Note: This page contains sample records for the topic global carbon management from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Optimal Global Carbon Management with Ocean Sequestration  

Microsoft Academic Search

We investigate the socially optimal anthropogenic intervention into the global carbon cycle. The limiting factor for this intervention is the accumulation of carbon in the atmosphere, which causes global warming. We apply a simplified two-box model to incorporate aspects of the global carbon cycle in a more appropriate way than a simple proportional decay assumption does. Anthropogenic intervention into the

Wilfried Rickels; Thomas Lontzek

2008-01-01

2

Understanding and managing the global carbon cycle  

Microsoft Academic Search

Summary 1 Biological carbon sinks develop in mature ecosystems that have high carbon storage when these systems are stimulated to increase productivity, so that carbon gains by photosynthesis run ahead of carbon losses by heterotrophic respiration, and the stocks of carbon therefore increase. This stimulation may occur through elevated CO 2 con- centration, nitrogen deposition or by changes in climate.

John Grace

2004-01-01

3

The Century-Long Challenge of Global Carbon Management  

Microsoft Academic Search

The time scale of the global carbon management is a century, not a decade and not a millennium. A century is the ratio of 1000 billion metric tons of carbon [Gt(C)] to 10 Gt(C)\\/yr. 1000 Gt(C) is the future emissions that will lead to approximately a doubling of the pre-industrial atmospheric CO2 concentration, 280 ppm, assuming the total net ocean

R. Socolow

2002-01-01

4

Potential Carbon Flux from Timber Harvests and Management in the Context of a Global Timber Market  

Microsoft Academic Search

This paper presents carbon flux estimates arising from the effect of increasing demand on harvests and management of industrial forests in a global timber market. Results are presented for specific regions and the globe. Harvests and management of forests are predicted to store an additional 184 Tg (1 Tg = 1012 grams) of carbon per year in forests and wood

Brent Sohngen; Roger Sedjo

2000-01-01

5

Global climate change and carbon management in multifunctional forests  

Microsoft Academic Search

Fossil-fuel burning and deforestation have emerged as principal anthropogenic sources of rising atmospheric CO2 and consequential global warming. Variability in temperature, precipitation, snow cover, sea level and extreme weather events provide collateral evi- dence of global climate change. I review recent advances on causes and consequences of global climate change and its impact on nature and society. I also examine

Deep Narayan Pandey

6

CARBON MANAGEMENT, LAND USE AND GLOBAL CHANGE: FEEDBACKS AMONG CARBON, NUTRIENT AND WATER CYCLES  

Technology Transfer Automated Retrieval System (TEKTRAN)

The central grassland region of the U.S. is intensively managed for livestock and grain production, resulting in a matrix of rangelands, dryland cropping, and irrigated cropping. Each of these general classes of management has a different impact on carbon, nutrient, and water cycles, and the distrib...

7

Stabilization Wedges and the Management of Global Carbon for the Next 50 Years  

SciTech Connect

More than 40 years after receiving a Ph.D. in physics, I am still working on problems where conservation laws matter. In particular, for the problems I work on now, the conservation of the carbon atom matters. I will tell the saga of an annual flow of 8 billion tons of carbon associated with the global extraction of fossil fuels from underground. Until recently, it was taken for granted that virtually all of this carbon will move within weeks through engines of various kinds and then into the atmosphere. For compelling environmental reasons, I and many others are challenging this complacent view, asking whether the carbon might wisely be directed elsewhere. To frame this and similar discussions, Steve Pacala and I introduced the 'stabilization wedge' in 2004 as a useful unit for discussing climate stabilization. Updating the definition, a wedge is the reduction of CO2 emissions by one billion tons of carbon per year in 2057, achieved by any strategy generated as a result of deliberate attention to global carbon. Each strategy uses already commercialized technology, generally at much larger scale than today. Implementing seven wedges should enable the world to achieve the interim goal of emitting no more CO2 globally in 2057 than today. This would place humanity, approximately, on a path to stabilizing CO2 at less than double the pre-industrial concentration, and it would put those at the helm in the following 50 years in a position to drive CO2 emissions to a net of zero in the following 50 years. Arguably, the tasks of the two half-centuries are comparably difficult.

Socolow, Robert (Princeton University)

2007-04-18

8

ESTIMATING THE GLOBAL POTENTIAL OF FOREST AND AGROFOREST MANAGEMENT PRACTICES TO SEQUESTER CARBON  

EPA Science Inventory

Forests play a prominent role in the global C cycle. ccupying one-third of the earth's land area, forest vegetation nd soils contain about 60% of the total terrestrial C. Forest biomass productivity can be enhanced by management practices,, which suggests that by this means, fore...

9

C balance, carbon dioxide emissions and global warming potentials in LCA-modelling of waste management systems.  

PubMed

Global warming potential (GWP) is an important impact category in life-cycle-assessment modelling of waste management systems. However, accounting of biogenic CO(2) emissions and sequestered biogenic carbon in landfills and in soils, amended with compost, is carried out in different ways in reported studies. A simplified model of carbon flows is presented for the waste management system and the surrounding industries, represented by the pulp and paper manufacturing industry, the forestry industry and the energy industry. The model calculated the load of C to the atmosphere, under ideal conditions, for 14 different waste management scenarios under a range of system boundary conditions and a constant consumption of C-product (here assumed to be paper) and energy production within the combined system. Five sets of criteria for assigning GWP indices to waste management systems were applied to the same 14 scenarios and tested for their ability to rank the waste management alternatives reflecting the resulting CO(2) load to the atmosphere. Two complete criteria sets were identified yielding fully consistent results; one set considers biogenic CO(2) as neutral, the other one did not. The results showed that criteria for assigning global warming contributions are partly linked to the system boundary conditions. While the boundary to the paper industry and the energy industry usually is specified in LCA studies, the boundary to the forestry industry and the interaction between forestry and the energy industry should also be specified and accounted for. PMID:19423592

Christensen, Thomas H; Gentil, Emmanuel; Boldrin, Alessio; Larsen, Anna W; Weidema, Bo P; Hauschild, Michael

2009-05-07

10

Global Managers' Career Competencies  

ERIC Educational Resources Information Center

|Purpose: This study aims to empirically examine the career competencies of global managers having world-wide coordination responsibility: knowing-why, knowing-how and knowing-whom career competencies. Design/methodology/approach: Based on in-depth interviews with 45 global managers, the paper analyzes career stories from a content analysis…

Cappellen, Tineke; Janssens, Maddy

2008-01-01

11

Geoengineering and Carbon Management  

NASA Astrophysics Data System (ADS)

The term "geoengineering" was coined by Cesare Marchetti in the 1970's to describe a project that proposed to inject CO2 from electric generating plants into the deep ocean. The term has since been used to discuss a variety of projects that would involve purposeful, large-scale manipulation of the environment---primarily projects with the intent of mitigating anthropogenic changes in climate. Many activities that we now discuss under the title of "carbon management" have been previously identified as geoengineering. The term geoengineering is also used to describe possibilities for engineering the Earth's climate through large-scale manipulation of the energy balance, for example through manipulating the Earth's albedo. Studies are now showing more clearly that these two components, once treated separately under broad heading of "geoengineering", are linked. That is, for example, managing carbon through protecting or planting forests is also to manage the Earth's surface albedo and surface energy balance. Likewise, manipulating the albedo will alter the global carbon cycle. In this paper we discuss the evolution of the idea of geoengineering, summarizing the history of these technologies, and demonstrating how geoengineering includes, links, and melds with carbon management.

Marland, G.

2002-05-01

12

Sustainable management of the global carbon cycle through geostorage of wood.  

PubMed

Combustion of fossil energy sources has caused the carbon inventory of the atmosphere to increase by more than 200 Gt. It will be almost impossible to prevent it from growing by at least another 400 Gt in the present century. Theoretically, there exists only one single possibility to effect a decline of the resultant increase in atmospheric CO(2) concentration: the excess carbon has to be removed from the carbon cycle by transferring it into an environment in which it is safe from oxidation, just as is the case for the deposits of fossil fuels. Only natural photosynthesis offers the possibility of efficiently fixing carbon dioxide from the air and removing it from the carbon cycle through geostorage of the resulting biomass. The present paper shows, in the context of an initial feasibility study, that the use of forests and the geostorage of wood in an environment corresponding to lignite deposits represents the ecologically most sensible and economical variant of removal of carbon from the carbon cycle and, thereby, reclamation of the atmosphere. PMID:19554607

Kreysa, Gerhard

2009-06-24

13

Balancing the Global Carbon Budget  

NASA Astrophysics Data System (ADS)

The global carbon budget is, of course, balanced. The conservation of carbon and the first law of thermodynamics are intact. "Balancing the carbon budget" refers to the state of the science in evaluating the terms of the global carbon equation. The annual increases in the amount of carbon in the atmosphere, oceans, and land should balance the emissions of carbon from fossil fuels and deforestation. Balancing the carbon budget is not the real issue, however. The real issue is understanding the processes responsible for net sources and sinks of carbon. Such understanding should lead to more accurate predictions of future concentrations of CO2 and more accurate predictions of the rate and extent of climatic change. The recent past may be insufficient for prediction, however. Oceanic and terrestrial sinks that have lessened the rate of growth in atmospheric CO2 until now may diminish as feedbacks between the carbon cycle and climate become more prominent.

Houghton, R. A.

2007-05-01

14

Methane, carbon dioxide and nitrous oxide fluxes from a temperate salt marsh: Grazing management does not alter Global Warming Potential  

NASA Astrophysics Data System (ADS)

Soil greenhouse gas emissions from cattle grazed and un-grazed temperate upper salt marsh were measured using dark static chambers, monthly for one year. Below-ground gas sampling tubes were also used to measure soil methane (CH4) concentrations. CH4 efflux from grazed and un-grazed salt marsh did not differ significantly although grazing did lead to 'hotspots' of underground CH4 (up to 6% of total air volume) and CH4 efflux (peak of 9 mg m-2 h-1) significantly linked to high soil moisture content, low soil temperatures and the presence of Juncus gerardii. Carbon dioxide (CO2) efflux was greater from the un-grazed marsh (mean of 420 mg m-2 h-1) than the grazed marsh (mean of 333 mg m-2 h-1) throughout most of the year and was positively correlated with the deeper water table and greater soil temperatures. Grazing was not a significant predictor of nitrous oxide (N2O) soil emissions. Global Warming Potential (GWP; over 100 years), calculated from mean yearly chamber fluxes for CH4 and CO2, did not differ significantly with grazing treatment. Seasonal variation in the key drivers of soil greenhouse gas efflux; soil temperature, moisture and water table, plus the presence or absence of aerenchymatous plants such as J. gerardii were more important to the magnitude of greenhouse gas emissions than grazing management per se.

Ford, Hilary; Garbutt, Angus; Jones, Laurence; Jones, Davey L.

2012-11-01

15

Final Report for ''SOURCES AND SINKS OF CARBON FROM LAND-USE CHANGE AND MANAGEMENT: A GLOBAL SYNTHESIS'' Project Period September 15, 2001--September 14, 2003  

SciTech Connect

Land management and land-use change can either release carbon (as CO{sub 2}) to the atmosphere, for example when forests are converted to agricultural lands, or withdraw carbon from the atmosphere as forests grow on cleared lands or as management practices sequester carbon in soil. The purpose of this work was to calculate the annual sources and sinks of carbon from changes in land use and management, globally and for nine world regions, over the period 1850 to 2000. The approach had three components. First, rates of land-use change were reconstructed from historical information on the areas of croplands, pastures, forests, and other lands and from data on wood harvests. In most regions, land-use change included the conversion of natural ecosystems to cultivated lands and pastures, including shifting cultivation, harvest of wood (for timber and fuel), and the establishment of tree plantations. In the U.S., woody encroachment and woodland thickening as a result of fire suppression were also included. Second, the amount of carbon per hectare in vegetation and soils and changes in that carbon as a result of land-use change were determined from data obtained in the ecological and forestry literature. These data on land-use change and carbon stocks were then used in a bookkeeping model (third component) to calculate regional and global changes in terrestrial carbon. The results indicate that for the period 1850-2000 the net flux of carbon from changes in land use was 156 PgC. For comparison, emissions of carbon from combustion of fossil fuels were approximately 280 PgC during the same interval. Annual emissions from land-use change exceeded emissions from fossil fuels before about 1920. Somewhat more that half (60%) of the long-term flux was from the tropics. Average annual fluxes during the 1980s and 1990s were 2.0 and 2.2 ({+-}0.8) PgC yr{sup -1} (30-40% of fossil fuel emissions), respectively. In these decades, the global sources of carbon were almost entirely from the tropics. Outside the tropics, the average net flux of carbon attributable to land-use change and management decreased from a source of 0.06 PgC yr{sup -1} during the 1980s to a sink of 0.03 PgC yr{sup -1} during the 1990s. According to these analyses, changes in land use were responsible for sinks in North America and Europe and for small sources in other non-tropical regions.

Houghton, R.A.

2003-12-12

16

Wildland Soil Carbon Management  

NASA Astrophysics Data System (ADS)

In the era of climate change, traditional wildland management practices have come into question, especially with respect to their impact on soil carbon sequestration. Over half of the land area of the United States and Puerto Rico is either in forest or grassland ecosystems, i.e. 302 million hectares of forested lands and 247 million hectares of grasslands and pasture lands. Forested lands hold approximately 35.5 Pg of soil carbon to a depth of 100cm. Private grasslands hold approximately 21 Pg of soil carbon to a depth of 200cm. The difficulty of managing for carbon sequestration becomes more evident when one surveys the variety of complex ecosystems being managed. This presentation highlights implications for wildland management for promoting soil carbon sequestration for sustaining forest and grassland ecosystems in the United States. We will address key considerations, strategies, and opportunities to incorporate soil carbon management into wildland management. Examples of vegetation management influence on soil carbon will be discussed including fire, soil amendments and best management practices for maintaining and/or improving soil carbon sequestration. The USDA Forest Service has established a soil management policy that seeks to conserve soil quality and protect soil carbon on National Forest System lands. Aspects of this national policy will also be presented.

Davis, R. L.; Swanston, C.

2009-12-01

17

Towards an Autonomous Global Ocean Carbon Observatory  

Microsoft Academic Search

The ocean is by far the largest carbon reservoir in rapid communication with the atmosphere. Understanding both ocean carbon chemistry and ocean carbon biology are critical for carbon prediction. Marine carbon biomass accounts for roughly 50% of global carbon photosynthesis and a ~10 Pg C\\/year particulate carbon flux through 100 m into the deep sea. The latter export is commonly

J. K. Bishop

2007-01-01

18

Global Project Management: Graduate Course.  

National Technical Information Service (NTIS)

This thesis presents an introduction to Global Project Management in the form of a graduate course for the University of Maryland, A. James Clark School of Engineering - Project Management Program. The course slides and suggested readings provide a genera...

T. R. Beranek

2006-01-01

19

Global Information Technology Management  

Microsoft Academic Search

Globalization is the perception of the world as one big market place. The notion of the boundariless world is expected to produce dramatic changes in key markets, major competitors, and Information Tech- nology products. As a result, organizations are encouraged to rise above the national boundaries and change their orientation to global corporations. Further, the increased spending in Global Information

Sudesh M. Duggal

2002-01-01

20

Global deforestation: contribution to atmospheric carbon dioxide  

SciTech Connect

A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1960 and 1980 was between 135 X 10/sup 15/ and 228 X 10/sup 15/ grams. Between 1.8 X 10/sup 15/ and 4.7 X 10/sup 15/ grams of carbon were released in 1980, of which nearly 80 percent was due to deforestation, principally in the tropics. The annual release of carbon from the biota and soils exceeded the release from fossil fuels until about 1960. Because the biotic release has been and remains much larger than is commonly assumed, the airborne fraction, usually considered to be about 50 percent of the releases from fossil fuels, was probably between 22 and 43 percent of the total carbon released in 1980. The increase in carbon dioxide in the atmosphere is thought by some to be increasing the storage of carbon in the earth's remaining forests sufficiently to offset the release from deforestation. The interpretation of the evidence presented here suggests no such effect; deforestation appears to be the dominant biotic effect on atmospheric carbon dioxide. If deforestation increases in proportion to population, the biotic release of carbon will reach 9 X 10/sup 15/ grams per year before forests are exhausted early in the next century. The possibilities for limiting the accumulation of carbon dioxide in the atmosphere through reduction in use of fossil fuels and through management of forests may be greater than is commonly assumed.

Woodwell, G.M.; Hobbie, J.E.; Houghton, R.A.; Melillo, J.M.; Moore, B.; Peterson, B.J.; Shaver, G.R.

1983-12-09

21

Global energy and carbon dioxide  

SciTech Connect

The relationship between increasing CO/sub 2/ concentrations in the atmosphere and possible major geophysical and biospheric consequences--the so-called greenhouse issue--has been a question of growing popular and scientific concern. The combustion of fossil fuels is currently the major source term in the atmospheric carbon cycle. This link between energy combustion and carbon concentrations means that most CO/sub 2/ questions of interest to policymakers require the ability to say something about future rates of energy use and the fuel mix. The rapid mixing of CO/sub 2/ in the atmosphere requires that the energy analysis be global. Finally, the cumulative and, to the large extent, irreversible nature of the problem requires a long-term perspective. As with any projection, there are inherent uncertainties; but the very long-term nature of the CO/sub 2/ issue make uncertainty a dominant consideration.

Reilly, J.; Edmonds, J.

1985-01-01

22

Global Logistics Management.  

National Technical Information Service (NTIS)

The Defense Business Board (hereafter referred to as the Board ) provides recommendations to the Department of Defense's (DoD) senior management on improving DoD's management policies and practices to maximize operational effectiveness and efficiency. In ...

2011-01-01

23

Managing the Global Environment.  

National Technical Information Service (NTIS)

This document consists of a bibliography on the following topics: Environmental issues and problems; Politics and economics of the environment; Managing the environment -- Past practice; Present and future efforts. Keywords: Environmental protection; Envi...

F. K. Scott L. C. Bassetti S. E. Neufeld

1990-01-01

24

What is a global manager?  

PubMed

Riven by ideology, religion, and mistrust, the world seems more fragmented than at any time since, arguably, World War II. But however deep the political divisions, business operations continue to span the globe, and executives still have to figure out how to run them efficiently and well. In "What Is a Global Manager?" (first published in September-October 1992), business professors Christopher Bartlett and Sumantra Ghoshal lay out a model for a management structure that balances the local, regional, and global demands placed on companies operating across the world's many borders. In the volatile world of transnational corporations, there is no such thing as a "universal" global manager, the authors say. Rather, there are three groups of specialists: business managers, country managers, and functional managers. And there are the top executives at corporate headquarters who manage the complex interactions between the three--and can identify and develop the talented executives a successful transnational requires. This kind of organizational structure characterizes a transnational rather than an old-line multinational, international, or global company. Transnationals integrate assets, resources, and diverse people in operating units around the world. Through a flexible management process, in which business, country, and functional managers form a triad of different perspectives that balance one another, transnational companies can build three strategic capabilities: global-scale efficiency and competitiveness; national-level responsiveness and flexibility; and cross-market capacity to leverage learning on a worldwide basis. Through a close look at the successful careers of Leif Johansson of Electrolux, Howard Gottlieb of NEC, and Wahib Zaki of Procter & Gamble, the authors illustrate the skills that each managerial specialist requires. PMID:12884670

Bartlett, Christopher A; Ghoshal, Sumantra

2003-08-01

25

Assessing geochemical carbon management  

Microsoft Academic Search

The challenge of reversing rising atmospheric CO2 concentrations is growing with the continued expansion of CO2-emitting energy infrastructure throughout the world and with the lack of coordinated, effective measures to manage and reduce\\u000a emissions. Given this situation, it is prudent for society to explore all potential carbon management options, including those\\u000a with seemingly low probability for success. Recent initiatives for

Jennie C. Stephens; David W. Keith

2008-01-01

26

Carbon Budget and Carbonate Saturation in Global Paleo-ocean  

Microsoft Academic Search

The relationships between the global carbon cycle and paleo-climates on short and long time scales have been based on studies of accumulation rate of different components of the sedimentary carbon reservoir, as well as reconstructions of the geographic distributions of carbon burial. Variations in the rate and proportion of carbonate burial through Phanerozoic time have been attributed to the influence

R. E. Locklair; A. Lerman

2002-01-01

27

Global trends in mercury management.  

PubMed

The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

Kim, Dae-Seon; Choi, Kyunghee

2012-11-29

28

Global Trends in Mercury Management  

PubMed Central

The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health.

Choi, Kyunghee

2012-01-01

29

Globally Stored Organic Carbon and Radiocarbon Dates  

Microsoft Academic Search

dates of variations in the amount of carbon stored globally as organic material that origi- nated in the biosphere. Using new measure- ments of global evolution of COfrom the decay of stored organic carbon, we find that the short-term 'wiggles' (Suess, 1970) in the amount of radiocarbon in tree rings, of an am- plitude of about 100 years peak to

Leona Marshall Libby

1973-01-01

30

Global Carbon Cycle and Climate Change  

Microsoft Academic Search

Kirill Kondratyev and his colleagues present an unusual look at global change issues, with particular emphasis on quantitative models that can capture diverse aspects of the complete Earth system-vegetation, atmosphere, oceans, and human beings. The focus is on the global carbon cycle as a prime indicator of global environmental stresses. It includes some remarkably sharp, and insightful critical analysis of

Steven C. Wofsy

2004-01-01

31

Monitoring Global Ocean Carbon Inventories.  

National Technical Information Service (NTIS)

Contents: Foreword by OOSDP chairman; Preface by Author; Significance of a Changing Oceanic Carbon Inventory; The Case for Monitoring Ocean Carbon Inventories; Ocean Carbon Monitoring Approaches (Air-Sea Fluxes, CO(sub 2) Transport within the Ocean, Inven...

D. W. R. Wallace

1995-01-01

32

Authigenic Carbonate and the History of the Global Carbon Cycle  

NASA Astrophysics Data System (ADS)

We present a framework for interpreting the carbon isotopic composition of sedimentary rocks, which in turn requires a fundamental reinterpretation of the carbon cycle and redox budgets over Earth's history. We propose that authigenic carbonate, produced in sediment pore fluids during early diagenesis, has played a major role in the carbon cycle in the past. This sink constitutes a minor component of the carbon isotope mass balance under the modern, high levels of atmospheric oxygen but was much larger in times of low atmospheric O2 or widespread marine anoxia. Waxing and waning of a global authigenic carbonate sink helps to explain extreme carbon isotope variations in the Proterozoic, Paleozoic, and Triassic.

Schrag, Daniel P.; Higgins, John. A.; Macdonald, Francis A.; Johnston, David T.

2013-02-01

33

Ecological controls over global soil carbon storage  

SciTech Connect

Globally, soil carbon comprises about 2/3 of terrestrial carbon storage. Soil carbon is thus an important reservoir of carbon, but also influences the responses of ecosystems to change by controlling many aspects of nutrient cycling. While broad-scale patterns of soil carbon accumulation can be explained in terms of climatic and biome distributions, many ecological processes also influence the storage and turnover of carbon in soils. I will present a synthesis of information from field studies, model experiments and global data bases on factors controlling the turnover and storage of soil carbon. First, I will review a series of studies showing links between vegetation change (successional and invasions) and soil carbon. Then I will review model analyses of the sensitivity of soil carbon to climatic and ecological changes. Results show that soil carbon storage is broadly sensitive to climate but greatly influenced by the allocation of detritus between resistant (lignaceous and woody) and more labile forms, and that biotic changes that affect allocation, affect soil carbon substantially at regionally and perhaps global scales.

Schimel, D.S. [National Center for Atmospheric Research, Boulder, CO (United States)

1995-09-01

34

Soil carbon: Microbes and global carbon  

NASA Astrophysics Data System (ADS)

The amount of organic material that microbes assimilate into their biomass is critical in regulating whether soils, the planet's main pool of organic matter, will absorb or emit carbon in a warmer world.

Schimel, Joshua

2013-10-01

35

Ouverture de 'Management Consulting and Global Markets'  

Microsoft Academic Search

In the last years, dominated by the new reality of the global markets, the traditional vision of corporate management has recorded many changes, that also change the role and the organizational structures of management consulting firms. Corporations operating in global markets have very diversified needs of management consulting. The new global markets generate a depth renewal in the services offered

Silvio M. Brondoni; Francesco Ciampi; Antonella Negri Clementi

2007-01-01

36

Global deforestation: contribution to atmospheric carbon dioxide  

Microsoft Academic Search

A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1960 and 1980 was between 135 X 10¹⁵ and 228 X 10¹⁵ grams. Between 1.8 X 10¹⁵ and 4.7 X 10¹⁵ grams of carbon were released in 1980, of which nearly

G. M. Woodwell; J. E. Hobbie; R. A. Houghton; J. M. Melillo; B. Moore; B. J. Peterson; G. R. Shaver

1983-01-01

37

Global management competencies: a theoretical foundation  

Microsoft Academic Search

Purpose – This paper aims to contribute to the understanding of the concept of “global management competencies”. Design\\/methodology\\/approach – An extensive review of most of the relevant literature on global management competencies was done. By investigating four constructs, i.e. the global mindset, cross-cultural competence, intercultural sensitivity and cultural intelligence, all related to “global management competencies” the authors made an in-depth

Joost Bücker; Erik Poutsma

2010-01-01

38

Carbon pools and flux of global forest ecosystems  

SciTech Connect

Forest systems cover more than 4.1 x 10(9) hectares of the Earth's land area. Globally, forest vegetation and soils contain about 1146 petagrams of carbon, with approximately 37 percent of this carbon in low-latitude forests, 14 percent in mid-latitudes, and 49 percent in high latitudes. Over two-thirds of the carbon in forest ecosystems is contained in soils and associated peat deposits. In 1990, deforestation in the low latitudes emitted 1.6 + or - 0.4 petagrams of carbon per year, whereas forest area expansion and growth in mid- and high-latitude forest sequestered 0.7 + or - 0.2 petagrams of carbon per year, for a net flux to the atmosphere of 0.9 + or - 0.4 petagrams per year. Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon.

Dixon, R.K.; Brown, S.; Houghton, R.A.; Solomon, A.M.; Trexler, M.C.

1994-01-01

39

Carbon dioxide and global change  

SciTech Connect

This book presents an analysis and review of the many potential consequences of the rapidly rising CO{sub 2} content of Earth's atmosphere. Covering both the physical (climatic) and biological effects of atmospheric CO{sub 2} enrichment, the book presents an overview of the interrelated aspects of this complex and demanding subject. Focus is on the search for evidence of global warming (the highly speculative climatic greenhouse effect) and global vegetative stimulation (the well established biological greenhouse effect). The pros and cons of all issues related to these phenomena are discussed. The author's estimate of where the world is headed as a result of mankind's great geophysical experiments is offered.

Idso, S.B. (Arizona State Univ. (US))

1989-01-01

40

Carbon pools and flux of global forest ecosystems  

SciTech Connect

Forest systems cover more than 4.1 x 10[sup 9] hectares of the Earth's land area. Globally, forest vegetation and soils contain about 1146 petagrams of carbon, with approximately 37 percent of this carbon in low-latitude forests, 14 percent in mid-latitudes, and 49 percent at high latitudes. Over two-thirds of the carbon in forest ecosystems is contained in soils and associated peat deposits. In 1990, deforestation in the low latitudes emitted 1.6 [+-] 0.4 petagrams of carbon per year, whereas forest area expansion and growth in mid- and high-latitude forest sequestered 0.7 [+-] 0.2 petagrams of carbon per year, for a net flux to the atmosphere of 0.9 [+-] 0.4 petagrams of carbon per year. Slowing deforestation, combined with an increase in forestation and other management measures to improve forest ecosystem productivity, could conserve or sequester significant quantities of carbon. Future forest carbon cycling trends attributable to losses and regrowth associated with global climate and land-use change are uncertain. Model projections and some results suggest that forests could be carbon sinks or sources in the future.

Dixon, R.K.; Solomon, A.M. (Global Change Research Program, Corvallis, OR (United States)); Brown, S. (Univ. of Illinois, Urbana, IL (United States)); Houghton, R.A. (Woods Hole Research Center, MA (United States)); Trexler, M.C. (Trexler and Associates, Inc., Oak Grove, OR (United States)); Wisniewski, J. (Wisniewski and Associates, Inc., Falls Church, VA (United States))

1994-01-14

41

Managing communication in global product development teams  

Microsoft Academic Search

Global new product development teams (GNPDTs) are becoming more and more prevalent due to the growing need for companies to compete in a global economy. Managing communication in global NPD teams effectively requires sensitivity to the uniqueness of global NPD, the capabilities of multiple types of communication mechanisms and an understanding of which of these mechanisms best meets a team's

Edward F. McDonough; Kenneth B. Kahn; Abbie Griffin

1999-01-01

42

Authigenic carbonate and the history of the global carbon cycle.  

PubMed

We present a framework for interpreting the carbon isotopic composition of sedimentary rocks, which in turn requires a fundamental reinterpretation of the carbon cycle and redox budgets over Earth's history. We propose that authigenic carbonate, produced in sediment pore fluids during early diagenesis, has played a major role in the carbon cycle in the past. This sink constitutes a minor component of the carbon isotope mass balance under the modern, high levels of atmospheric oxygen but was much larger in times of low atmospheric O(2) or widespread marine anoxia. Waxing and waning of a global authigenic carbonate sink helps to explain extreme carbon isotope variations in the Proterozoic, Paleozoic, and Triassic. PMID:23372007

Schrag, Daniel P; Higgins, John A; Macdonald, Francis A; Johnston, David T

2013-02-01

43

Impact of carbon storage through restoration of drylands on the global carbon cycle  

SciTech Connect

The authors evaluate the potential for global carbon storage in drylands as one of several policy options to reduce buildup of carbon dioxide in the atmosphere. They use the GLOCO model, a global carbon cycle model with eight terrestrial biomes that are described mechanistically in detail in terms of the biological processes that involve carbon and nitrogen cycling and the effect of temperature on these processes. GLOCO also considers low-latitude and high-latitude oceans, each divided further into a surface layer and several deeper layers, with an explicit description of biogeochemical processes occurring in each layer, and exchanges among ocean reservoirs and the atmosphere. GLOCO is used to study the transient response of actual vegetation, which is more realistic than looking at equilibrium conditions of potential vegetation. Using estimates of land suitable for restoration in woodlands, grasslands, and deserts, as well as estimates of the rate at which restoration can proceed, the authors estimate that carbon storage in these biomes can range up to 0.8 billion tons of carbon per year for a combination of land management strategies. A global strategy for reducing atmospheric carbon dioxide concentration will require the implementation of multiple options. The advantage of carbon storage in restored drylands is that it comes as a side benefit to programs that are also justifiable in terms of land management.

Keller, A.A. [Univ. of California, Santa Barbara, CA (United States). School of Environmental Science and Management; Goldstein, R.A. [Electric Power Research Inst., Palo Alto, CA (United States)

1998-09-01

44

Strategic Global Human Resource Management: The Role of Inpatriate Managers  

Microsoft Academic Search

The need for highly qualified multicultural managers will increase as more organizations globalize their operations. These global managers may be perceived as organizational resources and, therefore, a resource-based view of human resource management is utilized. At the same time, relational view of human capital provides insight into the value of managers who have unique local market knowledge (i.e., social knowledge).

Michael G Harvey; Cheri Speier; Milorad M Novicevic

2000-01-01

45

Global energy and carbon dioxide  

SciTech Connect

The literature on energy and carbon dioxide (CO/sub 2/) emissions is reviewed and a brief overview of recent work using the IEA/ORAU long-term energy CO/sub 2/ model is given. It was designed to provide forecasts of carbon emissions explicitly based to energy and economic factors. Recent work has focused on developing three emissions scenarios; the extreme scenarios are presented as bracketing the range of likely future emissions rates. Ongoing work will use Monte Carlo techniques to assess uncertainty in future forecasts and attribute uncertainty to uncertainty in model assumptions and parameters. The paper concludes that the model and scenario construction exercises should serve to complement decisionmaking and interaction among scientists and policymakers.

Reilly, J.; Edmonds, J.

1984-08-26

46

Biogeochemical carbon coupling influences global precipitation in geoengineering experiments  

NASA Astrophysics Data System (ADS)

