Backbone

  15. Architectural Knowledge Management Practices in Agile Global Software Development

    E-print Network

    van Vliet, Hans

    performed at an agile global software development organization in which we interviewed 38 employees spread practices for architectural knowledge management in GSD are used in practice. The results show that the case study organization emphasizes architectural knowledge management practices that promote decentralization

  16. Global Mobility Management by Replicated Databases in Personal Communication Networks*

    E-print Network

    Leung, Kin K.

    - 1 - Global Mobility Management by Replicated Databases in Personal Communication Networks* Kin K for the management of PCN is to develop an efficient database architecture so that customer data can be readily}@att.com October 1, 1996 April 18, 1997 (revised) ABSTRACT This paper explores the use of replicated databases

  17. The effect of carbon credits on savanna land management and priorities for biodiversity conservation.

    PubMed

    Douglass, Lucinda L; Possingham, Hugh P; Carwardine, Josie; Klein, Carissa J; Roxburgh, Stephen H; Russell-Smith, Jeremy; Wilson, Kerrie A

    2011-01-01

    Carbon finance offers the potential to change land management and conservation planning priorities. We develop a novel approach to planning for improved land management to conserve biodiversity while utilizing potential revenue from carbon biosequestration. We apply our approach in northern Australia's tropical savanna, a region of global significance for biodiversity and carbon storage, both of which are threatened by current fire and grazing regimes. Our approach aims to identify priority locations for protecting species and vegetation communities by retaining existing vegetation and managing fire and grazing regimes at a minimum cost. We explore the impact of accounting for potential carbon revenue (using a carbon price of US$14 per tonne of carbon dioxide equivalent) on priority areas for conservation and the impact of explicitly protecting carbon stocks in addition to biodiversity. Our results show that improved management can potentially raise approximately US$5 per hectare per year in carbon revenue and prevent the release of 1-2 billion tonnes of carbon dioxide equivalent over approximately 90 years. This revenue could be used to reduce the costs of improved land management by three quarters or double the number of biodiversity targets achieved and meet carbon storage targets for the same cost. These results are based on generalised cost and carbon data; more comprehensive applications will rely on fine scale, site-specific data and a supportive policy environment. Our research illustrates that the duel objective of conserving biodiversity and reducing the release of greenhouse gases offers important opportunities for cost-effective land management investments. PMID:21935363

  18. The Effect of Carbon Credits on Savanna Land Management and Priorities for Biodiversity Conservation

    PubMed Central

    Douglass, Lucinda L.; Possingham, Hugh P.; Carwardine, Josie; Klein, Carissa J.; Roxburgh, Stephen H.; Russell-Smith, Jeremy; Wilson, Kerrie A.

    2011-01-01

    Carbon finance offers the potential to change land management and conservation planning priorities. We develop a novel approach to planning for improved land management to conserve biodiversity while utilizing potential revenue from carbon biosequestration. We apply our approach in northern Australia's tropical savanna, a region of global significance for biodiversity and carbon storage, both of which are threatened by current fire and grazing regimes. Our approach aims to identify priority locations for protecting species and vegetation communities by retaining existing vegetation and managing fire and grazing regimes at a minimum cost. We explore the impact of accounting for potential carbon revenue (using a carbon price of US$14 per tonne of carbon dioxide equivalent) on priority areas for conservation and the impact of explicitly protecting carbon stocks in addition to biodiversity. Our results show that improved management can potentially raise approximately US$5 per hectare per year in carbon revenue and prevent the release of 1–2 billion tonnes of carbon dioxide equivalent over approximately 90 years. This revenue could be used to reduce the costs of improved land management by three quarters or double the number of biodiversity targets achieved and meet carbon storage targets for the same cost. These results are based on generalised cost and carbon data; more comprehensive applications will rely on fine scale, site-specific data and a supportive policy environment. Our research illustrates that the duel objective of conserving biodiversity and reducing the release of greenhouse gases offers important opportunities for cost-effective land management investments. PMID:21935363

  19. ATS 760: Global Carbon Cycle 2 Credits http://ats760.atmos.colostate.edu

    E-print Network

    ATS 760: Global Carbon Cycle 2 Credits http://ats760.atmos.colostate.edu People are currently will conclude with a study of changes in carbon cycling in the past and future, including predictions by coupled of the material. #12;ATS 760: Global Carbon Cycle 2 Credits http://ats760.atmos.colostate.edu Dates Notes Readings

  20. Global Distribution of Total Inorganic Carbon and Total Alkalinity below the Deepest Winter Mixed Layer Depths

    SciTech Connect

    Goyet, C.; Healy, R.; Ryan, J.; Kozyr, A.

    2000-05-01

    Modeling the global ocean-atmosphere carbon dioxide system is becoming increasingly important to greenhouse gas policy. These models require initialization with realistic three-dimensional (3-D) oceanic carbon fields. This report presents an approach to establishing these initial conditions from an extensive global database of ocean carbon dioxide (CO{sub 2}) system measurements and well-developed interpolation methods.

  1. Estimation of Methane and Carbon Dioxide Surface Fluxes using a 3-D Global Atmospheric

    E-print Network

    Estimation of Methane and Carbon Dioxide Surface Fluxes using a 3-D Global Atmospheric Chemical@mit.edu Website: http://mit.edu/cgcs/ Printed on recycled paper #12;Estimation of Methane and Carbon Dioxide of Methane and Carbon Dioxide Surface Fluxes using a 3-D Global Atmospheric Chemical Transport Model by Yu

  2. Calibration and testing or models of the global carbon cycle

    SciTech Connect

    Emanuel, W.R.; Killough, G.G.; Shugart, H.H. Jr.

    1980-01-01

    A ten-compartment model of the global biogeochemical cycle of carbon is presented. The two less-abundant isotopes of carbon, /sup 13/C and /sup 14/C, as well as total carbon, are considered. The cycling of carbon in the ocean is represented by two well-mixed compartments and in the world's terrestrial ecosystems by seven compartments, five which are dynamic and two with instantaneous transfer. An internally consistent procedure for calibrating this model against an assumed initial steady state is discussed. In particular, the constraint that the average /sup 13/C//sup 12/C ratio in the total flux from the terrestrial component of the model to the atmosphere be equal to that of the steady-state atmosphere is investigated. With this additional constraint, the model provides a more accurate representation of the influence of the terrestrial system on the /sup 13/C//sup 12/C ratio of the atmosphere and provides an improved basis for interpreting records, such as tree rings, reflecting historical changes in this ratio.

  3. How strong is carbon cycle-climate feedback under global warming?

    E-print Network

    Maryland at College Park, University of

    How strong is carbon cycle-climate feedback under global warming? Haifeng Qian Advisor: Prof. Ning IPCC report, global warming was predicted under different CO2 scenarios. Under such warming conditions carbon cycle to the climate system, which means that under the global warming condition, the ecosystem

  4. Carbon monoxide fluxes over a managed mountain meadow

    NASA Astrophysics Data System (ADS)

    Hörtnagl, Lukas; Hammerle, Albin; Wohlfahrt, Georg

    2014-05-01

    Carbon monoxide (CO) is a toxic trace gas with an atmospheric lifetime of 1-3 months and an average atmospheric concentration of 100 ppb. CO mole fractions exhibit a pronounced seasonal cycle with lows in summer and highs in winter. Carbon monoxide has an indirect global warming potential by increasing the lifetime of methane (CH4), as the main sink of CO is the reaction with the hydroxyl (OH) radical, which in turn is also the main sink for CH4. Regarding the warming potential, it is estimated that 100 kg CO are equivalent to an emission of 5 kg CH4. In addition, carbon monoxide interferes with the building and destruction of ozone. Emission into and uptake from the atmosphere of CO are thus relevant for global climate and regional air quality. Sources and sinks of CO on a global scale are still highly uncertain, mainly due to general scarcity of empirical data and the lack of ecosystem-scale CO exchange measurements, i.e. CO flux data that encompass all sources and sinks within an ecosystem. Here we present eddy covariance CO fluxes over a managed temperate mountain grassland near Neustift, Austria, whereby volume mixing ratios of CO were quantified by a dual-laser mid-infrared quantum cascade laser (QCL). First analyses of fluxes captured in April 2013 showed that the QCL is well able to capture CO fluxes at the study site during springtime. During the same time period, both significant net uptake and deposition of CO were observed, with high emission and deposition fluxes on the order of +/- 5 nmol m-2 s-1, respectively. In addition, CO fluxes exhibited a clear diurnal cycle during certain time periods, indicating a continuous release or uptake of the compound with peak flux rates around noon. In this presentation, we will analyze 12 months of carbon monoxide fluxes between January and December 2013 with regard to possible abiotic and biotic drivers of CO exchange. As an additional step towards a full understanding of the greenhouse gas exchange of the meadow, we will relate observed CO fluxes to concurrently measured CO2, CH4 and N2O exchange rates in terms of CO2-equivalents and - where applicable - carbon.

  5. Global carbon dioxide emission to the atmosphere by volcanoes

    SciTech Connect

    Williams, S.N.; Schaefer, S.J. (Arizona State Univ., Tempe (United States)); Calvache V., M.L. (Arizona State Univ., Tempe (United States) Observatorio Vulcanologico de Colombia, Pasto (Colombia)); Lopez, D. (Univ. of British Columbia, Vancouver (Canada))

    1992-04-01

    Global emission of carbon dioxide by subaerial volcanoes is calculated, using CO{sub 2}/SO{sub 2} from volcanic gas analyses and SO{sub 2} flux, to be 34 {plus minus} 24 {times} 10{sup 12} g CO{sub 2}/yr from passive degassing and 31 {plus minus} 22 {times} 10{sup 12} g CO{sub 2}/yr from eruptions. Volcanic CO{sub 2} presently represents only 0.22% of anthropogenic emissions but may have contributed to significant greenhouse' effects at times in Earth history. Models of climate response to CO{sub 2} increases may be tested against geological data.

  6. An Assessment of Global Organic Carbon Flux Along Continental Margins

    NASA Technical Reports Server (NTRS)

    Thunell, Robert

    2004-01-01

    This project was designed to use real-time and historical SeaWiFS and AVHRR data, and real-time MODIS data in order to estimate the global vertical carbon flux along continental margins. This required construction of an empirical model relating surface ocean color and physical variables like temperature and wind to vertical settling flux at sites co-located with sediment trap observations (Santa Barbara Basin, Cariaco Basin, Gulf of California, Hawaii, and Bermuda, etc), and application of the model to imagery in order to obtain spatially-weighted estimates.

  7. Global efforts in managing rice blast disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease caused by the fungus Magnaporthe oryzae is a major destructive disease threatening global food security. Resistance (R) genes to M. oryzae are effective in preventing infections by strains of M. oryzae carry the corresponding avirulence (AVR) genes. Effectiveness of genetic resist...

  8. Developing Global Perspectives through International Management Degrees

    ERIC Educational Resources Information Center

    Brookes, Maureen; Becket, Nina

    2011-01-01

    Internationalisation has risen high on the agenda of many higher education institutions, and the need to develop graduates with global perspectives is well recognised. Much attention has been given to institutional strategies for internationalisation, international students, and dealing with culturally diverse learning styles. To date, however,…

  9. Global waste management and disposal update 1993

    SciTech Connect

    NONE

    1994-02-01

    This article is a review of waste management/disposal efforts in various countries of the world in 1993. The activities of 17 countries are summarized, with technical, business, and political aspects being covered in each.

  10. Aged Carbon in the Mississippi and Six Other Major Global Rivers: Implications for Global Carbon Budgets

    NASA Astrophysics Data System (ADS)

    Hossler, K.; Bauer, J. E.

    2013-12-01

    The magnitude of riverine C fluxes, including sedimentation, degassing and export to the oceans, is currently estimated at ~ 3 Pg yr-1 globally, and is comparable to other net fluxes in the global C cycle. However, the characteristics of the C exported by major world rivers have largely been defined by studies of a single system--the Amazon. Here we present new findings on the C age structure of particulate organic C, dissolved organic C, and dissolved inorganic C in the Mississippi River system and compare these findings to those for the Amazon River, and to five other major world rivers for which C isotope data (?14C and ?13C) have recently become available: the Yukon, Mackenzie, Yellow (or Huanghe), Changjiang (or Yangtze), and Congo (or Zaire). Based on the collective data, general similarities in ?14C and ?13C signatures across these large rivers suggest that broadly similar C sources and processes operate within diverse coupled watershed-river systems. Of particular note is that in all seven rivers, some fraction of fossil (> 50,000 yr) or highly-aged (e.g., ~ 5,000 yr) C was likely present in each of the major C pools. For the majority of these rivers, estimated fossil C contributions to each C pool ranged from 0 % up to 20 % (95 % CI). Range estimates for a composite old C fraction (i.e., fossil C plus highly-aged C) were slightly higher than those of fossil C exclusively. These data suggest that of the ~ 3 Pg yr-1 of C estimated to be exported from land to inland waters globally, only ~ 2 Pg yr-1 of the C derives from modern net primary production (i.e., only two-thirds of the estimated land to inland water C export is not highly-aged or fossil C). Global C budgets and models must begin to incorporate this growing body of evidence on the non-modern ages of river C reservoirs.

  11. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget

    USGS Publications Warehouse

    Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; Melack, J.

    2007-01-01

    Because freshwater covers such a small fraction of the Earth's surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y-1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y-1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described. ?? 2007 Springer Science+Business Media, LLC.

  12. Information technologies for global resources management and environmental assessment

    SciTech Connect

    Campbell, A.P.; Wang, Hua

    1992-09-01

    Recent advances in computer and communications technologies offer unprecedented opportunities to develop sophisticated information resources management systems for global resources management and environment assessment in an efficient, effective, and systematic manner. In this paper, the emerging global energy and environmental issues are identified. Since satellite-based remote sensing systems are becoming increasingly available and produce massive data collections, the utilization of imaging processing techniques and their applications for regional and global resources management and environmental studies are described. Interoperability and interconnectivity among heterogeneous computer systems are major issues in designing a totally integrated, multimedia-based, information resources management system that operates in a networking environment. Discussions of the future technology trends are focused on a number of emerging information management technologies and communications standards which will aid in achieving seamless system integration and offer user-friendly operations. It can be foreseen that advances in computer and communications technologies, increasingly sophisticated image processing techniques and Geographical Information Systems (GIS), and the development of globally comprehensive data bases will bring ``global visualization`` onto multimedia desktop computers before the end of this decade.

  13. Information technologies for global resources management and environmental assessment

    SciTech Connect

    Campbell, A.P.; Wang, Hua.

    1992-01-01

    Recent advances in computer and communications technologies offer unprecedented opportunities to develop sophisticated information resources management systems for global resources management and environment assessment in an efficient, effective, and systematic manner. In this paper, the emerging global energy and environmental issues are identified. Since satellite-based remote sensing systems are becoming increasingly available and produce massive data collections, the utilization of imaging processing techniques and their applications for regional and global resources management and environmental studies are described. Interoperability and interconnectivity among heterogeneous computer systems are major issues in designing a totally integrated, multimedia-based, information resources management system that operates in a networking environment. Discussions of the future technology trends are focused on a number of emerging information management technologies and communications standards which will aid in achieving seamless system integration and offer user-friendly operations. It can be foreseen that advances in computer and communications technologies, increasingly sophisticated image processing techniques and Geographical Information Systems (GIS), and the development of globally comprehensive data bases will bring global visualization'' onto multimedia desktop computers before the end of this decade.

  14. Incorporating grassland management in a global vegetation model

    NASA Astrophysics Data System (ADS)

    Chang, Jinfeng; Viovy, Nicolas; Vuichard, Nicolas; Ciais, Philippe; Wang, Tao; Cozic, Anne; Lardy, Romain; Graux, Anne-Isabelle; Klumpp, Katja; Martin, Raphael; Soussana, Jean-François

    2013-04-01

    Grassland is a widespread vegetation type, covering nearly one-fifth of the world's land surface (24 million km2), and playing a significant role in the global carbon (C) cycle. Most of grasslands in Europe are cultivated to feed animals, either directly by grazing or indirectly by grass harvest (cutting). A better understanding of the C fluxes from grassland ecosystems in response to climate and management requires not only field experiments but also the aid of simulation models. ORCHIDEE process-based ecosystem model designed for large-scale applications treats grasslands as being unmanaged, where C / water fluxes are only subject to atmospheric CO2 and climate changes. Our study describes how management of grasslands is included in the ORCHIDEE, and how management affects modeled grassland-atmosphere CO2 fluxes. The new model, ORCHIDEE-GM (Grassland Management) is capable with a management module inspired from a grassland model (PaSim, version 5.0), of accounting for two grassland management practices (cutting and grazing). The evaluation of the results of ORCHIDEE-GM compared with those of ORCHIDEE at 11 European sites equipped with eddy covariance and biometric measurements, show that ORCHIDEE-GM can capture realistically the cut-induced seasonal variation in biometric variables (LAI: Leaf Area Index; AGB: Aboveground Biomass) and in CO2 fluxes (GPP: Gross Primary Productivity; TER: Total Ecosystem Respiration; and NEE: Net Ecosystem Exchange). But improvements at grazing sites are only marginal in ORCHIDEE-GM, which relates to the difficulty in accounting for continuous grazing disturbance and its induced complex animal-vegetation interactions. Both NEE and GPP on monthly to annual timescales can be better simulated in ORCHIDEE-GM than in ORCHIDEE without management. At some sites, the model-observation misfit in ORCHIDEE-GM is found to be more related to ill-constrained parameter values than to model structure. Additionally, ORCHIDEE-GM is able to simulate forage yield, herbage consumption, animal products (e.g. milk), animal respiration and animal CH4 emissions. These new variables combined with organic C fertilizer applied on the field could provide a more complete view of grasslands C fluxes for applications of the model on a grid. The 11 site simulations of this study show that European grasslands generally are C sinks (positive NBP). At grazed grasslands, both C export in the form of milk production and CH4 emissions by animals only consist a minor part of net primary production (NPP), and this means that NBP mainly depends on NPP. On the contrary, the cut sites accumulate less C in soils because a large part of NPP has been exported as forage production. Furthermore, theoretically potential of productivity and livestock density in European grassland can be predicted by ORCHIDEE-GM, based on the strategy modeling of the optimal livestock density and management change.

  15. The changing global carbon cycle: Linking plant-soil carbon dynamics to global consequences

    USGS Publications Warehouse

    Chapin, F. S., III; McFarland, J.; McGuire, David A.; Euskirchen, E.S.; Ruess, R.W.; Kielland, K.

    2009-01-01

    Most current climate-carbon cycle models that include the terrestrial carbon (C) cycle are based on a model developed 40 years ago by Woodwell & Whittaker (1968) and omit advances in biogeochemical understanding since that time. Their model treats net C emissions from ecosystems as the balance between net primary production (NPP) and heterotrophic respiration (HR, i.e. primarily decomposition). Under conditions near steady state, geographic patterns of decomposition closely match those of NPP, and net C emissions are adequately described as a simple balance of NPP and HR (the Woodwell-Whittaker model). This close coupling between NPP and HR occurs largely because of tight coupling between C and N (nitrogen) cycles and because NPP constrains the food available to heterotrophs. Processes in addition to NPP and HR become important to understanding net C emissions from ecosystems under conditions of rapid changes in climate, hydrology, atmospheric CO2, land cover, species composition and/or N deposition. Inclusion of these processes in climate-C cycle models would improve their capacity to simulate recent and future climatic change. Processes that appear critical to soil C dynamics but warrant further research before incorporation into ecosystem models include below-ground C flux and its partitioning among roots, mycorrhizas and exudates; microbial community effects on C sequestration; and the effects of temperature and labile C on decomposition. The controls over and consequences of these processes are still unclear at the ecosystem scale. Carbon fluxes in addition to NPP and HR exert strong influences over the climate system under conditions of rapid change. These fluxes include methane release, wildfire, and lateral transfers of food and fibre among ecosystems. Water and energy exchanges are important complements to C cycle feedbacks to the climate system, particularly under non-steady-state conditions. An integrated understanding of multiple ecosystem-climate feedbacks provides a strong foundation for policies to mitigate climate change. Synthesis. Current climate systems models that include only NPP and HR are inadequate under conditions of rapid change. Many of the recent advances in biogeochemical understanding are sufficiently mature to substantially improve representation of ecosystem C dynamics in these models. ?? 2009 British Ecological Society.

  16. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security

    Microsoft Academic Search

    R. Lal

    2004-01-01

    The carbon sink capacity of the world's agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon. The rate of soil organic carbon sequestration with adoption of recommended technologies depends on soil texture and structure, rainfall, temperature, farming system, and soil management. Strategies to increase the soil carbon pool include

  17. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks

    USGS Publications Warehouse

    Bradford, John B.; Jensen, Nicholas R.; Domke, Grant M.; D’Amato, Anthony W.

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior National Forest, in northern Minnesota. Forest inventory data from the USDA Forest Service, Forest Inventory and Analysis program were used to characterize current forest age structure and quantify the relationship between age and carbon stocks for eight forest types. Using these findings, we simulated the impact of alternative management scenarios and natural disturbance rates on forest-wide terrestrial carbon stocks over a 100-year horizon. Under low natural mortality, forest-wide total ecosystem carbon stocks increased when 0% or 40% of planned harvests were implemented; however, the majority of forest-wide carbon stocks decreased with greater harvest levels and elevated disturbance rates. Our results suggest that natural disturbance has the potential to exert stronger influence on forest carbon stocks than timber harvesting activities and that maintaining carbon stocks over the long-term may prove difficult if disturbance frequency increases in response to climate change.

  18. Costs and Carbon Benefits of Global Forestation and Reduced Deforestation in Response to a Carbon Market 1

    Microsoft Academic Search

    Jayant Sathaye; Peter Chan

    This paper reports on the global potential for carbon sequestration in forest plantations, and the reduction of carbon emissions from deforestation, in response to four carbon price scenarios from 2000 to 2100. The world forest sector was disaggregated into ten regions, four largely temperate, developed regions: the European Union, Oceania, Russia, and the United States; and six developing, mostly tropical,

  19. Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; Pan, S.; Liu, J.; McGuire, A.D.; Moore, B., III

    2003-01-01

    Data on three major determinants of the carbon storage in terrestrial ecosystems are used with the process-based Terrestrial Ecosystem Model (TEM) to simulate the combined effect of climate variability, increasing atmospheric CO2 concentration, and cropland establishment and abandonment on the exchange of CO2 between the atmosphere and monsoon Asian ecosystems. During 1860-1990, modeled results suggest that monsoon Asia as a whole released 29.0 Pg C, which represents 50% of the global carbon release for this period. Carbon release varied across three subregions: East Asia (4.3 Pg C), South Asia (6.6 Pg C), and Southeast Asia (18.1 Pg C). For the entire region, the simulations indicate that land-use change alone has led to a loss of 42.6 Pg C. However, increasing CO2 and climate variability have added carbon to terrestrial ecosystems to compensate for 23% and 8% of the losses due to land-use change, respectively. During 1980-1989, monsoon Asia as a whole acted as a source of carbon to the atmosphere, releasing an average of 0.158 Pg C per year. Two of the subregions acted as net carbon source and one acted as a net carbon sink. Southeast Asia and South Asia were sources of 0.288 and 0.02 Pg C per year, respectively, while East Asia was a sink of 0.149 Pg C per year. Substantial interannual and decadal variations occur in the annual net carbon storage estimated by TEM due to comparable variations in summer precipitation and its effect on net primary production (NPP). At longer time scales, land-use change appears to be the important control on carbon dynamics in this region. ?? 2003 Elsevier Science B.V. All rights reserved.

  20. Soil salinity decreases global soil organic carbon stocks.

    PubMed

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. PMID:22959898

  1. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    SciTech Connect

    Gary D. Kronrad

    2006-09-19

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  2. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration

    Microsoft Academic Search

    Heleen de Coninck; Jennie C. Stephens; Bert Metz

    2009-01-01

    Closing the gap between carbon dioxide capture and storage (CCS) rhetoric and technical progress is critically important to global climate mitigation efforts. Developing strong international cooperation on CCS demonstration with global coordination, transparency, cost-sharing and communication as guiding principles would facilitate efficient and cost-effective collaborative global learning on CCS, would allow for improved understanding of the global capacity and applicability

  3. 1996 Global nuclear waste management and disposal

    SciTech Connect

    NONE

    1997-02-01

    Backend and waste activities in major nuclear countries and selected non-nuclear countries during 1996 are summarized. Nuclear program and major waste projects are very briefly described for each country listed. Social, political, and economic issues affecting waste management and disposal are noted. Public relations activities of the nuclear industry, including hearings, committee meetings, and educational programs, to increase public acceptance of waste projects are also described.

  4. Modeling the impact of agricultural land use and management on US carbon budgets

    NASA Astrophysics Data System (ADS)

    Drewniak, B. A.; Mishra, U.; Song, J.; Prell, J.; Kotamarthi, V. R.

    2014-09-01

    Cultivation of the terrestrial land surface can create either a source or sink of atmospheric CO2, depending on land management practices. The Community Land Model (CLM) provides a useful tool to explore how land use and management impact the soil carbon pool at regional to global scales. CLM was recently updated to include representation of managed lands growing maize, soybean, and spring wheat. In this study, CLM-Crop is used to investigate the impacts of various management practices, including fertilizer use and differential rates of crop residue removal, on the soil organic carbon (SOC) storage of croplands in the continental United States over approximately a 170 year period. Results indicate that total US SOC stocks have already lost over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, and residue removal), compared to a land surface composed of native vegetation (i.e., grasslands). After long periods of cultivation, individual plots growing maize and soybean lost up to 65% of the carbon stored, compared to a grassland site. Crop residue management showed the greatest effect on soil carbon storage, with low and medium residue returns resulting in additional losses of 5% and 3.5%, respectively, in US carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations indicate that disturbance through cultivation will always result in a loss of soil carbon, and management practices will have a large influence on the magnitude of SOC loss.

  5. Potential of Global Cropland Phytolith Carbon Sink from Optimization of Cropping System and Fertilization

    PubMed Central

    Song, Zhaoliang; Parr, Jeffrey F.; Guo, Fengshan

    2013-01-01

    The occlusion of carbon (C) by phytoliths, the recalcitrant silicified structures deposited within plant tissues, is an important persistent C sink mechanism for croplands and other grass-dominated ecosystems. By constructing a silica content-phytolith content transfer function and calculating the magnitude of phytolith C sink in global croplands with relevant crop production data, this study investigated the present and potential of phytolith C sinks in global croplands and its contribution to the cropland C balance to understand the cropland C cycle and enhance long-term C sequestration in croplands. Our results indicate that the phytolith sink annually sequesters 26.35±10.22 Tg of carbon dioxide (CO2) and may contribute 40±18% of the global net cropland soil C sink for 1961–2100. Rice (25%), wheat (19%) and maize (23%) are the dominant contributing crop species to this phytolith C sink. Continentally, the main contributors are Asia (49%), North America (17%) and Europe (16%). The sink has tripled since 1961, mainly due to fertilizer application and irrigation. Cropland phytolith C sinks may be further enhanced by adopting cropland management practices such as optimization of cropping system and fertilization. PMID:24066067

  6. Improved parameterization of managed grassland in a global process-based vegetation model using Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Rolinski, S.; Müller, C.; Lotze-Campen, H.; Bondeau, A.

    2010-12-01

    More than a quarter of the Earth’s land surface is covered by grassland, which is also the major part (~ 70 %) of the agricultural area. Most of this area is used for livestock production in different degrees of intensity. The dynamic global vegetation model LPJmL (Sitch et al., Global Change Biology, 2003; Bondeau et al., Global Change Biology, 2007) is one of few process-based model that simulates biomass production on managed grasslands at the global scale. The implementation of managed grasslands and its evaluation has received little attention so far, as reference data on grassland productivity are scarce and the definition of grassland extent and usage are highly uncertain. However, grassland productivity is related to large areas, and strongly influences global estimates of carbon and water budgets and should thus be improved. Plants are implemented in LPJmL in an aggregated form as plant functional types assuming that processes concerning carbon and water fluxes are quite similar between species of the same type. Therefore, the parameterization of a functional type is possible with parameters in a physiologically meaningful range of values. The actual choice of the parameter values from the possible and reasonable phase space should satisfy the condition of the best fit of model results and measured data. In order to improve the parameterization of managed grass we follow a combined procedure using model output and measured data of carbon and water fluxes. By comparing carbon and water fluxes simultaneously, we expect well-balanced refinements and avoid over-tuning of the model in only one direction. The comparison of annual biomass from grassland to data from the Food and Agriculture Organization of the United Nations (FAO) per country provide an overview about the order of magnitude and the identification of deviations. The comparison of daily net primary productivity, soil respiration and water fluxes at specific sites (FluxNet Data) provides information on boundary conditions such as water and light availability or temperature sensibility. Based on the given limitation factors, a number of sensitive parameters are chosen, e.g. for the phenological development, biomass allocation, and different management regimes. These are introduced to a sensitivity analysis and Bayesian parameter evaluation using the R package FME (Soetart & Petzoldt, Journal of Statistical Software, 2010). Given the extremely different climatic conditions at the FluxNet grass sites, the premises for the global sensitivity analysis are very promising.

  7. Estimating European soil organic carbon mitigation potential in a global integrated land use model

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Böttcher, Hannes; Schneider, Uwe; Schmid, Erwin; Havlík, Petr

    2013-04-01

    Several studies have shown the dynamic interaction between soil organic carbon (SOC) sequestration rates, soil management decisions and SOC levels. Management practices such as reduced and no-tillage, improved residue management and crop rotations as well as the conversion of marginal cropland to native vegetation or conversion of cultivated land to permanent grassland offer the potential to increase SOC content. Even though dynamic interactions are widely acknowledged in literature, they have not been implemented in most existing land use decision models. A major obstacle is the high data and computing requirements for an explicit representation of alternative land use sequences since a model has to be able to track all different management decision paths. To our knowledge no study accounted so far for SOC dynamics explicitly in a global integrated land use model. To overcome these conceptual difficulties described above we apply an approach capable of accounting for SOC dynamics in GLOBIOM (Global Biosphere Management Model), a global recursive dynamic partial equilibrium bottom-up model integrating the agricultural, bioenergy and forestry sectors. GLOBIOM represents all major land based sectors and therefore is able to account for direct and indirect effects of land use change as well as leakage effects (e.g. through trade) implicitly. Together with the detailed representation of technologies (e.g. tillage and fertilizer management systems), these characteristics make the model a highly valuable tool for assessing European SOC emissions and mitigation potential. Demand and international trade are represented in this version of the model at the level of 27 EU member states and 23 aggregated world regions outside Europe. Changes in the demand on the one side, and profitability of the different land based activities on the other side, are the major determinants of land use change in GLOBIOM. In this paper we estimate SOC emissions from cropland for the EU until 2050 explicitly considering SOC dynamics due to land use and land management in a global integrated land use model. Moreover, we calculate the EU SOC mitigation potential taking into account leakage effects outside Europe as well as related feed backs from other sectors. In sensitivity analysis, we disaggregate the SOC mitigation potential i.e. we quantify the impact of different management systems and crop rotations to identify most promising mitigation strategies.

  8. Al2C monolayer: the planar tetracoordinate carbon global minimum

    NASA Astrophysics Data System (ADS)

    Li, Yafei; Liao, Yunlong; Schleyer, Paul Von Ragué; Chen, Zhongfang

    2014-08-01

    Inspired by our theoretical finding that C2Al62- has a planar D2h minimum with two planar tetracoordinate carbons (ptCs), we computationally designed a new two-dimensional (2D) inorganic material, an Al2C monolayer. All carbons in this monolayer are ptC's, stabilized inductively by binding to four electropositive Al atoms in the same plane. The Al2C monolayer is semiconducting with an indirect minimum band gap and a slightly larger direct band gap. Good persistence of the Al2C monolayer is indicated by its moderate cohesive energy, the absence of imaginary modes in its phonon spectrum, and the high melting point predicted by molecular dynamics (MD) simulations. Moreover, a particle-swarm optimization (PSO) global minimum search found the Al2C monolayer to be the lowest-energy 2D structure compared to other Al2C alternatives. Dividing the Al2C monolayer results in one-dimensional (1D) Al2C nanoribbons, which are computed to have quite rich characteristics such as direct or indirect band gaps with various values, depending on the direction of the division and the resulting edge configuration.Inspired by our theoretical finding that C2Al62- has a planar D2h minimum with two planar tetracoordinate carbons (ptCs), we computationally designed a new two-dimensional (2D) inorganic material, an Al2C monolayer. All carbons in this monolayer are ptC's, stabilized inductively by binding to four electropositive Al atoms in the same plane. The Al2C monolayer is semiconducting with an indirect minimum band gap and a slightly larger direct band gap. Good persistence of the Al2C monolayer is indicated by its moderate cohesive energy, the absence of imaginary modes in its phonon spectrum, and the high melting point predicted by molecular dynamics (MD) simulations. Moreover, a particle-swarm optimization (PSO) global minimum search found the Al2C monolayer to be the lowest-energy 2D structure compared to other Al2C alternatives. Dividing the Al2C monolayer results in one-dimensional (1D) Al2C nanoribbons, which are computed to have quite rich characteristics such as direct or indirect band gaps with various values, depending on the direction of the division and the resulting edge configuration. Electronic supplementary information (ESI) available: Complete citation of ref. 50, the band structure of an Al2C monolayer computed using the HSE06 functional, snapshots of MD simulations, and bulk structures of Al2C-II and Al2C-III. See DOI: 10.1039/c4nr01972e

  9. MSc/PgDip Global Health and Management Student Information booklet

    E-print Network

    Levi, Ran

    MSc/PgDip Global Health and Management Student Information booklet Work based placements Providing opportunities for MSc Global Health & Management students to engage with organisations to undertake meaningful projects www.abdn.ac.uk/msc/global-health #12;Contents About the MSc Global Health & Management Programme 3

  10. Carbon monoxide measurement in the global atmospheric sampling program

    NASA Technical Reports Server (NTRS)

    Dudzinski, T. J.