Abstract Climate model studies in which CO2-induced <span class="hlt">global</span> warming is offset by engineered decreases of incoming solar radiation are generally robust in their prediction of reduced amounts of <span class="hlt">global</span> precipitation. While this precipitation response has been explained on the basis of changes in net radiation controlling evaporative processes at the surface, there has been relatively little consideration of the relative role of biogeochemical <span class="hlt">carbon</span>-cycle interactions. To address this issue, we employ an Earth System Model that includes oceanic and terrestrial <span class="hlt">carbon</span> components to isolate the impact of biogeochemical <span class="hlt">carbon</span> coupling on the precipitation response in geoengineering experiments for two types of solar radiation <span class="hlt">management</span>. We show that <span class="hlt">carbon</span> coupling is responsible for a large fraction of the <span class="hlt">global</span> precipitation reduction in such geoengineering experiments and that the primary effect comes from reduced transpiration through the leaves of plants and trees in the terrestrial component of the <span class="hlt">carbon</span> cycle due to elevated CO2. Our results suggest that biogeochemical interactions are as important as changes in net radiation and that climate models that do not account for such <span class="hlt">carbon</span> coupling may significantly underestimate precipitation reductions in a geoengineered world.</p> <div class="credits"> <p class="dwt_author">Fyfe, J. C.; Cole, J. N. S.; Arora, V. K.; Scinocca, J. F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">47</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/35157506"> <span id="translatedtitle"><span class="hlt">Carbon</span> dioxide emissions and <span class="hlt">global</span> GDP</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A positive relationship between <span class="hlt">carbon</span> dioxide emissions, the most important greenhouse gas (GHG) implicated in <span class="hlt">global</span> warming, and GDP is shown in this paper, examining per capita income and CO2 emissions of 137 countries across 21 years. It also appears that as per capita incomes accelerate across countries emissions increases, for the most part, tend to decelerate. It could be</p> <div class="credits"> <p class="dwt_author">Michael Tucker</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">48</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23074868"> <span id="translatedtitle">10 rules for <span class="hlt">managing</span> <span class="hlt">global</span> innovation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">More and more companies recognize that their dispersed, <span class="hlt">global</span> operations are a treasure trove of ideas and capabilities for innovation. But it's proving harder than expected to unearth those ideas or exploit those capabilities. Part of the problem is that companies <span class="hlt">manage</span> <span class="hlt">global</span> innovation the same way they <span class="hlt">manage</span> traditional, single-location projects. Single-location projects draw on a large reservoir of tacit knowledge, shared context, and trust that <span class="hlt">global</span> projects lack. The <span class="hlt">management</span> challenge, therefore, is to replicate the positive aspects of colocation while harnessing the opportunities of dispersion. In this article, Insead's Wilson and Doz draw on research into <span class="hlt">global</span> strategy and innovation to present a set of guidelines for setting up and <span class="hlt">managing</span> <span class="hlt">global</span> innovation. They explore in detail the challenges that make <span class="hlt">global</span> projects inherently different and show how these can be overcome by applying superior project <span class="hlt">management</span> skills across teams, fostering a strong collaborative culture, and using a robust array of communications tools. PMID:23074868</p> <div class="credits"> <p class="dwt_author">Wilson, Keeley; Doz, Yves L</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">49</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB92102607"> <span id="translatedtitle"><span class="hlt">Managing</span> <span class="hlt">Global</span> Genetic Resources: Forest Trees.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The Work Group on Plant Genetic Resources of the Committee on <span class="hlt">Managing</span> <span class="hlt">Global</span> Genetic Resources: Agricultural Imperatives examined the <span class="hlt">management</span> of forest trees from which harvested materials are currently extracted. It was charged with assessing the use...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">50</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6667464"> <span id="translatedtitle">The <span class="hlt">global</span> <span class="hlt">carbon</span> dioxide budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The increase in atmospheric CO[sub 2] levels during the last deglaciation was comparable in magnitude to the recent historical increase. However, <span class="hlt">global</span> CO[sub 2] budgets for these changes reflect fundamental differences in rates and in sources and sinks. The modern oceans are a rapid net CO[sub 2] sink, whereas the oceans were a gradual source during the deglaciation. Unidentified terrestrial CO[sub 2] sinks are important uncertainties in both the deglacial and recent CO[sub 2] budgets. The deglacial CO[sub 2] budget represents a complexity of long-term dynamic behavior that is not adequately addressed by current models used to forecast future atmospheric CO[sub 2] levels.</p> <div class="credits"> <p class="dwt_author">Sundquist, E.T. (Geological Survey, Woods Hole, MA (United States))</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-02-12</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">51</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003APS..APR.R3001S"> <span id="translatedtitle">Energy Equals <span class="hlt">Managing</span> <span class="hlt">Carbon</span> Cleanly</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Almost 40 years after receiving a Ph.D. in physics, I am still working on problems where conservation laws matter. In particular, for the problems I work on now, the conservation of the <span class="hlt">carbon</span> atom matters. I will tell the saga of an annual flow of 6 billion tons of <span class="hlt">carbon</span> associated with the <span class="hlt">global</span> extraction of fossil fuels from underground. Until recently, it was taken for granted that virtually all of this <span class="hlt">carbon</span> will move within weeks through engines of various kinds and then into the atmosphere. For compelling environmental reasons, I and many others are challenging this complacent view, asking whether the <span class="hlt">carbon</span> might wisely be directed elsewhere.</p> <div class="credits"> <p class="dwt_author">Socolow, Robert</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">52</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/36797088"> <span id="translatedtitle"><span class="hlt">Globalization</span> Implications for Human Resource <span class="hlt">Management</span> Roles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Globalization</span> influences organizations that compete for customers with high expectations for performance, quality, and cost.\\u000a <span class="hlt">Globalization</span> also exerts pressure on the Human Resource <span class="hlt">Management</span> (HRM) function to adapt to changing organizational needs\\u000a and add greater value. This paper first reviews <span class="hlt">global</span> trends, HRM roles, and the implications of <span class="hlt">globalization</span> and culture\\u000a for HRM. Using Ulrich’s (Human resource champions: The new</p> <div class="credits"> <p class="dwt_author">Barry A. Friedman</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">53</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=31829"> <span id="translatedtitle"><span class="hlt">Global</span> biodiversity and the ancient <span class="hlt">carbon</span> cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Paleontological data for the diversity of marine animals and land plants are shown to correlate significantly with a concurrent measure of stable <span class="hlt">carbon</span> isotope fractionation for approximately the last 400 million years. The correlations can be deduced from the assumption that increasing plant diversity led to increasing chemical weathering of rocks and therefore an increasing flux of <span class="hlt">carbon</span> from the atmosphere to rocks, and nutrients from the continents to the oceans. The CO2 concentration dependence of photosynthetic <span class="hlt">carbon</span> isotope fractionation then indicates that the diversification of land plants led to decreasing CO2 levels, while the diversification of marine animals derived from increasing nutrient availability. Under the explicit assumption that <span class="hlt">global</span> biodiversity grows with <span class="hlt">global</span> biomass, the conservation of <span class="hlt">carbon</span> shows that the long-term fluctuations of CO2 levels were dominated by complementary changes in the biological and fluid reservoirs of <span class="hlt">carbon</span>, while the much larger geological reservoir remained relatively constant in size. As a consequence, the paleontological record of biodiversity provides an indirect estimate of the fluctuations of ancient CO2 levels.</p> <div class="credits"> <p class="dwt_author">Rothman, Daniel H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">54</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/11296281"> <span id="translatedtitle"><span class="hlt">Global</span> biodiversity and the ancient <span class="hlt">carbon</span> cycle.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Paleontological data for the diversity of marine animals and land plants are shown to correlate significantly with a concurrent measure of stable <span class="hlt">carbon</span> isotope fractionation for approximately the last 400 million years. The correlations can be deduced from the assumption that increasing plant diversity led to increasing chemical weathering of rocks and therefore an increasing flux of <span class="hlt">carbon</span> from the atmosphere to rocks, and nutrients from the continents to the oceans. The CO(2) concentration dependence of photosynthetic <span class="hlt">carbon</span> isotope fractionation then indicates that the diversification of land plants led to decreasing CO(2) levels, while the diversification of marine animals derived from increasing nutrient availability. Under the explicit assumption that <span class="hlt">global</span> biodiversity grows with <span class="hlt">global</span> biomass, the conservation of <span class="hlt">carbon</span> shows that the long-term fluctuations of CO(2) levels were dominated by complementary changes in the biological and fluid reservoirs of <span class="hlt">carbon</span>, while the much larger geological reservoir remained relatively constant in size. As a consequence, the paleontological record of biodiversity provides an indirect estimate of the fluctuations of ancient CO(2) levels. PMID:11296281</p> <div class="credits"> <p class="dwt_author">Rothman, D H</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-04-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">55</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2001AGUSM...B21A01R"> <span id="translatedtitle"><span class="hlt">Global</span> Biodiversity and the Ancient <span class="hlt">Carbon</span> Cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Paleontological data for the diversity of marine animals and land plants are shown to correlate significantly with a concurrent measure of stable <span class="hlt">carbon</span> isotope fractionation for approximately the last 400 million years. The correlations can be deduced from the assumption that increasing plant diversity led to increasing chemical weathering of rocks, and therefore an increasing flux of <span class="hlt">carbon</span> from the atmosphere to rocks, and nutrients from the continents to the oceans. The CO2 concentration dependence of photosynthetic <span class="hlt">carbon</span> isotope fractionation then indicates that the diversification of land plants led to decreasing CO2 levels, while the diversification of marine animals derived from increasing nutrient availability. Under the explicit assumption that <span class="hlt">global</span> biodiversity grows with <span class="hlt">global</span> biomass, the conservation of <span class="hlt">carbon</span> shows that the long-term fluctuations of CO2 levels were dominated by complementary changes in the biological and fluid reservoirs of <span class="hlt">carbon</span> while the much larger geological reservoir remained relatively constant in size. As a consequence, the paleontological record of biodiversity provides an indirect estimate of the fluctuations of ancient CO2 levels.</p> <div class="credits"> <p class="dwt_author">Rothman, D. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">56</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/415577"> <span id="translatedtitle">Tropical deforestation and the <span class="hlt">global</span> <span class="hlt">carbon</span> budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The CO{sub 2} concentration of the atmosphere has increased by almost 30% since 1800. This increase is due largely to two factors: the combustion of fossil fuel and deforestation to create croplands and pastures. Deforestation results in a net flux of <span class="hlt">carbon</span> to the atmospheric because forests contain 20--50 times more <span class="hlt">carbon</span> per unit area than agricultural lands. In recent decades, the tropics have been the primary region of deforestation.The annual rate of CO{sub 2} released due to tropical deforestation during the early 1990s has been estimated at between 1.2 and 2.3 gigatons C. The range represents uncertainties about both the rates of deforestation and the amounts of <span class="hlt">carbon</span> stored in different types of tropical forests at the time of cutting. An evaluation of the role of tropical regions in the <span class="hlt">global</span> <span class="hlt">carbon</span> budget must include both the <span class="hlt">carbon</span> flux to the atmosphere due to deforestation and <span class="hlt">carbon</span> accumulation, if any, in intact forests. In the early 1990s, the release of CO{sub 2} from tropical deforestation appears to have been mostly offset by CO{sub 2} uptake occurring elsewhere in the tropics, according to an analysis of recent trends in the atmospheric concentrations of O{sub 2} and N{sub 2}. Interannual variations in climate and/or CO{sub 2} fertilization may have been responsible for the CO{sub 2} uptake in intact forests. These mechanisms are consistent with site-specific measurements of net <span class="hlt">carbon</span> fluxes between tropical forests and the atmosphere, and with regional and <span class="hlt">global</span> simulations using process-based biogeochemistry models. 86 refs., 1 fig., 6 tabs.</p> <div class="credits"> <p class="dwt_author">Melillo, J.M.; Kicklighter, D.W. [Ecosystems Center, Woods Hole, MA (United States). Marine Biological Lab.; Houghton, R.A. [Woods Hole Research Center, MA (United States); McGuire, A.D. [Univ. of Alaska, Fairbanks, AK (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-12-31</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">57</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60781439"> <span id="translatedtitle">Human Impacts and <span class="hlt">Management</span> of <span class="hlt">Carbon</span> Sources</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The energy system dominates human-induced <span class="hlt">carbon</span> flows on our planet. <span class="hlt">Globally</span>, six billion tons of <span class="hlt">carbon</span> are contained in the fossil fuels removed from below the ground every year. More than 90% of the <span class="hlt">carbon</span> in fossil fuels is used for energy purposes, with <span class="hlt">carbon</span> dioxide as the <span class="hlt">carbon</span> product and the atmosphere as the initial destination for the <span class="hlt">carbon</span></p> <div class="credits"> <p class="dwt_author">S. Benson; J. Edmonds; R. Socolow; T. Surles</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">58</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/12659806"> <span id="translatedtitle"><span class="hlt">Carbon</span> <span class="hlt">management</span> and biodiversity.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">International efforts to mitigate human-caused changes in the Earth's climate are considering a system of incentives (debits and credits) that would encourage specific changes in land use that can help to reduce the atmospheric concentration of <span class="hlt">carbon</span> dioxide. The two primary land-based activities that would help to minimize atmospheric <span class="hlt">carbon</span> dioxide are <span class="hlt">carbon</span> storage in the terrestrial biosphere and the efficient substitution of biomass fuels and bio-based products for fossil fuels and energy-intensive products. These two activities have very different land requirements and different implications for the preservation of biodiversity and the maintenance of other ecosystem services. <span class="hlt">Carbon</span> sequestration in living forests can be pursued on lands with low productivity, i.e. on lands that are least suitable for agriculture or intensive forestry, and are compatible with the preservation of biodiversity over large areas. In contrast, intensive harvest-and-use systems for biomass fuels and products generally need more productive land to be economically viable. Intensive harvest-and-use systems may compete with agriculture or they may shift intensive land uses onto the less productive lands that currently harbor most of the Earth's biodiversity. Win-win solutions for <span class="hlt">carbon</span> dioxide control and biodiversity are possible, but careful evaluation and planning are needed to avoid practices that reduce biodiversity with little net decrease in atmospheric <span class="hlt">carbon</span> dioxide. Planning is more complex on a politically subdivided Earth where issues of local interest, national sovereignty, and equity come into play. PMID:12659806</p> <div class="credits"> <p class="dwt_author">Huston, Michael A; Marland, Gregg</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">59</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5717717"> <span id="translatedtitle">Organic <span class="hlt">carbon</span> in soil and the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Soil organic matter is, simultaneously, the most inert <span class="hlt">carbon</span> cycle component of terrestrial ecosystems, and the most dynamic component of terrestrail geologic systems placing it in a pivotal position in the biogeochemistry of <span class="hlt">carbon</span>. The large size and potentially long residence time of the soil organic matter pool make it an important component of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Net terrestrial primary production of about 60 Pg C{center dot}yr{sup {minus}1} is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. However, the input rates and decomposition rates for different terrestrial ecosystems vary over several orders of magnitude resulting in widely different amounts and turnover rates of soil organic matter. The amounts of <span class="hlt">carbon</span> stored in soils and the rates of exchange of soil <span class="hlt">carbon</span> with the atmosphere depend on many factors related to the chemistry, biology, and physics of soil and soil organic matter. This report discusses work on organic <span class="hlt">carbon</span> in soil and aspects of the <span class="hlt">carbon</span> cycle.</p> <div class="credits"> <p class="dwt_author">Post, W.M. III.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">60</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=164444"> <span id="translatedtitle"><span class="hlt">Global</span> atmospheric black <span class="hlt">carbon</span> inferred from AERONET</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">AERONET, a network of well calibrated sunphotometers, provides data on aerosol optical depth and absorption optical depth at >250 sites around the world. The spectral range of AERONET allows discrimination between constituents that absorb most strongly in the UV region, such as soil dust and organic <span class="hlt">carbon</span>, and the more ubiquitously absorbing black <span class="hlt">carbon</span> (BC). AERONET locations, primarily continental, are not representative of the <span class="hlt">global</span> mean, but they can be used to calibrate <span class="hlt">global</span> aerosol climatologies produced by tracer transport models. We find that the amount of BC in current climatologies must be increased by a factor of 2–4 to yield best agreement with AERONET, in the approximation in which BC is externally mixed with other aerosols. The inferred climate forcing by BC, regardless of whether it is internally or externally mixed, is ?1 W/m2, most of which is probably anthropogenic. This positive forcing (warming) by BC must substantially counterbalance cooling by anthropogenic reflective aerosols. Thus, especially if reflective aerosols such as sulfates are reduced, it is important to reduce BC to minimize <span class="hlt">global</span> warming.</p> <div class="credits"> <p class="dwt_author">Sato, Makiko; Hansen, James; Koch, Dorothy; Lacis, Andrew; Ruedy, Reto; Dubovik, Oleg; Holben, Brent; Chin, Mian; Novakov, Tica</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_2");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a style="font-weight: bold;">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_4");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_3 div --> <div id="page_4" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">61</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57341835"> <span id="translatedtitle">Approaches to <span class="hlt">managing</span> <span class="hlt">global</span> sourcing risk</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Purpose – <span class="hlt">Global</span> sourcing can bring many benefits to organisations, but it can also expose them to a number of risks. The purpose of this study is to understand how <span class="hlt">managers</span> assess <span class="hlt">global</span> sourcing risks across the entire supply chain and what actions they take to mitigate those risks. Design\\/methodology\\/approach – A multiple case study approach was used, involving 15</p> <div class="credits"> <p class="dwt_author">Martin Christopher; Carlos Mena; Omera Khan; Oznur Yurt</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">62</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://environment.yale.edu/uploads/publications/Anisfeld-pub04.pdf"> <span id="translatedtitle"><span class="hlt">Global</span> <span class="hlt">carbon</span> sequestration in tidal, saline wetland soils</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Wetlands represent the largest component of the terrestrial biological <span class="hlt">carbon</span> pool and thus play an important role in <span class="hlt">global</span> <span class="hlt">carbon</span> cycles. Most <span class="hlt">global</span> <span class="hlt">carbon</span> budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbonstoring ecosystems such as tidal saline wetlands. We compiled data for 154 sites in</p> <div class="credits"> <p class="dwt_author">Gail L. Chmura; Shimon C. Anisfeld; Donald R. Cahoon; James C. Lynch</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">63</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.nasstrac.org/membersonly/ArticlesOnline/PDFs/2008/NASSTRAC_Global_Supply_Chain_Risk_Management.pdf"> <span id="translatedtitle"><span class="hlt">Global</span> supply chain risk <span class="hlt">management</span> strategies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Purpose – <span class="hlt">Global</span> supply chains are more risky than domestic supply chains due to numerous links interconnecting a wide network of firms. These links are prone to disruptions, bankruptcies, breakdowns, macroeconomic and political changes, and disasters leading to higher risks and making risk <span class="hlt">management</span> difficult. The purpose of this paper is to explore the phenomenon of risk <span class="hlt">management</span> and risk</p> <div class="credits"> <p class="dwt_author">Ila Manuj; John T. Mentzer</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">64</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/35978114"> <span id="translatedtitle">Virtual <span class="hlt">management</span> of <span class="hlt">global</span> marketing relationships</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A mechanism for rapidly developing presence in the <span class="hlt">global</span> marketplace is through forming relationships with other organizations in different countries. These joint ventures or strategic alliances have a number of benefits that accrue to the various partners in the relationship. The difficulty is how to <span class="hlt">manage</span> these relationships effectively across cultures and differing organizational\\/<span class="hlt">management</span> philosophies. What is recommended is the</p> <div class="credits"> <p class="dwt_author">Cheri Speier; Michael G. Harvey; Jonathan Palmer</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">65</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/841053"> <span id="translatedtitle">Human Impacts and <span class="hlt">Management</span> of <span class="hlt">Carbon</span> Sources</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The energy system dominates human-induced <span class="hlt">carbon</span> flows on our planet. <span class="hlt">Globally</span>, six billion tons of <span class="hlt">carbon</span> are contained in the fossil fuels removed from below the ground every year. More than 90% of the <span class="hlt">carbon</span> in fossil fuels is used for energy purposes, with <span class="hlt">carbon</span> dioxide as the <span class="hlt">carbon</span> product and the atmosphere as the initial destination for the <span class="hlt">carbon</span> dioxide. Significantly affecting the <span class="hlt">carbon</span> flows associated with fossil fuels is an immense undertaking. Four principal technological approaches are available to affect these <span class="hlt">carbon</span> flows: (1) Fossil fuels and other energy resources can be utilized more efficiently; (2) Energy sources other than fossil fuels can be used; (3) <span class="hlt">Carbon</span> dioxide from the combustion of fossil fuels can be trapped and redirected, preventing it from reaching the atmosphere (fossil <span class="hlt">carbon</span> sequestration); and (4) One can work outside the energy system to remove <span class="hlt">carbon</span> dioxide biologically from the atmosphere (biological <span class="hlt">carbon</span> sequestration). An optimum <span class="hlt">carbon</span> <span class="hlt">management</span> strategy will surely implement all four approaches and a wise R&D program will have vigorous sub-programs in all four areas. These programs can be effective by integrating scenario analyses into the planning process. A number of future scenarios must be evaluated to determine the need for the new technologies in a future energy mix. This planning activity must be an iterative process. At present, R&D in the first two areas--energy efficiency and non-fossil fuel energy resources--is relatively well developed. By contrast, R&D in the third and the fourth areas--the two <span class="hlt">carbon</span> sequestration options--is less well developed. The task before the workshop was to recommend ways to initiate a vigorous <span class="hlt">carbon</span> sequestration research program without compromising the strength of the current programs in the first two areas. We recommend that this task be fulfilled by initiating several new programs in parallel. First, we recommend that a vigorous <span class="hlt">carbon</span> sequestration program be launched. We have confidence that the time is ripe for this new undertaking. Several studies conducted over the past two years have scoped out the research issues that need to be explored and have revealed a wide variety of technological approaches that call out for detailed analysis and field testing. Second, we recommend that R&D efforts in the areas of efficient energy use and clean energy (technologies not using fossil resources or significantly reducing <span class="hlt">carbon</span> emissions per unit of energy generated) be maintained and strengthened. The lead times necessary for market penetration of successful technologies when they are needed require a robust federally funded R&D program. Third, we recommend that a broad <span class="hlt">carbon</span> <span class="hlt">management</span> research program be properly integrated into all four of the approaches listed above. Specifically, we recommend four elements of such a program: (1) A program in support of decision-oriented research, emphasizing life-cycle analysis systems and risk analysis, with the concomitant development of tools for technology assessment, cross-technology comparison, and analysis of externalities. (2) A program designed to support a small number of research centers, each focusing on a specific area of <span class="hlt">carbon</span> <span class="hlt">management</span>, creatively combining several disciplinary approaches and featuring strong industry participation. (3) A program in support of investigator-initiated research; and (4) A program focused on effective means of engaging the public. All of these initiatives must give considerable weight to the consideration of the social implications of the technologies under investigation. We believe that public acceptance will be and should be a critical determinant of the evolution of the technologies, whose promise the proposed program is designed to explore.</p> <div class="credits"> <p class="dwt_author">Benson, S.; Edmonds, J.; Socolow, R.; Surles, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-08-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">66</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www-wds.worldbank.org/servlet/WDSContentServer/WDSP/IB/1992/10/01/000009265_3961003153846/Rendered/PDF/multi_page.pdf"> <span id="translatedtitle">World fossil fuel subsidies and <span class="hlt">global</span> <span class="hlt">carbon</span> emissions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Larsen and Shah present evidence on the level of fossil fuel subsidies and their implications for <span class="hlt">carbon</span> dioxide emissions. They conclude that substantial fossil fuel subsidies prevail in a handful of large, <span class="hlt">carbon</span>-emitting countries. Removing such subsidies could substantially reduce national <span class="hlt">carbon</span> emissions in some countries. <span class="hlt">Global</span> <span class="hlt">carbon</span> emissions could be reduced by 9 percent, assuming no change in world</p> <div class="credits"> <p class="dwt_author">Bjorn Larsen; Anwar Shah</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">67</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002APS..MAR.G7003F"> <span id="translatedtitle"><span class="hlt">Carbon</span> <span class="hlt">management</span>: an oil industry perspective</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Projections indicate that future energy use and associated CO2 emissions will grow substantially to fuel economic growth and prosperity. Consequently, restrictions on energy demand would have significant economic and social impacts— especially in developing countries where efforts to alleviate poverty and meet essential needs, as well as aspirations, will require large increases in future energy use. <span class="hlt">Global</span> CO2 emissions today arise roughly as follows: (Coal: 40affected by availability, cost, convenience, security and environmental concerns. In the use of oil (primarily for transportation) in the world's economy, industry operations account for about 13fuel use by customers. Consideration of scenarios to reduce future emissions shows that social, environmental and economic costs are sensitive to many uncertain factors, especially the availability and performance of technologies that may become available. In particular, implementation of new energy technology systems requires extensive human and physical infrastructure to function, and takes decades to put in place. The ultimate cost and capability to reduce <span class="hlt">global</span> emissions depends on development, commercialization, and widespread <span class="hlt">global</span> use of currently non-commercial technologies. Technology research should aim to devise options that reduce costs, improve performance, meet regulatory and safety concerns, and foster acceptance of potential new technologies, such as <span class="hlt">carbon</span> sequestration and the production, distribution and use of hydrogen. Programs to address <span class="hlt">carbon</span> <span class="hlt">management</span> should not focus on optimizing options based on today's limited understanding and costly systems, but rather, on identifying and overcoming fundamental barriers, so that more economic and effective options become available in the future.</p> <div class="credits"> <p class="dwt_author">Flannery, Brian</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">68</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6144287"> <span id="translatedtitle">(The ocean's role in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The traveler collaborated with Dr. J. L. Sarmiento of the Program in Atmospheric Sciences, Princeton University, and Dr. U. Siegenthaler of the University of Bern in box-model studies of the potential enhancement of oceanic CO{sub 2} uptake by fertilizing the southern ocean with iron. As a result of this collaboration, a letter describing the results was submitted to the journal Nature. Sensitivity studies were carried out to gain a better understanding of the processes involved for a hypothetical iron fertilization of the ocean. An article that describes this work has been submitted to the journal <span class="hlt">Global</span> Biogeochemical Cycles. The traveler and U. Siegenthaler are preparing a journal article describing a box model of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle that is an extension of the one-dimensional box-diffusion model. The traveler attended Oceanography 590b at the University of Washington in Friday Harbor. While at Friday Harbor, he started to collaborate with Drs. M. Warner, R. Gammon, and J. Bullister, all from the University of Washington, Seattle, to calibrate the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle model with chlorofluorocarbon (CFC)-11 and CFC-12. The traveler started collaboration with Drs. J. C. Orr and J. L. Sarmiento to calculate apparent eddy diffusivities from the Princeton three-dimensional ocean model. The work is conducted by the University of Bern, Switzerland (the traveler is principal investigator), for a US Department of Energy program <span class="hlt">managed</span> by Oak Ridge National Laboratory.</p> <div class="credits"> <p class="dwt_author">Joos, L.F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-12-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">69</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52872125"> <span id="translatedtitle">The Effect of <span class="hlt">Carbon</span> Credits on Savanna Land <span class="hlt">Management</span> and Priorities for Biodiversity Conservation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Carbon</span> finance offers the potential to change land <span class="hlt">management</span> and conservation planning priorities. We develop a novel approach to planning for improved land <span class="hlt">management</span> to conserve biodiversity while utilizing potential revenue from <span class="hlt">carbon</span> biosequestration. We apply our approach in northern Australia's tropical savanna, a region of <span class="hlt">global</span> significance for biodiversity and <span class="hlt">carbon</span> storage, both of which are threatened by current</p> <div class="credits"> <p class="dwt_author">Lucinda L. Douglass; Hugh P. Possingham; Josie Carwardine; Carissa J. Klein; Stephen H. Roxburgh; Jeremy Russell-Smith; Kerrie A. Wilson; Julian Clifton</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">70</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2955139"> <span id="translatedtitle"><span class="hlt">Global</span> demographic trends and future <span class="hlt">carbon</span> emissions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Substantial changes in population size, age structure, and urbanization are expected in many parts of the world this century. Although such changes can affect energy use and greenhouse gas emissions, emissions scenario analyses have either left them out or treated them in a fragmentary or overly simplified manner. We carry out a comprehensive assessment of the implications of demographic change for <span class="hlt">global</span> emissions of <span class="hlt">carbon</span> dioxide. Using an energy–economic growth model that accounts for a range of demographic dynamics, we show that slowing population growth could provide 16–29% of the emissions reductions suggested to be necessary by 2050 to avoid dangerous climate change. We also find that aging and urbanization can substantially influence emissions in particular world regions.</p> <div class="credits"> <p class="dwt_author">O'Neill, Brian C.; Dalton, Michael; Fuchs, Regina; Jiang, Leiwen; Pachauri, Shonali; Zigova, Katarina</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">71</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=226241"> <span id="translatedtitle"><span class="hlt">Management</span> practices affects soil <span class="hlt">carbon</span> dioxide emission and <span class="hlt">carbon</span> storage</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary">Agricultural practices contribute about 25% of total anthropogenic <span class="hlt">carbon</span> dioxide emission, a greenhouse gas responsible for <span class="hlt">global</span> warming. Soil can act both as sink or source of atmospheric <span class="hlt">carbon</span> dioxide. <span class="hlt">Carbon</span> dioxide fixed in plant biomass through photosynthesis can be stored in soil as organi...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">72</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52261190"> <span id="translatedtitle">Linking Forest <span class="hlt">Carbon</span> Monitoring with <span class="hlt">Management</span> Decisions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Managing</span> forests to increase <span class="hlt">carbon</span> stocks or reduce emissions requires knowledge of how <span class="hlt">management</span> practices effect <span class="hlt">carbon</span> pools over time, and inexpensive techniques to monitor activities. Here we discuss our approach to integrate the multi-tier monitoring data from the North American <span class="hlt">Carbon</span> Program (NACP) with <span class="hlt">management</span> decisions by linking bottom-up and top-down ecosystem models with decision-support tools. Monitoring <span class="hlt">carbon</span> stocks</p> <div class="credits"> <p class="dwt_author">R. Birdsey; Y. Pan; C. Potter; J. Hom; K. Clark; S. van Tuyl</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">73</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013BGeo...10.2169K"> <span id="translatedtitle"><span class="hlt">Global</span> ocean storage of anthropogenic <span class="hlt">carbon</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">global</span> ocean is a significant sink for anthropogenic <span class="hlt">carbon</span> (Cant), absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a <span class="hlt">global</span> scale, three data-based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air-sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on forward ocean models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the <span class="hlt">global</span> ocean inventory of anthropogenic <span class="hlt">carbon</span> in 2010 of 155 ± 31 PgC (±20% uncertainty). This estimate includes a broad range of values, suggesting that a combination of approaches is necessary in order to achieve a robust quantification of the ocean sink of anthropogenic CO2.</p> <div class="credits"> <p class="dwt_author">Khatiwala, S.; Tanhua, T.; Mikaloff Fletcher, S.; Gerber, M.; Doney, S. C.; Graven, H. D.; Gruber, N.; McKinley, G. A.; Murata, A.; Ríos, A. F.; Sabine, C. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">74</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012BGD.....9.8931K"> <span id="translatedtitle"><span class="hlt">Global</span> ocean storage of anthropogenic <span class="hlt">carbon</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">global</span> ocean is a significant sink for anthropogenic <span class="hlt">carbon</span> (Cant), absorbing roughly a third of human CO2 emitted over the industrial period. Robust estimates of the magnitude and variability of the storage and distribution of Cant in the ocean are therefore important for understanding the human impact on climate. In this synthesis we review observational and model-based estimates of the storage and transport of Cant in the ocean. We pay particular attention to the uncertainties and potential biases inherent in different inference schemes. On a <span class="hlt">global</span> scale, three data based estimates of the distribution and inventory of Cant are now available. While the inventories are found to agree within their uncertainty, there are considerable differences in the spatial distribution. We also present a review of the progress made in the application of inverse and data-assimilation techniques which combine ocean interior estimates of Cant with numerical ocean circulation models. Such methods are especially useful for estimating the air-sea flux and interior transport of Cant, quantities that are otherwise difficult to observe directly. However, the results are found to be highly dependent on modeled circulation, with the spread due to different ocean models at least as large as that from the different observational methods used to estimate Cant. Our review also highlights the importance of repeat measurements of hydrographic and biogeochemical parameters to estimate the storage of Cant on decadal timescales in the presence of the variability in circulation that is neglected by other approaches. Data-based Cant estimates provide important constraints on ocean forward models, which exhibit both broad similarities and regional errors relative to the observational fields. A compilation of inventories of Cant gives us a "best" estimate of the <span class="hlt">global</span> ocean inventory of anthropogenic <span class="hlt">carbon</span> in 2010 of 155 Pg C with an uncertainty of ±20%. This estimate includes a broad range of values suggesting that a combination of approaches is necessary in order to achieve a robust quantification of the ocean sink of anthropogenic CO2.</p> <div class="credits"> <p class="dwt_author">Khatiwala, S.; Tanhua, T.; Mikaloff Fletcher, S.; Gerber, M.; Doney, S. C.; Graven, H. D.; Gruber, N.; McKinley, G. A.; Murata, A.; Ríos, A. F.; Sabine, C. L.; Sarmiento, J. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">75</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60577753"> <span id="translatedtitle">Integrated <span class="hlt">Global</span> Nuclear Materials <span class="hlt">Management</span> Preliminary Concepts</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The world is at a turning point, moving away from the Cold War nuclear legacy towards a future <span class="hlt">global</span> nuclear enterprise; and this presents a transformational challenge for nuclear materials <span class="hlt">management</span>. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and</p> <div class="credits"> <p class="dwt_author">E Jones; M Dreicer</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">76</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57961533"> <span id="translatedtitle">Internationalizing Business Education for <span class="hlt">Globally</span> Competent <span class="hlt">Managers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The world is shrinking as developments in technology and transportation rapidly increase <span class="hlt">global</span> opportunities and challenges for businesses. Furthermore, developing markets are becoming increasingly important, creating new challenges for <span class="hlt">managers</span>. Business education must step in and prepare graduates to work in and with these markets. This article discusses mission-based approaches to increasing the internationalization of business education to change mindsets</p> <div class="credits"> <p class="dwt_author">Ben L. Kedia; Paula D. Englis</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">77</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57349945"> <span id="translatedtitle"><span class="hlt">Global</span> performance <span class="hlt">management</span>: a research agenda</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Purpose – Whilst performance <span class="hlt">management</span> (PM) is one human resource practice that is of importance for the company, research in international setting is still in its infancy. This paper focuses on <span class="hlt">global</span> PM (GPM) in multinational enterprises. The aim is to present advances in the PM research framework, give managerial suggestions and find out future needs and trends for research.</p> <div class="credits"> <p class="dwt_author">Nina Hellqvist</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">78</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/35993483"> <span id="translatedtitle">Strategic information <span class="hlt">management</span> in <span class="hlt">global</span> manufacturing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Responding to new forces on the competitive landscape, <span class="hlt">global</span> manufacturing companies are restructuring corporate cultures, organizational cofigurations and <span class="hlt">management</span> coordination channels and styles. The emergence of flexibility as a prime competitive parameter for manufacturing is paralleled by companies shifting toward flexible, adaptive structures. A major challenge is to develop and deploy information technologies linking organizational subgroups for a streamlines process</p> <div class="credits"> <p class="dwt_author">Michael D. Oliff; Donald A. Marchand</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">79</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=world+AND+trade+AND+center&pg=7&id=EJ929421"> <span id="translatedtitle">Internationalizing Business Education for <span class="hlt">Globally</span> Competent <span class="hlt">Managers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|The world is shrinking as developments in technology and transportation rapidly increase <span class="hlt">global</span> opportunities and challenges for businesses. Furthermore, developing markets are becoming increasingly important, creating new challenges for <span class="hlt">managers</span>. Business education must step in and prepare graduates to work in and with these markets. This…</p> <div class="credits"> <p class="dwt_author">Kedia, Ben L.; Englis, Paula D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">80</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/gb/gb0801/2007GB003037/2007GB003037.pdf"> <span id="translatedtitle">Towards understanding <span class="hlt">global</span> variability in ocean <span class="hlt">carbon</span>-13</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We include a prognostic parameterization of <span class="hlt">carbon</span>-13 into a <span class="hlt">global</span> ocean-biogeochemistry model to investigate the spatiotemporal variability in ocean <span class="hlt">carbon</span>-13 between 1860 and 2000. <span class="hlt">Carbon</span>-13 was included in all 10 existing <span class="hlt">carbon</span> pools, with dynamic fractionations occurring during photosynthesis, gas exchange and <span class="hlt">carbonate</span> chemistry. We find that ocean distributions of ?13CDIC at any point in time are controlled by the</p> <div class="credits"> <p class="dwt_author">Alessandro Tagliabue; Laurent Bopp</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_4 div --> <div id="page_5" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">81</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48748975"> <span id="translatedtitle">Coral Reefs, <span class="hlt">Carbonate</span> Sediments, Nutrients, and <span class="hlt">Global</span> Change</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">\\u000a As the 21st century begins, studies of coral reefs, <span class="hlt">carbonate</span> sediments, and limestones will continue to be fundamental to\\u000a understanding the past, present, and future of marine ecosystems and <span class="hlt">global</span> climate. An intellectually challenging aspect\\u000a of <span class="hlt">carbonate</span> research is the plethora of paradoxes associated with the biology of <span class="hlt">carbonate</span>-secreting organisms, <span class="hlt">carbonate</span>\\u000a geochemistry, and <span class="hlt">carbonate</span> depositional ecosystems. Discovering new paradoxes, deciphering</p> <div class="credits"> <p class="dwt_author">Pamela Hallock</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">82</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/35981010"> <span id="translatedtitle">Food <span class="hlt">management</span> in tourism: Reducing tourism’s <span class="hlt">carbon</span> ‘foodprint’</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Food production and consumption have a range of sustainability implications, including their contribution to <span class="hlt">global</span> emissions of greenhouse gases (GHGs). As some foodstuffs entail higher GHG emissions than others, <span class="hlt">managing</span> their use in tourism-related contexts could make a significant contribution to climate change mitigation. This article reviews the <span class="hlt">carbon</span> intensity of selected foods and discusses how foodservice providers could adapt</p> <div class="credits"> <p class="dwt_author">Stefan Gössling; Brian Garrod; Carlo Aall; John Hille; Paul Peeters</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">83</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/218168"> <span id="translatedtitle">Isotropic simple <span class="hlt">global</span> <span class="hlt">carbon</span> model: The use of <span class="hlt">carbon</span> isotopes for model development. Ph.D. Thesis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Carbon</span> dioxide is a major greenhouse gas in the atmosphere. Anthropogenic CO2 emissions from fossil fuel use and deforestation have perturbed the natural <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. As a result, the atmospheric CO2 concentration has rapidly increased, causing the potential for <span class="hlt">global</span> warming. A twenty four compartment isotopic simple <span class="hlt">global</span> <span class="hlt">carbon</span> model (IS-GCM) has been developed for scenario analysis, research needs prioritization, and for recommending strategies to stabilize the atmospheric CO2 level. CO2 fertilization and temperature effects are included in the terrestrial biosphere, and the ocean includes inorganic chemistry which, with ocean water circulation, enables the calculation of time-variable oceanic <span class="hlt">carbon</span> uptake. The eight compartment simple <span class="hlt">global</span> <span class="hlt">carbon</span> model (SGCM) served as the basis of the ISGCM model development. <span class="hlt">Carbon</span> isotopes, C-13 (stable <span class="hlt">carbon</span>) and C-14(radiocarbon), were used for model constraints as well as results from SGCM that led to multiple compartments in ISGCM. The ISGCM was calibrated with the observed CO2 concentrations, delta C-13, and Delta C-14 in the atmosphere, Delta C-14 in the soil and Delta C-14 in the ocean. Also, ISGCM was constrained by literature values of oceanic <span class="hlt">carbon</span> uptake (gas exchange) and CO2 emissions from deforestation. Inputs (forcing functions in the model) were the CO2 emissions from fossil fuel use and deforestation. Scenario analysis, together with emission strategies tests, indicate that urgent action to reduce anthropogenic emissions would need to be taken to stabilize atmospheric CO2. Results showed that quantitatively, forest <span class="hlt">management</span> is just as effective as the reduction of fossil fuel emissions in controlling atmospheric CO2. Sensitivity analysis of temperature feedback suggests that future <span class="hlt">global</span> warming would cause an additional perturbation in the <span class="hlt">global-carbon</span> cycle, resulting in depletion of soil organic <span class="hlt">carbon</span>, accumulation of plant biomass, and the increase of atmospheric CO2.</p> <div class="credits"> <p class="dwt_author">Kwon, O.Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">84</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60254113"> <span id="translatedtitle"><span class="hlt">Global</span> estimate of net annual <span class="hlt">carbon</span> flow to phenylpropanoid metabolism</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The steady increase in the concentration of CO[sub 2] in the atmosphere is the focus of renewed interest in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Current research is centered upon modeling the effects of the increasing CO[sub 2] concentrations, and thus <span class="hlt">global</span> warning, on <span class="hlt">global</span> plant homeostasis. It has been estimated that the annual net primary production (NPP) values for terrestrial and</p> <div class="credits"> <p class="dwt_author">A. B. Walton; E. G. Norman; D. H. Turpin</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">85</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=290364"> <span id="translatedtitle">Can <span class="hlt">carbon</span> in bioenergy crops mitigate <span class="hlt">global</span> climate change?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary">Different forms of <span class="hlt">carbon</span> cycle continuously through several pools in natural and <span class="hlt">managed</span> ecosystems and spheres. <span class="hlt">Carbon’s</span> recent "commodification," as a negative environmental externality, rendered it a "scarce" and "tradable" element. Although the <span class="hlt">carbon</span> supply in nature is not limited, energy is ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">86</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010EGUGA..1212812L"> <span id="translatedtitle"><span class="hlt">Carbon</span>'s corner in the <span class="hlt">global</span> climate challange</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Unlike on other planets in the Solar System, most of the <span class="hlt">carbon</span> in <span class="hlt">carbon</span> dioxide (CO2) that degassed from Earth during its formation nearly 4.5 billion years ago is in limestone as the mineral calcite (CaCO3). Consequently, the small percentage (about 0.04) of CO2 in Earth's atmosphere can be changed easily by the combustion of fossil fuels. Since the early 1950s when accurate measurements of atmospheric CO2 began, it has been documented that the amount of CO2 in Earth's atmosphere is increasing at an exponential rate (Report of U.S. National Academy of Science, 2007). This course is a science elective that embraces the ideals of SENCER (Science Education for New Civic Engagements and Responsibilities) that connects science and civic engagement by teaching through complex, contested, current, and unresolved societal issues to basic science. Specifically, the instruction invites students to put scientific knowledge and the scientific method to practical use on matters of immediate interest not only to the students but also to the general public. This is done through a careful examination of the ecological and environmental issues surrounding the build-up of CO2 in the atmosphere as presented in CO2 Rising - The World's Greatest Environmental Challenge by Tyler Volk. A reflective reading of Volk's non-technical but engaging book, complemented by weekly 180-minutes of in-class instruction, results in an understanding of topics that are necessary for an informed public that continues the discussion about catastrophic <span class="hlt">global</span> warming that might result from unchecked burning of fossil fuels by humans.</p> <div class="credits"> <p class="dwt_author">Liddicoat, Joseph</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">87</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/929160"> <span id="translatedtitle">Integrated <span class="hlt">Global</span> Nuclear Materials <span class="hlt">Management</span> - Preliminary Concepts -</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Approach to Connect <span class="hlt">Global</span> Objectives and Local Actions: (1) Articulate <span class="hlt">global</span> objectives into a hierarchy of subsystem requirements and local attributes and measures; (2) Establish a baseline system and viable alternatives through the interactions and relationships (e.g., networks) of local system elements and their options; (3) Evaluate performance of system alternatives and develop improved nuclear material <span class="hlt">management</span> strategies and technologies; and (4) The need to address greatest concerns first (prioritized or graded approach) and to make tradeoffs among implementation options and competing objectives entails a risk-based approach. IGNMM could provide a systematic understanding of <span class="hlt">global</span> nuclear materials <span class="hlt">management</span> and evolutionarily improve and integrate the <span class="hlt">management</span> through an active architecture, using for example, situation awareness, system models, methods, technologies, and international cooperation. Different tools would be used within the overall framework to address individual issues on the desired geographic scale that could be easily linked to broader analyses. Life-cycle system analyses would allow for evaluating material path alternatives on an integrated <span class="hlt">global</span> scale. Disconnects, overlaps, technical options, and alternatives for optimizing nuclear materials processes could be evaluated in an integrated manner.</p> <div class="credits"> <p class="dwt_author">Dreicer, M; Jones, E; Richardson, J</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-07-13</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">88</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012EOSTr..93..125B"> <span id="translatedtitle"><span class="hlt">Global</span> data products help assess changes to ocean <span class="hlt">carbon</span> sink</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Net oceanic uptake of the greenhouse gas <span class="hlt">carbon</span> dioxide (CO2) reduces <span class="hlt">global</span> warming but also leads to ocean acidification [Intergovernmental Panel on Climate Change (IPCC), 2007]. Understanding and predicting changes in the ocean <span class="hlt">carbon</span> sink are critical to assessments of future climate change. Surface water CO2 measurements suggest large year-to-year variations in oceanic CO2 uptake for several regions [Doney et al., 2009]. However, there is much debate on whether these changes are cyclical or indicative of long-term trends. Sustained, <span class="hlt">globally</span> coordinated observations of the surface ocean <span class="hlt">carbon</span> cycle and systematic handling of such data are essential for assessing variation and trends in regional and <span class="hlt">global</span> ocean <span class="hlt">carbon</span> uptake, information necessary for accurate estimates of <span class="hlt">global</span> and national <span class="hlt">carbon</span> budgets.</p> <div class="credits"> <p class="dwt_author">Bakker, Dorothee C. E.; Pfeil, Benjamin; Olsen, Are; Sabine, Christopher L.; Metzl, Nicolas; Hankin, Steven; Koyuk, Heather; Kozyr, Alex; Malczyk, Jeremy; Manke, Ansley; Telszewski, Maciej</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">89</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/g721742q12218446.pdf"> <span id="translatedtitle">Optimizing <span class="hlt">carbon</span> sequestration in commercial forests by integrating <span class="hlt">carbon</span> <span class="hlt">management</span> objectives in wood supply modeling</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper provides a methodology for generating forest <span class="hlt">management</span> plans, which explicitly maximize <span class="hlt">carbon</span> (C) sequestration at the forest-landscape level. This paper takes advantage of concepts first presented in a paper\\u000a by Meng et al. (2003; Mitigation Adaptation Strategies <span class="hlt">Global</span> Change 8:371–403) by integrating C-sequestration objective functions in existing\\u000a wood supply models. <span class="hlt">Carbon</span>-stock calculations performed in WoodstockTM (RemSoft Inc.) are based</p> <div class="credits"> <p class="dwt_author">Charles P.-A. Bourque; Eric T. Neilson; Chris Gruenwald; Samantha F. Perrin; Jason C. Hiltz; Yvon A. Blin; Geoffrey V. Horsman; Matthew S. Parker; Christie B. Thorburn; Michael M. Corey; Fan-rui Meng; D. Edwin Swift</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">90</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/15001724"> <span id="translatedtitle">Investigations into Wetland <span class="hlt">Carbon</span> Sequestration as Remediation for <span class="hlt">Global</span> Warming</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Wetlands can potentially sequester vast amounts of <span class="hlt">carbon</span>. However, over 50% of wetlands <span class="hlt">globally</span> have been degraded or lost. Restoration of wetland systems may therefore result in increased sequestration of <span class="hlt">carbon</span>. Preliminary results of our investigations into atmospheric <span class="hlt">carbon</span> sequestration by restored coastal wetlands indicate that <span class="hlt">carbon</span> can be sequestered in substantial quantities in the first 2-50 years after restoration of natural hydrology and sediment accretion processes.</p> <div class="credits"> <p class="dwt_author">Thom, Ronald M.; Blanton, Susan L.; Borde, Amy B.; Williams, Greg D.; Woodruff, Dana L.; Huesemann, Michael H.; KW Nehring and SE Brauning</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">91</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012EGUGA..14..262L"> <span id="translatedtitle">Significance of terrestrial aquatic photosynthesis in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">It has been known that approximately 50% of the photosynthesis on Earth each year occurs in aquatic environments. Therefore, aquatic <span class="hlt">carbon</span> fixation is of enormous importance in the regulation of the <span class="hlt">global</span> climate. Previous work concentrated mainly on the role of ocean aquatic photosynthesis in the CO2and/or DIC-dissolved inorganic <span class="hlt">carbon</span> uptake. However, recent studies show that the role of terrestrial aquatic photosynthesis in the CO2 uptake, which utilizes DIC (mainly HCO3-, the major species of DIC in natural waters at pH 7-9) by rock weathering to form the autochthonous organic <span class="hlt">carbon</span>, and thus decreases the CO2 release to atmosphere from terrestrial aquatic systems, should not be neglected in <span class="hlt">global</span> budgeting in the <span class="hlt">carbon</span> cycle. The magnitude of this <span class="hlt">carbon</span> sink could be in the order of a few hundred million tons of <span class="hlt">carbon</span> per year, and will increase with the rise in DIC caused by <span class="hlt">global</span> warming and anthropogenic activities.</p> <div class="credits"> <p class="dwt_author">Liu, Z.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">92</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://webdepot.gsi.unimib.it/symphonya/RePec/pdf/symjournl100.pdf"> <span id="translatedtitle"><span class="hlt">Management</span> Consulting Boutiques and <span class="hlt">Global</span> Markets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Boutique consultancy firms operate in <span class="hlt">global</span> markets in selected areas in which they hold the strongest competencies - able to provide tailor-made rather than off-the- shelf services in any situation. Clients aiming to impose far-reaching change, are typical boutique clients. Irrespective of whether these clients are owners or <span class="hlt">managers</span>, they possess the entrepreneur's attitude and tools. The concept of customisation</p> <div class="credits"> <p class="dwt_author">Antonella Negri Clementi</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">93</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2000GBioC..14..139W"> <span id="translatedtitle">Rainwater dissolved organic <span class="hlt">carbon</span>: Concentrations and <span class="hlt">global</span> flux</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Dissolved organic <span class="hlt">carbon</span> (DOC) is a major component of both marine (23 ?M) and continental (161 ?M) rain, present in concentrations greater than nitric and sulfuric acids combined. Rain is a significant source of DOC to surface seawater (90 × 1012 g C yr-1), equivalent to the magnitude of river input of DOC to the open ocean and half the magnitude of <span class="hlt">carbon</span> buried in marine sediments per year on a <span class="hlt">global</span> scale. Current models of <span class="hlt">global</span> <span class="hlt">carbon</span> cycling focus primarily on inorganic forms of <span class="hlt">carbon</span> and are unable to account for approximately 20% of the <span class="hlt">global</span> <span class="hlt">carbon</span> dioxide, suggesting a significant missing <span class="hlt">carbon</span> sink. Quantification of the average DOC concentration in marine rain allows calculation of the <span class="hlt">global</span> rainwater flux of DOC of 430 ± 150 × 1012 g C yr-1. When inorganic <span class="hlt">carbon</span> is included, this rainwater <span class="hlt">carbon</span> flux becomes 510 ± 170 × 1012 g C yr-1, which, although not the same <span class="hlt">carbon</span>, is equivalent in magnitude to over one third of the missing <span class="hlt">carbon</span> sink.</p> <div class="credits"> <p class="dwt_author">Willey, Joan D.; Kieber, Robert J.; Eyman, Mary S.; Avery, G. Brooks</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">94</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37817129"> <span id="translatedtitle">Selecting marketing <span class="hlt">managers</span> to effectively control <span class="hlt">global</span> channels of distribution</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Globalization</span> of organizations necessitates the development of a network organizational configuration. This new form of organization requires <span class="hlt">managers</span> to become boundary spanners between the various organizations aligned in the <span class="hlt">global</span> business network. The question becomes how are these boundary-spanning <span class="hlt">managers</span> going to be identified and selected for <span class="hlt">global</span> assignments. This paper examines the staffing options for marketing <span class="hlt">managers</span> of integrative</p> <div class="credits"> <p class="dwt_author">Michael Harvey; Milorad M. Novicevic</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">95</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/3153393"> <span id="translatedtitle"><span class="hlt">Global</span> <span class="hlt">Carbon</span> Cycle and the Optimal Time Path of a <span class="hlt">Carbon</span> Tax</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The existing models of fossil fuel consumption with <span class="hlt">carbon</span> accumulation imply that the optimal time path of <span class="hlt">carbon</span> tax is either hump-shaped or monotonically decreasing. These models specify the decay of atmospheric <span class="hlt">carbon</span> as a constant rate of total concentration. The authors extend this specification to more accurately reflect the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle models of climatologists and show that this</p> <div class="credits"> <p class="dwt_author">Y. H. Farzin; O. Tahvonen</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">96</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/15005169"> <span id="translatedtitle">Fate of fossil fuel <span class="hlt">carbon</span> dioxide and the <span class="hlt">global</span> <span class="hlt">carbon</span> budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The fate of fossil fuel <span class="hlt">carbon</span> dioxide released into the atmosphere depends on the exchange rates of <span class="hlt">carbon</span> between the atmosphere and three major <span class="hlt">carbon</span> reservoirs, namely, the oceans, shallow-water sediments, and the terrestrial biosphere. Various assumptions and models used to estimate the <span class="hlt">global</span> <span class="hlt">carbon</span> budget for the last 20 years are reviewed and evaluated. Several versions of recent atmosphere-ocean</p> <div class="credits"> <p class="dwt_author">W. S. Broecker; T. Takahashi; H. J. Simpson; T.-H. Peng</p> <p class="dwt_publisher"></p> <p class="publishDate">1979-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">97</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/929158"> <span id="translatedtitle">Integrated <span class="hlt">Global</span> Nuclear Materials <span class="hlt">Management</span> Preliminary Concepts</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The world is at a turning point, moving away from the Cold War nuclear legacy towards a future <span class="hlt">global</span> nuclear enterprise; and this presents a transformational challenge for nuclear materials <span class="hlt">management</span>. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated <span class="hlt">Global</span> Nuclear Materials <span class="hlt">Management</span> (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated <span class="hlt">global</span> nuclear materials <span class="hlt">management</span> architecture that can help remediate the past and <span class="hlt">manage</span> the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk <span class="hlt">management</span> strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective policy, science/technology, and intelligence elements are all crucial and must be harmonized. It is envisioned that integrated solutions will include reducing and securing nuclear/radiological materials at their source; improved monitoring and tracking; and enhancing detection, interdiction, and response. An active architecture, artfully combined of many synergistic elements, would support national actions and international collaboration in nuclear materials <span class="hlt">management</span>, and it would help navigate a transition toward <span class="hlt">global</span> nuclear sustainability.</p> <div class="credits"> <p class="dwt_author">Jones, E; Dreicer, M</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-06-19</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">98</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5119125"> <span id="translatedtitle">Economic analysis of <span class="hlt">global</span> energy and <span class="hlt">carbon</span> dioxide emissions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Carbon</span> dioxide emissions from fossil-fuel use represent a threat to the <span class="hlt">global</span> climate system. The issue can be examined as a <span class="hlt">global</span> commons problem. A long-term, <span class="hlt">global</span>, energy model is constructed, a base-case energy-use path is developed, and various <span class="hlt">carbon</span>-limiting policy scenarios are examined. It is found that the United States acting alone can have little effect on <span class="hlt">global</span> emissions. It is also found that the marginal cost of reducing <span class="hlt">carbon</span> emissions (in terms of lost GNP) rises as greater reductions are required. However, the marginal cost of reductions is relatively small over most ranges. It is concluded that a major obstacle to any action is the public-goods nature of the problem in the absence of a central <span class="hlt">global</span> authority with the power to make effective policy.</p> <div class="credits"> <p class="dwt_author">Reilly, J.M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">99</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002AGUFM.U22A..09F"> <span id="translatedtitle"><span class="hlt">Carbon</span> Sinks and <span class="hlt">Carbon</span> <span class="hlt">Management</span> in European Mountains</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">carbon</span> balance of <span class="hlt">managed</span> mountain ecosystems in Europe has been of primary interest during the European Union's Framework Research Programmes 4 (ECOMONT) and 5 (CARBOMONT). The current land use pattern found in the Alps and other mountain ranges in Europe is a result of historical developments and does no longer represent a pure economic benefit for society. However, the cultural aspects of landscape preservation are considered of high importance such that mountain farmers are strongly subsidized in order to allow them to continue the <span class="hlt">management</span> of subalpine landscapes. With the increasing economic pressure imposed by the <span class="hlt">globalized</span> market mechanisms the share of alpine pastures and meadows that will be abandoned in the near future is expected to increase steadily. We will report preliminary results from the first year of the CARBOMONT project that started in early 2002. Eddy covariance flux measurements of CO2, water vapor, and energy from the Seebodenalp site (1025 m a.s.l.) in Switzerland will be presented. Stabile Isotope analyses are used to separate different pathways in the complex interplay between sources and sinks of CO2.</p> <div class="credits"> <p class="dwt_author">Furger, M.; Eugster, W.; Rogiers, N.; Bantelmann, E.; Siegwolf, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">100</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://oaspub.epa.gov/eims/eimsapi.dispdetail?deid=30797"> <span id="translatedtitle">AN APPROACH TO ASSESSMENT OF <span class="hlt">MANAGEMENT</span> IMPACTS ON AGRICULTURAL SOIL <span class="hlt">CARBON</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p class="result-summary">Agroecosystems contain about 12% of the terrestrial soil <span class="hlt">carbon</span> and play an important role in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. e describe a project to evaluate the degree to which <span class="hlt">management</span> practices can affect soil <span class="hlt">carbon</span> in agroecosystems. he objectives of the project are to determine...