    1979-01-01

    The carbon monoxide measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available infrared absorption analyzer. The modifications increased the sensitivity of the analyzer to 1 ppmv full scale, with a limit of detectability of 0.02 ppmv. Packaging was modified for automatic, unattended operation in an aircraft environment. The GASP system is described along with analyzer operation, calibration procedures, and measurement errors. Uncertainty of the CO measurement over a 2-year period ranged from + or - 3 to + or - 13 percent of reading, plus an error due to random fluctuation of the output signal + or - 3 to + or - 15 ppbv.

  11. Addressing sources of uncertainty in a global terrestrial carbon model

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.; Pitman, A. J.; Zhang, Q.; Abramowitz, G.; Wang, Y.

    2013-12-01

    Several sources of uncertainty exist in the parameterization of the land carbon cycle in current Earth System Models (ESMs). For example, recently implemented interactions between the carbon (C), nitrogen (N) and phosphorus (P) cycles lead to diverse changes in land-atmosphere C fluxes simulated by different models. Further, although soil organic matter decomposition is commonly parameterized as a first-order decay process, the formulation of the microbial response to changes in soil moisture and soil temperature varies tremendously between models. Here, we examine the sensitivity of historical land-atmosphere C fluxes simulated by an ESM to these two major sources of uncertainty. We implement three soil moisture (SMRF) and three soil temperature (STRF) respiration functions in the CABLE-CASA-CNP land biogeochemical component of the coarse resolution CSIRO Mk3L climate model. Simulations are undertaken using three degrees of biogeochemical nutrient limitation: C-only, C and N, and C and N and P. We first bring all 27 possible combinations of a SMRF with a STRF and a biogeochemical mode to a steady-state in their biogeochemical pools. Then, transient historical (1850-2005) simulations are driven by prescribed atmospheric CO2 concentrations used in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Similarly to some previously published results, representing N and P limitation on primary production reduces the global land carbon sink while some regions become net C sources over the historical period (1850-2005). However, the uncertainty due to the SMRFs and STRFs does not decrease relative to the inter-annual variability in net uptake when N and P limitations are added. Differences in the SMRFs and STRFs and their effect on the soil C balance can also change the sign of some regional sinks. We show that this response is mostly driven by the pool size achieved at the end of the spin-up procedure. Further, there exists a six-fold range in the level at which global soil C equilibrates in models with the same biogeochemical interactions. As we did not modify the photosynthesis component between these simulations, we can attribute this range to differences in heterotrophic respiration introduced by the various shapes of the SMRF and STRF. This roughly matches the range of global soil C simulated by available CMIP5 models and we therefore see the formulation of these response functions as a potential major source of uncertainty in projections of global soil C feedback on climate change. Our results add to recent concerns on the relevance of the current first-order parameterization of soil carbon decomposition in ESMs, but also highlight issues in terms of how they are initialized. More research is therefore required in that area in order to produce reliable projections of land-atmosphere fluxes and future climate.

  12. The Place of Bend-Fault Carbonation in Earth's Longterm Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Morgan, Jason P.

    2014-05-01

    It is well known that mid-ocean ridges are a key site for chemical interactions between oceanic crust and the hydrosphere, and that these interactions modulate the chemistry of the oceans. This field is relatively mature. However, it is becoming increasingly evident that the oceanic lithosphere may also strongly interact with the hydrosphere during plate subduction, as it bends — by bend-faulting (cf. Ranero et al., 2003) — when it enters a trench. I review recent seismic evidence that suggests that bend-faulting is associated with ~10% serpentinization in a layer extending at least 10km below the Moho, and potentially more for old subducting lithosphere. The age-depth-dependence of the width of the double-Wadati-Benioff-zone implies that significant serpentinization occurs at lithospheric temperatures of ~300C where net reaction rates are likely to be highest. If this serpentine forms with a 1% carbonate fraction, then bend-fault serpentinization will consume an atmosphere's worth of CO2 every 40,000 years (e.g. of order ~1-2 Tmol/year), and it seems likely that the carbonate storage in serpentinized subducting lithosphere exceeds that in overlying oceanic crust and sediments. (Note that at least 1% carbonation occurs during mid-ocean-ridge serpentinization processes, but the actual fraction of bend-fault carbonation is currently unconstrained by in-situ measurements within partially serpentinized bend-fault mantle.) The rate of mantle ingassing associated with this poorly-understood geological process appears to be similar in magnitude to the rate of carbon outgassing from the mantle at mid-ocean ridges. The implications for Earth's long-term carbon cycle are potentially significant. For example, the initiation of new subduction may be associated with the creation of a significant carbonate sink — a feedback not included within Geologic models for Phanerozoic carbon+climate evolution. It also suggests there may be a direct link between the concentration of CO2 in seawater and the efficiency of global carbonate recycling — and that perhaps bend-fault carbonation played a key role in the regulation of carbon dioxide in Earth's early atmosphere.

  13. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP)

    SciTech Connect

    Key, Robert [Princeton University; Kozyr, Alexander [ORNL; Sabine, Chris [NOAA, Seattle, WA; Lee, K. [Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Wanninkhof, R. [Atlantic Oceanographic & Meteorological Laboratory, NOAA; Bullister, J.L. [NOAA Pacific Marine Environmental Laboratory; Feely, R. A. [NOAA Pacific Marine Environmental Laboratory; Millero, F. J. [University of Miami; Mordy, C. [NOAA Pacific Marine Environmental Laboratory; Peng, T.-H. [Atlantic Oceanographic & Meteorological Laboratory, NOAA

    2004-01-01

    During the 1990s, ocean sampling expeditions were carried out as part of the World Ocean Circulation Experiment (WOCE), the Joint Global Ocean Flux Study (JGOFS), and the Ocean Atmosphere Carbon Exchange Study (OACES). Subsequently, a group of U.S. scientists synthesized the data into easily usable and readily available products. This collaboration is known as the Global Ocean Data Analysis Project (GLODAP). Results were merged into a common format data set, segregated by ocean. For comparison purposes, each ocean data set includes a small number of high-quality historical cruises. The data were subjected to rigorous quality control procedures to eliminate systematic data measurement biases. The calibrated 1990s data were used to estimate anthropogenic CO{sub 2}, potential alkalinity, CFC watermass ages, CFC partial pressure, bomb-produced radiocarbon, and natural radiocarbon. These quantities were merged into the measured data files. The data were used to produce objectively gridded property maps at a 1{sup o} resolution on 33 depth surfaces chosen to match existing climatologies for temperature, salinity, oxygen, and nutrients. The mapped fields are interpreted as an annual mean distribution in spite of the inaccuracy in that assumption. Both the calibrated data and the gridded products are available from the Carbon Dioxide Information Analysis Center. Here we describe the important details of the data treatment and the mapping procedure, and present summary quantities and integrals for the various parameters.

  14. Adapting water resources management to global climate change

    Microsoft Academic Search

    Philip Williams

    1989-01-01

    This paper provides an overview of the impact of global climate change on water resources management. Changes in precipitation and temperature of the scale predicted by General Circulation Models for a doubled CO2 level will significantly affect annual runoff, runoff variability, and seasonal runoff. These in turn will affect water supply, flood protection, hydropower generation, and environmental resources. In addition,

  15. Configuration Management Mother's little helper for Global Agile Projects?

    E-print Network

    Bendix, Lars

    Software Engineering for Agile Teams, Porto Alegre, Brazil, August 27, 2012 © 2012 IEEE. Personal useConfiguration Management ­ Mother's little helper for Global Agile Projects? Lars Bendix Department good reasons for turning traditional projects agile. In both cases there are many obstacles to overcome

  16. Agile Data Management with the Global Change Information System

    NASA Astrophysics Data System (ADS)

    Duggan, B.; Aulenbach, S.; Tilmes, C.; Goldstein, J.

    2013-12-01

    We describe experiences applying agile software development techniques to the realm of data management during the development of the Global Change Information System (GCIS), a web service and API for authoritative global change information under development by the US Global Change Research Program. Some of the challenges during system design and implementation have been : (1) balancing the need for a rigorous mechanism for ensuring information quality with the realities of large data sets whose contents are often in flux, (2) utilizing existing data to inform decisions about the scope and nature of new data, and (3) continuously incorporating new knowledge and concepts into a relational data model. The workflow for managing the content of the system has much in common with the development of the system itself. We examine various aspects of agile software development and discuss whether or how we have been able to use them for data curation as well as software development.

  17. Al?C monolayer: the planar tetracoordinate carbon global minimum.

    PubMed

    Li, Yafei; Liao, Yunlong; Schleyer, Paul von Ragué; Chen, Zhongfang

    2014-09-21

    Inspired by our theoretical finding that C?Al?(2-) has a planar D?h minimum with two planar tetracoordinate carbons (ptCs), we computationally designed a new two-dimensional (2D) inorganic material, an Al?C monolayer. All carbons in this monolayer are ptC's, stabilized inductively by binding to four electropositive Al atoms in the same plane. The Al?C monolayer is semiconducting with an indirect minimum band gap and a slightly larger direct band gap. Good persistence of the Al?C monolayer is indicated by its moderate cohesive energy, the absence of imaginary modes in its phonon spectrum, and the high melting point predicted by molecular dynamics (MD) simulations. Moreover, a particle-swarm optimization (PSO) global minimum search found the Al?C monolayer to be the lowest-energy 2D structure compared to other Al?C alternatives. Dividing the Al?C monolayer results in one-dimensional (1D) Al?C nanoribbons, which are computed to have quite rich characteristics such as direct or indirect band gaps with various values, depending on the direction of the division and the resulting edge configuration. PMID:25102440

  18. The Role of Carbon Cycle Observations and Knowledge in Carbon Management

    SciTech Connect

    Dilling, Lisa; Doney, Scott; Edmonds, James A.; Gurney, Kevin R.; Harriss, Robert; Schimel, David; Stephens, Britton; Stokes, Gerald M.

    2003-08-14

    Agriculture and industrial development have led to inadvertent changes in the natural carbon cycle. As a consequence, concentrations of carbon dioxide and other greenhouse gases have increased in the atmosphere, leading to potential changes in climate. The current challenge facing society is to develop options for future management of the carbon cycle. A variety of approaches has been suggested: direct reduction of emissions, deliberate manipulation of the natural carbon cycle to enhance sequestration, and capture and isolation of carbon from fossil fuel use. Policy development to date has laid out some of the general principles to which carbon management should adhere. These can be summarized as: how much carbon is stored, by what means, and for how long. To successfully manage carbon for climate purposes requires increased understanding of carbon cycle dynamics and improvement to the scientific capabilities available for measurement as well as policy needs. Specific needs for scientific information to underpin carbon cycle management decisions are not yet broadly known. A stronger dialogue between decision makers and scientists must be developed to foster improved application of scientific knowledge to decisions. This paper reviews the current state of knowledge of the carbon cycle and measurement capabilities, with an emphasis on the continental-scale, and its relevance to carbon sequestration goals.

  19. Management Education in a Globalizing World: Lessons from the French Experience.

    ERIC Educational Resources Information Center

    Kumar, Rajesh; Usunier, Jean-Claude

    2001-01-01

    Assesses the challenges posed by the talk of globalization for French management education. Analyzes the strategies adopted by French business schools for coping with the globalization imperative. (DDR)

  20. Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market Assessment 2007, Key Note Publications Ltd ,

    E-print Network

    Columbia University

    Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market. Industrial waste generally has a greater tonnage than MSW, but its management is the responsibility of relatively small and specific sectors of society. Environmentally acceptable waste-management practices

  1. Assessment of Provisional MODIS-derived Surfaces Related to the Global Carbon Cycle

    Microsoft Academic Search

    W. B. Cohen; T. K. Maiersperger; D. P. Turner; S. T. Gower; R. E. Kennedy; S. W. Running

    2002-01-01

    The global carbon cycle is one of the most important foci of an emerging global biosphere monitoring system. A key component of such a system is the MODIS sensor, onboard the Terra satellite platform. Biosphere monitoring requires an integrated program of satellite observations, Earth-system models, and in situ data. Related to the carbon cycle, MODIS science teams routinely develop a

  2. GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)

    E-print Network

    Green, Donna

    GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2) from the combustion. Figure 1 Global Carbon Dioxide Emissions: 1850­2030 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940- related CO2 emissions have risen 130-fold since 1850--from 200 million tons to 27 billion tons a year

  3. Managing the learning and transfer of global management competence: Antecedents and outcomes of Japanese repatriation effectiveness

    Microsoft Academic Search

    Norihito Furuya; Michael J Stevens; Allan Bird; Gary Oddou; Mark Mendenhall

    2009-01-01

    This study examines predictors that lead to effective individual learning of global management competencies on expatriate assignments and the transfer (i.e., the application of those competencies) in new assignments upon repatriation. A structural equation model based on data from 305 Japanese repatriates identifies linkages from organizational support, intercultural personality characteristics, self-adjustment, and repatriation policies to outcomes of global competency learning

  4. Managing the learning and transfer of global management competence: Antecedents and outcomes of Japanese repatriation effectiveness

    Microsoft Academic Search

    Norihito Furuya; Michael J Stevens; Allan Bird; Gary Oddou; Mark Mendenhall

    This study examines predictors that lead to effective individual learning of global management competencies on expatriate assignments and the transfer (i.e., the application of those competencies) in new assignments upon repatriation. A structural equation model based on data from 305 Japanese repatriates identifies linkages from organizational support, intercultural personality characteristics, self-adjustment, and repatriation policies to outcomes of global competency learning

  5. A study of the global heliospheric modulation of galactic Carbon

    NASA Astrophysics Data System (ADS)

    Ngobeni, M. D.; Potgieter, M. S.

    2014-06-01

    Observations of galactic Carbon in the heliosphere provide a useful tool with which a comprehensive description of the global modulation of cosmic rays both inside and outside off the solar wind termination shock (TS) can be made. This is, in part, because galactic Carbon is not contaminated by anomalous cosmic rays as is the case for oxygen, helium and hydrogen. However, this kind of study requires that there should be reasonable compatibility of model solutions to spacecraft and earthbound observations. In this study, the well-established two-dimensional model that contains a TS, a heliosheath, as well as shock re-acceleration of galactic cosmic rays and particle drifts, is used first to study modulation from solar minimum to moderate maximum activity at Earth. This model can handle any global heliospheric geometry of both the TS and heliopause (HP) positions. Second, the model is applied to study the contribution of drifts and the enhancement of polar perpendicular diffusion in the heliosheath to the total modulation in the heliosphere as a function of energy for both polarity cycles of the magnetic field during solar minimum conditions. This modeling is done with a new heliopause spectrum (HPS, usually referred to as the local interstellar spectrum) at kinetic energy E < ?200 MeV/nuc. This HPS is derived from observations made by the Voyager 1 spacecraft of galactic Carbon at a radial distance of ?122 AU from the Sun. We find that: (1) The model gives realistic modulation for both magnetic polarity cycles of the Sun, from Earth to beyond the TS, and that the level of modulation at Earth between the recent solar minimum and the previous moderate maximum condition exceed that between the HP and Earth in the recent solar minimum. (2) Neglecting drifts in the heliosheath along the Voyager heliolatitude is a reasonable assumption, but in the equatorial plane of the heliosphere drifts are important for heliosheath modulation in the A < 0 polarity cycle, especially when galactic particles are re-accelerated at the TS. (3) The contribution of the enhancement of the polar perpendicular diffusion in the heliosheath to the total modulation seems insignificant. (4) The new HPS as observed by Voyager 1 at E < ?200 MeV/nuc is found to be significantly higher than previous estimates, for example, at E = 100 MeV/nuc by a factor of ?2. We find that the total modulation between the HP and Earth at 10 MeV/nuc causes the intensity at Earth to be only ?4.5% of the HPS, whereas for 100 MeV/nuc it is ?17.5%. Respectively, this means that the global radial gradient for galactic Carbon for this period was ?2.5%/AU and ?1.4%/AU, if the heliopause is taken at 122 AU.

  6. GRIN-Global: An International Project to Develop a Global Plant Genebank and Information Management System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mission of the GRIN-Global Project is to create a new, scalable version of the Germplasm Resource Information System (GRIN) to provide the world's crop genebanks with a powerful, flexible, easy-to-use plant genetic resource (PGR) information management system. The system will help safeguard PGR ...

  7. GRIN-Global: An International Project to Develop a Global Plant Genebank and Information Management System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mission of the GRIN-Global Project is to create a new, scalable version of the Germplasm Resource Information System (GRIN) to provide the world’s crop genebanks with a powerful, flexible, easy-to-use plant genetic resource (PGR) information management system. The system will help safeguard PGR...

  8. GRIN-Global: An International Project to Develop a Global Plant Genebank and Information Management System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mission of the GRIN-Global Project is to create a new, scalable version of the Germplasm Resource Information System (GRIN) to provide the world’s crop genebanks with a powerful, flexible, easy-to-use plant genetic resource (PGR) information management system. The system will help safeguard PGR ...

  9. GRIN-Global: An International Project to Develop a Global Plant Genebank Information Management System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mission of the GRIN-Global Project is to create a new, scalable version of the Germplasm Resource Information System (GRIN) to provide the world’s crop genebanks with a powerful, flexible, easy-to-use plant genetic resource (PGR) information management system. The system will help safeguard PGR ...

  10. Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain.

    PubMed

    Kurz, Werner A; Stinson, Graham; Rampley, Gregory J; Dymond, Caren C; Neilson, Eric T

    2008-02-01

    A large carbon sink in northern land surfaces inferred from global carbon cycle inversion models led to concerns during Kyoto Protocol negotiations that countries might be able to avoid efforts to reduce fossil fuel emissions by claiming large sinks in their managed forests. The greenhouse gas balance of Canada's managed forest is strongly affected by naturally occurring fire with high interannual variability in the area burned and by cyclical insect outbreaks. Taking these stochastic future disturbances into account, we used the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to project that the managed forests of Canada could be a source of between 30 and 245 Mt CO(2)e yr(-1) during the first Kyoto Protocol commitment period (2008-2012). The recent transition from sink to source is the result of large insect outbreaks. The wide range in the predicted greenhouse gas balance (215 Mt CO(2)e yr(-1)) is equivalent to nearly 30% of Canada's emissions in 2005. The increasing impact of natural disturbances, the two major insect outbreaks, and the Kyoto Protocol accounting rules all contributed to Canada's decision not to elect forest management. In Canada, future efforts to influence the carbon balance through forest management could be overwhelmed by natural disturbances. Similar circumstances may arise elsewhere if global change increases natural disturbance rates. Future climate mitigation agreements that do not account for and protect against the impacts of natural disturbances, for example, by accounting for forest management benefits relative to baselines, will fail to encourage changes in forest management aimed at mitigating climate change. PMID:18230736

  11. Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain

    PubMed Central

    Kurz, Werner A.; Stinson, Graham; Rampley, Gregory J.; Dymond, Caren C.; Neilson, Eric T.

    2008-01-01

    A large carbon sink in northern land surfaces inferred from global carbon cycle inversion models led to concerns during Kyoto Protocol negotiations that countries might be able to avoid efforts to reduce fossil fuel emissions by claiming large sinks in their managed forests. The greenhouse gas balance of Canada's managed forest is strongly affected by naturally occurring fire with high interannual variability in the area burned and by cyclical insect outbreaks. Taking these stochastic future disturbances into account, we used the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to project that the managed forests of Canada could be a source of between 30 and 245 Mt CO2e yr?1 during the first Kyoto Protocol commitment period (2008–2012). The recent transition from sink to source is the result of large insect outbreaks. The wide range in the predicted greenhouse gas balance (215 Mt CO2e yr?1) is equivalent to nearly 30% of Canada's emissions in 2005. The increasing impact of natural disturbances, the two major insect outbreaks, and the Kyoto Protocol accounting rules all contributed to Canada's decision not to elect forest management. In Canada, future efforts to influence the carbon balance through forest management could be overwhelmed by natural disturbances. Similar circumstances may arise elsewhere if global change increases natural disturbance rates. Future climate mitigation agreements that do not account for and protect against the impacts of natural disturbances, for example, by accounting for forest management benefits relative to baselines, will fail to encourage changes in forest management aimed at mitigating climate change. PMID:18230736

  12. Carbon sequestration in croplands: the potential in Europe and the global context

    Microsoft Academic Search

    Pete Smith

    2004-01-01

    Biospheric carbon sinks and sources can be included in attempts to meet emission reduction targets during the first commitment period of the Kyoto Protocol. Forest management, cropland management, grazing land management and re-vegetation are allowable activities under Article 3.4 of the Kyoto Protocol. Soil carbon sinks (and sources) can, therefore, be included under these activities. In this paper, the role

  13. The Global Carbon Sink in Tidal Salt Marshes

    NASA Astrophysics Data System (ADS)

    Chmura, G. L.

    2004-05-01

    For decades researchers have concentrated on proving that C is exported from salt marshes to coastal waters, with limited success. Yet, the C retained in the marsh soils may be equally important. Presumptions that minor amounts of C are stored in salt marsh soils are based upon measurements of low percentages of C in many marshes. Simply measuring the organic matter content of marsh soils provides little indication of the amount or rate of C stored, as this parameter is based upon the percent by mass of the soil. The critical parameter to calculate is C density, derived from percent organic matter and bulk density. (The latter is often neglected in marsh soil studies.) Calculation of C density reveals that minerogenic soils with high bulk densities may have C densities or C storage rates equivalent to more organic soils with low bulk densities. A global average soil C density of 0.055 ± 0.004 g cm-3 has been calculated from 107 measurements reported for salt marshes around the world (Gulf of Mexico, NE and NW Atlantic, Mediterranean and NE Pacific). Assuming an average marsh soil depth of 0.5 m and using inventories of marsh area available for Europe, Scandinavia, Africa, Canada and the U.S., the C stored globally in salt marshes is greater than 430 ± 30 Tg C. The global carbon storage could be twice this as there are no marsh inventories available for Asia or South America. Rates of C storage can be calculated from 96 C density measurements where soil accretion rates also were measured. Globally, marshes sequester an average of 210 g CO2 m-2 yr-1, an order of magnitude greater than rates reported for peatlands. Salt marsh C storage can have regional importance. At a magnitude of 5 Tg C yr-1, tidal wetlands comprise 1--2 percent of the C sink (300--580 Tg C yr-1) estimated for the coterminous U.S. In the Bay of Fundy restoration of salt marshes reclaimed for agricultural land could enable sequestration of an additional 240 to 360 Gg C yr-1, equivalent to 4 to 6 percent of Canada's targeted reduction of 1990-level emissions of CO2 under the Kyoto Protocol. The C sink in salt marsh soils has advantages over those in freshwater wetlands or terrestrial soils. Presence of abundant sulfate limits release of the potent greenhouse gas, methane, which can be released in substantial quantities from freshwater wetland soils. In salt marshes, turnover of C occurs on time scales of hundreds to thousands of years, whereas the C content of terrestrial soils reaches equilibrium in decades to 100 yr. In many marshes C sequestration will continue or perhaps increase with higher rates of sea level rise accompanying global warming, as soil accretion rates will be greater. However, human impacts on many salt marshes (altering hydrological regimes or displacing sediment supplies), such as those of the Mississippi Delta, limits their sustainability in the face of higher rates of sea level rise and the future of these C sinks is threatened. Future research on C storage in salt marshes must be directed at local controls, for there is as much variability in a single region (e.g., Long Island Sound or the Bay of Fundy) as there is globally. Intensive sampling at multiple elevations in a single marsh reveals C densities to be significantly greater at higher elevations, but rates of C accumulation decline with elevation. Controlling for this variability in elevation reveals that C density decreases with average annual temperature, thus greater understanding of local processes are critical to detect global patterns.

  14. Carbon Management In the Post-Cap-and-Trade Carbon Economy: An Economic Model for Limiting Climate Change by Managing Anthropogenic Carbon Flux

    NASA Astrophysics Data System (ADS)

    DeGroff, F. A.

    2013-05-01

    In this paper, we discuss an economic model for comprehensive carbon management that focuses on changes in carbon flux in the biosphere due to anthropogenic activity. The two unique features of the model include: 1. A shift in emphasis from primarily carbon emissions, toward changes in carbon flux, mainly carbon extraction, and 2. A carbon price vector (CPV) to express the value of changes in carbon flux, measured in changes in carbon sequestration, or carbon residence time. The key focus with the economic model is the degree to which carbon flux changes due to anthropogenic activity. The economic model has three steps: 1. The CPV metric is used to value all forms of carbon associated with any anthropogenic activity. In this paper, the CPV used is a logarithmic chronological scale to gauge expected carbon residence (or sequestration) time. In future economic models, the CPV may be expanded to include other factors to value carbon. 2. Whenever carbon changes form (and CPV) due to anthropogenic activity, a carbon toll is assessed as determined by the change in the CPV. The standard monetary unit for carbon tolls are carbon toll units, or CTUs. The CTUs multiplied by the quantity of carbon converted (QCC) provides the total carbon toll, or CT. For example, CT = (CTU /mole carbon) x (QCC moles carbon). 3. Whenever embodied carbon (EC) attributable to a good or service moves via trade to a jurisdiction with a different CPV metric, a carbon toll (CT) is assessed representing the CPV difference between the two jurisdictions. This economic model has three clear advantages. First, the carbon pricing and cost scheme use existing and generally accepted accounting methodologies to ensure the veracity and verifiability of carbon management efforts with minimal effort and expense using standard, existing auditing protocols. Implementing this economic model will not require any new, special, unique, or additional training, tools, or systems for any entity to achieve their minimum carbon target goals within their jurisdictional framework. Second, given the wide spectrum of carbon affinities across jurisdictions worldwide, the economic model recognizes and provides for flexible carbon pricing regimes, but does not undermine or penalize domestic carbon-consuming producers subject to imports from exporters in lower carbon pricing jurisdictions. Thus, the economic model avoids a key shortcoming of cap-and-trade carbon pricing, and eliminates any incentive to shift carbon consumption to jurisdictions with lower carbon tolls. Third, the economic model is a comprehensive, efficient, and effective strategy that allows for the implementation of a carbon pricing structure without the complete, explicit agreement of carbon consumers worldwide.

  15. Soil Carbon Storage in Christmas Tree Farms: Maximizing Ecosystem Management and Sustainability for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Chapman, S. K.; Shaw, R.; Langley, A.

    2008-12-01

    Management of agroecosystems for the purpose of manipulating soil carbon stocks could be a viable approach for countering rising atmospheric carbon dioxide concentrations, while maximizing sustainability of the agroforestry industry. We investigated the carbon storage potential of Christmas tree farms in the southern Appalachian mountains as a potential model for the impacts of land management on soil carbon. We quantified soil carbon stocks across a gradient of cultivation duration and herbicide management. We compared soil carbon in farms to that in adjacent pastures and native forests that represent a control group to account for variability in other soil-forming factors. We partitioned tree farm soil carbon into fractions delineated by stability, an important determinant of long-term sequestration potential. Soil carbon stocks in the intermediate pool are significantly greater in the tree farms under cultivation for longer periods of time than in the younger tree farms. This pool can be quite large, yet has the ability to repond to biological environmental changes on the centennial time scale. Pasture soil carbon was significantly greater than both forest and tree farm soil carbon, which were not different from each other. These data can help inform land management and soil carbon sequestration strategies.

  16. A guide to potential soil carbon sequestration; land-use management for mitigation of greenhouse gas emissions

    USGS Publications Warehouse

    Markewich, H.W.; Buell, G.R.

    2001-01-01

    Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.

  17. The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context.

    PubMed

    Garrard, Samantha L; Beaumont, Nicola J

    2014-09-15

    Ocean acidification will have many negative consequences for marine organisms and ecosystems, leading to a decline in many ecosystem services provided by the marine environment. This study reviews the effect of ocean acidification (OA) on seagrasses, assessing how this may affect their capacity to sequester carbon in the future and providing an economic valuation of these changes. If ocean acidification leads to a significant increase in above- and below-ground biomass, the capacity of seagrass to sequester carbon will be significantly increased. The associated value of this increase in sequestration capacity is approximately £500 and 600 billion globally between 2010 and 2100. A proportionally similar increase in carbon sequestration value was found for the UK. This study highlights one of the few positive stories for ocean acidification and underlines that sustainable management of seagrasses is critical to avoid their continued degradation and loss of carbon sequestration capacity. PMID:25103900

  18. Early Cenozoic decoupling of the global carbon and sulfur cycles A. C. Kurtz,1

    E-print Network

    Zachos, James

    Early Cenozoic decoupling of the global carbon and sulfur cycles A. C. Kurtz,1 L. R. Kump,2 M. A 2003; published 4 December 2003. [1] Changes in carbon and sulfur cycling over geologic time may have: Carbon cycling; 4842 Oceanography: Biological and Chemical: Modeling; 1040 Geochemistry: Isotopic

  19. Iron fertilization in the ocean and consequences for the global carbon cycle

    E-print Network

    Marinov, Irina

    Iron fertilization in the ocean and consequences for the global carbon cycle Eric-Martial Takam . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Modeling the ocean circulation 10 3.1 Two-box model of the ocean carbon cycle . . . . . . . . . . . . . . . . . . . . 10 3.2 Three-box model of the ocean carbon cycle . . . . . . . . . . . . . . . . . . . . 12 3.3 Five

  20. ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES

    E-print Network

    ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES J. R. Mc of carbon capture and sequestration technologies as applied to electric generating plants. The MIT Emissions, is used to model carbon capture and sequestration (CCS) technologies based on a natural gas combined cycle

  1. Modeling the role of terrestrial ecosystems in the global carbon cycle

    Microsoft Academic Search

    W. R. Emanuel; W. M. Post; H. H. Jr. Shugart

    1980-01-01

    A model for the global biogeochemical cycle of carbon which includes a five-compartment submodel for circulation in terrestrial ecosystems of the world is presented. Although this terrestrial submodel divides carbon into compartments with more functional detail than previous models, the variability in carbon dynamics among ecosystem types and in different climatic zones is not adequately treated. A new model construct

  2. A simulation study for the global carbon cycle, including man's impact on the biosphere

    Microsoft Academic Search

    J. Goudriaan; P. Ketner

    1984-01-01

    The simulation model accounts for four major compartments in the global carbon cycle: atmosphere, ocean, terrestrial biosphere and fossil carbon reservoir. The ocean is further compartmentalized into a high and a low latitude surface layer, and into 10 deep sea strata. The oceanic carbon fluxes are caused by massflow of descending and upwelling water, by precipitation of organic material and

  3. A technology-based global inventory of black and organic carbon emissions from combustion

    Microsoft Academic Search

    Tami C. Bond; David G. Streets; Kristen F. Yarber; Sibyl M. Nelson; Jung-Hun Woo; Zbigniew Klimont

    2004-01-01

    We present a global tabulation of black carbon (BC) and primary organic carbon (OC) particles emitted from combustion. We include emissions from fossil fuels, biofuels, open biomass burning, and burning of urban waste. Previous “bottom-up” inventories of black and organic carbon have assigned emission factors on the basis of fuel type and economic sector alone. Because emission rates are highly

  4. Description & Careers The Management and Global Business department equips students with necessary tools and skills needed to manage and

    E-print Network

    Lin, Xiaodong

    Description & Careers The Field The Management and Global Business department equips students with necessary tools and skills needed to manage and lead in the globally integrated economy. Management efficiently and effectively. With a focus on organizations and employees, managers are involved in planning

  5. Evaluation of coral reef carbonate production models at a global scale

    NASA Astrophysics Data System (ADS)

    Jones, N. S.; Ridgwell, A.; Hendy, E. J.

    2015-03-01

    Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle; it is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are needed for understanding how carbonate deposition responds to environmental conditions including atmospheric CO2 concentrations in the past and into the future. However, before any projections can be made, the basic test is to establish model skill in recreating present-day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales. We also compile available global data on reef calcification to produce an independent observation-based data set for the model evaluation of carbonate budget outputs. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (?a) and temperature and were implemented within a specifically developed global framework, the Global Reef Accretion Model (GRAM). No model was able to reproduce independent rate estimates of whole-reef calcification, and the output from the temperature-only based approach was the only model to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modelling approach, accounting for population dynamics in terms of mortality and recruitment and hence calcifier abundance, in estimating global reef carbonate budgets. In addition, validation of reef carbonate budgets is severely hampered by limited and inconsistent methodology in reef-scale observations.

  6. Evaluation of coral reef carbonate production models at a global scale

    NASA Astrophysics Data System (ADS)

    Jones, N. S.; Ridgwell, A.; Hendy, E. J.

    2014-09-01

    Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle. It is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are essential for understanding how carbonate deposition responds to environmental conditions including future atmospheric CO2 concentrations, but these models must first be evaluated in terms of their skill in recreating present day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales, by comparing carbonate budget outputs with independent estimates. We also compile available global data on reef calcification to produce an observation-based dataset for the model evaluation. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (?a) and temperature and were implemented within a specifically-developed global framework, the Global Reef Accretion Model (GRAM). None of the four models correlated with independent rate estimates of whole reef calcification. The temperature-only based approach was the only model output to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modeling approach, accounting for population dynamics in terms of mortality and recruitment and hence coral cover, in estimating global reef carbonate budgets. In addition, validation of reef carbonate budgets is severely hampered by limited and inconsistent methodology in reef-scale observations.

  7. CARBON SEQUESTRATION, BIOLOGICAL DIVERSITY, AND SUSTAINABLE DEVELOPMENT: INTEGRATED FOREST MANAGEMENT

    EPA Science Inventory

    Tropical deforestation provides a significant contribution to anthropogenic increases atmospheric CO2 concentration that may lead to global warming. orestation and other forest management options to sequester CO2 in the tropical latitudes may fail unless they address local econom...

  8. Developing policies for soil carbon management in tropical regions

    Microsoft Academic Search

    A.-M. N. Izac

    1997-01-01

    It is argued in this paper that two fundamental economic processes prevent resource-poor farmers in tropical countries from managing soil carbon in a sustainable manner. The first process is related to the fact that soil carbon and tropical forests are part of the natural capital of these countries and of the world community. As a consequence, the interests of resource-poor

  9. Management effects on soil organic carbon in Texas soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon sequestration is difficult in Texas, in part, because of the high annual temperatures and low rainfall amounts in portions of the state. However, research has shown that carbon can be sequestered with a variety of management systems. These systems include: i. Continuous cropping in are...

  10. China's crop productivity and soil carbon storage as influenced by multifactor global change.

    PubMed

    Ren, Wei; Tian, Hanqin; Tao, Bo; Huang, Yao; Pan, Shufen

    2012-09-01

    Much concern has been raised about how multifactor global change has affected food security and carbon sequestration capacity in China. By using a process-based ecosystem model, the Dynamic Land Ecosystem Model (DLEM), in conjunction with the newly developed driving information on multiple environmental factors (climate, atmospheric CO2 , tropospheric ozone, nitrogen deposition, and land cover/land use change), we quantified spatial and temporal patterns of net primary production (NPP) and soil organic carbon storage (SOC) across China's croplands during 1980-2005 and investigated the underlying mechanisms. Simulated results showed that both crop NPP and SOC increased from 1980 to 2005, and the highest annual NPP occurred in the Southeast (SE) region (0.32 Pg C yr(-1) , 35.4% of the total NPP) whereas the largest annual SOC (2.29 Pg C yr(-1) , 35.4% of the total SOC) was found in the Northeast (NE) region. Land management practices, particularly nitrogen fertilizer application, appear to be the most important factor in stimulating increase in NPP and SOC. However, tropospheric ozone pollution and climate change led to NPP reduction and SOC loss. Our results suggest that China's crop productivity and soil carbon storage could be enhanced through minimizing tropospheric ozone pollution and improving nitrogen fertilizer use efficiency. PMID:24501069

  11. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems.

    PubMed

    Gougoulias, Christos; Clark, Joanna M; Shaw, Liz J

    2014-09-01

    It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant-soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil. PMID:24425529

  12. The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems

    PubMed Central

    Gougoulias, Christos; Clark, Joanna M; Shaw, Liz J

    2014-01-01

    It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant–soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil. PMID:24425529

  13. Trend in global black carbon emissions from 1960 to 2007.

    PubMed

    Wang, Rong; Tao, Shu; Shen, Huizhong; Huang, Ye; Chen, Han; Balkanski, Yves; Boucher, Olivier; Ciais, Philippe; Shen, Guofeng; Li, Wei; Zhang, Yanyan; Chen, Yuanchen; Lin, Nan; Su, Shu; Li, Bengang; Liu, Junfeng; Liu, Wenxin

    2014-06-17

    Black carbon (BC) plays an important role in both climate change and health impact. Still, BC emissions as well as the historical trends are associated with high uncertainties in existing inventories. In the present study, global BC emissions from 1960 to 2007 were estimated for 64 sources, by using recompiled fuel consumption and emission factor data sets. Annual BC emissions had increased from 5.3 (3.4-8.5 as an interquartile range) to 9.1 (5.6-14.4) teragrams during this period. Our estimations are 11-16% higher than those in previous inventories. Over the period, we found that the BC emission intensity, defined as the amount of BC emitted per unit of energy production, had decreased for all the regions, especially China and India. Improvements in combustion technology and changes in fuel composition had led to an increase in energy use efficiency, and subsequently a decline of BC emission intensities in power plants, the residential sector, and transportation. On the other hand, the BC emission intensities had increased in the industrial and agricultural sectors, mainly due to an expansion of low-efficiency industry (coke and brick production) in developing countries and to an increasing usage of diesel in agriculture in developed countries. PMID:24825392

  14. The importance of rapid, disturbance-induced losses in carbon management and sequestration

    USGS Publications Warehouse

    Breshears, D.D.; Allen, C.D.

    2002-01-01

    Management of terrestrial carbon fluxes is being proposed as a means of increasing the amount of carbon sequestered in the terrestrial biosphere. This approach is generally viewed only as an interim strategy for the coming decades while other longer-term strategies are developed and implemented - the most important being the direct reduction of carbon emissions. We are concerned that the potential for rapid, disturbance-induced losses may be much greater than is currently appreciated, especially by the decision-making community. Here we wish to: (1) highlight the complex and threshold-like nature of disturbances - such as fire and drought, as well as the erosion associated with each - that could lead to carbon losses; (2) note the global extent of ecosystems that are at risk of such disturbance-induced carbon losses; and (3) call for increased consideration of and research on the mechanisms by which large, rapid disturbance-induced losses of terrestrial carbon could occur. Our lack of ability as a scientific community to predict such ecosystem dynamics is precluding the effective consideration of these processes into strategies and policies related to carbon management and sequestration. Consequently, scientists need to do more to improve quantification of these potential losses and to integrate them into sound, sustainable policy options.

  15. Old?growth forests, carbon and climate change: Functions and management for tall open?forests in two hotspots of temperate Australia

    Microsoft Academic Search

    C. Dean

    2010-01-01

    The prognosis and utility under climate change are presented for two old?growth, temperate forests in Australia, from ecological and carbon accounting perspectives. The tall open?forests (TOFs) of south?western Australia (SWA) are within Australia’s global biodiversity hotspot. The forest management and timber usage from the carbon?dense old?growth TOFs of Tasmania (TAS) have a high carbon efflux, rendering it a carbon hotspot.

  16. Carbon Management In the Post-Cap-and-Trade Carbon Economy

    NASA Astrophysics Data System (ADS)

    DeGroff, F. A.

    2013-12-01

    This abstract outlines an economic model that integrates carbon externalities seamlessly into the national and international economies. The model incorporates a broad carbon metric used to value all carbon in the biosphere, as well as all transnational commerce. The model minimizes the cost associated with carbon management, and allows for the variation in carbon avidity between jurisdictions. When implemented over time, the model reduces the deadweight loss while minimizing social cost, thus maximizing the marginal social benefit commonly associated with Pigouvian taxes. Once implemented, the model provides a comprehensive economic construct for governments, industry and consumers to efficiently weigh the cost of carbon, and effectively participate in helping to reduce their direct and indirect use of carbon, while allowing individual jurisdictions to decide their own carbon value, without the need for explicit, express agreement of all countries. The model uses no credits, requires no caps, and matches climate changing behavior to costs. The steps to implement the model for a particular jurisdiction are: 1) Define the Carbon Metric to value changes in Carbon Quality. 2) Apply the Carbon Metric to assess the Carbon Toll a) for all changes in Carbon Quality and b) for imports and exports. This economic model has 3 clear advantages. 1) The carbon pricing and cost scheme use existing and generally accepted accounting methodologies to ensure the veracity and verifiability of carbon management efforts with minimal effort and expense using standard auditing protocols. Implementing this economic model will not require any special training, tools, or systems for any entity to achieve their minimum carbon target goals within their jurisdictional framework. 2) Given the spectrum of carbon affinities worldwide, the model recognizes and provides for flexible carbon pricing regimes, but does not penalize domestic carbon-consuming producers subject to imports from exporters in lower carbon-pricing jurisdictions. Thus, the economic model avoids a key shortcoming of cap-and-trade carbon pricing, and eliminates any incentive to inefficiently shift carbon consumption to jurisdictions with lower carbon tolls. 3) The economic model is a comprehensive, efficient and effective strategy that allows for the implementation of a carbon-pricing structure without the complete, explicit agreement of carbon consumers worldwide.

  17. Economic and Societal Benefits of Soil Carbon Management (Chapter 1).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many papers and books on soil carbon management have addressed specific ecosystems such as agricultural lands, rangelands, forestlands, etc. This paper introduces a book within which each chapter begins by addressing a particular concern and potential options to manage it, along with their real and...

  18. The Global Business concentration prepares students to manage effectively in a complex and dynamic global business environment. Building on a foundational course

    E-print Network

    Lin, Xiaodong

    as a "career changer". I had started in the non-profit sector on the business side, and I really fell in love Global Business Development Global Supply Chain Manager International Brand Manager Country/Area Managers

  19. Carbon nanotube composites for thermal management

    Microsoft Academic Search

    M. J. Biercuk; M. C. Llaguno; M. Radosavljevic; J. K. Hyun; A. T. Johnson; J. E. Fischer

    2002-01-01

    Single-wall carbon nanotubes (SWNTs) were used to augment the thermal transport properties of industrial epoxy. Samples loaded with 1 wt % unpurified SWNT material showed a 70% increase in thermal conductivity at 40 K, rising to 125% at room temperature; the enhancement due to 1 wt % loading of vapor grown carbon fibers was three times smaller. Electrical conductivity data

  20. Carbon Sequestration and the Implications for Rangeland Management

    Microsoft Academic Search

    Long Ruijun; Shang Zhanhuan; Li Xiaogan; Jiang Ping-an; Jia Hong-tao; Victor Squires

    \\u000a \\u000a Synopsis  The significance of the carbon balance in the rangelands of the NW of China is examined against a global perspective of carbon\\u000a gains and losses from soil and vegetation. The results from field work in Gansu (Qilian Mountains) and in Xinjiang (Tian and\\u000a Altai Mountains) are summarized. In this chapter we review the processes of C capture and storage (sequestration)

  1. Global Gradients of Coral Exposure to Environmental Stresses and Implications for Local Management

    PubMed Central

    Maina, Joseph; McClanahan, Tim R.; Venus, Valentijn; Ateweberhan, Mebrahtu; Madin, Joshua

    2011-01-01

    Background The decline of coral reefs globally underscores the need for a spatial assessment of their exposure to multiple environmental stressors to estimate vulnerability and evaluate potential counter-measures. Methodology/Principal Findings This study combined global spatial gradients of coral exposure to radiation stress factors (temperature, UV light and doldrums), stress-reinforcing factors (sedimentation and eutrophication), and stress-reducing factors (temperature variability and tidal amplitude) to produce a global map of coral exposure and identify areas where exposure depends on factors that can be locally managed. A systems analytical approach was used to define interactions between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial ordinations were employed to quantify coral exposure to these stressors. Globally, corals are exposed to radiation and reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean) or alternatively high reinforcing stress scores (the Middle East and the Western Australia). The second cluster was composed of moderately to highly exposed regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR), Central Pacific, Polynesia and the western Indian Ocean) where the GBR was strongly associated with reinforcing stress. Conclusions/Significance Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be reduced by locally managing chronic human impacts that act to reinforce radiation stress. Future research and management efforts should focus on incorporating the factors that mitigate the effect of coral stressors until long-term carbon reductions are achieved through global negotiations. PMID:21860667

  2. Black carbon, a 'hidden' player in the global C cycle

    NASA Astrophysics Data System (ADS)

    Santín, C.; Doerr, S. H.

    2012-04-01

    During the 2011 alone more than 600 scientific papers about black carbon (BC) were published, half of them dealing with soils (ISI Web of Knowledge, accessed 15/01/2012). If the search is extended to the other terms by which BC is commonly named (i.e. biochar, charcoal, pyrogenic C or soot), the number of 2011 publications increases to >2400, 20% of them also related to soils. These figures confirm BC as a well-known feature in the scientific literature and, thus, in our research community. In fact, there is a wide variety of research topics where BC is currently studied: from its potential as long-term C reservoir in soils (man-made biochar), to its effects on the Earth's radiation balance (soot-BC), including its value as indicator in paleoenvironmental studies (charcoal) or, even surprisingly, its use in suicide attempts. BC is thus relevant to many aspects of our environment, making it a very far-reaching, but also very complex topic. When focusing 'only' on the role of BC in the global C cycle, numerous questions arise. For example: (i) how much BC is produced by different sources (i.e. vegetation fires, fossil fuel and biofuel combustion); (ii) what are the main BC forms and their respective proportions generated (i.e. proportion of atmospheric BC [BC-soot] and the solid residues [char-BC]); (iii) where does this BC go (i.e. main mobilization pathways and sinks); (iv) how long does BC stay in the different systems (i.e. residence times in soils, sediments, water and atmosphere); (v) which are the BC stocks and its main transformations within and between the different systems (i.e. BC preservation, alteration and mineralization); (vi) what is the interaction of BC with other elements and how does this influence BC half-life (i.e. physical protection, interaction with pollutants, priming effects in other organic materials)? These questions, and some suggestions about how to tackle these, will be discussed in this contribution. It will focus in particular on the role of black carbon within soil system sciences, but will also consider it from an integrated atmosphere-marine-terrestrial perspective.

  3. Carbon storage under different grazing management in the typical steppe

    NASA Astrophysics Data System (ADS)

    Sarula; Chen, Haijun; Hou, Xiangyang; Ubugunov, Leonid; Vishnyakova, Oksana; Wu, Xinhong; Ren, Weibo; Ding, Yong

    2014-11-01

    Understanding the carbon storage is necessary to understand how grassland ecosystems would respond to natural and anthropogenic disturbances under different management strategies. Carbon storage was investigated in aboveground biomass, litter, roots and soil organic matter (SOM) in eight sites that were floristically and topographically similar, but had been subjected to different years of grazing exclusion and different grazing intensities. The primary objective of this study was to ascertain the effect of different grazing management regimes on carbon storage in the typical steppe ecosystem of China. The results revealed that the total carbon stored in aboveground biomass, litter, roots and SOM (the top 100cm soil layer) varied from 9.29 to 18.51 kg m2. Over 94% of the carbon stored in the SOM, with minor storage in other pools. Soil carbon storage decreased substantially with grazing intensity and the six years of grazing exclusion had a higher storage than 32 and 15 years grazing exclusion. The carbon storage trend observed in these treatments suggests that moderate grazing as well as mowing can improve the carbon sequestration and the longer fencing year is not better for carbon accumulation of typical steppe in China.

  4. High-fidelity national carbon mapping for resource management and REDD+

    PubMed Central

    2013-01-01

    Background High fidelity carbon mapping has the potential to greatly advance national resource management and to encourage international action toward climate change mitigation. However, carbon inventories based on field plots alone cannot capture the heterogeneity of carbon stocks, and thus remote sensing-assisted approaches are critically important to carbon mapping at regional to global scales. We advanced a high-resolution, national-scale carbon mapping approach applied to the Republic of Panama – one of the first UN REDD?+?partner countries. Results Integrating measurements of vegetation structure collected by airborne Light Detection and Ranging (LiDAR) with field inventory plots, we report LiDAR-estimated aboveground carbon stock errors of ~10% on any 1-ha land parcel across a wide range of ecological conditions. Critically, this shows that LiDAR provides a highly reliable replacement for inventory plots in areas lacking field data, both in humid tropical forests and among drier tropical vegetation types. We then scale up a systematically aligned LiDAR sampling of Panama using satellite data on topography, rainfall, and vegetation cover to model carbon stocks at 1-ha resolution with estimated average pixel-level uncertainty of 20.5 Mg C ha-1 nationwide. Conclusions The national carbon map revealed strong abiotic and human controls over Panamanian carbon stocks, and the new level of detail with estimated uncertainties for every individual hectare in the country sets Panama at the forefront in high-resolution ecosystem management. With this repeatable approach, carbon resource decision-making can be made on a geospatially explicit basis, enhancing human welfare and environmental protection. PMID:23866822

  5. Carbon Cycle 2.0: Ashok Gadgil: global impact

    SciTech Connect

    Ashok Gadgi

    2010-02-09

    Ashok Gadgil speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  6. Carbon Cycle 2.0: Ashok Gadgil: global impact

    ScienceCinema

    Ashok Gadgi

    2010-09-01

    Ashok Gadgil speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  7. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle.

    PubMed

    Poulter, Benjamin; Frank, David; Ciais, Philippe; Myneni, Ranga B; Andela, Niels; Bi, Jian; Broquet, Gregoire; Canadell, Josep G; Chevallier, Frederic; Liu, Yi Y; Running, Steven W; Sitch, Stephen; van der Werf, Guido R

    2014-05-29

    The land and ocean act as a sink for fossil-fuel emissions, thereby slowing the rise of atmospheric carbon dioxide concentrations. Although the uptake of carbon by oceanic and terrestrial processes has kept pace with accelerating carbon dioxide emissions until now, atmospheric carbon dioxide concentrations exhibit a large variability on interannual timescales, considered to be driven primarily by terrestrial ecosystem processes dominated by tropical rainforests. We use a terrestrial biogeochemical model, atmospheric carbon dioxide inversion and global carbon budget accounting methods to investigate the evolution of the terrestrial carbon sink over the past 30 years, with a focus on the underlying mechanisms responsible for the exceptionally large land carbon sink reported in 2011 (ref. 2). Here we show that our three terrestrial carbon sink estimates are in good agreement and support the finding of a 2011 record land carbon sink. Surprisingly, we find that the global carbon sink anomaly was driven by growth of semi-arid vegetation in the Southern Hemisphere, with almost 60 per cent of carbon uptake attributed to Australian ecosystems, where prevalent La Niña conditions caused up to six consecutive seasons of increased precipitation. In addition, since 1981, a six per cent expansion of vegetation cover over Australia was associated with a fourfold increase in the sensitivity of continental net carbon uptake to precipitation. Our findings suggest that the higher turnover rates of carbon pools in semi-arid biomes are an increasingly important driver of global carbon cycle inter-annual variability and that tropical rainforests may become less relevant drivers in the future. More research is needed to identify to what extent the carbon stocks accumulated during wet years are vulnerable to rapid decomposition or loss through fire in subsequent years. PMID:24847888

  8. CARBON SEQUESTRATION IN SOILS AND GLOBAL CLIMATIC CHANGE

    EPA Science Inventory

    The storage of carbon in soils is a very complex phenomenon. lthough it is not fully characterized or understood, steps can be taken to use soils as a reservoir of carbon. he role of soils in the carbon cycle must be more fully understood to develop strategies to mitigate increas...

  9. Changes in the use and management of forests for abating carbon emissions: issues and challenges under the Kyoto Protocol.

    PubMed

    Brown, Sandra; Swingland, Ian R; Hanbury-Tenison, Robin; Prance, Ghillean T; Myers, Norman

    2002-08-15

    The global carbon cycle is significantly influenced by changes in the use and management of forests and agriculture. Humans have the potential through changes in land use and management to alter the magnitude of forest-carbon stocks and the direction of forest-carbon fluxes. However, controversy over the use of biological means to absorb or reduce emissions of CO(2) (often referred to as carbon 'sinks') has arisen in the context of the Kyoto Protocol. The controversy is based primarily on two arguments: sinks may allow developed nations to delay or avoid actions to reduce fossil fuel emissions, and the technical and operational difficulties are too threatening to the successful implementation of land use and forestry projects for providing carbon offsets. Here we discuss the importance of including carbon sinks in efforts to address global warming and the consequent additional social, environmental and economic benefits to host countries. Activities in tropical forest lands provide the lowest cost methods both of reducing emissions and reducing atmospheric concentrations of greenhouse gases. We conclude that the various objections raised as to the inclusion of carbon sinks to ameliorate climate change can be addressed by existing techniques and technology. Carbon sinks provide a practical available method of achieving meaningful reductions in atmospheric concentrations of carbon dioxide while at the same time contribute to national sustainable development goals. PMID:12460486

  10. Managing haemophilia for life: 4th Haemophilia Global Summit.

    PubMed

    Astermark, J; Dolan, G; Hilberg, T; Jiménez-Yuste, V; Laffan, M; Lassila, R; Lobet, S; Martinoli, C; Perno, C-F

    2014-07-01

    The 4th Haemophilia Global Summit was held in Potsdam, Germany, in September 2013 and brought together an international faculty of haemophilia experts and delegates from multidisciplinary backgrounds. The programme was designed by an independent Scientific Steering Committee of haemophilia experts and explored global perspectives in haemophilia care, discussing practical approaches to the optimal management of haemophilia now and in the future. The topics outlined in this supplement were selected by the Scientific Steering Committee for their relevance and potential to influence haemophilia care globally. In this supplement from the meeting, Jan Astermark reviews current understanding of risk factors for the development of inhibitory antibodies and discusses whether this risk can be modulated and minimized. Factors key to the improvement of joint health in people with haemophilia are explored, with Carlo Martinoli and Víctor Jiménez-Yuste discussing the utility of ultrasound for the early detection of haemophilic arthropathy. Other aspects of care necessary for the prevention and management of joint disease in people with haemophilia are outlined by Thomas Hilberg and Sébastian Lobet, who highlight the therapeutic benefits of physiotherapy and sports therapy. Riitta Lassila and Carlo-Federico Perno describe current knowledge surrounding the risk of transmission of infectious agents via clotting factor concentrates. Finally, different types of extended half-life technology are evaluated by Mike Laffan, with a focus on the practicalities and challenges associated with these products. PMID:24924596

  11. Global estimates of soil carbon sequestration via livestock waste: a STELLA simulation

    Microsoft Academic Search

    Jason B. Fellman; Eldon H. Franz; Chelsea L. Crenshaw; Denise Elston

    2009-01-01

    It has become increasingly well documented that human activities are enhancing the greenhouse effect and altering the global\\u000a climate. Identifying strategies to mitigate atmospheric carbon dioxide emissions on the national level are therefore critical.\\u000a Fossil fuel combustion is primarily responsible for the perturbation of the global carbon cycle, although the influence of\\u000a humans extends far beyond the combustion of fossil

  12. Carbon isotope stratigraphy of an ancient (Ordovician) Bahamian-type carbonate platform: Implications for preservation of global seawater trends

    NASA Astrophysics Data System (ADS)

    Saltzman, M.; Leslie, S. A.; Edwards, C. T.; Diamond, C. W.; Trigg, C. R.; Sedlacek, A. R.

    2013-12-01

    Carbon isotope stratigraphy has a unique role in the interpretation of Earth history as one of the few geochemical proxies that have been widely applied throughout the geologic time scale, from the Precambrian to the Recent, as both a global correlation tool and proxy for the carbon cycle. However, in addition to consideration of the role of diagenesis, numerous studies have raised awareness of the fact that C-isotope trends derived from ancient carbonate platforms may not be representative of dissolved inorganic carbon from a well-mixed global ocean reservoir. Furthermore, the larger carbon isotopic fractionation in the formation of aragonite versus calcite from seawater must be taken into account. All three of these variables (diagenesis, water mass residence time, % aragonite) may change in response to sea level, producing trends in C-isotopes on ancient carbonate platforms that are unrelated to the global carbon cycle. Global carbon cycle fluxes may also have a cause-effect relationship with sea level changes, further complicating interpretations of stratigraphic trends in carbon isotopes from ancient platform environments. Studies of C-isotopes in modern carbonate platform settings such as the Great Bahama Bank (GBB) provide important analogues in addressing whether or not ancient platforms are likely to preserve a record of carbon cycling in the global ocean. Swart et al. (2009) found that waters of the GBB had generally the same or elevated values (ranging from +0.5‰ to +2.5‰) compared to the global oceans, interpreted as reflecting differential photosynthetic fractionation and precipitation of calcium carbonate (which lowers pH and converts bicarbonate into 12-C enriched carbon dioxide, leaving residual bicarbonate heavier). Carbonate sediments of the GBB have elevated C-isotopes, not only because of the high C-isotope composition of the overlying waters, but also due to the greater fractionation associated with precipitation of aragonite versus calcite. Few studies of ancient carbonates have attempted to explicitly compare C-isotope trends in both restricted platform settings and open marine settings (e.g., Immenhauser et al. 2002). We studied a restricted Bahamian-type carbonate platform of Middle-Late Ordovician (Darriwilian-early Sandbian) age included in the St. Paul Group of Maryland, notable for sedimentologic evidence of severe restriction and a general lack of open marine macrofauna. We are able to correlate the C-isotope curve from the St. Paul Group to other sections globally by using a combination of conodont microfossils and measurement of Sr isotopes on conodont apatite. Coeval C-isotope trends from open marine settings in the western United States and Estonia are comparable to the restricted platform in Maryland. In our Ordovician example, local factors appear to have modified the magnitude of the global trends, but not the timing and direction. A remaining question is whether magnitude differences are a function of sedimentation rate and completeness. We continue to test hypotheses of global correlations of C-isotope trends in the Middle-Late Ordovician by utilizing the rapidly changing Sr isotope curve at that time.

  13. Research Summary Carbon valuation, discounting and risk management

    E-print Network

    forestry carbon projects. Background Increasing atmospheric concentrations of `greenhouse gases' (GHGs, and atmospheric GHG concentrations to within the 460­480ppm CO2e range in 2200. mThe effect of applying Treasury. The global atmospheric CO2 concentration has risen by over a third from pre-industrial levels of about 280

  14. Potential Carbon Negative Commercial Aviation through Land Management

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    Brazilian terra preta soil and char-enhanced soil agricultural systems have demonstrated both enhanced plant biomass and crop yield and functions as a carbon sink. Similar carbon sinking has been demonstrated for both glycophyte and halophyte plants and plant roots. Within the assumption of 3.7 t-C/ha/yr soils and plant root carbon sinking, it is possible to provide carbon neutral U.S. commercial aviation using about 8.5% of U.S. arable lands. The total airline CO2 release would be offset by carbon credits for properly managed soils and plant rooting, becoming carbon neutral for carbon sequestered synjet processing. If these lands were also used to produce biomass fuel crops such as soybeans at an increased yield of 60 bu/acre (225gal/ha), they would provide over 3.15 10(exp 9) gallons biodiesel fuel. If all this fuel were refined into biojet it would provide a 16% biojet-84% synjet blend. This allows the U.S. aviation industry to become carbon negative (carbon negative commercial aviation through carbon credits). Arid land recovery could yield even greater benefits.

  15. Mangrove production and carbon sinks: A revision of global budget estimates

    USGS Publications Warehouse

    Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.-Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith, T. J., III; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ???-218 ?? 72 Tg C a-1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ??? 112 ?? 85 Tg C a-1, equivalent in magnitude to ??? 30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far. Copyright 2008 by the American Geophysical Union.

  16. The impact of agricultural soil erosion on the global carbon cycle

    USGS Publications Warehouse

    Van Oost, Kristof; Quine, T.A.; Govers, G.; De Gryze, S.; Six, J.; Harden, J.W.; Ritchie, J.C.; McCarty, G.W.; Heckrath, G.; Kosmas, C.; Giraldez, J.V.; Marques Da Silva, J.R.; Merckx, R.

    2007-01-01

    Agricultural soil erosion is thought to perturb the global carbon cycle, but estimates of its effect range from a source of 1 petagram per year -1 to a sink of the same magnitude. By using caesium-137 and carbon inventory measurements from a large-scale survey, we found consistent evidence for an erosion-induced sink of atmospheric carbon equivalent to approximately 26% of the carbon transported by erosion. Based on this relationship, we estimated a global carbon sink of 0.12 (range 0.06 to 0.27) petagrams of carbon per year-1 resulting from erosion in the world's agricultural landscapes. Our analysis directly challenges the view that agricultural erosion represents an important source or sink for atmospheric CO2.

  17. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System

    Microsoft Academic Search

    P. Falkowski; R. J. Scholes; E. Boyle; J. Canadell; D. Canfield; J. Elser; N. Gruber; K. Hibbard; P. Högberg; S. Linder; F. T. Mackenzie; B. Moore III; T. Pedersen; Y. Rosenthal; S. Seitzinger; V. Smetacek; W. Steffen

    2000-01-01

    Motivated by the rapid increase in atmospheric CO2 due to human activities since the Industrial Revolution, several international scientific research programs have analyzed the role of individual components of the Earth system in the global carbon cycle. Our knowledge of the carbon cycle within the oceans, terrestrial ecosystems, and the atmosphere is sufficiently extensive to permit us to conclude that

  18. The role of European forests in the global carbon cycle—A review

    Microsoft Academic Search

    G. J. Nabuurs; R. Päivinen; R. Sikkema; G. M. J. Mohren

    1997-01-01

    The first part of this paper presents an overview of national forest carbon balance studies that have been carried out in Europe. Based on these national assessments, an estimate is made of the present role of European forests in the global carbon cycle. Differences in the methodologies applied are discussed. At present, 15 European countries have assessed a national forest

  19. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  20. 15 Energy for development: solar home systemsin Africa and global carbon emissions

    E-print Network

    Kammen, Daniel M.

    15 Energy for development: solar home systemsin Africa and global carbon emissions RICHARD D. DUKEl;market transformation;photovoltaics; solar home systems; buydown ABST RACT A growingnumberofrural). All of these are motivated in part by their carbon abatementpotential. Substantial NaO and private

  1. The Impact of Agricultural Soil Erosion on the Global Carbon Cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural soil erosion is thought to perturb the global carbon cycle, but estimates of its effect range from a source of 1 Pg/year to a sink of the same magnitude. By using Caesium-137 and carbon inventory measurements from a large-scale survey, we found consistent evidence for an erosion-induced...

  2. ATMOSPHERIC CO2 --A GLOBAL LIMITING RESOURCE: HOW MUCH FOSSIL CARBON CAN WE BURN?

    E-print Network

    greenhouse effect, resulting in an increase in global mean surface temperature (GMST) and other changesATMOSPHERIC CO2 -- A GLOBAL LIMITING RESOURCE: HOW MUCH FOSSIL CARBON CAN WE BURN? S. E. Schwartz Environmental Sciences Department/Atmospheric Sciences Division Brookhaven National Laboratory P.O. Box, Upton

  3. Global geochemical cycles of carbon, sulfur and oxygen

    NASA Technical Reports Server (NTRS)

    Walker, J. C.

    1986-01-01

    Time resolved data on the carbon isotopic composition of carbonate minerals and the sulfur isotopic composition or sulfate minerals show a strong negative correlation during the Cretaceous. Carbonate minerals are isotopically heavy during this period while sulfate minerals are isotopically light. The implication is that carbon is being transferred from the oxidized, carbonate reservoir to the reservoir of isotopically light reduced organic carbon in sedimentary rocks while sulfur is being transferred from the reservoir of isotopically light sedimentary sulfide to the oxidized, sulfate reservoir. These apparently oppositely directed changes in the oxidation state of average sedimentary carbon and sulfur are surprising because of a well-established and easy to understand correlation between the concentrations of reduced organic carbon and sulfide minerals in sedimentary rocks. Rocks rich in reduced carbon are also rich in reduced sulfur. The isotopic and concentration data can be reconciled by a model which invokes a significant flux of hydrothermal sulfide to the deep sea, at least during the Cretaceous.

  4. Variability of terrestrial carbon cycle and its interaction with climate under global warming

    Microsoft Academic Search

    Haifeng Qian

    2008-01-01

    Land-atmosphere carbon exchange makes a significant contribution to the variability of atmospheric CO2 concentration on time scales of seasons to centuries. In this thesis, a terrestrial vegetation and carbon model, VEgetation-Global-Atmosphere-Soil (VEGAS), is used to study the interactions between the terrestrial carbon cycle and climate over a wide-range of temporal and spatial scales. The VEGAS model was first evaluated by

  5. Exploring Global Competence with Managers in India, Japan, and the Netherlands: A Qualitative Study

    ERIC Educational Resources Information Center

    Ras, Gerard J. M.

    2011-01-01

    This qualitative study explores the meaning of global competence for global managers in three different countries. Thirty interviews were conducted with global managers in India, Japan and the Netherlands through Skype, an internet based software. Findings are reported by country in five major categories: country background, personal…

  6. The significance of carbon-enriched dust for global carbon accounting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil carbon stores amount to 54% of the terrestrial carbon pool and twice the atmospheric carbon pool, but soil organic carbon (SOC) can be transient. There is an ongoing debate about whether soils are a net source or sink of carbon, and understanding the role of aeolian processes in SOC erosion, tr...

  7. Rising Carbon Dioxide Levels and Forest Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent observations and scientific research indicate that climate change, with its greater extremes in meteorological trends and overall temperature increases, is likely to affect land resources. Natural resource managers need to continually update their knowledge concerning potential impacts of cl...

  8. Can land management and biomass utilization help mitigate global warming?

    SciTech Connect

    Schlamadinger, B.; Lauer, M. [Joanneum Research, Graz (Austria)

    1996-12-31

    With rising concern about the increase of the CO{sub 2} concentration in the earth`s atmosphere there is considerable interest in various land-use based mitigation options, like afforestation of surplus agricultural land with or without subsequent harvest; improved forest management; strategies that rely on wood plantations managed in short rotation or agricultural crops with high yields to produce bioenergy, timber and other biomass products. In the first step of this study, the net carbon benefits of such strategies will be calculated per unit of land, i.e., per hectare, because it is assumed that land is the limiting resource for such strategies in the future, and thus, the benefits per unit land need to be optimized. For these calculations a computer model has been developed. The results take into account the time dependence of carbon storage in the biosphere and are shown graphically both for land and for plantation systems with constant output of biomass over time. In the second step, these results will be combined with data on available land for Austria. The potential contribution of each of the above strategies towards mitigating the Austrian CO{sub 2} emissions will be demonstrated. A comparison to other renewable mitigation options, like solar thermal or photovoltaics, will be drawn in terms of available land resources and overall CO{sub 2} reductions.