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_5 div --> <div id="page_6" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">101</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39781788"> <span id="translatedtitle">International and National Aspects of a Legislative Framework to <span class="hlt">Manage</span> Soil <span class="hlt">Carbon</span> Sequestration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This article discusses the international and national environmental law framework for the <span class="hlt">management</span> of soil <span class="hlt">carbon</span> sequestration. Aspects of the legislative framework important to this process include its ability to recognise <span class="hlt">carbon</span> sinks, expand existing sinks, and the procedures available to return and store <span class="hlt">carbon</span> in soil reservoirs. International law provides <span class="hlt">global</span> standards and guidelines and national legislative systems provide</p> <div class="credits"> <p class="dwt_author">Ian Hannam</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">102</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011EOSTr..92R..75T"> <span id="translatedtitle">In Brief: Reducing black <span class="hlt">carbon</span> emissions could immediately reduce <span class="hlt">global</span> temperature increases</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A new assessment by the United Nations Environment Programme (UNEP) shows that measures to reduce emissions of black <span class="hlt">carbon</span>, or soot, which is produced through burning of wood and other biofuels as well as by some industrial processes, could improve public health and help to significantly reduce projected <span class="hlt">global</span> temperature increases. The Integrated Assessment of Black <span class="hlt">Carbon</span> and Tropospheric Ozone highlights how specific measures targeting black <span class="hlt">carbon</span> and other emissions from fossil fuel extraction, residential wood-burning cooking, diesel vehicles, waste <span class="hlt">management</span>, agriculture, and small industries could affect climate. Full implementation of a variety of measures to reduce black <span class="hlt">carbon</span> and methane emissions could reduce future <span class="hlt">global</span> warming by about 0.5°C, the assessment found. Reducing black <span class="hlt">carbon</span> could have substantial benefits in the Arctic, the Himalayas, and other snow-covered regions because black <span class="hlt">carbon</span> that settles on top of snow absorbs heat, speeding melting of snow and ice. Black <span class="hlt">carbon</span> emission reductions would affect <span class="hlt">global</span> temperatures more quickly than <span class="hlt">carbon</span> dioxide emission reductions. Furthermore, reducing black <span class="hlt">carbon</span> emissions would improve public health in the regions that emit large amounts of the harmful air pollutant.</p> <div class="credits"> <p class="dwt_author">Tretkoff, Ernie</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">103</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18784722"> <span id="translatedtitle">Old-growth forests as <span class="hlt">global</span> <span class="hlt">carbon</span> sinks.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Old-growth forests remove <span class="hlt">carbon</span> dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered <span class="hlt">carbon</span> dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a <span class="hlt">global</span> <span class="hlt">carbon</span> dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate <span class="hlt">carbon</span>. Here we report a search of literature and databases for forest <span class="hlt">carbon</span>-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net <span class="hlt">carbon</span> balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate <span class="hlt">carbon</span>, contrary to the long-standing view that they are <span class="hlt">carbon</span> neutral. Over 30 per cent of the <span class="hlt">global</span> forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 x 10(8) hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 +/- 0.5 gigatonnes of <span class="hlt">carbon</span> per year. Thus, our findings suggest that 15 per cent of the <span class="hlt">global</span> forest area, which is currently not considered when offsetting increasing atmospheric <span class="hlt">carbon</span> dioxide concentrations, provides at least 10 per cent of the <span class="hlt">global</span> net ecosystem productivity. Old-growth forests accumulate <span class="hlt">carbon</span> for centuries and contain large quantities of it. We expect, however, that much of this <span class="hlt">carbon</span>, even soil <span class="hlt">carbon</span>, will move back to the atmosphere if these forests are disturbed. PMID:18784722</p> <div class="credits"> <p class="dwt_author">Luyssaert, Sebastiaan; Schulze, E-Detlef; Börner, Annett; Knohl, Alexander; Hessenmöller, Dominik; Law, Beverly E; Ciais, Philippe; Grace, John</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-09-11</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">104</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51248503"> <span id="translatedtitle">Monthly, <span class="hlt">global</span> emissions of <span class="hlt">carbon</span> dioxide from fossil fuel consumption</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper examines available data, develops a strategy and presents a monthly, <span class="hlt">global</span> time series of fossil-fuel <span class="hlt">carbon</span> dioxide emissions for the years 1950-2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of <span class="hlt">global</span> total emissions. These data were then used in a Monte Carlo approach to</p> <div class="credits"> <p class="dwt_author">Robert Joseph Andres; J. S. Gregg; London M Losey; Gregg Marland; Thomas A Boden</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">105</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://gams.cam.nist.gov/~BRust/pubs/Interface2005/PrePrint.pdf"> <span id="translatedtitle"><span class="hlt">Carbon</span> Dioxide, <span class="hlt">Global</span> Warming, and Michael Crichton's \\\\State of Fear</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In his recent novel, State of Fear (HarperCollins, 2004), Michael Crichton ques- tioned the connection between <span class="hlt">global</span> warming and increasing atmospheric <span class="hlt">carbon</span> dioxide by pointing out that for 1940-1970, temperatures were de- creasing while atmospheric <span class="hlt">carbon</span> dioxide was increasing. A reason for this contradiction was given at Interface 2003 (12) where the temperature time series was well modelled by a</p> <div class="credits"> <p class="dwt_author">Bert W. Rust</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">106</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/3864044"> <span id="translatedtitle">The <span class="hlt">carbon</span>-sequestration potential of a <span class="hlt">global</span> afforestation program</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We analyzed the changes in the <span class="hlt">carbon</span> cycle that could be achieved with a <span class="hlt">global</span>, largescale afforestation program that is economically, politically, and technically feasible. We estimated that of the areas regarded as suitable for large-scale plantations, only about 345 million ha would actually be available for plantations and agroforestry for the sole purpose of sequestering <span class="hlt">carbon</span>. The maximum annual</p> <div class="credits"> <p class="dwt_author">Sten Nilsson; Wolfgang Schopfhauser</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">107</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40832121"> <span id="translatedtitle">A model of <span class="hlt">global</span> thermal conductivity in laminated <span class="hlt">carbon\\/carbon</span> composites</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Starting with thermal conductivity components for the individual continuous unidirectional fiber-reinforced lamina or ply, a method has been developed to determine <span class="hlt">global</span> conductivities in a laminated <span class="hlt">carbon\\/carbon</span> composite. Assuming that all laminae are identical in thickness and in fiber content, effective thermal conductivity in each <span class="hlt">global</span> direction is determined for the laminated composite. Results are reported for a few selected</p> <div class="credits"> <p class="dwt_author">M. R. Kulkarni; R. P. Brady</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">108</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/m6781q28h2713770.pdf"> <span id="translatedtitle"><span class="hlt">Carbon</span> Dioxide Fluxes in the <span class="hlt">Global</span> Ocean</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">\\u000a Atmospheric <span class="hlt">carbon</span> dioxide concentration is one of the key variables of the ‘Earth system’ — the web of interactions between\\u000a the atmosphere, oceans, soils and living things that determines conditions at the Earth surface. Atmospheric CO2 plays several roles in this system. For example, it is the <span class="hlt">carbon</span> source for nearly all terrestrial green plants, and the\\u000a source of <span class="hlt">carbonic</span></p> <div class="credits"> <p class="dwt_author">Andrew J. Watson; James C. Orr</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">109</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52582246"> <span id="translatedtitle"><span class="hlt">Carbon</span> Pools and Flux of <span class="hlt">Global</span> Forest Ecosystems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Forest systems cover more than 4.1 x 10^9 hectares of the Earth's land area. <span class="hlt">Globally</span>, forest vegetation and soils contain about 1146 petagrams of <span class="hlt">carbon</span>, with approximately 37 percent of this <span class="hlt">carbon</span> in low-latitude forests, 14 percent in mid-latitudes, and 49 percent at high latitudes. Over two-thirds of the <span class="hlt">carbon</span> in forest ecosystems is contained in soils and associated peat</p> <div class="credits"> <p class="dwt_author">R. K. Dixon; S. Brown; R. A. Houghton; A. M. Solomon; M. C. Trexler; J. Wisniewski</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">110</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009spi..conf..137V"> <span id="translatedtitle"><span class="hlt">Global</span> Software Development Patterns for Project <span class="hlt">Management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Global</span> software development with the agile or waterfall development process has been taken into use in many companies. GSD offers benefits but also new challenges without known, documented solutions. The goal of this research is to present current best practices for GSD in the form of process patterns for project <span class="hlt">management</span>, evaluated by using a scenario-based assessment method. The best practices have been collected from a large company operating in process automation. It is expected that the resulting pattern language helps other companies to improve their GSD processes by incorporating the patterns in the processes.</p> <div class="credits"> <p class="dwt_author">Välimäki, Antti; Kääriäinen, Jukka; Koskimies, Kai</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">111</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5273843"> <span id="translatedtitle"><span class="hlt">Carbon</span> sequestration, biological diversity, and sustainable development: Integrated forest <span class="hlt">management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Tropical deforestation provides a significant contribution to anthropogenic increases in atmospheric CO2 concentration that may lead to <span class="hlt">global</span> warming. Forestation and other forest <span class="hlt">management</span> options to sequester CO2 in the tropical latitudes may fail unless they address local economic, social, environmental, and political needs of people in the developing world. Forest <span class="hlt">management</span> is discussed in terms of three objectives: <span class="hlt">carbon</span> sequestration; sustainable development; and biodiversity conservation. An integrated forest <span class="hlt">management</span> strategy of land-use planning is proposed to achieve these objectives, and is centered around: preservation of primary forests; intensified use of non-timber resources; agroforestry, and selective use of plantation forestry.</p> <div class="credits"> <p class="dwt_author">Cairns, M.A.; Meganck, R.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">112</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56037325"> <span id="translatedtitle"><span class="hlt">Global</span> Biodiversity and the Ancient <span class="hlt">Carbon</span> Cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Paleontological data for the diversity of marine animals and land plants are shown to correlate significantly with a concurrent measure of stable <span class="hlt">carbon</span> isotope fractionation for approximately the last 400 million years. The correlations can be deduced from the assumption that increasing plant diversity led to increasing chemical weathering of rocks, and therefore an increasing flux of <span class="hlt">carbon</span> from the</p> <div class="credits"> <p class="dwt_author">D. H. Rothman</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">113</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/qx383n2175215x4v.pdf"> <span id="translatedtitle">A computer-integrated framework for <span class="hlt">global</span> quality chain <span class="hlt">management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Facing increasing pressure from customers to achieve greater responsiveness and reliability, as well as the current trend of <span class="hlt">globalization</span>, many companies are considering <span class="hlt">global</span> supply chain <span class="hlt">management</span> as the core of their business strategy. This <span class="hlt">global</span> tendency brings new challenges to traditional quality <span class="hlt">management</span> approaches. It requires moving from the past focus of “my quality” to an emphasis on “our</p> <div class="credits"> <p class="dwt_author">Kwai-Sang Chin; Guijiang Duan; Xiaoqing Tang</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">114</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=ftp://repec.bus.usu.edu/RePEc/usu/pdf/ERI2001-12.pdf"> <span id="translatedtitle">A dynamic interaction of the <span class="hlt">global</span> timber market, <span class="hlt">global</span> warming, and <span class="hlt">carbon</span> flux of forest</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Forest <span class="hlt">management</span> around the globe has been discussed and emphasized as one of the practical environmental protection policies. The Kyoto protocol proposed that promotion of sustainable forest <span class="hlt">management</span> through afforestation and reforestation will increase the potential <span class="hlt">carbon</span> sink of forest and thus ameliorate the accumulation of <span class="hlt">carbon</span> dioxide into the atmosphere. In this sense, in order not only to improve</p> <div class="credits"> <p class="dwt_author">Dug Lee; Kenneth Lyon</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">115</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.nrel.colostate.edu/projects/agecosys/people/files/rtc/pres/2000/lv00/glci00.pdf"> <span id="translatedtitle">The Effects of Grazing <span class="hlt">Management</span> on Soil <span class="hlt">Carbon</span> (<span class="hlt">Carbon</span> Sequestration)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This component of the VA RLEP consists of a field based sampling and research effort to document the efficacy of <span class="hlt">Management</span> intensive Grazing (MiG) techniques to enhance the soil's inherent capacity to serve as a sink for <span class="hlt">carbon</span> (four data collection sites were developed in VA). To the extent that MiG and associated conservation practices increase the storage of <span class="hlt">carbon</span></p> <div class="credits"> <p class="dwt_author">Richard T. Conant; Keith Paustian</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">116</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.gfdl.gov/bibliography/related_files/rmk0401.pdf"> <span id="translatedtitle">A <span class="hlt">global</span> ocean <span class="hlt">carbon</span> climatology: Results from <span class="hlt">Global</span> Data Analysis Project (GLODAP)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">During the 1990s, ocean sampling expeditions were carried out as part of the World Ocean Circulation Experiment (WOCE), the Joint <span class="hlt">Global</span> Ocean Flux Study (JGOFS), and the Ocean Atmosphere <span class="hlt">Carbon</span> Exchange Study (OACES). Subsequently, a group of U.S. scientists synthesized the data into easily usable and readily available products. This collaboration is known as the <span class="hlt">Global</span> Ocean Data Analysis Project</p> <div class="credits"> <p class="dwt_author">Robert Key; Alexander Kozyr; Chris Sabine; K. Lee; R. Wanninkhof; J. L. Bullister; R. A. Feely; F. J. Millero; C. Mordy; T.-H. Peng</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">117</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://sbaer.uca.edu/research/acme/2003/papers/new/04.pdf"> <span id="translatedtitle"><span class="hlt">MANAGER</span> ATTITUDES AND <span class="hlt">GLOBALIZATION</span>: BENEFITS AND OBSTACLES TO <span class="hlt">GLOBALIZATION</span> AS PERCEIVED BY <span class="hlt">MANAGERS</span> OF COMPANIES WITH VARYING DEGREES OF <span class="hlt">GLOBAL</span> EXPERIENCE</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Kedia and Mukherji (1999) issued a call for <span class="hlt">managers</span> to effect a transition from domestically oriented defenders of their local markets to <span class="hlt">globally</span>-oriented integrators who can utilize appropriate skills and knowledge to increase their organizations' <span class="hlt">global</span> business activities. While their article details a taxonomy of <span class="hlt">manager</span> orientations to <span class="hlt">globalization</span>, they do not examine actual <span class="hlt">managers</span>' perceptions of the benefits of</p> <div class="credits"> <p class="dwt_author">Shelley R. Tapp</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">118</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012NatGe...5..505F"> <span id="translatedtitle">Seagrass ecosystems as a <span class="hlt">globally</span> significant <span class="hlt">carbon</span> stock</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The protection of organic <span class="hlt">carbon</span> stored in forests is considered as an important method for mitigating climate change. Like terrestrial ecosystems, coastal ecosystems store large amounts of <span class="hlt">carbon</span>, and there are initiatives to protect these `blue <span class="hlt">carbon</span>' stores. Organic <span class="hlt">carbon</span> stocks in tidal salt marshes and mangroves have been estimated, but uncertainties in the stores of seagrass meadows--some of the most productive ecosystems on Earth--hinder the application of marine <span class="hlt">carbon</span> conservation schemes. Here, we compile published and unpublished measurements of the organic <span class="hlt">carbon</span> content of living seagrass biomass and underlying soils in 946 distinct seagrass meadows across the globe. Using only data from sites for which full inventories exist, we estimate that, <span class="hlt">globally</span>, seagrass ecosystems could store as much as 19.9Pg organic <span class="hlt">carbon</span>; according to a more conservative approach, in which we incorporate more data from surface soils and depth-dependent declines in soil <span class="hlt">carbon</span> stocks, we estimate that the seagrass <span class="hlt">carbon</span> pool lies between 4.2 and 8.4Pg <span class="hlt">carbon</span>. We estimate that present rates of seagrass loss could result in the release of up to 299Tg <span class="hlt">carbon</span> per year, assuming that all of the organic <span class="hlt">carbon</span> in seagrass biomass and the top metre of soils is remineralized.</p> <div class="credits"> <p class="dwt_author">Fourqurean, James W.; Duarte, Carlos M.; Kennedy, Hilary; Marbà, Núria; Holmer, Marianne; Mateo, Miguel Angel; Apostolaki, Eugenia T.; Kendrick, Gary A.; Krause-Jensen, Dorte; McGlathery, Karen J.; Serrano, Oscar</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">119</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFM.B53C0405I"> <span id="translatedtitle"><span class="hlt">Global</span> simulation of the <span class="hlt">carbon</span> isotope exchange of terrestrial ecosystems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">There remain large uncertainties in our quantification of <span class="hlt">global</span> <span class="hlt">carbon</span> cycle, which has close interactions with the climate system and is subject to human-induced <span class="hlt">global</span> environmental change. Information on <span class="hlt">carbon</span> isotopes is expected to reduce the uncertainty by providing additional constraints on net atmosphere-ecosystem exchange. This study attempted to simulate the dynamics of <span class="hlt">carbon</span> isotopes at the <span class="hlt">global</span> scale, using a process-based terrestrial ecosystem model: Vegetation Integrative SImulator for Trace gases (VISIT). The base-model of <span class="hlt">carbon</span> cycle (Sim-CYCLE, Ito 2003) has already considered stable <span class="hlt">carbon</span> isotope composition (13C/12C), and here radioactive <span class="hlt">carbon</span> isotope (14C) was included. The isotope ratios characterize various aspects of terrestrial <span class="hlt">carbon</span> cycle, which is difficult to be constrained by sole mass balance. For example, isotopic discrimination by photosynthetic assimilation is closely related with leaf stomatal conductance and composition of C3 and C4 plant in grasslands. Isotopic disequilibrium represents mean residence time of terrestrial <span class="hlt">carbon</span> pools. In this study, <span class="hlt">global</span> simulations (spatial resolution 0.5-deg, time-step 1-month) were conducted during the period 1901 to 2100 on the basis of observed and projected atmospheric CO2, climate, and land-use conditions. As anthropogenic CO2 accumulates in the atmosphere, heavier stable <span class="hlt">carbon</span> isotope (13C) was diluted, while radioactive <span class="hlt">carbon</span> isotope (14C) is strongly affected by atomic bomb experiments mainly in the 1950s and 1960s. The model simulated the decadal change in <span class="hlt">carbon</span> isotope compositions. Leaf <span class="hlt">carbon</span> with shorter mean residence time responded rapidly to the atmospheric change, while plant stems and soil humus showed substantial time-lag, leading to large isotopic disequilibrium. In the future, the isotopic disequilibrium was estimated to augment, due to accelerated rate of anthropogenic CO2 accumulation. Spatial distribution of stable isotope composition (12C/13C, or d13C) was primarily dominated by C3/C4 plant composition and then ancillary environmental conditions. Along latitude, plant and litter <span class="hlt">carbon</span> pools in northern ecosystems have slower turnover rates (i.e., higher 14C/12C) than those in tropical ecosystems. However, humus <span class="hlt">carbon</span> in northern ecosystems with very long mean residence times has lower 14C/12C ratio, most of bomb-derived radioactive <span class="hlt">carbon</span> lingered still in plant biomass. Now, we are attempting to examine the model estimations by comparing with atmospheric measurements.</p> <div class="credits"> <p class="dwt_author">Ito, A.; Terao, Y.; Mukai, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">120</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/5259350"> <span id="translatedtitle">Soil erosion and the <span class="hlt">global</span> <span class="hlt">carbon</span> budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Soil erosion is the most widespread form of soil degradation. Land area <span class="hlt">globally</span> affected by erosion is 1094 million ha (Mha) by water erosion, of which 751 Mha is severely affected, and 549 Mha by wind erosion, of which 296 Mha is severely affected. Whereas the effects of erosion on productivity and non-point source pollution are widely recognized, those on</p> <div class="credits"> <p class="dwt_author">R. Lal</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_6 div --> <div id="page_7" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">121</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6645133"> <span id="translatedtitle"><span class="hlt">Global</span> <span class="hlt">carbon</span> cycles: A coupled atmosphere-ocean-sediment model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A simple one-dimensional advective-diffusive ocean model with a polar outcrop is developed and calibrated to fit modern ocean temperature, phosphorus, oxygen, total <span class="hlt">carbon</span>, and total alkalinity data. The ocean model includes an atmospheric box which predicts atmospheric P[sub CO2] and oxygen concentrations. In addition, a sediment model is designed to reproduce modern sediment profiles of solid organic <span class="hlt">carbon</span> and calcite, and pore water oxygen, sulfate, <span class="hlt">carbonate</span> bicarbonate and <span class="hlt">carbon</span> dioxide. The organic matter sediment model is used to investigate the interplay of sedimentation rate, bioturbation and microbial kinetics on the total rates of organic <span class="hlt">carbon</span> and phosphorus regeneration and accumulation in marine sediments. This is done for sediments ranging from coastal to deep ocean. The model is sensitive to the organic <span class="hlt">carbon</span> flux, sedimentation rate, bottom water oxygen concentration, degradation kinetics and bioturbation rate. The type of diagenetic environment and the extent of remineralization is very dependent on these variables which are currently poorly constrained. The <span class="hlt">carbonate</span> model uses organic <span class="hlt">carbon</span>, oxygen and sulfate profiles from the organic sediment as input in addition to the total <span class="hlt">carbon</span> and alkalinity of the overlying water. It predicts the <span class="hlt">carbonate</span>, bicarbonate and <span class="hlt">carbon</span> dioxide pore water concentrations and the sedimentary <span class="hlt">carbonate</span> fraction. The lysocline and <span class="hlt">carbonate</span> compensation depth are sensitive to the calcite dissolution rate, the organic to inorganic <span class="hlt">carbon</span> ratio and organic matter degradation. The sediment and ocean models are combined to form an atmosphere-ocean-sediment model which is used to test the hypothesis that decreased polar surface nutrients and <span class="hlt">carbon</span> is the cause of the 80 ppm reduction in atmospheric P[sub CO2] observed during the last ice age. The coupled model suggests that sediments play an important role in the <span class="hlt">global</span> <span class="hlt">carbon</span> budget.</p> <div class="credits"> <p class="dwt_author">Tromp, T.K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">122</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=252591"> <span id="translatedtitle">Ecological value of soil <span class="hlt">carbon</span> <span class="hlt">management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary"><span class="hlt">Management</span> of soil <span class="hlt">carbon</span> is critical to the climate change debate, as well as to the long-term productivity and ecosystem resilience of the biosphere. Soil organic <span class="hlt">carbon</span> is a key ecosystem property that indicates inherent productivity of land, controls soil biological functioning and diversity, r...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">123</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003GBioC..17.1111C"> <span id="translatedtitle"><span class="hlt">Global</span> <span class="hlt">carbon</span> sequestration in tidal, saline wetland soils</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Wetlands represent the largest component of the terrestrial biological <span class="hlt">carbon</span> pool and thus play an important role in <span class="hlt">global</span> <span class="hlt">carbon</span> cycles. Most <span class="hlt">global</span> <span class="hlt">carbon</span> budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered <span class="hlt">carbon</span>-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4°S in the Indian Ocean to 55.5°N in the northeastern Atlantic. The average soil <span class="hlt">carbon</span> density of mangrove swamps (0.055 ± 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ± 0.003 g cm-3). Soil <span class="hlt">carbon</span> density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, <span class="hlt">carbon</span> sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of <span class="hlt">carbon</span> sequestration rates masking any relationship with climatic parameters. <span class="hlt">Globally</span>, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as <span class="hlt">carbon</span> sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more <span class="hlt">carbon</span> per unit area.</p> <div class="credits"> <p class="dwt_author">Chmura, Gail L.; Anisfeld, Shimon C.; Cahoon, Donald R.; Lynch, James C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">124</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22962585"> <span id="translatedtitle">Estimating <span class="hlt">global</span> "blue <span class="hlt">carbon</span>" emissions from conversion and degradation of vegetated coastal ecosystems.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Recent attention has focused on the high rates of annual <span class="hlt">carbon</span> sequestration in vegetated coastal ecosystems--marshes, mangroves, and seagrasses--that may be lost with habitat destruction ('conversion'). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered <span class="hlt">carbon</span>. Residing mostly in sediments, this 'blue <span class="hlt">carbon</span>' can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first <span class="hlt">global</span> estimates of this impact and evaluate its economic implications. Combining the best available data on <span class="hlt">global</span> area, land-use conversion rates, and near-surface <span class="hlt">carbon</span> stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15-1.02 Pg (billion tons) of <span class="hlt">carbon</span> dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3-19% of those from deforestation <span class="hlt">globally</span>, and result in economic damages of $US 6-42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in <span class="hlt">global</span> area and rates of land-use conversion, but research is also needed on the fates of ecosystem <span class="hlt">carbon</span> upon conversion. Currently, <span class="hlt">carbon</span> emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or <span class="hlt">carbon</span> market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable <span class="hlt">management</span> of coastal ecosystems could significantly reduce <span class="hlt">carbon</span> emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats. PMID:22962585</p> <div class="credits"> <p class="dwt_author">Pendleton, Linwood; Donato, Daniel C; Murray, Brian C; Crooks, Stephen; Jenkins, W Aaron; Sifleet, Samantha; Craft, Christopher; Fourqurean, James W; Kauffman, J Boone; Marbà, Núria; Megonigal, Patrick; Pidgeon, Emily; Herr, Dorothee; Gordon, David; Baldera, Alexis</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-04</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">125</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19516338"> <span id="translatedtitle">The proportionality of <span class="hlt">global</span> warming to cumulative <span class="hlt">carbon</span> emissions.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The <span class="hlt">global</span> temperature response to increasing atmospheric CO(2) is often quantified by metrics such as equilibrium climate sensitivity and transient climate response. These approaches, however, do not account for <span class="hlt">carbon</span> cycle feedbacks and therefore do not fully represent the net response of the Earth system to anthropogenic CO(2) emissions. Climate-<span class="hlt">carbon</span> modelling experiments have shown that: (1) the warming per unit CO(2) emitted does not depend on the background CO(2) concentration; (2) the total allowable emissions for climate stabilization do not depend on the timing of those emissions; and (3) the temperature response to a pulse of CO(2) is approximately constant on timescales of decades to centuries. Here we generalize these results and show that the <span class="hlt">carbon</span>-climate response (CCR), defined as the ratio of temperature change to cumulative <span class="hlt">carbon</span> emissions, is approximately independent of both the atmospheric CO(2) concentration and its rate of change on these timescales. From observational constraints, we estimate CCR to be in the range 1.0-2.1 degrees C per trillion tonnes of <span class="hlt">carbon</span> (Tt C) emitted (5th to 95th percentiles), consistent with twenty-first-century CCR values simulated by climate-<span class="hlt">carbon</span> models. Uncertainty in land-use CO(2) emissions and aerosol forcing, however, means that higher observationally constrained values cannot be excluded. The CCR, when evaluated from climate-<span class="hlt">carbon</span> models under idealized conditions, represents a simple yet robust metric for comparing models, which aggregates both climate feedbacks and <span class="hlt">carbon</span> cycle feedbacks. CCR is also likely to be a useful concept for climate change mitigation and policy; by combining the uncertainties associated with climate sensitivity, <span class="hlt">carbon</span> sinks and climate-<span class="hlt">carbon</span> feedbacks into a single quantity, the CCR allows CO(2)-induced <span class="hlt">global</span> mean temperature change to be inferred directly from cumulative <span class="hlt">carbon</span> emissions. PMID:19516338</p> <div class="credits"> <p class="dwt_author">Matthews, H Damon; Gillett, Nathan P; Stott, Peter A; Zickfeld, Kirsten</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-06-11</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">126</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50418265"> <span id="translatedtitle"><span class="hlt">Global</span> innovation <span class="hlt">management</span>: when traditional approaches fail</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The emerging knowledge economy is fundamentally changing <span class="hlt">global</span> competition. A sustained competitive advantage will much more rely on the ability to optimize innovation output for the <span class="hlt">global</span> market than simply <span class="hlt">globalize</span> the functions of the value chain. This paradigm shift is embodied in competencies to integrate <span class="hlt">globally</span> dispersed technological and market know-how, and innovate products, services and processes for the</p> <div class="credits"> <p class="dwt_author">M. Hosein Fallah; Thomas G. Lechler</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">127</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23713123"> <span id="translatedtitle">Terrestrial nitrogen-<span class="hlt">carbon</span> cycle interactions at the <span class="hlt">global</span> scale.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Interactions between the terrestrial nitrogen (N) and <span class="hlt">carbon</span> (C) cycles shape the response of ecosystems to <span class="hlt">global</span> change. However, the <span class="hlt">global</span> distribution of nitrogen availability and its importance in <span class="hlt">global</span> biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-<span class="hlt">carbon</span> cycle interactions to <span class="hlt">global</span> scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial <span class="hlt">carbon</span> storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial <span class="hlt">carbon</span> sequestration in the boreal and temperate zone, and will constrain future <span class="hlt">carbon</span> sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-<span class="hlt">carbon</span> interactions). This reduced terrestrial <span class="hlt">carbon</span> uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing. PMID:23713123</p> <div class="credits"> <p class="dwt_author">Zaehle, S</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-27</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">128</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37869273"> <span id="translatedtitle"><span class="hlt">Global</span> entrepreneurship and supply chain <span class="hlt">management</span>: a Chinese exemplar</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Purpose – <span class="hlt">Global</span> entrepreneurship study is primarily concerned with why, when, and how entrepreneurial opportunities are discovered and exploited in the <span class="hlt">global</span> market. The purpose of this paper is to present a framework for pursuing <span class="hlt">global</span> entrepreneurship where supply chain <span class="hlt">management</span> (SCM) can often serve as a platform for resource acquisition, market development, and risk mitigation. Design\\/methodology\\/approach – This paper</p> <div class="credits"> <p class="dwt_author">Lifang Wu; Daewoo Park; Ravi Chinta; Margaret Cunningham</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">129</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N20040191312"> <span id="translatedtitle">Assessment of <span class="hlt">Global</span> Organic <span class="hlt">Carbon</span> Flux Along Continental Margins.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This project was designed to use real-time and historical SeaWiFS and AVHRR data, and real-time MODIS data in order to estimate the <span class="hlt">global</span> vertical <span class="hlt">carbon</span> flux along continental margins. This required construction of an empirical model relating surface oc...</p> <div class="credits"> <p class="dwt_author">R. Thunell</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">130</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pbslearningmedia.org/resource/phy03.sci.phys.matter.co2/"> <span id="translatedtitle"><span class="hlt">Global</span> Warming: <span class="hlt">Carbon</span> Dioxide and the Greenhouse Effect</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">This video segment demonstrates <span class="hlt">carbon</span> dioxide's role in the greenhouse effect and explains how increasing concentrations of C02 in the atmosphere may be contributing to <span class="hlt">global</span> warming. Video includes an unusual demonstration of C02's heat-absorbing properties, using infrared film, a researcher's face, and a stream of C02 between them.</p> <div class="credits"> <p class="dwt_author">Frontline/nova; Foundation, Wgbh E.; Domain, Teachers'</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">131</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=Global+AND+Marketing+AND+Management&pg=3&id=EJ589473"> <span id="translatedtitle"><span class="hlt">Global</span> Forces, National Mediations and the <span class="hlt">Management</span> of Educational Institutions.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">A key factor in discussing the changing nature of educational <span class="hlt">management</span> is <span class="hlt">global</span> context. <span class="hlt">Global</span> influences may be conceptualized differently. All have important effects, but they are mediated by national governments that are resilient, proactive, and extremely influential in <span class="hlt">managing</span> educational institutions. Employability is not the only…</p> <div class="credits"> <p class="dwt_author">Bottery, Mike</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">132</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1019358"> <span id="translatedtitle">Monthly, <span class="hlt">global</span> emissions of <span class="hlt">carbon</span> dioxide from fossil fuel consumption</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper examines available data, develops a strategy and presents a monthly, <span class="hlt">global</span> time series of fossil-fuel <span class="hlt">carbon</span> dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of <span class="hlt">global</span> total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the <span class="hlt">global</span> monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the <span class="hlt">global</span> monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of <span class="hlt">global</span> and regional <span class="hlt">carbon</span> cycles, especially when the mass data are combined with the stable <span class="hlt">carbon</span> isotope data in atmospheric transport models.</p> <div class="credits"> <p class="dwt_author">Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">133</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011TellB..63..309A"> <span id="translatedtitle">Monthly, <span class="hlt">global</span> emissions of <span class="hlt">carbon</span> dioxide from fossil fuel consumption</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper examines available data, develops a strategy and presents a monthly, <span class="hlt">global</span> time series of fossil-fuel <span class="hlt">carbon</span> dioxide emissions for the years 1950-2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of <span class="hlt">global</span> total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the <span class="hlt">global</span> monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the <span class="hlt">global</span> monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of <span class="hlt">global</span> and regional <span class="hlt">carbon</span> cycles, especially when the mass data are combined with the stable <span class="hlt">carbon</span> isotope data in atmospheric transport models.</p> <div class="credits"> <p class="dwt_author">Andres, R. J.; Gregg, J. S.; Losey, L.; Marland, G.; Boden, T. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">134</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004Sci...304.1623L"> <span id="translatedtitle">Soil <span class="hlt">Carbon</span> Sequestration Impacts on <span class="hlt">Global</span> Climate Change and Food Security</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">carbon</span> sink capacity of the world's agricultural and degraded soils is 50 to 66% of the historic <span class="hlt">carbon</span> loss of 42 to 78 gigatons of <span class="hlt">carbon</span>. The rate of soil organic <span class="hlt">carbon</span> sequestration with adoption of recommended technologies depends on soil texture and structure, rainfall, temperature, farming system, and soil <span class="hlt">management</span>. Strategies to increase the soil <span class="hlt">carbon</span> pool include soil restoration and woodland regeneration, no-till farming, cover crops, nutrient <span class="hlt">management</span>, manuring and sludge application, improved grazing, water conservation and harvesting, efficient irrigation, agroforestry practices, and growing energy crops on spare lands. An increase of 1 ton of soil <span class="hlt">carbon</span> pool of degraded cropland soils may increase crop yield by 20 to 40 kilograms per hectare (kg/ha) for wheat, 10 to 20 kg/ha for maize, and 0.5 to 1 kg/ha for cowpeas. As well as enhancing food security, <span class="hlt">carbon</span> sequestration has the potential to offset fossil-fuel emissions by 0.4 to 1.2 gigatons of <span class="hlt">carbon</span> per year, or 5 to 15% of the <span class="hlt">global</span> fossil-fuel emissions.</p> <div class="credits"> <p class="dwt_author">Lal, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">135</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002AGUFMGC72A0211Z"> <span id="translatedtitle">Role of Siberian Permafrost in the <span class="hlt">Global</span> Atmospheric <span class="hlt">Carbon</span> Budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The large (80-100 ppmv; 200 Pg) fluctuations in atmospheric CO2 that coincide with past glacial cycles reflect biospheric feedbacks triggered by changes in solar input. These feedbacks are poorly understood but will likely influence the response of the Earth System to recent increases in <span class="hlt">global</span> temperature and atmospheric CO2. Siberian permafrost contains a large pool (ca. 700 Pg) of sediment <span class="hlt">carbon</span> that is similar to the quantity of the <span class="hlt">carbon</span> in the <span class="hlt">global</span> atmosphere. Laboratory incubations, field measurements, and chemical analyses indicate that this <span class="hlt">carbon</span> is highly labile and decomposes quickly when permafrost melts. A continuation of recent warming trends could trigger release of this <span class="hlt">carbon</span> through either direct temperature effects on active-layer thickness and decomposition or increased frequency of forest fires, which cause a three- to five-fold increase in thaw depth. Similarly, melting of permafrost in Europe and Southern Siberia at the end of the Pleistocene may have released more than 400 Pg of CO2-<span class="hlt">carbon</span> to the atmosphere. This release could have contributed substantially to the increase in atmospheric CO2 at the Pleistocene-Holocene boundary. These observations suggest that melting of Siberian permafrost could play a <span class="hlt">globally</span> significant role in the past and future changes in Earth's climate.</p> <div class="credits"> <p class="dwt_author">Zimov, S. A.; Davydov, S. P.; Zimova, G. M.; Davydova, A. I.; Chapin, F. S.; Chapin, M. C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">136</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53413723"> <span id="translatedtitle">An observation-based estimate of <span class="hlt">global</span> black <span class="hlt">carbon</span> and brown <span class="hlt">carbon</span> AODs and radiative forcings</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We combined AERONET AODs with MODIS AODs, and obtained <span class="hlt">global</span> AODs. Using the wavelength dependence of AERONET SSA, we extracted black <span class="hlt">carbon</span> (BlC), brown <span class="hlt">carbon</span> (BrC) and dust components of AODs. The assumptions we made are that a) BlC SSA and BlC SSA wavelength-dependence are influenced by BlC particles mixed with non-absorbing aerosols and b) brown <span class="hlt">carbon</span> spheres identified by</p> <div class="credits"> <p class="dwt_author">C. E. Chung; V. Ramanathan</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">137</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ireswb.cc.ku.edu/~crgc/NSFWorkshop/Readings/PRLinLocalEnvironment2007.pdf"> <span id="translatedtitle">How do Local Governments in Mexico City <span class="hlt">Manage</span> <span class="hlt">Global</span> Warming?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Cities are both significant emitters of <span class="hlt">carbon</span> dioxide and centres of innovations that may contribute to de-<span class="hlt">carbonizing</span> our societies. More voices claim therefore that local authorities should be included in efforts to mitigate climate change. However, few studies have analysed how local authorities <span class="hlt">manage</span> <span class="hlt">carbon</span> and climate in urban areas in middle- and low-income countries. Yet, the institutional settings and</p> <div class="credits"> <p class="dwt_author">Patricia Romero Lankao</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">138</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://dx.doi.org/10.1046/j.1365-3121.2002.00414.x"> <span id="translatedtitle">Methane hydrate in the <span class="hlt">global</span> organic <span class="hlt">carbon</span> cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">The <span class="hlt">global</span> occurrence of methane hydrate in outer continental margins and in polar regions, and the magnitude of the amount of methane sequestered in methane hydrate suggest that methane hydrate is an important component in the <span class="hlt">global</span> organic <span class="hlt">carbon</span> cycle. Various versions of this cycle have emphasized the importance of methane hydrate, and in the latest version the role of methane hydrate is considered to be analogous to the workings of an electrical circuit. In this circuit the methane hydrate is a condenser and the consequences of methane hydrate dissociation are depicted as a resistor and inductor, reflecting temperature change and changes in earth surface history. These consequences may have implications for <span class="hlt">global</span> change including <span class="hlt">global</span> climate change.</p> <div class="credits"> <p class="dwt_author">Kvenvolden, K. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">139</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/47880623"> <span id="translatedtitle">Lokales Denken, <span class="hlt">globales</span> Handeln. Interkulturelle Zusammenarbeit und <span class="hlt">globales</span> <span class="hlt">Management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Geert Hofstedes Untersuchungen zum Thema kulturelle Unterschiede erschienen erstmals 1980 unter dem Titel „Culture’s Consequences“.\\u000a Das Buch „Lokales Denken, <span class="hlt">globales</span> Handeln“ ist eine von ihm und seinem Sohn Gert Jan Hofstede komplett überarbeitete Version\\u000a und richtet sich an den „intelligenten Laien“.</p> <div class="credits"> <p class="dwt_author">Geert Hofstede; Gert Jan Hofstede</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">140</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012NatCC...2..682M"> <span id="translatedtitle">Timing of <span class="hlt">carbon</span> emissions from <span class="hlt">global</span> forest clearance</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Land-use change, primarily from conventional agricultural expansion and deforestation, contributes to approximately 17% of <span class="hlt">global</span> greenhouse-gas emissions. The fate of cleared wood and subsequent <span class="hlt">carbon</span> storage as wood products, however, has not been consistently estimated, and is largely ignored or oversimplified by most models estimating greenhouse-gas emissions from <span class="hlt">global</span> land-use conversion. Here, we estimate the fate of cleared wood and timing of atmospheric <span class="hlt">carbon</span> emissions for 169 countries. We show that 30 years after forest clearance the percentage of <span class="hlt">carbon</span> stored in wood products and landfills ranges from about 0% to 62% <span class="hlt">globally</span>. For 90 countries, less than 5% of <span class="hlt">carbon</span> remains after 30 years, whereas 34 countries have more than 25% in storage. Higher storage rates result primarily from a greater percentage of long-lived products such as wood panels and lumber, and tend to occur in countries with predominantly temperate forests. Alternatively, lower storage rates are associated with a greater fraction of non-merchantable wood and more wood used for energy and paper production, which tend to occur in countries with predominantly tropical forests. Hence, the country and fate of cleared wood can considerably affect the timing of greenhouse-gas emissions from forest clearance.</p> <div class="credits"> <p class="dwt_author">Mason Earles, J.; Yeh, Sonia; Skog, Kenneth E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_7 div --> <div id="page_8" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">141</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57922339"> <span id="translatedtitle">Energy saving and <span class="hlt">carbon</span> reduction <span class="hlt">management</span> indicators for natural attractions: a case study in Taiwan</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The growing impact of <span class="hlt">global</span> warming has made energy saving and <span class="hlt">carbon</span> reduction (ESCR) by natural attractions an important issue. A set of clear and defined ESCR <span class="hlt">management</span> indicators could help <span class="hlt">manage</span> and control attractions, thereby facilitating sustainable development at those places. This study consists of three sub-studies in Taiwan. The first adopted qualitative methods to review related literature and</p> <div class="credits"> <p class="dwt_author">Jeou-Shyan Horng; Meng-Lei Hu; Chih-Ching Teng; Lin Lin</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">142</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/385432"> <span id="translatedtitle"><span class="hlt">Carbon</span> composites for thermal <span class="hlt">management</span> applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A family of high thermal conductivity <span class="hlt">carbon</span> fiber reinforced composites has been developed for thermal <span class="hlt">management</span> applications in spacecraft and electronic packaging. Light weight <span class="hlt">Carbon-Carbon</span> (C-C) composites can offer extremely high thermal conductivity in the fiber direction along with high stiffness and zero coefficient of thermal expansion (CTE). Thermal doubler and radiator face sheet are potential applications. On the other hand, metal impregnated C-C composites provides matching CTE to electronic packaging substrates, such as alumina and silicon. Avionic thermal planes and thermal spreader/heat sinks are possible applications. {copyright} {ital 1996 American Institute of Physics.}</p> <div class="credits"> <p class="dwt_author">Shih, W. [BFGoodrich, Carbon Products, Super-Temp, 11120 S, Norwalk Blvd, Santa Fe Springs, California 90670 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">143</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20647750"> <span id="translatedtitle">Can reducing black <span class="hlt">carbon</span> emissions counteract <span class="hlt">global</span> warming?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black <span class="hlt">carbon</span> aerosol emissions can form a viable component of mitigating <span class="hlt">global</span> warming. Black <span class="hlt">carbon</span> is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The authors review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. It is argued that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. Results from published climate-modeling studies are synthesized to obtain a <span class="hlt">global</span> warming potential for black <span class="hlt">carbon</span> relative to that of CO{sub 2} (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black <span class="hlt">carbon</span>. It is found that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, a role for black <span class="hlt">carbon</span> in climate mitigation strategies is proposed that is consistent with the apparently conflicting arguments raised during the discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement. 31 refs., 3 figs., 1 tab.</p> <div class="credits"> <p class="dwt_author">Tami C. Bond; Haolin Sun [University of Illinois at Urbana-Champaign, Urbana, IL (US)</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-08-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">144</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://files.eric.ed.gov/fulltext/ED540690.pdf"> <span id="translatedtitle"><span class="hlt">Global</span> <span class="hlt">Management</span> Education Graduate Survey, 2011. Survey Report</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Each year for the past 12 years, the Graduate <span class="hlt">Management</span> Admission Council[R] (GMAC[R]) has conducted a survey of graduate <span class="hlt">management</span> education students in their final year of business school. This <span class="hlt">Global</span> <span class="hlt">Management</span> Education Graduate Survey is distributed to students at participating business schools. The survey allows students to express their…</p> <div class="credits"> <p class="dwt_author">Schoenfeld, Gregg</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">145</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3165975"> <span id="translatedtitle">Meeting <span class="hlt">global</span> health challenges through operational research and <span class="hlt">management</span> science</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Abstract This paper considers how operational research and <span class="hlt">management</span> science can improve the design of health systems and the delivery of health care, particularly in low-resource settings. It identifies some gaps in the way operational research is typically used in <span class="hlt">global</span> health and proposes steps to bridge them. It then outlines some analytical tools of operational research and <span class="hlt">management</span> science and illustrates how their use can inform some typical design and delivery challenges in <span class="hlt">global</span> health. The paper concludes by considering factors that will increase and improve the contribution of operational research and <span class="hlt">management</span> science to <span class="hlt">global</span> health.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">146</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010PhyA..389.3546Z"> <span id="translatedtitle">Self-organized <span class="hlt">global</span> control of <span class="hlt">carbon</span> emissions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">There is much disagreement concerning how best to control <span class="hlt">global</span> <span class="hlt">carbon</span> emissions. We explore quantitatively how different control schemes affect the collective emission dynamics of a population of emitting entities. We uncover a complex trade-off which arises between average emissions (affecting the <span class="hlt">global</span> climate), peak pollution levels (affecting citizens’ everyday health), industrial efficiency (affecting the nation’s economy), frequency of institutional intervention (affecting governmental costs), common information (affecting trading behavior) and market volatility (affecting financial stability). Our findings predict that a self-organized free-market approach at the level of a sector, state, country or continent can provide better control than a top-down regulated scheme in terms of market volatility and monthly pollution peaks. The control of volatility also has important implications for any future derivative <span class="hlt">carbon</span> emissions market.</p> <div class="credits"> <p class="dwt_author">Zhao, Zhenyuan; Fenn, Daniel J.; Hui, Pak Ming; Johnson, Neil F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">147</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48943701"> <span id="translatedtitle">Temperature independence of <span class="hlt">carbon</span> dioxide supersaturation in <span class="hlt">global</span> lakes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A growing body of evidence suggests that most of the world's lakes are supersaturated with CO2 and export significant amounts of CO2 to the atmosphere. Still, the temperature dependence of the partial pressure of CO2 (pCO2) in lakes, which is the main driver of <span class="hlt">carbon</span> flux across the air-water interface, has not yet been assessed. Analyzing a <span class="hlt">global</span>-scale database of</p> <div class="credits"> <p class="dwt_author">Sebastian Sobek; Lars J. Tranvik; Jonathan J. Cole</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">148</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40924919"> <span id="translatedtitle"><span class="hlt">Global</span> <span class="hlt">carbon</span> dioxide emission to the atmosphere by volcanoes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Global</span> emission of <span class="hlt">carbon</span> dioxide by subaerial volcanoes is calculated, using COâ\\/SOâ from volcanic gas analyses and SOâ flux, to be 34 {plus minus} 24 à 10¹² g COâ\\/yr from passive degassing and 31 {plus minus} 22 à 10¹² g COâ\\/yr from eruptions. Volcanic COâ presently represents only 0.22% of anthropogenic emissions but may have contributed to significant greenhouse' effects</p> <div class="credits"> <p class="dwt_author">S. N. Williams; S. J. Schaefer; M. L. Calvache V; D. Lopez</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">149</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53515825"> <span id="translatedtitle"><span class="hlt">Global</span> <span class="hlt">carbon</span> dioxide emission to the atmosphere by volcanoes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Global</span> emission of <span class="hlt">carbon</span> dioxide by subaerial volcanoes is calculated, using CO2\\/SO2 from volcanic gas analyses and SO2 flux, to be 34 +\\/- 24 x 10 exp 12 g CO2\\/yr from passive degassing and 31 +\\/- 22 x 10 exp 12 g CO2\\/yr from eruptions. Volcanic CO2 presently represents only 0.22 percent of anthropogenic emissions but may have contributed to</p> <div class="credits"> <p class="dwt_author">Stanley N. Williams; Stephen J. Schaeffer; Marta L. Calvache; Dina Lopez</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">150</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22portugal%22&pg=7&id=ED537375"> <span id="translatedtitle"><span class="hlt">Globalization</span>--Education and <span class="hlt">Management</span> Agendas</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Chapters in this book include: (1) Internationalization and <span class="hlt">Globalization</span> in Higher Education (Douglas E. Mitchell and Selin Yildiz Nielsen); (2) Higher Educational Reform Values and the Dilemmas of Change: Challenging Secular Neo-Liberalism (James Campbell); (3) "Red Light" in Chile: Parents Participating as Consumers of Education Under <span class="hlt">Global</span>…</p> <div class="credits"> <p class="dwt_author">Cuadra-Montiel, Hector, Ed.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">151</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=logistic+AND+performance&pg=2&id=ED537375"> <span id="translatedtitle"><span class="hlt">Globalization</span>--Education and <span class="hlt">Management</span> Agendas</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Chapters in this book include: (1) Internationalization and <span class="hlt">Globalization</span> in Higher Education (Douglas E. Mitchell and Selin Yildiz Nielsen); (2) Higher Educational Reform Values and the Dilemmas of Change: Challenging Secular Neo-Liberalism (James Campbell); (3) "Red Light" in Chile: Parents Participating as Consumers of Education Under <span class="hlt">Global</span>…</p> <div class="credits"> <p class="dwt_author">Cuadra-Montiel, Hector, Ed.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">152</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE2000766358"> <span id="translatedtitle"><span class="hlt">Global</span> environmental <span class="hlt">management</span>: a historical perspective.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Our understanding of the Earth system has been developing rapidly over the past few decades in response to major <span class="hlt">global</span> environmental problems such as the depletion of the ozone layer and the impact of <span class="hlt">global</span> climate change. Our desire to understand the E...</p> <div class="credits"> <p class="dwt_author">J. Taylor</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">153</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18220174"> <span id="translatedtitle"><span class="hlt">Managing</span> healthcare services in the <span class="hlt">global</span> marketplace.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The world is getting "flatter"; people, information, technology, and ideas are increasingly crossing national borders. U.S. healthcare is not immune from the forces of <span class="hlt">globalization</span>. Competition from medical tourism and the rapid growth in the number of undocumented aliens requiring care represent just two challenges healthcare organizations face. An international workforce requires leaders to confront the legal, financial, and ethical implications of using foreign-trained personnel. Cross-border institutional arrangements are emerging, drawing players motivated by social responsibility, <span class="hlt">globalization</span> of competitors, growth opportunities, or an awareness of vulnerability to the forces of <span class="hlt">globalization</span>. Forward-thinking healthcare leaders will begin to identify <span class="hlt">global</span> strategies that address <span class="hlt">global</span> pressures, explore the opportunities, and take practical steps to prepare for a flatter world. PMID:18220174</p> <div class="credits"> <p class="dwt_author">Fried, Bruce J; Harris, Dean M</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">154</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51329820"> <span id="translatedtitle">Influence of dynamic vegetation change due to <span class="hlt">global</span> warming upon the terrestrial <span class="hlt">carbon</span> budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Anthropogenic emission of atmospheric CO2 and <span class="hlt">global</span> warming considerably change vegetation distribution, <span class="hlt">carbon</span> flux and <span class="hlt">carbon</span> storage. A number of former researches investigated the future <span class="hlt">carbon</span> change, however, the role of dynamic vegetation change in future <span class="hlt">carbon</span> change is not clearly separated. In the present study, we newly coupled a dynamic <span class="hlt">global</span> vegetation model (DGVM) to an atmospheric general circulation</p> <div class="credits"> <p class="dwt_author">A. Abe-Ouchi; R. O'Ishi</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">155</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005GeoRL..32.1602M"> <span id="translatedtitle">The importance of continental margins in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Approximately half of the world's net annual photosynthesis occurs in the oceans (~48 Pg C y-1). Areas bordering continents (bottom <2000 m) support 10-15% of this production. We used satellite data to compute annual <span class="hlt">global</span> net primary production (1998-2001), and derived the <span class="hlt">global</span> particulate organic <span class="hlt">carbon</span> (POC) flux settling below the permanent thermocline and to the seafloor using an empirical model of POC remineralization. Approximately 0.68 Pg C y-1 sink below the thermocline on continental margins, compared to 1.01 Pg C y-1 in the deep ocean. Over 0.62 Pg C y-1 settles to the seafloor on margins, compared to 0.31 Pg C y-1 to deep ocean sediments. At least 0.06 Pg C y-1 may be buried in sediments on margins. Therefore, margins may be responsible for >40% of the <span class="hlt">carbon</span> sequestration in the ocean. These regions must be accounted for in realistic models of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle and its linkages to climate change.</p> <div class="credits"> <p class="dwt_author">Muller-Karger, Frank E.; Varela, Ramon; Thunell, Robert; Luerssen, Remy; Hu, Chuanmin; Walsh, John J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">156</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.er.usgs.gov/publication/70043284"> <span id="translatedtitle">Effect of heterogeneousatmospheric CO2 on simulated <span class="hlt">global</span> <span class="hlt">carbon</span> budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">The effects of rising atmospheric <span class="hlt">carbon</span> dioxide (CO2) on terrestrial <span class="hlt">carbon</span> (C) sequestration have been a key focus in <span class="hlt">global</span> change studies. As anthropological CO2 emissions substantially increase, the spatial variability of atmospheric CO2 should be considered to reduce the potential bias on C source and sink estimations. In this study, the <span class="hlt">global</span> spatial–temporal patterns of near surface CO2 concentrations for the period 2003-2009 were established using the SCIAMACHY satellite observations and the GLOBALVIEW-CO2 field observations. With this CO2 data and the Integrated Biosphere Simulator (IBIS), our estimation of the <span class="hlt">global</span> mean annual NPP and NEP was 0.5% and 7% respectively which differs from the traditional C sequestration assessments. The Amazon, Southeast Asia, and Tropical Africa showed higher C sequestration than the traditional assessment, and the rest of the areas around the world showed slightly lower C sequestration than the traditional assessment. We find that the variability of NEP is less intense under heterogeneous CO2 pattern on a <span class="hlt">global</span> scale. Further studies of the cause of CO2 variation and the interactions between natural and anthropogenic processes of C sequestration are needed.</p> <div class="credits"> <p class="dwt_author">Zhang, Zhen; Jiang, Hong; Liu, Jinxun; Ju, Weimin; Zhang, Xiuying</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">157</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6251575"> <span id="translatedtitle"><span class="hlt">Global</span> estimate of net annual <span class="hlt">carbon</span> flow to phenylpropanoid metabolism</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The steady increase in the concentration of CO[sub 2] in the atmosphere is the focus of renewed interest in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Current research is centered upon modeling the effects of the increasing CO[sub 2] concentrations, and thus <span class="hlt">global</span> warning, on <span class="hlt">global</span> plant homeostasis. It has been estimated that the annual net primary production (NPP) values for terrestrial and oceanic biomes are 59.9 and 35 Pg C-yr[sup [minus]1], respectively (Melillo et al., 1990). Based on these NPP values, we have estimated the annual C flow to phenlpropanoid metabolism. In our calculation, lignin was used as a surrogate for phenylpropanoid compounds, as lignin is the second most abundant plant polymer. This approach means that our estimate defines the lower limit of C flow to phenylpropanoid metabolism. Each biome was considered separately to determine the percent of the NPP which was directed to the biosynthesis of leaves, stems/branches, and roots. From published values of the lignin content of these organs, the total amount of C directed to the biosynthesis of lignin in each biome was determined. This was used to obtain a <span class="hlt">global</span> value. Implications of these estimates will be discussed with reference to plant <span class="hlt">carbon</span> and nitrogen metabolism.</p> <div class="credits"> <p class="dwt_author">Walton, A.B.; Norman, E.G.; Turpin, D.H. (Univ. of British Columbia, Vancouver (Canada))</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">158</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/15016353"> <span id="translatedtitle"><span class="hlt">Global</span> Biogeochemistry Models and <span class="hlt">Global</span> <span class="hlt">Carbon</span> Cycle Research at Lawrence Livermore National Laboratory</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The climate modeling community has long envisioned an evolution from physical climate models to ''earth system'' models that include the effects of biology and chemistry, particularly those processes related to the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. The widely reproduced Box 3, Figure 1 from the 2001 IPCC Scientific Assessment schematically describes that evolution. The community generally accepts the premise that understanding and predicting <span class="hlt">global</span> and regional climate change requires the inclusion of <span class="hlt">carbon</span> cycle processes in models to fully simulate the feedbacks between the climate system and the <span class="hlt">carbon</span> cycle. Moreover, models will ultimately be employed to predict atmospheric concentrations of CO{sub 2} and other greenhouse gases as a function of anthropogenic and natural processes, such as industrial emissions, terrestrial <span class="hlt">carbon</span> fixation, sequestration, land use patterns, etc. Nevertheless, the development of coupled climate-<span class="hlt">carbon</span> models with demonstrable quantitative skill will require a significant amount of effort and time to understand and validate their behavior at both the process level and as integrated systems. It is important to consider objectively whether the currently proposed strategies to develop and validate earth system models are optimal, or even sufficient, and whether alternative strategies should be pursued. <span class="hlt">Carbon</span>-climate models are going to be complex, with the <span class="hlt">carbon</span> cycle strongly interacting with many other components. Off-line process validation will be insufficient. As was found in coupled atmosphere-ocean GCMs, feedbacks between model components can amplify small errors and uncertainties in one process to produce large biases in the simulated climate. The persistent tropical western Pacific Ocean ''double ITCZ'' and upper troposphere ''cold pole'' problems are examples. Finding and fixing similar types of problems in coupled <span class="hlt">carbon</span>-climate models especially will be difficult, given the lack of observations required for diagnosis and validation of biogeochemical processes.</p> <div class="credits"> <p class="dwt_author">Covey, C; Caldeira, K; Guilderson, T; Cameron-Smith, P; Govindasamy, B; Swanston, C; Wickett, M; Mirin, A; Bader, D</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-05-27</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">159</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57148624"> <span id="translatedtitle"><span class="hlt">Global</span> Data <span class="hlt">Management</span>: A Winning Approach to Clinical Data Processing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In these days of company mergers, downsizing, greater external competitive forces, and pressure to use internal resources more efficiently, many pharmaceutical companies are approaching their business in <span class="hlt">global</span> terms. The meaning of <span class="hlt">globalization</span> among companies differs, however, and success is dependent on many factors.One of these factors, the efficient <span class="hlt">management</span> of clinical data, is increasingly important. It is one of</p> <div class="credits"> <p class="dwt_author">Monica Pimazzoni</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">160</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://webdepot.gsi.unimib.it/symphonya/RePec/pdf/symjournl146.pdf"> <span id="translatedtitle">Market-Driven <span class="hlt">Management</span>, <span class="hlt">Global</span> Markets and Competitive Convergence</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Global</span> markets redefine competition space, fostering a collaborative network between companies (market-driven <span class="hlt">management</span>). Globalisation it causes previously distinct <span class="hlt">global</span> economies to converge into a single large market, thus generating fusion between competitive environments that are not only differentiated but also often very distant (competitive convergence)</p> <div class="credits"> <p class="dwt_author">Elisa Rancati</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_8 div --> <div id="page_9" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">161</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/5507183"> <span id="translatedtitle">Plumbing the <span class="hlt">Global</span> <span class="hlt">Carbon</span> Cycle: Integrating Inland Waters into the Terrestrial <span class="hlt">Carbon</span> Budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes,\\u000a rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the <span class="hlt">carbon</span> cycle at\\u000a either <span class="hlt">global</span> or regional scales. By taking published estimates of gas exchange, sediment accumulation, and <span class="hlt">carbon</span> transport\\u000a for a variety of aquatic systems, we have constructed</p> <div class="credits"> <p class="dwt_author">J. J. Cole; Y. T. Prairie; N. F. Caraco; W. H. McDowell; L. J. Tranvik; R. G. Striegl; C. M. Duarte; P. Kortelainen; J. A. Downing; J. J. Middelburg; J. Melack</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">162</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/m4ml0052626w3328.pdf"> <span id="translatedtitle"><span class="hlt">Carbon</span> fluxes resulting from U.S. private timberland <span class="hlt">management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A <span class="hlt">carbon</span> budget model was developed to examine the effects of forest <span class="hlt">management</span> practices on <span class="hlt">carbon</span> storage in U.S. private timberlands. The model explicitly incorporates the demand for wood products and its impact on harvesting and other <span class="hlt">management</span> decisions. Forest <span class="hlt">carbon</span> is divided into four components: <span class="hlt">carbon</span> stored in trees, soils, forest litter, and understory vegetation. Changes in the forest</p> <div class="credits"> <p class="dwt_author">Andrew J. Plantinga; Richard A. Birdsey</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">163</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013GeoRL..40.4355B"> <span id="translatedtitle">Space-based lidar measurements of <span class="hlt">global</span> ocean <span class="hlt">carbon</span> stocks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Global</span> ocean phytoplankton biomass (Cphyto) and total particulate organic <span class="hlt">carbon</span> (POC) stocks have largely been characterized from space using passive ocean color measurements. A space-based light detection and ranging (lidar) system can provide valuable complementary observations for Cphyto and POC assessments, with benefits including day-night sampling, observations through absorbing aerosols and thin cloud layers, and capabilities for vertical profiling through the water column. Here we use measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to quantify <span class="hlt">global</span> Cphyto and POC from retrievals of subsurface particulate backscatter coefficients (bbp). CALIOP bbp data compare favorably with airborne, ship-based, and passive ocean data and yield <span class="hlt">global</span> average mixed-layer standing stocks of 0.44 Pg C for Cphyto and 1.9 Pg for POC. CALIOP-based Cphyto and POC data exhibit <span class="hlt">global</span> distributions and seasonal variations consistent with ocean plankton ecology. Our findings support the use of spaceborne lidar measurements for advancing understanding of <span class="hlt">global</span> plankton systems.