  9. Twelve metropolitan carbon footprints: A preliminary comparative global assessment

    Microsoft Academic Search

    Benjamin K. Sovacool; Marilyn A. Brown

    2010-01-01

    A dearth of available data on carbon emissions and comparative analysis between metropolitan areas make it difficult to confirm or refute best practices and policies. To help provide benchmarks and expand our understanding of urban centers and climate change, this article offers a preliminary comparison of the carbon footprints of 12 metropolitan areas. It does this by examining emissions related

  10. Modulation of atmospheric carbon dioxide by global electric circuit

    Microsoft Academic Search

    M. Sharma

    2003-01-01

    In this report I propose a model connecting changes in ionosphere potential to the removal rate of carbon from ocean surface, which in turn, affects the atmospheric concentration of carbon dioxide. The basic argument is that variations in the mean magnetic field of the heliosphere lead to the modulation of galactic cosmic radiation, which affects the ionosphere potential and conductivity

  11. Role of the marine biosphere in the global carbon cycle

    Microsoft Academic Search

    ALAN R. LONGHURST

    1991-01-01

    The geographical disequilibrium of our planet is due mainly to carbon sequestration by marine organisms over geological time. Changes in atmospheric COâ during interglacial-glacial transitions require biological sequestration of carbon in the oceans. Nutrient-limited export flux from new production in surface waters is the key process in this sequestrian. The most common model for export flux ignores potentially important nutrient

  12. CARBON POOL AND FLUX OF GLOBAL FOREST ECOSYSTEMS

    EPA Science Inventory

    Forest systems cover more than 4.1 x 10 9 hectares of the Earth's land area. lobally, forest vegetation and soils contain about 1146 petagrams of carbon, with approximately 37 percent of this carbon in low-latitude forests, 14 percent in mid-latitudes, and 49 percent in high lati...

  13. Cross-cultural management supporting global space exploration

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, P.; Peter, N.; Schrogl, K. U.; Logsdon, J. M.

    2010-01-01

    A new era of space exploration has begun that may soon expand into a global endeavor mainly driven by socio-economic motives. Currently the main space powers, namely the United States, Russia, Europe, Japan, Canada as well as new rising space powers China and India, are pursuing national exploration programs to explore robotically and later with humans the Earth-Moon-Mars space. New axes of partnerships and cooperation mechanisms have emerged in the last decades. However, in order to achieve highly ambitious goals such as establishing human bases on the Moon, journeys to Mars and the construction of new infrastructures in space, international space cooperation has to be optimized to reduce costs and reap the benefits of worldwide expertise. Future ambitious space exploration endeavors are a long-term undertaking that could influence countries to look beyond their own interests and see the advantages that a larger program can bring. This paper provides new concepts for managing global space exploration in the framework of cross-cultural management, an element often neglected in the planning of future partnerships.

  14. Groundwater assessment and management: implications and opportunities of globalization

    NASA Astrophysics Data System (ADS)

    Villholth, Karen G.

    2006-03-01

    The present and predicted increase in groundwater’s share of human freshwater withdrawals, its unprecedented importance for human activities globally, and the emerging threats from escalated and unplanned use and degradation, especially in the developing countries, point to the need for intensified efforts to cope with the imbalances. Despite these facts, there is little intervention by governments in developing countries. Sufficient knowledge, awareness and understanding of the groundwater resources and their proper management are missing in these countries, as well as in the international community. Links and trends are described, which highlight problem areas, such as water contamination, urbanization, and socio-economic factors related to groundwater management practices. Globalization provides novel opportunities for facilitating the process of acquiring and applying the necessary knowledge and can, and should, be further explored and developed. The likely benefits of this are: increase in convergence of understanding and approaches; the sharing of knowledge; and potentially wide-reaching, lasting, and scale-crossing networks. The international development and research community is in a particularly fortunate position to promote and facilitate such a process, which should go hand in hand with well focused and coordinated “on the ground” tasks, such as local networking, field investigations, capacity building, and advocacy activities.

  15. An integrated and pragmatic approach: Global plant safety management

    NASA Astrophysics Data System (ADS)

    McNutt, Jack; Gross, Andrew

    1989-05-01

    The Bhopal disaster in India in 1984 has compelled manufacturing companies to review their operations in order to minimize their risk exposure. Much study has been done on the subject of risk assessment and in refining safety reviews of plant operations. However, little work has been done to address the broader needs of decision makers in the multinational environment. The corporate headquarters of multinational organizations are concerned with identifying vulnerable areas to assure that appropriate risk-minimization measures are in force or will be taken. But the task of screening global business units for safety prowess is complicated and time consuming. This article takes a step towards simplifying this process by presenting the decisional model developed by the authors. Beginning with an overview of key issues affecting global safety management, the focus shifts to the multinational vulnerability model developed by the authors, which reflects an integration of approaches. The article concludes with a discussion of areas for further research. While the global chemical industry and major incidents therein are used for illustration, the procedures and solutions suggested here are applicable to all manufacturing operations.

  16. Manufacturing Management glOBAl OPerAtiOns & suPPly ChAin MAnAgeMent

    E-print Network

    Barthelat, Francois

    Masters in Manufacturing Management glOBAl OPerAtiOns & suPPly ChAin MAnAgeMent #12;Mc who wish to pursue a career in the effective management of global operations and supply chainTic view of supply chAin, logisTics And mAnufAcTuring mAnAgemenT. INNOvATIvE PROGRAM MMM ClASS PROFilE MMM

  17. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP)

    E-print Network

    Change: Oceans (4203); 4806 Oceanography: Biological and Chemical: Carbon cycling; 4845 Oceanography role in the carbon cycle on seasonal to millennial timescales. During the 1980s the potential belief. This led to a significant increase in the attention given to carbon cycle research. Researchers

  18. Influences on the adoption of global marketing decision support systems : A management perspective

    Microsoft Academic Search

    William J. McDonald

    1996-01-01

    Develops a model of the influences on adopting global marketing decision support systems (MDSS) by global marketing organizations. The focus is on the expectations, beliefs, concerns, experiences, and implicit theories about global MDSS adoption of 144 senior marketing managers at 43 global firms. From a quantitative analysis of personal interviews, argues for an adoption model which includes controllable, uncontrollable and

  19. Rapid Global Imagery Management and Generation In Action

    NASA Astrophysics Data System (ADS)

    Huang, T.; Alarcon, C.; Thompson, C. K.; Roberts, J. T.; Hall, J. R.; Cechini, M. F.; Schmaltz, J. E.; McGann, J. M.; Boller, R. A.; Murphy, K. J.; Bingham, A. W.

    2013-12-01

    NASA's Global Imagery Browse Services (GIBS) project has positioned itself to be the global imagery solution for the Earth Observation System (EOS), delivering global, full-resolution satellite imagery in a highly responsive manner. This is an ambitious goal for supporting a growing a collection of distributed archives consist of heterogeneous near real-time (NRT) and science products with varied and often disparate provenance pertaining to source platforms and instruments, spatial resolutions, processing algorithms, metadata models and packaging specifications. GIBS consists of two major subsystems, OnEarth and The Imagery Exchange (TIE). OnEarth is the Open Geospatial Consortium (OGC)-compliant Web Map Tile Service (WMTS), which efficiently serves multi-resolution imagery to clients (e.g., http://podaac-tools.jpl.nasa.gov/soto/ and http://earthdata.nasa.gov/labs/worldview/). TIE is the GIBS imagery workflow management solution that is a specialization of the horizontally scaled Data Management and Archive System (DMAS) developed at the Jet Propulsion Laboratory. Like DMAS, TIE is an Open Archival Information System (OAIS) responsible for orchestrating the workflow for acquisition, preparation, generation, and archiving of imagery to be served by OnEarth. The workflow collects imagery provenance throughout a product's lifecycle by leveraging the EOS Clearing House (ECHO) and other long-term metadata repositories in order to promote reproducibility and retain lineage with source observational artifacts. This talk focuses on the current TIE development activities and some of the patterns and architectures that have proven successful in building a horizontal-scaling workflow data systems. As a data solution developed using open source technologies. This talk also discusses current activities in getting DMAS and TIE to the open source community.

  20. Ocean Margins Program: Closure on the global carbon cycle. Program description

    SciTech Connect

    Riches, M.R.

    1994-08-01

    The Department of Energy`s Ocean Margins Program (OMP) is designed to quantitatively assess the importance of coastal ocean systems in the global carbon cycle. Since the beginning of the Industrial Revolution, human energy-related activities have dramatically altered the global carbon cycle, and consequently, this cycle is not presently in a steady-state. To reduce major uncertainties in predicting future global environmental quality, it is imperative to understand the sources and sinks of atmospheric CO{sub 2}, the role of anthropogenic activities in disrupting the natural carbon cycle, and the effects of, and feedbacks between, these activities and the natural carbon cycle. Due to continuously increased loading of nutrients to the margins, which, globally, is related to the rate of human population growth and high population densities in coastal states, biological carbon fixation has been stimulated. Depending on the fate of the fixed carbon, this stimulation has the potential to mitigate the anthropogenically derived Co{sub 2}. Determining the factors that control the magnitude of carbon exchanges between the ocean margins and the atmosphere, and the subsequent fate of this carbon, is crucial to predicting the strength and capacity of the oceans to absorb excess anthropogenic atmospheric CO{sub 2}. The goals of the OMP are to: quantify the ecological and biogeochemical processes and mechanisms that define the cycling, flux, and storage of carbon and other biogenic elements at the land/ocean interface; identify how ocean-margin sources and sinks of carbon change in response to human activities; and determine whether continental shelves are quantitatively significant in removing atmospheric carbon dioxide and isolating it via burial in sediments or export to the interior of the open ocean.

  1. Global Supply Chain Management: A Reinforcement Learning Approach Pierpaolo Pontrandolfo (pontrandolfo@poliba.it )1

    E-print Network

    Gosavi, Abhijit

    Global Supply Chain Management: A Reinforcement Learning Approach Pierpaolo Pontrandolfo devoted a great deal of attention to supply chain management (SCM). The main focus of SCM is the need in an international context as part of what we refer to as Global Supply Chain Management (GSCM). In this paper we

  2. Advancing the theory and practice of excellence in global supply chain management

    E-print Network

    Straight, Aaron

    Advancing the theory and practice of excellence in global supply chain management Global Supply Chain Management Forum ("the Forum") is an international research center that works of Technology in the Netherlands and the Center for Marketing and Supply Chain Management at Hong Kong

  3. Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs

    E-print Network

    Fortunat, Joos

    Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean to assess mitigation of global warming by carbon capture and storage are discussed. The climatic impact penalty for carbon capture. For an annual leakage rate of 0.01, surface air temperature becomes higher

  4. Managing Liability: Comparing Radioactive Waste Disposal and Carbon Dioxide Storage

    Microsoft Academic Search

    Elizabeth J. Wilson; Sara Bergan

    \\u000a Liability issues are a major concern for final disposal of radioactive waste (RW) and for geological storage of carbon dioxide\\u000a (CO2). We develop a list of overarching questions that drive liability and present a discussion of where managing liability for\\u000a geological CO2 storage and RW disposal is fundamentally different and where it is similar. Governments have been trying to manage

  5. Projecting Impacts of Global Climate Change on the U.S. Forest and Agriculture Sectors and Carbon Budgets

    E-print Network

    McCarl, Bruce A.

    Projecting Impacts of Global Climate Change on the U.S. Forest and Agriculture Sectors and Carbon scenarios for the biological response of forests to climate change are based on combinations of global Impacts of Global Climate Change on the U.S. Forest and Agriculture Sectors and Carbon Budgets

  6. Land and ocean carbon cycle feedback eVects on global warming in a simple Earth system model

    Microsoft Academic Search

    TIMOTHY M. LENTON

    2000-01-01

    A simple Earth system model is developed by coupling a box model of the global carbon cycle to an energy-balance approximation of global temperature. The model includes a range of feedback mechanisms between atmospheric CO 2 , surface temperature and land and ocean carbon cycling. It is used to assess their eVect on the global change being driven by anthropo-

  7. A Global Guide to Certification for Project Managers Scott R. Abraham Gary D. Boetticher

    E-print Network

    Boetticher, Gary D.

    A Global Guide to Certification for Project Managers Scott R. Abraham Gary D. Boetticher Project.abraham@ips.invensys.com boetticher@cl.uh.edu KEYWORDS Project Management Professional, PMP, certification, Project Management Institute, PMI, Project Manager, Career assessment ABSTRACT Since project managers assume responsibility

  8. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon

    E-print Network

    Schwarz, J. P.

    Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the ...

  9. Global patterns of ecosystem carbon flux in forests: A biometric data-based synthesis

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Yang, Yuanhe; Li, Pin; Shen, Haihua; Fang, Jingyun

    2014-09-01

    Forest ecosystems function as a significant carbon sink for atmospheric carbon dioxide. However, our understanding of global patterns of forest carbon fluxes remains controversial. Here we examined global patterns and environmental controls of forest carbon balance using biometric measurements derived from 243 sites and synthesized from 81 publications around the world. Our results showed that both production and respiration increased with mean annual temperature and exhibited unimodal patterns along a gradient of precipitation. However, net ecosystem production (NEP) initially increased and subsequently declined along gradients of both temperature and precipitation. Our results also indicated that ecosystem production increased during stand development but eventually leveled off, whereas respiration was significantly higher in mature and old forests than in young forests. The residual variation of carbon flux along climatic and age gradients might be explained by other factors such as atmospheric CO2 elevation and disturbances (e.g., forest fire, storm damage, and selective harvest). Heterotrophic respiration (Rh) was positively associated with net primary production (NPP), but the Rh-NPP relationship differed between natural and planted forests: Rh increased exponentially with NPP in natural forests but tended toward saturation with increased NPP in planted forests. Comparison of biometric measurements with eddy covariance observations revealed that ecosystem carbon balance derived from the latter generated higher overall NEP estimates. These results suggest that the eddy covariance observations may overestimate the strength of carbon sinks, and thus, biometric measurements need to be incorporated into global assessments of the forest carbon balance.

  10. Global covariation of carbon turnover times with climate in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Carvalhais, Nuno; Forkel, Matthias; Khomik, Myroslava; Bellarby, Jessica; Jung, Martin; Migliavacca, Mirco; ?u, Mingquan; Saatchi, Sassan; Santoro, Maurizio; Thurner, Martin; Weber, Ulrich; Ahrens, Bernhard; Beer, Christian; Cescatti, Alessandro; Randerson, James T.; Reichstein, Markus

    2014-10-01

    The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.

  11. Global covariation of carbon turnover times with climate in terrestrial ecosystems.

    PubMed

    Carvalhais, Nuno; Forkel, Matthias; Khomik, Myroslava; Bellarby, Jessica; Jung, Martin; Migliavacca, Mirco; Mu, Mingquan; Saatchi, Sassan; Santoro, Maurizio; Thurner, Martin; Weber, Ulrich; Ahrens, Bernhard; Beer, Christian; Cescatti, Alessandro; Randerson, James T; Reichstein, Markus

    2014-10-01

    The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is 23(+7)(-4) years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models. PMID:25252980

  12. Global warming presents new challenges for maize pest management

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, Noah S.; Krupke, Christian H.; White, Michael A.; Alexander, Corinne E.

    2008-10-01

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  13. Availability and Utilization of Opioids for Pain Management: Global Issues

    PubMed Central

    Manjiani, Deepak; Paul, D. Baby; Kunnumpurath, Sreekumar; Kaye, Alan David; Vadivelu, Nalini

    2014-01-01

    Background Pain can significantly influence an individual's health status and can have serious negative consequences: poor nutrition, decreased appetite, abnormal sleep patterns, fatigue, and impairment of daily living activities. Pain can cause psychological impairment and decrease healing and recovery from injuries and illness. A hallmark of many chronic conditions, pain affects more patients' lives than diabetes mellitus, heart disease, and cancer combined. However, many chronic sufferers do not have access to effective pain management for a variety of reasons, including limited access, restrictions, and personal and cultural biases. Methods This review summarizes issues of access, distribution, and cultural bias with regard to opioid agents and seeks to clarify the challenges related to opioid delivery. The considerable negative physical and mental consequences of chronic pain are discussed for the general and palliative care population. Results Opioids are an effective treatment for various intractable painful conditions, but problems in global opioid access for safe and rational use in pain management contribute to unnecessary suffering. These problems persist despite increased understanding in recent years of the pathophysiology of pain. Conclusions Comprehensive guidelines for goal-directed and patient-friendly chronic opiate therapy will potentially enhance the outlook for future chronic pain management. The improvement of pain education in undergraduate and postgraduate training will benefit patients and clinicians. The promise of new medications, along with the utilization of multimodal approaches, has the potential to provide effective pain relief to future generations of sufferers. PMID:24940131

  14. SOIL CARBON SEQUESTRATION UNDER DIFFERENT MANAGEMENT PRACTICES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five management systems: continuous corn (CC), cropland to woodland (CW), cropland to pastures (CP), no-till (NT), and conservation reserve program (CRP), were selected to evaluate their long-term impacts (5, 10 and 15 yr) on soil C sequestration. Nine soil cores from each system were randomly colle...

  15. Conservation agricultural management to sequester soil organic carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storing carbon (C) in soil as organic matter is not only a viable strategy to sequester CO2 from the atmosphere, but is vital for improving the quality, fertility, and functioning of soil. This presentation describes relevant management approaches to avoid land degradation and foster soil organic C ...

  16. Review of Soil Carbon Management: Economics, Environmental and Societal Benefits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The book provides a “big picture” look at the processes and benefits of soil carbon (c) management. The book is targeted to policy makers and gives policy recommendations in addition to providing technical information. The first section of the book contains a summary of current programs that foste...

  17. Driving down corporate carbon emissions through sustainable property management

    E-print Network

    -ranging yet detailed insight based on reliable data. However, many organisations carry out a one-off exercise utilisation. A Property Carbon Audit assesses the maturity of an estate's management systems and processes, combining detailed quantitative analysis with the insights gleaned from focused interviews across all

  18. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    Microsoft Academic Search

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen; Indrek Kulaots

    2001-01-01

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal)

  19. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle

    NSDL National Science Digital Library

    Edward A. G. Schuur (University of Florida; )

    2008-09-01

    Thawing permafrost and the resulting microbial decomposition of previously frozen organic carbon (C) is one of the most significant potential feedbacks from terrestrial ecosystems to the atmosphere in a changing climate. In this article we present an overview of the global permafrost C pool and of the processes that might transfer this C into the atmosphere, as well as the associated ecosystem changes that occur with thawing. We show that accounting for C stored deep in the permafrost more than doubles previous high-latitude inventory estimates, with this new estimate equivalent to twice the atmospheric C pool. The thawing of permafrost with warming occurs both gradually and catastrophically, exposing organic C to microbial decomposition. Other aspects of ecosystem dynamics can be altered by climate change along with thawing permafrost, such as growing season length, plant growth rates and species composition, and ecosystem energy exchange. However, these processes do not appear to be able to compensate for C release from thawing permafrost, making it likely that the net effect of widespread permafrost thawing will be a positive feedback to a warming climate.

  20. Waste management activities and carbon emissions in Africa.

    PubMed

    Couth, R; Trois, C

    2011-01-01

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries. PMID:20832276

  1. Waste management activities and carbon emissions in Africa

    SciTech Connect

    Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)

    2011-01-15

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  2. Editor's Introduction to the Mini-Symposium on Human Resources Management and Total Quality Management in the Age of Globalization

    Microsoft Academic Search

    Ali Farazmand

    2002-01-01

    The rapidly changing global environment of governance and public administration is affecting the development and management of human resources in many significant ways at national, subnational, and local levels around the world. The hallmark of this global change is the process of globalization of capital, technology, and communication, ‘‘through which worldwide integration and transcendence take place’’ (Farazmand, 1999: 509). Already,

  3. Global assessment of ocean carbon export by combining satellite observations and food-web models

    NASA Astrophysics Data System (ADS)

    Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W.

    2014-03-01

    The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of ~6 Pg C yr-1. Global export estimates show small variation (typically < 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.

  4. Millennial-Scale Rhythms in Peatlands in the Western Interior of Canada and in the Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Campbell, Ian D.; Campbell, Celina; Yu, Zicheng; Vitt, Dale H.; Apps, Michael J.

    2000-07-01

    Anatural ?1450-yr global Holocene climate periodicity underlies a portion of the present global warming trend. Calibrated basal radiocarbon dates from 71 paludified peatlands across the western interior of Canada demonstrate that this periodicity regulated western Canadian peatland initiation. Peatlands, the largest terrestrial carbon pool, and their carbon-budgets are sensitive to hydrological fluctuations. The global atmospheric carbon-budget experienced corresponding fluctuations, as recorded in the Holocene atmospheric CO2 record from Taylor Dome, Antarctica. While the climate changes following this ?1450-yr periodicity were sufficient to affect the global carbon-budget, the resultant atmospheric CO2 fluctuations did not cause a runaway climate-CO2 feedback loop. This demonstrates that global carbon-budgets are sensitive to small climatic fluctuations; thus international agreements on greenhouse gasses need to take into account the natural carbon-budget imbalance of regions with large climatically sensitive carbon pools.

  5. Explaining the seasonal cycle of the globally averaged CO2 with a carbon-cycle model

    NASA Astrophysics Data System (ADS)

    Alexandrov, G. A.

    2014-10-01

    The seasonal changes in the globally averaged atmospheric carbon-dioxide concentrations reflect an important aspect of the global carbon cycle: the gas exchange between the atmosphere and terrestrial biosphere. The data on the globally averaged atmospheric carbon-dioxide concentrations, which are reported by Earth System Research Laboratory of the US National Oceanic & Atmospheric Administration (NOAA/ESRL), could be used to demonstrate the adequacy of the global carbon-cycle models. However, it was recently found that the observed amplitude of seasonal variations in the atmospheric carbon-dioxide concentrations is higher than simulated. In this paper, the factors that affect the amplitude of seasonal variations are explored using a carbon-cycle model of reduced complexity. The model runs show that the low amplitude of the simulated seasonal variations may result from underestimated effect of substrate limitation on the seasonal pattern of heterotrophic respiration and from an underestimated magnitude of the annual gross primary production (GPP) in the terrestrial ecosystems located to the north of 25° N.

  6. Development of CNT based carbon-carbon composites for thermal management system (TMS)

    NASA Astrophysics Data System (ADS)

    Paul, Jhon; Krishnakumar, G.; Rajarajan, A.; Rakesh, S.

    2013-06-01

    Carbon-Fibre-Carbon matrix composites having high thermal conductivity per unit density is a competitive material for thermal management for aerospace applications. Due to anisotropic nature of Carbon-Carbon(C-C) composites, the thermal conductivity in the thickness direction which is dominated by the matrix carbon is comparatively low. In the present study, work is carried to increase the thermal conductivity in the thickness direction of 2D-CC composites. Multi-Walled Carbon Nanotubes (MWNT) were functionalised and dispersed in Phenolic Resin. C-C composites were densified with MWNT dispersed Phenolic Resin through impregnation, curing & carbonisation cycle. CNT-CC composites were densified through Chemical Vapor Infiltration process and further graphitised. The effects of MWNT in amorphous carbon for thermal conductivity were investigated. The result shows that Multi Walled Carbon Nanotubes (MWNT) can induce the ordered arrangement of micro-crystallites in amorphous carbon leading to increase in thermal conductivity of the bulk composites. There exists an optimum MWNT concentration in resin to enhance the thermal conductivity of C-C composites in the perpendicular direction. However, excess MWNT in resin is disadvantageous to enhance the thermal conductivity due to problems like agglomeration, resulting in reduced thermal conductivity. This can be attributed to the interfacial contact resistance due to improper heat transmission channels arising due to agglomeration. Investigation has been carried out to study the effect of agglomeration for the thermal conductivity of the bulk composites.

  7. The Clathrate Gun is firing blanks: evidence from balancing the deglacial global carbon budget

    NASA Astrophysics Data System (ADS)

    Maslin, M.; Thomas, E.

    2003-04-01

    Kennett et al. (2003) have suggested that the large changes seen in the ice core atmospheric methane record are due to gas hydrate dissociation rather than changes in tropical wetlands. We use the global carbon isotope budgeting method to calculate the amount of gas hydrate release which would be required to balance the deglacial carbon isotope shift. Unfortunately a release of only ~135 GtC methane, is required to make a biospheric carbon transfer of ~1100 GtC compatible with the marine carbon isotope data. This represents less than 20 percent of the atmospheric methane increase between 18 and 8 ka observed in ice cores. This supports the theory that glacial-interglacial variations in atmospheric methane were driven primarily by changes in the extent of tropical and temperate wetlands and not by methane release from clathrates. Hence the Clathrate Gun Hypothesis is firing blanks. This method also invalidates the carbon isotope budget method as a means of estimating glacial-interglacial land carbon, as the release of very light gas hydrate carbon must be taken into account. This resolves the long running discrepancy isotope and paleovegetation estimates of carbon transfer. Therefore we suggest global carbon models will have to incorporate glacial-interglacial vegetation shifts of at least 1000 GtC, which many of them will currently find difficult.

  8. Academic Regulations 2014, Bachelor of Engineering in Global Management and Manufacturing (GMM)

    E-print Network

    1 Academic Regulations 2014, Bachelor of Engineering in Global Management and Manufacturing (GMM............................................................................................................................ 5 7. Structure of the GMM study programme Management and Manufacturing Programme (GMM) is formulated by the Programme Coordinator and approved

  9. Nutrient availability as the key regulator of global forest carbon balance

    NASA Astrophysics Data System (ADS)

    Fernández-Martínez, M.; Vicca, S.; Janssens, I. A.; Sardans, J.; Luyssaert, S.; Campioli, M.; Chapin, F. S., III; Ciais, P.; Malhi, Y.; Obersteiner, M.; Papale, D.; Piao, S. L.; Reichstein, M.; Rodà, F.; Peñuelas, J.

    2014-06-01

    Forests strongly affect climate through the exchange of large amounts of atmospheric CO2 (ref. ). The main drivers of spatial variability in net ecosystem production (NEP) on a global scale are, however, poorly known. As increasing nutrient availability increases the production of biomass per unit of photosynthesis and reduces heterotrophic respiration in forests, we expected nutrients to determine carbon sequestration in forests. Our synthesis study of 92 forests in different climate zones revealed that nutrient availability indeed plays a crucial role in determining NEP and ecosystem carbon-use efficiency (CUEe; that is, the ratio of NEP to gross primary production (GPP)). Forests with high GPP exhibited high NEP only in nutrient-rich forests (CUEe = 33 +/- 4% mean +/- s.e.m.). In nutrient-poor forests, a much larger proportion of GPP was released through ecosystem respiration, resulting in lower CUEe (6 +/- 4%). Our finding that nutrient availability exerts a stronger control on NEP than on carbon input (GPP) conflicts with assumptions of nearly all global coupled carbon cycle-climate models, which assume that carbon inputs through photosynthesis drive biomass production and carbon sequestration. An improved global understanding of nutrient availability would therefore greatly improve carbon cycle modelling and should become a critical focus for future research.

  10. Managing carbon in a multiple use world: The implications of land-use decision context for carbon management

    E-print Network

    Neff, Jason

    , Boulder, 80309-0488, United States 1. Introduction Carbon management through changes in land is found in forests, and practices such as halting deforestation, planting trees or using different making. We conducted a case study through interviews of the major categories of landowners in the state

  11. Global Distribution of Carbon Stock in Live Woody Vegetation

    E-print Network

    Yu, Yifan

    2013-01-01

    coverage of GLAS LiDAR shots. Only shots that have ver- tical structural return over vegetationcoverage means the total amount of carbon in woody vegetationcoverage of GLAS LiDAR shots. Only shots that have vertical structural return over vegetation

  12. Review of Global Energy and Carbon Dioxide Projections

    Microsoft Academic Search

    B Keepin

    1986-01-01

    The concentration of carbon dioxide (COâ) in the Earth's atmosphere has risen steadily over the last century, giving rise to the widely publicized ''greenhouse effect,'' believed to be responsible for a gradual warming trend in the Earth's climate. In addition to COâ, recent studies have revealed increasing atmospheric concentrations of other ''greenhouse'' gases (e.g. methane, nitrous oxide, and chlorofluorocarbons) that

  13. Global carbon monoxide cycle: Modeling and data analysis

    Microsoft Academic Search

    Avelino F. Arellano Jr.

    2005-01-01

    The overarching goal of this dissertation is to develop robust, spatially and temporally resolved CO sources, using global chemical transport modeling, CO measurements from Climate Monitoring and Diagnostic Laboratory (CMDL) and Measurement of Pollution In The Troposphere (MOPITT), under the framework of Bayesian synthesis inversion. To rigorously quantify the CO sources, I conducted five sets of inverse analyses, with each

  14. On the global warming problem due to carbon dioxide

    Microsoft Academic Search

    Karl E. Lonngren; Er-Wei Bai

    2008-01-01

    The subject of global warming due to the increased use of fossil fuels is analyzed using a modification of the predator prey equations. The results of the calculation indicate that both the fossil fuels and civilization will both become extinct as time increases.

  15. Global Distribution of Total Inorganic Carbon and Total Alkalinity Below the Deepest Winter Mixed Layer Depths

    NSDL National Science Digital Library

    The Carbon Dioxide Information Analysis Center (CDIAC) has just released this report authored by researchers at Woods Hole Oceanographic Institute, Monterey Bay Aquarium Research Institute, and Oak Ridge National Laboratory. The report presents an approach to modeling realistic three-dimensional (3-D) oceanic carbon fields from "an extensive global database of ocean carbon dioxide (CO2) system measurements and well-developed interpolation methods." The data were extracted from the recent high-quality data sets from the World Ocean Circulation Experiment (WOCE), Joint Global Ocean Flux Study (JGOFS), and Ocean-Atmosphere Carbon Exchange Study (OACES) programs. The data and ASCII documentation files of NDP-076 are available for download (.datZ, .txt). File sizes range from 1K to as large as 203M.

  16. Risk Management for a Global Supply Chain Planning under Uncertainty: Models and Algorithms

    E-print Network

    Grossmann, Ignacio E.

    Risk Management for a Global Supply Chain Planning under Uncertainty: Models and Algorithms Fengqi. Keywords: Supply Chain Management, Risk Management, Stochastic Programming, Multicut L-shaped Method, process industries are facing increasing pressure to manage their supply chains so as to reduce costs

  17. New Technical Risk Management Development for Carbon Capture Process

    SciTech Connect

    Engel, David W.; Letellier, Bruce; Edwards, Brian; Leclaire, Rene; Jones, Edward

    2012-04-30

    The basic CCSI objective of accelerating technology development and commercial deployment of carbon capture technologies through the extensive use of numerical simulation introduces a degree of unfamiliarity and novelty that potentially increases both of the traditional risk elements. In order to secure investor confidence and successfully accelerate the marketability of carbon capture technologies, it is critical that risk management decision tools be developed in parallel with numerical simulation capabilities and uncertainty quantification efforts. The focus of this paper is on the development of a technical risk model that incorporates the specific technology maturity development (level).

  18. The Influence of Low-carbon Economy on Global Trade Pattern

    NASA Astrophysics Data System (ADS)

    Xiao-jing, Guo

    Since global warming has seriously endangered the living environment of human being and their health and safety, the development of low-carbon economy has become an irreversible global trend. Under the background of economic globalization, low-carbon economy will surely exert a significant impact on global trade pattern. Countries are paying more and more attention to the green trade. The emission permits trade of carbon between the developed countries and the developing countries has become more mature than ever. The carbon tariff caused by the distribution of the "big cake" will make the low-cost advantage in developing countries cease to exist, which will, in turn, affect the foreign trade, economic development, employment and people's living in developing countries. Therefore, under the background of this trend, we should perfect the relevant laws and regulations on trade and environment as soon as possible, optimize trade structure, promote greatly the development of service trade, transform thoroughly the mode of development in foreign trade, take advantage of the international carbon trading market by increasing the added value of export products resulted from technological innovation to achieve mutual benefit and win-win results and promote common development.

  19. Computer implementation of a globally averaged model of the world carbon cycle

    Microsoft Academic Search

    W. R. Emanuel; G. G. Killough; W. M. Post; H. H. Shugart; M. P. Stevenson

    1984-01-01

    A model of the global carbon cycle and its computer implementation are described. Three major components of the cycle - the atmosphere, oceans, and terrestrial ecosystems - are represented. The dynamics of total carbon (i.e., mass of ¹²C plus ¹³C and ¹⁴C), and the two less abundant isotopes, ¹³C and ¹⁴C, are treated. The model equations are derived from a

  20. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon

    Microsoft Academic Search

    Philip F. Sexton; Richard D. Norris; Paul A. Wilson; Heiko Pälike; Thomas Westerhold; Ursula Röhl; Clara T. Bolton; Samantha Gibbs

    2011-01-01

    `Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (~65-34million years (Myr) ago). The most extreme hyperthermal was the ~170 thousand year (kyr) interval of 5-7°C global warming during the Palaeocene-Eocene Thermal Maximum (PETM, 56Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon

  1. Land Use and Management Practices Impact on Plant Biomass Carbon and Soil Carbon Dioxide Emission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use and management practices may influence plant C input and soil CO2 emission, a greenhouse gas responsible for global warming. We evaluated the effect of a combination of irrigation, tillage, cropping system, and N fertilization on plant biomass (leaves + stems) C, soil temperature and water ...

  2. Management practices effects on soil carbon dioxide emission and carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices can influence soil CO2 emission and C content in cropland, which can effect global warming. We examined the effects of combinations of irrigation, tillage, cropping systems, and N fertilization on soil CO2 flux, temperature, water, and C content at the 0 to 20 cm depth from May ...

  3. Global economic potential for reducing carbon dioxide emissions from mangrove loss.

    PubMed

    Siikamäki, Juha; Sanchirico, James N; Jardine, Sunny L

    2012-09-01

    Mangroves are among the most threatened and rapidly disappearing natural environments worldwide. In addition to supporting a wide range of other ecological and economic functions, mangroves store considerable carbon. Here, we consider the global economic potential for protecting mangroves based exclusively on their carbon. We develop unique high-resolution global estimates (5' grid, about 9 × 9 km) of the projected carbon emissions from mangrove loss and the cost of avoiding the emissions. Using these spatial estimates, we derive global and regional supply curves (marginal cost curves) for avoided emissions. Under a broad range of assumptions, we find that the majority of potential emissions from mangroves could be avoided at less than $10 per ton of CO(2). Given the recent range of market price for carbon offsets and the cost of reducing emissions from other sources, this finding suggests that protecting mangroves for their carbon is an economically viable proposition. Political-economy considerations related to the ability of doing business in developing countries, however, can severely limit the supply of offsets and increases their price per ton. We also find that although a carbon-focused conservation strategy does not automatically target areas most valuable for biodiversity, implementing a biodiversity-focused strategy would only slightly increase the costs. PMID:22847435

  4. Carbon Management in the Electric Power Industry

    NASA Astrophysics Data System (ADS)

    Stringer, John

    2002-03-01

    Approximately 53States in 2000 came from the combustion of coal in Rankine cycle plant; 16principally in Brayton cycle or combined cycle units. Electricity generation is responsible for 36amthropogenic CO2. This compares with 32transportation sector, but since the electric utility generators are large fixed sources it is likely that any legislation designed to reduce CO2 production will adress the utility generators first. Over the last 100 years there has been a continuous decrease in the carbon fraction of the fuels used for energy production world wide, and it is expected that this will continue, principally as a result of the increasing fraction of natural gas. It appears probable that the retirement of the existing nuclear fleet will be delayed by relicensing, and it seems more possible that new nuclear plant will be built than seemed likely even a couple of years ago. The impact of renewables should be increasing, but currently only about 2way currently, and without some considerable incentives, the rate of increase in this component over the next twenty years will probably be small. Currently, hydroelectric plants account for 7indication that this will increase appreciably. At the moment, a significant change would appear to require the capture of CO2 from the exhaust of the combustion plants, and particularly the large existing fleet of coal-fired Rankine units. Following the capture, the CO2 must then be sequestered in secure long-term locations. In addition, increases in the efficiency of power generation, and increases in the efficiency of end use leading to reductions in the energy intensity of the Gross Domestic Product, will be necessary. This paper will review the current state of art in these various approaches to the problem.

  5. ACTIVATORS AND INHIBITORS OF SUCCESSFUL GLOBAL IS IN THE STRATEGIC MANAGEMENT CYCLE OF MULTINATIONAL INVESTMENT BANKS

    Microsoft Academic Search

    Hideyuki Matsumoto; David W. Wilson

    Strategic management of global information systems (IS) is increasingly important for the multinational investment banking industry that had originally utilized information networks crossing national borders for profit making purposes. Significant changes have occurred to the scope of strategic management of IS in modern organizations following major restructuring of the global business environment. This research has sought to find whether new

  6. Orienting Curricula and Teaching To Produce International Managers for Global Competition.

    ERIC Educational Resources Information Center

    Kedia, Ben L.; Harveston, Paula D.; Bhagat, Rabi S.

    2001-01-01

    Examines the specific patterns of mindset, knowledge base, and skills that international managers need to possess in order to be more effective in the global marketplace. Advances a model that depicts the significance of management education for the development of global mindset, knowledge base, and skills. Closes with a discussion of the…

  7. CARBON DIOXIDE EMISSIONS FROM THE GLOBAL CEMENT INDUSTRY1

    Microsoft Academic Search

    Ernst Worrell; Lynn Price; Nathan Martin; Chris Hendriks; Leticia Ozawa Meida

    2001-01-01

    Abstract The cement industry contributes about 5% to global anthropogenic CO2 emissions, making the cement industry an important sector for CO2-emission mitigation strategies. CO2 is emitted from the calcination process of limestone, from combustion of fuels in the kiln, as well as from power generation. In this paper, we review the total CO2 emissions from cement making, including process and

  8. Nitrogen deposition: how important is it for global terrestrial carbon uptake?

    NASA Astrophysics Data System (ADS)

    Bala, G.; Devaraju, N.; Chaturvedi, R. K.; Caldeira, K.; Nemani, R.

    2013-11-01

    Global carbon budget studies indicate that the terrestrial ecosystems have remained a large sink for carbon despite widespread deforestation activities. CO2 fertilization, N deposition and re-growth of mid-latitude forests are believed to be key drivers for land carbon uptake. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our equilibrium simulations, only 12-17% of the deposited nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C : N ratio of 20 : 1. We calculate the sensitivity of the terrestrial biosphere for CO2 fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, the terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since pre-industrial times terrestrial carbon losses due to warming may have been more or less compensated by effects of increased N deposition, whereas the effect of CO2 fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating that climate warming effects on carbon storage may overwhelm N deposition effects in the future.

  9. Nitrogen deposition: how important is it for global terrestrial carbon uptake?

    NASA Astrophysics Data System (ADS)

    Bala, G.; Devaraju, N.; Chaturvedi, R. K.; Caldeira, K.; Nemani, R.

    2013-07-01

    Global carbon budget studies indicate that the terrestrial ecosystems have remained a~large sink for carbon despite widespread deforestation activities. CO2-fertilization, N deposition and re-growth of mid-latitude forests are believed to be key drivers for land carbon uptake. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our equilibrium simulations, only 12-17% of the deposited Nitrogen is assimilated into the ecosystem and the corresponding carbon uptake can be inferred from a C : N ratio of 20:1. We calculate the sensitivity of the terrestrial biosphere for CO2-fertilization, climate warming and N deposition as changes in total ecosystem carbon for unit changes in global mean atmospheric CO2 concentration, global mean temperature and Tera grams of Nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since preindustrial times terrestrial carbon losses due to warming may have been approximately compensated by effects of increased N deposition, whereas the effect of CO2-fertilization is approximately indicative of the current increase in terrestrial carbon stock. Our simulations also suggest that the sensitivity of carbon storage to increased N deposition decreases beyond current levels, indicating climate warming effects on carbon storage may overwhelm N deposition effects in the future.

  10. Microbial Carbon Pump ---A New Mechanism for Long-Term Carbon Storage in the Global Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Jiao, N.; Azam, F.; McP Working Group; Scor Wg134

    2010-12-01

    Marine dissolved organic matter (DOM) reservoir, containing carbon equivalent to the total carbon inventory of atmospheric CO2, is an important issue in understanding the role of the ocean in climate change. The known biological mechanism for oceanic carbon sequestration is the biological pump, which depends on vertical transportation of carbon either through particulate organic matter (POM) sedimentation or DOM export by mixing and downwelling. Both the POM and the DOM are subject to microbial mineralization and most of the organic carbon will be returned to dissolved inorganic carbon within a few decades. Only a small fraction of the POM escapes mineralization and reaches the sediment where organic carbon can be buried and stored for thousands and even millions of years. The efficiency of the biological pump is currently the basic measure of the ocean’s ability to store biologically fixed carbon. However, the production and fate of the large pool of recalcitrant DOM with an averaged turnover time of 4000-6000 thousands of years in the water column has not been adequately considered to date. Marine microbes essentially monopolize the utilization of DOM. Although their diverse adaptive strategies for using newly fixed carbon are well known, major gaps exist in our knowledge on how they interact with the large pool of DOM that appears to be recalcitrant. This is an important problem, as DOM molecules that are not degraded for extended periods of time constitute carbon storage in the ocean. A newly proposed concept - the “microbial carbon pump (MCP)” (NATURE REVIEWS Microbiology 2010.8:593-599) (also see diagram below) provides a formalized focus on the significance of microbial processes in carbon storage in the recalcitrant DOM reservoir, and a framework for testing hypotheses on the sources and sinks of DOM and the underlying biogeochemical mechanisms. The MCP, through concessive processing of DOM, transforms some organic carbon from the reactive DOM pools to a recalcitrant carbon reservoir, pumping organic carbon from low concentrations of labile DOM to high concentrations of recalcitrant DOM, building up a huge reservoir for carbon storage over time. Meanwhile the MCP transfers more carbon relative to nitrogen and phosphorus from the reactive organic matter pool into recalcitrant organic matter pool. Compared with the solubility pump, an abiotic mechanism for carbon storage in the ocean which has ocean acidification impacts on marine organisms and biogeochemical cycles, the MCP-driven recalcitrant DOM carbon storage does not appreciably alter the buffering capacity of seawater and has no known negative impact on marine organisms. Furthermore, in the ocean warming scenario, the partitioning of biogenic carbon flow will change, with the flow to POM diminishing and that to DOM increasing, and thus the role of the MCP in carbon storage will most likely enhanced. A working group joined by 26 scientists from 12 countries has been formed under the Scientific Committee for Oceanic Research (SCOR-WG134) to address this multi-faceted biogeochemical issue related to carbon cycling in the ocean and global climate changes.

  11. Siberian Peatlands a Net Carbon Sink and Global Methane Source Since the Early Holocene

    NASA Astrophysics Data System (ADS)

    Smith, L. C.; MacDonald, G. M.; Velichko, A. A.; Beilman, D. W.; Borisova, O. K.; Frey, K. E.; Kremenetski, K. V.; Sheng, Y.

    2004-01-01

    Interpolar methane gradient (IPG) data from ice cores suggest the ``switching on'' of a major Northern Hemisphere methane source in the early Holocene. Extensive data from Russia's West Siberian Lowland show (i) explosive, widespread peatland establishment between 11.5 and 9 thousand years ago, predating comparable development in North America and synchronous with increased atmospheric methane concentrations and IPGs, (ii) larger carbon stocks than previously thought (70.2 Petagrams, up to ~26% of all terrestrial carbon accumulated since the Last Glacial Maximum), and (iii) little evidence for catastrophic oxidation, suggesting the region represents a long-term carbon dioxide sink and global methane source since the early Holocene.

  12. Modeling the role of terrestrial ecosystems in the global carbon cycle

    SciTech Connect

    Emanuel, W.R.; Post, W.M.; Shugart, H.H. Jr.

    1980-01-01

    A model for the global biogeochemical cycle of carbon which includes a five-compartment submodel for circulation in terrestrial ecosystems of the world is presented. Although this terrestrial submodel divides carbon into compartments with more functional detail than previous models, the variability in carbon dynamics among ecosystem types and in different climatic zones is not adequately treated. A new model construct which specifically treats this variability by modeling the distribution of ecosystem types as a function of climate on a 0.5/sup 0/ latitude by 0.5/sup 0/ longitude scale of resolution is proposed.

  13. Global Scale Methane Emissions from On-Site Wastewater Management

    NASA Astrophysics Data System (ADS)

    Reid, M. C.; Guan, K.; Mauzerall, D. L.

    2013-12-01

    Pit latrines and other on-site sanitation methods are important forms of wastewater management at the global scale, providing hygienic and low-cost sanitation for more than 1.7 billion people in developing and middle-income regions. Latrines have also been identified as major sources of the greenhouse gas methane (CH4) from the anaerobic decomposition of organic waste in pits. Understanding the greenhouse gas footprint of different wastewater systems is essential for sustainable water resource development and management. Despite this importance, CH4 emissions from decentralized wastewater treatment have received little attention in the scientific literature, and the rough calculations underlying government inventories and integrated assessment models do not accurately capture variations in emissions within and between countries. In this study, we improve upon earlier efforts and develop the first spatially explicit approach to quantifying latrine CH4 emissions, combining a high-resolution geospatial analysis of population, urbanization, and water table (as an indicator of anaerobic decomposition pathways) with CH4 emissions factors from the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Country-level health and sanitation surveys were used to determine latrine utilization in 2000 and predict usage in 2015. 18 representative countries in Asia, Africa, and Latin America were selected for this analysis to illustrate regional variations in CH4 emissions and to include the greatest emitting nations. Our analysis confirms that pit latrines are a globally significant anthropogenic CH4 source, emitting 4.7 Tg CH4 yr-1 in the countries considered here. This total is projected to decrease ~25% by 2015, however, driven largely by rapid urbanization in China and decreased reliance on latrines in favor of flush toilets. India has the greatest potential for large growth in emissions in the post-2015 period, since public health campaigns to end open defecation, which is currently practiced by more than 600 million people in India, will rely heavily on latrines. Our results emphasize that decisions regarding water and sanitation can significantly influence anthropogenic CH4 emissions, and that discussions around sustainable water resources policy should give full consideration to the greenhouse gas impacts of decentralized sanitation systems like latrines. We conclude with a brief discussion of household biogas and composting toilets as CH4 mitigation options which also allow for harvesting of renewable energy and/or nutrients from wastewater.

  14. Carbon sink activity and GHG budget of managed European grasslands

    NASA Astrophysics Data System (ADS)

    Klumpp, Katja; Herfurth, Damien; Soussana, Jean-Francois; Fluxnet Grassland Pi's, European

    2013-04-01

    In agriculture, a large proportion (89%) of greenhouse gas (GHG) emission saving potential may be achieved by means of soil C sequestration. Recent demonstrations of carbon sink activities of European ecosystemes, however, often questioned the existence of C storing grasslands, as though a net sink of C was observed, uncertainty surrounding this estimate was larger than the sink itself (Janssens et al., 2003, Schulze et al., 2009. Then again, some of these estimates were based on a small number of measurements, and on models. Not surprising, there is still, a paucity of studies demonstrating the existence of grassland systems, where C sequestration would exceed (in CO2 equivalents) methane emissions from the enteric fermentation of ruminants and nitrous oxide emissions from managed soils. Grasslands are heavily relied upon for food and forage production. A key component of the carbon sink activity in grasslands is thus the impact of changes in management practices or effects of past and recent management, such as intensification as well as climate (and -variation). We analysed data (i.e. flux, ecological, management and soil organic carbon) from a network of European grassland flux observation sites (36). These sites covered different types and intensities of management, and offered the opportunity to understand grassland carbon cycling and trade-offs between C sinks and CH4 and N2O emissions. For some sites, the assessment of carbon sink activities were compared using two methods; repeated soil inventory and determination of the ecosystem C budget by continuous measurement of CO2 exchange in combination with quantification of other C imports and exports (net C storage, NCS). In general grassland, were a potential sink of C with 60±12 g C /m2.yr (median; min -456; max 645). Grazed sites had a higher NCS compared to cut sites (median 99 vs 67 g C /m2.yr), while permanent grassland sites tended to have a lower NCS compared to temporary sown grasslands (median 64 vs 125 g C /m2.yr). Including CH4 and N2O emission in the budget , revealed that for most sites, GHG emissions were compensated by NCS. The role of management impact,soil organic C and fluxes driven by interannual climate variation will be dicussed in the presentation.

  15. Disentangling residence time and temperature sensitivity of microbial decomposition in a global soil carbon model

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.-F.; Pitman, A. J.; Abramowitz, G.

    2014-12-01

    Recent studies have identified the first-order representation of microbial decomposition as a major source of uncertainty in simulations and projections of the terrestrial carbon balance. Here, we use a reduced complexity model representative of current state-of-the-art models of soil organic carbon decomposition. We undertake a systematic sensitivity analysis to disentangle the effect of the time-invariant baseline residence time (k) and the sensitivity of microbial decomposition to temperature (Q10) on soil carbon dynamics at regional and global scales. Our simulations produce a range in total soil carbon at equilibrium of ~ 592 to 2745 Pg C, which is similar to the ~ 561 to 2938 Pg C range in pre-industrial soil carbon in models used in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). This range depends primarily on the value of k, although the impact of Q10 is not trivial at regional scales. As climate changes through the historical period, and into the future, k is primarily responsible for the magnitude of the response in soil carbon, whereas Q10 determines whether the soil remains a sink, or becomes a source in the future mostly by its effect on mid-latitude carbon balance. If we restrict our simulations to those simulating total soil carbon stocks consistent with observations of current stocks, the projected range in total soil carbon change is reduced by 42% for the historical simulations and 45% for the future projections. However, while this observation-based selection dismisses outliers, it does not increase confidence in the future sign of the soil carbon feedback. We conclude that despite this result, future estimates of soil carbon and how soil carbon responds to climate change should be more constrained by available data sets of carbon stocks.

  16. Nitrogen as a constraint on terrestrial carbon uptake: implications for the global carbon-climate feedback (Invited)

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Houlton, B. Z.

    2009-12-01

    Contemporary global warming is expected to reduce net CO2 storage on land, thereby accelerating rates of climate change via the so-called carbon-climate feedback. This feedback has been identified as one of the key areas of synthesis for the next Inter-governmental Panel on Climate Change (IPCC); however, most of the models on which the IPCC will rely are yet to consider vital interactions between nitrogen (N) and carbon (C) cycles. A major impediment to including N limitation in model predictions has been the lack of constraint to rates of global N fixation. Here we extend upon a theoretical framework that explicitly considers C, N, phosphorus (P) interactions to estimate N fixation in the global unmanaged land surface, and thus examine how nutrient limitation and N fixation act to constrain the C uptake capacity of land and its effect on the magnitude of warming this century. We estimate that symbiotic N fixation accounted for 125 Tg N year-1 of new N inputs to the land biosphere in 1900, increasing up to 222 Tg N year-1 by 2100 in response to increasing atmospheric [CO2] and climate warming. Using our estimates of terrestrial N fixation and other information, we show that most of the fully coupled carbon-climate models used in the fourth IPCC assessment report significantly overestimated carbon uptake by the land biosphere and underestimated the additional warming (>90%) by 2050. We suggest that the next IPCC assessment should include C and N interactions over land - especially those between N fixation, carbon cycling, and climate change.

  17. BS in MANAGEMENT: Global Supply Chain Management Emphasis (326427) MAP Sheet Marriott School of Management

    E-print Network

    Olsen Jr., Dan R.

    innovation is a critical aspect of supply chain management. Likewise, managing across boundaries within Communication Quantitative Reasoning Languages of Learning (Math or Language) Arts, Letters, and Sciences list from approved list M Com 320* Math 118* or Stat 121* Math 118* or Stat 121* from approved list

  18. BS in MANAGEMENT: Global Supply Chain Management Emphasis (326427) MAP Sheet Marriott School of Management

    E-print Network

    Olsen Jr., Dan R.

    innovation is a critical aspect of supply chain management. Likewise, managing across boundaries within Communication Quantitative Reasoning Languages of Learning (Math or Language) Arts, Letters, and Sciences approved list M Com 320* Math 118* or Stat 121* Math 118* or Stat 121* from approved list from approved

  19. Strongyloidiasis—An Insight into Its Global Prevalence and Management

    PubMed Central

    Puthiyakunnon, Santhosh; Boddu, Swapna; Li, Yiji; Zhou, Xiaohong; Wang, Chunmei; Li, Juan; Chen, Xiaoguang

    2014-01-01

    Background Strongyloides stercoralis, an intestinal parasitic nematode, infects more than 100 million people worldwide. Strongyloides are unique in their ability to exist as a free-living and autoinfective cycle. Strongyloidiasis can occur without any symptoms or as a potentially fatal hyperinfection or disseminated infection. The most common risk factors for these complications are immunosuppression caused by corticosteroids and infection with human T-lymphotropic virus or human immunodeficiency virus. Even though the diagnosis of strongyloidiasis is improved by advanced instrumentation techniques in isolated and complicated cases of hyperinfection or dissemination, efficient guidelines for screening the population in epidemiological surveys are lacking. Methodology and Results In this review, we have discussed various conventional methods for the diagnosis and management of this disease, with an emphasis on recently developed molecular and serological methods that could be implemented to establish guidelines for precise diagnosis of infection in patients and screening in epidemiological surveys. A comprehensive analysis of various cases reported worldwide from different endemic and nonendemic foci of the disease for the last 40 years was evaluated in an effort to delineate the global prevalence of this disease. We also updated the current knowledge of the various clinical spectrum of this parasitic disease, with an emphasis on newer molecular diagnostic methods, treatment, and management of cases in immunosuppressed patients. Conclusion Strongyloidiasis is considered a neglected tropical disease and is probably an underdiagnosed parasitic disease due to its low parasitic load and uncertain clinical symptoms. Increased infectivity rates in many developed countries and nonendemic regions nearing those in the most prevalent endemic regions of this parasite and the increasing transmission potential to immigrants, travelers, and immunosuppressed populations are indications for initiating an integrated approach towards prompt diagnosis and control of this parasitic disease. PMID:25121962

  20. Carbon dynamics of intensively managed forest along a full rotation

    NASA Astrophysics Data System (ADS)

    Moreaux, V.; Bosc, A.; Bonnefond, J.; Burlett, R.; Lamaud, E.; Sartore, M.; Trichet, P.; Chipeaux, C.; Lambrot, C.; Kowalski, A. S.; Loustau, D.

    2012-12-01

    Temperate and tropical forests are increasingly exploited for wood and biomass extraction and only one third of forest area was considered as primary in the recent FRA in 2010. Management practices affect the soil-forest-atmosphere continuum through various effects on soil and surface properties. They result ultimately in either positive or negative changes in the biomass and soil carbon pools but, if any, few datasets or modeling tools are available for quantifying their impacts on the net carbon balance of forest stands. To analyse these effects, the net half-hourly fluxes of CO2, water vapour and heat exchanges were monitored for 23 years in two closed stands of maritime pines in southwestern France. Carbon content of the aboveground biomass was measured annually and soil pools 10-early in the younger stand and 5-yearly in the mature stand. For analysing the data collected and disentangling the climate and management effects, we used the three components process-based model GRAECO+ (Loustau et al. this session) linking a 3D radiative transfer and photosynthesis model, MAESTRA, a soil carbon model adapted from ROTH-C and a plant growth model. Eddy flux data were processed, gapfilled and partitioned using the methodological recommendations (Aubinet et al. 2000, Adv. Eco. Res:30, 114-173, Falge et al. 2001, Agr. For. Meteo. : 107, 43-69, Reichstein et al. 2005, Glob. Change Biol., 11:1424-1439). Analysis of the sequence showed that, whether by an increased sensitivity to soil drought compared to the pines or by a rapid re-colonization of the inter-row after understorey removal and plowing, the weeded vegetation contributed to create specific intra-annual dynamics of the fluxes and therefore, controls the dynamics of carbon balance of the stand. After three growing seasons, the stand was already a carbon sink, but the impact of thinning and weeded vegetation removal at the age of 5-year brought the balance to almost neutral. We interpret this change as the combined effects of the reduction of the LAI, the enhancement of the heterotrophic respiration related to the decomposition of dead materials and the improvement of the mineralization of the large stock of soil organic matter by tillage. At the mature stage, the stand remains consistently a carbon sink and CO2 fluxes were insensitive to thinning. Conversely, the carbon balance was sensitive to climate effects as evidenced by repeated drastic reductions in NEP caused by soil drought. Our data underlines the importance of disturbances linked to forest management for the forest carbon balance during the early stage of tree growth. Since management intensification tends to shorten the forest life cycle and enhance the share of the young stages, our results confirm that the consequence of management operations on the carbon cycle in forest may revert intensified forest stands from a net sink to a source and should be accounted for carefully.

  1. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model.

    PubMed

    Cox, P M; Betts, R A; Jones, C D; Spall, S A; Totterdell, I J

    2000-11-01

    The continued increase in the atmospheric concentration of carbon dioxide due to anthropogenic emissions is predicted to lead to significant changes in climate. About half of the current emissions are being absorbed by the ocean and by land ecosystems, but this absorption is sensitive to climate as well as to atmospheric carbon dioxide concentrations, creating a feedback loop. General circulation models have generally excluded the feedback between climate and the biosphere, using static vegetation distributions and CO2 concentrations from simple carbon-cycle models that do not include climate change. Here we present results from a fully coupled, three-dimensional carbon-climate model, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century. We find that under a 'business as usual' scenario, the terrestrial biosphere acts as an overall carbon sink until about 2050, but turns into a source thereafter. By 2100, the ocean uptake rate of 5 Gt C yr(-1) is balanced by the terrestrial carbon source, and atmospheric CO2 concentrations are 250 p.p.m.v. higher in our fully coupled simulation than in uncoupled carbon models, resulting in a global-mean warming of 5.5 K, as compared to 4 K without the carbon-cycle feedback. PMID:11089968

  2. Late Quaternary changes in Amazonian ecosystems and their implications for global carbon cycling

    Microsoft Academic Search

    Francis E. Mayle; David J. Beerling

    The current role of Amazonia in the terrestrial carbon budget is the focus of intensive scientific interest, in large part due to its potential to accelerate global warming. However, its role in mediating CO2 changes over millennial time-scales since the last glacial maximum (LGM) has generally been overlooked and is the subject of speculation. Recent advances in our understanding of

  3. Satellite Remote Sensing Missions for Monitoring Water, Carbon, and global Climate Change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, the subjects of water, carbon, and global climate change have attracted worldwide attention by scientists and the media. Climate change, whether associated with human- induced or natural variations, has and will continue to be important to policy makers and the public. It is clear t...

  4. A global model for the early diagenesis of organic carbon and organic phosphorus in marine sediments

    Microsoft Academic Search

    T. K. Tromp; P. Van Cappellen; R. M. Key

    1995-01-01

    Sediments are the main repository in the oceanic cycles of carbon (C) and phosphorus (P). In order to relate the deposition of organic C and organic P from the water column, and ultimate burial in sediments, we present a model for the early diagenesis of organic matter in marine sediments. This general diagenetic model was developed for inclusion in global

  5. Changes in the Global Carbon Cycle and Ocean Circulation on the Millennial Time Scale

    Microsoft Academic Search

    Thomas F. Stocker

    Carbon dioxide is, after water vapor, the most important greenhouse gas. Naturally, its atmospheric concentration has varied between 190 and 290ppmv over the last half million years. The man-made CO2 increase of the last 250 years has already reached this amplitude with the potential of inducing signiflcant global warming. Climate models suggest that the ocean circulation reacts in a sensitive

  6. Sensitivity of Simulated Global Ocean Carbon Flux Estimates to Forcing by Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.

    2015-01-01

    Reanalysis products from MERRA, NCEP2, NCEP1, and ECMWF were used to force an established ocean biogeochemical model to estimate air-sea carbon fluxes (FCO2) and partial pressure of carbon dioxide (pCO2) in the global oceans. Global air-sea carbon fluxes and pCO2 were relatively insensitive to the choice of forcing reanalysis. All global FCO2 estimates from the model forced by the four different reanalyses were within 20% of in situ estimates (MERRA and NCEP1 were within 7%), and all models exhibited statistically significant positive correlations with in situ estimates across the 12 major oceanographic basins. Global pCO2 estimates were within 1% of in situ estimates with ECMWF being the outlier at 0.6%. Basin correlations were similar to FCO2. There were, however, substantial departures among basin estimates from the different reanalysis forcings. The high latitudes and tropics had the largest ranges in estimated fluxes among the reanalyses. Regional pCO2 differences among the reanalysis forcings were muted relative to the FCO2 results. No individual reanalysis was uniformly better or worse in the major oceanographic basins. The results provide information on the characterization of uncertainty in ocean carbon models due to choice of reanalysis forcing.

  7. A DATA-CENTERED COLLABORATION PORTAL TO SUPPORT GLOBAL CARBON-FLUX ANALYSIS

    Microsoft Academic Search

    Deborah A. Agarwal; Marty Humphrey; Norm Beekwilder; Keith Jackson; Monte Goode; Catharine van Ingen

    2009-01-01

    Carbon-climate, like other environmental sciences, has been changing. Large-scalesynthesis studies are becoming more common. These synthesis studies are often conducted by science teams that are geographically distributed and on datasets that are global in scale. A broad array of collaboration and data analytics tools are now available that could support these science teams. However, building tools that scientists actually use

  8. Sensitivity of simulated global ocean carbon flux estimates to forcing by reanalysis products

    NASA Astrophysics Data System (ADS)

    Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.

    2014-08-01

    Reanalysis products from MERRA, NCEP2, NCEP1, and ECMWF were used to force an established ocean biogeochemical model to estimate air-sea carbon fluxes (FCO2) and partial pressure of carbon dioxide (pCO2) in the global oceans. Global air-sea carbon fluxes and pCO2 were relatively insensitive to the choice of forcing reanalysis. All global FCO2 estimates from the model forced by the four different reanalyses were within 20% of in situ estimates (MERRA and NCEP1 were within 7%), and all models exhibited statistically significant positive correlations with in situ estimates across the 12 major oceanographic basins. Global pCO2 estimates were within 1% of in situ estimates with ECMWF being the outlier at 0.6%. Basin correlations were similar to FCO2. There were, however, substantial departures among basin estimates from the different reanalysis forcings. The high latitudes and tropics had the largest ranges in estimated fluxes among the reanalyses. Regional pCO2 differences among the reanalysis forcings were muted relative to the FCO2 results. No individual reanalysis was uniformly better or worse in the major oceanographic basins. The results provide information on the characterization of uncertainty in ocean carbon models due to choice of reanalysis forcing.

  9. Role of the marine biosphere in the global carbon cycle

    SciTech Connect

    Longhurst, A.R. (Bedford Inst. of Oceanography, Dartmouth, Nova Scotia (Canada))

    1991-12-01

    The geographical disequilibrium of our planet is due mainly to carbon sequestration by marine organisms over geological time. Changes in atmospheric CO{sub 2} during interglacial-glacial transitions require biological sequestration of carbon in the oceans. Nutrient-limited export flux from new production in surface waters is the key process in this sequestrian. The most common model for export flux ignores potentially important nutrient sources and export mechanisms. Export flux occurs as a result of biological processes whose complexity appears not to be accommodated by the principal classes of simulation models, this being especially true for food webs dominated by single-celled protists whose trophic function is more dispersed than among the multicelled metazoa. The fashionable question concerning a hypothetical missing sink' for CO{sub 2} emissions is unanswerable because of imprecision in our knowledge of critical flux rates. This question also diverts attention from more relevant studies of how the biological pump may be perturbed by climatic consequences of CO{sub 2} emissions. Under available scenarios for climate change, such responses may seem more likely to reinforce, rather than mitigate, the rate of increase of atmospheric CO{sub 2}.

  10. Inverse modeling of global atmospheric carbon dioxide by Global Eulerian-Lagrangian Coupled Atmospheric Model (GELCA)

    NASA Astrophysics Data System (ADS)

    Shirai, T.; Ishizawa, M.; Zhuravlev, R.; Ganshin, A.; Belikov, D.; Saito, M.; Oda, T.; Valsala, V.; Dlugokencky, E. J.; Tans, P. P.; Maksyutov, S. S.

    2013-12-01

    Global monthly CO2 flux distributions for 2001-2011 were estimated using an atmospheric inverse modeling system, which is based on combination of two transport models, called GELCA (Global Eulerian-Lagrangian Coupled Atmospheric model). This coupled model approach has several advantages over inversions to a single model alone: the use of Lagrangian particle dispersion model (LPDM) to simulate the transport in the vicinity of the observation points enables us to avoid numerical diffusion of Eulerian models, and is suitable to represent observations at high spatial and temporal resolutions. The global background concentration field generated by an Eulerian model is used as time-variant boundary conditions for an LPDM that performs backward simulations from each receptor point (observation event). In the GELCA inversion system, National Institute for Environmental Studies-Transport Model (NIES-TM) version 8.1i was used as an Eulerian global transport model coupled with FLEXPART version 8.0 as an LPDM. The meteorological fields for driving both models were taken from JMA Climate Data Assimilation System (JCDAS) with a spatial resolution of 1.25° x 1.25°, 40 vertical levels and a temporal resolution of 6 hours. Our prior CO2 fluxes consist of daily terrestrial biospheric fluxes, monthly oceanic fluxes, monthly biomass burning emissions, and monthly fossil fuel CO2 emissions. We employed a Kalman Smoother optimization technique with fixed lag of 3 months, estimating monthly CO2 fluxes for 42 land and 22 ocean regions. We have been using two different global networks of CO2 observations. The Observation Package (ObsPack) data products contain more measurement information in space and time than the NOAA global cooperative air sampling network which basically consists of approximately weekly sampling at background sites. The global total flux and its large-scale distribution optimized with two different global observation networks agreed overall with other previous studies. At regional scales, estimated seasonal CO2 fluxes were altered by assimilating the ObsPack measurements, especially where the NOAA network is sparse. To see how the inversion improved in reproducing CO2 concentration field, we compared the forward simulation results using the a posteriori fluxes with observed CO2 concentrations at selected monitoring sites. We investigated how observation-model misfit varies with observation sites and assessed the impact of observation network selection. The observation-model misfit was reduced in the Obspack-based inversion, indicating the potential for wider coverage observation to better constrain regional fluxes.

  11. Simple global carbon model: The atmosphere-terrestrial biosphere-ocean interaction

    SciTech Connect

    Kwon, O.Y.; Schnoor, J.L. [Univ. of Iowa, Iowa City, IA (United States)] [Univ. of Iowa, Iowa City, IA (United States)

    1994-09-01

    A simple global carbon model has been developed for scenario analysis, and research needs prioritization. CO{sub 2} fertilization and temperature effects are included in the terrestrial biosphere compartment, and the ocean compartment includes inorganic chemistry which, with ocean water circulation, enables the calculation of time-variable oceanic carbon uptake. Model-derived Q{sub 10} values (the increasing rate for every 10{degrees}C increase of temperature) are 1.37 for land biota photosynthesis, 1.89 for land biota respiration, and 1.95 for soil respiration, and feedback temperature is set at 0.01{degrees}C/ppm of CO{sub 2}. These could be the important parameters controlling the carbon cycle in potential global warming scenarios. Scenario analysis, together with sensitivity analysis of temperature feedback, suggests that if CO{sub 2} emissions from fossil fuel combustion continue at the present increasing rate of {approximately}1.5% per year, a CO{sub 2} doubling (to 560 ppm) will appear in year 2060. Global warming would be responsible for 40 Gt as carbon (Gt C) accumulation in the land biota, 88 Gt C depletion from the soil carbon, a 7 Gt C accumulation in the oceans, and a 19 ppm increase in atmospheric CO{sub 2}. The ocean buffering capacity to take up the excess CO{sub 2} will decrease with the increasing atmospheric CO{sub 2} concentration. 51 refs., 8 figs., 3 tabs.