</p> <div class="credits"> <p class="dwt_author">Behrenfeld, Michael J.; Hu, Yongxiang; Hostetler, Chris A.; Dall'Olmo, Giorgio; Rodier, Sharon D.; Hair, John W.; Trepte, Charles R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">164</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21852573"> <span id="translatedtitle">Permafrost <span class="hlt">carbon</span>-climate feedbacks accelerate <span class="hlt">global</span> warming.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Permafrost soils contain enormous amounts of organic <span class="hlt">carbon</span>, which could act as a positive feedback to <span class="hlt">global</span> climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost <span class="hlt">carbon</span> dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil <span class="hlt">carbon</span> from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil <span class="hlt">carbon</span> stocks, to explore the potential for <span class="hlt">carbon</span>-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in <span class="hlt">carbon</span> due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of <span class="hlt">carbon</span> by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent. PMID:21852573</p> <div class="credits"> <p class="dwt_author">Koven, Charles D; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-08-18</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">165</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1804788"> <span id="translatedtitle">Dealing with Scale and Adaptation of <span class="hlt">Global</span> Web Services <span class="hlt">Management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Service Oriented Architectures (SOA) are becoming the prevalent approach for realizing modern services and systems. SOA offers superior support for autonomy (decoupling) and heterogeneity compared to previous generation middleware systems, resulting in more scalable and adaptive solutions. However, SOA have not adequately addressed <span class="hlt">management</span>, while traditional <span class="hlt">management</span> solutions do not sufficiently scale to address the needs of (<span class="hlt">global</span>) Web services.</p> <div class="credits"> <p class="dwt_author">William Vambenepe; Carol Thompson; Vanish Talwar; Sandro Rafaeli; Bryan Murray; Dejan S. Milojicic; Subu Iyer; Keith I. Farkas; Martin F. Arlitt</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">166</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37831035"> <span id="translatedtitle">The need for <span class="hlt">global</span> <span class="hlt">managers</span>: a business necessity</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Multinational corporations need to recognize the importance of international <span class="hlt">management</span> development. Formal human resource programs, tied to business objectives, need to be established. Ignoring the importance of <span class="hlt">global</span> <span class="hlt">management</span> development leads to missed market opportunities. Understanding and support at the executive level is a necessity. Human resource information systems need to include international data elements to help in the identification</p> <div class="credits"> <p class="dwt_author">Mary Beth Stanek</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">167</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58431265"> <span id="translatedtitle">Sustainable Practices in Watershed <span class="hlt">Management</span>: <span class="hlt">Global</span> Experiences</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Watershed <span class="hlt">management</span> is considered by scholars as well as practitioners across the world as the most appropriate approach to ensure the preservation, conservation and sustainability of all land based resources and for improving the living conditions of the people in uplands and low lands. More over watershed <span class="hlt">management</span> technologies have proven to be effective for mitigating erosion on sloping land,</p> <div class="credits"> <p class="dwt_author">Sudha Menon</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">168</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6596587"> <span id="translatedtitle">Propagation of uncertainty in <span class="hlt">carbon</span> emission scenarios through the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The authors used the GLOCO model, which is a <span class="hlt">carbon</span> cycling model that considers seven terrestrial biomes, two oceans and one atmosphere, to evaluate the rise in atmospheric CO[sub 2] concentration, (pCO[sub 2]) and the partitioning of <span class="hlt">carbon</span> to the <span class="hlt">global</span> compartments (ocean, atmosphere and terrestrial) as a function of time for a number of possible anthropogenic <span class="hlt">carbon</span> emission scenarios, based on different energy policies as developed by the Energy Modeling Forum (EMF-12). The authors then evaluated the possible uncertainty in <span class="hlt">carbon</span> emission scenarios and the propagation of this uncertainty in <span class="hlt">carbon</span> emission scenarios and the propagation of this uncertainty throughout the model to obtain an envelope for the rise in pCO[sub 2]. Large fluctuations in the input signal are smoothed by the <span class="hlt">carbon</span> cycle, resulting in more than a four-fold reduction in uncertainty in the output signal (pCO[sub 2]). In addition, they looked at the effect that other model variables have on the pCO[sub 2] envelope, specifically the ratio of <span class="hlt">carbon</span> to nitrogen in the emissions. The <span class="hlt">carbon</span> to nitrogen ratio (C:N) will vary throughout the next century depending on the mix on energy sources chosen. More nitrogen in the emissions can produce a cofertilization effect in the terrestrial biomes, which would lead to sequestration of additional <span class="hlt">carbon</span>. The uncertainty in C:N will enlarge the pCO[sub 2] uncertainty envelope by up to 20 ppm.</p> <div class="credits"> <p class="dwt_author">Keller, A.A.; Goldstein, R.A. (Electric Power Research Inst., Palo Alto, CA (United States))</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">169</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22internationalisation%22&id=EJ935775"> <span id="translatedtitle">Developing <span class="hlt">Global</span> Perspectives through International <span class="hlt">Management</span> Degrees</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Internationalisation has risen high on the agenda of many higher education institutions, and the need to develop graduates with <span class="hlt">global</span> perspectives is well recognised. Much attention has been given to institutional strategies for internationalisation, international students, and dealing with culturally diverse learning styles. To date, however,…</p> <div class="credits"> <p class="dwt_author">Brookes, Maureen; Becket, Nina</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">170</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37601013"> <span id="translatedtitle">Forest <span class="hlt">Management</span>, Conservation, and <span class="hlt">Global</span> Timber Markets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This article develops a <span class="hlt">global</span> timber market model which captures how timber supply reacts to future predicted increases in the demand for timber. Higher future demand is expected to increase prices, increase investments in regeneration, increase establishment of plantations, and expand output. Dynamic market responses imply a greater reliance on plantations in productive regions, allowing large areas of natural forest</p> <div class="credits"> <p class="dwt_author">Brent Sohngen; Robert Mendelsohn; Roger Sedjo</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">171</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA338727"> <span id="translatedtitle"><span class="hlt">Global</span> Protection Against Limited Strikes <span class="hlt">Management</span> Strategy.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This paper describes specifics of the OSD oversight process for the acquisition of the <span class="hlt">Global</span> Protection Against Limited Strikes (GPALS) system. Overview and Segment/Element Status At the July 12 SSC/CSC Review, the SSC/CSC agreed to examine a GPALS overs...</p> <div class="credits"> <p class="dwt_author">D. M. Yockey</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">172</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pmforum.org/library/papers/1998/pells1.pdf"> <span id="translatedtitle"><span class="hlt">Global</span> Tides of Change: Significant Recent Events and Trends Affecting <span class="hlt">Globalization</span> of the Project <span class="hlt">Management</span> Profession</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">During the past year, several significant economic, industrial and geopolitical events occurred in the world which might have lasting effects on the project <span class="hlt">management</span> profession. Advances continued in computing and communications technologies, with Internet and worldwide web- based commercial activity growing rapidly. Within the project <span class="hlt">management</span> profession, <span class="hlt">global</span> cooperation increased, while PMI's relations with government agencies expanded, along with the</p> <div class="credits"> <p class="dwt_author">David Pells</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">173</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/59605144"> <span id="translatedtitle">The sustainability of <span class="hlt">carbon</span> sinks in forests; studying the sensitivity of forest <span class="hlt">carbon</span> sinks in the Netherlands, Europe and the Amazon to climate and <span class="hlt">management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The aim of this study was to assess the sustainability of <span class="hlt">carbon</span> sinks in <span class="hlt">managed</span> or unmanaged forests in Europe and Amazonia. First, the functioning and seasonal variability of the <span class="hlt">carbon</span> sink strength in forest ecosystems was analysed in relation toclimate variability. To this end, existing <span class="hlt">global</span> data sets of ecosystem fluxes measured by eddy correlation were analysed. A simple,</p> <div class="credits"> <p class="dwt_author">B. Kruijt; K. Kramer; Wyngaert van den I. J. J; R. Groen; J. A. Elbers; W. W. P. Jans</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">174</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5271302"> <span id="translatedtitle"><span class="hlt">Global</span> <span class="hlt">carbon</span> dioxide emission to the atmosphere by volcanoes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Global</span> emission of <span class="hlt">carbon</span> dioxide by subaerial volcanoes is calculated, using CO{sub 2}/SO{sub 2} from volcanic gas analyses and SO{sub 2} flux, to be 34 {plus minus} 24 {times} 10{sup 12} g CO{sub 2}/yr from passive degassing and 31 {plus minus} 22 {times} 10{sup 12} g CO{sub 2}/yr from eruptions. Volcanic CO{sub 2} presently represents only 0.22% of anthropogenic emissions but may have contributed to significant greenhouse' effects at times in Earth history. Models of climate response to CO{sub 2} increases may be tested against geological data.</p> <div class="credits"> <p class="dwt_author">Williams, S.N.; Schaefer, S.J. (Arizona State Univ., Tempe (United States)); Calvache V., M.L. (Arizona State Univ., Tempe (United States) Observatorio Vulcanologico de Colombia, Pasto (Colombia)); Lopez, D. (Univ. of British Columbia, Vancouver (Canada))</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">175</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20184162"> <span id="translatedtitle">[Mathematical model of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle in the biosphere].</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Changes in the atmospheric <span class="hlt">carbon</span> dioxide concentration, temperatures of the atmosphere, and parameters of land biota as a result of anthropogenic <span class="hlt">carbon</span> dioxide emissions, forest clearance, and soil erosion are calculated in a spatial mathematical model of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle in the biosphere. Restrictions on the CO2 emissions to the atmosphere are deduced from the requirements of Kyoto Protocol to The UN Framework Convention on Climate Change and other scenarios. An ability is revealed for the atmospheric CO2 concentration to grow fast, which arises from a number of emerging and developing countries with large population and high CO2 emission rates and which surpasses greatly the effect of growth retardation due to Kyoto Protocol. Those countries' role will become mostly apparent to the year of 2060 and later. Russia has shown to be in an exclusive position relative to other countries: ecosystems of its territory absorb more of the atmospheric <span class="hlt">carbon</span> dioxide than does any other country, and the inductrial emissions from its territory are practically equal to the absorption by ecosystems. PMID:20184162</p> <div class="credits"> <p class="dwt_author">Tarko, A M</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">176</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/760546"> <span id="translatedtitle"><span class="hlt">Global</span> Distribution of Total Inorganic <span class="hlt">Carbon</span> and Total Alkalinity below the Deepest Winter Mixed Layer Depths</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Modeling the <span class="hlt">global</span> ocean-atmosphere <span class="hlt">carbon</span> dioxide system is becoming increasingly important to greenhouse gas policy. These models require initialization with realistic three-dimensional (3-D) oceanic <span class="hlt">carbon</span> fields. This report presents an approach to establishing these initial conditions from an extensive <span class="hlt">global</span> database of ocean <span class="hlt">carbon</span> dioxide (CO{sub 2}) system measurements and well-developed interpolation methods.</p> <div class="credits"> <p class="dwt_author">Goyet, C.; Healy, R.; Ryan, J.; Kozyr, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">177</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/15010069"> <span id="translatedtitle">Understanding <span class="hlt">Carbon</span> Sequestration Options in the United States: Capabilities of a <span class="hlt">Carbon</span> <span class="hlt">Management</span> Geographic Information System</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">While one can discuss various sequestration options at a national or <span class="hlt">global</span> level, the actual <span class="hlt">carbon</span> <span class="hlt">management</span> approach is highly site specific. In response to the need for a better understanding of <span class="hlt">carbon</span> <span class="hlt">management</span> options, Battelle in collaboration with Mitsubishi Corporation, has developed a state-of-the-art Geographic Information System (GIS) focused on <span class="hlt">carbon</span> capture and sequestration opportunities in the United States. The GIS system contains information (e.g., fuel type, location, vintage, ownership, rated capacity) on all fossil-fired generation capacity in the Untied States with a rated capacity of at least 100 MW. There are also data on other CO2 sources (i.e., natural domes, gas processing plants, etc.) and associated pipelines currently serving enhanced oil recovery (EOR) projects. Data on current and prospective CO2 EOR projects include location, operator, reservoir and oil characteristics, production, and CO2 source. The system also contains information on priority deep saline aquifers and coal bed methane basins with potential for sequestering CO2. The GIS application not only enables data storage, flexible map making, and visualization capabilities, but also facilitates the spatial analyses required to solve complex linking of CO2 sources with appropriate and cost-effective sinks. A variety of screening criteria (spatial, geophysical, and economic) can be employed to identify sources and sinks most likely amenable to deployment of <span class="hlt">carbon</span> capture and sequestration systems. The system is easily updateable, allowing it to stay on the leading edge of capture and sequestration technology as well as the ever-changing business landscape. Our paper and presentation will describe the development of this GIS and demonstrate its uses for <span class="hlt">carbon</span> <span class="hlt">management</span> analysis.</p> <div class="credits"> <p class="dwt_author">Dahowski, Robert T.; Dooley, James J.; Brown, Daryl R.; Mizoguchi, Akiyoshi; Shiozaki, Mai</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-04-03</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">178</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013GPC...100...51H"> <span id="translatedtitle">The phase relation between atmospheric <span class="hlt">carbon</span> dioxide and <span class="hlt">global</span> temperature</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Using data series on atmospheric <span class="hlt">carbon</span> dioxide and <span class="hlt">global</span> temperatures we investigate the phase relation (leads/lags) between these for the period January 1980 to December 2011. Ice cores show atmospheric CO2 variations to lag behind atmospheric temperature changes on a century to millennium scale, but modern temperature is expected to lag changes in atmospheric CO2, as the atmospheric temperature increase since about 1975 generally is assumed to be caused by the modern increase in CO2. In our analysis we use eight well-known datasets: 1) <span class="hlt">globally</span> averaged well-mixed marine boundary layer CO2 data, 2) HadCRUT3 surface air temperature data, 3) GISS surface air temperature data, 4) NCDC surface air temperature data, 5) HadSST2 sea surface data, 6) UAH lower troposphere temperature data series, 7) CDIAC data on release of anthropogene CO2, and 8) GWP data on volcanic eruptions. Annual cycles are present in all datasets except 7) and 8), and to remove the influence of these we analyze 12-month averaged data. We find a high degree of co-variation between all data series except 7) and 8), but with changes in CO2 always lagging changes in temperature. The maximum positive correlation between CO2 and temperature is found for CO2 lagging 11-12 months in relation to <span class="hlt">global</span> sea surface temperature, 9.5-10 months to <span class="hlt">global</span> surface air temperature, and about 9 months to <span class="hlt">global</span> lower troposphere temperature. The correlation between changes in ocean temperatures and atmospheric CO2 is high, but do not explain all observed changes.</p> <div class="credits"> <p class="dwt_author">Humlum, Ole; Stordahl, Kjell; Solheim, Jan-Erik</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">179</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6145594"> <span id="translatedtitle">Forest <span class="hlt">management</span> and agroforestry to sequester and conserve atmospheric <span class="hlt">carbon</span> dioxide</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">As part of the <span class="hlt">Global</span> Change Research Program of the United States Environmental Protection Agency (USEPA), an assessment was initiated in 1990 to evaluate forest establishment and <span class="hlt">management</span> options to sequester <span class="hlt">carbon</span> and reduce the accumulation of greenhouse gases in the atmosphere. Three specific objectives are to: identify site-suitable technologies and practices that could be utilized to <span class="hlt">manage</span> forests and agroforestry systems to sequester and conserve <span class="hlt">carbon</span>; assess available data on site-level costs of promising forest and agroforestry <span class="hlt">management</span> practices; evaluate estimates of technically suitable land in forested nations and biomes of the world to help meet the Noordwijk forestation targets.</p> <div class="credits"> <p class="dwt_author">Schriwder, P.E.; Dixon, R.K.; Winjum, J.K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">180</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37953673"> <span id="translatedtitle"><span class="hlt">Global</span> Quality <span class="hlt">Management</span>: A Research Focus</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This study looks at the purchasing of imported industrial products among <span class="hlt">managers</span> in a newly industrializing country (NIC). The authors propose that the industrial marketing requirements to buyers in an NIC, given their mix of environmental and organizational conditions, are different from those in advanced nations. South Korea, in addition to being a representative NIC, is interesting from the standpoint</p> <div class="credits"> <p class="dwt_author">Kee Young Kim; Dae Ryun CHANG</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_9 div --> <div id="page_10" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">181</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/31416168"> <span id="translatedtitle"><span class="hlt">Management</span> of Prostate Cancer: <span class="hlt">Global</span> Strategies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">As in any malignancy, the <span class="hlt">management</span> of prostate cancer (pCA) is highly dependent on stage and grade, as well as on the patient's condition. The European Association of Urology (EAU) guidelines on the primary treatment of pCA advise watchful waiting, radical prostatectomy, radiotherapy, hormonal treatment, or a combination of various therapies, depending on the stage and grade of the tumour,</p> <div class="credits"> <p class="dwt_author">Antonio Alcaraz</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">182</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eu-acme.org/europeanurology/upload_articles/Alcaraz.pdf"> <span id="translatedtitle"><span class="hlt">Management</span> of Prostate Cancer: <span class="hlt">Global</span> Strategies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">As in any malignancy, the <span class="hlt">management</span> of prostate cancer (pCA) is highly dependent on stage and grade, as well as on the patient's con- dition. The European Association of Urology (EAU) guidelines on the primary treatment of pCA advise watchful waiting, radical prostatec- tomy, radiotherapy, hormonal treatment, or a combination of various therapies, depending on the stage and grade of</p> <div class="credits"> <p class="dwt_author">Antonio Alcaraz</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">183</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26919121"> <span id="translatedtitle"><span class="hlt">Managing</span> the <span class="hlt">global</span> supply chain:a SME perspective</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper aims to highlight the underlying factors that contribute to the effective <span class="hlt">management</span> of a <span class="hlt">global</span> supply chain from the perspective of small- and medium-sized enterprises (SMEs). <span class="hlt">Global</span> competition has placed considerable pressure on SMEs to improve on cost and efficiency, to provide value-added services to meet market demand, leading to a need for them to re-examine their competitive</p> <div class="credits"> <p class="dwt_author">E. N. Tan; G. Smith; M. Saad</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">184</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/fq1530611j245646.pdf"> <span id="translatedtitle">Women, <span class="hlt">Management</span> and <span class="hlt">Globalization</span> in the Middle East</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper provides new theoretical insights into the interconnections and relationships between \\u0009women, <span class="hlt">management</span> and <span class="hlt">globalization</span>\\u000a in the Middle East (ME). The discussion is positioned within broader <span class="hlt">globalization</span> debates about women’s social status in\\u000a ME economies. Based on case study evidence and the UN datasets, the article critiques social, cultural and economic reasons\\u000a for women’s limited advancement in the public</p> <div class="credits"> <p class="dwt_author">Beverly Dawn Metcalfe</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">185</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://dx.doi.org/10.1007/s10021-006-9013-8"> <span id="translatedtitle">Plumbing the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle: Integrating inland waters into the terrestrial <span class="hlt">carbon</span> budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">Because freshwater covers such a small fraction of the Earth's surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the <span class="hlt">carbon</span> cycle at either <span class="hlt">global</span> or regional scales. By taking published estimates of gas exchange, sediment accumulation, and <span class="hlt">carbon</span> transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y-1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y-1 is delivered to the oceans, roughly equally as inorganic and organic <span class="hlt">carbon</span>. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net <span class="hlt">carbon</span> fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described. ?? 2007 Springer Science+Business Media, LLC.</p> <div class="credits"> <p class="dwt_author">Cole, J. J.; Prairie, Y. T.; Caraco, N. F.; McDowell, W. H.; Tranvik, L. J.; Striegl, R. G.; Duarte, C. M.; Kortelainen, P.; Downing, J. A.; Middelburg, J. J.; Melack, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">186</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013NatCC...3..909W"> <span id="translatedtitle"><span class="hlt">Global</span> soil <span class="hlt">carbon</span> projections are improved by modelling microbial processes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Society relies on Earth system models (ESMs) to project future climate and <span class="hlt">carbon</span> (C) cycle feedbacks. However, the soil C response to climate change is highly uncertain in these models and they omit key biogeochemical mechanisms. Specifically, the traditional approach in ESMs lacks direct microbial control over soil C dynamics. Thus, we tested a new model that explicitly represents microbial mechanisms of soil C cycling on the <span class="hlt">global</span> scale. Compared with traditional models, the microbial model simulates soil C pools that more closely match contemporary observations. It also projects a much wider range of soil C responses to climate change over the twenty-first century. <span class="hlt">Global</span> soils accumulate C if microbial growth efficiency declines with warming in the microbial model. If growth efficiency adapts to warming, the microbial model projects large soil C losses. By comparison, traditional models project modest soil C losses with <span class="hlt">global</span> warming. Microbes also change the soil response to increased C inputs, as might occur with CO2 or nutrient fertilization. In the microbial model, microbes consume these additional inputs; whereas in traditional models, additional inputs lead to C storage. Our results indicate that ESMs should simulate microbial physiology to more accurately project climate change feedbacks.</p> <div class="credits"> <p class="dwt_author">Wieder, William R.; Bonan, Gordon B.; Allison, Steven D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">187</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40877047"> <span id="translatedtitle"><span class="hlt">Global</span> learning on <span class="hlt">carbon</span> capture and storage: A call for strong international cooperation on CCS demonstration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Closing the gap between <span class="hlt">carbon</span> dioxide capture and storage (CCS) rhetoric and technical progress is critically important to <span class="hlt">global</span> climate mitigation efforts. Developing strong international cooperation on CCS demonstration with <span class="hlt">global</span> coordination, transparency, cost-sharing and communication as guiding principles would facilitate efficient and cost-effective collaborative <span class="hlt">global</span> learning on CCS, would allow for improved understanding of the <span class="hlt">global</span> capacity and applicability</p> <div class="credits"> <p class="dwt_author">Heleen de Coninck; Jennie C. Stephens; Bert Metz</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">188</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22959898"> <span id="translatedtitle">Soil salinity decreases <span class="hlt">global</span> soil organic <span class="hlt">carbon</span> stocks.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic <span class="hlt">carbon</span> (SOC) reflects the balance between <span class="hlt">carbon</span> (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted <span class="hlt">Carbon</span> model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47tSOCha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future <span class="hlt">global</span> SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. PMID:22959898</p> <div class="credits"> <p class="dwt_author">Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-05</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">189</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013BGD....1015107C"> <span id="translatedtitle">Phenology as a strategy for <span class="hlt">carbon</span> optimality: a <span class="hlt">global</span> model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Phenology is essential to our understanding of biogeochemical cycles and the climate system. We develop a <span class="hlt">global</span> mechanistic model of leaf phenology based on the hypothesis that phenology is a strategy for optimal <span class="hlt">carbon</span> gain at the canopy level so that trees adjust leaf gains and losses in response to environmental factors such as light, temperature and soil moisture, to achieve maximum <span class="hlt">carbon</span> assimilation. We fit this model to five years of satellite observations of leaf area index (LAI) using a Bayesian fitting algorithm. We show that our model is able to reproduce phenological patterns for all vegetation types and use it to explore variations in growing season length and the climate factors that limit leaf growth for different biomes. Phenology in wet tropical areas is limited by leaf age physiological constraints while at higher latitude leaf seasonality is limited by low temperature and light availability. Leaf growth in grassland regions is limited by water availability but often in combination with other factors. This model will advance the current understanding of phenology for ecosystem <span class="hlt">carbon</span> models and our ability to predict future phenological behaviour.</p> <div class="credits"> <p class="dwt_author">Caldararu, S.; Purves, D. W.; Palmer, P. I.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">190</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013BGeo...10.1983W"> <span id="translatedtitle"><span class="hlt">Global</span> ocean <span class="hlt">carbon</span> uptake: magnitude, variability and trends</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">globally</span> integrated sea-air anthropogenic <span class="hlt">carbon</span> dioxide (CO2) flux from 1990 to 2009 is determined from models and data-based approaches as part of the Regional <span class="hlt">Carbon</span> Cycle Assessment and Processes (RECCAP) project. Numerical methods include ocean inverse models, atmospheric inverse models, and ocean general circulation models with parameterized biogeochemistry (OBGCMs). The median value of different approaches shows good agreement in average uptake. The best estimate of anthropogenic CO2 uptake for the time period based on a compilation of approaches is -2.0 Pg C yr-1. The interannual variability in the sea-air flux is largely driven by large-scale climate re-organizations and is estimated at 0.2 Pg C yr-1 for the two decades with some systematic differences between approaches. The largest differences between approaches are seen in the decadal trends. The trends range from -0.13 (Pg C yr-1) decade-1 to -0.50 (Pg C yr-1) decade-1 for the two decades under investigation. The OBGCMs and the data-based sea-air CO2 flux estimates show appreciably smaller decadal trends than estimates based on changes in <span class="hlt">carbon</span> inventory suggesting that methods capable of resolving shorter timescales are showing a slowing of the rate of ocean CO2 uptake. RECCAP model outputs for five decades show similar differences in trends between approaches.</p> <div class="credits"> <p class="dwt_author">Wanninkhof, R.; Park, G.-H.; Takahashi, T.; Sweeney, C.; Feely, R.; Nojiri, Y.; Gruber, N.; Doney, S. C.; McKinley, G. A.; Lenton, A.; Le Quéré, C.; Heinze, C.; Schwinger, J.; Graven, H.; Khatiwala, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">191</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFM.B43B0460M"> <span id="translatedtitle">Agricultural <span class="hlt">Management</span> Practices Explain Variation in <span class="hlt">Global</span> Yield Gaps of Major Crops</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The continued expansion and intensification of agriculture are key drivers of <span class="hlt">global</span> environmental change. Meeting a doubling of food demand in the next half-century will further induce environmental change, requiring either large cropland expansion into <span class="hlt">carbon</span>- and biodiversity-rich tropical forests or increasing yields on existing croplands. Closing the “yield gaps” between the most and least productive farmers on current agricultural lands is a necessary and major step towards preserving natural ecosystems and meeting future food demand. Here we use <span class="hlt">global</span> climate, soils, and cropland datasets to quantify yield gaps for major crops using equal-area climate analogs. Consistent with previous studies, we find large yield gaps for many crops in Eastern Europe, tropical Africa, and parts of Mexico. To analyze the drivers of yield gaps, we collected sub-national agricultural <span class="hlt">management</span> data and built a <span class="hlt">global</span> dataset of fertilizer application rates for over 160 crops. We constructed empirical crop yield models for each climate analog using the <span class="hlt">global</span> <span class="hlt">management</span> information for 17 major crops. We find that our climate-specific models explain a substantial amount of the <span class="hlt">global</span> variation in yields. These models could be widely applied to identify <span class="hlt">management</span> changes needed to close yield gaps, analyze the environmental impacts of agricultural intensification, and identify climate change adaptation techniques.</p> <div class="credits"> <p class="dwt_author">Mueller, N. D.; Gerber, J. S.; Ray, D. K.; Ramankutty, N.; Foley, J. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">192</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/244091"> <span id="translatedtitle"><span class="hlt">Management</span>: <span class="hlt">Global</span> positioning and wireless dispatching</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Over the last several years, my company has been supplying many service companies with wireless dispatching solutions. Recently the impact of the system has been greatly increased with the introduction of a GPS (<span class="hlt">Global</span> Position Systems) interface. This adds visual recognition as to the whereabouts of each vehicle within the customer service area. The only equipment required in the field for GPS is a transmit/receive device and a wireless modem, one mounted out of the way in the vehicle (under the seat) and a {open_quotes}hockey puck{close_quotes} size unit on the roof of the vehicle. The GPS received unit and wireless modem are used to retrieve the longitude, latitude and ground speed coordinates and transmit them back to the host system.</p> <div class="credits"> <p class="dwt_author">Wood, M. [ICC International, Cedar Knolls, NJ (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">193</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB95217725"> <span id="translatedtitle">Role of Soil <span class="hlt">Management</span> in Sequestering Soil <span class="hlt">Carbon</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Soils are an important component of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle and serve as a large reservoir of terrestrial <span class="hlt">carbon</span>. The amount of <span class="hlt">carbon</span> in any soil is a function of the soil forming factors including: climate, relief, organisms, parent material and time. I...</p> <div class="credits"> <p class="dwt_author">M. G. Johnson</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">194</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53335196"> <span id="translatedtitle">Air-sea <span class="hlt">carbon</span> dioxide exchange in the North Pacific Subtropical Gyre: Impplications for the <span class="hlt">global</span> <span class="hlt">carbon</span> budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The role of the ocean as a sink for anthropogenic <span class="hlt">carbon</span> dioxide is a subject of intensive investigation and debate. Interest in this process is driven by the need to predict the rate of future increase of atmospheric <span class="hlt">carbon</span> dioxide and subsequent <span class="hlt">global</span> climatic change. Although estimates of the magnitude of the oceanic sink for <span class="hlt">carbon</span> dioxide appear to be</p> <div class="credits"> <p class="dwt_author">Christopher D. Winn; Fred T. Mackenzie; Christopher J. Carrilo; Christopher L. Sabine; David M. Karl</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">195</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48906361"> <span id="translatedtitle">Air-sea <span class="hlt">carbon</span> dioxide exchange in the North Pacific Subtropical Gyre: Implications for the <span class="hlt">Global</span> <span class="hlt">Carbon</span> Budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The role of the ocean as a sink for anthropogenic <span class="hlt">carbon</span> dioxide is a subject of intensive investigation and debate. Interest in this process is driven by the need to predict the rate of future increase of atmospheric <span class="hlt">carbon</span> dioxide and subsequent <span class="hlt">global</span> climatic change. Although estimates of the magnitude of the oceanic sink for <span class="hlt">carbon</span> dioxide appear to be</p> <div class="credits"> <p class="dwt_author">Christopher D. Winn; Fred T. Mackenzie; Christopher J. Carrillo; Christopher L. Sabine; David M. Karl</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">196</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.treasury.gov.au/lowpollutionfuture/consultants_report/downloads/Global_Forestation.pdf"> <span id="translatedtitle">Costs and <span class="hlt">Carbon</span> Benefits of <span class="hlt">Global</span> Forestation and Reduced Deforestation in Response to a <span class="hlt">Carbon</span> Market 1</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper reports on the <span class="hlt">global</span> potential for <span class="hlt">carbon</span> sequestration in forest plantations, and the reduction of <span class="hlt">carbon</span> emissions from deforestation, in response to four <span class="hlt">carbon</span> price scenarios from 2000 to 2100. The world forest sector was disaggregated into ten regions, four largely temperate, developed regions: the European Union, Oceania, Russia, and the United States; and six developing, mostly tropical,</p> <div class="credits"> <p class="dwt_author">Jayant Sathaye; Peter Chan</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">197</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40914142"> <span id="translatedtitle">Appropriate measures for conservation of terrestrial <span class="hlt">carbon</span> stocks—Analysis of trends of forest <span class="hlt">management</span> in Southeast Asia</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The 21st century has brought new challenges for forest <span class="hlt">management</span> at a time when <span class="hlt">global</span> climate change is becoming increasingly apparent. Additional to various goods and services being provided to human beings, forest ecosystems are a large store of terrestrial <span class="hlt">carbon</span> and account for a major part of the <span class="hlt">carbon</span> exchange between the atmosphere and the land surface. Depending on</p> <div class="credits"> <p class="dwt_author">Nophea Kim Phat; Wolfgang Knorr; Sophanarith Kim</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">198</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23776542"> <span id="translatedtitle"><span class="hlt">Managing</span> for interactions between local and <span class="hlt">global</span> stressors of ecosystems.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary"><span class="hlt">Global</span> stressors, including climate change, are a major threat to ecosystems, but they cannot be halted by local actions. Ecosystem <span class="hlt">management</span> is thus attempting to compensate for the impacts of <span class="hlt">global</span> stressors by reducing local stressors, such as overfishing. This approach assumes that stressors interact additively or synergistically, whereby the combined effect of two stressors is at least the sum of their isolated effects. It is not clear, however, how <span class="hlt">management</span> should proceed for antagonistic interactions among stressors, where multiple stressors do not have an additive or greater impact. Research to date has focussed on identifying synergisms among stressors, but antagonisms may be just as common. We examined the effectiveness of <span class="hlt">management</span> when faced with different types of interactions in two systems--seagrass and fish communities--where the <span class="hlt">global</span> stressor was climate change but the local stressors were different. When there were synergisms, mitigating local stressors delivered greater gains, whereas when there were antagonisms, <span class="hlt">management</span> of local stressors was ineffective or even degraded ecosystems. These results suggest that reducing a local stressor can compensate for climate change impacts if there is a synergistic interaction. Conversely, if there is an antagonistic interaction, <span class="hlt">management</span> of local stressors will have the greatest benefits in areas of refuge from climate change. A balanced research agenda, investigating both antagonistic and synergistic interaction types, is needed to inform <span class="hlt">management</span> priorities. PMID:23776542</p> <div class="credits"> <p class="dwt_author">Brown, Christopher J; Saunders, Megan I; Possingham, Hugh P; Richardson, Anthony J</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-12</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">199</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002AGUFM.B51A0703L"> <span id="translatedtitle"><span class="hlt">Global</span> Biogenic Emission of <span class="hlt">Carbon</span> Dioxide from Landfills</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Human-induced increases in the atmospheric concentrations of greenhouse gas components have been underway over the past century and are expected to drive climate change in the coming decades. <span class="hlt">Carbon</span> dioxide was responsible for an estimated 55 % of the antropogenically driven radiactive forcing of the atmosphere in the 1980s and is predicted to have even greater importance over the next century (Houghton et al., 1990). A highly resolved understanding of the sources and sinks of atmospheric CO2, and how they are affected by climate and land use, is essential in the analysis of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle and how it may be impacted by human activities. Landfills are biochemical reactors that produce CH4 and CO2 emissions due to anaerobic digestion of solid urban wastes. Estimated <span class="hlt">global</span> CH4 emission from landfills is about 44 millions tons per year and account for a 7.4 % of all CH4 sources (Whiticar, 1989). Observed CO2/CH4 molar ratios from landfill gases lie within the range of 0.7-1.0; therefore, an estimated <span class="hlt">global</span> biogenic emission of CO2 from landfills could reach levels of 11.2-16 millions tons per year. Since biogas extraction systems are installed for extracting, purifying and burning the landfill gases, most of the biogenic gas emission to the atmosphere from landfills occurs through the surface environment in a diffuse and disperse form, also known as non-controlled biogenic emission. Several studies of non-controlled biogenic gas emission from landfills showed that CO2/CH4 weight ratios of surface landfill gases, which are directly injected into the atmosphere, are about 200-300 times higher than those observed in the landfill wells, which are usually collected and burned by gas extraction systems. This difference between surface and well landfill gases is mainly due to bacterial oxidation of the CH4 to CO2 inducing higher CO2/CH4 ratios for surface landfill gases than those well landfill gases. Taking into consideration this observation, the <span class="hlt">global</span> biogenic CO2 emission from landfills could be estimated about 8.8-13.2\\times103 million tons per year, equivalent to a 0.04-0.06 % of the fossil fuel emission of CO2.</p> <div class="credits"> <p class="dwt_author">Lima, R.; Nolasco, D.; Meneses, W.; Salazar, J.; Hernández, P.; Pérez, N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">200</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58460476"> <span id="translatedtitle">How to Assess <span class="hlt">Global</span> <span class="hlt">Management</span> Competencies: An Investigation of Existing Instruments</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Managers</span> and employees need <span class="hlt">global</span> leadership competencies in order to operate effectively in international business. In order to prepare both <span class="hlt">managers</span> and employees for operating in the <span class="hlt">global</span> arena an instrument measuring <span class="hlt">global</span> leadership competencies would be very useful. In this article we design a framework for systematically assessing measurement instruments designed to measure <span class="hlt">Global</span> <span class="hlt">Management</span> Competencies (GMC). Based on</p> <div class="credits"> <p class="dwt_author">Joost Buecker; Erik Poutsma</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_10 div --> <div id="page_11" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">201</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3774741"> <span id="translatedtitle">Potential of <span class="hlt">Global</span> Cropland Phytolith <span class="hlt">Carbon</span> Sink from Optimization of Cropping System and Fertilization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The occlusion of <span class="hlt">carbon</span> (C) by phytoliths, the recalcitrant silicified structures deposited within plant tissues, is an important persistent C sink mechanism for croplands and other grass-dominated ecosystems. By constructing a silica content-phytolith content transfer function and calculating the magnitude of phytolith C sink in <span class="hlt">global</span> croplands with relevant crop production data, this study investigated the present and potential of phytolith C sinks in <span class="hlt">global</span> croplands and its contribution to the cropland C balance to understand the cropland C cycle and enhance long-term C sequestration in croplands. Our results indicate that the phytolith sink annually sequesters 26.35±10.22 Tg of <span class="hlt">carbon</span> dioxide (CO2) and may contribute 40±18% of the <span class="hlt">global</span> net cropland soil C sink for 1961–2100. Rice (25%), wheat (19%) and maize (23%) are the dominant contributing crop species to this phytolith C sink. Continentally, the main contributors are Asia (49%), North America (17%) and Europe (16%). The sink has tripled since 1961, mainly due to fertilizer application and irrigation. Cropland phytolith C sinks may be further enhanced by adopting cropland <span class="hlt">management</span> practices such as optimization of cropping system and fertilization.</p> <div class="credits"> <p class="dwt_author">Song, Zhaoliang; Parr, Jeffrey F.; Guo, Fengshan</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">202</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24066067"> <span id="translatedtitle">Potential of <span class="hlt">global</span> cropland phytolith <span class="hlt">carbon</span> sink from optimization of cropping system and fertilization.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The occlusion of <span class="hlt">carbon</span> (C) by phytoliths, the recalcitrant silicified structures deposited within plant tissues, is an important persistent C sink mechanism for croplands and other grass-dominated ecosystems. By constructing a silica content-phytolith content transfer function and calculating the magnitude of phytolith C sink in <span class="hlt">global</span> croplands with relevant crop production data, this study investigated the present and potential of phytolith C sinks in <span class="hlt">global</span> croplands and its contribution to the cropland C balance to understand the cropland C cycle and enhance long-term C sequestration in croplands. Our results indicate that the phytolith sink annually sequesters 26.35±10.22 Tg of <span class="hlt">carbon</span> dioxide (CO2) and may contribute 40±18% of the <span class="hlt">global</span> net cropland soil C sink for 1961-2100. Rice (25%), wheat (19%) and maize (23%) are the dominant contributing crop species to this phytolith C sink. Continentally, the main contributors are Asia (49%), North America (17%) and Europe (16%). The sink has tripled since 1961, mainly due to fertilizer application and irrigation. Cropland phytolith C sinks may be further enhanced by adopting cropland <span class="hlt">management</span> practices such as optimization of cropping system and fertilization. PMID:24066067</p> <div class="credits"> <p class="dwt_author">Song, Zhaoliang; Parr, Jeffrey F; Guo, Fengshan</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-16</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">203</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/986431"> <span id="translatedtitle">A <span class="hlt">global</span> ocean <span class="hlt">carbon</span> climatology: Results from <span class="hlt">Global</span> Data Analysis Project (GLODAP)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">During the 1990s, ocean sampling expeditions were carried out as part of the World Ocean Circulation Experiment (WOCE), the Joint <span class="hlt">Global</span> Ocean Flux Study (JGOFS), and the Ocean Atmosphere <span class="hlt">Carbon</span> Exchange Study (OACES). Subsequently, a group of U.S. scientists synthesized the data into easily usable and readily available products. This collaboration is known as the <span class="hlt">Global</span> Ocean Data Analysis Project (GLODAP). Results were merged into a common format data set, segregated by ocean. For comparison purposes, each ocean data set includes a small number of high-quality historical cruises. The data were subjected to rigorous quality control procedures to eliminate systematic data measurement biases. The calibrated 1990s data were used to estimate anthropogenic CO{sub 2}, potential alkalinity, CFC watermass ages, CFC partial pressure, bomb-produced radiocarbon, and natural radiocarbon. These quantities were merged into the measured data files. The data were used to produce objectively gridded property maps at a 1{sup o} resolution on 33 depth surfaces chosen to match existing climatologies for temperature, salinity, oxygen, and nutrients. The mapped fields are interpreted as an annual mean distribution in spite of the inaccuracy in that assumption. Both the calibrated data and the gridded products are available from the <span class="hlt">Carbon</span> Dioxide Information Analysis Center. Here we describe the important details of the data treatment and the mapping procedure, and present summary quantities and integrals for the various parameters.</p> <div class="credits"> <p class="dwt_author">Key, Robert [Princeton University; Kozyr, Alexander [ORNL; Sabine, Chris [NOAA, Seattle, WA; Lee, K. [Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Wanninkhof, R. [Atlantic Oceanographic & Meteorological Laboratory, NOAA; Bullister, J.L. [NOAA Pacific Marine Environmental Laboratory; Feely, R. A. [NOAA Pacific Marine Environmental Laboratory; Millero, F. J. [University of Miami; Mordy, C. [NOAA Pacific Marine Environmental Laboratory; Peng, T.-H. [Atlantic Oceanographic & Meteorological Laboratory, NOAA</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">204</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/10161360"> <span id="translatedtitle">The new <span class="hlt">management</span> competencies: a <span class="hlt">global</span> perspective.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">How will tighter controls over health expenditures, an increased supply of qualified doctors, and clinical acumen becoming more critical in allocating health resources under market-driven, capitated payment-type plans affect physicians? Throughout the world, they will play a greater role in the <span class="hlt">management</span> of health facilities and services. To train doctors to provide leadership in these new, more market driven environments, education should focus more on the integration and coordination of clinical and managerial processes, an approach outside the scope of most curricula now offered. New managerial competencies will be required by the paradigm shift away from simply delivering quality health services to tighter cost containment efforts. Physicians will play an increasing role in how medical facilities and services are organized and financed--the blending of clinical and managerial-financial-information science processes will be paramount in these educational pursuits. PMID:10161360</p> <div class="credits"> <p class="dwt_author">Battistella, R M; Weil, T P</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">205</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.erj.ersjournals.com/cgi/reprint/31/1/143.pdf"> <span id="translatedtitle"><span class="hlt">Global</span> strategy for asthma <span class="hlt">management</span> and prevention: GINA executive summary</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Asthma is a serious health problem throughout the world. During the past two decades, many scientific advances have improved our understanding of asthma and ability to <span class="hlt">manage</span> and control it effectively. However, recommendations for asthma care need to be adapted to local conditions, resources and services. Since it was formed in 1993, the <span class="hlt">Global</span> Initiative for Asthma, a network of</p> <div class="credits"> <p class="dwt_author">E. D. Bateman; S. S. Hurd; P. J. Barnes; J. Bousquet; J. M. Drazen; M. FitzGeralde; P. Gibson; K. Ohta; P. O'Byrne; S. E. Pedersen; E. Pizzichini; S. D. Sullivanee; S. E. Wenzel; H. J. Zar</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">206</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50783722"> <span id="translatedtitle"><span class="hlt">Management</span> at the Outsourcing Destination - <span class="hlt">Global</span> Software Development in India</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In <span class="hlt">global</span> software engineering research, there have been many studies carried out from the perspective of the company who is outsourcing software development. However, very few studies focus on the companies to whom the software development is being outsourced. In this paper, we highlight India as a major outsourcing destination and present experience from companies that <span class="hlt">manage</span> outsourced software development.</p> <div class="credits"> <p class="dwt_author">Sadhana Deshpande; I. Richardson</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">207</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57337140"> <span id="translatedtitle">Impact of cultural differences on knowledge <span class="hlt">management</span> in <span class="hlt">global</span> projects</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Purpose – This study aims to propose a knowledge <span class="hlt">management</span> process model for <span class="hlt">global</span> projects. The paper also seeks to generate interest among academic researchers for undertaking further research on this important topic. Design\\/methodology\\/approach – This research effort uses literature review findings and past research efforts of the author to develop a generic KM process model and a set of</p> <div class="credits"> <p class="dwt_author">Vittal S. Anantatmula</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">208</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=240066"> <span id="translatedtitle">GRIN-<span class="hlt">Global</span>: An International Project to Develop a <span class="hlt">Global</span> Plant Genebank and Information <span class="hlt">Management</span> System</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary">The mission of the GRIN-<span class="hlt">Global</span> Project is to create a new, scalable version of the Germplasm Resource Information System (GRIN) to provide the world’s crop genebanks with a powerful, flexible, easy-to-use plant genetic resource (PGR) information <span class="hlt">management</span> system. The system will help safeguard PGR...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">209</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21041633"> <span id="translatedtitle">Trading <span class="hlt">carbon</span> for food: <span class="hlt">global</span> comparison of <span class="hlt">carbon</span> stocks vs. crop yields on agricultural land.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Expanding croplands to meet the needs of a growing population, changing diets, and biofuel production comes at the cost of reduced <span class="hlt">carbon</span> stocks in natural vegetation and soils. Here, we present a spatially explicit <span class="hlt">global</span> analysis of tradeoffs between <span class="hlt">carbon</span> stocks and current crop yields. The difference among regions is striking. For example, for each unit of land cleared, the tropics lose nearly two times as much <span class="hlt">carbon</span> (?120 tons·ha(-1) vs. ?63 tons·ha(-1)) and produce less than one-half the annual crop yield compared with temperate regions (1.71 tons·ha(-1)·y(-1) vs. 3.84 tons·ha(-1)·y(-1)). Therefore, newly cleared land in the tropics releases nearly 3 tons of <span class="hlt">carbon</span> for every 1 ton of annual crop yield compared with a similar area cleared in the temperate zone. By factoring crop yield into the analysis, we specify the tradeoff between <span class="hlt">carbon</span> stocks and crops for all areas where crops are currently grown and thereby, substantially enhance the spatial resolution relative to previous regional estimates. Particularly in the tropics, emphasis should be placed on increasing yields on existing croplands rather than clearing new lands. Our high-resolution approach can be used to determine the net effect of local land use decisions. PMID:21041633</p> <div class="credits"> <p class="dwt_author">West, Paul C; Gibbs, Holly K; Monfreda, Chad; Wagner, John; Barford, Carol C; Carpenter, Stephen R; Foley, Jonathan A</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">210</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2993385"> <span id="translatedtitle">Trading <span class="hlt">carbon</span> for food: <span class="hlt">Global</span> comparison of <span class="hlt">carbon</span> stocks vs. crop yields on agricultural land</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Expanding croplands to meet the needs of a growing population, changing diets, and biofuel production comes at the cost of reduced <span class="hlt">carbon</span> stocks in natural vegetation and soils. Here, we present a spatially explicit <span class="hlt">global</span> analysis of tradeoffs between <span class="hlt">carbon</span> stocks and current crop yields. The difference among regions is striking. For example, for each unit of land cleared, the tropics lose nearly two times as much <span class="hlt">carbon</span> (?120 tons·ha?1 vs. ?63 tons·ha?1) and produce less than one-half the annual crop yield compared with temperate regions (1.71 tons·ha?1·y?1 vs. 3.84 tons·ha?1·y?1). Therefore, newly cleared land in the tropics releases nearly 3 tons of <span class="hlt">carbon</span> for every 1 ton of annual crop yield compared with a similar area cleared in the temperate zone. By factoring crop yield into the analysis, we specify the tradeoff between <span class="hlt">carbon</span> stocks and crops for all areas where crops are currently grown and thereby, substantially enhance the spatial resolution relative to previous regional estimates. Particularly in the tropics, emphasis should be placed on increasing yields on existing croplands rather than clearing new lands. Our high-resolution approach can be used to determine the net effect of local land use decisions.</p> <div class="credits"> <p class="dwt_author">West, Paul C.; Gibbs, Holly K.; Monfreda, Chad; Wagner, John; Barford, Carol C.; Carpenter, Stephen R.; Foley, Jonathan A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">211</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19808730"> <span id="translatedtitle"><span class="hlt">Global</span> warming factor of municipal solid waste <span class="hlt">management</span> in Europe.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The <span class="hlt">global</span> warming factor (GWF; CO(2)-eq. tonne(-1) waste) performance of municipal waste <span class="hlt">management</span> has been investigated for six representative European Member States: Denmark, France, Germany, Greece, Poland and the United Kingdom. The study integrated European waste statistical data for 2007 in a life-cycle assessment modelling perspective. It is shown that significant GWF benefit was achieved due to the high level of energy and material recovery substituting fossil energy and raw materials production, especially in Denmark and Germany. The study showed that, despite strong regulation of waste <span class="hlt">management</span> at European level, there are major differences in GWF performance among the member states, due to the relative differences of waste composition, type of waste <span class="hlt">management</span> technologies available nationally, and the average performance of these technologies. It has been demonstrated through a number of sensitivity analyses that, within the national framework, key waste <span class="hlt">management</span> technology parameters can influence drastically the national GWF performance of waste <span class="hlt">management</span>. PMID:19808730</p> <div class="credits"> <p class="dwt_author">Gentil, Emmanuel; Clavreul, Julie; Christensen, Thomas H</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-10-06</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">212</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.co2.ulg.ac.be/pub/bouillon_et_al_2008.pdf"> <span id="translatedtitle">Mangrove production and <span class="hlt">carbon</span> sinks: A revision of <span class="hlt">global</span> budget estimates</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Mangrove forests are highly productive but <span class="hlt">globally</span> threatened coastal ecosystems, whose role in the <span class="hlt">carbon</span> budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on <span class="hlt">carbon</span> fluxes in mangrove ecosystems. A reassessment of <span class="hlt">global</span> mangrove primary production from the literature results in a conservative estimate of ~218 +\\/- 72 Tg</p> <div class="credits"> <p class="dwt_author">Steven Bouillon; Alberto V. Borges; Edward Castañeda-Moya; Karen Diele; Thorsten Dittmar; Norman C. Duke; Erik Kristensen; Shing Y. Lee; Cyril Marchand; Jack J. Middelburg; Victor H. Rivera-Monroy; Thomas J. Smith; Robert R. Twilley</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">213</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48935638"> <span id="translatedtitle">Mangrove production and <span class="hlt">carbon</span> sinks: A revision of <span class="hlt">global</span> budget estimates</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Mangrove forests are highly productive but <span class="hlt">globally</span> threatened coastal ecosystems, whose role in the <span class="hlt">carbon</span> budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on <span class="hlt">carbon</span> fluxes in mangrove ecosystems. A reassessment of <span class="hlt">global</span> mangrove primary production from the literature results in a conservative estimate of ?218 ± 72 Tg</p> <div class="credits"> <p class="dwt_author">Steven Bouillon; Alberto V. Borges; Edward Castañeda-Moya; Karen Diele; Thorsten Dittmar; Norman C. Duke; Erik Kristensen; Shing Y. Lee; Cyril Marchand; Jack J. Middelburg; Victor H. Rivera-Monroy; Thomas J. Smith; Robert R. Twilley</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">214</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFM.A33D0202C"> <span id="translatedtitle">An observation-based estimate of <span class="hlt">global</span> black <span class="hlt">carbon</span> and brown <span class="hlt">carbon</span> AODs and radiative forcings</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We combined AERONET AODs with MODIS AODs, and obtained <span class="hlt">global</span> AODs. Using the wavelength dependence of AERONET SSA, we extracted black <span class="hlt">carbon</span> (BlC), brown <span class="hlt">carbon</span> (BrC) and dust components of AODs. The assumptions we made are that a) BlC SSA and BlC SSA wavelength-dependence are influenced by BlC particles mixed with non-absorbing aerosols and b) brown <span class="hlt">carbon</span> spheres identified by Alexander et al. (2008) represent all the BrC particles. Our <span class="hlt">global</span> BlC AOD is 0.007 and accounts for 4.7% of total AOD. Our BrC AOD is 0.0027 (about 2% of total AOD) and the dust AOD is 0.036 (about 24% of total AOD). In comparison, AEROCOM models give dust AOD in the range from 7% to 44% while AEOCOM BlC AOD ranges from 0.4% to 5.9%. Our BlC AOD is greater than average AEROCOM BlC AOD. Using our observation-based AODs, we calculated radiative forcing for BrC and BlC using the Monte-Carlo Aerosol Cloud Radiaiton (MACR) model. The results will be presented at AGU.</p> <div class="credits"> <p class="dwt_author">Chung, C. E.; Ramanathan, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">215</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57498846"> <span id="translatedtitle"><span class="hlt">Global</span> <span class="hlt">carbon</span> markets: Opportunities for sub-Saharan Africa in agriculture and forestry</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Developing countries, particularly those in sub-Saharan Africa (SSA), remain marginalized in <span class="hlt">global</span> <span class="hlt">carbon</span> markets despite significant mitigation opportunities in agriculture and forestry. The economic potential for mitigation through agriculture in the African region is estimated at 17 per cent of the total <span class="hlt">global</span> mitigation potential for the sector. Similarly, Africa's forestry potential is 23 per cent of the <span class="hlt">global</span> total</p> <div class="credits"> <p class="dwt_author">ELIZABETH BRYAN; WISDOM AKPALU; MAHMUD YESUF; CLAUDIA RINGLER</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">216</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40763883"> <span id="translatedtitle">Forest <span class="hlt">management</span> options for sequestering <span class="hlt">carbon</span> in Mexico</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper identifies and examines economic response options to avoid <span class="hlt">carbon</span> emissions and increase <span class="hlt">carbon</span> sequestration in Mexican forests. A “Policy” scenario covering the years 2000, 2010 and 2030 and a “Technical Potential” scenario (year 2030) are developed to examine the potential <span class="hlt">carbon</span> sequestration and costs of each response option. Benefit-cost analyses for three case studies, including <span class="hlt">management</span> of a</p> <div class="credits"> <p class="dwt_author">Omar R. Masera; Mauricio R. Bellon; Gerardo Segura</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">217</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2234182"> <span id="translatedtitle">Risk of natural disturbances makes future contribution of Canada's forests to the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle highly uncertain</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">A large <span class="hlt">carbon</span> sink in northern land surfaces inferred from <span class="hlt">global</span> <span class="hlt">carbon</span> cycle inversion models led to concerns during Kyoto Protocol negotiations that countries might be able to avoid efforts to reduce fossil fuel emissions by claiming large sinks in their <span class="hlt">managed</span> forests. The greenhouse gas balance of Canada's <span class="hlt">managed</span> forest is strongly affected by naturally occurring fire with high interannual variability in the area burned and by cyclical insect outbreaks. Taking these stochastic future disturbances into account, we used the <span class="hlt">Carbon</span> Budget Model of the Canadian Forest Sector (CBM-CFS3) to project that the <span class="hlt">managed</span> forests of Canada could be a source of between 30 and 245 Mt CO2e yr?1 during the first Kyoto Protocol commitment period (2008–2012). The recent transition from sink to source is the result of large insect outbreaks. The wide range in the predicted greenhouse gas balance (215 Mt CO2e yr?1) is equivalent to nearly 30% of Canada's emissions in 2005. The increasing impact of natural disturbances, the two major insect outbreaks, and the Kyoto Protocol accounting rules all contributed to Canada's decision not to elect forest <span class="hlt">management</span>. In Canada, future efforts to influence the <span class="hlt">carbon</span> balance through forest <span class="hlt">management</span> could be overwhelmed by natural disturbances. Similar circumstances may arise elsewhere if <span class="hlt">global</span> change increases natural disturbance rates. Future climate mitigation agreements that do not account for and protect against the impacts of natural disturbances, for example, by accounting for forest <span class="hlt">management</span> benefits relative to baselines, will fail to encourage changes in forest <span class="hlt">management</span> aimed at mitigating climate change.</p> <div class="credits"> <p class="dwt_author">Kurz, Werner A.; Stinson, Graham; Rampley, Gregory J.; Dymond, Caren C.; Neilson, Eric T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">218</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3276426"> <span id="translatedtitle"><span class="hlt">Management</span> Impacts on Forest Floor and Soil Organic <span class="hlt">Carbon</span> in Northern Temperate Forests of the US</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Background The role of forests in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle has been the subject of a great deal of research recently, but the impact of <span class="hlt">management</span> practices on forest soil dynamics at the stand level has received less attention. This study used six forest <span class="hlt">management</span> experimental sites in five northern states of the US to investigate the effects of silvicultural treatments (light thinning, heavy thinning, and clearcutting) on forest floor and soil <span class="hlt">carbon</span> pools. Results No overall trend was found between forest floor <span class="hlt">carbon</span> stocks in stands subjected to partial or complete harvest treatments. A few sites had larger stocks in control plots, although estimates were often highly variable. Forest floor <span class="hlt">carbon</span> pools did show a trend of increasing values from southern to northern sites. Surface soil (0-5 cm) organic <span class="hlt">carbon</span> content and concentration were similar between treated and untreated plots. Overall soil <span class="hlt">carbon</span> (0-20 cm) pool size was not significantly different from control values in sites treated with partial or complete harvests. No geographic trends were evident for any of the soil properties examined. Conclusions Results indicate that it is unlikely that mineral soil <span class="hlt">carbon</span> stocks are adversely affected by typical <span class="hlt">management</span> practices as applied in northern hardwood forests in the US; however, the findings suggest that the forest floor <span class="hlt">carbon</span> pool may be susceptible to loss.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">219</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/gb/gb0904/2009GB003519/2009GB003519.pdf"> <span id="translatedtitle">Nitrogen attenuation of terrestrial <span class="hlt">carbon</span> cycle response to <span class="hlt">global</span> environmental factors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Nitrogen cycle dynamics have the capacity to attenuate the magnitude of <span class="hlt">global</span> terrestrial <span class="hlt">carbon</span> sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial <span class="hlt">carbon</span> and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial <span class="hlt">carbon</span> sinks and sources</p> <div class="credits"> <p class="dwt_author">Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David Kicklighter</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">220</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21350730"> <span id="translatedtitle">Ensuring on-time quality data <span class="hlt">management</span> deliverables from <span class="hlt">global</span> clinical data <span class="hlt">management</span> teams.