  12. Nested Global Inversion for the Carbon Flux Distribution in Canada and USA from 1994 to 2003

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Deng, F.; Ishizawa, M.; Ju, W.; Mo, G.; Chan, D.; Higuchi, K.; Maksyutov, S.

    2007-12-01

    Based on TransCom inverse modeling for 22 global regions, we developed a nested global inversion system for estimating carbon fluxes of 30 regions in North America (2 of the 22 regions are divided into 30). Irregular boundaries of these 30 regions are delineated based on ecosystem types and provincial/state borders. Synthesis Bayesian inversion is conducted in monthly steps using CO2 concentration measurements at 88 coastal and continental stations of the globe for the 1994-2003 period (NOAA GlobalView database). Responses of these stations to carbon fluxes from the 50 regions are simulated using the transport model of National Institute for Environmental Studies of Japan and reanalysis wind fields of the National Centers for Environmental Prediction (NCEP). Terrestrial carbon flux fields modeled using BEPS and Biome-BGC driven by NCEP reanalysis meteorological data are used as two different a priori to constrain the inversion. The inversion (top- down) results are compared with remote sensing-based ecosystem modeling (bottom-up) results in Canada's forests and wetlands. There is a broad consistency in the spatial pattern of the carbon source and sink distributions obtained using these two independent methods. Both sets of results also indicate that Canada's forests and wetlands are carbon sinks in 1994-2003, but the top-down method produces consistently larger sinks than the bottom-up results. Reasons for this discrepancy may lie in both methods, and several issues are identified for further investigation.

  13. Swansea University Carbon Management Plan 2010 -2020 SUMMARY Swansea University

    E-print Network

    Grant, P. W.

    ). Hydrofluorocarbons (HFC), Perflurorocarbons (PFC) and Sulphur hexafluoride (SF6). Carbon emissions The term `carbon emissions. However, within the context of HEFCW `carbon emissions' more specifically means `carbon dioxide

  14. A global carbon assimilation system based on a dual optimization method

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Li, Y.; Chen, J. M.; Wang, T.; Huang, Q.; Huang, W. X.; Wang, L. H.; Li, S. M.; Yuan, W. P.; Zheng, X.; Zhang, S. P.; Chen, Z. Q.; Jiang, F.

    2015-02-01

    Ecological models are effective tools for simulating the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a dual optimization method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1° × 1° grid cells for the period from 2001 to 2007. Results show that land and ocean absorb -3.63 ± 0.50 and -1.82 ± 0.16 Pg C yr-1, respectively. North America, Europe and China contribute -0.98 ± 0.15, -0.42 ± 0.08 and -0.20 ± 0.29 Pg C yr-1, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60%. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (-0.97 ± 0.27 Pg C yr-1) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by the Boreal Ecosystems Productivity Simulator (BEPS) are reduced to -0.78 ± 0.23 Pg C yr-1, the third largest carbon sink.

  15. A global carbon assimilation system based on a dual optimization method

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Li, Y.; Chen, J. M.; Wang, T.; Huang, Q.; Huang, W. X.; Li, S. M.; Yuan, W. P.; Zheng, X.; Zhang, S. P.; Chen, Z. Q.; Jiang, F.

    2014-10-01

    Ecological models are effective tools to simulate the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system (GCAS-DOM) is developed by employing a Dual Optimization Method (DOM) to invert the time-dependent ecological model parameter state and the net carbon flux state simultaneously. We use GCAS-DOM to estimate the global distribution of the CO2 flux on 1° ×1° grid cells for the period from 2000 to 2007. Results show that land and ocean absorb -3.69 ± 0.49 Pg C year-1 and -1.91 ± 0.16 Pg C year-1, respectively. North America, Europe and China contribut -0.96 ± 0.15 Pg C year-1, -0.42 ± 0.08 Pg C year-1 and -0.21 ± 0.28 Pg C year-1, respectively. The uncertainties in the flux after optimization by GCAS-DOM have been remarkably reduced by more than 60%. Through parameter optimization, GCAS-DOM can provide improved estimates of the carbon flux for each PFT. Coniferous forest (-0.97 ± 0.27 Pg C year-1) is the largest contributor to the global carbon sink. Fluxes of once-dominant deciduous forest generated by BEPS is reduced to -0.79 ± 0.22 Pg C year-1, being the third largest carbon sink.

  16. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon.

    PubMed

    Sexton, Philip F; Norris, Richard D; Wilson, Paul A; Pälike, Heiko; Westerhold, Thomas; Röhl, Ursula; Bolton, Clara T; Gibbs, Samantha

    2011-03-17

    'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (?65-34 million years (Myr) ago). The most extreme hyperthermal was the ?170 thousand year (kyr) interval of 5-7 °C global warming during the Palaeocene-Eocene Thermal Maximum (PETM, 56?Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs, and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon. Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (?40?kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was re-sequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM. Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources, but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history. PMID:21412336

  17. Carbon dioxide and global climate change: The birth and arrested development of an idea

    SciTech Connect

    Mudge, F.B. [Univ. of East Anglia (United Kingdom)

    1996-12-31

    G.S. Callendar (1897--1964) is regarded the originator of the modern theory of carbon dioxide and global climate change. However, this paper shows that the theory was developed and became well accepted during the nineteenth century. Carbon dioxide was discovered by Black in 1752. From 1820 to 1890 a steadily growing number of measurements of its atmospheric concentration were made using steadily improving techniques; the average results fell from around 500 ppm in 1820 to about 300 ppm in 1890. By the end of the following decade the greenhouse theory of global climate change seemed widely accepted. However in 1900 and 1901 Aangstroem appeared to demolish the theory when he reported that changes in the carbon dioxide level can have little effect because of the overlap of the water and carbon dioxide spectral bands. At a stroke, all interest in the measurement of atmospheric carbon dioxide levels seemed to disappear, although during the 1920s and 1930s a few workers resumed the work but for reasons unconnected to climate change. Over the next thirty years the writers of authoritative textbooks dismissed the theory of carbon dioxide and climate change as an example of misguided speculation. Then in 1938 Callendar`s first paper appeared, reviving the theory which had lain forgotten for nearly forty years.

  18. Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs

    Microsoft Academic Search

    Peter M. Haugan; Fortunat Joos

    2004-01-01

    Different metrics to assess mitigation of global warming by carbon capture and storage are discussed. The climatic impact of capturing 30% of the anthropogenic carbon emission and its storage in the ocean or in geological reservoir are evaluated for different stabilization scenarios using a reduced-form carbon cycle-climate model. The accumulated Global Warming Avoided (GWA) remains, after a ramp-up during the

  19. Managing the Cost, Energy Consumption, and Carbon Footprint of Internet Services

    E-print Network

    Bianchini, Ricardo

    Managing the Cost, Energy Consumption, and Carbon Footprint of Internet Services Kien Le , Ozlem consumptions translate into large carbon footprints, since most of the electricity produced in the US (and to manage their usage of "brown energy" (produced via carbon-intensive means) relative to renewable

  20. Carbon Footprint and the Management of Supply Chains: Insights from Simple Models

    E-print Network

    Benjaafar, Saifallah

    Carbon Footprint and the Management of Supply Chains: Insights from Simple Models Saif Benjaafar1, we illustrate how carbon emission concerns could be integrated into operational decision-making with regard to procurement, production, and inventory management. We show how, by associating carbon emission

  1. Community-based Natural Resource Management: State of the Science--Global Perspectives1

    E-print Network

    Community-based Natural Resource Management: State of the Science--Global Perspectives1 Maria E organize to self-regulate use of shared resources? Can community-based natural resource management (CBNRM action in natural resource management, leading to the identification of over 30 factors that help explain

  2. ENV/NRES 467 / 667 Regional and Global Issues Spring 2005 Resource and Land Management

    E-print Network

    Nowak, Robert S.

    ENV/NRES 467 / 667 Regional and Global Issues Spring 2005 Resource and Land Management Readings of Natural Resources Policy and Management. Yale University Press, New Haven, 372 p. GE170 .F68 2000 (on for landscape-scale renewable resource management in the United States. Environmental Science & Policy 4

  3. in press, Global Biogeochemical Cycles, April 18, 2007 Carbon dioxide and oxygen fluxes in the Southern Ocean

    E-print Network

    Marshall, John

    in press, Global Biogeochemical Cycles, April 18, 2007 Carbon dioxide and oxygen fluxes College, London, UK Abstract. We analyze the variability of air-sea fluxes of carbon dioxide and oxygen. The Southern Annular Mode (SAM), known to impact the variability of air-sea fluxes of carbon dioxide, is also

  4. Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate-carbon cycle model

    E-print Network

    Dufresne, Jean-Louis

    feedback in the climate-carbon cycle system. INDEX TERMS: 0315 Atmospheric Composition and Structure: Impact phenomena; KEYWORDS: climate change impact, terrestrial carbon cycle Citation: Berthelot, M., P of the terrestrial biosphere to CO2 and climate change using a coupled climate-carbon cycle model, Global Biogeochem

  5. Is the basinwide warming in the North Atlantic Ocean related to atmospheric carbon dioxide and global warming?

    E-print Network

    Wang, Chunzai

    to atmospheric carbon dioxide and global warming? Chunzai Wang1 and Shenfu Dong1,2 Received 31 January 2010 is controversial. Some studies argued that the warming is due to global warming in association with the secular sea surface temperature. Here we show that both global warming and AMO variability make a contribution

  6. WHAT TO DO ABOUT CLIMATE CHANGE? Slowing the rate of carbon burning won't stop global warming

    E-print Network

    Baez, John

    WHAT TO DO ABOUT CLIMATE CHANGE? #12;Slowing the rate of carbon burning won't stop global warming: most CO2 stays in the air over a century, though individual molecules come and go. Global warming. But we need to research it -- starting now. If global warming gets bad, public opinion may suddently flip

  7. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation.

    PubMed Central

    Cramer, Wolfgang; Bondeau, Alberte; Schaphoff, Sibyll; Lucht, Wolfgang; Smith, Benjamin; Sitch, Stephen

    2004-01-01

    The remaining carbon stocks in wet tropical forests are currently at risk because of anthropogenic deforestation, but also because of the possibility of release driven by climate change. To identify the relative roles of CO2 increase, changing temperature and rainfall, and deforestation in the future, and the magnitude of their impact on atmospheric CO2 concentrations, we have applied a dynamic global vegetation model, using multiple scenarios of tropical deforestation (extrapolated from two estimates of current rates) and multiple scenarios of changing climate (derived from four independent offline general circulation model simulations). Results show that deforestation will probably produce large losses of carbon, despite the uncertainty about the deforestation rates. Some climate models produce additional large fluxes due to increased drought stress caused by rising temperature and decreasing rainfall. One climate model, however, produces an additional carbon sink. Taken together, our estimates of additional carbon emissions during the twenty-first century, for all climate and deforestation scenarios, range from 101 to 367 Gt C, resulting in CO2 concentration increases above background values between 29 and 129 p.p.m. An evaluation of the method indicates that better estimates of tropical carbon sources and sinks require improved assessments of current and future deforestation, and more consistent precipitation scenarios from climate models. Notwithstanding the uncertainties, continued tropical deforestation will most certainly play a very large role in the build-up of future greenhouse gas concentrations. PMID:15212088

  8. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    SciTech Connect

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  9. Globalization and the Inward Flow of Immigrants: Issues Associated with the Inpatriation of Global Managers

    ERIC Educational Resources Information Center

    Harvey, Michael; Kiessling, Tim; Moeller, Miriam

    2011-01-01

    Assembling a diverse global workforce is becoming a critical dimension in gaining successful global performance. In the past, staffing has focused on control of the multinational organization as the primary goal when staffing overseas positions. As organizations globalize their operations, the goal of staffing is shifting from control to…

  10. Joining and Integration of Advanced Carbon-Carbon Composites to Metallic Systems for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Recent research and development activities in joining and integration of carbon-carbon (C/C) composites to metals such as Ti and Cu-clad-Mo for thermal management applications are presented with focus on advanced brazing techniques. A wide variety of carbon-carbon composites with CVI and resin-derived matrices were joined to Ti and Cu-clad Mo using a number of active braze alloys. The brazed joints revealed good interfacial bonding, preferential precipitation of active elements (e.g., Ti) at the composite/braze interface. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The chemical and thermomechanical compatibility between C/C and metals at elevated temperatures is assessed. The role of residual stresses and thermal conduction in brazed C/C joints is discussed. Theoretical predictions of the effective thermal resistance suggest that composite-to-metal brazed joints may be promising for lightweight thermal management applications.

  11. Global excellence in management systems: a Diamond Offshore Drilling case

    Microsoft Academic Search

    Denis Graham; Vipul K. Gupta

    1996-01-01

    How do managers, in their role as decision makers, design and implement systems for management of quality? Proposes that there is no one, definitive answer to this question, given various industrial environments and their operating constraints, diverse market conditions and numerous management philosophies. Attempts to address quality management issues in the business-to-business industrial service industry by presenting a case study

  12. Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation

    NASA Astrophysics Data System (ADS)

    Nishina, K.; Ito, A.; Beerling, D. J.; Cadule, P.; Ciais, P.; Clark, D. B.; Falloon, P.; Friend, A. D.; Kahana, R.; Kato, E.; Keribin, R.; Lucht, W.; Lomas, M.; Rademacher, T. T.; Pavlick, R.; Schaphoff, S.; Vuichard, N.; Warszawaski, L.; Yokohata, T.

    2014-04-01

    Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and may play a key role in biospheric feedbacks with elevated atmospheric carbon dioxide (CO2) in a warmer future world. We examined the simulation results of seven terrestrial biome models when forced with climate projections from four representative-concentration-pathways (RCPs)-based atmospheric concentration scenarios. The goal was to specify calculated uncertainty in global SOC stock projections from global and regional perspectives and give insight to the improvement of SOC-relevant processes in biome models. SOC stocks among the biome models varied from 1090 to 2650 Pg C even in historical periods (ca. 2000). In a higher forcing scenario (i.e., RCP8.5), inconsistent estimates of impact on the total SOC (2099-2000) were obtained from different biome model simulations, ranging from a net sink of 347 Pg C to a net source of 122 Pg C. In all models, the increasing atmospheric CO2 concentration in the RCP8.5 scenario considerably contributed to carbon accumulation in SOC. However, magnitudes varied from 93 to 264 Pg C by the end of the 21st century across biome models. Using the time-series data of total global SOC simulated by each biome model, we analyzed the sensitivity of the global SOC stock to global mean temperature and global precipitation anomalies (?T and ?P respectively) in each biome model using a state-space model. This analysis suggests that ?T explained global SOC stock changes in most models with a resolution of 1-2 °C, and the magnitude of global SOC decomposition from a 2 °C rise ranged from almost 0 to 3.53 Pg C yr-1 among the biome models. However, ?P had a negligible impact on change in the global SOC changes. Spatial heterogeneity was evident and inconsistent among the biome models, especially in boreal to arctic regions. Our study reveals considerable climate uncertainty in SOC decomposition responses to climate and CO2 change among biome models. Further research is required to improve our ability to estimate biospheric feedbacks through both SOC-relevant and vegetation-relevant processes.

  13. Comparative impact of climatic and nonclimatic factors on global terrestrial carbon and water cycles

    NASA Astrophysics Data System (ADS)

    Müller, Christoph; Bondeau, Alberte; Lotze-Campen, Hermann; Cramer, Wolfgang; Lucht, Wolfgang

    2006-12-01

    The coupled global carbon and water cycles are influenced by multiple factors of human activity such as fossil-fuel emissions and land use change. We used the LPJmL Dynamic Global Vegetation Model (DGVM) to quantify the potential influences of human demography, diet, and land allocation, and compare these to the effects of fossil-fuel emissions and corresponding climate change. For this purpose, we generate 12 land use patterns in which these factors are analyzed in a comparative static setting, providing information on their relative importance and the range of potential impacts on the terrestrial carbon and water balance. We show that these aspects of human interference are equally important to climate change and historic fossil-fuel emissions for global carbon stocks but less important for net primary production (NPP). Demand for agricultural area and thus the magnitude of impacts on the carbon and water cycles are mainly determined by constraints on localizing agricultural production and modulated by total demand for agricultural products.

  14. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools

    PubMed Central

    Seto, Karen C.; Güneralp, Burak; Hutyra, Lucy R.

    2012-01-01

    Urban land-cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. However, despite projections that world urban populations will increase to nearly 5 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop spatially explicit probabilistic forecasts of global urban land-cover change and explore the direct impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue and all areas with high probabilities of urban expansion undergo change, then by 2030, urban land cover will increase by 1.2 million km2, nearly tripling the global urban land area circa 2000. This increase would result in considerable loss of habitats in key biodiversity hotspots, with the highest rates of forecasted urban growth to take place in regions that were relatively undisturbed by urban development in 2000: the Eastern Afromontane, the Guinean Forests of West Africa, and the Western Ghats and Sri Lanka hotspots. Within the pan-tropics, loss in vegetation biomass from areas with high probability of urban expansion is estimated to be 1.38 PgC (0.05 PgC yr?1), equal to ?5% of emissions from tropical deforestation and land-use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and vegetation carbon losses. PMID:22988086

  15. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools

    NASA Astrophysics Data System (ADS)

    Seto, K. C.; Guneralp, B.; Hutyra, L.

    2012-12-01

    Urban land cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. Yet, despite projections that world urban populations will increase to 4.3 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop the first global probabilistic forecasts of urban land cover change and explore the impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue, then by 2030, urban land cover will expand between 800,000 and 3.3 million km2, representing a doubling to five-fold increase from the global urban land cover in 2000. This would result in considerable loss of habitats in key biodiversity hotspots, including the Guinean forests of West Africa, Tropical Andes, Western Ghats and Sri Lanka. Within the pan-tropics, loss in forest biomass from urban expansion is estimated to be 1.38 PgC (0.05 PgC yr-1), equal to approximately 5% of emissions from tropical land use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and forest carbon losses.

  16. Restoring Coastal Plants to Improve Global Carbon Storage: Reaping What We Sow

    PubMed Central

    Irving, Andrew D.; Connell, Sean D.; Russell, Bayden D.

    2011-01-01

    Long-term carbon capture and storage (CCS) is currently considered a viable strategy for mitigating rising levels of atmospheric CO2 and associated impacts of global climate change. Until recently, the significant below-ground CCS capacity of coastal vegetation such as seagrasses, salt marshes, and mangroves has largely gone unrecognized in models of global carbon transfer. However, this reservoir of natural, free, and sustainable carbon storage potential is increasingly jeopardized by alarming trends in coastal habitat loss, totalling 30–50% of global abundance over the last century alone. Human intervention to restore lost habitats is a potentially powerful solution to improve natural rates of global CCS, but data suggest this approach is unlikely to substantially improve long-term CCS unless current restoration efforts are increased to an industrial scale. Failure to do so raises the question of whether resources currently used for expensive and time-consuming restoration projects would be more wisely invested in arresting further habitat loss and encouraging natural recovery. PMID:21479244

  17. Organic carbon burial rates in mangrove sediments: strengthening the global budget

    USGS Publications Warehouse

    Breithaupt, J.; Smoak, Joseph M.; Smith, Thomas J., III; Sanders, Christian J.; Hoare, Armando

    2012-01-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10–15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8–15% of all OC burial in marine settings occurs in mangrove systems.

  18. Global carbon assimilation system using a local ensemble Kalman filter with multiple ecosystem models

    NASA Astrophysics Data System (ADS)

    Zhang, Shupeng; Yi, Xue; Zheng, Xiaogu; Chen, Zhuoqi; Dan, Bo; Zhang, Xuanze

    2014-11-01

    In this paper, a global carbon assimilation system (GCAS) is developed for optimizing the global land surface carbon flux at 1° resolution using multiple ecosystem models. In GCAS, three ecosystem models, Boreal Ecosystem Productivity Simulator, Carnegie-Ames-Stanford Approach, and Community Atmosphere Biosphere Land Exchange, produce the prior fluxes, and an atmospheric transport model, Model for OZone And Related chemical Tracers, is used to calculate atmospheric CO2 concentrations resulting from these prior fluxes. A local ensemble Kalman filter is developed to assimilate atmospheric CO2 data observed at 92 stations to optimize the carbon flux for six land regions, and the Bayesian model averaging method is implemented in GCAS to calculate the weighted average of the optimized fluxes based on individual ecosystem models. The weights for the models are found according to the closeness of their forecasted CO2 concentration to observation. Results of this study show that the model weights vary in time and space, allowing for an optimum utilization of different strengths of different ecosystem models. It is also demonstrated that spatial localization is an effective technique to avoid spurious optimization results for regions that are not well constrained by the atmospheric data. Based on the multimodel optimized flux from GCAS, we found that the average global terrestrial carbon sink over the 2002-2008 period is 2.97 ± 1.1 PgC yr-1, and the sinks are 0.88 ± 0.52, 0.27 ± 0.33, 0.67 ± 0.39, 0.90 ± 0.68, 0.21 ± 0.31, and 0.04 ± 0.08 PgC yr-1 for the North America, South America, Africa, Eurasia, Tropical Asia, and Australia, respectively. This multimodel GCAS can be used to improve global carbon cycle estimation.

  19. Carbon dioxide efflux from long-term grazing management systems in a semiarid region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grazing management can affect grassland carbon (C) dynamics, yet limited information is available documenting management effects on soil carbon dioxide (CO2) efflux. A study was conducted to quantify the role of long-term grazing management to affect soil CO2 efflux within the semiarid northern Gre...

  20. Global carbon-water cycles patterns inferred from FLUXNET observations - useful for model evaluation? (Invited)

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Jung, M.; Beer, C.; Baldocchi, D. D.; Tomelleri, E.; Papale, D.; Fluxnet Lathuille Synthesis Team (Cf. Www. Fluxdata. Org)

    2010-12-01

    The current FLUXNET database (www.fluxdata.org) of CO2, water and energy exchange between the terrestrial biosphere and the atmosphere contains almost 1000 site-years with data from more than 250 sites, encompassing all major biomes of the world and being processed in a standardized way (1-3). In this presentation we show that the information in the data is sufficient to derive generalized empirical relationships between vegetation/respective remote sensing information, climate and the biosphere-atmosphere exchanges across global biomes. These empirical patterns are used to generate global grids of the respective fluxes and derived properties (e.g. radiation and water-use efficiencies or climate sensitivities in general, bowen-ratio, AET/PET ratio). For example we re-estimate global “text-book” numbers such as global Gross Primary Productivity (GPP) as ca. 123PgC (4), or global evapotranspiration (ET) as ca. 65km3/yr (5) - for the first time with a more solid and direct empirical basis. Evaluation against independent data at regional to global scale (e.g. atmospheric carbon dioxide inversions, runoff data) lends support to the validity of our almost purely empirical up-scaling approaches. Moreover climate factors such as radiation, temperature and water balance are identified as driving factors for variations and trends of carbon and water fluxes, with distinctly different sensitivities between different regions. Hence, these global fields of biosphere-atmosphere exchange and the inferred relations between climate, vegetation type and fluxes should be used for evaluation or benchmarking of climate models or their land-surface components, while overcoming scale-issues with classical point-to-grid-cell comparisons. 1. M. Reichstein et al., Global Change Biology 11, 1424 (2005). 2. D. Baldocchi, Australian Journal of Botany 56,1 (2008). 3. D. Papale et al., Biogeosciences 3, 571 (2006). 4. Beer et al. Science 329 (2010). 5. Jung et al. Nature in press (doi:10.1038/nature09396).

  1. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

    2003-05-20

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

  2. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

    2002-09-10

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

  3. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE - Part 2: Carbon emissions and the role of fires in the global carbon balance

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Cadule, P.; Thonicke, K.; van Leeuwen, T. T.

    2014-12-01

    Carbon dioxide emissions from wild and anthropogenic fires return the carbon absorbed by plants to the atmosphere, and decrease the sequestration of carbon by land ecosystems. Future climate warming will likely increase the frequency of fire-triggering drought; so that the future terrestrial carbon uptake will depend on how fires respond to altered climate variation. In this study, we modelled the role of fires in the global terrestrial carbon balance for 1901-2012, using the global vegetation model ORCHIDEE equipped with the SPITFIRE model. We conducted two simulations with and without the fire module being activated, with a static land cover. The simulated global fire carbon emissions for 1997-2009 are 2.1 Pg C yr-1, which is close to the 2.0 Pg C yr-1 as given by the GFED3.1 data. The simulated land carbon uptake after accounting for emissions for 2003-2012 is 3.1Pg C yr-1, within the uncertainty of the residual carbon sink estimation (2.8 ± 0.8 Pg C yr-1). Fires are found to reduce the terrestrial carbon uptake by 0.32 Pg C yr-1 over 1901-2012, that is 20% of the total carbon sink in a world without fire. The fire-induced land sink reduction (SRfire) is significantly correlated with climate variability, with larger sink reduction occurring in warm and dry years, in particular during El Niño events. Our results suggest a symmetrical "respiration equivalence" by fires. During the ten lowest SRfire years (SRfire = 0.17 Pg C yr-1), fires mainly compensate the heterotrophic respiration that would happen if no fires had occurred. By contrast, during the ten highest SRfire fire years (SRfire = 0.49 Pg C yr-1), fire emissions exceed their "respiration equivalence" and create a substantial reduction in terrestrial carbon uptake. Our finding has important implication for the future role of fires in the terrestrial carbon balance, because the capacity of terrestrial ecosystems to sequester carbon will be diminished by future climate change characterized by increased drought and more severe El Niño events.

  4. Variability in the Carbon Storage of Seagrass Habitats and Its Implications for Global Estimates of Blue Carbon Ecosystem Service

    PubMed Central

    Lavery, Paul S.; Mateo, Miguel-Ángel; Serrano, Oscar; Rozaimi, Mohammad

    2013-01-01

    The recent focus on carbon trading has intensified interest in ‘Blue Carbon’–carbon sequestered by coastal vegetated ecosystems, particularly seagrasses. Most information on seagrass carbon storage is derived from studies of a single species, Posidonia oceanica, from the Mediterranean Sea. We surveyed 17 Australian seagrass habitats to assess the variability in their sedimentary organic carbon (Corg) stocks. The habitats encompassed 10 species, in mono-specific or mixed meadows, depositional to exposed habitats and temperate to tropical habitats. There was an 18-fold difference in the Corg stock (1.09–20.14 mg Corg cm?3 for a temperate Posidonia sinuosa and a temperate, estuarine P. australis meadow, respectively). Integrated over the top 25 cm of sediment, this equated to an areal stock of 262–4833 g Corg m?2. For some species, there was an effect of water depth on the Corg stocks, with greater stocks in deeper sites; no differences were found among sub-tidal and inter-tidal habitats. The estimated carbon storage in Australian seagrass ecosystems, taking into account inter-habitat variability, was 155 Mt. At a 2014–15 fixed carbon price of A$25.40 t?1 and an estimated market price of $35 t?1 in 2020, the Corg stock in the top 25 cm of seagrass habitats has a potential value of $AUD 3.9–5.4 bill. The estimates of annual Corg accumulation by Australian seagrasses ranged from 0.093 to 6.15 Mt, with a most probable estimate of 0.93 Mt y?1 (10.1 t. km?2 y?1). These estimates, while large, were one-third of those that would be calculated if inter-habitat variability in carbon stocks were not taken into account. We conclude that there is an urgent need for more information on the variability in seagrass carbon stock and accumulation rates, and the factors driving this variability, in order to improve global estimates of seagrass Blue Carbon storage. PMID:24040052

  5. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    SciTech Connect

    Jain, Atul [University of Illinois, Urbana-Champaign; Yang, Xiaojuan [University of Illinois, Urbana-Champaign; Kheshgi, Haroon [Exxon Mobil Research and Engineering; Mcguire, David [University of Alaska; Post, Wilfred M [ORNL

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.

  6. Effects of Management on Soil Carbon Pools in California Rangeland Ecosystems

    NASA Astrophysics Data System (ADS)

    Silver, W. L.; Ryals, R.; Lewis, D. J.; Creque, J.; Wacker, M.; Larson, S.

    2008-12-01

    Rangeland ecosystems managed for livestock production represent the largest land-use footprint globally, covering more than one-quarter of the world's land surface (Asner et al. 2004). In California, rangelands cover an estimated 17 million hectares or approximately 40% of the land area (FRAP 2003). These ecosystems have considerable potential to sequester carbon (C) in soil and offset greenhouse gas emissions through changes in land management practices. Climate policies and C markets may provide incentives for rangeland managers to pursue strategies that optimize soil C storage, yet we lack a thorough understanding of the effects of management on soil C pools in rangelands over time and space. We sampled soil C pools on rangelands in a 260 km2 region of Marin and Sonoma counties to determine if patterns in soil C storage exist with management. Replicate soil samples were collected from 35 fields that spanned the dominant soil orders, plant communities, and management practices in the region while controlling for slope and bioclimatic zone (n = 1050). Management practices included organic amendments, intensive (dairy) and extensive (other) grazing practices, and subsoiling. Soil C pools ranged from approximately 50 to 140 Mg C ha-1 to 1 m depth, with a mean of 99 ± 22 (sd) Mg C ha-1. Differences among sites were due primarily to C concentrations, which exhibited a much larger coefficient of variation than bulk density at all depths. There were no statistically significant differences among the dominant soil orders. Subsoiling appeared to significantly increase soil C content in the top 50 cm, even though subsoiling had only occurred for the first time the previous Nov. Organic amendments also appeared to greatly increase soil C pools, and was the dominant factor that distinguished soil C pools in intensive and extensive land uses. Our results indicate that management has the potential to significantly increase soil C pools. Future research will determine the location of sequestered C within the soil matrix and its turnover time.

  7. Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter

    NASA Astrophysics Data System (ADS)

    Teng, Yi-Cheng; Primeau, François W.; Moore, J. Keith; Lomas, Michael W.; Martiny, Adam C.

    2014-12-01

    The ratio of carbon (C) to phosphorus (P) in marine phytoplankton is thought to be constant throughout the worlds' oceans. Known as the Redfield ratio, this relationship describes the links between carbon and phosphorus cycling and marine ecosystems. However, variations in the stoichiometry of phytoplankton have recently been identified, in particular strong latitudinal variability. Here we assess the impact of this variability in the C:P ratio of biomass on the C:P ratio of organic matter that is exported to the deep ocean using a biogeochemical inverse-model based on a data-constrained ocean circulation model and a global database of dissolved inorganic carbon and phosphate measurements. We identify global patterns of variability in the C:P ratios of exported organic matter, with higher values in the nutrient-depleted subtropical gyres, where organic matter export is relatively low, and lower ratios in nutrient-rich upwelling zones and high-latitude regions, where organic matter export is high. This suggests that total carbon export is relatively constant throughout the oceans, in agreement with recent estimates of carbon fluxes. We conclude that the latitudinal patterns of C:P in exported organic matter are consistent with the large-scale stoichiometric variations in phytoplankton C:P. We suggest that a future expansion of nutrient-depleted waters could result in a shift to more efficient C export that compensates for the expected decline in productivity.

  8. FOREST MANAGEMENT AND AGROFORESTRY TO SEQUESTER AND CONSERVE ATMOSPHERIC CARBON DIOXIDE

    EPA Science Inventory

    Overall, the biological opportunity to conserve and sequester carbon in the terrestrial biosphere, especially in forest systems, appears significant. ith careful planning and implementation, management practices useful for this carbon benefit would appear to have potential to pro...

  9. Introducing the global carbon cycle to middle school students with a 14C research project

    NASA Astrophysics Data System (ADS)

    Brodman Larson, L.; Phillips, C. L.; LaFranchi, B. W.

    2012-12-01

    Global Climate Change (GCC) is currently not part of the California Science Standards for 7th grade. Required course elements, however, such as the carbon cycle, photosynthesis, and cellular respiration could be linked to global climate change. Here we present a lesson plan developed in collaboration with scientists from Lawrence Livermore National Laboratory, to involve 7th grade students in monitoring of fossil fuel emissions in the Richmond/San Pablo area of California. -The lesson plan is a Greenhouse Gas/Global Climate Change Unit, with an embedded research project in which students will collect plant samples from various locals for analysis of 14C, to determine if there is a correlation between location and how much CO2 is coming from fossil fuel combustion. Main learning objectives are for students to: 1) understand how fossil fuel emissions impact the global carbon cycle, 2) understand how scientists estimate fossil CO2 emissions, and 3) engage in hypothesis development and testing. This project also engages students in active science learning and helps to develop responsibility, two key factors for adolescentsWe expect to see a correlation between proximity to freeways and levels of fossil fuel emissions. This unit will introduce important GCC concepts to students at a younger age, and increase their knowledge about fossil fuel emissions in their local environment, as well as the regional and global impacts of fossil emissions.