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The growing emphasis on off-site and off-shore clinical data <span class="hlt">management</span> activities mandates a paramount need for adequate solutions geared toward on-time, quality deliverables. The author has been leading large teams that have been involved in successful <span class="hlt">global</span> clinical data <span class="hlt">management</span> endeavors. While each study scenario is unique and has to be approached as such, there are several elements in defining strategy and team structure in <span class="hlt">global</span> clinical data <span class="hlt">management</span> that can be applied universally. In this article, key roles, practices, and high-level procedures are laid out as a road map to ensure success with the model. PMID:21350730</p> <div class="credits"> <p class="dwt_author">Haque, Zia</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-10-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_11 div --> <div id="page_12" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">221</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19837711"> <span id="translatedtitle"><span class="hlt">Global</span> warming factors modelled for 40 generic municipal waste <span class="hlt">management</span> scenarios.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary"><span class="hlt">Global</span> warming factors (kg CO(2)-eq.-tonne(-1) of waste) have been modelled for 40 different municipal waste <span class="hlt">management</span> scenarios involving a variety of recycling systems (paper, glass, plastic and organics) and residual waste <span class="hlt">management</span> by landfilling, incineration or mechanical-biological waste treatment. For average European waste composition most waste <span class="hlt">management</span> scenarios provided negative <span class="hlt">global</span> warming factors and hence overall savings in greenhouse gas emissions: Scenarios with landfilling saved 0-400, scenarios with incineration saved 200-700, and scenarios with mechanical-biological treatment saved 200- 750 kg CO(2)-eq. tonne(- 1) municipal waste depending on recycling scheme and energy recovery. Key parameters were the amount of paper recycled (it was assumed that wood made excessive by paper recycling substituted for fossil fuel), the crediting of the waste <span class="hlt">management</span> system for the amount of energy recovered (hard-coal-based energy was substituted), and binding of biogenic <span class="hlt">carbon</span> in landfills. Most other processes were of less importance. Rational waste <span class="hlt">management</span> can provide significant savings in society's emission of greenhouse gas depending on waste composition and efficient utilization of the energy recovered. PMID:19837711</p> <div class="credits"> <p class="dwt_author">Christensen, Thomas H; Simion, Federico; Tonini, Davide; Møller, Jacob</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-10-16</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">222</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004AGUFMPP53D..05K"> <span id="translatedtitle">Effects of Organic <span class="hlt">Carbon/Carbonate</span> Burial Ratios and Biological <span class="hlt">Carbon</span> Fixation on the <span class="hlt">Global</span> <span class="hlt">Carbon</span> Cycle Over the Past ~200 myr</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The isotopic composition of the <span class="hlt">global</span> <span class="hlt">carbon</span> reservoir integrates large kinetic fractionations from photosynthesis with small thermodynamic fractionations from <span class="hlt">carbonate</span> precipitation. We present concordant ? 13C records of <span class="hlt">carbonates</span> (? 13Ccarb) and organic matter (? 13Corg), along with new <span class="hlt">carbonate</span> (Ccarb) and organic <span class="hlt">carbonate</span> (Corg) fluxes for the past ˜205 myrs (Jurassic-Cenozoic) generated from bulk sediment samples from the Atlantic. The new ? 13Corg record greatly refines previous compilations (Hayes et al., 1999) by providing a sample resolution of ˜100-300 kyrs. Model simulations using these ? 13Ccarb and ? 13Corg data provide constraints on <span class="hlt">carbon</span> sources (mantle and weathering) and sinks (<span class="hlt">carbonate</span> and organic <span class="hlt">carbon</span> sedimentation); comparisons with the flux records provide insight on the components of the geological <span class="hlt">carbon</span> cycle. Stable isotope records indicate that long-term net depletion of 12C from mobile <span class="hlt">carbon</span> reservoirs was a consequence of an organic <span class="hlt">carbon</span> burial fraction increase of ˜0.05-0.1 that began in the Jurassic ( ˜200 Ma). Superimposed on the long-term trend are higher-order variations (5-10s of myrs) in ? 13Ccarb and ? 13Corg that show episodic intervals of elevated values. In contrast to paleoceanographic convention, organic <span class="hlt">carbon</span> burial is often decoupled from <span class="hlt">global</span> ? 13C variations on the 5-10s of myrs scale. Brief episodes of elevated Corg flux tend to occur near the onset and cessation of these intervals of elevated ? 13Ccarb and ? 13Corg values; prolonged episodes of elevated Ccarb flux tend to correspond to the cessation of extended intervals of elevated ? 13C values. In the latter part of the Cenozoic, the development of ? carboxylation and C4 photosynthetic pathways in phytoplankton and terrestrial plants increasingly influenced ? 13Corg, ultimately contributing to the reversal of the long-term trend in ? 13Ccarb. Thus, the geologic record of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle over the past 205 myr has been influenced by a combination of changes in <span class="hlt">carbonate</span> burial, organic <span class="hlt">carbon</span> burial, and biological fixation.</p> <div class="credits"> <p class="dwt_author">Katz, M. E.; Milligan, A. J.; Cramer, B. S.; Fennel, K.; Miller, K. G.; Wright, J. D.; Falkowski, P. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">223</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/6437754"> <span id="translatedtitle">Leading and <span class="hlt">Managing</span> in a <span class="hlt">Global</span> Environment: Developing Executive Competencies for the World Stage</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper explores the challenges of developing the executive competencies needed to successfully lead and <span class="hlt">manage</span> <span class="hlt">global</span> enterprises. It reviews <span class="hlt">global</span> competency models and the problems of identifying <span class="hlt">global</span> skills. It looks at the difficulties of developing <span class="hlt">global</span> competencies, particularly through overseas assignments. Finally, it considers other methods of developing <span class="hlt">global</span> skills and the implications for both individuals and firms.</p> <div class="credits"> <p class="dwt_author">Paul Dainty</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">224</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18166595"> <span id="translatedtitle"><span class="hlt">Global</span> strategy for asthma <span class="hlt">management</span> and prevention: GINA executive summary.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Asthma is a serious health problem throughout the world. During the past two decades, many scientific advances have improved our understanding of asthma and ability to <span class="hlt">manage</span> and control it effectively. However, recommendations for asthma care need to be adapted to local conditions, resources and services. Since it was formed in 1993, the <span class="hlt">Global</span> Initiative for Asthma, a network of individuals, organisations and public health officials, has played a leading role in disseminating information about the care of patients with asthma based on a process of continuous review of published scientific investigations. A comprehensive workshop report entitled "A <span class="hlt">Global</span> Strategy for Asthma <span class="hlt">Management</span> and Prevention", first published in 1995, has been widely adopted, translated and reproduced, and forms the basis for many national guidelines. The 2006 report contains important new themes. First, it asserts that "it is reasonable to expect that in most patients with asthma, control of the disease can and should be achieved and maintained," and recommends a change in approach to asthma <span class="hlt">management</span>, with asthma control, rather than asthma severity, being the focus of treatment decisions. The importance of the patient-care giver partnership and guided self-<span class="hlt">management</span>, along with setting goals for treatment, are also emphasised. PMID:18166595</p> <div class="credits"> <p class="dwt_author">Bateman, E D; Hurd, S S; Barnes, P J; Bousquet, J; Drazen, J M; FitzGerald, M; Gibson, P; Ohta, K; O'Byrne, P; Pedersen, S E; Pizzichini, E; Sullivan, S D; Wenzel, S E; Zar, H J</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">225</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012ESSDD...5..317B"> <span id="translatedtitle"><span class="hlt">Global</span> distribution of pteropods representing <span class="hlt">carbonate</span> functional type biomass</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Pteropods are a group of holoplanktonic gastropods for which <span class="hlt">global</span> biomass distribution patterns remain poorly resolved. The aim of this study was to collect and synthesize existing pteropod (Gymnosomata, Thecosomata and Pseudothecosomata) abundance and biomass data, in order to evaluate the <span class="hlt">global</span> distribution of pteropod <span class="hlt">carbon</span> biomass, with a particular emphasis on its seasonal, temporal and vertical patterns. We collected 25 902 data points from several online databases and a number of scientific articles. The biomass data has been gridded onto a 360 × 180° grid, with a vertical resolution of 33 WOA depth levels. Data has been converted to NetCDF format which can be downloaded from PANGAEA, <a href="http://doi.pangaea.de/10.1594/PANGAEA.777387"target="_blank">http://doi.pangaea.de/10.1594/PANGAEA.777387</a>. Data were collected between 1951-2010, with sampling depths ranging from 0-1000 m. Pteropod biomass data was either extracted directly or derived through converting abundance to biomass with pteropod specific length to weight conversions. In the Northern Hemisphere (NH) the data were distributed evenly throughout the year, whereas sampling in the Southern Hemisphere was biased towards the austral summer months. 86% of all biomass values were located in the NH, most (42%) within the latitudinal band of 30-50° N. The range of <span class="hlt">global</span> biomass values spanned over three orders of magnitude, with a mean and median biomass concentration of 8.2 mg C l-1 (SD = 61.4) and 0.25 mg C l-1, respectively for all data points, and with a mean of 9.1 mg C l-1 (SD = 64.8) and a median of 0.25 mg C l-1 for non-zero biomass values. The highest mean and median biomass concentrations were located in the NH between 40-50° S (mean biomass: 68.8 mg C l-1 (SD × 213.4) median biomass: 2.5 mg C l-1) while, in the SH, they were within the 70-80° S latitudinal band (mean: 10.5 mg C l-1 (SD × 38.8) and median: 0.2 mg C l-1). Biomass values were lowest in the equatorial regions. A broad range of biomass concentrations was observed at all depths, with the biomass peak located in the surface layer (0-25 m) and values generally decreasing with depth. However, biomass peaks were located at different depths in different ocean basins: 0-25 m depth in the N Atlantic, 50-100 m in the Pacific, 100-200 m in the Arctic, 200-500 m in the Brazilian region and >500 m in the Indo-Pacific region. Biomass in the NH was relatively invariant over the seasonal cycle, but more seasonally variable in the SH. The collected database provides a valuable tool for modellers for the study of ecosystem processes and <span class="hlt">global</span> biogeochemical cycles.</p> <div class="credits"> <p class="dwt_author">Bednaršek, N.; Možina, J.; Vu?kovi?, M.; Vogt, M.; O'Brien, C.; Tarling, G. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">226</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/6984826"> <span id="translatedtitle">Formulating energy policies related to fossil fuel use: Critical uncertainties in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The <span class="hlt">global</span> <span class="hlt">carbon</span> cycle is the dynamic interaction among the earth's <span class="hlt">carbon</span> sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of <span class="hlt">carbon</span> fluxes among major reservoirs of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle because of poorly understood interactions among the major <span class="hlt">carbon</span> reservoirs. 87 refs.</p> <div class="credits"> <p class="dwt_author">Post, W.M.; Dale, V.H.; DeAngelis, D.L.; Mann, L.K.; Mulholland, P.J.; O'Neill, R.V.; Peng, T.-H.; Farrell, M.P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">227</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3156087"> <span id="translatedtitle"><span class="hlt">Global</span> Gradients of Coral Exposure to Environmental Stresses and Implications for Local <span class="hlt">Management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Background The decline of coral reefs <span class="hlt">globally</span> underscores the need for a spatial assessment of their exposure to multiple environmental stressors to estimate vulnerability and evaluate potential counter-measures. Methodology/Principal Findings This study combined <span class="hlt">global</span> spatial gradients of coral exposure to radiation stress factors (temperature, UV light and doldrums), stress-reinforcing factors (sedimentation and eutrophication), and stress-reducing factors (temperature variability and tidal amplitude) to produce a <span class="hlt">global</span> map of coral exposure and identify areas where exposure depends on factors that can be locally <span class="hlt">managed</span>. A systems analytical approach was used to define interactions between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial ordinations were employed to quantify coral exposure to these stressors. <span class="hlt">Globally</span>, corals are exposed to radiation and reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean) or alternatively high reinforcing stress scores (the Middle East and the Western Australia). The second cluster was composed of moderately to highly exposed regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR), Central Pacific, Polynesia and the western Indian Ocean) where the GBR was strongly associated with reinforcing stress. Conclusions/Significance Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be reduced by locally <span class="hlt">managing</span> chronic human impacts that act to reinforce radiation stress. Future research and <span class="hlt">management</span> efforts should focus on incorporating the factors that mitigate the effect of coral stressors until long-term <span class="hlt">carbon</span> reductions are achieved through <span class="hlt">global</span> negotiations.</p> <div class="credits"> <p class="dwt_author">Maina, Joseph; McClanahan, Tim R.; Venus, Valentijn; Ateweberhan, Mebrahtu; Madin, Joshua</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">228</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57349845"> <span id="translatedtitle">Collaboration, connections and change : The UN <span class="hlt">Global</span> Compact, the <span class="hlt">Global</span> Reporting Initiative, Principles for Responsible <span class="hlt">Management</span> Education and the <span class="hlt">Globally</span> Responsible Leadership Initiative</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Purpose – The purpose of this paper is to report on the highlights of the UN <span class="hlt">Global</span> Compact Leaders Summit, the Principles for Responsible <span class="hlt">Management</span> Education <span class="hlt">Global</span> Forum and the <span class="hlt">Globally</span> Responsible Leadership Initiative General Assembly held in New York and Boston in June 2010. It discusses the potential of the connections and collaborations between these organisations and others to</p> <div class="credits"> <p class="dwt_author">Carol Adams; Liliana Petrella</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">229</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012ERL.....7c4023L"> <span id="translatedtitle"><span class="hlt">Global</span> socioeconomic <span class="hlt">carbon</span> stocks in long-lived products 1900-2008</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A better understanding of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle as well as of climate change mitigation options such as <span class="hlt">carbon</span> sequestration requires the quantification of natural and socioeconomic stocks and flows of <span class="hlt">carbon</span>. A so-far under-researched aspect of the <span class="hlt">global</span> <span class="hlt">carbon</span> budget is the accumulation of <span class="hlt">carbon</span> in long-lived products such as buildings and furniture. We present a comprehensive assessment of <span class="hlt">global</span> socioeconomic <span class="hlt">carbon</span> stocks and the corresponding in- and outflows during the period 1900-2008. These data allowed calculation of the annual <span class="hlt">carbon</span> sink in socioeconomic stocks during this period. The study covers the most important socioeconomic <span class="hlt">carbon</span> fractions, i.e. wood, bitumen, plastic and cereals. Our assessment was mainly based on production and consumption data for plastic, bitumen and wood products and the respective fractions remaining in stocks in any given year. <span class="hlt">Global</span> socioeconomic <span class="hlt">carbon</span> stocks were 2.3 GtC in 1900 and increased to 11.5 GtC in 2008. The share of wood in total C stocks fell from 97% in 1900 to 60% in 2008, while the shares of plastic and bitumen increased to 16% and 22%, respectively. The rate of gross <span class="hlt">carbon</span> sequestration in socioeconomic stocks increased from 17 MtC yr-1 in 1900 to a maximum of 247 MtC yr-1 in 2007, corresponding to 2.2%-3.4% of <span class="hlt">global</span> fossil-fuel-related <span class="hlt">carbon</span> emissions. We conclude that while socioeconomic <span class="hlt">carbon</span> stocks are not negligible, their growth over time is not a major climate change mitigation option and there is an only modest potential to mitigate climate change by the increase of socioeconomic <span class="hlt">carbon</span> stocks.</p> <div class="credits"> <p class="dwt_author">Lauk, Christian; Haberl, Helmut; Erb, Karl-Heinz; Gingrich, Simone; Krausmann, Fridolin</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">230</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/10205049"> <span id="translatedtitle"><span class="hlt">Global</span> warming and marine <span class="hlt">carbon</span> cycle feedbacks on future atmospheric CO2</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A low-order physical-biogeochemical climate model was used to project atmospheric <span class="hlt">carbon</span> dioxide and <span class="hlt">global</span> warming for scenarios developed by the Intergovernmental Panel on Climate Change. The North Atlantic thermohaline circulation weakens in all <span class="hlt">global</span> warming simulations and collapses at high levels of <span class="hlt">carbon</span> dioxide. Projected changes in the marine <span class="hlt">carbon</span> cycle have a modest impact on atmospheric <span class="hlt">carbon</span> dioxide. Compared with the control, atmospheric <span class="hlt">carbon</span> dioxide increased by 4 percent at year 2100 and 20 percent at year 2500. The reduction in ocean <span class="hlt">carbon</span> uptake can be mainly explained by sea surface warming. The projected changes of the marine biological cycle compensate the reduction in downward mixing of anthropogenic <span class="hlt">carbon</span>, except when the North Atlantic thermohaline circulation collapses. PMID:10205049</p> <div class="credits"> <p class="dwt_author">Joos; Plattner; Stocker; Marchal; Schmittner</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-04-16</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">231</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/sciencecinema/biblio/987893/(((why+was)+literature)+created)"> <span id="translatedtitle"><span class="hlt">Carbon</span> Cycle 2.0: Ashok Gadgil: <span class="hlt">global</span> impact</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/sciencecinema/">ScienceCinema</a></p> <p class="result-summary">Ashok Gadgil speaks at the <span class="hlt">Carbon</span> Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more <span class="hlt">carbon</span> into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. <span class="hlt">Carbon</span> Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a <span class="hlt">carbon</span>-neutral energy future. http://carboncycle2.lbl.gov/</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">232</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AGUFM.B31G0381C"> <span id="translatedtitle">Soil <span class="hlt">Carbon</span> Storage in Christmas Tree Farms: Maximizing Ecosystem <span class="hlt">Management</span> and Sustainability for <span class="hlt">Carbon</span> Sequestration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Management</span> of agroecosystems for the purpose of manipulating soil <span class="hlt">carbon</span> stocks could be a viable approach for countering rising atmospheric <span class="hlt">carbon</span> dioxide concentrations, while maximizing sustainability of the agroforestry industry. We investigated the <span class="hlt">carbon</span> storage potential of Christmas tree farms in the southern Appalachian mountains as a potential model for the impacts of land <span class="hlt">management</span> on soil <span class="hlt">carbon</span>. We quantified soil <span class="hlt">carbon</span> stocks across a gradient of cultivation duration and herbicide <span class="hlt">management</span>. We compared soil <span class="hlt">carbon</span> in farms to that in adjacent pastures and native forests that represent a control group to account for variability in other soil-forming factors. We partitioned tree farm soil <span class="hlt">carbon</span> into fractions delineated by stability, an important determinant of long-term sequestration potential. Soil <span class="hlt">carbon</span> stocks in the intermediate pool are significantly greater in the tree farms under cultivation for longer periods of time than in the younger tree farms. This pool can be quite large, yet has the ability to repond to biological environmental changes on the centennial time scale. Pasture soil <span class="hlt">carbon</span> was significantly greater than both forest and tree farm soil <span class="hlt">carbon</span>, which were not different from each other. These data can help inform land <span class="hlt">management</span> and soil <span class="hlt">carbon</span> sequestration strategies.</p> <div class="credits"> <p class="dwt_author">Chapman, S. K.; Shaw, R.; Langley, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">233</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/61248300"> <span id="translatedtitle">Acid rain, zooplankton fecal pellets and the <span class="hlt">global</span> <span class="hlt">carbon</span> budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Some five to seven billion metric tons (BMT) of <span class="hlt">carbon</span> dioxide are produced each year from fossil fuel burning and forest cutting. Of this, one to several BMT are unaccounted for in the increases in <span class="hlt">carbon</span> dioxide observed in the atmosphere and dissolved in the sea. Any additional sink for this ''missing'' <span class="hlt">carbon</span> must be large-scale, increasing and not balanced</p> <div class="credits"> <p class="dwt_author">C. A. S. Hall; G. Roe; J. H. Ryther; G. M. Woodwell</p> <p class="dwt_publisher"></p> <p class="publishDate">1977-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">234</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/n1461l86416014r6.pdf"> <span id="translatedtitle">The effect of the ocean on the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary The fate of fossil fuel CO2 in the ocean is discussed and a comparison is made with the natural oceanic cycle of <span class="hlt">carbon</span>. The oceanic share of fossil fuel <span class="hlt">carbon</span>, pressently about 40%, will decrease in the future. Much of the fossil fuel <span class="hlt">carbon</span> will remain in the atmosphere, and will stay there for many centuries. In the long</p> <div class="credits"> <p class="dwt_author">Wolfgang Roether</p> <p class="dwt_publisher"></p> <p class="publishDate">1980-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">235</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE94018617"> <span id="translatedtitle">Ocean Margins Program: Closure on the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Program description.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The Department of Energy's Ocean Margins Program (OMP) is designed to quantitatively assess the importance of coastal ocean systems in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Since the beginning of the Industrial Revolution, human energy-related activities have dramatic...</p> <div class="credits"> <p class="dwt_author">M. R. Riches</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">236</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1996GBioC..10..543S"> <span id="translatedtitle">Biomass of termites and their emissions of methane and <span class="hlt">carbon</span> dioxide: A <span class="hlt">global</span> database</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A <span class="hlt">global</span> database describing the geographical distribution of the biomass of termites and their emissions of methane and <span class="hlt">carbon</span> dioxide has been constructed. Termite biomasses were assigned to various ecosystems using published measurements and a recent high-resolution (10' × 10') database of vegetation categories. The assigned biomasses were then combined with literature measurements of fluxes of methane and <span class="hlt">carbon</span> dioxide from termites and extrapolated to give <span class="hlt">global</span> emission estimates for each gas. The <span class="hlt">global</span> emissions of methane and <span class="hlt">carbon</span> dioxide are 19.7 ± 1.5 and 3500 ± 700 Mt yr-1, respectively (1 Mt = 1012 g). These emissions contribute approximately 4% and 2%, respectively, to the total <span class="hlt">global</span> fluxes of these gases. This database gives an accurate distribution of the biomasses and gaseous emissions by termites and may be incorporated into <span class="hlt">global</span> models of the atmosphere.</p> <div class="credits"> <p class="dwt_author">Sanderson, M. G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">237</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5916"> <span id="translatedtitle">A Uniform Framework of <span class="hlt">Global</span> Nuclear Materials <span class="hlt">Management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Global</span> Nuclear Materials <span class="hlt">Management</span> (GNMM) anticipates and supports a growing international recognition of the importance of uniform, effective <span class="hlt">management</span> of civilian, excess defense, and nuclear weapons materials. We expect thereto be a continuing increase in both the number of international agreements and conventions on safety, security, and transparency of nuclear materials, and the number of U.S.-Russian agreements for the safety, protection, and transparency of weapons and excess defense materials. This inventory of agreements and conventions may soon expand into broad, mandatory, international programs that will include provisions for inspection, verification, and transparency, To meet such demand the community must build on the resources we have, including State agencies, the IAEA and regional organizations. By these measures we will meet the future expectations for monitoring and inspection of materials, maintenance of safety and security, and implementation of transparency measures.</p> <div class="credits"> <p class="dwt_author">Dupree, S.A.; Mangan, D.L.; Sanders, T.L; Sellers, T.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-04-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">238</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/479472"> <span id="translatedtitle">Improve <span class="hlt">global</span> competitiveness with supply-chain <span class="hlt">management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Over the past 10 to 15 years, petrochemical companies have aggressively cut costs due to increased international competition. Unfortunately, these conditions will remain part of the future business environment. To remain international as players, leading chemical companies must develop new methods to keep a competitive edge. One option is to use <span class="hlt">global</span> supply-chain <span class="hlt">management</span>. With this strategy, organizations can optimize costs in an integrated fashion along the entire manufacturing and delivery system worldwide. This is a sharp contrast to previously used compartmentalized cost cutting by departments such as transportation, manufacturing, etc. Rethinking the supply-chain <span class="hlt">management</span> requires devising a new order on how all manufacturing process costs contribute to the total product costs. Manufacturers can no longer look at operation segments as separate puzzle pieces. They must devise a framework that integrates all functions of production and distribution to be the lowest-cost manufacturer in that market.</p> <div class="credits"> <p class="dwt_author">Krenek, M.R. [Ernst and Young/Wright Killen, Houston, TX (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">239</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/5473519"> <span id="translatedtitle">Atmospheric <span class="hlt">carbon</span> dioxide and the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle: The key uncertainties</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The biogeochemical cycling of <span class="hlt">carbon</span> between its sources and sinks determines the rate of increase in atmospheric CO/sub 2/ concentrations. The observed increase in atmospheric CO/sub 2/ content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other <span class="hlt">global</span> <span class="hlt">carbon</span> reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO/sub 2/ produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO/sub 2/ uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO/sub 2/ uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO/sub 2/ than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO/sub 2/ fluxes. The instability of current models to estimate accurately oceanic uptake of CO/sub 2/ creates one of the key uncertainties in predictions of atmospheric CO/sub 2/ increases and climate responses over the next 100 to 200 years. 60 refs., 1 fig., 2 tabs.</p> <div class="credits"> <p class="dwt_author">Peng, T.H.; Post, W.M.; DeAngelis, D.L.; Dale, V.H.; Farrell, M.P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">240</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56734098"> <span id="translatedtitle"><span class="hlt">Carbon</span> Fiber Composites for Spacecraft Thermal <span class="hlt">Management</span> Opportunities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Under a prime contract (No.F33615-00-C-5009) with the U.S. Air Force Materials Lab, Cytec <span class="hlt">Carbon</span> Fibers, LLC has completed a program to identify high risk, high payoff thermal <span class="hlt">management</span> applications for the insertion of high thermal conductivity <span class="hlt">carbon</span> fiber composite materials in future spacecraft. The program involved the identification of relevant design requirements, the design of components for thermal <span class="hlt">management</span> applications</p> <div class="credits"> <p class="dwt_author">John J. Banisaukas; Mark A. Shioleno; Chris D. Levan; Suraj P. Rawal; Edward M. Silverman; Roland J. Watts</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_12 div --> <div id="page_13" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">241</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008GBioC..22.2013B"> <span id="translatedtitle">Mangrove production and <span class="hlt">carbon</span> sinks: A revision of <span class="hlt">global</span> budget estimates</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Mangrove forests are highly productive but <span class="hlt">globally</span> threatened coastal ecosystems, whose role in the <span class="hlt">carbon</span> budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on <span class="hlt">carbon</span> fluxes in mangrove ecosystems. A reassessment of <span class="hlt">global</span> mangrove primary production from the literature results in a conservative estimate of ˜218 ± 72 Tg C a-1. When using the best available estimates of various <span class="hlt">carbon</span> sinks (organic <span class="hlt">carbon</span> export, sediment burial, and mineralization), it appears that >50% of the <span class="hlt">carbon</span> fixed by mangrove vegetation is unaccounted for. This unaccounted <span class="hlt">carbon</span> sink is conservatively estimated at ˜112 ± 85 Tg C a-1, equivalent in magnitude to ˜30-40% of the <span class="hlt">global</span> riverine organic <span class="hlt">carbon</span> input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of <span class="hlt">carbon</span> export from mangroves to adjacent waters occurs as dissolved inorganic <span class="hlt">carbon</span> (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted <span class="hlt">carbon</span> sink in current budgets, but are not yet adequately constrained with the limited published data available so far.</p> <div class="credits"> <p class="dwt_author">Bouillon, Steven; Borges, Alberto V.; CastañEda-Moya, Edward; Diele, Karen; Dittmar, Thorsten; Duke, Norman C.; Kristensen, Erik; Lee, Shing Y.; Marchand, Cyril; Middelburg, Jack J.; Rivera-Monroy, Victor H.; Smith, Thomas J.; Twilley, Robert R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">242</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22customization%22&id=ED536398"> <span id="translatedtitle">Exploring <span class="hlt">Global</span> Competence with <span class="hlt">Managers</span> in India, Japan, and the Netherlands: A Qualitative Study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|This qualitative study explores the meaning of <span class="hlt">global</span> competence for <span class="hlt">global</span> <span class="hlt">managers</span> in three different countries. Thirty interviews were conducted with <span class="hlt">global</span> <span class="hlt">managers</span> in India, Japan and the Netherlands through Skype, an internet based software. Findings are reported by country in five major categories: country background, personal…</p> <div class="credits"> <p class="dwt_author">Ras, Gerard J. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">243</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=229269"> <span id="translatedtitle"><span class="hlt">Management</span> effects on soil organic <span class="hlt">carbon</span> in Texas soils</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary">Soil <span class="hlt">carbon</span> sequestration is difficult in Texas, in part, because of the high annual temperatures and low rainfall amounts in portions of the state. However, research has shown that <span class="hlt">carbon</span> can be sequestered with a variety of <span class="hlt">management</span> systems. These systems include: i. Continuous cropping in are...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">244</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4122572"> <span id="translatedtitle">The <span class="hlt">Global</span> <span class="hlt">Carbon</span> Cycle: A Test of Our Knowledge of Earth as a System</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Motivated by the rapid increase in atmospheric CO2 due to human activities since the Industrial Revolution, several international scientific research programs have analyzed the role of individual components of the Earth system in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Our knowledge of the <span class="hlt">carbon</span> cycle within the oceans, terrestrial ecosystems, and the atmosphere is sufficiently extensive to permit us to conclude that</p> <div class="credits"> <p class="dwt_author">P. Falkowski; R. J. Scholes; E. Boyle; J. Canadell; D. Canfield; J. Elser; N. Gruber; K. Hibbard; P. Högberg; S. Linder; F. T. Mackenzie; B. Moore III; T. Pedersen; Y. Rosenthal; S. Seitzinger; V. Smetacek; W. Steffen</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">245</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40764087"> <span id="translatedtitle">The role of European forests in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle—A review</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The first part of this paper presents an overview of national forest <span class="hlt">carbon</span> balance studies that have been carried out in Europe. Based on these national assessments, an estimate is made of the present role of European forests in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Differences in the methodologies applied are discussed. At present, 15 European countries have assessed a national forest</p> <div class="credits"> <p class="dwt_author">G. J. Nabuurs; R. Päivinen; R. Sikkema; G. M. J. Mohren</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">246</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AcAau..66..245E"> <span id="translatedtitle">Cross-cultural <span class="hlt">management</span> supporting <span class="hlt">global</span> space exploration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A new era of space exploration has begun that may soon expand into a <span class="hlt">global</span> endeavor mainly driven by socio-economic motives. Currently the main space powers, namely the United States, Russia, Europe, Japan, Canada as well as new rising space powers China and India, are pursuing national exploration programs to explore robotically and later with humans the Earth-Moon-Mars space. New axes of partnerships and cooperation mechanisms have emerged in the last decades. However, in order to achieve highly ambitious goals such as establishing human bases on the Moon, journeys to Mars and the construction of new infrastructures in space, international space cooperation has to be optimized to reduce costs and reap the benefits of worldwide expertise. Future ambitious space exploration endeavors are a long-term undertaking that could influence countries to look beyond their own interests and see the advantages that a larger program can bring. This paper provides new concepts for <span class="hlt">managing</span> <span class="hlt">global</span> space exploration in the framework of cross-cultural <span class="hlt">management</span>, an element often neglected in the planning of future partnerships.</p> <div class="credits"> <p class="dwt_author">Ehrenfreund, P.; Peter, N.; Schrogl, K. U.; Logsdon, J. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">247</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/11543319"> <span id="translatedtitle"><span class="hlt">Global</span> geochemical cycles of <span class="hlt">carbon</span>, sulfur and oxygen.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Time resolved data on the <span class="hlt">carbon</span> isotopic composition of <span class="hlt">carbonate</span> minerals and the sulfur isotopic composition or sulfate minerals show a strong negative correlation during the Cretaceous. <span class="hlt">Carbonate</span> minerals are isotopically heavy during this period while sulfate minerals are isotopically light. The implication is that <span class="hlt">carbon</span> is being transferred from the oxidized, <span class="hlt">carbonate</span> reservoir to the reservoir of isotopically light reduced organic <span class="hlt">carbon</span> in sedimentary rocks while sulfur is being transferred from the reservoir of isotopically light sedimentary sulfide to the oxidized, sulfate reservoir. These apparently oppositely directed changes in the oxidation state of average sedimentary <span class="hlt">carbon</span> and sulfur are surprising because of a well-established and easy to understand correlation between the concentrations of reduced organic <span class="hlt">carbon</span> and sulfide minerals in sedimentary rocks. Rocks rich in reduced <span class="hlt">carbon</span> are also rich in reduced sulfur. The isotopic and concentration data can be reconciled by a model which invokes a significant flux of hydrothermal sulfide to the deep sea, at least during the Cretaceous. PMID:11543319</p> <div class="credits"> <p class="dwt_author">Walker, J C</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">248</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37816946"> <span id="translatedtitle">Influences on the adoption of <span class="hlt">global</span> marketing decision support systems : A <span class="hlt">management</span> perspective</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Develops a model of the influences on adopting <span class="hlt">global</span> marketing decision support systems (MDSS) by <span class="hlt">global</span> marketing organizations. The focus is on the expectations, beliefs, concerns, experiences, and implicit theories about <span class="hlt">global</span> MDSS adoption of 144 senior marketing <span class="hlt">managers</span> at 43 <span class="hlt">global</span> firms. From a quantitative analysis of personal interviews, argues for an adoption model which includes controllable, uncontrollable and</p> <div class="credits"> <p class="dwt_author">William J. McDonald</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">249</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/47887101"> <span id="translatedtitle"><span class="hlt">Carbon</span> Sequestration and the Implications for Rangeland <span class="hlt">Management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">\\u000a \\u000a Synopsis  The significance of the <span class="hlt">carbon</span> balance in the rangelands of the NW of China is examined against a <span class="hlt">global</span> perspective of <span class="hlt">carbon</span>\\u000a gains and losses from soil and vegetation. The results from field work in Gansu (Qilian Mountains) and in Xinjiang (Tian and\\u000a Altai Mountains) are summarized. In this chapter we review the processes of C capture and storage (sequestration)</p> <div class="credits"> <p class="dwt_author">Long Ruijun; Shang Zhanhuan; Li Xiaogan; Jiang Ping-an; Jia Hong-tao; Victor Squires</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">250</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013ESDD....4.1035N"> <span id="translatedtitle"><span class="hlt">Global</span> soil organic <span class="hlt">carbon</span> stock projection uncertainties relevant to sensitivity of <span class="hlt">global</span> mean temperature and precipitation changes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Soil organic <span class="hlt">carbon</span> (SOC) is the largest <span class="hlt">carbon</span> pool in terrestrial ecosystems and may play a key role in biospheric feedback to elevated atmospheric <span class="hlt">carbon</span> dioxide (CO2) in the warmer future world. We examined seven biome models with climate projections forced by four representative-concentration-pathways (RCPs)-based atmospheric concentration scenarios. The goal was to specify uncertainty in <span class="hlt">global</span> SOC stock projections from <span class="hlt">global</span> and regional perspectives. Our simulations showed that SOC stocks among the biome models varied from 1090 to 2650 Pg C even in historical periods (ca. 2000). In a higher forcing scenario (RCP8.5), inconsistent estimates of impact on the total SOC (2099-2000) were obtained from different model simulations, ranging from a net sink of 347 Pg C to a net source of 122 Pg C. In all models, the elevated atmospheric CO2 concentration in the RCP8.5 scenario considerably contributed to <span class="hlt">carbon</span> accumulation in SOC. However, magnitudes varied from 93 to 264 Pg C by the end of the 21st century. Using time-series data of total <span class="hlt">global</span> SOC estimated by biome biome model, we statistically analyzed the sensitivity of the <span class="hlt">global</span> SOC stock to <span class="hlt">global</span> mean temperature and <span class="hlt">global</span> precipitation anomalies (?T and ?P respectively) in each biome model using a state-space model. This analysis suggests that ?T explained <span class="hlt">global</span> SOC stock changes in most models with a resolution of 1-2 °C, and the magnitude of <span class="hlt">global</span> SOC decomposition from a 2 °C rise ranged from almost 0 Pg C yr-1 to 3.53 Pg C yr-1 among the biome models. On the other hand, ?P had a negligible impact on change in the <span class="hlt">global</span> SOC changes. Spatial heterogeneity was evident and inconsistent among the changes in SOC estimated by the biome models, especially in boreal to arctic regions. Our study revealed considerable climate change impact uncertainty in SOC decomposition among biome models. Further research is required to improve our understanding and ability to estimate biospheric feedback through SOC-relevant processes as well as vegetation processes.</p> <div class="credits"> <p class="dwt_author">Nishina, K.; Ito, A.; Beerling, D. J.; Cadule, P.; Ciais, P.; Clark, D. B.; Falloon, P.; Friend, A. D.; Kahana, R.; Kato, E.; Keribin, R.; Lucht, W.; Lomas, M.; Rademacher, T. T.; Pavlick, R.; Schaphoff, S.; Vuichard, N.; Warszawaski, L.; Yokohata, T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">251</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.reg.wur.nl/nr/rdonlyres/c313fe5d-ecc8-4e58-8e69-cdde8ce9eae4/90526/p13_lectureveenendaalblock3.pdf"> <span id="translatedtitle">PLANT-SOIL INTERACTIONS AND THE <span class="hlt">CARBON</span> CYCLE Integrating plant-soil interactions into <span class="hlt">global</span> <span class="hlt">carbon</span> cycle models</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary 1. Plant-soil interactions play a central role in the biogeochemical <span class="hlt">carbon</span> (C), nitrogen (N) and hydrologicalcycles.Inthecontextof globalenvironmentalchange,theyareimportantbothinmod- ulating the impact of climate change and in regulating the feedback of greenhouse gas emissions (CO 2, CH 4and N 2O)tothe climate system. 2. Dynamic <span class="hlt">global</span> vegetation models (DGVMs) represent the most advanced tools available to predict the impacts of <span class="hlt">global</span> change</p> <div class="credits"> <p class="dwt_author">Nicholas J. Ostle; Pete Smith; Rosie Fisher; F. Ian Woodward; Joshua B. Fisher; Jo U. Smith; David Galbraith; Peter Levy; Patrick Meir; Niall P. McNamara; Richard D. Bardgett</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">252</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39780662"> <span id="translatedtitle">Monitoring changes in soil organic <span class="hlt">carbon</span> pools, nitrogen, phosphorus, and sulfur under different agricultural <span class="hlt">management</span> practices in the tropics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Soil organic matter not only affects sustainability of agricultural ecosystems, but also extremely important in maintaining\\u000a overall quality of environment as soil contains a significant part of <span class="hlt">global</span> <span class="hlt">carbon</span> stock. Hence, we attempted to assess the\\u000a influence of different tillage and nutrient <span class="hlt">management</span> practices on various stabilized and active soil organic <span class="hlt">carbon</span> pools,\\u000a and their contribution to the extractable nitrogen</p> <div class="credits"> <p class="dwt_author">Bibhash C. Verma; Siba Prasad Datta; Raj K. Rattan; Anil K. Singh</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">253</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://oaspub.epa.gov/eims/eimsapi.dispdetail?deid=34682"> <span id="translatedtitle"><span class="hlt">CARBON</span> POOL AND FLUX OF <span class="hlt">GLOBAL</span> FOREST ECOSYSTEMS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p class="result-summary">Forest systems cover more than 4.1 x 10 9 hectares of the Earth's land area. lobally, forest vegetation and soils contain about 1146 petagrams of <span class="hlt">carbon</span>, with approximately 37 percent of this <span class="hlt">carbon</span> in low-latitude forests, 14 percent in mid-latitudes, and 49 percent in high lati...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">254</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51929214"> <span id="translatedtitle">From the Cover: <span class="hlt">Global</span> biodiversity and the ancient <span class="hlt">carbon</span> cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Paleontological data for the diversity of marine animals and land plants are shown to correlate significantly with a concurrent measure of stable <span class="hlt">carbon</span> isotope fractionation for approximately the last 400 million years. The correlations can be deduced from the assumption that increasing plant diversity led to increasing chemical weathering of rocks and therefore an increasing flux of <span class="hlt">carbon</span> from the</p> <div class="credits"> <p class="dwt_author">Daniel H. Rothman</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">255</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40877775"> <span id="translatedtitle">Twelve metropolitan <span class="hlt">carbon</span> footprints: A preliminary comparative <span class="hlt">global</span> assessment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A dearth of available data on <span class="hlt">carbon</span> emissions and comparative analysis between metropolitan areas make it difficult to confirm or refute best practices and policies. To help provide benchmarks and expand our understanding of urban centers and climate change, this article offers a preliminary comparison of the <span class="hlt">carbon</span> footprints of 12 metropolitan areas. It does this by examining emissions related</p> <div class="credits"> <p class="dwt_author">Benjamin K. Sovacool; Marilyn A. Brown</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">256</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/797425"> <span id="translatedtitle">An Authentication Technique Based on Distributed Security <span class="hlt">Management</span> for the <span class="hlt">Global</span> Mobility Network</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper proposes an authentication technique for use in the <span class="hlt">global</span> mobility network (GLOMONET), which provides a personal communication user with <span class="hlt">global</span> roaming service. This technique is based on new distributed security <span class="hlt">management</span>, where authentication <span class="hlt">management</span> in roaming-service provision is conducted only by the roamed network (the visited network). The original security <span class="hlt">manager</span> (OSM) administrates the original authentication key (OAK)</p> <div class="credits"> <p class="dwt_author">Shigefusa Suzuki; Kazuhiko Nakada</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">257</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1646887"> <span id="translatedtitle">Spatial-temporal traffic data analysis based on <span class="hlt">global</span> data <span class="hlt">management</span> using MAS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The spatial-temporal traffic data analysis based on <span class="hlt">global</span> data <span class="hlt">management</span> is a newly developed and crucial approach to help traffic <span class="hlt">managers</span> having the <span class="hlt">global</span> view of urban traffic status in the level of road network, which is very clearly useful in traffic control and route guidance. The multiagent systems are used in traffic data <span class="hlt">management</span> with full consideration of the</p> <div class="credits"> <p class="dwt_author">He-sheng Zhang; Yi Zhang; Zhi-heng Li; Dong-cheng Hu</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">258</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3414466"> <span id="translatedtitle">An Ecosystem Evaluation Framework for <span class="hlt">Global</span> Seamount Conservation and <span class="hlt">Management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">In the last twenty years, several <span class="hlt">global</span> targets for protection of marine biodiversity have been adopted but have failed. The Convention on Biological Diversity (CBD) aims at preserving 10% of all the marine biomes by 2020. For achieving this goal, ecologically or biologically significant areas (EBSA) have to be identified in all biogeographic regions. However, the methodologies for identifying the best suitable areas are still to be agreed. Here, we propose a framework for applying the CBD criteria to locate potential ecologically or biologically significant seamount areas based on the best information currently available. The framework combines the likelihood of a seamount constituting an EBSA and its level of human impact and can be used at <span class="hlt">global</span>, regional and local scales. This methodology allows the classification of individual seamounts into four major portfolio conservation categories which can help optimize <span class="hlt">management</span> efforts toward the protection of the most suitable areas. The framework was tested against 1000 dummy seamounts and satisfactorily assigned seamounts to proper EBSA and threats categories. Additionally, the framework was applied to eight case study seamounts that were included in three out of four portfolio categories: areas highly likely to be identified as EBSA with high degree of threat; areas highly likely to be EBSA with low degree of threat; and areas with a low likelihood of being EBSA with high degree of threat. This framework will allow <span class="hlt">managers</span> to identify seamount EBSAs and to prioritize their policies in terms of protecting undisturbed areas, disturbed areas for recovery of habitats and species, or both based on their <span class="hlt">management</span> objectives. It also identifies seamount EBSAs and threats considering different ecological groups in both pelagic and benthic communities. Therefore, this framework may represent an important tool to mitigate seamount biodiversity loss and to achieve the 2020 CBD goals.</p> <div class="credits"> <p class="dwt_author">Taranto, Gerald H.; Kvile, Kristina ?.; Pitcher, Tony J.; Morato, Telmo</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">259</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=157769"> <span id="translatedtitle"><span class="hlt">MANAGEMENT</span> PRACTICES AND <span class="hlt">CARBON</span> LOSSES VIA SEDIMENT AND SUBSURFACE FLOW</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary"><span class="hlt">Management</span> practices can have major impacts on soil organic <span class="hlt">carbon</span> levels, gains, and losses. There is wide acceptance that cultivating native land causes loss of soil organic matter. Among the multiple pathways of C loss from agricultural fields is C lost with sediment. To see whether some <span class="hlt">manag</span>...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">260</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://tracer.env.uea.ac.uk/esmg/papers/Lenton2000.pdf"> <span id="translatedtitle">Land and ocean <span class="hlt">carbon</span> cycle feedback eVects on <span class="hlt">global</span> warming in a simple Earth system model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A simple Earth system model is developed by coupling a box model of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle to an energy-balance approximation of <span class="hlt">global</span> temperature. The model includes a range of feedback mechanisms between atmospheric CO 2 , surface temperature and land and ocean <span class="hlt">carbon</span> cycling. It is used to assess their eVect on the <span class="hlt">global</span> change being driven by anthropo-</p> <div class="credits"> <p class="dwt_author">TIMOTHY M. LENTON</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_13 div --> <div id="page_14" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">261</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/10181409"> <span id="translatedtitle">Ocean Margins Program: Closure on the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Program description</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The Department of Energy`s Ocean Margins Program (OMP) is designed to quantitatively assess the importance of coastal ocean systems in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Since the beginning of the Industrial Revolution, human energy-related activities have dramatically altered the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle, and consequently, this cycle is not presently in a steady-state. To reduce major uncertainties in predicting future <span class="hlt">global</span> environmental quality, it is imperative to understand the sources and sinks of atmospheric CO{sub 2}, the role of anthropogenic activities in disrupting the natural <span class="hlt">carbon</span> cycle, and the effects of, and feedbacks between, these activities and the natural <span class="hlt">carbon</span> cycle. Due to continuously increased loading of nutrients to the margins, which, <span class="hlt">globally</span>, is related to the rate of human population growth and high population densities in coastal states, biological <span class="hlt">carbon</span> fixation has been stimulated. Depending on the fate of the fixed <span class="hlt">carbon</span>, this stimulation has the potential to mitigate the anthropogenically derived Co{sub 2}. Determining the factors that control the magnitude of <span class="hlt">carbon</span> exchanges between the ocean margins and the atmosphere, and the subsequent fate of this <span class="hlt">carbon</span>, is crucial to predicting the strength and capacity of the oceans to absorb excess anthropogenic atmospheric CO{sub 2}. The goals of the OMP are to: quantify the ecological and biogeochemical processes and mechanisms that define the cycling, flux, and storage of <span class="hlt">carbon</span> and other biogenic elements at the land/ocean interface; identify how ocean-margin sources and sinks of <span class="hlt">carbon</span> change in response to human activities; and determine whether continental shelves are quantitatively significant in removing atmospheric <span class="hlt">carbon</span> dioxide and isolating it via burial in sediments or export to the interior of the open ocean.</p> <div class="credits"> <p class="dwt_author">Riches, M.R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-08-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">262</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1997GeCoA..61.4831C"> <span id="translatedtitle"><span class="hlt">Carbon</span> isotope ratios of Phanerozoic marine cements: Re-evaluating the <span class="hlt">global</span> <span class="hlt">carbon</span> and sulfur systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Original ? 13C values of abiotically precipitated marine cements from a variety of stratigraphic intervals have been used to document secular variations in the ? 13C values of Phanerozoic oceans. These, together with the ° 34S values of coeval marine sulfates, are used to examine the <span class="hlt">global</span> cycling of <span class="hlt">carbon</span> and sulfur. It is generally accepted that secular variation in ? 13C and ? 34S values of marine <span class="hlt">carbonates</span> and sulfates is controlled by balanced oxidation-reduction reactions and that their long-term, steady-state variation can be predicted from the present-day isotopic fractionation ratio (? c/? s) the ratio of the riverine flux of sulfur and <span class="hlt">carbon</span> ( Fs/ Fc). The predicted slope of the linear relation between ? 13C carb and ? 34S sulfate values is approximately -0.10 to -0.14. However, temporal variation observed in marine cement ? 13C values and the 6345 values of coeval marine sulfates produces a highly significant linear relation ( r2 = 0.80; ? > 95%) with a slope of -0.24; approximately twice the predicted value. This discordance suggests that either the Phanerozoic average riverine Fs/ Fc was 1.6-3.3 times greater than today's estimates or that an additional source of 34S-depleted sulfur or 13C-enriched <span class="hlt">carbon</span>, other than continental reservoirs, was active during the Phanerozoic. This new relation between marine ? 13C and ? 34S values suggests that the flux of reduced sulfur, iron, and manganese from seafloor hydrothermal systems affects oceanic O2 levels which, in turn, control the oxidation or burial of organic matter, and thus the ? 13C value of marine DIC. Therefore, the sulfur system (driven by seafloor hydrothermal systems) controls the <span class="hlt">carbon</span> system rather than organic <span class="hlt">carbon</span> burial controlling the response of ? 34S values (via formation of sedimentary pyrite). Secular variation of marine 87Sr/86Sr ratios and ? 13C values argues for a coupling of ? 34S and ? 34S values to variation in the relative contribution of seafloor hydrothermal and continental weathering fluxes. These trends indicate that the early Paleozoic was dominated by low temperature silicate weathering, whereas the Late Paleozoic to Modern was dominated by high temperature seawater-basalt interactions. Variation in Proterozoic ? 13C carb and ? 34S sulfate values produces a slope that is greater than that of the Phanerozoic ( -0.50 vs. -0.24). This steeper slope is consistent with other geochernical data that indicate relatively high seafloor hydrothermal fluxes during the late Precambrian. We speculate that the dramatic evolutionary changes of the Neoproterozoic-Paleozoic transition occur during a waning of seafloor hydrothermal fluxes and a concomitant decrease in O 2 consumption that permitted the oxygenation of seawater thought to be critical in metazoan evolution.</p> <div class="credits"> <p class="dwt_author">Carpenter, Scott J.; Lohmann, Kyger C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">263</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA482701"> <span id="translatedtitle"><span class="hlt">Carbon</span> Nanotube Arrays for Thermal <span class="hlt">Management</span> Applications.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The work was designed towards creating aligned multiwalled <span class="hlt">carbon</span> nanotube arrays by chemical vapor deposition (CVD) of xylene hydrocarbon precursor and simultaneous vapor phase delivery of catalyst particles. Low density nanotube arrays as well as highly...</p> <div class="credits"> <p class="dwt_author">P. M. Ajayan</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">264</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://treesearch.fs.fed.us/pubs/40291"> <span id="translatedtitle"><span class="hlt">Managing</span> forests because <span class="hlt">carbon</span> matters: integrating energy ...</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.treesearch.fs.fed.us/">Treesearch</a></p> <p class="result-summary">Unlike metals, concrete, and plastic, forest products store atmospheric <span class="hlt">carbon</span> ... there is a substitution effect when wood is used in place of other building materials. ... over time while maintaining forests for environmental and societal benefits.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">265</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40875538"> <span id="translatedtitle">“<span class="hlt">Carbon</span>–Money Exchange” to contain <span class="hlt">global</span> warming and deforestation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper builds a basic theory of “<span class="hlt">Carbon</span>–Money Exchange” in which <span class="hlt">carbon</span> as currency in nature's household (ecosystems) and money as currency in humankind's household (economy) are exchanged just like in a foreign exchange. The simple chemical equation below makes it possibleCO2?C+O2=C+O2?CO2. The left-hand side represents the work of plants to remove atmospheric CO2. The right-hand side represents the work</p> <div class="credits"> <p class="dwt_author">Kozo Nagase</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">266</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=33723"> <span id="translatedtitle">Potential responses of soil organic <span class="hlt">carbon</span> to <span class="hlt">global</span> environmental change</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Recent improvements in our understanding of the dynamics of soil <span class="hlt">carbon</span> have shown that 20–40% of the approximately 1,500 Pg of C stored as organic matter in the upper meter of soils has turnover times of centuries or less. This fast-cycling organic matter is largely comprised of undecomposed plant material and hydrolyzable components associated with mineral surfaces. Turnover times of fast-cycling <span class="hlt">carbon</span> vary with climate and vegetation, and range from <20 years at low latitudes to >60 years at high latitudes. The amount and turnover time of C in passive soil <span class="hlt">carbon</span> pools (organic matter strongly stabilized on mineral surfaces with turnover times of millennia and longer) depend on factors like soil maturity and mineralogy, which, in turn, reflect long-term climate conditions. Transient sources or sinks in terrestrial <span class="hlt">carbon</span> pools result from the time lag between photosynthetic uptake of CO2 by plants and the subsequent return of C to the atmosphere through plant, heterotrophic, and microbial respiration. Differential responses of primary production and respiration to climate change or ecosystem fertilization have the potential to cause significant interrannual to decadal imbalances in terrestrial C storage and release. Rates of <span class="hlt">carbon</span> storage and release in recently disturbed ecosystems can be much larger than rates in more mature ecosystems. Changes in disturbance frequency and regime resulting from future climate change may be more important than equilibrium responses in determining the <span class="hlt">carbon</span> balance of terrestrial ecosystems.</p> <div class="credits"> <p class="dwt_author">Trumbore, Susan E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">267</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/7009997"> <span id="translatedtitle">Air-sea <span class="hlt">carbon</span> dioxide exchange in the North Pacific subtropical Gyre: Implications for the <span class="hlt">global</span> <span class="hlt">carbon</span> budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">After 20 years of investigation the scientific community has been unable to resolve the magnitudes and direction of <span class="hlt">carbon</span> dioxide fluxes involving oceans and terrestrial biomass. Studies of the authors over the last four years measuring inorganic <span class="hlt">carbon</span> parameters suggest that the North Pacific Subtropical Cyre (NPSG) is a sink for atmospheric <span class="hlt">carbon</span> dioxide. This paper presents a mechanism by which the NPSG can be a net sink for atmospheric <span class="hlt">carbon</span> dioxide and the magnitude of this sink is calculated as approximately 0.2 Gt C yr. The authors note that this sink is still approximately an order of magnitude smaller than that needed to balance the <span class="hlt">global</span> <span class="hlt">carbon</span> budget. 41 refs., 3 figs., 1 tab.</p> <div class="credits"> <p class="dwt_author">Winn, C.D.; Mackenzie, F.T.; Carrillo, C.J.; Karl, D.M. (Univ. of Hawaii, Honolulu, HI (United States)); Sabine, C.L. (Princeton Univ., NJ (United States))</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">268</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26517258"> <span id="translatedtitle">A simple model of <span class="hlt">carbon</span> cycle for upgrading <span class="hlt">global</span> fossil fuels consumption and <span class="hlt">carbon</span> emission forecasts validity</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A set of models for <span class="hlt">global</span> <span class="hlt">carbon</span> cycle, World population and atmospheric CO2 are proposed. These set of models works as some tools for validating field and modeling dates. Proposed set of models improved validity of prognoses of future fossil fuel consumption.</p> <div class="credits"> <p class="dwt_author">Kamo. S. Demirchian; Karina. K. Demirchian</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">269</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.bioone.org/perlserv/?request=get-document&doi=10.1641%2FB580807"> <span id="translatedtitle">Vulnerability of Permafrost <span class="hlt">Carbon</span> to Climate Change: Implications for the <span class="hlt">Global</span> <span class="hlt">Carbon</span> Cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">Thawing permafrost and the resulting microbial decomposition of previously frozen organic <span class="hlt">carbon</span> (C) is one of the most significant potential feedbacks from terrestrial ecosystems to the atmosphere in a changing climate. In this article we present an overview of the <span class="hlt">global</span> permafrost C pool and of the processes that might transfer this C into the atmosphere, as well as the associated ecosystem changes that occur with thawing. We show that accounting for C stored deep in the permafrost more than doubles previous high-latitude inventory estimates, with this new estimate equivalent to twice the atmospheric C pool. The thawing of permafrost with warming occurs both gradually and catastrophically, exposing organic C to microbial decomposition. Other aspects of ecosystem dynamics can be altered by climate change along with thawing permafrost, such as growing season length, plant growth rates and species composition, and ecosystem energy exchange. However, these processes do not appear to be able to compensate for C release from thawing permafrost, making it likely that the net effect of widespread permafrost thawing will be a positive feedback to a warming climate.</p> <div class="credits"> <p class="dwt_author">Edward A. G. Schuur (University of Florida;)</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">270</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989AcAau..20..149H"> <span id="translatedtitle">Remote sensing strategies for <span class="hlt">global</span> resource exploration and environmental <span class="hlt">management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Since 1972, satellite remote sensing, when integrated with other exploration techniques, has demonstrated operational exploration and engineering cost savings and reduced exploration risks through improved geological mapping. Land and ocean remote sensing satellite systems under development for the 1990's by the United States, France, Japan, Canada, ESA, Russia, China, and others, will significantly increase our ability to explore for, develop, and <span class="hlt">manage</span> energy and mineral resources worldwide. A major difference between these systems is the "Open Skies" and "Non-Discriminatory Access to Data" policies as have been practiced by the U.S. and France and the restrictive nationalistic data policies as have been practiced by Russia and India. <span class="hlt">Global</span> exploration will use satellite remote sensing to better map regional structural and basin-like features that control the distribution of energy and mineral resources. Improved sensors will better map lithologic and stratigraphic units and identify alteration effects in rocks, soils, and vegetation cover indicative of undiscovered subsurface resources. These same sensors will also map and monitor resource development. The use of satellite remote sensing data will grow substantially through increasing integration with other geophysical, geochemical, and geologic data using improved geographic information systems (GIS). International exploration will focus on underdeveloped countries rather than on mature exploration areas such as the United States, Europe, and Japan. Energy and mineral companies and government agencies in these countries and others will utilize available remote sensing data to acquire economic intelligence on <span class="hlt">global</span> resources. If the "Non-Discriminatory Access to Data" principle is observed by satellite producing countries, exploration will remain competitive "on the ground". In this manner, remote sensing technology will continue to be developed to better explore for and <span class="hlt">manage</span> the world's needed resources. If, however, satellite producing countries follow the Russian and Indian lead and restrict civil satellite data as tools of their national security and economic policies, remote sensing technology may become internationally competitive in space, redundant, prohibitively expensive, and generally unavailable to the world community.</p> <div class="credits"> <p class="dwt_author">Henderson, Frederick B.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">271</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/5289909"> <span id="translatedtitle">Modelling the role of agriculture for the 20th century <span class="hlt">global</span> terrestrial <span class="hlt">carbon</span> balance</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In order to better assess the role of agriculture within the <span class="hlt">global</span> climate-vegetation system, we present a model of the <span class="hlt">managed</span> planetary land surface, Lund-Potsdam-Jena <span class="hlt">managed</span> Land (LPJmL), which simulates biophysical and biogeochemical processes as well as productivity and yield of the most important crops worldwide, using a concept of crop functional types (CFTs). Based on the LPJ-Dynamic <span class="hlt">Global</span> Vegetation</p> <div class="credits"> <p class="dwt_author">ALBERTE B ONDEAU; S ONKE Z AEHLE; SIBYLL S CHAPHOFF; W OLFGANG L UCHT; W OLFGANG C RAMER; DIETER G ERTEN; H ERMANN L OTZE-CAMPEN; C H R I S T O P H M ULLER</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">272</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/41326194"> <span id="translatedtitle">Millennial-Scale Rhythms in Peatlands in the Western Interior of Canada and in the <span class="hlt">Global</span> <span class="hlt">Carbon</span> Cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Anatural ?1450-yr <span class="hlt">global</span> Holocene climate periodicity underlies a portion of the present <span class="hlt">global</span> warming trend. Calibrated basal radiocarbon dates from 71 paludified peatlands across the western interior of Canada demonstrate that this periodicity regulated western Canadian peatland initiation. Peatlands, the largest terrestrial <span class="hlt">carbon</span> pool, and their <span class="hlt">carbon</span>-budgets are sensitive to hydrological fluctuations. The <span class="hlt">global</span> atmospheric <span class="hlt">carbon</span>-budget experienced corresponding fluctuations, as</p> <div class="credits"> <p class="dwt_author">Ian D. Campbell; Celina Campbell; Zicheng Yu; Dale H. Vitt; Michael J. Apps</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">273</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.botany.unibe.ch/paleo/publications/reprints/Chemosphere_49_845.pdf"> <span id="translatedtitle">Holocene biomass burning and <span class="hlt">global</span> dynamics of the <span class="hlt">carbon</span> cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Fire regimes have changed during the Holocene due to changes in climate, vegetation, and in human practices. Here, we hypothesise that changes in fire regime may have affected the <span class="hlt">global</span> CO2 concentration in the atmosphere through the Holocene. Our data are based on quantitative reconstructions of biomass burning deduced from stratified charcoal records from Europe, and South-, Central- and North</p> <div class="credits"> <p class="dwt_author">C. Carcaillet; H. Almquist; H. Asnong; R. H. W. Bradshaw; J. S. Carrión; M.-J. Gaillard; K. Gajewski; J. N. Haas; S. G. Haberle; P. Hadorn; S. D. Müller; P. J. H. Richard; I. Richoz; M. Rösch; M. F. Sánchez Goñi; H. von Stedingk; A. C. Stevenson; B. Talon; C. Tardy; W. Tinner; E. Tryterud; L. Wick; K. J. Willis</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">274</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42391584"> <span id="translatedtitle">Crop <span class="hlt">Management</span> for Soil <span class="hlt">Carbon</span> Sequestration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Reducing emissions of greenhouse gases (GHG) from agriculture is related to increasing and protecting soil organic matter (SOM) concentration. Agricultural soils can be a significant sink for atmospheric <span class="hlt">carbon</span> (C) through increase of the SOM concentration. The natural ecosystems such as forests or prairies, where C gains are in equilibrium with losses, lose a large fraction of the antecedent C</p> <div class="credits"> <p class="dwt_author">Marek K. Jarecki; Rattan Lal</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">275</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58030815"> <span id="translatedtitle">Stationarity of <span class="hlt">Global</span> Per Capital <span class="hlt">Carbon</span> Dioxide Emissions: Implications for <span class="hlt">Global</span> Warming Scenarios</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Annual <span class="hlt">global</span> CO2 emission forecasts at 2100 span 10 to 40 billion tonnes. Modeling work over the past decade has not narrowed this range nor provided much guidance about probabilities. We examine the time-series properties of historical per capita CO2 emissions and conclude that per capita <span class="hlt">global</span> emissions are stationary without trend, and have a constant mean of 1.14 tonnes</p> <div class="credits"> <p class="dwt_author">Mark C. Strazicich; Ross McKitrick</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">276</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009GBioC..23.4027C"> <span id="translatedtitle">Synergy of rising nitrogen depositions and atmospheric CO2 on land <span class="hlt">carbon</span> uptake moderately offsets <span class="hlt">global</span> warming</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Increased <span class="hlt">carbon</span> uptake of land in response to elevated atmospheric CO2 concentration and nitrogen deposition could slow down the rate of CO2 increase and facilitate climate change mitigation. Using a coupled model of climate, ocean, and land biogeochemistry, we show that atmospheric nitrogen deposition and atmospheric CO2 have a strong synergistic effect on the <span class="hlt">carbon</span> uptake of land. Our best estimate of the <span class="hlt">global</span> land <span class="hlt">carbon</span> uptake in the 1990s is 1.34 PgC/yr. The synergistic effect could explain 47% of this <span class="hlt">carbon</span> uptake, which is higher than either the effect of increasing nitrogen deposition (29%) or CO2 fertilization (24%). By 2030, rising <span class="hlt">carbon</span> uptake on land has a potential to reduce atmospheric CO2 concentration by about 41 ppm out of which 16 ppm reduction would come from the synergetic response of land to the CO2 and nitrogen fertilization effects. The strength of the synergy depends largely on the cooccurrence of high nitrogen deposition regions with nonagricultural ecosystems. Our study suggests that reforestation and sensible ecosystem <span class="hlt">management</span> in industrialized regions may have larger potential for climate change mitigation than anticipated.</p> <div class="credits"> <p class="dwt_author">Churkina, Galina; Brovkin, Victor; von Bloh, Werner; Trusilova, Kristina; Jung, Martin; Dentener, Frank</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">277</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55651255"> <span id="translatedtitle">The Terrestrial Fossil Organic Matter Record of <span class="hlt">Global</span> <span class="hlt">Carbon</span> Cycling: A Late Paleozoic through Early Mesozoic Perspective</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">carbon</span> isotope composition of terrestrial fossil organic matter (delta13Corg) has been widely used as a proxy of <span class="hlt">global</span> <span class="hlt">carbon</span> cycling and to reconstruct perturbations to the ocean-atmosphere <span class="hlt">carbon</span> budget. The degree to which terrestrial delta13Corg records local to regional environmental conditions versus the evolution of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle has been highly debated. The high-resolution (104 to 106 m.y.)</p> <div class="credits"> <p class="dwt_author">I. P. Montanez</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">278</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003AGUFM.B42A0938G"> <span id="translatedtitle">Remote sensing for forest resource assessment: applications to <span class="hlt">carbon</span> <span class="hlt">management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The U.S. Forest Service and the State of Maryland's Department of Natural Resources have initiated an assessment of forest resources in Maryland, and across the Chesapeake Bay Watershed. This Strategic Forest Lands Assessment (SFLA) uses remote sensing and geographic information systems analyses to conduct ecological, socioeconomic and vulnerability assessments in support of resource <span class="hlt">management</span> activities and forest product based economies. As part of this activity we are modeling net primary productivity of the region, and producing maps of land cover type - including the proportion of subpixel tree cover from Landsat7 imagery. These map products are being used in several programs to assess forest cover change, relationships with standing <span class="hlt">carbon</span> stocks, and to target lands for a combination of ecological protection and economic resource extraction, as well as <span class="hlt">carbon</span> sequestration. These efforts not only provide critical data sets and derived products used as decision tools for forest conservation, restoration and enhancement, but also advance efforts to promote sustainable forestry activities. The forest <span class="hlt">management</span> efforts are designed to optimize <span class="hlt">carbon</span> sink strategies and reduce atmospheric <span class="hlt">carbon</span> pools. By using a combination of estimated, simulated and measured biomass and productivity, and timber removal estimates from Forest Inventory Analysis, we can determine where <span class="hlt">carbon</span> sequestration can be maximized and sustainable forestry activities can be encouraged. The effects of these forest <span class="hlt">management</span> activities, both past and present, and changes in forest cover, can have substantial impacts on regional <span class="hlt">carbon</span> sequestration.</p> <div class="credits"> <p class="dwt_author">Goetz, S. J.; Conn, C.; Wolf, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">279</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54265544"> <span id="translatedtitle">Nested <span class="hlt">Global</span> Inversion for the <span class="hlt">Carbon</span> Flux Distribution in Canada and USA from 1994 to 2003</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Based on TransCom inverse modeling for 22 <span class="hlt">global</span> regions, we developed a nested <span class="hlt">global</span> inversion system for estimating <span class="hlt">carbon</span> fluxes of 30 regions in North America (2 of the 22 regions are divided into 30). Irregular boundaries of these 30 regions are delineated based on ecosystem types and provincial\\/state borders. Synthesis Bayesian inversion is conducted in monthly steps using CO2</p> <div class="credits"> <p class="dwt_author">J. M. Chen; F. Deng; M. Ishizawa; W. Ju; G. Mo; D. Chan; K. Higuchi; S. Maksyutov</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">280</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21502170"> <span id="translatedtitle">Economic value of improved quantification in <span class="hlt">global</span> sources and sinks of <span class="hlt">carbon</span> dioxide.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">On average, about 45 per cent of <span class="hlt">global</span> annual anthropogenic <span class="hlt">carbon</span> dioxide (CO(2)) emissions remain in the atmosphere, while the remainder are taken up by <span class="hlt">carbon</span> reservoirs on land and in the oceans-the CO(2) 'sinks'. As sink size and dynamics are highly variable in space and time, cross-verification of reported anthropogenic CO(2) emissions with atmospheric CO(2) measurements is challenging. Highly variable CO(2) sinks also limit the capability to detect anomolous changes in natural <span class="hlt">carbon</span> reservoirs. This paper argues that significant uncertainty reduction in annual estimates of the <span class="hlt">global</span> <span class="hlt">carbon</span> balance could be achieved rapidly through coordinated up-scaling of existing methods, and that this uncertainty reduction would provide incentive for accurate reporting of CO(2) emissions at the country level. We estimate that if 5 per cent of <span class="hlt">global</span> CO(2) emissions go unreported and undetected, the associated marginal economic impacts could reach approximately US$20 billion each year by 2050. The net present day value of these impacts aggregated until 2200, and discounted back to the present would have a mean value exceeding US$10 trillion. The costs of potential impacts of unreported emissions far outweigh the costs of enhancement of measurement infrastructure to reduce uncertainty in the <span class="hlt">global</span> <span class="hlt">carbon</span> balance. PMID:21502170</p> <div class="credits"> <p class="dwt_author">Durant, A J; Le Quéré, C; Hope, C; Friend, A D</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-05-28</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_14 div --> <div id="page_15" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">281</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/gl/gl0601/2005GL024707/2005GL024707.pdf"> <span id="translatedtitle"><span class="hlt">Global</span> <span class="hlt">carbon</span> emissions from biomass burning in the 20th century</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We used a new, 100-year, 1 × 1° <span class="hlt">global</span> fire map and a <span class="hlt">carbon</span> cycle model (CASA) to provide a yearly gridded estimate of the temporal trend in <span class="hlt">carbon</span> emissions due to wildfires through the 20th century. 2700–3325 Tg C y?1 burn at the end of the 20th century, compared to 1500–2700 Tg C y?1 at the beginning, with increasing</p> <div class="credits"> <p class="dwt_author">Florent Mouillot; Ajay Narasimha; Yves Balkanski; Jean-François Lamarque; Christopher B. Field</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">282</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/6724429"> <span id="translatedtitle">KNOWLEDGE <span class="hlt">MANAGEMENT</span> FOR THE TWENTY-FIRST CENTURY: A LARGE COMPREHENSIVE <span class="hlt">GLOBAL</span> SURVEY EMPHASIZES KM STRATEGY</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents a first set of results from an ongoing large comprehensive <span class="hlt">global</span> survey of knowledge <span class="hlt">management</span> (KM). In light of the observed developments since previous knowledge <span class="hlt">management</span> surveys, we redefine the KM function, how it should be performed, and what tools and techniques will best assist in its performance. Our research instrument is a <span class="hlt">global</span> online hosted survey</p> <div class="credits"> <p class="dwt_author">Elayne Coakes; A. D. Amar; Maria Luisa Granados</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">283</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.inf.ed.ac.uk/teaching/courses/irm/lectures/magpie/Business_Studies.pdf"> <span id="translatedtitle">ACTIVATORS AND INHIBITORS OF SUCCESSFUL <span class="hlt">GLOBAL</span> IS IN THE STRATEGIC <span class="hlt">MANAGEMENT</span> CYCLE OF MULTINATIONAL INVESTMENT BANKS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Strategic <span class="hlt">management</span> of <span class="hlt">global</span> information systems (IS) is increasingly important for the multinational investment banking industry that had originally utilized information networks crossing national borders for profit making purposes. Significant changes have occurred to the scope of strategic <span class="hlt">management</span> of IS in modern organizations following major restructuring of the <span class="hlt">global</span> business environment. This research has sought to find whether new</p> <div class="credits"> <p class="dwt_author">Hideyuki Matsumoto; David W. Wilson</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">284</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/6199171"> <span id="translatedtitle">Software configuration <span class="hlt">management</span> over a <span class="hlt">global</span> software development environment: lessons learned from a case study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Software configuration <span class="hlt">management</span> is an important support activity in the software development process. In <span class="hlt">global</span> environments, the software configuration becomes critical due to the characteristics of the distributed development (physical distance, cultural differences, trust, communication and other factors). The objective of this paper is to analyze the software configuration <span class="hlt">management</span> in a <span class="hlt">global</span> software development environment, identifying the main challenges.</p> <div class="credits"> <p class="dwt_author">Leonardo Pilatti; Jorge Luis Nicolas Audy; Rafael Prikladnicki</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">285</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51114825"> <span id="translatedtitle">An Analytical Network Model for Decision Support in <span class="hlt">Global</span> Manufacturing Operations <span class="hlt">Management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper discusses an analytical network model for efficient decision support in <span class="hlt">global</span> manufacturing operations <span class="hlt">management</span> (GMOM). Impact of business <span class="hlt">globalization</span> on manufacturing operations <span class="hlt">management</span>, key features of GMOM and challenges for the decision making have been identified. Based on the understanding of decision support requirements for the GMOM, an analytical network model has been developed to support multi-criteria decision</p> <div class="credits"> <p class="dwt_author">Shaofeng Liu; Gordon Smith; Pushpa Subramaniam</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">286</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4783066"> <span id="translatedtitle">Applying collaborative transportation <span class="hlt">management</span> models in <span class="hlt">global</span> third-party logistics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">With the trends of e-commerce and <span class="hlt">globalization</span> occurring in the economy, an effective <span class="hlt">global</span> supply chain (GSC) <span class="hlt">management</span> has become a business necessity for a multinational corporation seeking to secure market share. Although there has been much discussion on how a company gains competitive advantages through GSC <span class="hlt">management</span>, the physical distribution of order fulfilment is less discussed in the literature.</p> <div class="credits"> <p class="dwt_author">J. C. Tyan; F. K. Wang; T Du</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">287</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.nceas.ucsb.edu/~drewa/pubs/allen_ap_2005_f19_202.pdf"> <span id="translatedtitle">Linking the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle to individual metabolism</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary 1. We present a model that yields ecosystem-level predictions of the flux, storage and turnover of <span class="hlt">carbon</span> in three important pools (autotrophs, decomposers, labile soil C) based on the constraints of body size and temperature on individual metabolic rate. 2. The model predicts a 10 000-fold increase in C turnover rates moving from tree- to phytoplankton-dominated ecosystems due to</p> <div class="credits"> <p class="dwt_author">A. P. ALLEN; J. F. GILLOOLY; J. H. BROWN</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">288</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20482580"> <span id="translatedtitle">A <span class="hlt">global</span> perspective on belowground <span class="hlt">carbon</span> dynamics under nitrogen enrichment.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Nitrogen (N) effects on ecosystem <span class="hlt">carbon</span> (C) budgets are critical to understand as C sequestration is considered as a mechanism to offset anthropogenic CO(2) emissions. Interactions between aboveground C and N cycling are more clearly characterized than belowground processes. Through synthesizing data from multiple terrestrial ecosystems, we quantified the responses of belowground C cycling under N addition. We found that N addition increased litter input from aboveground (+20%) but not from fine root. N addition inhibited microbial activity as indicated by a reduction in microbial respiration (-8%) and microbial biomass <span class="hlt">carbon</span> (-20%). Although soil respiration was not altered by N addition, dissolved organic <span class="hlt">carbon</span> concentration was increased by 18%, suggesting C leaching loss may increase. N addition increased the C content of the organic layer (+17%) but not the mineral soil layer. Overall, our meta-analysis indicates that N addition will increase short term belowground C storage by increasing C content of organic layer. However, it is difficult to predict the response of long term C sequestration since there is no significant change in mineral soil C content. PMID:20482580</p> <div class="credits"> <p class="dwt_author">Liu, Lingli; Greaver, Tara L</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-12</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">289</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013ESSDD...6..163L"> <span id="translatedtitle"><span class="hlt">Global</span> database of surface ocean particulate organic <span class="hlt">carbon</span> export fluxes diagnosed from the 234Th technique</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The oceanic biological <span class="hlt">carbon</span> pump is an important factor in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Organic <span class="hlt">carbon</span> is exported from the surface ocean mainly in the form of settling particles derived from plankton production in the upper layers of the ocean. The large variability in current estimates of the <span class="hlt">global</span> strength of the biological <span class="hlt">carbon</span> pump emphasises that our knowledge of a major planetary <span class="hlt">carbon</span> flux remains poorly constrained. We present a database of 723 estimates of organic <span class="hlt">carbon</span> export from the surface ocean derived from the 234Th technique. The dataset is archived on the data repository PANGEA® (<a href="www.pangea.de"target="_blank">www.pangea.de</a>) under <a href="http://dx.doi.org/10.1594/PANGAEA.809717"target="_blank">doi:10.1594/PANGAEA.809717</a>. Data were collected from tables in papers published between 1985 and early 2013 only. We also present sampling dates, publication dates and sampling areas. Most of the open ocean provinces are represented by several measurements. However, the Western Pacific, the Atlantic Arctic, South Pacific and the South Indian Ocean are not well represented. There is a variety of integration depths ranging from surface to 220 m. <span class="hlt">Globally</span> the fluxes ranged from 0 to 1500 mg of C m-2 d-1.</p> <div class="credits"> <p class="dwt_author">Le Moigne, F. A. C.; Henson, S. A.; Sanders, R. J.; Madsen, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">290</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22847435"> <span id="translatedtitle"><span class="hlt">Global</span> economic potential for reducing <span class="hlt">carbon</span> dioxide emissions from mangrove loss.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Mangroves are among the most threatened and rapidly disappearing natural environments worldwide. In addition to supporting a wide range of other ecological and economic functions, mangroves store considerable <span class="hlt">carbon</span>. Here, we consider the <span class="hlt">global</span> economic potential for protecting mangroves based exclusively on their <span class="hlt">carbon</span>. We develop unique high-resolution <span class="hlt">global</span> estimates (5' grid, about 9 × 9 km) of the projected <span class="hlt">carbon</span> emissions from mangrove loss and the cost of avoiding the emissions. Using these spatial estimates, we derive <span class="hlt">global</span> and regional supply curves (marginal cost curves) for avoided emissions. Under a broad range of assumptions, we find that the majority of potential emissions from mangroves could be avoided at less than $10 per ton of CO(2). Given the recent range of market price for <span class="hlt">carbon</span> offsets and the cost of reducing emissions from other sources, this finding suggests that protecting mangroves for their <span class="hlt">carbon</span> is an economically viable proposition. Political-economy considerations related to the ability of doing business in developing countries, however, can severely limit the supply of offsets and increases their price per ton. We also find that although a <span class="hlt">carbon</span>-focused conservation strategy does not automatically target areas most valuable for biodiversity, implementing a biodiversity-focused strategy would only slightly increase the costs. PMID:22847435</p> <div class="credits"> <p class="dwt_author">Siikamäki, Juha; Sanchirico, James N; Jardine, Sunny L</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-30</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">291</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/5711361"> <span id="translatedtitle">How strongly can forest <span class="hlt">management</span> influence soil <span class="hlt">carbon</span> sequestration?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We reviewed the experimental evidence for long-term <span class="hlt">carbon</span> (C) sequestration in soils as consequence of specific forest <span class="hlt">management</span> strategies. Utilization of terrestrial C sinks alleviates the burden of countries which are committed to reducing their greenhouse gas emissions. Land-use changes such as those which result from afforestation and <span class="hlt">management</span> of fast-growing tree species, have an immediate effect on the regional</p> <div class="credits"> <p class="dwt_author">Robert Jandl; Marcus Lindner; Lars Vesterdal; B. M. S. D. L. Bauwens; Rainer Baritz; Frank Hagedorn; Dale W. Johnson; Kari Minkkinen; Kenneth A. Byrne</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">292</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008TellB..60..265K"> <span id="translatedtitle">Vulnerability of permafrost <span class="hlt">carbon</span> to <span class="hlt">global</span> warming. Part II: sensitivity of permafrost <span class="hlt">carbon</span> stock to <span class="hlt">global</span> warming</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In the companion paper (Part I), we presented a model of permafrost <span class="hlt">carbon</span> cycle to study the sensitivity of frozen <span class="hlt">carbon</span> stocks to future climate warming. The mobilization of deep <span class="hlt">carbon</span> stock of the frozen Pleistocene soil in the case of rapid stepwise increase of atmospheric temperature was considered. In this work, we adapted the model to be used also for floodplain tundra sites and to account for the processes in the soil active layer. The new processes taken into account are litter input and decomposition, plant-mediated transport of methane, and leaching of exudates from plant roots. The SRES-A2 transient climate warming scenario of the IPSL CM4 climate model is used to study the <span class="hlt">carbon</span> fluxes from the <span class="hlt">carbon</span>-rich Pleistocene soil with seasonal active-layer <span class="hlt">carbon</span> cycling on top of it. For a point to the southwest from the western branch of Yedoma Ice Complex, where the climate warming is strong enough to trigger self-sustainable decomposition processes, about 256 kgC m-2, or 70% of the initial soil <span class="hlt">carbon</span> stock under present-day climate conditions, are emitted to the atmosphere in about 120 yr, including 20 kgC m-2 released as methane. The total average flux of CO2 and methane emissions to the atmosphere during this time is of 2.1 kgC m-2 yr-1. Within the Yedoma, whose most part of the territory remains relatively cold, the emissions are much smaller: 0.2 kgC m-2 yr-1 between 2050 and 2100 for Yakutsk area. In a test case with saturated upper-soil meter, when the runoff is insufficient to evacuate the meltwater, 0.05 kgCH4 m-2 yr-1 on average are emitted as methane during 250 yr starting from 2050. The latter can translate to the upper bound of 1 GtC yr-1 in CO2 equivalent from the 1 million km2 area of the Yedoma.</p> <div class="credits"> <p class="dwt_author">Khvorostyanov, D. V.; Ciais, P.; Krinner, G.; Zimov, S. A.; Corradi, Ch.; Guggenberger, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">293</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013BGD....1011077B"> <span id="translatedtitle">Nitrogen deposition: how important is it for <span class="hlt">global</span> terrestrial <span class="hlt">carbon</span> uptake?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Global</span> <span class="hlt">carbon</span> budget studies indicate that the terrestrial ecosystems have remained a~large sink for <span class="hlt">carbon</span> despite widespread deforestation activities. CO2-fertilization, N deposition and re-growth of mid-latitude forests are believed to be key drivers for land <span class="hlt">carbon</span> uptake. In this study, we assess the importance of N deposition by performing idealized near-equilibrium simulations using the Community Land Model 4.0 (CLM4). In our equilibrium simulations, only 12-17% of the deposited Nitrogen is assimilated into the ecosystem and the corresponding <span class="hlt">carbon</span> uptake can be inferred from a C : N ratio of 20:1. We calculate the sensitivity of the terrestrial biosphere for CO2-fertilization, climate warming and N deposition as changes in total ecosystem <span class="hlt">carbon</span> for unit changes in <span class="hlt">global</span> mean atmospheric CO2 concentration, <span class="hlt">global</span> mean temperature and Tera grams of Nitrogen deposition per year, respectively. Based on these sensitivities, it is estimated that about 242 PgC could have been taken up by land due to the CO2 fertilization effect and an additional 175 PgC taken up as a result of the increased N deposition since the pre-industrial period. Because of climate warming, terrestrial ecosystem could have lost about 152 PgC during the same period. Therefore, since preindustrial times terrestrial <span class="hlt">carbon</span> losses due to warming may have been approximately compensated by effects of increased N deposition, whereas the effect of CO2-fertilization is approximately indicative of the current increase in terrestrial <span class="hlt">carbon</span> stock. Our simulations also suggest that the sensitivity of <span class="hlt">carbon</span> storage to increased N deposition decreases beyond current levels, indicating climate warming effects on <span class="hlt">carbon</span> storage may overwhelm N deposition effects in the future.</p> <div class="credits"> <p class="dwt_author">Bala, G.; Devaraju, N.; Chaturvedi, R. K.; Caldeira, K.; Nemani, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">294</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFM.B31A0310T"> <span id="translatedtitle">A Radiocarbon Database for Improving Understanding of <span class="hlt">Global</span> Soil <span class="hlt">Carbon</span> Dynamics: Part I</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Soils play a large role in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle, but soil <span class="hlt">carbon</span> stocks and dynamics remain highly uncertain. Radiocarbon (14C) observations from soils and soil respiration provide one of the only ways to infer terrestrial <span class="hlt">carbon</span> turnover times or to test ecosystem <span class="hlt">carbon</span> models. Although a wealth of such observations exists, they are scattered in small data sets held by individual researchers, and have not been compiled in a form easy to use for multi-site analysis, <span class="hlt">global</span> assessments, or model testing. Here we introduce a new, <span class="hlt">global</span> radiocarbon database that will synthesize datasets from multiple contributors to facilitate research on three broad questions: (1) What are current patterns of soil <span class="hlt">carbon</span> dynamics, and what factors influence these patterns? (2) What is the sequestration capacity of different soils? (3) What are likely impacts of <span class="hlt">global</span> change on the soil resource? (4) How well do models represent important <span class="hlt">carbon</span> cycle processes, and how can they be improved? In addition to assembling data in a common format for analyses, this database will offer query capabilities and the ability to combine data with gridded <span class="hlt">global</span> products, such as temporally resolved temperature and precipitation, NPP and GPP, and a climate-based decomposition index. Some of the near-term synthesis goals include analyzing depth profiles of 14C for across gradients in ecosystem state factors (climate, organisms, relief, parent material, time, and human influence) and soil orders; mapping surface-soil 14C values on soil temperature and moisture; and comparing soil <span class="hlt">carbon</span> turnover times to NPP and soil <span class="hlt">carbon</span> stocks. We are currently incorporating data from 18 contributors and six continents, with 14C measurements from soils representing nine soil orders, plant and microbial tissues, and respiration fluxes. Our intention is to grow the database and make it available to a wide community of scientists. For example, observations for different disturbance, experimental treatment, or land-use regimes are sought. This presentation will introduce modelers, other data users, and potential new data contributors to this valuable resource for evaluating terrestrial <span class="hlt">carbon</span> dynamics and responses to <span class="hlt">global</span> change.</p> <div class="credits"> <p class="dwt_author">Torn, M. S.; Trumbore, S.; Smith, L. J.; Nave, L. E.; Sierra, C. A.; Harden, J. W.; Agarwal, D.; van Ingen, C.; Radiocarbon Database Workshop 2011</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">295</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19746745"> <span id="translatedtitle"><span class="hlt">Carbon</span> footprint of nations: a <span class="hlt">global</span>, trade-linked analysis.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Processes causing greenhouse gas (GHG) emissions benefit humans by providing consumer goods and services. This benefit, and hence the responsibility for emissions, varies by purpose or consumption category and is unevenly distributed across and within countries. We quantify greenhouse gas emissions associated with the final consumption of goods and services for 73 nations and 14 aggregate world regions. We analyze the contribution of 8 categories: construction, shelter, food, clothing, mobility, manufactured products, services, and trade. National average per capita footprints vary from 1 tCO2e/y in African countries to approximately 30/y in Luxembourg and the United States. The expenditure elasticity is 0.57. The cross-national expenditure elasticity for just CO2, 0.81, corresponds remarkably well to the cross-sectional elasticities found within nations, suggesting a <span class="hlt">global</span> relationship between expenditure and emissions that holds across several orders of magnitude difference. On the <span class="hlt">global</span> level, 72% of greenhouse gas emissions are related to household consumption, 10% to government consumption, and 18% to investments. Food accounts for 20% of GHG emissions, operation and maintenance of residences is 19%, and mobility is 17%. Food and services are more important in developing countries, while mobility and manufactured goods rise fast with income and dominate in rich countries. The importance of public services and manufactured goods has not yet been sufficiently appreciated in policy. Policy priorities hence depend on development status and country-level characteristics. PMID:19746745</p> <div class="credits"> <p class="dwt_author">Hertwich, Edgar G; Peters, Glen P</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">296</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51016108"> <span id="translatedtitle"><span class="hlt">Carbon</span> <span class="hlt">Management</span> Strategy of Tourism in Response to Climate Change</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Following the Inter-governmental Panel on Climate Change (IPCC) assertion that climate change is now unequivocally taking place, the Davos Declaration has prioritized the need for the tourism sector to respond to the climate change challenge. There is a need to reduce emissions through <span class="hlt">carbon</span> <span class="hlt">management</span> strategy of tourism in response to avoid dangerous climate change. Climate change impacts require tourism</p> <div class="credits"> <p class="dwt_author">Bao Wen</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">297</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://webdepot.gsi.unimib.it/symphonya/RePec/pdf/symjournl120.pdf"> <span id="translatedtitle">Ouverture de 'Market-Driven <span class="hlt">Management</span> and <span class="hlt">Global</span> Markets - 2'</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Global</span> markets endorse the principles of market-space competition, where competition space represents a factor of competition. Firms compete with one another in extensive markets, without geographical and administrative boundaries; they adopt highly flexible managerial directions, featuring the absolute predominance of intangible assets and aimed at exploiting <span class="hlt">global</span> economies of scale, focused on dimension and relationship. <span class="hlt">Global</span> markets redefine market-space competition</p> <div class="credits"> <p class="dwt_author">Silvio Brondoni</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">298</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005AGUFMPP24A..06Z"> <span id="translatedtitle">The Paleocene-Eocene Thermal Maximum and the <span class="hlt">Global</span> <span class="hlt">Carbon</span> Cycle: Progress and Promise</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The initial documentation of a short-lived, but extreme <span class="hlt">global</span> warming event (Paleocene-Eocene Thermal Maximum; PETM) and <span class="hlt">carbon</span> isotope excursion (CIE) coincident with a major benthic foraminiferal extinction horizon at the end of the Paleocene (Kennett & Stott, 1991) represents one of the more exciting and important contributions to the field of Paleoceanography. In the time since this discovery, substantial progress has been made toward developing a comprehensive understanding of key aspects of this event including the character of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle perturbation, and impacts on climate, biogeochemical cycles, and marine and terrestrial ecosystems. In this presentation, I review the latest findings of investigations of pelagic and shallow marine sequences designed to provide new constraints on both the tempo and magnitude of the CIE and associated geochemical anomalies. In particular, I will focus on bulk and planktonic <span class="hlt">carbon</span> isotope and proxy records of <span class="hlt">carbonate</span> dissolution generated from analyses of Pacific and Atlantic deep sea cores, and discuss implications for changes in ocean <span class="hlt">carbon</span> chemistry and the mass of <span class="hlt">carbon</span> added to the ocean during this event. I will also explore several outstanding issues regarding the rate and magnitude of <span class="hlt">carbon</span> fluxes during the PETM, and possible strategies to address these issues. Kennett, J. P., and L.D. Stott, Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene, Nature, 353, 225-229, 1991.</p> <div class="credits"> <p class="dwt_author">Zachos, J. C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">299</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21541764"> <span id="translatedtitle">Waste <span class="hlt">management</span> activities and <span class="hlt">carbon</span> emissions in Africa</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper summarizes research into waste <span class="hlt">management</span> activities and <span class="hlt">carbon</span> emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste <span class="hlt">management</span> in Africa. It demonstrates that data on waste and <span class="hlt">carbon</span> emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic <span class="hlt">carbon</span> content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.</p> <div class="credits"> <p class="dwt_author">Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">300</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60397987"> <span id="translatedtitle">Cyclic <span class="hlt">carbonates</span> of Phanerozoic <span class="hlt">carbonate</span> platforms formed under <span class="hlt">global</span> green-house to ice-house conditions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Carbonate</span> platforms that formed under <span class="hlt">global</span> green-house conditions (Late Cambrian-Early Ordovician, Early Silurian to Middle Devonian, Triassic and Cretaceous) are characterized by layer-cake cycle stacking patterns, dominance of high frequency precessional cycles with an autocyclic component, widespread tidal flat caps on the shallow platform, and few major sequence bounding unconformities. Sea level fluctuations are small (10 m or so) and</p> <div class="credits"> <p class="dwt_author">J. F. Read; A. A. Al-Tawil; A. Balog; M. C. Pope; L. B. Smith</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_15 div --> <div id="page_16" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">301</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58982897"> <span id="translatedtitle">The <span class="hlt">Carbon</span> Conundrum: <span class="hlt">Global</span> Warming and Energy Policy in the Third Millennium</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Many different models and ideas have been presented, studied and even implemented as policy on the issue of climate change. Many models have presented one extreme or the other in providing a method with which to go forward. The <span class="hlt">Carbon</span> Conundrum; <span class="hlt">Global</span> Warming and Energy Policy in the Third Millennium is an interesting book that presents alternative scenarios for dealing</p> <div class="credits"> <p class="dwt_author">R. C. Kelly</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">302</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55882939"> <span id="translatedtitle">Effect of <span class="hlt">global</span> warming on vegetation dynamics and <span class="hlt">carbon</span> storage in peatlands</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The effects of <span class="hlt">global</span> warming on water table height and <span class="hlt">carbon</span> storage in boreal peatlands and the interaction with vegetation dynamics have been investigated using a numerical model. Two types of vegetation have been considered in the model: a so-called \\</p> <div class="credits"> <p class="dwt_author">S. Z. Sattari; M. B. Eppinga; M. Rietkerk</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">303</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/gb/gb1001/2009GB003559/2009GB003559.pdf"> <span id="translatedtitle">Potential impact of ocean ecosystem changes due to <span class="hlt">global</span> warming on marine organic <span class="hlt">carbon</span> aerosols</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Production of organic <span class="hlt">carbon</span> (OC) aerosols by biological activity in the ocean is hypothesized to influence climate change. We employ model sensitivity studies to assess the effects of ocean ecosystem changes on the marine OC fluxes by using an integrated Earth system model. Our modeled estimate of <span class="hlt">global</span> marine primary OC emission (7 Tg OC yr?1) is comparable with that</p> <div class="credits"> <p class="dwt_author">Akinori Ito; Michio Kawamiya</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">304</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://economia.uniandes.edu.co/revistadys/43/Articulo43_4.pdf"> <span id="translatedtitle"><span class="hlt">Carbon</span> Taxes: Their Macroeconomic Effects and Prospects for <span class="hlt">Global</span> Adoption - A Survey of the literature</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">carbon</span> tax is a major instrument for curbing greenhouse gas emissions that cause <span class="hlt">global</span> warning. Y et its adoption has been limited because of concerns over its effects on economic growth, income distribution, and international competitiveness. The paper shows that policymakers con minimize the effects of the tax on economic growth thorugh an efficient recycling of tax revenues and</p> <div class="credits"> <p class="dwt_author">Cuervo Javier; Ved P. Gandhi</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">305</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010ERL.....5b4005F"> <span id="translatedtitle"><span class="hlt">Carbon</span> stewardship: land <span class="hlt">management</span> decisions and the potential for <span class="hlt">carbon</span> sequestration in Colorado, USA</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Land use and its role in reducing greenhouse gases is a key element of policy negotiations to address climate change. Calculations of the potential for enhanced terrestrial sequestration have largely focused on the technical characteristics of <span class="hlt">carbon</span> stocks, such as vegetation type and <span class="hlt">management</span> regime, and to some degree, on economic incentives. However, the actual potential for <span class="hlt">carbon</span> sequestration critically depends on who owns the land and additional land <span class="hlt">management</span> decision drivers. US land ownership patterns are complex, and consequently land use decision making is driven by a variety of economic, social and policy incentives. These patterns and incentives make up the '<span class="hlt">carbon</span> stewardship landscape'—that is, the decision making context for <span class="hlt">carbon</span> sequestration. We examine the <span class="hlt">carbon</span> stewardship landscape in the US state of Colorado across several public and private ownership categories. Achieving the full potential for land use <span class="hlt">management</span> to help mitigate <span class="hlt">carbon</span> emissions requires not only technical feasibility and financial incentives, but also effective implementing mechanisms within a suite of often conflicting and hard to quantify factors such as multiple-use mandates, historical precedents, and non-monetary decision drivers.</p> <div class="credits"> <p class="dwt_author">Failey, Elisabeth L.; Dilling, Lisa</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">306</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/23341205"> <span id="translatedtitle">Plant polymer biodegradation in relation to <span class="hlt">global</span> <span class="hlt">carbon</span> <span class="hlt">management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Natural polymers such as starch, protein, and algae are renewable and sustainable materials. They are used in many industrial applications such as polymeric blends for films, fibers, and injection molded articles. However, biodegradability of these materials in anaerobic sludge digestion is largely unreported.Extensive laboratory results were acquired to elucidate biodegradability and biodegradation kinetics of the selected materials according to ASTM</p> <div class="credits"> <p class="dwt_author">Bo Shi; Clayton Bunyard; Doris Palfery</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">307</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=social+AND+learning+AND+theory&pg=3&id=EJ936212"> <span id="translatedtitle"><span class="hlt">Globalization</span> and the Inward Flow of Immigrants: Issues Associated with the Inpatriation of <span class="hlt">Global</span> <span class="hlt">Managers</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Assembling a diverse <span class="hlt">global</span> workforce is becoming a critical dimension in gaining successful <span class="hlt">global</span> performance. In the past, staffing has focused on control of the multinational organization as the primary goal when staffing overseas positions. As organizations <span class="hlt">globalize</span> their operations, the goal of staffing is shifting from control to…</p> <div class="credits"> <p class="dwt_author">Harvey, Michael; Kiessling, Tim; Moeller, Miriam</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">308</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/gl/gl0903/2008GL036294/2008GL036294.pdf"> <span id="translatedtitle">Long time <span class="hlt">management</span> of fossil fuel resources to limit <span class="hlt">global</span> warming and avoid ice age onsets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">There are about 5000 billion tons of fossil fuel <span class="hlt">carbon</span> in accessible reserves. Combustion of all this <span class="hlt">carbon</span> within the next few centuries would force high atmospheric CO2 content and extreme <span class="hlt">global</span> warming. On the other hand, low atmospheric CO2 content favors the onset of an ice age when changes in the Earth's orbit lead to low summer insolation at</p> <div class="credits"> <p class="dwt_author">Gary Shaffer</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">309</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007AGUFM.B42C..02C"> <span id="translatedtitle">Nested <span class="hlt">Global</span> Inversion for the <span class="hlt">Carbon</span> Flux Distribution in Canada and USA from 1994 to 2003</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Based on TransCom inverse modeling for 22 <span class="hlt">global</span> regions, we developed a nested <span class="hlt">global</span> inversion system for estimating <span class="hlt">carbon</span> fluxes of 30 regions in North America (2 of the 22 regions are divided into 30). Irregular boundaries of these 30 regions are delineated based on ecosystem types and provincial/state borders. Synthesis Bayesian inversion is conducted in monthly steps using CO2 concentration measurements at 88 coastal and continental stations of the globe for the 1994-2003 period (NOAA <span class="hlt">Global</span>View database). Responses of these stations to <span class="hlt">carbon</span> fluxes from the 50 regions are simulated using the transport model of National Institute for Environmental Studies of Japan and reanalysis wind fields of the National Centers for Environmental Prediction (NCEP). Terrestrial <span class="hlt">carbon</span> flux fields modeled using BEPS and Biome-BGC driven by NCEP reanalysis meteorological data are used as two different a priori to constrain the inversion. The inversion (top- down) results are compared with remote sensing-based ecosystem modeling (bottom-up) results in Canada's forests and wetlands. There is a broad consistency in the spatial pattern of the <span class="hlt">carbon</span> source and sink distributions obtained using these two independent methods. Both sets of results also indicate that Canada's forests and wetlands are <span class="hlt">carbon</span> sinks in 1994-2003, but the top-down method produces consistently larger sinks than the bottom-up results. Reasons for this discrepancy may lie in both methods, and several issues are identified for further investigation.</p> <div class="credits"> <p class="dwt_author">Chen, J. M.; Deng, F.; Ishizawa, M.; Ju, W.; Mo, G.; Chan, D.; Higuchi, K.; Maksyutov, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">310</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006AGUFMPP33C..03S"> <span id="translatedtitle"><span class="hlt">Global</span> warming leads the <span class="hlt">carbon</span> isotope excursion at the Paleocene-Eocene thermal maximum</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The prominent negative <span class="hlt">carbon</span> isotope excursion (CIE) at the Paleocene-Eocene thermal maximum (55.5 Ma) is generally accepted to reflect a transient, massive input of isotopically light <span class="hlt">carbon</span> into the ocean- atmosphere system. Many authors have assumed that this <span class="hlt">carbon</span> led to pronounced <span class="hlt">global</span> greenhouse warming. Here we show, from an expanded record in New Jersey, that both the onset of the <span class="hlt">global</span> abundance of the subtropical dinoflagellate Apectodinium and surface-ocean warming as recorded by TEX86 preceded the CIE by several thousands of years. The offset between Apectodinium and the CIE was confirmed in other sites from New Jersey, the North Sea and New Zealand. The approximately 3 kyrs time lag between the onset of warming and the CIE is consistent with the expected lag between bottom water warming and submarine methane hydrate dissociation, suggesting that the latter mechanism indeed caused the CIE.</p> <div class="credits"> <p class="dwt_author">Sluijs, A.; Brinkhuis, H.; Schouten, S.; Zachos, J. C.; Bohaty, S.; John, C.; Deltrap, R.; Reichart, G.; Sinninghe Damsté, J.; Crouch, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">311</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54493787"> <span id="translatedtitle">Research Needs for <span class="hlt">Carbon</span> <span class="hlt">Management</span> in Agriculture, Forestry and Other Land Uses</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Improved <span class="hlt">management</span> of terrestrial <span class="hlt">carbon</span> in agriculture, forestry, and other land use sectors is a necessary part of climate change mitigation. It is likely that governments will agree in Copenhagen in December 2009 to incentives for improved <span class="hlt">management</span> of some forms of terrestrial <span class="hlt">carbon</span>, including maintaining existing terrestrial <span class="hlt">carbon</span> (e.g., avoiding deforestation) and creating new terrestrial <span class="hlt">carbon</span> (e.g., afforestation, soil</p> <div class="credits"> <p class="dwt_author">C. Negra; T. Lovejoy; D. S. Ojima; R. Ashton; T. Havemann; J. Eaton</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">312</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=https://www.ars.usda.gov/sp2userfiles/ad_hoc/54090000phace/symposium/32.jswc62(2)derner.pdf"> <span id="translatedtitle"><span class="hlt">Carbon</span> sequestration and rangelands: A synthesis of land <span class="hlt">management</span> and precipitation effects</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Management</span> of rangelands can aid in the mitigation of rising atmospheric <span class="hlt">carbon</span> dioxide concentrations via <span class="hlt">carbon</span> storage in biomass and soil organic matter, a process termed <span class="hlt">carbon</span> sequestration. Here we provide a review of current knowledge on the effects of land <span class="hlt">management</span> practices (grazing, nitrogen inputs, and restoration) and precipitation on <span class="hlt">carbon</span> sequestration in rangelands. Although there was no statistical</p> <div class="credits"> <p class="dwt_author">J. D. Derner; G. E. Schuman</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">313</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013ESRv..126..116W"> <span id="translatedtitle">A critical evaluation of <span class="hlt">carbon</span> isotope stratigraphy and biostratigraphic implications for Late Cretaceous <span class="hlt">global</span> correlation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Climate variability is driven by a complex interplay of <span class="hlt">global</span>-scale processes and our understanding of them depends on sufficient temporal resolution of the geologic records and their precise inter-regional correlation, which in most cases cannot be obtained with biostratigraphic methods alone. Chemostratigraphic correlation based on bulk sediment <span class="hlt">carbon</span> isotopes is increasingly used to facilitate high-resolution correlation over large distances, but complications arise from a multitude of possible influences from local differences in biological, diagenetic and physico-chemical factors on individual ?13C records that can mask the <span class="hlt">global</span> signal. To better assess the <span class="hlt">global</span> versus local contribution in a ?13C record it is necessary to compare numerous isotopic records on a <span class="hlt">global</span> scale. As a contribution to this objective, this paper reviews bulk sediment ?13Ccarb records from the Late Cretaceous in order to identify differences and similarities in secular ?13C trends that help establish a <span class="hlt">global</span> reference ?13C record for this period. The study presents a <span class="hlt">global</span>-scale comparison of twenty ?13C records from sections representing various palaeo-latitudes in both hemispheres and different oceanic settings from the Boreal, Tethys, Western Interior, Indian Ocean and Pacific Ocean, and with various diagenetic overprinting. The isotopic patterns are correlated based on independent dating with biostratigraphic and paleomagnetic data and reveal good agreement of the major isotope events despite offsets in absolute ?13C values and variation in amplitude between the sites. These differences reflect the varying local influences e.g. from depositional settings, bottom water age and diagenetic history, whereas the concordant patterns in ?13C shifts might represent ?13C fluctuations in the <span class="hlt">global</span> seawater dissolved inorganic <span class="hlt">carbon</span>. The latter is modulated by variations in organic matter burial relative to re-mineralization, in the <span class="hlt">global</span>-scale formation of authigenic <span class="hlt">carbonate</span>, and in partitioning of <span class="hlt">carbon</span> between organic <span class="hlt">carbon</span> and <span class="hlt">carbonate</span> sinks. These variations are mainly controlled by changes in climate and eustasy. Additionally, some <span class="hlt">globally</span> synchronous shifts in the bulk ?13Ccarb records could result from parallel variation in the contribution of authigenic <span class="hlt">carbonate</span> to the sediment. Formation of these cements through biologically mediated early diagenetic processes is related to availability of oxygen and organic material and, thus, can be <span class="hlt">globally</span> synchronized by fluctuations in eustasy, atmospheric and oceanic oxygen levels or in large-scale oceanic circulation. Because the influence of early diagenetic cements on the bulk ?13Ccarb signal can, but need not be synchronized, chemostratigraphy should not be used as a stand-alone method for trans-continental correlation, and especially minor isotopic shifts have to be interpreted with utmost care. Nevertheless, the observed consistency of the ?13C correlations confirms <span class="hlt">global</span> scale applicability of bulk sediment ?13C chemostratigraphy for the Late Cretaceous, including sediments that underwent lithification and burial diagenesis such as the sediments from the Himalayan and Alpine sections. Limitations arise from increased uncertainties (1) in sediments with very low <span class="hlt">carbonate</span> content, (2) from larger ?13C variability in sediments from very shallow marine environments, (3) from unrecognized hiatuses or strong changes in sedimentation rates, and (4) in sections with short stratigraphic coverage or with few biostratigraphic marker horizons.</p> <div class="credits"> <p class="dwt_author">Wendler, Ines</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">314</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/44502717"> <span id="translatedtitle"><span class="hlt">Globalization</span>, Biculturalism and CosmopolitanismThe Acculturation Status of Mexicans in Upper <span class="hlt">Management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Globalization</span> forces many <span class="hlt">managers</span> to increasingly interact with new cultures, even if these <span class="hlt">managers</span> remain in their home countries. This may be particularly true of <span class="hlt">managers</span> in emerging markets, many of whom experience an encroaching US culture due to media, migration, and trade, as well as the importation of US-style business education. This study explores the possibility of applying acculturation</p> <div class="credits"> <p class="dwt_author">Kate Gillespie; J. Brad McBride; Liesl Riddle</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">315</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012AIPC.1423..311S"> <span id="translatedtitle">Beyond archaeology: 14C-AMS and the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Keck <span class="hlt">Carbon</span> Cycle Accelerator Mass Spectrometer (KCCAMS) facility specializes in using radiocarbon (14C) as a tracer for the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle (GCC). KCCAMS distinguishes between natural and anthropogenic <span class="hlt">carbon</span> found in natural waters, soils, sediments, the atmosphere, and biota. Presented here is an overview of our compact accelerator mass spectrometer (AMS) system. A brief description of technical modifications that allow us to obtain high beam current output from the ion-source (~225 ?A of 12C-) and achieve high precision (0.2-0.3%), with minimum downtime for maintenance is also given. General requirements of 14C-AMS sample preparation are summarized including recent advancements allowing the measurement of samples < 0.100 mg of <span class="hlt">carbon</span>. In this review paper, the importance of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle and how the 14C-AMS (as tracer) has assisted into understanding <span class="hlt">carbon</span> exchange and cycling between the Earth's reservoirs--terrestrial, atmospheric, and marine--are succinctly illustrated and discussed.</p> <div class="credits"> <p class="dwt_author">Santos, Guaciara M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">316</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFM.B42B..03P"> <span id="translatedtitle"><span class="hlt">Global</span> monitoring of deforestation emissions of <span class="hlt">carbon</span> and downscaling to REDD project-level verification</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The emission of <span class="hlt">carbon</span> dioxide from deforestation and other land cover changes is among the most uncertain components of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Inconsistent and unverified information about <span class="hlt">global</span> deforestation patterns has significant implications for balancing the present-day <span class="hlt">carbon</span> budget and predicting the future evolution of climate change. The CASA (Carnegie-Ames-Stanford) ecosystem model based on satellite greenness observations has been used to estimate monthly <span class="hlt">carbon</span> fluxes in terrestrial ecosystems from 2000 to 2010. The CASA model was driven by NASA Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation cover properties and large-scale (1-km resolution) disturbance events detected in the monthly time series data. This modeling framework has been implemented to estimate historical as well as current monthly patterns in plant <span class="hlt">carbon</span> fixation, living biomass increments, and long-term decay of woody (slash) pools before, during, and after land cover disturbance events. Sample applications of Landsat imagery as inputs to the CASA model are presented for demonstration of REDD project-level verification of <span class="hlt">carbon</span> balance.</p> <div class="credits"> <p class="dwt_author">Potter, C. S.; Klooster, S. A.; Genovese, V. B.; Hiatt, C.; Kumar, V.; Boriah, S.; Mithal, V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">317</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.climate.unibe.ch/~joos/OUTGOING/publications/haugan04grl_carbon-sequestration2004GL020295.pdf"> <span id="translatedtitle">Metrics to assess the mitigation of <span class="hlt">global</span> warming by <span class="hlt">carbon</span> capture and storage in the ocean and in geological reservoirs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Different metrics to assess mitigation of <span class="hlt">global</span> warming by <span class="hlt">carbon</span> capture and storage are discussed. The climatic impact of capturing 30% of the anthropogenic <span class="hlt">carbon</span> emission and its storage in the ocean or in geological reservoir are evaluated for different stabilization scenarios using a reduced-form <span class="hlt">carbon</span> cycle-climate model. The accumulated <span class="hlt">Global</span> Warming Avoided (GWA) remains, after a ramp-up during the</p> <div class="credits"> <p class="dwt_author">Peter M. Haugan; Fortunat Joos</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">318</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012GBioC..26.1028H"> <span id="translatedtitle"><span class="hlt">Global</span> patterns in efficiency of particulate organic <span class="hlt">carbon</span> export and transfer to the deep ocean</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The ocean's biological <span class="hlt">carbon</span> pump is a key component of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Only a small fraction of the <span class="hlt">carbon</span> fixed by primary production is exported to the deep ocean, yet this flux sets to first order the efficiency with which <span class="hlt">carbon</span> is sequestered out of further contact with the atmosphere on long time scales. Here we examine <span class="hlt">global</span> patterns in particle export efficiency (PEeff), the proportion of primary production that is exported from the surface ocean, and transfer efficiency (Teff), the fraction of exported organic matter that reaches the deep ocean. Previous studies have found a positive correlation between Teff and deep ocean calcite fluxes recovered from sediment traps, implying that ballasting by calcium <span class="hlt">carbonate</span> may play an important role in regulating Teff. An alternative explanation is that this correlation is not causative, as regions where the dominant biomineral phase is calcite tend to be subtropical systems, which are hypothesized to produce sinking aggregates highly resistant to degradation. We attempt to distinguish between these alternative hypotheses on the control of Teff by examining the relationship between Teff and biomineral phases exported from the upper ocean, rather than those collected in deep traps. <span class="hlt">Global</span> scale estimates derived from satellite data show, in keeping with earlier studies, that PEeff is high at high latitudes and low at low latitudes, but that Teff is low at high latitudes and high at low latitudes. However, in contrast to the relationship observed for deep biomineral fluxes in previous studies, we find that Teff is strongly negatively correlated with opal export flux from the upper ocean, but uncorrelated with calcium <span class="hlt">carbonate</span> export flux. We hypothesize that the underlying factor governing the spatial patterns observed in Teff is ecosystem function, specifically the degree of recycling occurring in the upper ocean, rather than the availability of calcium <span class="hlt">carbonate</span> for ballasting.</p> <div class="credits"> <p class="dwt_author">Henson, Stephanie A.; Sanders, Richard; Madsen, Esben</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">319</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012GMDD....5.3089W"> <span id="translatedtitle">Optimising the FAMOUS climate model: inclusion of <span class="hlt">global</span> <span class="hlt">carbon</span> cycling</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">FAMOUS fills an important role in the hierarchy of climate models, both explicitly resolving atmospheric and oceanic dynamics yet being sufficiently computationally efficient that either very long simulations or large ensembles are possible. An improved set of <span class="hlt">carbon</span> cycle parameters for this model has been found using a perturbed physics ensemble technique. This is an important step towards building the "Earth System" modelling capability of FAMOUS, which is a reduced resolution, and hence faster running, version of the Hadley Centre Climate model, HadCM3. Two separate 100 member perturbed parameter ensembles were performed; one for the land surface and one for the ocean. The land surface scheme was tested against present day and past representations of vegetation and the ocean ensemble was tested against observations of nitrate. An advantage of using a relatively fast climate model is that a large number of simulations can be run and hence the model parameter space (a large source of climate model uncertainty) can be more thoroughly sampled. This has the associated benefit of being able to assess the sensitivity of model results to changes in each parameter. The climatologies of surface and tropospheric air temperature and precipitation are improved relative to previous versions of FAMOUS. The improved representation of upper atmosphere temperatures is driven by improved ozone concentrations near the tropopause and better upper level winds.</p> <div class="credits"> <p class="dwt_author">Williams, J. H. T.; Smith, R. S.; Valdes, P. J.; Booth, B. B. B.; Osprey, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">320</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1044528"> <span id="translatedtitle">Integrating Natural Gas Hydrates in the <span class="hlt">Global</span> <span class="hlt">Carbon</span> Cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic <span class="hlt">carbon</span> deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.</p> <div class="credits"> <p class="dwt_author">David Archer; Bruce Buffett</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-31</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_16 div --> <div id="page_17" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">321</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003EAEJA.....4842G"> <span id="translatedtitle">The evolution of <span class="hlt">global</span> oceanic crust from Jurrassic to Present and its contribution to the <span class="hlt">global</span> <span class="hlt">carbon</span> budget</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Tectonic processes in oceanic basins play a major role in the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. Mid-ocean ridge degassing, hotspot volcanism, and metamorphism at subduction zones produce the largest amount of <span class="hlt">global</span> <span class="hlt">carbon</span>. On the other hand, weathering and sedimentation of the continental crust drastically reduce the amount of <span class="hlt">carbon</span> dioxide released into the atmosphere. Nevertheless, whether the long-term fluctuations in the <span class="hlt">carbon</span> dioxide levels are regulated by geological or biological processes remains controversial. Here we propose to re-evaluate the configuration of oceanic areas through time and use this new model for computing seafloor spreading rates (and the length of active ridges), oceanic crust ages, subduction parameters (subduction rates, age and latitude of subducted slabs) and volumes of oceans. These parameters will be used later on to quantify the amount of <span class="hlt">carbon</span> dioxide released and consumed by the oceanic regions. In order to investigate how the oceanic crustal production varied through time we created complete digital paleo-seafloor age grids for the last 180 million years. A combination of methods and datasets were used to map and reconstruct preserved and subducted oceanic regions. A wealth of geophysical datasets (seismic profiles, magnetic anomalies and gravity anomaly derived from satellite altimetry) were used to derive the age of oceanic crust, spreading rates, geometry and grain of seafloor. A compilation of geological data from published studies (type and ages of dredged rocks, evidence of subduction related magmatism and metamorphism, ophiolites) in conjunction with published results from ODP and DSDP cruises were employed to constrain and groundtruth our models. The tectonic history of various oceanic areas has been revisited using both quantitative and qualitative methods. The new results have been integrated in a <span class="hlt">global</span> tectonic model and newly constructed isochrons were used to update the present day oceanic agegrid. Paleo-oceans are modelled by creating "synthetic plates" whose locations and geometry is established on the basis of preserved M-sequence magnetic lineations, paleogeography, regional geological data and the rules of plate tectonics. Plate boundaries, which are introduced and modified in time and space, give only little room for alternative plate model solutions. These plate limits are governed by rheological laws, which provide stable constraints for reconstructions when geological information is scarce. This method has been used to reconstruct subducted Neo-Tehys ocean and the Izanagi/Kula, Farallon and Phoenix plates. The relative plate motion models used to derive isochrons were linked to an absolute plate model to reconstruct isochrons in a desired framework, in order to produce gridded paleo-age maps of the ocean floor. The complete set of paleo age grids will serve as input for computing seafloor spreading as well as the <span class="hlt">global</span> distribution of oceanic crust ages for the last 180 million years. The present day <span class="hlt">global</span> sediment thickness (NGDC) grid will be superimposed on the revised present day oceanic age grid and used to derive a sediment thickness-age relationship. Based on this relationship, sediment thickness for different time intervals can be computed in order to estimate degassing at subduction zones.</p> <div class="credits"> <p class="dwt_author">Gaina, C.; Muller, R. D.; Clark, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">322</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010EGUGA..1213726F"> <span id="translatedtitle">Modeling volcanic eruptions to assess the impact of stratospheric sulfur injections on the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Injecting sulfate aerosols precursors into the stratosphere has been proposed to mitigate anthropogenic climate change. Volcanic eruptions could serve as a testbed to estimate the potential of geoengineering efforts related to direct manipulation of solar energy input via aerosols. Understanding how volcanoes affect the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle and climate could lead to valuable insights into the response of the coupled <span class="hlt">carbon</span> cycle-climate system to chronic sulfur loading. Major volcanic eruptions can dramatically increase the sulfate aerosols in the stratosphere having several impacts on surface climate. For example, the eruption of Mt Pinatubo was followed by a decrease in <span class="hlt">global</span> surface solar radiation, temperature and precipitation including drought in South-East Asia, and an increase in diffuse solar radiation, North Hemispheric winter temperature and terrestrial <span class="hlt">carbon</span> uptake. Yet, the regional impacts of volcanic eruptions on the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle and the connection to initial conditions remain unresolved. We assess the short- and long-term impacts of volcanic eruptions with the NCAR CSM1.4-<span class="hlt">carbon</span> model on both the <span class="hlt">global</span> and regional scale by performing a suite of sensitivity simulations. The coupled <span class="hlt">carbon</span> cycle-climate model allows us to investigate the full radiative and dynamical response to volcanic eruptions. First, we use an ensemble of six transient simulations from 1820 to 2100 to show that the composite mean decrease in ocean temperature leads to significant <span class="hlt">carbon</span> uptake on the regional scale, mainly in the tropical Pacific Ocean, although <span class="hlt">globally</span> negligible. Additionally, we run one transient simulation over the period 1820 to 2100 without volcanoes. Although volcanic eruptions produce mainly short-term transient atmospheric climate perturbations which last for 2-3 years, the ocean integrates volcanic radiative cooling, and dissolved inorganic <span class="hlt">carbon</span> and oxygen changes could last well into the 21th century. Second, we run several sensitivity experiments (i) starting from different coupled modes (El Niño vs. La Niña), (ii) starting in different seasons (winter vs. summer), and (iii) using different eruption locations (high vs. low-latitude). We show that the response of volcanic eruptions highly depends on the initial conditions with higher atmospheric CO2 response starting the simulations in El Niño winter season. Finally, we scaled the Mt Pinatubo eruption to investigate the impact of supervolcanoes. Results show that atmospheric surface temperature and CO2 do not linearly decrease with the amount of stratospheric aerosols. We conclude that geoengineering by means of stratospheric sulfate aerosols could have adverse effects on regional scale and depends largely on the location of injection and the state of the climate system. Furthermore, geoengineering techniques will not significantly reduce atmospheric CO2 levels and therefore fail to address the wider effects of rising CO2 including ocean acidification.</p> <div class="credits"> <p class="dwt_author">Frölicher, Thomas L.; Joos, Fortunat; Raible, Christoph C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">323</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37849158"> <span id="translatedtitle"><span class="hlt">Global</span> excellence in <span class="hlt">management</span> systems: a Diamond Offshore Drilling case</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">How do <span class="hlt">managers</span>, in their role as decision makers, design and implement systems for <span class="hlt">management</span> of quality? Proposes that there is no one, definitive answer to this question, given various industrial environments and their operating constraints, diverse market conditions and numerous <span class="hlt">management</span> philosophies. Attempts to address quality <span class="hlt">management</span> issues in the business-to-business industrial service industry by presenting a case study</p> <div class="credits"> <p class="dwt_author">Denis Graham; Vipul K. Gupta</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">324</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB88123070"> <span id="translatedtitle">Assessment of the Contribution of Gas to the <span class="hlt">Global</span> Emissions of <span class="hlt">Carbon</span> Dioxide. Final Report February-December 1983,</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The objective of the project is to assess the contribution of future gas combustion to the <span class="hlt">global</span> emissions of <span class="hlt">carbon</span> dioxide. The resources of natural gas are too small to make a significant contribution to ultimate <span class="hlt">carbon</span> emissions. The <span class="hlt">carbon</span> emissions...