  10. International marketing research: A global project management perspective

    Microsoft Academic Search

    Robert B. Young; Rajshekhar G. Javalgi

    2007-01-01

    As organizations continue to pursue more global strategies, the need to be able to understand consumers in far away places is increasing. Marketing research is the primary mechanism through which companies understand their current, as well as potential, customers. As companies contemplate the global marketplace, they must consider how domestic market research differs when conducted in international markets. In an

  11. Creation of Norms for the Purpose of Global Talent Management

    ERIC Educational Resources Information Center

    Hedricks, Cynthia A.; Robie, Chet; Harnisher, John V.

    2008-01-01

    Personality scores were used to construct three databases of global norms. The composition of the three databases varied according to percentage of cases by global region, occupational group, applicant status, and gender of the job candidate. Comparison of personality scores across the three norms databases revealed that the magnitude of the…

  12. Strategic cost management in a global supply chain

    E-print Network

    Rao, Venkatesh G. (Venkatesh Gopalkrishna), 1971-

    2004-01-01

    In the face of an economic downturn, cost has become a focal point of supply chain management. Cost management is increasingly being recognized as a vital core competency needed for survival. As companies transition from ...

  13. A framework for developing, manufacturing, and sourcing trucks & equipment in a global fluid management industry

    E-print Network

    Awwad, Ghassan Samir

    2009-01-01

    Selecting and executing the optimal strategy for developing new products is a non trivial task, especially for low volume, high complexity products in a highly volatile global industry such as Fluid Management. At Fluid ...

  14. An examination of Boeing's supply chain management practices within the context of the global aerospace industry

    E-print Network

    Çizmeci, DaÄŸ lar

    2005-01-01

    This thesis examines the supply chain management practices of the Boeing Commercial Airplane Company within the context of the global aerospace industry. The methodology used for this study includes a study of emerging ...

  15. Global warming and the future of coal carbon capture and storage

    SciTech Connect

    Ken Berlin; Robert M. Sussman [Skadden Arps, Slate, Meagher and Flom (United States)

    2007-05-15

    The paper considers how best to change the economic calculus of power plant developers so they internalize CCS costs when selecting new generation technologies. Five policy tools are analyzed: establishing a greenhouse gas cap-and-trade program; imposing carbon taxes; defining CCS systems as a so-called Best Available Control Technology for new power plants under the USA Clean Air Act's New Source Review program; developing a 'low carbon portfolio' standard that requires utilities to provide an increasing proportion of power from low-carbon generation sources over time; and requiring all new coal power plants to meet an 'emission performance' standard that limits CO{sub 2} emissions to levels achievable with CCS systems. Each of these tools has advantages and drawbacks but an emission performance standard for new power plants is likely to be most effective in spurring broad-scale adoption of CCS systems. Chapter headings are: global warming and the future of coal; new coal-fired power plants threaten all other efforts to combat global warming; a potential path to zero emissions through carbon capture and storage; CO{sub 2} capture at coal plants: the promise of IGCC and other technologies; barriers to commercialization of IGCC technology; crossing the chasm: a new policy framework to push ccs implementation forward; encouraging CCS systems with carbon caps and trading programs; using the existing Clean Air Act to require CCS systems for new coal plants; retail low carbon portfolio standard; carbon tax; emission performance standards for new coal power plants; and conclusions. 16 figs.

  16. Improved modelling of the global terrestrial carbon cycle by application of a Carbon Cycle Data Assimilation System (CCDAS)

    NASA Astrophysics Data System (ADS)

    Schürmann, Gregor; Köstler, Christoph; Kaminski, Thomas; Giering, Ralf; Scholze, Marko; Knorr, Wolfgang; Kattge, Jens; Carvalhais, Nuno; Voßbeck, Michael; Rödenbeck, Christian; Reick, Christian; Zaehle, Sönke

    2014-05-01

    Uncertainties of land surface models are to a large extent a consequence of uncertainties in process representations and associated parameter values. Understanding and reducing these uncertainties is important to reduce the spread in projections of the global carbon cycle and climate change. For this purpose we developed a Carbon Cycle Data Assimilation System (CCDAS) for the land surface scheme (JSBACH) of the MPI Earth system model as a tool to systematically confront the model with observations. In a first step, the phasing and magnitude of the modelled vegetation activity has been improved. We used satellite observations of the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) derived by the Two-stream Inversion Package (TIP) to constrain phenology parameters for 7 different plant functional types. The result was a notable improvement of the model's capacity to reproduce the observed temporal and spatial dynamics of FAPAR for the period of 2005 to 2011, which is a prerequisite to modelling the seasonal and inter-annual variability of the land-atmosphere net CO2 flux. In a second step, processes controlling the biosphere's photosynthesis and respiration have been constrained by CO2 mixing ratios observed at a network of atmospheric monitoring stations. Those observations provide a large-scale integrated view of the terrestrial carbon cycle at seasonal and inter-annual time scales and have been widely used by atmospheric inversion studies to constrain the net land-atmosphere CO2 fluxes. We coupled JSBACH with the Jacobian of the atmospheric transport model TM3 to constrain model parameters affecting the photosynthetic and ecosystem respiration rate. The application of the CCDAS provides an improved, data-constrained and process-based estimate of the contemporary global land carbon cycle. The remote-sensing constraints of vegetation activity were especially important in dry climatic regions, where the optimised parameters lead to a better representation of drought-related phenology. But also in boreal regions, the phenology was improved by reducing the total leaf area, leading overall to a reduced global productivity. In addition to this, the constraints given by the CO2 data further reduce the productivity of boreal needleleaf forests, thereby further correcting biases in the seasonal amplitude of the CO2 mixing ratio at high-latitude stations. In general, both the improvements in phenology and in photosynthesis lead to a reduction of the overall global gross productivity of the model by about 20 %. Several experiments with various observational station densities and different prior uncertainties were preformed to assess the robustness of these findings.

  17. NATURE GEOSCIENCE | VOL 4 | MAY 2011 | www.nature.com/naturegeoscience 285 he global carbon cycle is the biogeochemical engine at the

    E-print Network

    Fischer, Woodward

    NATURE GEOSCIENCE | VOL 4 | MAY 2011 | www.nature.com/naturegeoscience 285 T he global carbon cycle of the carbon cycle during times past, however, presents unique challenges. On geological timescales, the CO2 a measure of the global carbon cycle at the geological instant of sedimentation. The history of the carbon

  18. The Campanian - Maastrichtian (Late Cretaceous) climate transition linked to a global carbon cycle perturbation

    NASA Astrophysics Data System (ADS)

    Voigt, S.; Friedrich, O.; Gale, A. S.

    2009-04-01

    The Late Cretaceous was a period of long-term climate cooling succeeding the extreme warmth of the mid-Cretaceous greenhouse world. The cooling is mainly considered as a result of changes in ocean circulation due to plate movements resulting in progressive deep-water exchange between the deep oceanic basins and a parallel drop in atmospheric carbon dioxide concentrations. In Campanian - Maastrichtian times, pronounced climate cooling is documented between 71 - 69 Ma, when distinct changes in foraminiferal oxygen and carbon isotope data at a global scale indicate substantial deep-water cooling and reduced rates of organic carbon burial. The causal mechanisms of this cooling period, however, are poorly understood to date. While some authors suggest mainly oceanographic changes, others supposed an ephemeral glaciation related to a eustatic sea-level fall. Mainly, the relative timing of oceanic oxygen and carbon isotope changes to eustatic sea-level changes is not proven yet. Likewise, the influence of plate tectonic changes as the opening of gateways or the subduction of mid-ocean ridges and/or of orbital forcing is poorly understood. A principle objection beside the sparse available data is the low temporal resolution of biostratigraphic zonations. Here, we present carbon isotope stratigraphies from Campanian-Maastrichtian Boundary sites in the Boreal and Tethyan shelf seas of Europe and from Shatsky Rise in the tropical Pacific in order to improve the resolution of stratigraphic correlation. Prominent features at that time are two negative carbon isotope excursions (CIEs) in the late Campanian and earliest Maastrichtian, which are well documented in the Lägerdorf-Kronsmoor section in N-Germany and the Campanian-Maastrichtian Boundary Stratotype at Tercis in SW France. These new carbon isotope records correlate well with the carbon isotope reference curve from the English Chalk (Jarvis et al., 2002, 2006). The new carbon isotope record at Site 305 in the tropical Pacific shows the prominent negative CIE in the early Maastrichtian, which perfectly resembles the carbon isotope data of planktonic and benthic foraminifers (Barrera and Savin, 1999). Numerous stratigraphic details, represented only by single points in the foraminiferal record, are clearly resolved in the bulk-carbonate carbon isotope signal. Of special importance are several positive excursions, which are superimposed on the CIE. These detailed carbon isotope features can be correlated to the shelf-sea carbon isotope curves of Europe (Lägerdorf-Kronsmoor) in a surprisingly good precision supported by calcareous nannoplankton stratigraphy (Lees & Bown 2005). The possibility to correlate small-scale carbon isotope variations proves their robustness as significant signals. The carbon isotope variations seem to reflect minor changes in the global carbon cycle, possibly triggered by orbital forcing. The negative CIEs in the Campanian-Maastrichtian lasted about 0.8-1 million years and are associated with major regressions on epicontinental shelves. Intensified ventilation of the 12C enriched deep-water reservoir, lowering of the CCD and increased rates of terrestrial and marine organic matter oxidation during the sea-level fall could have caused an increase of 12C in the inorganic carbon reservoir. The associated change in the slope of seawater strontium isotopes possibly suggests an increased continental weathering flux as result of long-term (first order) sea-level fall and widespread continental shelf exposure. Activation of silicate weathering could have triggered enhanced atmospheric CO2 reduction, which again became a positive feedback for ongoing climate cooling at the end of the Cretaceous greenhouse climate.

  19. An Autonomic Workflow Management System for Global Grids

    Microsoft Academic Search

    Mustafizur Rahman; Rajkumar Buyya

    2008-01-01

    Workflow Management System is generally utilized to define, manage and execute workflow applications on Grid resources. However, the increasing scale complexity, heterogeneity and dynamism of Grid environment that includes networks, resources and applications have made such workflow management systems brittle, unmanageable and insecure. Auto- nomic computing provides a holistic approach for the design and development of systems\\/applications that can adapt

  20. Big Data for Big Questions: Global Soil Change and the National Soil Carbon Network

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Swanston, C.

    2010-12-01

    Many major questions related to global soil change are too large to be answered through primary research alone. Although independent, intensive primary research at discrete study sites advances our mechanistic understanding of how specific soils change, scientists can assess larger patterns of soil change by synthesizing existing primary research, and linking individual studies via research networks. Here, we illustrate how primary research can be synthesized into large databases to answer questions beyond the reach of individual studies, using examples from a meta-analysis of forest management effects on soil C storage. Questions of interest to the synthesis included: does forest harvesting have a consistent effect on soil C storage? And, how does fire affect forest soil C storage? To answer these questions, we derived >600 soil C response ratios from >100 temperate forest harvest and fire papers. Despite ample underlying variation, meta-analysis detected a significant harvesting effect on soil C storage (-13 ±4%), and also identified factors driving variation in this overall effect. Specifically, harvesting had different effects on forest floor vs. mineral soil C storage, with forest floors showing significant C losses (-30 ±6%), and mineral soils showing no overall change. Within harvested forest floors, variation in C storage shifts was best explained by forest composition (conifer presence mitigated C losses), while soil type explained the most variation in mineral soil C responses to harvest. In our synthesis of fire effects on temperate forest soil C storage, meta-analysis revealed an overall C storage reduction of 35 ±8%. As with forest harvesting, fire had no overall effect on mineral soils, but forest floor C storage declined by 59 ±7%. Forest floors from conifer stands lost more C than those from hardwood and mixed forests, and fire type also mattered—wildfires caused significantly greater forest floor C losses than prescribed burns. Across all studies, the mean recovery time for forest floor C was 128 yr. In a broader context, these results demonstrate that combining database work with quantitative synthesis (such as meta-analysis) allows scientists to detect large-scale patterns that are obscured by variation within individual studies. And, in addition to improving analytical capacity for addressing large questions, large databases are useful for identifying data gaps in global soil change research. In light of these benefits, now is an opportune time to advance the study of global soil change by networking and sharing data with the National Soil Carbon Network. The NSCN seeks participants in an effort to compile databases, answer big-picture, predictive questions about soil C vulnerability, and identify and fill data gaps and research needs. The NSCN seeks to be a facilitator that links existing resources rather than reinvents them, and offers opportunities for a variety of activities, including sharing sites, data, archives, and lab infrastructure. The NSCN is fundamentally collaborative, and operates under the assumption that our shared scientific interest in global soil change will be best advanced if we work together rather than in isolation.

  1. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics

    PubMed Central

    Thornton, Philip K.; Herrero, Mario

    2010-01-01

    We estimate the potential reductions in methane and carbon dioxide emissions from several livestock and pasture management options in the mixed and rangeland-based production systems in the tropics. The impacts of adoption of improved pastures, intensifying ruminant diets, changes in land-use practices, and changing breeds of large ruminants on the production of methane and carbon dioxide are calculated for two levels of adoption: complete adoption, to estimate the upper limit to reductions in these greenhouse gases (GHGs), and optimistic but plausible adoption rates taken from the literature, where these exist. Results are expressed both in GHG per ton of livestock product and in Gt CO2-eq. We estimate that the maximum mitigation potential of these options in the land-based livestock systems in the tropics amounts to approximately 7% of the global agricultural mitigation potential to 2030. Using historical adoption rates from the literature, the plausible mitigation potential of these options could contribute approximately 4% of global agricultural GHG mitigation. This could be worth on the order of $1.3 billion per year at a price of $20 per t CO2-eq. The household-level and sociocultural impacts of some of these options warrant further study, however, because livestock have multiple roles in tropical systems that often go far beyond their productive utility. PMID:20823225

  2. Implementing Experiential Action Learning in International Management Education: The Global Business Strategic (GLOBUSTRAT) Consulting Program

    Microsoft Academic Search

    Shyam Kamath; Jagdish Agrawal; Guido Krickx

    2008-01-01

    This paper discusses the theoretical foundations and implementation challenges and outcomes of a unique “hands?on” global consulting program that is integrated into an international EMBA program for mid?career and senior American and European managers. It details the challenges for the integration of experiential action learning, double?loop learning, service learning, and tacit learning into global management education and discusses the value

  3. Pasture Management Strategies for Sequestering Soil Carbon - Final Report

    SciTech Connect

    Franzluebbers, Alan J.

    2006-03-15

    Pasturelands account for 51 of the 212 Mha of privately held grazing land in the USA. Tall fescue is the most important cool-season perennial forage for many beef cattle producers in the humid region of the USA. A fungal endophyte, Neotyphodium coenophialum, infects the majority of tall fescue stands with a mutualistic association. Ergot alkaloids produced by the endophyte have negative impacts on cattle performance. However, there are indications that endophyte infection of tall fescue is a necessary component of productive and persistent pasture ecology. The objectives of this research were to characterize and quantify changes in soil organic carbon and associated soil properties under tall fescue pastures with and without endophyte infection of grass. Pastures with high endophyte infection had greater concentration of soil organic carbon, but lower concentration of biologically active soil carbon than pastures with low endophyte infection. A controlled experiment suggested that endophyte-infected leaf tissue may directly inhibit the activity of soil microorganisms. Carbon forms of soil organic matter were negatively affected and nitrogen forms were positively affected by endophyte addition to soil. The chemical compounds in endophyte-infected tall fescue (ergot alkaloids) that are responsible for animal health disorders were found in soil, suggesting that these chemicals might be persistent in the environment. Future research is needed to determine whether ergot alkaloids or some other chemicals are responsible for increases in soil organic matter. Scientists will be able to use this information to better understand the ecological impacts of animals grazing tall fescue, and possibly to identify and cultivate other similar associations for improving soil organic matter storage. Another experiment suggested that both dry matter production and soil microbial activity could be affected by the endophyte. Sampling of the cumulative effects of 20 years of tall fescue management indicated that soil organic carbon and nitrogen storage were greater with than without endophyte only under high soil fertility. This extra carbon and nitrogen in soil due to the presence of the endophyte was further found to be located in intermediately sized soil aggregates, which are important for reducing water runoff and improving water quality. These results suggest that well-fertilized tall fescue pastures with a high percentage of plants infected with the endophyte have the potential to help offset the rising carbon dioxide in the atmosphere. This research has also shown positive ecological implications of tall fescue-endophyte association.

  4. Derivation of a northern-hemispheric biomass map for use in global carbon cycle models

    NASA Astrophysics Data System (ADS)

    Thurner, Martin; Beer, Christian; Santoro, Maurizio; Carvalhais, Nuno; Wutzler, Thomas; Schepaschenko, Dmitry; Shvidenko, Anatoly; Kompter, Elisabeth; Levick, Shaun; Schmullius, Christiane

    2013-04-01

    Quantifying the state and the change of the World's forests is crucial because of their ecological, social and economic value. Concerning their ecological importance, forests provide important feedbacks on the global carbon, energy and water cycles. In addition to their influence on albedo and evapotranspiration, they have the potential to sequester atmospheric carbon dioxide and thus to mitigate global warming. The current state and inter-annual variability of forest carbon stocks remain relatively unexplored, but remote sensing can serve to overcome this shortcoming. While for the tropics wall-to-wall estimates of above-ground biomass have been recently published, up to now there was a lack of similar products covering boreal and temperate forests. Recently, estimates of forest growing stock volume (GSV) were derived from ENVISAT ASAR C-band data for latitudes above 30° N. Utilizing a wood density and a biomass compartment database, a forest carbon density map covering North-America, Europe and Asia with 0.01° resolution could be derived out of this dataset. Allometric functions between stem, branches, root and foliage biomass were fitted and applied for different leaf types (broadleaf, needleleaf deciduous, needleleaf evergreen forest). Additionally, this method enabled uncertainty estimation of the resulting carbon density map. Intercomparisons with inventory-based biomass products in Russia, Europe and the USA proved the high accuracy of this approach at a regional scale (r2 = 0.70 - 0.90). Based on the final biomass map, the forest carbon stocks and densities (excluding understorey vegetation) for three biomes were estimated across three continents. While 40.7 ± 15.7 Gt of carbon were found to be stored in boreal forests, temperate broadleaf/mixed forests and temperate conifer forests contain 24.5 ± 9.4 Gt(C) and 14.5 ± 4.8 Gt(C), respectively. In terms of carbon density, most of the carbon per area is stored in temperate conifer (62.1 ± 20.7 Mg(C)/ha(Forest)) and broadleaf/mixed forests (58.0 ± 22.1 Mg(C)/ha(Forest)), whereas boreal forests have a carbon density of only 40.0 ± 15.4 Mg(C)/ha(Forest). While European forest carbon stocks are relatively small, the carbon density is higher compared to the other continents. The derived biomass map substantially improves the knowledge on the current carbon stocks of the northern-hemispheric boreal and temperate forests, serving as a new benchmark for spatially explicit and consistent biomass mapping with moderate spatial resolution. This product can be of great value for global carbon cycle models as well as national carbon monitoring systems. Further investigations concentrate on improving biomass parameterizations and representations in such kind of models. The presented map will help to improve the simulation of biomass spatial patterns and variability and enables identifying the dominant influential factors like climatic conditions and disturbances.

  5. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the behavior of terrestrial C mitigation options in the presence and absence of climate change mitigation policies.

  6. Impacts of global warming on boreal larch forest in East Siberia: simulations with a coupled carbon cycle and fire regime model

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2005-12-01

    Boreal forest is one of the focal areas in the study of global warming and carbon cycle. In this study, a coupled carbon cycle and fire regime model was developed and applied to a larch forest in East Siberia, near Yakutsk. Fire regime is simulated with a cellular automaton (20 km x 20 km), in which fire ignition, propagation, and extinction are parameterized in a stochastic manner, including the effects of fuel accumulation and weather condition. For each grid, carbon cycle is simulated with a 10-box scheme, in which net biome production by photosynthesis, respiration, decomposition, and biomass burning are calculated explicitly. Model parameters were calibrated with field data of biomass, litter stock, and fire statistics; the carbon cycle scheme was examined with flux measurement data. As a result, the model successfully captured average carbon stocks, productivity, fire frequency, and biomass burning. To assess the effects of global warming, a series of simulations were performed using climatic projections based on the IPCC-SRES emission scenarios from 1990 to 2100. The range of uncertainty among the different climate models and emission scenarios was assessed by using multi-model projection data by CCCma, CCSR/NIES, GFDL, and HCCPR corresponding to the SRES A2 and B2 scenarios. The model simulations showed that global warming in the 21st century would considerably enhance the fire regime (e.g., cumulative burnt area increased by 80 to 120 percent), leading to larger carbon emission by biomass burning. The effect was so strong that growth enhancement by elevated atmospheric CO2 concentration and elongated growing period was cancelled out at landscape scale. In many cases, the larch forest was estimated to act as net carbon sources of 2 to 5 kg C m_|2 by the end of the 21st century, underscoring the importance of forest fire monitoring and management in this region.

  7. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the period of 2003-2010. Ecosystem heterotrophic respiration (RH) was negatively affected by the aerosol loading. These results support previous conclusions of the advantage of aerosol light scattering effect on plant productions in other studies but suggest there is strong spatial variation. This study finds indirect aerosol effects on terrestrial ecosystem carbon dynamics through affecting plant phenology, thermal and hydrological environments. All these evidences suggested that the aerosol direct radiative effect on global terrestrial ecosystem carbon dynamics should be considered to better understand the global carbon cycle and climate change. An ozone sub-model is developed in this dissertation and fully coupled with iTem. The coupled model, named iTemO3 considers the processes of ozone stomatal deposition, plant defense to ozone influx, ozone damage and plant repairing mechanism. By using a global atmospheric chemical transport model (GACTM) estimated ground-level ozone concentration data, the model estimated global annual stomatal ozone deposition is 234.0 Tg O3 yr-1 and indicates which regions have high ozone damage risk. Different plant functional types, sunlit and shaded leaves are shown to have different responses to ozone. The model predictions suggest that ozone has caused considerable change on global terrestrial ecosystem carbon storage and carbon exchanges over the study period 2004-2008. The study suggests that uncertainty of the key parameters in iTemO3 could result in large errors in model predictions. Thus more experimental data for better model parameterization is highly needed.

  8. From the Global to the Local: Managing Climate Change Impacts across Scales

    E-print Network

    Slatton, Clint

    From the Global to the Local: Managing Climate Change Impacts across Scales Edward L. Miles School) 50,000 years Source: IPCC. 1990. Climate Change: The Scientific Assessment, Working Group 1. Global & Impacts. · Projections of Climate Change & its Impacts. · Summary:Trends & the Take-Away Message #12;The

  9. Transnational organization and symbolic production: Creating and managing a global brand

    Microsoft Academic Search

    John Amis; Michael L Silk

    2010-01-01

    In recent years, there has been sustained debate pertaining to how global markets should be conceptualized, enacted, and addressed. The purpose of this study was to expose the pivotal managerial thought processes and practices of senior managers at Guinness and the actions of symblic workers involved in the reconciliation of trends toward increasing global cultural convergence and a need for

  10. Surveying the Need for Technology Management for Global Health Training Programmes

    ERIC Educational Resources Information Center

    Balakrishnan, Usha R.; Troyer, Lisa; Brands, Edwin

    2007-01-01

    Technology licensing office managers often need to evaluate profitability and commercial potential in their decision making. However, increased consideration of important global public health goals requires forging new collaborative relationships, incorporating creative licensing practices and embracing global public good within the academic and…

  11. Management of water extracted from carbon sequestration projects

    SciTech Connect

    Harto, C. B.; Veil, J. A. (Environmental Science Division)

    2011-03-11

    Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods for managing very large volumes of water most of which will contain large quantities of salt and other dissolved minerals. Produced water from oil and gas production also typically contains large quantities of dissolved solids. Therefore, many of the same practices that are established and used for managing produced water also may be applicable for extracted water. This report describes the probable composition of the extracted water that is removed from the formations, options for managing the extracted water, the pros and cons of those options, and some opportunities for beneficial use of the water. Following the introductory material in Chapter 1, the report is divided into chapters covering the following topics: (Chapter 2) examines the formations that are likely candidates for CO{sub 2} sequestration and provides a general evaluation of the geochemical characteristics of the formations; (Chapter 3) makes some preliminary estimates of the volume of water that could be extracted; (Chapter 4) provides a qualitative review of many potential technologies and practices for managing extracted water and for each technology or management practice, pros and cons are provided; (Chapter 5) explores the potential costs of water management; and (Chapter 6) presents the conclusions.

  12. Testing Global Approaches for Optical Remote Sensing of Carbon Fluxes Using EO-1 Hyperion Data

    NASA Astrophysics Data System (ADS)

    Huemmrich, K. F.; Campbell, P. K.; Middleton, E.

    2012-12-01

    Understanding the dynamics of the global carbon cycle requires an accurate description of the spatial and temporal distribution of photosynthetic CO2 uptake by terrestrial vegetation. Can a single algorithm driven by hyperspectral satellite data provide an estimate of carbon flux variables over a wide range of sites? To examine this question ecosystem carbon flux data measured with the existing global network of eddy covariance towers in the LaThuile Fluxnet synthesis analysis were matched to Earth Observing 1 (EO-1) Hyperion imaging spectrometer observations. The synthesis dataset provided data from multiple sites processed in a consistent way, and 33 globally distributed flux tower sites, representing a variety of different vegetation types, were identified that were observed by EO-1 during mid-growing season over the period from 2001 to 2007. This provided 80 usable observations with both flux and spectra extracted from 77 Hyperion scenes. Spectra were compared with Ecosystem Respiration (Reco) and Light Use Efficiency (LUE) calculated from the flux tower data. The best spectral vegetation index (SVI), out of 107 tested, for LUE was the first derivative of the reflectance spectra at 732 nm divided by the derivative at 712 nm (R2=0.5). The best SVI for Reco was the Normalized Difference Water Index, the normalized difference of reflectances at 876 and 1245 nm (R2=0.50). Partial Least Squares analysis, which utilizes all of the spectral information, developed using randomly selected training subsets applied to the rest of the data produce R2 values over 0.7 for LUE. For this study Hyperion on EO-1 provides the capability of collecting consistent hyperspectral observations of globally-distributed sites along with the ability to make repeated measurements of a site. The analysis suggests multiple different approaches and spectral bands may be used to provide usable estimates of carbon flux parameters.

  13. Understanding global teleconnections of climate to regional model estimates of Amazon ecosystem carbon fluxes

    Microsoft Academic Search

    CHRISTOPHER P OTTER; S TEVEN K LOOSTER; M ICHAEL S TEINBACH

    We have investigated global teleconnections of climate to regional satellite-driven observations for prediction of Amazon ecosystem production, in the form of monthly estimates of net carbon exchange over the period 1982-1998 from the NASA-CASA (Carnegie-Ames-Stanford) biosphere model. This model is driven by observed surface climate and monthly estimates of vegetation leaf area index (LAI) and fraction of absorbed PAR (fraction

  14. Understanding Global Teleconnections of Climate to Regional Model Estimates of Amazon Ecosystem Carbon Fluxes

    Microsoft Academic Search

    C. Potter; S. Klooster; C. R. Carvalho; V. B. Genovese; M. Steinbach; P. Tan; V. Kumar; R. Myneni

    2002-01-01

    Our LBA-ECO research team is investigating global teleconnections of ocean climate to regional satellite-driven observations for Amazon ecosystem production, mainly in the form of monthly predictions of net carbon exchange over the period 1982-1999 from the NASA-CASA (Carnegie-Ames-Stanford) Biosphere model. This model is driven by observed surface climate and monthly estimates of vegetation leaf area index (LAI) and fraction of

  15. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor

    Microsoft Academic Search

    Gerald R. Dickens

    2003-01-01

    Prominent negative ?13C excursions characterize several past intervals of abrupt (2.5‰ drop across the Paleocene\\/Eocene thermal maximum (PETM) ca. 55.5 Ma, command our attention because they lack explanation with conventional models for global carbon cycling. Increasingly, Earth scientists have argued that they signify massive release of CH4 from marine gas hydrates, although typically without considering the underlying process or the

  16. Impact of desertification and global warming on soil carbon in northern China

    Microsoft Academic Search

    Feng Qi; Liu Wei; Liu Yansui; Z. Yanwu; S. Yonghong

    2004-01-01

    While the global rise in mean day\\/night and seasonal air temperatures (ATE) of recent decades is well documented, its influence on levels of soil-sequestered organic carbon, and on emission rates of CO2 and other greenhouse gases emanating therefrom, is only beginning to garner serious attention. This has resulted in a limited but growing understanding, particularly in the context of the

  17. Corn, Carbon, and Conservation: Rethinking U.S. Agricultural Policy in a Changing Global Environment

    Microsoft Academic Search

    Mary Jane Angelo

    2009-01-01

    \\u000aCORN, CARBON AND CONSERVATION: RETHINKING U.S. AGRICULTURAL POLICY IN A CHANGING GLOBAL ENVIRONMENT\\u000aMary Jane Angelo\\u000aIn the past few years, the public has renewed its interest in ensuring that the food it eats is healthy and is grown in ways that are environmentally and economically sustainable. The immense popularity of books such as The Omnivore’s Dilemma, the widespread “locavore”

  18. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect

    Robert Hurt; Eric Suuberg; John Veranth

    2001-06-22

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. This first project period, experiments were carried out to better understand the fundamental nature of the ozonation effect on ash. Carbon surfaces were characterized by surfactant adsorption, and by X-ray Photoelectron Spectroscopy before and after oxidation, both by air at 440 C and by ozone at room temperature. The results strongly suggest that the beneficial effect of ozonation is in large part due to chemical modification of the carbon surfaces.

  19. The role of tropical deforestation in the global carbon cycle: Spatial and temporal dynamics

    NASA Technical Reports Server (NTRS)

    Houghton, R. A.; Skole, David; Moore, Berrien; Melillo, Jerry; Steudler, Paul

    1995-01-01

    'The Role of Tropical Deforestation in the Global Carbon cycle: Spatial and Temporal Dynamics', was a joint project involving the University of New Hampshire, the Marine Biological Laboratory, and the Woods Hole Research Center. The contribution of the Woods Hole Research Center consisted of three tasks: (1) assist University of New Hampshire in determining the net flux of carbon between the Brazilian Amazon and the atmosphere by means of a terrestrial carbon model; (2) address the spatial distribution of biomass across the Amazon Basin; and (3) assist NASA Headquarters in development of a science plan for the Terrestrial Ecology component of the NASA-Brazilian field campaign (anticipated for 1997-2001). Progress on these three tasks is briefly described.

  20. Low carbon technology performance vs infrastructure vulnerability: analysis through the local and global properties space.

    PubMed

    Dawson, David A; Purnell, Phil; Roelich, Katy; Busch, Jonathan; Steinberger, Julia K

    2014-11-01

    Renewable energy technologies, necessary for low-carbon infrastructure networks, are being adopted to help reduce fossil fuel dependence and meet carbon mitigation targets. The evolution of these technologies has progressed based on the enhancement of technology-specific performance criteria, without explicitly considering the wider system (global) impacts. This paper presents a methodology for simultaneously assessing local (technology) and global (infrastructure) performance, allowing key technological interventions to be evaluated with respect to their effect on the vulnerability of wider infrastructure systems. We use exposure of low carbon infrastructure to critical material supply disruption (criticality) to demonstrate the methodology. A series of local performance changes are analyzed; and by extension of this approach, a method for assessing the combined criticality of multiple materials for one specific technology is proposed. Via a case study of wind turbines at both the material (magnets) and technology (turbine generators) levels, we demonstrate that analysis of a given intervention at different levels can lead to differing conclusions regarding the effect on vulnerability. Infrastructure design decisions should take a systemic approach; without these multilevel considerations, strategic goals aimed to help meet low-carbon targets, that is, through long-term infrastructure transitions, could be significantly jeopardized. PMID:25296295

  1. The global distribution of pteropods and their contribution to carbonate and carbon biomass in the modern ocean

    NASA Astrophysics Data System (ADS)

    Bednaršek, N.; Možina, J.; Vogt, M.; O'Brien, C.; Tarling, G. A.

    2012-12-01

    Pteropods are a group of holoplanktonic gastropods for which global biomass distribution patterns remain poorly described. The aim of this study was to collect and synthesise existing pteropod (Gymnosomata, Thecosomata and Pseudothecosomata) abundance and biomass data, in order to evaluate the global distribution of pteropod carbon biomass, with a particular emphasis on temporal and spatial patterns. We collected 25 939 data points from several online databases and 41 scientific articles. These data points corresponded to observations from 15 134 stations, where 93% of observations were of shelled pteropods (Thecosomata) and 7% of non-shelled pteropods (Gymnosomata). The biomass data has been gridded onto a 360 × 180° grid, with a vertical resolution of 33 depth levels. Both the raw data file and the gridded data in NetCDF format can be downloaded from PANGAEA, doi:10.1594/PANGAEA.777387. Data were collected between 1950-2010, with sampling depths ranging from 0-2000 m. Pteropod biomass data was either extracted directly or derived through converting abundance to biomass with pteropod-specific length to carbon biomass conversion algorithms. In the Northern Hemisphere (NH), the data were distributed quite evenly throughout the year, whereas sampling in the Southern Hemisphere (SH) was biased towards winter and summer values. 86% of all biomass values were located in the NH, most (37%) within the latitudinal band of 30-60° N. The range of global biomass values spanned over four orders of magnitude, with mean and median (non-zero) biomass values of 4.6 mg C m-3 (SD = 62.5) and 0.015 mg C m-3, respectively. The highest mean biomass was located in the SH within the 70-80° S latitudinal band (39.71 mg C m-3, SD = 93.00), while the highest median biomass was in the NH, between 40-50° S (0.06 mg C m-3, SD = 79.94). Shelled pteropods constituted a mean global carbonate biomass of 23.17 mg CaCO3 m-3 (based on non-zero records). Total biomass values were lowest in the equatorial regions and equally high at both poles. Pteropods were found at least to depths of 1000 m, with the highest biomass values located in the surface layer (0-10 m) and gradually decreasing with depth, with values in excess of 100 mg C m-3 only found above 200 m depth. Tropical species tended to concentrate at greater depths than temperate or high-latitude species. Global biomass levels in the NH were relatively invariant over the seasonal cycle, but more seasonally variable in the SH. The collected database provides a valuable tool for modellers for the study of marine ecosystem processes and global biogeochemical cycles. By extrapolating regional biomass to a global scale, we established global pteropod biomass to add up to 500 Tg C.