</p> <div class="credits"> <p class="dwt_author">D. B. Reister</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">325</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFM.B43E..05R"> <span id="translatedtitle"><span class="hlt">Global</span> <span class="hlt">carbon</span>-water cycles patterns inferred from FLUXNET observations - useful for model evaluation? (Invited)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The current FLUXNET database (www.fluxdata.org) of CO2, water and energy exchange between the terrestrial biosphere and the atmosphere contains almost 1000 site-years with data from more than 250 sites, encompassing all major biomes of the world and being processed in a standardized way (1-3). In this presentation we show that the information in the data is sufficient to derive generalized empirical relationships between vegetation/respective remote sensing information, climate and the biosphere-atmosphere exchanges across <span class="hlt">global</span> biomes. These empirical patterns are used to generate <span class="hlt">global</span> grids of the respective fluxes and derived properties (e.g. radiation and water-use efficiencies or climate sensitivities in general, bowen-ratio, AET/PET ratio). For example we re-estimate <span class="hlt">global</span> “text-book” numbers such as <span class="hlt">global</span> Gross Primary Productivity (GPP) as ca. 123PgC (4), or <span class="hlt">global</span> evapotranspiration (ET) as ca. 65km3/yr (5) - for the first time with a more solid and direct empirical basis. Evaluation against independent data at regional to <span class="hlt">global</span> scale (e.g. atmospheric <span class="hlt">carbon</span> dioxide inversions, runoff data) lends support to the validity of our almost purely empirical up-scaling approaches. Moreover climate factors such as radiation, temperature and water balance are identified as driving factors for variations and trends of <span class="hlt">carbon</span> and water fluxes, with distinctly different sensitivities between different regions. Hence, these <span class="hlt">global</span> fields of biosphere-atmosphere exchange and the inferred relations between climate, vegetation type and fluxes should be used for evaluation or benchmarking of climate models or their land-surface components, while overcoming scale-issues with classical point-to-grid-cell comparisons. 1. M. Reichstein et al., <span class="hlt">Global</span> Change Biology 11, 1424 (2005). 2. D. Baldocchi, Australian Journal of Botany 56,1 (2008). 3. D. Papale et al., Biogeosciences 3, 571 (2006). 4. Beer et al. Science 329 (2010). 5. Jung et al. Nature in press (doi:10.1038/nature09396).</p> <div class="credits"> <p class="dwt_author">Reichstein, M.; Jung, M.; Beer, C.; Baldocchi, D. D.; Tomelleri, E.; Papale, D.; Fluxnet Lathuille Synthesis Team (Cf. Www. Fluxdata. Org)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">326</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3479537"> <span id="translatedtitle"><span class="hlt">Global</span> forecasts of urban expansion to 2030 and direct impacts on biodiversity and <span class="hlt">carbon</span> pools</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Urban land-cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and <span class="hlt">carbon</span> storage. However, despite projections that world urban populations will increase to nearly 5 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop spatially explicit probabilistic forecasts of <span class="hlt">global</span> urban land-cover change and explore the direct impacts on biodiversity hotspots and tropical <span class="hlt">carbon</span> biomass. If current trends in population density continue and all areas with high probabilities of urban expansion undergo change, then by 2030, urban land cover will increase by 1.2 million km2, nearly tripling the <span class="hlt">global</span> urban land area circa 2000. This increase would result in considerable loss of habitats in key biodiversity hotspots, with the highest rates of forecasted urban growth to take place in regions that were relatively undisturbed by urban development in 2000: the Eastern Afromontane, the Guinean Forests of West Africa, and the Western Ghats and Sri Lanka hotspots. Within the pan-tropics, loss in vegetation biomass from areas with high probability of urban expansion is estimated to be 1.38 PgC (0.05 PgC yr?1), equal to ?5% of emissions from tropical deforestation and land-use change. Although urbanization is often considered a local issue, the aggregate <span class="hlt">global</span> impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize <span class="hlt">global</span> biodiversity and vegetation <span class="hlt">carbon</span> losses.</p> <div class="credits"> <p class="dwt_author">Seto, Karen C.; Guneralp, Burak; Hutyra, Lucy R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">327</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21479244"> <span id="translatedtitle">Restoring coastal plants to improve <span class="hlt">global</span> <span class="hlt">carbon</span> storage: reaping what we sow.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Long-term <span class="hlt">carbon</span> capture and storage (CCS) is currently considered a viable strategy for mitigating rising levels of atmospheric CO(2) and associated impacts of <span class="hlt">global</span> climate change. Until recently, the significant below-ground CCS capacity of coastal vegetation such as seagrasses, salt marshes, and mangroves has largely gone unrecognized in models of <span class="hlt">global</span> <span class="hlt">carbon</span> transfer. However, this reservoir of natural, free, and sustainable <span class="hlt">carbon</span> storage potential is increasingly jeopardized by alarming trends in coastal habitat loss, totalling 30-50% of <span class="hlt">global</span> abundance over the last century alone. Human intervention to restore lost habitats is a potentially powerful solution to improve natural rates of <span class="hlt">global</span> CCS, but data suggest this approach is unlikely to substantially improve long-term CCS unless current restoration efforts are increased to an industrial scale. Failure to do so raises the question of whether resources currently used for expensive and time-consuming restoration projects would be more wisely invested in arresting further habitat loss and encouraging natural recovery. PMID:21479244</p> <div class="credits"> <p class="dwt_author">Irving, Andrew D; Connell, Sean D; Russell, Bayden D</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-03-29</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">328</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3066232"> <span id="translatedtitle">Restoring Coastal Plants to Improve <span class="hlt">Global</span> <span class="hlt">Carbon</span> Storage: Reaping What We Sow</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Long-term <span class="hlt">carbon</span> capture and storage (CCS) is currently considered a viable strategy for mitigating rising levels of atmospheric CO2 and associated impacts of <span class="hlt">global</span> climate change. Until recently, the significant below-ground CCS capacity of coastal vegetation such as seagrasses, salt marshes, and mangroves has largely gone unrecognized in models of <span class="hlt">global</span> <span class="hlt">carbon</span> transfer. However, this reservoir of natural, free, and sustainable <span class="hlt">carbon</span> storage potential is increasingly jeopardized by alarming trends in coastal habitat loss, totalling 30–50% of <span class="hlt">global</span> abundance over the last century alone. Human intervention to restore lost habitats is a potentially powerful solution to improve natural rates of <span class="hlt">global</span> CCS, but data suggest this approach is unlikely to substantially improve long-term CCS unless current restoration efforts are increased to an industrial scale. Failure to do so raises the question of whether resources currently used for expensive and time-consuming restoration projects would be more wisely invested in arresting further habitat loss and encouraging natural recovery.</p> <div class="credits"> <p class="dwt_author">Irving, Andrew D.; Connell, Sean D.; Russell, Bayden D.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">329</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011AGUFM.B31D0348W"> <span id="translatedtitle">Diagnosis and Quantification of Climatic Sensitivity of <span class="hlt">Carbon</span> Fluxes in Ensemble <span class="hlt">Global</span> Ecosystem Models</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Terrestrial ecosystem models are primary scientific tools to extrapolate our understanding of ecosystem functioning from point observations to <span class="hlt">global</span> scales as well as from the past climatic conditions into the future. However, no model is nearly perfect and there are often considerable structural uncertainties existing between different models. Ensemble model experiments thus become a mainstream approach in evaluating the current status of <span class="hlt">global</span> <span class="hlt">carbon</span> cycle and predicting its future changes. A key task in such applications is to quantify the sensitivity of the simulated <span class="hlt">carbon</span> fluxes to climate variations and changes. Here we develop a systematic framework to address this question solely by analyzing the inputs and the outputs from the models. The principle of our approach is to assume the long-term (~30 years) average of the inputs/outputs as a quasi-equlibrium of the climate-vegetation system while treat the anomalies of <span class="hlt">carbon</span> fluxes as responses to climatic disturbances. In this way, the corresponding relationships can be largely linearized and analyzed using conventional time-series techniques. This method is used to characterize three major aspects of the vegetation models that are mostly important to <span class="hlt">global</span> <span class="hlt">carbon</span> cycle, namely the primary production, the biomass dynamics, and the ecosystem respiration. We apply this analytical framework to quantify the climatic sensitivity of an ensemble of models including CASA, Biome-BGC, LPJ as well as several other DGVMs from previous studies, all driven by the CRU-NCEP climate dataset. The detailed analysis results are reported in this study.</p> <div class="credits"> <p class="dwt_author">Wang, W.; Hashimoto, H.; Milesi, C.; Nemani, R. R.; Myneni, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">330</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011ESS.....2.4203G"> <span id="translatedtitle"><span class="hlt">Carbon</span> Cycle and Long-Term Evolution of Climate for a <span class="hlt">Globally</span> Ocean-Covered Planet</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Carbon</span> cycle is important for considering the long-term stability of climate of a planet. For the Earth, as the surface temperature rises, continental weathering is enhanced, which causes consumption of atmospheric CO2 and then results in decrease of the surface temperature. This negative feedback called Walker feedback works on a planet with plate techtonics and continents, and stabilizes its climate over the long term. There may be wide variety of the amount of the ocean on extrasolar terrestrial planets. If the amount of water on the Earth increased by five times, the Earth’s surface would be completely covered by the ocean. Since the mass of the ocean on the present Earth is tiny (0.023wt%) compared to the Earth’s mass, a lot of exoplanets with <span class="hlt">globally</span> covered ocean will be found. According to the preliminary <span class="hlt">carbon</span> cycle model, the surface temperature of the planet with very small fraction of continental area (1%) is maintained to be much higher (about 80 degrees Celsius) than that of the Earth, because surface weathering is suppressed and effective burial of <span class="hlt">carbonate</span> does not work. In order to consider a <span class="hlt">globally</span> ocean-covered planet, we further develop a <span class="hlt">carbon</span> cycle model with weathering of oceanic crust in the hydrothermal system and thermal evolution of the planet. We discuss the long-term stability and habitability of the <span class="hlt">globally</span> ocean-covered planet with various sizes from mini Earths to super Earths.</p> <div class="credits"> <p class="dwt_author">Genda, Hidenori; Kimura, R.; Abe, Y.; Tajika, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">331</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/10103349"> <span id="translatedtitle"><span class="hlt">Global</span> survey of <span class="hlt">carbon</span> dioxide in the ocean. Progress report, January 1, 1993--December 31, 1993</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This proposal was submitted in response to the DOE call for proposals to participate in obtaining <span class="hlt">carbon</span> system measurements as part of the World Ocean Circulation Experiment/Hydrographic Program (WOCE/HP). The authors` interest in participating in this <span class="hlt">global</span> survey stemmed from two major research directions in which our their has been actively involved. The first is the DOE supported ocean <span class="hlt">carbon</span> cycle model development program. The models developed as part of this program clearly demonstrate the importance of ocean <span class="hlt">carbon</span> measurements in constraining the oceanic sink of anthropogenic <span class="hlt">carbon</span> dioxide. The creation of a CO{sub 2} measurement program at Princeton allowed the unique ability for a close interaction between the modellers and the people actually making the measurements. This interaction strengthens both programs.</p> <div class="credits"> <p class="dwt_author">Sabine, C.; Key, R.M.; Sarmiento, J.L.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">332</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/47723081"> <span id="translatedtitle"><span class="hlt">Global</span> Warming and Water <span class="hlt">Management</span>: Water Allocation and Project Evaluation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper explores the sensitivity of the benefits of alternative water allocation schemes and of project evaluation to <span class="hlt">global</span> warming. If <span class="hlt">global</span> warming shifts the mean of annual water supplies, there could be large impacts on the expected values of alternative water allocation schemes. The first section of the paper explores how well alternative schemes (such as market mechanisms, prior</p> <div class="credits"> <p class="dwt_author">Robert Mendelsohn; Lynne L. Bennett</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">333</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58006649"> <span id="translatedtitle"><span class="hlt">Managing</span> <span class="hlt">Global</span> Climate Change An Executive Interview with Carole Brookins</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Carole Brookins is an international consultant known for her work as a policy and trade strategist on issues concerning the <span class="hlt">global</span> political economy and its effect on the food and agriculture sector. She currently serves on the board of several corporate and non- profit organizations concerned with <span class="hlt">global</span> food system issues and is currently helping to develop solutions which can</p> <div class="credits"> <p class="dwt_author">H. Douglas Jose</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">334</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22talent+management%22&pg=3&id=EJ819108"> <span id="translatedtitle">Creation of Norms for the Purpose of <span class="hlt">Global</span> Talent <span class="hlt">Management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Personality scores were used to construct three databases of <span class="hlt">global</span> norms. The composition of the three databases varied according to percentage of cases by <span class="hlt">global</span> region, occupational group, applicant status, and gender of the job candidate. Comparison of personality scores across the three norms databases revealed that the magnitude of the…</p> <div class="credits"> <p class="dwt_author">Hedricks, Cynthia A.; Robie, Chet; Harnisher, John V.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">335</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/951047"> <span id="translatedtitle">Storing <span class="hlt">Carbon</span> in Agricultural Soils to Help Head-Off <span class="hlt">Global</span> Warming and to Combat Desertification</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We know for sure that addition of organic matter to soil increases water-holding capacity, imparts fertility with the addition of nutrients, increases soil aggregation and improves tilth. Depeing on it's type, organic matter contains between 40 and 60% <span class="hlt">carbon</span>. Using agricultural <span class="hlt">management</span> practices to increase the amount of organic matter and <span class="hlt">carbon</span> in soils can be an effective strategy to offset <span class="hlt">carbon</span> dioxide emissions to the atmosphere as well as to improve the quality of the soil and slow or prevent desertification.</p> <div class="credits"> <p class="dwt_author">Rosenberg, Norman J.; Izaurralde, Roberto C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-12-31</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">336</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58602820"> <span id="translatedtitle"><span class="hlt">Managing</span> <span class="hlt">globally</span> distributed expertise with new competence <span class="hlt">management</span> solutions:a big-science collaboration as a pilot case</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In today's <span class="hlt">global</span> organisations and networks, a critical factor for effective innovation and project execution is appropriate competence and skills <span class="hlt">management</span>. The challenges include selection of strategic competences, competence development, and leveraging the competences and skills to drive innovation and collaboration for shared goals. This paper presents a new industrial web-enabled competence <span class="hlt">management</span> and networking solution and its implementation and</p> <div class="credits"> <p class="dwt_author">J Ferguson; T Koivula; M Livan; M Nordberg; T Salmia; O Vuola</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">337</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMPP31D..08S"> <span id="translatedtitle">Modeling Northern Peatland dynamics and <span class="hlt">global</span> land <span class="hlt">carbon</span> inventories since the Last Glacial Maximum</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Climate affects the biogeochemical cycles on land and in the ocean, and, in turn, the concentrations of the greenhouse gases <span class="hlt">carbon</span> dioxide (CO2) and methane (CH4). Polar ice core records show that the concentration of both gases increased significantly over the last 21,000 years. However, the timing and amplitude of concentration variations are different for the two gases. While CO2 is affected by both, changes in the land biosphere and the ocean, CH4 is believed to be mainly driven by microbial production in wet ecosystems on land. Here we analyze the evolution of the land biosphere and the <span class="hlt">carbon</span> inventories in soils and vegetation from transient simulations since the Last Glacial Maximum (LGM). We apply the Bern <span class="hlt">Carbon</span> Cycle (BernCC) model including the Land surface Processes and eXchanges (LPX) dynamical <span class="hlt">global</span> vegetation model. The simulations are forced by climate fields obtained from a GCM and by prescribed changes in orbital forcing and land ice extent. Of special interest is organic soil <span class="hlt">carbon</span> in northern high latitudes, which represents about 50% of total <span class="hlt">global</span> soil <span class="hlt">carbon</span> today. There the retreating ice sheets allowed for the establishment of present day peatland and permafrost areas ~11,000 years ago, as captured by the physical, geothermal and biogeochemical processes in BernCC-LPX. Peatland extent is prescribed according to the observation-based, current distribution. The potential disappearance of peatlands due to glacial-interglacial climate change and flooding of shelf areas is not included here and subject to future model development. Peat accumulation rates are determined from simulated plant production (moss, flood-tolerant graminoids) and soil respiration on ice free land. Results of the transient simulations are compared to ice core records, reconstructions of peat basal dates and accumulation rates, as well as distributions of present day <span class="hlt">carbon</span> in peatlands and permafrost areas. We simulate an increase in total soil <span class="hlt">carbon</span> in northern high latitudes of ~550 PgC (1 PgC = 1015 gram of <span class="hlt">carbon</span>), whereof peatland build-up contributes more than half. This finding has implications for our understanding of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle since the LGM, as well as for the assessment of the <span class="hlt">carbon</span> budget of high-latitude soils affected by future climate change.</p> <div class="credits"> <p class="dwt_author">Spahni, R.; Steinacher, M.; Joos, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">338</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012NatGe...5..459E"> <span id="translatedtitle">Contribution of cryptogamic covers to the <span class="hlt">global</span> cycles of <span class="hlt">carbon</span> and nitrogen</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Many terrestrial surfaces, including soils, rocks and plants, are covered by photoautotrophic communities, capable of synthesizing their own food from inorganic substances using sunlight as an energy source. These communities, known as cryptogamic covers, comprise variable proportions of cyanobacteria, algae, fungi, lichens and bryophytes, and are able to fix <span class="hlt">carbon</span> dioxide and nitrogen from the atmosphere. However, their influence on <span class="hlt">global</span> and regional biogeochemical cycling of <span class="hlt">carbon</span> and nitrogen has not yet been assessed. Here, we analyse previously published data on the spatial coverage of cryptogamic communities, and the associated fluxes of <span class="hlt">carbon</span> and nitrogen, in different types of ecosystem across the globe. We estimate that <span class="hlt">globally</span>, cryptogamic covers take up around 3.9 Pg <span class="hlt">carbon</span> per year, corresponding to around 7% of net primary production by terrestrial vegetation. We derive a nitrogen uptake by cryptogamic covers of around 49 Tg per year, suggesting that cryptogamic covers account for nearly half of the biological nitrogen fixation on land. We suggest that nitrogen fixation by cryptogamic covers may be crucial for <span class="hlt">carbon</span> sequestration by plants.</p> <div class="credits"> <p class="dwt_author">Elbert, Wolfgang; Weber, Bettina; Burrows, Susannah; Steinkamp, Jörg; Büdel, Burkhard; Andreae, Meinrat O.; Pöschl, Ulrich</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">339</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005SedG..175...19H"> <span id="translatedtitle"><span class="hlt">Global</span> change and modern coral reefs: New opportunities to understand shallow-water <span class="hlt">carbonate</span> depositional processes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Human activities are impacting coral reefs physically, biologically, and chemically. Nutrification, sedimentation, chemical pollution, and overfishing are significant local threats that are occurring worldwide. Ozone depletion and <span class="hlt">global</span> warming are triggering mass coral-bleaching events; corals under temperature stress lose the ability to synthesize protective sunscreens and become more sensitive to sunlight. Photo-oxidative stress also reduces fitness, rendering reef-building organisms more susceptible to emerging diseases. Increasing concentration of atmospheric CO2 has already reduced CaCO3 saturation in surface waters by more than 10%. Doubling of atmospheric CO2 concentration over pre-industrial concentration in the 21st century may reduce <span class="hlt">carbonate</span> production in tropical shallow marine environments by as much as 80%. As shallow-water reefs decline worldwide, opportunities abound for researchers to expand understanding of <span class="hlt">carbonate</span> depositional systems. Coordinated studies of <span class="hlt">carbonate</span> geochemistry with photozoan physiology and calcification, particularly in cool subtropical-transition zones between photozoan-reef and heterotrophic <span class="hlt">carbonate</span>-ramp communities, will contribute to understanding of <span class="hlt">carbonate</span> sedimentation under environmental change, both in the future and in the geologic record. Cyanobacteria are becoming increasingly prominent on declining reefs, as these microbes can tolerate strong solar radiation, higher temperatures, and abundant nutrients. The responses of reef-dwelling cyanobacteria to environmental parameters associated with <span class="hlt">global</span> change are prime topics for further research, with both ecological and geological implications.</p> <div class="credits"> <p class="dwt_author">Hallock, Pamela</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">340</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013ClDy...40.1671B"> <span id="translatedtitle">An estimate of equilibrium sensitivity of <span class="hlt">global</span> terrestrial <span class="hlt">carbon</span> cycle using NCAR CCSM4</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Increasing concentrations of atmospheric CO2 influence climate, terrestrial biosphere productivity and ecosystem <span class="hlt">carbon</span> storage through its radiative, physiological and fertilization effects. In this paper, we quantify these effects for a doubling of CO2 using a low resolution configuration of the coupled model NCAR CCSM4. In contrast to previous coupled climate-<span class="hlt">carbon</span> modeling studies, we focus on the near-equilibrium response of the terrestrial <span class="hlt">carbon</span> cycle. For a doubling of CO2, the radiative effect on the physical climate system causes <span class="hlt">global</span> mean surface air temperature to increase by 2.14 K, whereas the physiological and fertilization on the land biosphere effects cause a warming of 0.22 K, suggesting that these later effects increase <span class="hlt">global</span> warming by about 10 % as found in many recent studies. The CO2-fertilization leads to total ecosystem <span class="hlt">carbon</span> gain of 371 Gt-C (28 %) while the radiative effect causes a loss of 131 Gt-C (~10 %) indicating that climate warming damps the fertilization-induced <span class="hlt">carbon</span> uptake over land. Our model-based estimate for the maximum potential terrestrial <span class="hlt">carbon</span> uptake resulting from a doubling of atmospheric CO2 concentration (285-570 ppm) is only 242 Gt-C. This highlights the limited storage capacity of the terrestrial <span class="hlt">carbon</span> reservoir. We also find that the terrestrial <span class="hlt">carbon</span> storage sensitivity to changes in CO2 and temperature have been estimated to be lower in previous transient simulations because of lags in the climate-<span class="hlt">carbon</span> system. Our model simulations indicate that the time scale of terrestrial <span class="hlt">carbon</span> cycle response is greater than 500 years for CO2-fertilization and about 200 years for temperature perturbations. We also find that dynamic changes in vegetation amplify the terrestrial <span class="hlt">carbon</span> storage sensitivity relative to a static vegetation case: because of changes in tree cover, changes in total ecosystem <span class="hlt">carbon</span> for CO2-direct and climate effects are amplified by 88 and 72 %, respectively, in simulations with dynamic vegetation when compared to static vegetation simulations.</p> <div class="credits"> <p class="dwt_author">Bala, G.; Krishna, Sujith; Narayanappa, Devaraju; Cao, Long; Caldeira, Ken; Nemani, Ramakrishna</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_17 div --> <div id="page_18" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">341</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA556151"> <span id="translatedtitle">Report To The Secretary Of Defense - <span class="hlt">Global</span> Logistics <span class="hlt">Management</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The Defense Business Board (hereafter referred to as the Board ) provides recommendations to the Department of Defense s (DoD) senior <span class="hlt">management</span> on improving DoD s <span class="hlt">management</span> policies and practices to maximize operational effectiveness and efficiency. In ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">342</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/8910268"> <span id="translatedtitle">Oceanic <span class="hlt">Carbon</span> Dioxide Uptake in a Model of Century-Scale <span class="hlt">Global</span> Warming</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In a model of ocean-atmosphere interaction that excluded biological processes, the oceanic uptake of atmospheric <span class="hlt">carbon</span> dioxide (CO2) was substantially reduced in scenarios involving <span class="hlt">global</span> warming relative to control scenarios. The primary reason for the reduced uptake was the weakening or collapse of the ocean thermohaline circulation. Such a large reduction in this ocean uptake would have a major impact on the future growth rate of atmospheric CO2. Model simulations that include a simple representation of biological processes show a potentially large offsetting effect resulting from the downward flux of biogenic <span class="hlt">carbon</span>. However, the magnitude of the offset is difficult to quantify with present knowledge. PMID:8910268</p> <div class="credits"> <p class="dwt_author">Sarmiento; Le Quéré C</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-11-22</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">343</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003AGUFMED31C1179S"> <span id="translatedtitle">A Simple Numerical Model of the <span class="hlt">Global</span> <span class="hlt">Carbon</span> Cycle for the Classroom</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Using the STELLA programming software, a numerical model of the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle has been developed for educational purposes. The basic model is a somewhat simplified version of box models developed by researchers in the 1980s to explore the cycling of <span class="hlt">carbon</span> on time scales of years to centuries. The model contains four reservoirs (or "stocks") of <span class="hlt">carbon</span> -- atmosphere, ocean, and land plants - interconnected by a variety of processes (or "flows"). The presentation will demonstrate the model and cover three topics regarding its use in the classroom. 1) Construction of the model by lower division students, focusing on animating a static diagram of the <span class="hlt">carbon</span> cycle and emphasizing the importance of the concepts of balance and conservation of <span class="hlt">carbon</span> to continually check the work in progress. 2) Introduction of students to real-world model tuning to eliminate both starting transients and small imbalances introduced by representing continuous functions in finite difference form. 3) Exploration of model behavior using a variety of perturbations. The perturbations considered include large fires leading to the destruction of the land plants (an internal redistribution of <span class="hlt">carbon</span> already present in the model) and the burning of fossil fuels (the distribution of "new" <span class="hlt">carbon</span> added to the model from the outside). The closing discussion will emphasize the importance of developing students' abilities to interpret graphical output in terms of the scenario being played out in the model.</p> <div class="credits"> <p class="dwt_author">Snow, J. T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">344</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5182740"> <span id="translatedtitle">Acute <span class="hlt">carbon</span> monoxide poisoning: Emergency <span class="hlt">management</span> and hyperbaric oxygen therapy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An ice storm in February 1989 resulted in numerous incidences of <span class="hlt">carbon</span> monoxide poisoning in central Mississippi secondary to exposure to open fires in unventilated living spaces. Sixteen cases were treated during this period at the University of Mississippi Medical Center and 6 received Hyperbaric Oxygen therapy. These 6 cases and the mechanisms of CO poisoning are discussed and recommendations for emergency <span class="hlt">management</span> are reviewed.10 references.</p> <div class="credits"> <p class="dwt_author">Severance, H.W.; Kolb, J.C.; Carlton, F.B.; Jorden, R.C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">345</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/2677388"> <span id="translatedtitle">Acute <span class="hlt">carbon</span> monoxide poisoning: emergency <span class="hlt">management</span> and hyperbaric oxygen therapy.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">An ice storm in February 1989 resulted in numerous incidences of <span class="hlt">carbon</span> monoxide poisoning in central Mississippi secondary to exposure to open fires in unventilated living spaces. Sixteen cases were treated during this period at the University of Mississippi Medical Center and 6 received Hyperbaric Oxygen therapy. These 6 cases and the mechanisms of CO poisoning are discussed and recommendations for emergency <span class="hlt">management</span> are reviewed. PMID:2677388</p> <div class="credits"> <p class="dwt_author">Severance, H W; Kolb, J C; Carlton, F B; Jorden, R C</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">346</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24040052"> <span id="translatedtitle">Variability in the <span class="hlt">carbon</span> storage of seagrass habitats and its implications for <span class="hlt">global</span> estimates of blue <span class="hlt">carbon</span> ecosystem service.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The recent focus on <span class="hlt">carbon</span> trading has intensified interest in 'Blue <span class="hlt">Carbon'-carbon</span> sequestered by coastal vegetated ecosystems, particularly seagrasses. Most information on seagrass <span class="hlt">carbon</span> storage is derived from studies of a single species, Posidonia oceanica, from the Mediterranean Sea. We surveyed 17 Australian seagrass habitats to assess the variability in their sedimentary organic <span class="hlt">carbon</span> (Corg) stocks. The habitats encompassed 10 species, in mono-specific or mixed meadows, depositional to exposed habitats and temperate to tropical habitats. There was an 18-fold difference in the Corg stock (1.09-20.14 mg Corg cm(-3) for a temperate Posidonia sinuosa and a temperate, estuarine P. australis meadow, respectively). Integrated over the top 25 cm of sediment, this equated to an areal stock of 262-4833 g Corg m(-2). For some species, there was an effect of water depth on the Corg stocks, with greater stocks in deeper sites; no differences were found among sub-tidal and inter-tidal habitats. The estimated <span class="hlt">carbon</span> storage in Australian seagrass ecosystems, taking into account inter-habitat variability, was 155 Mt. At a 2014-15 fixed <span class="hlt">carbon</span> price of A$25.40 t(-1) and an estimated market price of $35 t(-1) in 2020, the Corg stock in the top 25 cm of seagrass habitats has a potential value of $AUD 3.9-5.4 bill. The estimates of annual Corg accumulation by Australian seagrasses ranged from 0.093 to 6.15 Mt, with a most probable estimate of 0.93 Mt y(-1) (10.1 t. km(-2) y(-1)). These estimates, while large, were one-third of those that would be calculated if inter-habitat variability in <span class="hlt">carbon</span> stocks were not taken into account. We conclude that there is an urgent need for more information on the variability in seagrass <span class="hlt">carbon</span> stock and accumulation rates, and the factors driving this variability, in order to improve <span class="hlt">global</span> estimates of seagrass Blue <span class="hlt">Carbon</span> storage. PMID:24040052</p> <div class="credits"> <p class="dwt_author">Lavery, Paul S; Mateo, Miguel-Ángel; Serrano, Oscar; Rozaimi, Mohammad</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-05</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">347</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3764034"> <span id="translatedtitle">Variability in the <span class="hlt">Carbon</span> Storage of Seagrass Habitats and Its Implications for <span class="hlt">Global</span> Estimates of Blue <span class="hlt">Carbon</span> Ecosystem Service</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The recent focus on <span class="hlt">carbon</span> trading has intensified interest in ‘Blue <span class="hlt">Carbon’–carbon</span> sequestered by coastal vegetated ecosystems, particularly seagrasses. Most information on seagrass <span class="hlt">carbon</span> storage is derived from studies of a single species, Posidonia oceanica, from the Mediterranean Sea. We surveyed 17 Australian seagrass habitats to assess the variability in their sedimentary organic <span class="hlt">carbon</span> (Corg) stocks. The habitats encompassed 10 species, in mono-specific or mixed meadows, depositional to exposed habitats and temperate to tropical habitats. There was an 18-fold difference in the Corg stock (1.09–20.14 mg Corg cm?3 for a temperate Posidonia sinuosa and a temperate, estuarine P. australis meadow, respectively). Integrated over the top 25 cm of sediment, this equated to an areal stock of 262–4833 g Corg m?2. For some species, there was an effect of water depth on the Corg stocks, with greater stocks in deeper sites; no differences were found among sub-tidal and inter-tidal habitats. The estimated <span class="hlt">carbon</span> storage in Australian seagrass ecosystems, taking into account inter-habitat variability, was 155 Mt. At a 2014–15 fixed <span class="hlt">carbon</span> price of A$25.40 t?1 and an estimated market price of $35 t?1 in 2020, the Corg stock in the top 25 cm of seagrass habitats has a potential value of $AUD 3.9–5.4 bill. The estimates of annual Corg accumulation by Australian seagrasses ranged from 0.093 to 6.15 Mt, with a most probable estimate of 0.93 Mt y?1 (10.1 t. km?2 y?1). These estimates, while large, were one-third of those that would be calculated if inter-habitat variability in <span class="hlt">carbon</span> stocks were not taken into account. We conclude that there is an urgent need for more information on the variability in seagrass <span class="hlt">carbon</span> stock and accumulation rates, and the factors driving this variability, in order to improve <span class="hlt">global</span> estimates of seagrass Blue <span class="hlt">Carbon</span> storage.</p> <div class="credits"> <p class="dwt_author">Lavery, Paul S.; Mateo, Miguel-Angel; Serrano, Oscar; Rozaimi, Mohammad</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">348</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37342889"> <span id="translatedtitle">Understanding Asian Corporate <span class="hlt">Management</span>: A <span class="hlt">Global</span> Comparative Framework</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Asia is now set to rival the West in economic terms, and an understanding of Asian <span class="hlt">management</span> is critical. General interest in this area has its origins in the Japanese economic miracle, regional influence of the overseas Chinese, and the contemporary emergence of China and India. Although “Asian <span class="hlt">management</span>” is established as a subdiscipline of international <span class="hlt">management</span>, there are few</p> <div class="credits"> <p class="dwt_author">Richard Grainger; Samir Ranjan Chatterjee</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">349</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/47971863"> <span id="translatedtitle">Ethics Programs in <span class="hlt">Global</span> Businesses: Culture's Role in <span class="hlt">Managing</span> Ethics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Even if there were widespread cross-cultural agreement on the normative issues of business ethics, corporate ethics <span class="hlt">management</span> initiatives (e.g., codes of conduct, ethics telephone lines, ethics offices) which are appropriate in one cultural setting still could fail to mesh with the <span class="hlt">management</span> practices and cultural characteristics of a different setting. By uncritically adopting widely promoted American practices for <span class="hlt">managing</span> corporate</p> <div class="credits"> <p class="dwt_author">Gary R. Weaver</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">350</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58990368"> <span id="translatedtitle"><span class="hlt">Managing</span> Liberalization and <span class="hlt">Globalization</span> in Rural China: Trends in Rural Labour Allocation, Income and Inequality</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">China’s integration into the <span class="hlt">global</span> economy, while rapid, has been <span class="hlt">managed</span> as part of a wider liberalization process. The structural changes in the rural economy arising from these twin processes have led to widening intra-rural inequalities. To address these, the central leadership has, in Polanyian manner, moved to counter some of the adverse effects of liberalization and <span class="hlt">globalization</span>. We discuss</p> <div class="credits"> <p class="dwt_author">Xiao-Yuan Dong; Paul Bowles; Hongqin Chang</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">351</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/47006064"> <span id="translatedtitle"><span class="hlt">Managing</span> human resource capabilities for sustainable competitive advantage : An empirical analysis from Indian <span class="hlt">global</span> organisations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Purpose – The purpose of this article is to examine the role of human resource capability (HRC) in organisational performance and sustainable competitive advantage (SCA) in Indian <span class="hlt">global</span> organisations. Design\\/methodology\\/approach – To carry out the present study, an empirical research on a random sample of 300 line or human resource <span class="hlt">managers</span> from nine Indian and foreign <span class="hlt">global</span> organisations, from New</p> <div class="credits"> <p class="dwt_author">Aradhana Khandekar; Anuradha Sharma</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">352</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=new+AND+invention&pg=6&id=EJ772566"> <span id="translatedtitle">Surveying the Need for Technology <span class="hlt">Management</span> for <span class="hlt">Global</span> Health Training Programmes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Technology licensing office <span class="hlt">managers</span> often need to evaluate profitability and commercial potential in their decision making. However, increased consideration of important <span class="hlt">global</span> public health goals requires forging new collaborative relationships, incorporating creative licensing practices and embracing <span class="hlt">global</span> public good within the academic and…</p> <div class="credits"> <p class="dwt_author">Balakrishnan, Usha R.; Troyer, Lisa; Brands, Edwin</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">353</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22Global+Health%22&id=EJ772566"> <span id="translatedtitle">Surveying the Need for Technology <span class="hlt">Management</span> for <span class="hlt">Global</span> Health Training Programmes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">Technology licensing office <span class="hlt">managers</span> often need to evaluate profitability and commercial potential in their decision making. However, increased consideration of important <span class="hlt">global</span> public health goals requires forging new collaborative relationships, incorporating creative licensing practices and embracing <span class="hlt">global</span> public good within the academic and…</p> <div class="credits"> <p class="dwt_author">Balakrishnan, Usha R.; Troyer, Lisa; Brands, Edwin</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">354</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE90014455"> <span id="translatedtitle">Chasing a specter: Risk <span class="hlt">management</span> for <span class="hlt">global</span> environmental change.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary"><span class="hlt">Global</span> environmental change is both a concept and a process that changes in meaning with scientific discovery, public concern, and political responsiveness. It is the relationship between the problems as perceived and the various institutions that help sh...</p> <div class="credits"> <p class="dwt_author">T. O'Riordan S. Rayner</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">355</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20961365"> <span id="translatedtitle"><span class="hlt">Global</span> warming and the future of coal <span class="hlt">carbon</span> capture and storage</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The paper considers how best to change the economic calculus of power plant developers so they internalize CCS costs when selecting new generation technologies. Five policy tools are analyzed: establishing a greenhouse gas cap-and-trade program; imposing <span class="hlt">carbon</span> taxes; defining CCS systems as a so-called Best Available Control Technology for new power plants under the USA Clean Air Act's New Source Review program; developing a 'low <span class="hlt">carbon</span> portfolio' standard that requires utilities to provide an increasing proportion of power from low-<span class="hlt">carbon</span> generation sources over time; and requiring all new coal power plants to meet an 'emission performance' standard that limits CO{sub 2} emissions to levels achievable with CCS systems. Each of these tools has advantages and drawbacks but an emission performance standard for new power plants is likely to be most effective in spurring broad-scale adoption of CCS systems. Chapter headings are: <span class="hlt">global</span> warming and the future of coal; new coal-fired power plants threaten all other efforts to combat <span class="hlt">global</span> warming; a potential path to zero emissions through <span class="hlt">carbon</span> capture and storage; CO{sub 2} capture at coal plants: the promise of IGCC and other technologies; barriers to commercialization of IGCC technology; crossing the chasm: a new policy framework to push ccs implementation forward; encouraging CCS systems with <span class="hlt">carbon</span> caps and trading programs; using the existing Clean Air Act to require CCS systems for new coal plants; retail low <span class="hlt">carbon</span> portfolio standard; <span class="hlt">carbon</span> tax; emission performance standards for new coal power plants; and conclusions. 16 figs.</p> <div class="credits"> <p class="dwt_author">Ken Berlin; Robert M. Sussman [Skadden Arps, Slate, Meagher and Flom (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-05-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">356</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20069448"> <span id="translatedtitle">Monitoring changes in soil organic <span class="hlt">carbon</span> pools, nitrogen, phosphorus, and sulfur under different agricultural <span class="hlt">management</span> practices in the tropics.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Soil organic matter not only affects sustainability of agricultural ecosystems, but also extremely important in maintaining overall quality of environment as soil contains a significant part of <span class="hlt">global</span> <span class="hlt">carbon</span> stock. Hence, we attempted to assess the influence of different tillage and nutrient <span class="hlt">management</span> practices on various stabilized and active soil organic <span class="hlt">carbon</span> pools, and their contribution to the extractable nitrogen phosphorus and sulfur. Our study confined to the assessment of impact of agricultural <span class="hlt">management</span> practices on the soil organic <span class="hlt">carbon</span> pools and extractable nutrients under three important cropping systems, viz. soybean-wheat, maize-wheat, and rice-wheat. Results indicated that there was marginal improvement in Walkley and Black content in soil under integrated and organic nutrient <span class="hlt">management</span> treatments in soybean-wheat, maize-wheat, and rice-wheat after completion of four cropping cycles. Improvement in stabilized pools of soil organic <span class="hlt">carbon</span> (SOC) was not proportional to the applied amount of organic manures. While, labile pools of SOC were increased with the increase in amount of added manures. Apparently, green manure (Sesbania) was more effective in enhancing the lability of SOC as compared to farmyard manure and crop residues. The KMnO(4)-oxidizable SOC proved to be more sensitive and consistent as an index of labile pool of SOC compared to microbial biomass <span class="hlt">carbon</span>. Under different cropping sequences, labile fractions of soil organic <span class="hlt">carbon</span> exerted consistent positive effect on the extractable nitrogen, phosphorus, and sulfur in soil. PMID:20069448</p> <div class="credits"> <p class="dwt_author">Verma, Bibhash C; Datta, Siba Prasad; Rattan, Raj K; Singh, Anil K</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-13</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">357</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40779119"> <span id="translatedtitle">A model of Phanerozoic cycles of <span class="hlt">carbon</span> and calcium in the <span class="hlt">global</span> ocean: Evaluation and constraints on ocean chemistry and input fluxes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The relationships between the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle and paleo-climates on short and long time scales have been based on studies of accumulation rate of the two main components of the sedimentary <span class="hlt">carbon</span> reservoir, organic <span class="hlt">carbon</span> and <span class="hlt">carbonate</span> <span class="hlt">carbon</span>. Variations in the rate and proportion of <span class="hlt">carbonate</span> burial through Phanerozoic time have been attributed to the effects of tectonics on eustasy,</p> <div class="credits"> <p class="dwt_author">Robert E. Locklair; Abraham Lerman</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">358</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54913509"> <span id="translatedtitle">Predicting Two-Dimensional Boron-<span class="hlt">Carbon</span> Compounds by the <span class="hlt">Global</span> Optimization Method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We adopt a <span class="hlt">global</span> optimization method to predict two-dimensional (2D) nanostructures through the particle-swarm optimization (PSO) algorithm. By performing PSO simulations, we predict new stable structures of 2D boron-<span class="hlt">carbon</span> (B-C) compounds for a wide range of boron concentrations. Our calculations show that: (1) All 2D B-C compounds are metallic except for BC3 which is a magic case where the isolation</p> <div class="credits"> <p class="dwt_author">Xinyu Luo; Jihui Yang; Hanyu Liu; Xiaojun Wu; Yanchao Wang; Yanming Ma; Su-Huai Wei; Xingao Gong; Hongjun Xiang</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">359</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/42053035"> <span id="translatedtitle"><span class="hlt">Global</span> distribution of C3 and C4 vegetation: <span class="hlt">Carbon</span> cycle implications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">global</span> distribution of C3 and C4 plants is required for accurately simulating exchanges of CO2, water, and energy between the land surface and atmosphere. It is also important to know the C3\\/C4 distribution for simulations of the <span class="hlt">carbon</span> isotope composition of atmospheric CO2 owing to the distinct fractionations displayed by each photosynthetic type. Large areas of the land surface</p> <div class="credits"> <p class="dwt_author">Christopher J. Still; Joseph A. Berry; G. James Collatz; Ruth S. DeFries</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">360</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/59159568"> <span id="translatedtitle">Corn, <span class="hlt">Carbon</span>, and Conservation: Rethinking U.S. Agricultural Policy in a Changing <span class="hlt">Global</span> Environment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">\\u000aCORN, <span class="hlt">CARBON</span> AND CONSERVATION: RETHINKING U.S. AGRICULTURAL POLICY IN A CHANGING <span class="hlt">GLOBAL</span> ENVIRONMENT\\u000aMary Jane Angelo\\u000aIn the past few years, the public has renewed its interest in ensuring that the food it eats is healthy and is grown in ways that are environmentally and economically sustainable. The immense popularity of books such as The Omnivore’s Dilemma, the widespread “locavore”</p> <div class="credits"> <p class="dwt_author">Mary Jane Angelo</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_18 div --> <div id="page_19" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">361</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/52099713"> <span id="translatedtitle">Response of Amazon Forest <span class="hlt">Carbon</span> Balance to Catastrophic Tree Mortality and <span class="hlt">Global</span> Changes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">carbon</span> balance response of old-growth tropical forests to <span class="hlt">global</span> changes in tree dynamics and community composition remain uncertain. We investigated this response using a stochastic-empirical individual-based model parameterized from extensive field studies of both live and dead trees in the Central Amazon. Catastrophic mortality, CO2 fertilization, increased turnover rates (tree recruitment and mortality), increased tree stem density, and changes</p> <div class="credits"> <p class="dwt_author">J. Q. Chambers; N. Higuchi; J. D. Santos; L. T. Martins; E. S. Tribuzy; P. E. Camargo; S. Trumbore</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">362</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFM.B42A..08H"> <span id="translatedtitle">Stable <span class="hlt">Carbon</span> Isotope Ratios Indicative of <span class="hlt">Global</span> <span class="hlt">Carbon</span>-Cycle Perturbations at the Permian-Triassic Boundary</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">During the late-Permian <span class="hlt">global</span> oceanic anoxic event, the release of sulfide from the deep ocean may have been a factor in the contemporaneous mass extinction that was severe in both the marine and terrestrial realms. <span class="hlt">Carbon</span> cycling beneath a stratified, anoxic ocean is fundamentally distinct relative to a fully ventilated ocean, and these differences can be observed in the organic <span class="hlt">carbon</span> preserved in the sedimentary records. Measuring the stable <span class="hlt">carbon</span> isotopic ratios of two groups of compounds, n-alkane hydrocarbons and isoprenoid hydrocarbons, provides insight into the <span class="hlt">carbon</span> cycling of the environment from which they were derived. These compounds are produced with different isotopic values in heterotrophs and autotrophs for which modern biosynthetic relationships predict that isoprenoids should be enriched relative to the n-alkanes. However, a reversal of this pattern is seen in sections deposited under stratified Proterozoic oceans and was interpreted as a reworking of organic matter by heterotrophs above the oxic/anoxic interface [1]. In younger samples from the Permian-Triassic Boundary (PTB) in Perth Basin, Western Australia, a similar reversal in the isotopic relationship has been observed along with biomarker evidence for photic zone euxinia [2]. This study focuses on two other PTB locations - the Peace River Embayment, Canada, and the GSSP for the PTB, in Meishan, China - where biomarker evidence supports the presence of hydrogen sulfide in the water column. The compound-specific <span class="hlt">carbon</span> isotopic data from these sections show fluctuations in tandem with biomarkers indicative of an anoxic water column - further supporting the correlation between isotopic anomalies and <span class="hlt">carbon</span> cycle perturbations in the stratified water column in the paleo-oceanic environment of the PTB. [1] Logan et al. (1995). Nature 376: 53-56. [2] Grice et al. (2005). Science 307: 706-709.</p> <div class="credits"> <p class="dwt_author">Hays, L. E.; Summons, R. E.; Grice, K.; Cao, C.; Henderson, C. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">363</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFM.V13G..01T"> <span id="translatedtitle">Long Term ?17O, ?18O measurements of tropospheric <span class="hlt">carbon</span> dioxide and potential application to the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. (Invited)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Stable isotope ratio measurements have played an important role in defining the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle for the past half century. In the past decades, mass independent isotopic measurements of stratospheric <span class="hlt">carbon</span> dioxide have been shown to be an important indice for understanding stratospheric ozone chemistry and the interaction with <span class="hlt">carbon</span> dioxide. In this specific role, it is the O(1D) produced from ozone photolysis that interacts with CO2 and inscribes a mass independent isotopic composition (see review by (1)). This photochemical process simultaneously provides an isotopic record in <span class="hlt">carbon</span> dioxide of the integrated exposure to ozone/atomic oxygen and stratosphere troposphere mixing. As a consequence of these processes, it has been observed that tropospheric oxygen possesses a mass independent composition that may be used as a tracer of bioproductivity (2) and as a potential measure of <span class="hlt">carbon</span> dioxide levels during and following the snowball earth event (3). In addition, the magnitude of the stratospheric anomaly in the troposphere may directly reflect the atmospheric turnover rates of <span class="hlt">carbon</span> dioxide, which is an important component of the <span class="hlt">carbon</span> cycle (4, 5). To further develop this new methodology, the rates and magnitude of the relevant processes must be identified and quantified. Samples of tropospheric <span class="hlt">carbon</span> dioxide were obtained in La Jolla, Ca. over a 10 year plus time period. All samples were taken under identical conditions and analyzed immediately for all three oxygen isotopes. There was no sample storage and samples were thoroughly isolated from water. All conditions, including standardization and mass spectrometry were constant throughout that time period. The data are consistent with an identifiable steady state component of stratospheric <span class="hlt">carbon</span> dioxide. In addition, other features of the data suggest other processes operative that are presently unaccounted for, and, are only observable in the mass independent composition. References 1. Thiemens, M.H. (2006). Annual Rev. earth Planet Sci. 34, 217 (2006). 2.Luz, B., Bender, M.L., Thiemens, M.H., Boering, K. Nature 400, 547 (2002). 3.Bao, H., Lyons, J.R., Zhou, Chuanming. Nature 453, 504 (2008). 4.Hoag, K.J., Still, C.J., Fung, I.Y., Boering, K.A. Geophys. Res. Lett 32, L02802 (2005). 5.Liang, M-C., Blake, G.A., Yung, Y.L. J. Geophys. Res 113, D12305 (2008).</p> <div class="credits"> <p class="dwt_author">Thiemens, M. H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">364</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/426959"> <span id="translatedtitle">Environmental review of options for <span class="hlt">managing</span> radioactively contaminated <span class="hlt">carbon</span> steel</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The U.S. Department of Energy (DOE) is proposing to develop a strategy for the <span class="hlt">management</span> of radioactively contaminated <span class="hlt">carbon</span> steel (RCCS). Currently, most of this material either is placed in special containers and disposed of by shallow land burial in facilities designed for low-level radioactive waste (LLW) or is stored indefinitely pending sufficient funding to support alternative disposition. The growing amount of RCCS with which DOE will have to deal in the foreseeable future, coupled with the continued need to protect the human and natural environment, has led the Department to evaluate other approaches for <span class="hlt">managing</span> this material. This environmental review (ER) describes the options that could be used for RCCS <span class="hlt">management</span> and examines the potential environmental consequences of implementing each. Because much of the analysis underlying this document is available from previous studies, wherever possible the ER relies on incorporating the conclusions of those studies as summaries or by reference.</p> <div class="credits"> <p class="dwt_author">NONE</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">365</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002GeoRL..29.1907L"> <span id="translatedtitle"><span class="hlt">Global</span> estimates of net <span class="hlt">carbon</span> production in the nitrate-depleted tropical and subtropical oceans</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Nitrate availability is generally considered to be the limiting factor for oceanic new production and this concept is central in our observational and modeling efforts. However, recent time-series observations off Bermuda and Hawaii indicate a significant removal of total dissolved inorganic <span class="hlt">carbon</span> (CT) in the absence of measurable nitrate. Here we estimate net <span class="hlt">carbon</span> production in nitrate-depleted tropical and subtropical waters with temperatures higher than 20°C from the decrease in the salinity normalized CT inventory within the surface mixed layer. This method yields a <span class="hlt">global</span> value of 0.8 +/- 0.3 petagrams of <span class="hlt">carbon</span> per year (Pg C yr-1, Pg = 1015 grams), which equates to a significant fraction (20-40%) of the recent estimates (2.0-4.2 Pg C yr-1) of total new production in the tropical and subtropical oceans [Emerson et al., 1997; Lee, 2001]. The remainder is presumably supported by upward flux of nutrients into the euphotic zone via eddy diffusion and turbulent mixing processes or lateral exchange. Our calculation provides the first <span class="hlt">global</span>-scale estimate of net <span class="hlt">carbon</span> production in the absence of measurable nitrate. We hypothesize that it is attributable to dinitrogen (N2) fixing microorganisms, which can utilize the inexhaustible dissolved N2 pool and thereby bypass nitrate limitation.</p> <div class="credits"> <p class="dwt_author">Lee, Kitack; Karl, David M.; Wanninkhof, Rik; Zhang, Jia-Zhong</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">366</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012ESSD....4..167B"> <span id="translatedtitle">The <span class="hlt">global</span> distribution of pteropods and their contribution to <span class="hlt">carbonate</span> and <span class="hlt">carbon</span> biomass in the modern ocean</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Pteropods are a group of holoplanktonic gastropods for which <span class="hlt">global</span> biomass distribution patterns remain poorly described. The aim of this study was to collect and synthesise existing pteropod (Gymnosomata, Thecosomata and Pseudothecosomata) abundance and biomass data, in order to evaluate the <span class="hlt">global</span> distribution of pteropod <span class="hlt">carbon</span> biomass, with a particular emphasis on temporal and spatial patterns. We collected 25 939 data points from several online databases and 41 scientific articles. These data points corresponded to observations from 15 134 stations, where 93% of observations were of shelled pteropods (Thecosomata) and 7% of non-shelled pteropods (Gymnosomata). The biomass data has been gridded onto a 360 × 180° grid, with a vertical resolution of 33 depth levels. Both the raw data file and the gridded data in NetCDF format can be downloaded from PANGAEA, <a href="http://dx.doi.org/10.1594/PANGAEA.777387"target="_blank">doi:10.1594/PANGAEA.777387</a>. Data were collected between 1950-2010, with sampling depths ranging from 0-2000 m. Pteropod biomass data was either extracted directly or derived through converting abundance to biomass with pteropod-specific length to <span class="hlt">carbon</span> biomass conversion algorithms. In the Northern Hemisphere (NH), the data were distributed quite evenly throughout the year, whereas sampling in the Southern Hemisphere (SH) was biased towards winter and summer values. 86% of all biomass values were located in the NH, most (37%) within the latitudinal band of 30-60° N. The range of <span class="hlt">global</span> biomass values spanned over four orders of magnitude, with mean and median (non-zero) biomass values of 4.6 mg C m-3 (SD = 62.5) and 0.015 mg C m-3, respectively. The highest mean biomass was located in the SH within the 70-80° S latitudinal band (39.71 mg C m-3, SD = 93.00), while the highest median biomass was in the NH, between 40-50° S (0.06 mg C m-3, SD = 79.94). Shelled pteropods constituted a mean <span class="hlt">global</span> <span class="hlt">carbonate</span> biomass of 23.17 mg CaCO3 m-3 (based on non-zero records). Total biomass values were lowest in the equatorial regions and equally high at both poles. Pteropods were found at least to depths of 1000 m, with the highest biomass values located in the surface layer (0-10 m) and gradually decreasing with depth, with values in excess of 100 mg C m-3 only found above 200 m depth. Tropical species tended to concentrate at greater depths than temperate or high-latitude species. <span class="hlt">Global</span> biomass levels in the NH were relatively invariant over the seasonal cycle, but more seasonally variable in the SH. The collected database provides a valuable tool for modellers for the study of marine ecosystem processes and <span class="hlt">global</span> biogeochemical cycles. By extrapolating regional biomass to a <span class="hlt">global</span> scale, we established <span class="hlt">global</span> pteropod biomass to add up to 500 Tg C.</p> <div class="credits"> <p class="dwt_author">Bednaršek, N.; Možina, J.; Vogt, M.; O'Brien, C.; Tarling, G. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">367</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://pubs.er.usgs.gov/publication/70045137"> <span id="translatedtitle"><span class="hlt">Global</span> Building Inventory for Earthquake Loss Estimation and Risk <span class="hlt">Management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p class="result-summary">We develop a <span class="hlt">global</span> database of building inventories using taxonomy of <span class="hlt">global</span> building types for use in near-real-time post-earthquake loss estimation and pre-earthquake risk analysis, for the U.S. Geological Survey’s Prompt Assessment of <span class="hlt">Global</span> Earthquakes for Response (PAGER) program. The database is available for public use, subject to peer review, scrutiny, and open enhancement. On a country-by-country level, it contains estimates of the distribution of building types categorized by material, lateral force resisting system, and occupancy type (residential or nonresidential, urban or rural). The database draws on and harmonizes numerous sources: (1) UN statistics, (2) UN Habitat’s demographic and health survey (DHS) database, (3) national housing censuses, (4) the World Housing Encyclopedia and (5) other literature.</p> <div class="credits"> <p class="dwt_author">Kishor Jaiswal; Wald, David; Porter, Keith</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">368</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/c65222j8g4188727.pdf"> <span id="translatedtitle">The importance of human resources <span class="hlt">management</span> in health care: a <span class="hlt">global</span> context</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">BACKGROUND: This paper addresses the health care system from a <span class="hlt">global</span> perspective and the importance of human resources <span class="hlt">management</span> (HRM) in improving overall patient health outcomes and delivery of health care services. METHODS: We explored the published literature and collected data through secondary sources. RESULTS: Various key success factors emerge that clearly affect health care practices and human resources <span class="hlt">management</span>.</p> <div class="credits"> <p class="dwt_author">Stefane M. Kabene; Carole Orchard; John M. Howard; Mark A. Soriano; Raymond Leduc</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">369</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=261735"> <span id="translatedtitle">The GRIN-<span class="hlt">Global</span> Information <span class="hlt">Management</span> System – Public Interface Demonstration and Input Opportunity</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary">The GRIN-<span class="hlt">Global</span> (GG) Information <span class="hlt">Management</span> System, under development for the past three years, provides the world's crop genebanks and plant genetic resource (PGR) users with a powerful, flexible, easy-to-use PGR information <span class="hlt">management</span> system. Developed jointly by the USDA Agricultural Research Ser...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">370</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=247882"> <span id="translatedtitle">The GRIN-<span class="hlt">Global</span> Information <span class="hlt">Management</span> System – A Preview and Opportunity for Public User Input</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary">The GRIN-<span class="hlt">Global</span> Information <span class="hlt">Management</span> System, under development for the past two years, will provide the world's crop genebanks and plant genetic resource (PGR) users with a powerful, flexible, easy-to-use PGR information <span class="hlt">management</span> system. Developed jointly by the USDA Agricultural Research Servi...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">371</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/44381454"> <span id="translatedtitle">The Changing Nature of <span class="hlt">Global</span> Waste <span class="hlt">Management</span> for the 21st Century: A Mixed Blessing?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This article examines the impact of <span class="hlt">global</span> and economic pressures on hazardous waste <span class="hlt">management</span> practices during the 1980s and 1990s and into the twenty-first century. It charts out four sets of recent changes in these practices. These are: first, a shift in the basic regulatory problem, from one of a more local nature to the internationalization of waste <span class="hlt">management</span> issues;</p> <div class="credits"> <p class="dwt_author">Kate O'Neill</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">372</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57346910"> <span id="translatedtitle">Think <span class="hlt">global</span>, act local: Corporate Social Responsibility <span class="hlt">Management</span> in Multinational Companies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper investigates corporate social responsibility (CSR) policy <span class="hlt">management</span> in multinational companies (MNCs). The focus is on examining the relationship between subsidiaries and headquarters in the <span class="hlt">management</span> of CSR, in terms of the commonplace notion of ‘think <span class="hlt">global</span>, act local’. Primary and secondary data was collected in one MNC and a case study produced. The findings show that the initiative</p> <div class="credits"> <p class="dwt_author">M. Morand; L. Rayman-Bacchus</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">373</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/807529"> <span id="translatedtitle"><span class="hlt">Global</span> transaction support for workflow <span class="hlt">management</span> systems: from formal specification to practical implementation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, we present an approach to <span class="hlt">global</span> transaction <span class="hlt">management</span> in workflow environments. The transaction mechanism is based on the well-known notion of compensation, but extended to deal with both arbitrary process structures to allow cycles in processes and safepoints to allow partial compensation of processes. We present a formal specification of the transaction model and transaction <span class="hlt">management</span> algorithms</p> <div class="credits"> <p class="dwt_author">Paul W. P. J. Grefen; Jochem Vonk; Peter M. G. Apers</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">374</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006APS..MARV19001T"> <span id="translatedtitle">General Motors' R&D: <span class="hlt">Managing</span> Innovation <span class="hlt">Globally</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The rapid pace of technology development and the <span class="hlt">globalization</span> of the automobile industry are major forces driving General Motors to devise new ways to innovate faster and more efficiently. In response, GM has developed a <span class="hlt">global</span> R&D network that has transformed GM's research and development organization from a U.S.-based enterprise to one that is over 30 percent leveraged with collaboration in 16 countries. This talk will focus on the challenges faced as well as the lessons learned and best practices developed in building this network.</p> <div class="credits"> <p class="dwt_author">Taub, Alan</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">375</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/12997860"> <span id="translatedtitle">Public <span class="hlt">Management</span> InnovationToward a <span class="hlt">Global</span> Perspective</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Previous research based on a sample of the best applications to the State and Local Government Innovation Awards (1990-1994) identified the most frequently observed characteristics of public <span class="hlt">management</span> innovations: They are holistic, use new information technology, incorporate process improvements, empower citizens and communities, and involve partnerships with the private sector. This sample also demonstrated the importance of middle <span class="hlt">managers</span> and</p> <div class="credits"> <p class="dwt_author">Sandford Borins</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">376</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010EnMan..46..685L"> <span id="translatedtitle">A <span class="hlt">Global</span> Analysis of Protected Area <span class="hlt">Management</span> Effectiveness</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We compiled details of over 8000 assessments of protected area <span class="hlt">management</span> effectiveness across the world and developed a method for analyzing results across diverse assessment methodologies and indicators. Data was compiled and analyzed for over 4000 of these sites. <span class="hlt">Management</span> of these protected areas varied from weak to effective, with about 40% showing major deficiencies. About 14% of the surveyed areas showed significant deficiencies across many <span class="hlt">management</span> effectiveness indicators and hence lacked basic requirements to operate effectively. Strongest <span class="hlt">management</span> factors recorded on average related to establishment of protected areas (legal establishment, design, legislation and boundary marking) and to effectiveness of governance; while the weakest aspects of <span class="hlt">management</span> included community benefit programs, resourcing (funding reliability and adequacy, staff numbers and facility and equipment maintenance) and <span class="hlt">management</span> effectiveness evaluation. Estimations of <span class="hlt">management</span> outcomes, including both environmental values conservation and impact on communities, were positive. We conclude that in spite of inadequate funding and <span class="hlt">management</span> process, there are indications that protected areas are contributing to biodiversity conservation and community well-being.