  2. Brazing of Carbon Carbon Composites to Cu-clad Molybdenum for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.; Shpargel, T> P.

    2007-01-01

    Advanced carbon carbon composites were joined to copper-clad molybdenum (Cu/Mo) using four active metal brazes containing Ti (Cu ABA, Cusin-1 ABA, Ticuni, and Ticusil) for potential use in thermal management applications. The brazed joints were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Knoop microhardness measurements across the joint region. Metallurgically sound C-C/Cu/Mo joints, devoid of interfacial cracks formed in all cases. The joint interfaces were preferentially enriched in Ti, with Cu ABA joints exhibiting the largest interfacial Ti concentrations. The microhardness measurements revealed hardness gradients across the joint region, with a peak hardness of 300-350 KHN in Cusin-1 ABA and Ticusil joints and 200-250 KHN in Cu ABA and Ticuni joints, respectively.

  3. An audit of the global carbon budget: identifying and reducing sources of uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Tans, P. P.; Marland, G.; Stocker, B. D.

    2012-12-01

    Uncertainties in our carbon accounting practices may limit our ability to objectively verify emission reductions on regional scales. Furthermore uncertainties in the global C budget must be reduced to benchmark Earth System Models that incorporate carbon-climate interactions. Here we present an audit of the global C budget where we try to identify sources of uncertainty for major terms in the global C budget. The atmospheric growth rate of CO2 has increased significantly over the last 50 years, while the uncertainty in calculating the global atmospheric growth rate has been reduced from 0.4 ppm/yr to 0.2 ppm/yr (95% confidence). Although we have greatly reduced global CO2 growth rate uncertainties, there remain regions, such as the Southern Hemisphere, Tropics and Arctic, where changes in regional sources/sinks will remain difficult to detect without additional observations. Increases in fossil fuel (FF) emissions are the primary factor driving the increase in global CO2 growth rate; however, our confidence in FF emission estimates has actually gone down. Based on a comparison of multiple estimates, FF emissions have increased from 2.45 ± 0.12 PgC/yr in 1959 to 9.40 ± 0.66 PgC/yr in 2010. Major sources of increasing FF emission uncertainty are increased emissions from emerging economies, such as China and India, as well as subtle differences in accounting practices. Lastly, we evaluate emission estimates from Land Use Change (LUC). Although relative errors in emission estimates from LUC are quite high (2 sigma ~ 50%), LUC emissions have remained fairly constant in recent decades. We evaluate the three commonly used approaches to estimating LUC emissions- Bookkeeping, Satellite Imagery, and Model Simulations- to identify their main sources of error and their ability to detect net emissions from LUC.; Uncertainties in Fossil Fuel Emissions over the last 50 years.

  4. Global carbon impacts of using forest harvest residues for district heating in Vermont

    SciTech Connect

    McLain, H.A.

    1998-07-01

    Forests in Vermont are selectively logged periodically to generate wood products and useful energy. Carbon remains stored in the wood products during their lifetime and in fossil fuel displaced by using these products in place of energy-intensive products. Additional carbon is sequestered by new forest growth, and the forest inventory is sustained using this procedure. A significant portion of the harvest residue can be used as biofuel in central plants to generate electricity and thermal energy, which also displaces the use of fossil fuels. The impact of this action on the global carbon balance was analyzed using a model derived from the Graz/Oak Ridge Carbon Accounting Model (GORCAM). The analysis showed that when forests are harvested only to manufacture wood products, more than 100 years are required to match the sequestered carbon present if the forest is left undisturbed. If part of the harvest residue is collected and used as biofuel in place of oil or natural gas, it is possible to reduce this time to about 90 years, but it is usually longer. Given that harvesting the forest for products will continue, carbon emission benefits relative to this practice can start within 10 to 70 years if part of the harvest residue is used as biofuel. This time is usually higher for electric generation plants, but it can be reduced substantially by converting to cogeneration operation. Cogeneration makes possible a ratio of carbon emission reduction for district heating to carbon emission increase for electricity generation in the range of 3 to 5. Additional sequestering benefits can be realized by using discarded wood products as biofuels.

  5. Impact of emissions, chemistry, and climate on atmospheric carbon monoxide : 100-year predictions from a global chemistry-climate model

    E-print Network

    Wang, Chien.; Prinn, Ronald G.

    The possible trends for atmospheric carbon monoxide in the next 100 yr have been illustrated using a coupled atmospheric chemistry and climate model driven by emissions predicted by a global economic development model. ...

  6. Estimation of methane and carbon dioxide surface fluxes using a 3-D global atmospheric chemical transport model

    E-print Network

    Chen, Yu-Han, 1973-

    2004-01-01

    Methane (CH?) and carbon dioxide (CO?) are the two most radiatively important greenhouse gases attributable to human activity. Large uncertainties in their source and sink magnitudes currently exist. We estimate global ...

  7. Faint young Sun and the carbon cycle: implication for the Proterozoic global glaciations

    NASA Astrophysics Data System (ADS)

    Tajika, Eiichi

    2003-09-01

    The Earth may have been globally ice-covered several times during the Proterozoic. While the Neoproterozoic and the Paleoproterozoic glaciations may have been 'snowball' Earth events, there is no evidence for such glaciation during the Phanerozoic. It might be hypothesized that a dimmer Sun earlier in Earth's history may have made the Earth more susceptible to global glaciation. In this paper, the roles of solar flux and soil biological activity in the carbon cycle and the climate during the Proterozoic are investigated using a simple carbon geochemical cycle model with a one-dimensional energy balance climate model. The results indicate, perhaps counterintuitively, that the Proterozoic Earth, with its dimmer Sun, was not more susceptible to 'snowball glaciation'. Metamorphic and volcanic CO 2 fluxes accumulate in the atmosphere and ocean until such time that those inputs are balanced by silicate weathering followed by carbonate precipitation and net organic carbon burial. Because of the dependence of weathering rates on climatic conditions, changes in geologic CO 2 inputs have a large influence on climatic conditions. In contrast, slow variation in solar flux has relatively little long-term impact on climate, because of large compensating changes in atmospheric CO 2 level. A reduction in CO 2 inputs lowers atmospheric CO 2 level, which finally initiates global glaciation. The atmospheric CO 2 level at the critical condition for a globally ice-covered state would have been high during the Proterozoic. However, roughly the same amount of CO 2 flux reduction is required for both the Proterozoic and the Phanerozoic. This is essentially because the temperatures at the critical condition are very low, hence the silicate weathering rate (which should balance with a net CO 2 input rate in a steady state) is also very low, regardless of the variation in solar flux. Furthermore, the effect of the lower solar flux on the CO 2 input rate at the critical condition would have been largely canceled by a lower efficiency of the silicate weathering rate due to lower soil biological activity during the Proterozoic. As a result, CO 2 flux conditions for initiating the global glaciation may be similar during both the Proterozoic and the Phanerozoic. Therefore, the explanation for the susceptibility of the Proterozoic Earth to 'snowball' conditions cannot hinge simply on the dimmer Sun; we must look to other differences in behaviors of the carbon cycle and the climate between these two ages.

  8. Strategic global human resource management: case study of an emerging Indian multinational

    Microsoft Academic Search

    Mohan Thite

    2012-01-01

    With the growing importance of emerging economies, researchers call for the need to pay attention to non-Western management models with a view to developing an integrated approach. Using a case study of an Indian multinational firm in the IT industry, this article highlights the key ingredients of its success in managing a global workforce, such as diffused and empowered leadership,

  9. Host Identity Protocol and Proxy Mobile IPv6: a Secure Global and Localized Mobility Management

    E-print Network

    Gesbert, David

    Host Identity Protocol and Proxy Mobile IPv6: a Secure Global and Localized Mobility Management (HIP) and Proxy Mobile IPv6 (PMIPv6). It merges the new identifier/locator split architecture proposed, Proxy Mobile IPv6, Mobility Management, Multihoming, Security. I. INTRODUCTION In the early days

  10. Standards Panel: 1. Stephen Diamond, General Manager, Industry Standards Office and Global Standards Officer, EMC

    E-print Network

    NT 3.1, 4.0, 2000 and Windows 95 and 98 as well as Windows Communication Foundation, among others. HeStandards Panel: 1. Stephen Diamond, General Manager, Industry Standards Office and Global was President of the IEEE Computer Society. Steve is General Manager of the Industry Standards Office at EMC

  11. Global Approach for Technical Data Management Application to Ship Equipment Part Families

    E-print Network

    Paris-Sud XI, Université de

    Global Approach for Technical Data Management Application to Ship Equipment Part Families J. Le approach that enables technical data to be managed and used throughout the product life a company environment that designs and produces families of ship equipment parts. This case study

  12. On the Aggregation of Local Risk Models for Global Risk Management

    E-print Network

    Aluffi, Paolo

    On the Aggregation of Local Risk Models for Global Risk Management Greg Anderson Vice President: portfolio risk, total risk, optimization, positive definite. 2 #12;1 Introduction Portfolio managers is a revised version of an article written in 2003 under the title "Forecasting Total Risk". #12;Abstract Given

  13. Interviewing Key Informants: Strategic Planning for a Global Public Health Management Program

    ERIC Educational Resources Information Center

    Kun, Karen E.; Kassim, Anisa; Howze, Elizabeth; MacDonald, Goldie

    2013-01-01

    The Centers for Disease Control and Prevention's Sustainable Management Development Program (SMDP) partners with low- and middle-resource countries to develop management capacity so that effective global public health programs can be implemented and better health outcomes can be achieved. The program's impact however, was variable. Hence, there…

  14. The GRIN-Global Information Management System – Public Interface Demonstration and Input Opportunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The GRIN-Global (GG) Information Management System, under development for the past three years, provides the world's crop genebanks and plant genetic resource (PGR) users with a powerful, flexible, easy-to-use PGR information management system. Developed jointly by the USDA Agricultural Research Ser...

  15. The GRIN-Global Information Management System – A Preview and Opportunity for Public User Input

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The GRIN-Global Information Management System, under development for the past two years, will provide the world's crop genebanks and plant genetic resource (PGR) users with a powerful, flexible, easy-to-use PGR information management system. Developed jointly by the USDA Agricultural Research Servi...

  16. MRKTNG 3901 Global Issues in Sales Management Summer 2011 Professor Srinath Gopalakrishna

    E-print Network

    Escolano, Francisco

    Project The sales profession is very action-oriented. Sales and relationship skills have become moreMRKTNG 3901 Global Issues in Sales Management Summer 2011 Professor Srinath Gopalakrishna with an overview of the theory and practice of sales management. Students will get a feel for a variety of sales

  17. Employee Disease Management in US and Global Workplaces: Integrating Strategies and Expanding their Scope

    Microsoft Academic Search

    Robin C. Rager; Joseph A. Leutzinger; Jeff A. Hochberg; Wolf Kirsten; David H. Chenoweth

    2008-01-01

    Over the past decade, employee disease management (DM) programs have evolved and expanded in response to the continued economic burden of chronic diseases and other health conditions on companies in the US and globally. As they have developed, these programs have increasingly become integrated with other health management initiatives, in attempts to create a more effective model for achieving the

  18. How best to optimize a global process-based carbon land surface model ?

    NASA Astrophysics Data System (ADS)

    Peylin, Philippe; Bacour, Cedric; MacBean, Natasha; Leonard, Sebastien; Maignan, Fabienne; Thum, Tea; Chevallier, Frederic; Ciais, Philippe; Cadule, Patricia; Santaren, Diego

    2014-05-01

    Global process-based land surface models are used to predict the response of the Earth's ecosystems to environmental changes. However, the estimated water and carbon fluxes remain subject to large uncertainties, partly because of unknown or poorly calibrated parameters. Assimilation of in situ data, remote sensing products, and/or atmospheric trace gas concentrations, into these models is a promising approach to optimize key parameters, providing that all major processes are well represented. So far, most of the studies have focused on using one single data stream, either remotely sensed estimates of the vegetation activity (fAPAR or NDVI) to constrain the modeled plant phenology, in situ measurements of net CO2 and latent heat fluxes (NEE, LE at FluxNet sites) or atmospheric CO2 concentrations (through the use of a transport model) to provide constraint on the net carbon fluxes at hourly to inter-annual time-scales. However, the combination of these data streams is expected to provide a much larger constraint on ecosystem carbon, water and energy dynamics. At LSCE we have constructed a global Carbon Cycle Multi-Data Assimilation System (CCDAS) to assimilate i) MODIS-NDVI observations at around 15 points for each plant functional type (PFT) in the model, ii) in situ NEE and LE fluxes at around 70 FluxNet sites and iii) atmospheric CO2 measurements at more than 80 sites. We used different methods of data assimilation (including a 4D-Var approach), depending on the number and type of data streams that are considered in order to optimize the main parameters of the global vegetation model ORCHIDEE (around 15 parameters per PFT). Using such a CCDAS, we investigated several methodological to scientific questions: How does a variational scheme perform compared to a "Monte Carlo" approach (the genetic algorithm) to minimize an objective function (using FluxNet data)? What is the additional information brought by the measurements of above ground biomass data on the top of eddy covariance fluxes to constrain the C allocation within ORCHIDEE? What is the level of constraint brought by the global atmospheric CO2 data compared to FluxNet NEE/LE and satellite-derived NDVI data? What is the impact of the multi-data stream assimilation on the projected global land carbon balance at the horizon 2100 using future climate scenarios? In order to answer these questions we have conducted several studies over a 3-year period with the assimilation of i) each data stream separately and ii) several combinations of them in both a step-wise and simultaneous mode. The estimated parameters from each experiment will be compared together and the corresponding land carbon fluxes/stocks (and to a lesser extend the land water fluxes) will be analyzed in terms of seasonal and inter-annual variations at continental to global scales. These estimates will be compared against independent datasets (e.g., Forest biomass from FAO) and independent approaches (e.g. optimized carbon fluxes from atmospheric CO2 inversions) in order to highlight the benefit of Carbon Cycle Data Assimilation Systems.

  19. Integrating business processes for global alignment and supply chain management

    Microsoft Academic Search

    Rodney McAdam; Daniel McCormack

    2001-01-01

    This paper presents a qualitative study of the integration of supply chain management and business process management activities. It reviews published literature in both fields and a number of supporting areas, revealing a minimal overlap in the research. A number of case studies of progressive organisations are examined, including an in-depth study of Nortel Networks Corporation’s recent market repositioning and

  20. A Global Analysis of Protected Area Management Effectiveness

    NASA Astrophysics Data System (ADS)

    Leverington, Fiona; Costa, Katia Lemos; Pavese, Helena; Lisle, Allan; Hockings, Marc

    2010-11-01

    We compiled details of over 8000 assessments of protected area management effectiveness across the world and developed a method for analyzing results across diverse assessment methodologies and indicators. Data was compiled and analyzed for over 4000 of these sites. Management of these protected areas varied from weak to effective, with about 40% showing major deficiencies. About 14% of the surveyed areas showed significant deficiencies across many management effectiveness indicators and hence lacked basic requirements to operate effectively. Strongest management factors recorded on average related to establishment of protected areas (legal establishment, design, legislation and boundary marking) and to effectiveness of governance; while the weakest aspects of management included community benefit programs, resourcing (funding reliability and adequacy, staff numbers and facility and equipment maintenance) and management effectiveness evaluation. Estimations of management outcomes, including both environmental values conservation and impact on communities, were positive. We conclude that in spite of inadequate funding and management process, there are indications that protected areas are contributing to biodiversity conservation and community well-being.

  1. IBM Global Business Services Supply Chain Management Executive Report

    E-print Network

    Value New rules for a new decade A vision for smarter supply chain management #12;IBM Institute supply chain stability and create enterprise value. Today's new economic environment is increasingly more progress" ­ the IBM Institute for Business Value surveyed 664 supply chain management executives in 29

  2. Management Trainee Program of Turkish Airlines: Global Distance Education

    ERIC Educational Resources Information Center

    Karasar, Sahin; Öztürk, Ömer Faruk

    2014-01-01

    It has always been a contested task to try to present a scientific base for the concept of "management." The concept of management, which has always been of great importance to the institutions and organizations, has gone through periodical changes both in terms of its structure and scope, and improved in a parallel fashion as the time…

  3. Natural hazards education in global environment leaders education programme for designing a low-carbon society

    NASA Astrophysics Data System (ADS)

    Lee, Han Soo; Yamashita, Takao; Fujiwara, Akimasa

    2010-05-01

    Global environmental leader (GEL) education programme at graduate school for international development and cooperation (IDEC) in Hiroshima University is an education and training programme for graduate students especially from developing countries in Asian region to build and enhance their ability to become international environmental leaders. Through this programme, they will participate in regular course works and other activities to learn how to cope with the various environment and resource management issues from global to regional scales toward a low-carbon society via multi-disciplinary approaches considering sustainable development and climate change. Under this GEL programme, there are five different research sub-groups as follows assuming a cause-effect relationship among interacting components of social, economic, and environmental systems; 1) urban system design to prevent global warming, 2) wise use of biomass resources, 3) environmental impact assessment, 4) policy and institutional design, and 5) development of environmental education programs. Candidate students of GEL programme belong to one of the five research sub-groups, perform their researches and participate in many activities under the cross-supervisions from faculty members of different sub-groups. Under the third research group for environmental impact assessment, we use numerical models named as regional environment simulator (RES) as a tool for research and education for assessing the environmental impacts due to natural hazards. Developed at IDEC, Hiroshima University, RES is a meso-scale numerical model system that can be used for regional simulation of natural disasters and environmental problems caused by water and heat circulation in the atmosphere, hydrosphere, and biosphere. RES has three components: i) atmosphere-surface waves-ocean part, ii) atmosphere-land surface process-hydrologic part, and iii) coastal and estuarine part. Each part is constructed with state-of-the-art public domain numerical models that are combined synchronously by an own-developed model coupler. Therefore, RES can provide detailed insights from various aspects of interaction processes between each component in the earth system. For instance, RES has been used for the study of storm surges and the abnormally high ocean waves caused by typhoons, cyclones, hurricanes, and winter monsoon winds in Asian region; dam lake circulation; air-sea interaction of momentum, heat, and tracer material exchange; heavy rainfall and runoff simulation; estuarine circulation with cohesive sediment transport; and wave overtopping in coastal regions. Most recently, a project on the impact of reduced discharge of freshwater and sediment from the Yangtze River basin on the adjacent East China Sea has been initiated by using the RES. Under the GEL programme, we found the RES can be an important and useful tool for graduate students not only from science and engineering background but also from social science so as to evaluate their policy and institutional design.

  4. Does Ocean Color Data Assimilation Improve Estimates of Global Ocean Inorganic Carbon?

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2012-01-01

    Ocean color data assimilation has been shown to dramatically improve chlorophyll abundances and distributions globally and regionally in the oceans. Chlorophyll is a proxy for phytoplankton biomass (which is explicitly defined in a model), and is related to the inorganic carbon cycle through the interactions of the organic carbon (particulate and dissolved) and through primary production where inorganic carbon is directly taken out of the system. Does ocean color data assimilation, whose effects on estimates of chlorophyll are demonstrable, trickle through the simulated ocean carbon system to produce improved estimates of inorganic carbon? Our emphasis here is dissolved inorganic carbon, pC02, and the air-sea flux. We use a sequential data assimilation method that assimilates chlorophyll directly and indirectly changes nutrient concentrations in a multi-variate approach. The results are decidedly mixed. Dissolved organic carbon estimates from the assimilation model are not meaningfully different from free-run, or unassimilated results, and comparisons with in situ data are similar. pC02 estimates are generally worse after data assimilation, with global estimates diverging 6.4% from in situ data, while free-run estimates are only 4.7% higher. Basin correlations are, however, slightly improved: r increase from 0.78 to 0.79, and slope closer to unity at 0.94 compared to 0.86. In contrast, air-sea flux of C02 is noticeably improved after data assimilation. Global differences decline from -0.635 mol/m2/y (stronger model sink from the atmosphere) to -0.202 mol/m2/y. Basin correlations are slightly improved from r=O.77 to r=0.78, with slope closer to unity (from 0.93 to 0.99). The Equatorial Atlantic appears as a slight sink in the free-run, but is correctly represented as a moderate source in the assimilation model. However, the assimilation model shows the Antarctic to be a source, rather than a modest sink and the North Indian basin is represented incorrectly as a sink rather than the source indicated by the free-run model and data estimates.

  5. Evaluation and intercomparison of three-dimensional global marine carbon cycle models

    SciTech Connect

    Caldeira, K., LLNL

    1998-07-01

    The addition of carbon dioxide to the atmosphere from fossil fuel burning and deforestation has profound implications for the future of the earth`s climate and hence for humankind itself. Society is looking toward the community of environmental scientists to predict the consequences of increased atmospheric carbon dioxide so that sound input can be provided to economists, environmental engineers, and, ultimately, policy makers. Environmental scientists have responded to this challenge through the creation of several ambitious, highly-coordinated programs, each focused on a different aspect of the climate system. Recognizing that numerical models, be they relatively simple statistical-empirical models or highly complex process-oriented models, are the only means for predicting the future of the climate system, all of these programs include the development of accurate, predictive models as a central goal. The Joint Global Ocean Flux Study (JGOFS) is one such program, and was built on the well-founded premise that biological, chemical and physical oceanographic processes have a profound influence on the C0{sub 2} content of the atmosphere. The, cap-stone, phase of JGOFS, the Synthesis and Modeling Project (SMP), is charged with the development of models that can be used in the prediction of future air-sea partitioning of C0{sub 2}. JGOFS, particularly the SMP phase, has a number of interim goals as well, including the determination of fluxes and inventories of carbon in the modern ocean that air germane to the air-sea partitioning of C0{sub 2}. Models have a role to play here too, because many of these fluxes and inventories, such as the distributions of anthropogenic dissolved inorganic carbon (DIC), new primary production and aphotic zone remineralization, while not amenable to direct observation on the large scale, can be determined using a variety of modeling approaches (Siegenthaler and Oeschger, 1987; Maier-Reimer and Hasselman, 1987, Bacastow and Maier-Reimer, 1990; Sarmiento et al., 1992, Najjar et al., 1992). These twin needs for the development of marine carbon cycle models are expressed in two of the main elements of JGOFS SMP: (1) extrapolation and prediction, and (2) global and regional balances of carbon and related biologically-active substances. We propose to address these program elements through a coordinated, multi-investigator project to evaluate and intercompare several 3-D global marine carbon cycle models.

  6. Global Building Inventory for Earthquake Loss Estimation and Risk Management

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, David; Porter, Keith

    2010-01-01

    We develop a global database of building inventories using taxonomy of global building types for use in near-real-time post-earthquake loss estimation and pre-earthquake risk analysis, for the U.S. Geological Survey’s Prompt Assessment of Global Earthquakes for Response (PAGER) program. The database is available for public use, subject to peer review, scrutiny, and open enhancement. On a country-by-country level, it contains estimates of the distribution of building types categorized by material, lateral force resisting system, and occupancy type (residential or nonresidential, urban or rural). The database draws on and harmonizes numerous sources: (1) UN statistics, (2) UN Habitat’s demographic and health survey (DHS) database, (3) national housing censuses, (4) the World Housing Encyclopedia and (5) other literature.

  7. Nitrogen management and the future of food: Lessons from the management of energy and carbon

    PubMed Central

    Socolow, Robert H.

    1999-01-01

    The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to carbon. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and carbon: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-carbon links. The global increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of carbon from the atmosphere to the biosphere, and mitigating global warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized. PMID:10339531

  8. Magnitude and Carbon Consequences of Forest Management in North America

    NASA Astrophysics Data System (ADS)

    Masek, J.; Kurz, W.; de Jong, B. H.

    2009-12-01

    The carbon balance of forests depends on the type, frequency and severity of recent disturbances (carbon source) and the rate of recovery from past disturbance (carbon sink). Harvest and land cover conversion represent significant forest disturbance agents over much of North America. For example, pine forests in the southeastern US are typically harvested at ~20 year intervals, and may occupy about half the regional landscape, resulting in regional landscape turnover rates of 2-3% per year. Inventory data are the primary source for quantifying information on harvest and conversion in the U.S., Mexico, and Canada. Recent inventory data from these countries indicate timber production of 424 million cu m, 163 million cu m, and 7 million cu m, respectively, with significant year-to-year variability associated with wood products demand and timber price. Areas affected by harvest activity vary as well, with 3.97 Mha (million hectares) and 1.04 Mha affected by harvest in the US and Canada, respectively. Forest cover conversion (deforestation) is thought to be relatively minor in the US and Canada, but recent estimates suggest that forest and woodland cover in Mexico declined by 300-500 Kha/yr during the 1990’s. Recently, satellite remote sensing data products on forest change have been generated that complement the traditional inventory approach. These products are particularly useful for “wall-to-wall” estimates of forest conversion and tracking small disturbances. The type and severity of disturbance cannot be easily determined using satellite observations, however, and therefore some care must be taken to reconcile these products with ground-based data. In this talk we review available resources for characterizing “carbon relevant” information on the magnitude (area, type of activity) of forest management in North America, and attempt a first-order comparison between remote sensing and inventory estimates. We also discuss strategies that might be employed to produce consistent, continent-wide maps and statistical summaries of forest harvest and conversion in order to support ongoing carbon modeling efforts.

  9. Sesso Especial: Observao do ciclo global do carbono a partir de plataformas orbitais (Spaceborne Observation of Global Carbon Coordenador: Dr. Sassan Saatchi (Jet Propulsion Laboratory, California Institute of Technology)

    E-print Network

    Observation of Global Carbon Cycle). Coordenador: Dr. Sassan Saatchi (Jet Propulsion Laboratory, California Institute of Technology) Global carbon cycle is the underlying force in regulating and changing the Earth Institute of Technology) 09:10 OCO2: The Orbiting Carbon Observatory-2, prospects for atmospheric CO2

  10. Conceptual approaches for incorporating climatic change into the development of forest management options for sequestering carbon

    Microsoft Academic Search

    GA King

    1993-01-01

    The potential for significant enviromental change over the next 100 years has resulted in efforts to develop mitigation options for reducing the rate of increase of carbon dioxide concentrations in the atmosphere. One of the more promising options is management of forest and agroforestry systems. However, most of the assessments of the potential of forest management options to sequester carbon

  11. Issues at the interface of disaster risk management and low-carbon development

    Microsoft Academic Search

    Frauke Urban; Tom Mitchell; Paula Silva Villanueva

    2011-01-01

    Effectively managing disaster risks is a critical tool for adapting to the impacts of climate change. However, climate change mitigation and low-carbon development have often been overlooked in disaster risk management (DRM) research, policy and practice. This article explores the links between DRM and low-carbon development and thereby sheds light on a new and emerging research and development agenda. Taking

  12. Carbon sequestration and rangelands: A synthesis of land management and precipitation effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of rangelands can aid in the mitigation of rising atmospheric CO2 concentrations via carbon storage in biomass and soil organic matter, a process termed carbon sequestration. Here we provide a review of current knowledge on the effects of land management practices (grazing, nitrogen input...

  13. A technology-based global inventory of black and organic carbon emissions from combustion

    NASA Astrophysics Data System (ADS)

    Bond, Tami C.; Streets, David G.; Yarber, Kristen F.; Nelson, Sibyl M.; Woo, Jung-Hun; Klimont, Zbigniew

    2004-07-01

    We present a global tabulation of black carbon (BC) and primary organic carbon (OC) particles emitted from combustion. We include emissions from fossil fuels, biofuels, open biomass burning, and burning of urban waste. Previous "bottom-up" inventories of black and organic carbon have assigned emission factors on the basis of fuel type and economic sector alone. Because emission rates are highly dependent on combustion practice, we consider combinations of fuel, combustion type, and emission controls and their prevalence on a regional basis. Central estimates of global annual emissions are 8.0 Tg for black carbon and 33.9 Tg for organic carbon. These estimates are lower than previously published estimates by 25-35%. The present inventory is based on 1996 fuel-use data, updating previous estimates that have relied on consumption data from 1984. An offset between decreased emission factors and increased energy use since the base year of the previous inventory prevents the difference between this work and previous inventories from being greater. The contributions of fossil fuel, biofuel, and open burning are estimated as 38%, 20%, and 42%, respectively, for BC, and 7%, 19%, and 74%, respectively, for OC. We present a bottom-up estimate of uncertainties in source strength by combining uncertainties in particulate matter emission factors, emission characterization, and fuel use. The total uncertainties are about a factor of 2, with uncertainty ranges of 4.3-22 Tg/yr for BC and 17-77 Tg/yr for OC. Low-technology combustion contributes greatly to both the emissions and the uncertainties. Advances in emission characterization for small residential, industrial, and mobile sources and top-down analysis combining field measurements and transport modeling with iterative inventory development will be required to reduce the uncertainties further.

  14. Managing the Future: Public Policy, Scientific Uncertainty, and Global Warming.

    ERIC Educational Resources Information Center

    Jamieson, Dale

    Due to the injection of carbon dioxide and various other gasses into the atmosphere, the world of the 21st century may well have a climate that is beyond the parameters of human existence. Physical science produces information regarding the physical effects of increasing concentrations of "greenhouse" gasses. Once this information is developed, it…

  15. Managing the Cost, Energy Consumption, and Carbon Footprint of Internet Services

    E-print Network

    Martonosi, Margaret

    Managing the Cost, Energy Consumption, and Carbon Footprint of Internet Services Kien Le , Ozlem electricity consumptions translate into large carbon footprints, since most of the electricity in the US such as government imposed Kyoto- style carbon limits. Extensive simulations and real experiments show that our

  16. The Effect of Land Use and Its Management Practices on Plant Nutrient Availability and Carbon Sequestration

    E-print Network

    Walter, M.Todd

    on soil degradation on both physical and chemical property of soil as well as on soil carbon sequestration availability and soil carbon sequestration in Bezawit Sub- Watershed, near Bahir Dar, Ethiopia. More The Effect of Land Use and Its Management Practices on Plant Nutrient Availability and Carbon

  17. What is the optimal heather moorland management regime for carbon sequestration?

    E-print Network

    Guo, Zaoyang

    What is the optimal heather moorland management regime for carbon sequestration? Supervisors: Prof, the Muirburn Code has no evidence base with regard to carbon sequestration. Given the increased concern use moorland carbon sequestration to offset emissions, it is essential that the most appropriate land

  18. Climate Change and the Cost of Carbon Sequestration: The Case of Forest Management

    Microsoft Academic Search

    Renan Ulrich Goetz; Natali Hritonenko; Ruben Mur; Àngels Xabadia; Yuri Yatsenko

    2008-01-01

    The Kyoto protocol allows Annex I countries to deduct carbon sequestered by land use, land-use change and forestry from their national carbon emissions. Thornley and Cannell (2000) demonstrated that the objectives of maximizing timber and carbon sequestration are not complementary. Based on this finding, this paper determines the optimal selective management regime taking into account the underlying biophysical and economic

  19. Carbon losses from soil and its consequences for land-use management

    Microsoft Academic Search

    Julian J. C. Dawson; Pete Smith

    2007-01-01

    This paper reviews our current knowledge and understanding of carbon processes in the terrestrial ecosystem with a view to reducing soil carbon losses by optimising land-use and land management. Processes that influence the fate of carbon (in both terms of quantity and quality) are important in determining soil fertility, quality and health as well as consequences for future environmental change

  20. Estimating Changes in Carbon Stocks and Greenhouse Gas Emissions in Sustainable Land Management Projects: Component A of the Carbon Benefits Project

    NASA Astrophysics Data System (ADS)

    Milne, Eleanor; Paustian, Keith; Easter, Mark; Batjes, Nico; Cerri, Carlos Ep; Kamoni, P.; Gicheru, P.; Oladipo, Eo; Alvaro Fuentes, Jorge; Stocking, M.

    2010-05-01

    Given the fact that human activities currently emit greenhouse gases (GHG) equivalent to over 50 billion tonnes of CO2 yr-1 and that approximately 30% come from land use and land use change, natural resource management (NRM) and sustainable land management (SLM) activities could have a large role to play in climate change mitigation. The types of land management activities covered by such projects vary widely and these activities have different C and GHG impacts. The Carbon Benefits Project (CBP) is working to produce a standardized system for Global Environmental Facility (GEF) and other sustainable land management (SLM) projects to measure, monitor and model carbon stock changes and greenhouse gas (GHG) emissions. These projects vary in size from tens of thousands to tens of kilometres squared. One of the challenges is, therefore, to produce a system that can be applied at a range of different scales including the plot, the watershed and the sub-regional scale. The CBP project builds on existing C-inventory tools, of different methodological complexity, developed over the past 15 years at Colorado State University. The CBP will produce a modular, web-based system which allows the user to collate, store, analyze, project and report net C stock changes and GHG emissions for baseline and project scenarios in SLM interventions. Existing SLM projects in Brazil, China, Kenya and the transboundary area between Niger and Nigeria are being used as test cases.