</p> <div class="credits"> <p class="dwt_author">Leverington, Fiona; Costa, Katia Lemos; Pavese, Helena; Lisle, Allan; Hockings, Marc</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">377</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37828970"> <span id="translatedtitle">Talent <span class="hlt">management</span> – competency development: key to <span class="hlt">global</span> leadership</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Purpose – The purpose of this paper is to draw lessons on how building a talent <span class="hlt">management</span> strategy based on competency profiling becomes a critical impact area within the field of strategic HRM. Design\\/methodology\\/approach – The case study discusses an Indian pharmaceutical organisation, the environment and the issues arising in context to talent <span class="hlt">management</span>. The case discusses a well designed</p> <div class="credits"> <p class="dwt_author">Rakesh Sharma; Jyotsna Bhatnagar</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">378</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57350011"> <span id="translatedtitle">Australian <span class="hlt">managers</span>' experience of <span class="hlt">global</span> human rights issues</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Purpose – The purpose of this paper is to explore the experiences of Australian <span class="hlt">managers</span> in relation to human rights issues and corporate responsibility inherent in their international business operations. Design\\/methodology\\/approach – The paper reports findings from a qualitative research study; data were gathered from 70 face-to-face interviews with <span class="hlt">managers</span> in the mining, textile and information technology industries who conducted</p> <div class="credits"> <p class="dwt_author">Kerry Lynne Pedigo; Verena Mary Marshall</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">379</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50948848"> <span id="translatedtitle">Architectural Knowledge <span class="hlt">Management</span> in <span class="hlt">Global</span> Software Development: A Review</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Architectural Knowledge <span class="hlt">Management</span> (AKM) aims to coordinate the knowledge produced and used during architecting a software system. <span class="hlt">Managing</span> architectural knowledge effectively is a task that becomes even more critical and complex when operating in a distributed environment. Thus, software architectural practices, processes, and tools that work in collocated software development don't necessarily scale up in a distributed environment. In this</p> <div class="credits"> <p class="dwt_author">Nour Ali; Sarah Beecham; I. Mistrik</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">380</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/44502542"> <span id="translatedtitle">Rethinking Cross Cultural <span class="hlt">Management</span> in a <span class="hlt">Globalizing</span> Business World</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Cross cultural <span class="hlt">management</span> is often regarded as a discipline of international <span class="hlt">management</span> focusing on cultural encounters between what are perceived as well-defined and homogeneous entities: the organization and the nation-state, and offering tools to handle cultural differences seen as sources of conflict or miscommunication. The authors argue that this approach is out of phase with the business world of today,</p> <div class="credits"> <p class="dwt_author">Anne-Marie Søderberg; Nigel Holden</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_19 div --> <div id="page_20" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">381</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54197577"> <span id="translatedtitle">12 years of intensive <span class="hlt">management</span> increases soil <span class="hlt">carbon</span> stocks in Loblolly pine and Sweetgum stands</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">To achieve and maintain productivity goals, forest <span class="hlt">managers</span> rely on intensive <span class="hlt">management</span> strategies. These strategies have resulted in considerable gains in forest productivity. However, the impacts of these strategies on belowground <span class="hlt">carbon</span> dynamics is less clear. <span class="hlt">Carbon</span> dynamics are influenced by a multitude of factors including soil moisture, nutrient status, net primary productivity and <span class="hlt">carbon</span> allocation patterns. In this study,</p> <div class="credits"> <p class="dwt_author">F. G. Sanchez; L. Samuelson; K. Johnsen</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">382</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/656543"> <span id="translatedtitle"><span class="hlt">Global</span> <span class="hlt">carbon</span> impacts of using forest harvest residues for district heating in Vermont</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Forests in Vermont are selectively logged periodically to generate wood products and useful energy. <span class="hlt">Carbon</span> remains stored in the wood products during their lifetime and in fossil fuel displaced by using these products in place of energy-intensive products. Additional <span class="hlt">carbon</span> is sequestered by new forest growth, and the forest inventory is sustained using this procedure. A significant portion of the harvest residue can be used as biofuel in central plants to generate electricity and thermal energy, which also displaces the use of fossil fuels. The impact of this action on the <span class="hlt">global</span> <span class="hlt">carbon</span> balance was analyzed using a model derived from the Graz/Oak Ridge <span class="hlt">Carbon</span> Accounting Model (GORCAM). The analysis showed that when forests are harvested only to manufacture wood products, more than 100 years are required to match the sequestered <span class="hlt">carbon</span> present if the forest is left undisturbed. If part of the harvest residue is collected and used as biofuel in place of oil or natural gas, it is possible to reduce this time to about 90 years, but it is usually longer. Given that harvesting the forest for products will continue, <span class="hlt">carbon</span> emission benefits relative to this practice can start within 10 to 70 years if part of the harvest residue is used as biofuel. This time is usually higher for electric generation plants, but it can be reduced substantially by converting to cogeneration operation. Cogeneration makes possible a ratio of <span class="hlt">carbon</span> emission reduction for district heating to <span class="hlt">carbon</span> emission increase for electricity generation in the range of 3 to 5. Additional sequestering benefits can be realized by using discarded wood products as biofuels.</p> <div class="credits"> <p class="dwt_author">McLain, H.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">383</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=34219"> <span id="translatedtitle">Nitrogen <span class="hlt">management</span> and the future of food: Lessons from the <span class="hlt">management</span> of energy and <span class="hlt">carbon</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The food system dominates anthropogenic disruption of the nitrogen cycle by generating excess fixed nitrogen. Excess fixed nitrogen, in various guises, augments the greenhouse effect, diminishes stratospheric ozone, promotes smog, contaminates drinking water, acidifies rain, eutrophies bays and estuaries, and stresses ecosystems. Yet, to date, regulatory efforts to limit these disruptions largely ignore the food system. There are many parallels between food and energy. Food is to nitrogen as energy is to <span class="hlt">carbon</span>. Nitrogen fertilizer is analogous to fossil fuel. Organic agriculture and agricultural biotechnology play roles analogous to renewable energy and nuclear power in political discourse. Nutrition research resembles energy end-use analysis. Meat is the electricity of food. As the agriculture and food system evolves to contain its impacts on the nitrogen cycle, several lessons can be extracted from energy and <span class="hlt">carbon</span>: (i) set the goal of ecosystem stabilization; (ii) search the entire production and consumption system (grain, livestock, food distribution, and diet) for opportunities to improve efficiency; (iii) implement cap-and-trade systems for fixed nitrogen; (iv) expand research at the intersection of agriculture and ecology, and (v) focus on the food choices of the prosperous. There are important nitrogen-<span class="hlt">carbon</span> links. The <span class="hlt">global</span> increase in fixed nitrogen may be fertilizing the Earth, transferring significant amounts of <span class="hlt">carbon</span> from the atmosphere to the biosphere, and mitigating <span class="hlt">global</span> warming. A modern biofuels industry someday may produce biofuels from crop residues or dedicated energy crops, reducing the rate of fossil fuel use, while losses of nitrogen and other nutrients are minimized.</p> <div class="credits"> <p class="dwt_author">Socolow, Robert H.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">384</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010EGUGA..12.8686L"> <span id="translatedtitle">Natural hazards education in <span class="hlt">global</span> environment leaders education programme for designing a low-<span class="hlt">carbon</span> society</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Global</span> environmental leader (GEL) education programme at graduate school for international development and cooperation (IDEC) in Hiroshima University is an education and training programme for graduate students especially from developing countries in Asian region to build and enhance their ability to become international environmental leaders. Through this programme, they will participate in regular course works and other activities to learn how to cope with the various environment and resource <span class="hlt">management</span> issues from <span class="hlt">global</span> to regional scales toward a low-<span class="hlt">carbon</span> society via multi-disciplinary approaches considering sustainable development and climate change. Under this GEL programme, there are five different research sub-groups as follows assuming a cause-effect relationship among interacting components of social, economic, and environmental systems; 1) urban system design to prevent <span class="hlt">global</span> warming, 2) wise use of biomass resources, 3) environmental impact assessment, 4) policy and institutional design, and 5) development of environmental education programs. Candidate students of GEL programme belong to one of the five research sub-groups, perform their researches and participate in many activities under the cross-supervisions from faculty members of different sub-groups. Under the third research group for environmental impact assessment, we use numerical models named as regional environment simulator (RES) as a tool for research and education for assessing the environmental impacts due to natural hazards. Developed at IDEC, Hiroshima University, RES is a meso-scale numerical model system that can be used for regional simulation of natural disasters and environmental problems caused by water and heat circulation in the atmosphere, hydrosphere, and biosphere. RES has three components: i) atmosphere-surface waves-ocean part, ii) atmosphere-land surface process-hydrologic part, and iii) coastal and estuarine part. Each part is constructed with state-of-the-art public domain numerical models that are combined synchronously by an own-developed model coupler. Therefore, RES can provide detailed insights from various aspects of interaction processes between each component in the earth system. For instance, RES has been used for the study of storm surges and the abnormally high ocean waves caused by typhoons, cyclones, hurricanes, and winter monsoon winds in Asian region; dam lake circulation; air-sea interaction of momentum, heat, and tracer material exchange; heavy rainfall and runoff simulation; estuarine circulation with cohesive sediment transport; and wave overtopping in coastal regions. Most recently, a project on the impact of reduced discharge of freshwater and sediment from the Yangtze River basin on the adjacent East China Sea has been initiated by using the RES. Under the GEL programme, we found the RES can be an important and useful tool for graduate students not only from science and engineering background but also from social science so as to evaluate their policy and institutional design.</p> <div class="credits"> <p class="dwt_author">Lee, Han Soo; Yamashita, Takao; Fujiwara, Akimasa</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">385</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.revecon.ro/articles/2011-2(bis)/2011-2(bis)-3.pdf"> <span id="translatedtitle">CONTRIBUTIONS REGARDING THE <span class="hlt">MANAGEMENT</span> OF THE EFFECTS OF <span class="hlt">GLOBAL</span> WARMING</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The paper contains analyses about the effects of <span class="hlt">global</span> warming and climate change. The impacts of climate change may be physical,ecological, social or economic. Evidence of observed climate change includes the increasing temperature, CO2 emissions, droughts, floods, etc. Human activities have contributed to a number of the observed changes in climate. This contribution has principally been through the burning of</p> <div class="credits"> <p class="dwt_author">Gabriela PRELIPCEAN; Angela Cozorici; Mariana LUPAN</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">386</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50709152"> <span id="translatedtitle">Legal Regulation on Logistics <span class="hlt">Management</span> from Aspects of <span class="hlt">Global</span> Economy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper firstly focuses on the research background of the thesis, and point out the adjustment of relation between the government and the market during the process of the <span class="hlt">globalization</span> of economy, which is called the change and movement of main stream in the social realm during the period of reform in China. With the impact of this very social</p> <div class="credits"> <p class="dwt_author">Shudi Zhu; Lina Huang</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">387</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pacis-net.org/file/2005/112.pdf"> <span id="translatedtitle">Impact of Japanese Traditional Cultures on <span class="hlt">Global</span> IS <span class="hlt">Management</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In order to re-establish a prominent position in <span class="hlt">Global</span> Trade Competition, Japanese enterprises need to undergo some cultural changes. The real question is whether and how much cultural change can be brought about. The Japanese Banking Industry benefited from protectionism following World War II but this has led to weakness in the internal structures and inefficient practices. Whilst investment banks</p> <div class="credits"> <p class="dwt_author">Hideyuki Matsumoto</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">388</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://02be6c1.netsolhost.com/docs/jgbat/v1n1/v1n1p3.pdf"> <span id="translatedtitle">THE GO-TO-MARKET FRONTIER: <span class="hlt">GLOBAL</span> ACCOUNT <span class="hlt">MANAGEMENT</span> (GAM)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Go-to-market systems, that complex web of multiple marketing channels that link suppliers with their customers, have radically evolved beyond simple advertising or salesperson marketing channels. Unfortunately, many academicians and industry practitioners are relatively unaware of the significance of these changes. The traditional salesperson has been replaced by specialized selling teams coordinated by technology and communications and targeting specialized market. <span class="hlt">Global</span></p> <div class="credits"> <p class="dwt_author">Richard G. McNeill Jr</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">389</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://esd.mit.edu/staging/WPS/2007/esd-wp-2007-24.pdf"> <span id="translatedtitle">DECISION SUPPORT AND SYSTEMS INTEROPERABILITY IN <span class="hlt">GLOBAL</span> BUSINESS <span class="hlt">MANAGEMENT</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Globalization</span> of business and volatility of financial markets has catapulted 'cycle-time' as a key indicator of operational efficiency in business processes. Systems automation holds the promise to augment the ability of business and healthcare networks to rapidly adapt to changes or respond, with minimal human intervention, under ideal conditions. Currently, system of systems (SOS) or organization of networks contribute minimally</p> <div class="credits"> <p class="dwt_author">Shoumen Palit; Austin Datta; JrJung Lyu; Ping-Shun Chen</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">390</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=virtual+AND+communication&pg=2&id=EJ962337"> <span id="translatedtitle"><span class="hlt">Managing</span> <span class="hlt">Global</span> Virtual Teams across Classrooms, Students and Faculty</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Virtual teams are becoming commonplace in business today so our business school students should have experience in effectively working in virtual teams. Based on a month-long virtual team project conducted by the authors between classes in South Africa and the United States, this paper discusses the opportunities and challenges of using <span class="hlt">global</span>…</p> <div class="credits"> <p class="dwt_author">Shea, Timothy P.; Sherer, Pamela D.; Quilling, Rosemary D.; Blewett, Craig N.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">391</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37341389"> <span id="translatedtitle">Achieving and <span class="hlt">Managing</span> <span class="hlt">Global</span> Brand Equity: A Critical Analysis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">According to some experts, brand equity is a company's most important asset. In this article, the authors first study the durability of brand equity in the long run. Then they examine the maintenance of that brand equity. The study analyzes the relative position of the top 50 most important <span class="hlt">global</span> brands. Rank correlations indicate that, in the short run, the</p> <div class="credits"> <p class="dwt_author">A. Coskun Samli; Merici Fevrier</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">392</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/116284"> <span id="translatedtitle">Regional growth <span class="hlt">management</span> policies: Toward reducing <span class="hlt">global</span> warming at state and local levels</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">State and local governments in the United States are accepting mandates to coordinate legislated land use and growth <span class="hlt">management</span> planning with vigorous environmental protection and resource conservation. These mandates, implemented or planned in states with populations totaling over 100 million, will directly impact growth patterns and ultimately affect the level of atmospheric gases and particulates generated within their borders. This paper addresses the issues of growth <span class="hlt">management</span> and land use planning at the local, state and regional levels and identifies areas impacting <span class="hlt">global</span> warming. A review of existing systems will be presented, and recommendations will be made to improve monitoring of growth <span class="hlt">management</span> mechanisms and organizational structures with the goal of <span class="hlt">global</span> atmospheric improvement. The issues discussed include urban sprawl, transportation, and growth patterns as <span class="hlt">managed</span> by policies also designed to protect environments and provide for sustainable growth. Areas for improved coordination between jurisdictions to ease <span class="hlt">global</span> warming will also be examined.</p> <div class="credits"> <p class="dwt_author">Purdie, J. [Washington State Univ., Pullman, WA (United States). Washington Center for Real Estate Research</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">393</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/289587"> <span id="translatedtitle">Evaluation and intercomparison of three-dimensional <span class="hlt">global</span> marine <span class="hlt">carbon</span> cycle models</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The addition of <span class="hlt">carbon</span> dioxide to the atmosphere from fossil fuel burning and deforestation has profound implications for the future of the earth`s climate and hence for humankind itself. Society is looking toward the community of environmental scientists to predict the consequences of increased atmospheric <span class="hlt">carbon</span> dioxide so that sound input can be provided to economists, environmental engineers, and, ultimately, policy makers. Environmental scientists have responded to this challenge through the creation of several ambitious, highly-coordinated programs, each focused on a different aspect of the climate system. Recognizing that numerical models, be they relatively simple statistical-empirical models or highly complex process-oriented models, are the only means for predicting the future of the climate system, all of these programs include the development of accurate, predictive models as a central goal. The Joint <span class="hlt">Global</span> Ocean Flux Study (JGOFS) is one such program, and was built on the well-founded premise that biological, chemical and physical oceanographic processes have a profound influence on the C0{sub 2} content of the atmosphere. The, cap-stone, phase of JGOFS, the Synthesis and Modeling Project (SMP), is charged with the development of models that can be used in the prediction of future air-sea partitioning of C0{sub 2}. JGOFS, particularly the SMP phase, has a number of interim goals as well, including the determination of fluxes and inventories of <span class="hlt">carbon</span> in the modern ocean that air germane to the air-sea partitioning of C0{sub 2}. Models have a role to play here too, because many of these fluxes and inventories, such as the distributions of anthropogenic dissolved inorganic <span class="hlt">carbon</span> (DIC), new primary production and aphotic zone remineralization, while not amenable to direct observation on the large scale, can be determined using a variety of modeling approaches (Siegenthaler and Oeschger, 1987; Maier-Reimer and Hasselman, 1987, Bacastow and Maier-Reimer, 1990; Sarmiento et al., 1992, Najjar et al., 1992). These twin needs for the development of marine <span class="hlt">carbon</span> cycle models are expressed in two of the main elements of JGOFS SMP: (1) extrapolation and prediction, and (2) <span class="hlt">global</span> and regional balances of <span class="hlt">carbon</span> and related biologically-active substances. We propose to address these program elements through a coordinated, multi-investigator project to evaluate and intercompare several 3-D <span class="hlt">global</span> marine <span class="hlt">carbon</span> cycle models.</p> <div class="credits"> <p class="dwt_author">Caldeira, K., LLNL</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">394</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39847135"> <span id="translatedtitle">Transitions towards adaptive <span class="hlt">management</span> of water facing climate and <span class="hlt">global</span> change</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Water <span class="hlt">management</span> is facing major challenges due to increasing uncertainties caused by climate and <span class="hlt">global</span> change and by fast\\u000a changing socio-economic boundary conditions. More attention has to be devoted to understanding and <span class="hlt">managing</span> the transition\\u000a from current <span class="hlt">management</span> regimes to more adaptive regimes that take into account environmental, technological, economic, institutional\\u000a and cultural characteristics of river basins. This implies a</p> <div class="credits"> <p class="dwt_author">Claudia Pahl-Wostl</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">395</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AGUFM.B31G0372S"> <span id="translatedtitle">Effects of <span class="hlt">Management</span> on Soil <span class="hlt">Carbon</span> Pools in California Rangeland Ecosystems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Rangeland ecosystems <span class="hlt">managed</span> for livestock production represent the largest land-use footprint <span class="hlt">globally</span>, covering more than one-quarter of the world's land surface (Asner et al. 2004). In California, rangelands cover an estimated 17 million hectares or approximately 40% of the land area (FRAP 2003). These ecosystems have considerable potential to sequester <span class="hlt">carbon</span> (C) in soil and offset greenhouse gas emissions through changes in land <span class="hlt">management</span> practices. Climate policies and C markets may provide incentives for rangeland <span class="hlt">managers</span> to pursue strategies that optimize soil C storage, yet we lack a thorough understanding of the effects of <span class="hlt">management</span> on soil C pools in rangelands over time and space. We sampled soil C pools on rangelands in a 260 km2 region of Marin and Sonoma counties to determine if patterns in soil C storage exist with <span class="hlt">management</span>. Replicate soil samples were collected from 35 fields that spanned the dominant soil orders, plant communities, and <span class="hlt">management</span> practices in the region while controlling for slope and bioclimatic zone (n = 1050). <span class="hlt">Management</span> practices included organic amendments, intensive (dairy) and extensive (other) grazing practices, and subsoiling. Soil C pools ranged from approximately 50 to 140 Mg C ha-1 to 1 m depth, with a mean of 99 ± 22 (sd) Mg C ha-1. Differences among sites were due primarily to C concentrations, which exhibited a much larger coefficient of variation than bulk density at all depths. There were no statistically significant differences among the dominant soil orders. Subsoiling appeared to significantly increase soil C content in the top 50 cm, even though subsoiling had only occurred for the first time the previous Nov. Organic amendments also appeared to greatly increase soil C pools, and was the dominant factor that distinguished soil C pools in intensive and extensive land uses. Our results indicate that <span class="hlt">management</span> has the potential to significantly increase soil C pools. Future research will determine the location of sequestered C within the soil matrix and its turnover time.</p> <div class="credits"> <p class="dwt_author">Silver, W. L.; Ryals, R.; Lewis, D. J.; Creque, J.; Wacker, M.; Larson, S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">396</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/833646"> <span id="translatedtitle">STRATEGIES AND TECHNOLOGY FOR <span class="hlt">MANAGING</span> HIGH-<span class="hlt">CARBON</span> ASH</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The overall objective of the present project is to identify and assess strategies and solutions for the <span class="hlt">management</span> of industry problems related to <span class="hlt">carbon</span> in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated <span class="hlt">carbon</span> surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.</p> <div class="credits"> <p class="dwt_author">Robert Hurt; Eric Suuberg; John Veranth; Xu Chen</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-05-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">397</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/833649"> <span id="translatedtitle">STRATEGIES AND TECHNOLOGY FOR <span class="hlt">MANAGING</span> HIGH-<span class="hlt">CARBON</span> ASH</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The overall objective of the present project is to identify and assess strategies and solutions for the <span class="hlt">management</span> of industry problems related to <span class="hlt">carbon</span> in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated <span class="hlt">carbon</span> surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.</p> <div class="credits"> <p class="dwt_author">Robert Hurt; Eric Suuberg; John Veranth; Xu Chen</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-09-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">398</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=gasses&id=ED307204"> <span id="translatedtitle"><span class="hlt">Managing</span> the Future: Public Policy, Scientific Uncertainty, and <span class="hlt">Global</span> Warming.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|Due to the injection of <span class="hlt">carbon</span> dioxide and various other gasses into the atmosphere, the world of the 21st century may well have a climate that is beyond the parameters of human existence. Physical science produces information regarding the physical effects of increasing concentrations of "greenhouse" gasses. Once this information is developed,…</p> <div class="credits"> <p class="dwt_author">Jamieson, Dale</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">399</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60494358"> <span id="translatedtitle">Impacts of alternative forest <span class="hlt">management</span> policies on <span class="hlt">carbon</span> sequestration on U. S. timberlands</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Carbon</span> stored on US timberlands by vegetation is affected by national policies that influence forest <span class="hlt">management</span>. The effect of various policies on <span class="hlt">carbon</span> storage was estimated using the <span class="hlt">Carbon</span> Budget Model, which was linked with econometric models of the forest sector. The model estimates and projects <span class="hlt">carbon</span> inventory and harvests in all components of timberlands in the United States and</p> <div class="credits"> <p class="dwt_author">L. S. Heath; R. A. Birdsey</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">400</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA425908"> <span id="translatedtitle">CADRE Quick-Look: Airspace <span class="hlt">Management</span> in <span class="hlt">Global</span> CONOPs.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">US Joint Forces Command's (JFCOM) Joint Lessons Learned: Operation Iraqi Freedom (OIF) cites airspace <span class="hlt">management</span> as an opportunity for improvement. More specifically, discussions with numerous sources throughout Air Mobility Command (AMC) and Central Comm...</p> <div class="credits"> <p class="dwt_author">A. M. Wathen</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_20 div --> <div id="page_21" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">401</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://oaspub.epa.gov/eims/eimsapi.dispdetail?deid=34390"> <span id="translatedtitle">EXPANDING <span class="hlt">GLOBAL</span> FOREST <span class="hlt">MANAGEMENT</span>: AN EASY FIRST PROPOSAL</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p class="result-summary">Interest is growing in the international community for a world treaty or protocol on forest <span class="hlt">management</span> and protection. orld leaders have become increasingly aware of the relationship between sustainable forest resources and healthy social, economic, and environmental conditions i...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">402</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/15190348"> <span id="translatedtitle">High levels of atmospheric <span class="hlt">carbon</span> dioxide necessary for the termination of <span class="hlt">global</span> glaciation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The possibility that the Earth suffered episodes of <span class="hlt">global</span> glaciation as recently as the Neoproterozoic period, between about 900 and 543 million years ago, has been widely discussed. Termination of such 'hard snowball Earth' climate states has been proposed to proceed from accumulation of <span class="hlt">carbon</span> dioxide in the atmosphere. Many salient aspects of the snowball scenario depend critically on the threshold of atmospheric <span class="hlt">carbon</span> dioxide concentrations needed to trigger deglaciation. Here I present simulations with a general circulation model, using elevated <span class="hlt">carbon</span> dioxide levels to estimate this deglaciation threshold. The model simulates several phenomena that are expected to be significant in a 'snowball Earth' scenario, but which have not been considered in previous studies with less sophisticated models, such as a reduction of vertical temperature gradients in winter, a reduction in summer tropopause height, the effect of snow cover and a reduction in cloud greenhouse effects. In my simulations, the system remains far short of deglaciation even at atmospheric <span class="hlt">carbon</span> dioxide concentrations of 550 times the present levels (0.2 bar of CO2). I find that at much higher <span class="hlt">carbon</span> dioxide levels, deglaciation is unlikely unless unknown feedback cycles that are not captured in the model come into effect. PMID:15190348</p> <div class="credits"> <p class="dwt_author">Pierrehumbert, Raymond T</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-06-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">403</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23602675"> <span id="translatedtitle">[The <span class="hlt">management</span> of risks by the <span class="hlt">global</span> risk analysis].</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">After a reminder on the fundamental concepts of the <span class="hlt">management</span> of risk, the author describes the overall analysis of risk (AGR), name given by the author to the up-to-date APR method which after several changes of the initial process aims to cover a perimeter of analysis and broader <span class="hlt">management</span> both at the level of structural that business risks of any kind throughout the system development life cycle, of the study of its feasibility to dismantling. PMID:23602675</p> <div class="credits"> <p class="dwt_author">Desroches, A</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-17</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">404</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/24994712"> <span id="translatedtitle">Challenges of <span class="hlt">global</span> environmental issues on ecosystem <span class="hlt">management</span> in Malaysia</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Environmental problems and their <span class="hlt">management</span>, particularly when related to urban ecosystems, are becoming increasingly challenging. The end-of-pipe method which has been practiced in the past, and is manifested in our laws and regulations, has gradually changed towards a more pro-active approach. Industries now recognize that environmental <span class="hlt">management</span> and pollution control are no longer liabilities, but rather opportunities to increase their</p> <div class="credits"> <p class="dwt_author">Mohd Nasir Hassan; Muhamad Awang; Abu Bakar Jaafar</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">405</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54422547"> <span id="translatedtitle">Modeling the Future <span class="hlt">Global</span> <span class="hlt">Carbon</span> Balance: Is there a threshold from terrestrial sink to source in the Near Future?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Attempts to model the terrestrial <span class="hlt">carbon</span> balance began almost immediately with the inception of the Intergovernmental Panel on Climate Change about 20 years ago. Beginning from empirical approaches to simulating vegetation distribution, ecologist progressed to the mechanistic <span class="hlt">global</span> biogeography models. These models, combined with <span class="hlt">global</span> biogeochemical cycling models and fire disturbance models, resulted in the emergence of Dynamic General Vegetation</p> <div class="credits"> <p class="dwt_author">R. P. Neilson; J. M. Lenihan; D. M. Bachelet; R. Drapek; J. R. Wells</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">406</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2993410"> <span id="translatedtitle">Potential for reduced methane and <span class="hlt">carbon</span> dioxide emissions from livestock and pasture <span class="hlt">management</span> in the tropics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">We estimate the potential reductions in methane and <span class="hlt">carbon</span> dioxide emissions from several livestock and pasture <span class="hlt">management</span> options in the mixed and rangeland-based production systems in the tropics. The impacts of adoption of improved pastures, intensifying ruminant diets, changes in land-use practices, and changing breeds of large ruminants on the production of methane and <span class="hlt">carbon</span> dioxide are calculated for two levels of adoption: complete adoption, to estimate the upper limit to reductions in these greenhouse gases (GHGs), and optimistic but plausible adoption rates taken from the literature, where these exist. Results are expressed both in GHG per ton of livestock product and in Gt CO2-eq. We estimate that the maximum mitigation potential of these options in the land-based livestock systems in the tropics amounts to approximately 7% of the <span class="hlt">global</span> agricultural mitigation potential to 2030. Using historical adoption rates from the literature, the plausible mitigation potential of these options could contribute approximately 4% of <span class="hlt">global</span> agricultural GHG mitigation. This could be worth on the order of $1.3 billion per year at a price of $20 per t CO2-eq. The household-level and sociocultural impacts of some of these options warrant further study, however, because livestock have multiple roles in tropical systems that often go far beyond their productive utility.</p> <div class="credits"> <p class="dwt_author">Thornton, Philip K.; Herrero, Mario</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">407</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1984TelIn...1..231A"> <span id="translatedtitle">The <span class="hlt">global</span> frequency spectrum <span class="hlt">management</span> - Prospects and problems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The frequency spectrum as a unique resource which can be overtaxed is considered, and it is pointed out that the <span class="hlt">global</span> economy of the next century will be based on this resource. Assumptions regarding this prediction are related to the acceleration of the demand of developing nations as a consequence of technical growth, the necessity for a continuation of the economic growth as a means for providing food and employment for the increasing <span class="hlt">global</span> population, and the premise that economic growth will be based on information. There are factors which make predictions regarding future communication demands difficult. An example for unexpected developments is related to the personal computer. In connection with an evaluation of future communications-related demands, four major trends are examined, giving attention to the rapid development of computer and communications hardware, the shift from an industrial to an information society, lifestyle adaptations to an information society, and corporate adaptations to an information society.</p> <div class="credits"> <p class="dwt_author">Armes, G. L.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">408</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3022073"> <span id="translatedtitle"><span class="hlt">Carbon</span> monoxide stimulates <span class="hlt">global</span> protein methylation via its inhibitory action on cystathionine ?-synthase</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Although <span class="hlt">carbon</span> monoxide derived from heme oxygenase has been reported to exert diverse biological actions in mammals, macromolecules responsible for its direct reception and functional outcomes of the gas binding remain largely unknown. Based on our previous results in vivo suggesting <span class="hlt">carbon</span> monoxide serves as an inhibitor of cystathionine ?-synthase that rate-limits transsulfuration pathway for generation of hydrogen sulfide, we have herein hypothesized that the gas might serve as a regulator of protein methylation through accelerating turnover of remethylation cycle residing at the upstream of the enzyme. Metabolomic analysis in human monoblastic leukemia U937 cells in culture revealed that application of <span class="hlt">carbon</span> monoxide-releasing molecules caused increases in methionine and S-adenosylmethionine and a decrease in cystathionine in the cells, suggesting the cystathionine ?-synthase inhibition by <span class="hlt">carbon</span> monoxide. Under these circumstances, the cells exhibited <span class="hlt">global</span> protein arginine methylation: this event was also reproduced by the cell treatment with hemin, a heme oxygenase-1 inducer. The protein arginine methylation elicited by <span class="hlt">carbon</span> monoxide was attenuated by knocking down cystathionine ?-synthase with its small interfering RNA or by blocking S-adenosylhomocysteine hydrolase with adenosine dialdehyde, suggesting remethylation cycling is necessary to trigger the methylation processing. Furthermore, proteins undergoing the <span class="hlt">carbon</span> monoxide-induced arginine methylation involved histone H3 proteins, suggesting chromatin modification by the gas. Collectively with our studies in vivo showing its inhibitory action on endogenous hydrogen sulfide production, the current results suggest that not only inhibition of transsulfuration pathway for H2S generation but also activation of protein methylation accounts for notable biological actions of <span class="hlt">carbon</span> monoxide via the cystathionine ?-synthase inhibition.</p> <div class="credits"> <p class="dwt_author">Yamamoto, Takehiro; Takano, Naoharu; Ishiwata, Kyoko; Suematsu, Makoto</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">409</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21297920"> <span id="translatedtitle"><span class="hlt">Carbon</span> monoxide stimulates <span class="hlt">global</span> protein methylation via its inhibitory action on cystathionine ?-synthase.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Although <span class="hlt">carbon</span> monoxide derived from heme oxygenase has been reported to exert diverse biological actions in mammals, macromolecules responsible for its direct reception and functional outcomes of the gas binding remain largely unknown. Based on our previous results in vivo suggesting <span class="hlt">carbon</span> monoxide serves as an inhibitor of cystathionine ?-synthase that rate-limits transsulfuration pathway for generation of hydrogen sulfide, we have herein hypothesized that the gas might serve as a regulator of protein methylation through accelerating turnover of remethylation cycle residing at the upstream of the enzyme. Metabolomic analysis in human monoblastic leukemia U937 cells in culture revealed that application of <span class="hlt">carbon</span> monoxide-releasing molecules caused increases in methionine and S-adenosylmethionine and a decrease in cystathionine in the cells, suggesting the cystathionine ?-synthase inhibition by <span class="hlt">carbon</span> monoxide. Under these circumstances, the cells exhibited <span class="hlt">global</span> protein arginine methylation: this event was also reproduced by the cell treatment with hemin, a heme oxygenase-1 inducer. The protein arginine methylation elicited by <span class="hlt">carbon</span> monoxide was attenuated by knocking down cystathionine ?-synthase with its small interfering RNA or by blocking S-adenosylhomocysteine hydrolase with adenosine dialdehyde, suggesting remethylation cycling is necessary to trigger the methylation processing. Furthermore, proteins undergoing the <span class="hlt">carbon</span> monoxide-induced arginine methylation involved histone H3 proteins, suggesting chromatin modification by the gas. Collectively with our studies in vivo showing its inhibitory action on endogenous hydrogen sulfide production, the current results suggest that not only inhibition of transsulfuration pathway for H(2)S generation but also activation of protein methylation accounts for notable biological actions of <span class="hlt">carbon</span> monoxide via the cystathionine ?-synthase inhibition. PMID:21297920</p> <div class="credits"> <p class="dwt_author">Yamamoto, Takehiro; Takano, Naoharu; Ishiwata, Kyoko; Suematsu, Makoto</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-28</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">410</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AGUFMOS32A..03B"> <span id="translatedtitle">A <span class="hlt">Global</span> Radiocarbon Mixing Line For Marine Dissolved Organic <span class="hlt">Carbon</span> (DOC)</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The published body of bulk radiocarbon (?14C) values has been critical to understanding marine dissolved organic <span class="hlt">carbon</span> (DOC) biogeochemistry, yet it contains relatively few measurements because of methodological difficulties associated with low DOC concentrations, an overwhelming proportion of salts, high blanks, and low throughput. Therefore, the <span class="hlt">global</span> dataset of DOC ?14C observations is significantly limited in spatiotemporal range and resolution. However, a reanalysis of concurrent depth profiles of DOC and dissolved inorganic <span class="hlt">carbon</span> (DIC) concentrations and ?14C values from the Atlantic, Pacific, and Southern Oceans revealed a single, <span class="hlt">globally</span> consistent mixing line throughout mesopelagic and bathypelagic waters. The pattern did not persist into epipelagic waters. This result suggest that (1) the dominant controls on DOC redistribution differ sharply between these depth horizons, and (2) deep DOC ?14C values may be predicted <span class="hlt">globally</span> using higher throughput measurements of DIC concentrations, DIC ?14C values, and DOC concentrations. Additional bulk DOC ?14C observations are needed to validate the mixing line’s spatiotemporal applicability.</p> <div class="credits"> <p class="dwt_author">Beaupre, S. R.; Druffel, E. R.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">411</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/11539811"> <span id="translatedtitle">The mid-Cretaceous super plume, <span class="hlt">carbon</span> dioxide, and <span class="hlt">global</span> warming.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary"><span class="hlt">Carbon</span>-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous <span class="hlt">global</span> warming. We developed a <span class="hlt">carbonate</span>-silicate cycle model to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. We find that CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern pre-industrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a <span class="hlt">global</span> warming of from 2.8 to 7.7 degrees C over today's <span class="hlt">global</span> mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 degrees C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 degrees C, within the 6 to 14 degrees C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20% of the mid-Cretaceous increase in atmospheric CO2. PMID:11539811</p> <div class="credits"> <p class="dwt_author">Caldeira, K; Rampino, M R</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">412</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntut.edu.tw/%7Ewwwoaa/download/phd/std/30/paper_01.pdf"> <span id="translatedtitle">Corporate risk <span class="hlt">management</span> strategies under threats of <span class="hlt">global</span> warming-Taiwan's experience</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Global</span> warming has being become a highly concerned issue, because the increasing of <span class="hlt">carbon</span> dioxide (CO2) will not only result in the future catastrophe of the environment, but also brings risks to the enterprises. As major contributors of CO2 in the atmosphere, enterprises also play significant roles for reducing greenhouse gas emissions. Based on an extensive literature review on finding</p> <div class="credits"> <p class="dwt_author">Yu-Ling Chen; Allen H. Hu; Chao-Heng Tseng</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">413</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48923929"> <span id="translatedtitle">Sensitivity of <span class="hlt">global</span>-scale climate change attribution results to inclusion of fossil fuel black <span class="hlt">carbon</span> aerosol</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It is likely that greenhouse gas emissions caused most of the <span class="hlt">global</span> mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black <span class="hlt">carbon</span>, could be underestimated. Here we include fossil fuel black <span class="hlt">carbon</span> aerosol</p> <div class="credits"> <p class="dwt_author">Gareth S. Jones; Andy Jones; David L. Roberts; Peter A. Stott; Keith D. Williams</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">414</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54593757"> <span id="translatedtitle">The Importance of Vertical Heterogeneity in Soil Organic Matter for Determining Soil Respiration and <span class="hlt">Carbon</span> Sequestration With <span class="hlt">Global</span> Ecosystem Models</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A major shortcoming of many current <span class="hlt">global</span> models simulating soil <span class="hlt">carbon</span> processes is the lack of consideration for the non-uniform vertical distribution of soil organic matter (SOM). By treating the soil as a homogeneous ´bucket´ of <span class="hlt">carbon</span>, with constant properties and dynamics in time and depth, a number of processes and interactions are ignored which can strongly affect biochemical cycles</p> <div class="credits"> <p class="dwt_author">M. C. Braakhekke; M. Reichstein; B. Kruijt; C. Beer; P. Kabat</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">415</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39161510"> <span id="translatedtitle">Microbiotic crusts on soil, rock and plants: neglected major players in the <span class="hlt">global</span> cycles of <span class="hlt">carbon</span> and nitrogen?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Microbiotic crusts consisting of bacteria, fungi, algae, lichens, and bryophytes colonize most terrestrial surfaces, and they are able to fix <span class="hlt">carbon</span> and nitrogen from the atmosphere. Here we show that microbiotic crusts are likely to play major roles in the <span class="hlt">global</span> biogeochemical cycles of <span class="hlt">carbon</span> and nitrogen, and we suggest that they should be further characterized and taken into account</p> <div class="credits"> <p class="dwt_author">W. Elbert; B. Weber; B. Büdel; M. O. Andreae; U. Pöschl</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">416</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://oaspub.epa.gov/eims/eimsapi.dispdetail?deid=49695"> <span id="translatedtitle">FOREST <span class="hlt">MANAGEMENT</span> AND AGROFORESTRY TO SEQUESTER AND CONSERVE ATMOSPHERIC <span class="hlt">CARBON</span> DIOXIDE</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p class="result-summary">Overall, the biological opportunity to conserve and sequester <span class="hlt">carbon</span> in the terrestrial biosphere, especially in forest systems, appears significant. ith careful planning and implementation, <span class="hlt">management</span> practices useful for this <span class="hlt">carbon</span> benefit would appear to have potential to pro...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">417</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19068848"> <span id="translatedtitle">Examination of the fate of <span class="hlt">carbon</span> in waste <span class="hlt">management</span> systems through statistical entropy and life cycle analysis.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The statistical entropy (SE) function has been developed as a methodology to rapidly benchmark he effectiveness of different waste <span class="hlt">management</span> systems by determining the level to which specific substances are either concentrated or diluted. Past usage of SE has been confined to metals. In this paper, this method is extended to account for <span class="hlt">carbon</span>--a key substance of interest Accounting for <span class="hlt">carbon</span> is complicated by the fact that reactions involving this substance are complex and their products are numerous. Through experiments on <span class="hlt">carbon</span>-containing emissions from styrene-butadiene rubber (SBR), natural rubber (polyisoprene, IR), and waste tires we demonstrate that a knowledge of <span class="hlt">carbon</span>-containing species accounting for 90% (by mass) of gaseous emissions is sufficient. Next, we develop an extended SE calculation methodology and apply it to compare <span class="hlt">carbon</span> flows through two different systems for municipal solid waste (MSW) <span class="hlt">management</span> (landfills) and waste-to-energy (WTE) facilities. Our results indicate that while landfills perform better on a cursory analysis, they are roughly equal to WTE when <span class="hlt">carbon</span> flows related to energy generation are accounted for, and underperform by a factor of 3 when considering <span class="hlt">global</span> warming potential. PMID:19068848</p> <div class="credits"> <p class="dwt_author">Kaufman, Scott; Krishnan, Nikhil; Kwon, Eilhann; Castaldi, Marco; Themelis, Nickolas; Rechberger, Helmut</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-11-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">418</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/63811"> <span id="translatedtitle"><span class="hlt">Carbon</span> sequestration and forest <span class="hlt">management</span> at DOD installations: An exploratory study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The report explores the influence of <span class="hlt">management</span> practices such as tree harvesting, deforestation, and reforestation on <span class="hlt">carbon</span> sequestration potential by DOD forests by performing a detailed analysis of a specific installation, Camp Shelby, Mississippi. Specific research goals (1) quantify forest <span class="hlt">carbon</span> pools and flux at Camp Shelby from 1990 through 2040, (2) evaluate <span class="hlt">carbon</span> sequestration as influenced by hypothetical <span class="hlt">management</span> scenarios, and (3) account for on-site and off-site <span class="hlt">carbon</span> benefits.</p> <div class="credits"> <p class="dwt_author">Barker, J.R.; Baumgardner, G.A.; Lee, J.J.; McFarlane, J.C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">419</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/1001496"> <span id="translatedtitle">Molecular investigations into a <span class="hlt">globally</span> important <span class="hlt">carbon</span> pool: permafrost-protected <span class="hlt">carbon</span> in Alaskan soils</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The fate of <span class="hlt">carbon</span> (C) contained within permafrost in boreal forest environments is an important consideration for the current and future <span class="hlt">carbon</span> cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5ºC were measured to calculate temperature response quotients (Q??). The Q?? was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q?? values. CH? fluxes were correlated with methanogen abundance and the highest CH? production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region.</p> <div class="credits"> <p class="dwt_author">Waldrop, Mark P.; Wickland, Kimberly P.; White III, R.; Berhe, Asmeret A.; Harden, Jennifer W.; Romanovsky, Vladimir E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">420</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/877389"> <span id="translatedtitle">Pasture <span class="hlt">Management</span> Strategies for Sequestering Soil <span class="hlt">Carbon</span> - Final Report</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Pasturelands account for 51 of the 212 Mha of privately held grazing land in the USA. Tall fescue is the most important cool-season perennial forage for many beef cattle producers in the humid region of the USA. A fungal endophyte, Neotyphodium coenophialum, infects the majority of tall fescue stands with a mutualistic association. Ergot alkaloids produced by the endophyte have negative impacts on cattle performance. However, there are indications that endophyte infection of tall fescue is a necessary component of productive and persistent pasture ecology. The objectives of this research were to characterize and quantify changes in soil organic <span class="hlt">carbon</span> and associated soil properties under tall fescue pastures with and without endophyte infection of grass. Pastures with high endophyte infection had greater concentration of soil organic <span class="hlt">carbon</span>, but lower concentration of biologically active soil <span class="hlt">carbon</span> than pastures with low endophyte infection. A controlled experiment suggested that endophyte-infected leaf tissue may directly inhibit the activity of soil microorganisms. <span class="hlt">Carbon</span> forms of soil organic matter were negatively affected and nitrogen forms were positively affected by endophyte addition to soil. The chemical compounds in endophyte-infected tall fescue (ergot alkaloids) that are responsible for animal health disorders were found in soil, suggesting that these chemicals might be persistent in the environment. Future research is needed to determine whether ergot alkaloids or some other chemicals are responsible for increases in soil organic matter. Scientists will be able to use this information to better understand the ecological impacts of animals grazing tall fescue, and possibly to identify and cultivate other similar associations for improving soil organic matter storage. Another experiment suggested that both dry matter production and soil microbial activity could be affected by the endophyte. Sampling of the cumulative effects of 20 years of tall fescue <span class="hlt">management</span> indicated that soil organic <span class="hlt">carbon</span> and nitrogen storage were greater with than without endophyte only under high soil fertility. This extra <span class="hlt">carbon</span> and nitrogen in soil due to the presence of the endophyte was further found to be located in intermediately sized soil aggregates, which are important for reducing water runoff and improving water quality. These results suggest that well-fertilized tall fescue pastures with a high percentage of plants infected with the endophyte have the potential to help offset the rising <span class="hlt">carbon</span> dioxide in the atmosphere. This research has also shown positive ecological implications of tall fescue-endophyte association.</p> <div class="credits"> <p class="dwt_author">Franzluebbers, Alan J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-03-15</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_21 div --> <div id="page_22" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">421</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/066120n103784143.pdf"> <span id="translatedtitle">Impact of site <span class="hlt">management</span> on changes in soil <span class="hlt">carbon</span> after afforestation: A review</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Afforestation and forest <span class="hlt">management</span> can increase <span class="hlt">carbon</span> stocks and account for emission reduction according to the Kyoto Protocol.\\u000a Site <span class="hlt">management</span> has important effects on the accumulation of soil <span class="hlt">carbon</span> after afforestation. This review examines the effects\\u000a of site <span class="hlt">management</span>, including soil disturbance, fertilization, thinning, weed control, harvesting and controlled burning,\\u000a on soil <span class="hlt">carbon</span> dynamics in plantations, based on recent published</p> <div class="credits"> <p class="dwt_author">Jun Shi; Lin-li Cui; Zhan Tian</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">422</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009BGD.....6.6983E"> <span id="translatedtitle">Microbiotic crusts on soil, rock and plants: neglected major players in the <span class="hlt">global</span> cycles of <span class="hlt">carbon</span> and nitrogen?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Microbiotic crusts consisting of bacteria, fungi, algae, lichens, and bryophytes colonize most terrestrial surfaces, and they are able to fix <span class="hlt">carbon</span> and nitrogen from the atmosphere. Here we show that microbiotic crusts are likely to play major roles in the <span class="hlt">global</span> biogeochemical cycles of <span class="hlt">carbon</span> and nitrogen, and we suggest that they should be further characterized and taken into account in studies and models of the Earth system and climate. For the <span class="hlt">global</span> annual net uptake of <span class="hlt">carbon</span> by microbiotic crusts we present a first estimate of ~3.6 Pg a-1. This uptake corresponds to ~6% of the estimated <span class="hlt">global</span> net <span class="hlt">carbon</span> uptake by terrestrial vegetation (net primary production, NPP: ~60 Pg a-1), and it is of the same magnitude as the <span class="hlt">global</span> annual <span class="hlt">carbon</span> turnover due to biomass burning. The estimated rate of nitrogen fixation by microbiotic crusts (~45 Tg a-1) amounts to ~40% of the <span class="hlt">global</span> estimate of biological nitrogen fixation (107 Tg a-1). With regard to Earth system dynamics and <span class="hlt">global</span> change, the large contribution of microbiotic crusts to nitrogen fixation is likely to be important also for the sequestration of CO2 by terrestrial plants (CO2 fertilization), because the latter is constrained by the availability of fixed nitrogen.</p> <div class="credits"> <p class="dwt_author">Elbert, W.; Weber, B.; Büdel, B.; Andreae, M. O.; Pöschl, U.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">423</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/665016"> <span id="translatedtitle">Technologies for water resources <span class="hlt">management</span>: an integrated approach to <span class="hlt">manage</span> <span class="hlt">global</span> and regional water resources</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively <span class="hlt">managed</span> and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to <span class="hlt">manage</span> their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for <span class="hlt">managing</span> regional water resources; As an evaluation tool for selecting appropriate remediation technologies for reclaiming water; and As an assessment tool for determining the effectiveness of implementing the remediation technologies. We have included a discussion on the appropriate strategy for LLNL to integrate its technical tools into the <span class="hlt">global</span> business, geopolitical, and academic communities, whereby LLNL can form partnerships with technology proponents in the commercial, industrial, and public sectors.</p> <div class="credits"> <p class="dwt_author">Tao, W. C., LLNL</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-03-23</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">424</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22481357"> <span id="translatedtitle"><span class="hlt">Global</span> warming preceded by increasing <span class="hlt">carbon</span> dioxide concentrations during the last deglaciation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The covariation of <span class="hlt">carbon</span> dioxide (CO(2)) concentration and temperature in Antarctic ice-core records suggests a close link between CO(2) and climate during the Pleistocene ice ages. The role and relative importance of CO(2) in producing these climate changes remains unclear, however, in part because the ice-core deuterium record reflects local rather than <span class="hlt">global</span> temperature. Here we construct a record of <span class="hlt">global</span> surface temperature from 80 proxy records and show that temperature is correlated with and generally lags CO(2) during the last (that is, the most recent) deglaciation. Differences between the respective temperature changes of the Northern Hemisphere and Southern Hemisphere parallel variations in the strength of the Atlantic meridional overturning circulation recorded in marine sediments. These observations, together with transient <span class="hlt">global</span> climate model simulations, support the conclusion that an antiphased hemispheric temperature response to ocean circulation changes superimposed on <span class="hlt">globally</span> in-phase warming driven by increasing CO(2) concentrations is an explanation for much of the temperature change at the end of the most recent ice age. PMID:22481357</p> <div class="credits"> <p class="dwt_author">Shakun, Jeremy D; Clark, Peter U; He, Feng; Marcott, Shaun A; Mix, Alan C; Liu, Zhengyu; Otto-Bliesner, Bette; Schmittner, Andreas; Bard, Edouard</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-04</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">425</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39495627"> <span id="translatedtitle">Policy planning for air quality <span class="hlt">management</span>: <span class="hlt">global</span> and local perspectives</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An increasing number of environmental regulators in developed and developing countries have embarked on programmes for the promotion of environmentally sound and sustainable development strategies. Air pollution is among the most important environmental issues that need to be <span class="hlt">managed</span> since it reflects directly and indirectly on the different aspects of human life. This paper presents an assessment of the evolution</p> <div class="credits"> <p class="dwt_author">M. El-Fadel; H. Kalinian; S. Salhab; D. Jamali</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">426</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/37836157"> <span id="translatedtitle"><span class="hlt">Global</span> brand market-entry strategy to <span class="hlt">manage</span> corporate reputation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Purpose – This paper aims to present a case for the practical <span class="hlt">management</span> of corporate reputation, in relation to two groups of concepts: communication, identity, and trust; and communication, identity, and image. Design\\/methodology\\/approach – A review of the current knowledge of corporate reputation, personality, identity, and image leads to development of a strategy framework to enhance\\/protect corporate reputation. A case</p> <div class="credits"> <p class="dwt_author">Maktoba Omar; Robert L. Williams Jr; David Lingelbach</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">427</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=%22glass+ceiling%22&pg=3&id=EJ649788"> <span id="translatedtitle"><span class="hlt">Globalization</span> and Women in Southeast Asian Higher Education <span class="hlt">Management</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|This case study of Southeast Asian women in higher education <span class="hlt">management</span> investigates culture-specific dimensions of "glass ceiling" impediments to career advancement in higher education. Respondents note that despite considerable training and expertise, Asian values and ideologies demand enactment of a construct of Asian femininity that militates…</p> <div class="credits"> <p class="dwt_author">Luke, Carmen</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">428</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39439082"> <span id="translatedtitle">The <span class="hlt">global</span> revolution in public <span class="hlt">management</span>: Driving themes, missing links</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Since the late 1970s, a truly remarkable revolution has swept public <span class="hlt">management</span> around the world. Understanding this revolution means sorting through three issues: the basic ideas of reform; the connections between the reforms and governmental processes, like budgeting and personnel; and the links between these processes and governance. These reforms have proven surprisingly productive but, in the process, they have</p> <div class="credits"> <p class="dwt_author">Donald F. Kettl</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">429</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/592254"> <span id="translatedtitle">CooMan - a <span class="hlt">Global</span> Collaborative Project <span class="hlt">Management</span> System</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Project Coordination and <span class="hlt">Management</span> have long been recognized as an area with growing problems and unsatisfactory solutions. Conciliating flexibility with target achievements is historically the main problem to face. The difficulties have been growing at more than linear ratio with the size and complexity of the Projects being developed in the present days. The HEP (High Energy Phisics) communities suffer,</p> <div class="credits"> <p class="dwt_author">Jano Moreira De Souza; Sergio P. J. Medeiros</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">430</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/504609"> <span id="translatedtitle">Distributed <span class="hlt">Global</span> Transaction Support for Workflow <span class="hlt">Management</span> Applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Workflow <span class="hlt">management</span> systems require advanced transaction support to cope with their inherently long-running processes. The recent trend to distribute workflow executions requires an even more advanced transaction support system that is able to handle distribution. This report presents a model as well as an architecture to provide distributed advanced transaction support. Characteristic of the transaction support system is the ability</p> <div class="credits"> <p class="dwt_author">Jochem Vonk; Paul W. P. J. Grefen; Erik Boertjes; Peter M. G. Apers</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">431</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.zen13767.zen.co.uk/penintinv3.pdf"> <span id="translatedtitle">PENSION FUND <span class="hlt">MANAGEMENT</span> AND INTERNATIONAL INVESTMENT - A <span class="hlt">GLOBAL</span> PERSPECTIVE</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper examines the potential and actual role played by international investment in pension fund <span class="hlt">management</span>. The paper draws largely on experience of a range of OECD countries and selected emerging market economies with established funded pension systems, although we also provide estimates for Trinidad and Tobago, and for Jamaica. It is shown that international investment allows superior investment performance</p> <div class="credits"> <p class="dwt_author">E Philip Davis</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">432</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57908613"> <span id="translatedtitle">The Role of Export <span class="hlt">Management</span> Companies in <span class="hlt">Global</span> Marketing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The paper reports the results of a study of 110 Export <span class="hlt">Management</span> Companies (EMCs) located throughout the United States. These EMCs were surveyed to find out what international marketing tasks were most important for successful exporting and how difficult these tasks were to perform for their clients. This study also investigated the perceived importance to the ECMs' exporting success of</p> <div class="credits"> <p class="dwt_author">Donald G Howard</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">433</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57638529"> <span id="translatedtitle"><span class="hlt">Management</span> Versus Rights: Women's Migration and <span class="hlt">Global</span> Governance in Latin America and the Caribbean</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The <span class="hlt">global</span> governance of labor migration reflects two major trends: one supports neoliberal migration <span class="hlt">management</span> priorities and another addresses human rights, with the latter subordinated to the former. This subordination of human rights to other, market-related, priorities parallels <span class="hlt">global</span> governance priorities in general. While some international organizations address the need for protection of migrant rights, their specific on-the-ground programs do</p> <div class="credits"> <p class="dwt_author">Tanya Basok; Nicola Piper</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">434</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011GeoRL..3817706F"> <span id="translatedtitle">New <span class="hlt">global</span> observations of the terrestrial <span class="hlt">carbon</span> cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Our ability to close the Earth's <span class="hlt">carbon</span> budget and predict feedbacks in a warming climate depends critically on knowing where, when and how <span class="hlt">carbon</span> dioxide is exchanged between the land and atmosphere. Terrestrial gross primary production (GPP) constitutes the largest flux component in the <span class="hlt">global</span> <span class="hlt">carbon</span> budget, however significant uncertainties remain in GPP estimates and its seasonality. Empirically, we show that <span class="hlt">global</span> spaceborne observations of solar induced chlorophyll fluorescence - occurring during photosynthesis - exhibit a strong linear correlation with GPP. We found that the fluorescence emission even without any additional climatic or model information has the same or better predictive skill in estimating GPP as those derived from traditional remotely-sensed vegetation indices using ancillary data and model assumptions. In boreal summer the generally strong linear correlation between fluorescence and GPP models weakens, attributable to discrepancies in savannas/croplands (18-48% higher fluorescence-based GPP derived by simple linear scaling), and high-latitude needleleaf forests (28-32% lower fluorescence). Our results demonstrate that retrievals of chlorophyll fluorescence provide direct <span class="hlt">global</span> observational constraints for GPP and open an entirely new viewpoint on the <span class="hlt">global</span> <span class="hlt">carbon</span> cycle. We anticipate that <span class="hlt">global</span> fluorescence data in combination with consolidated plant physiological fluorescence models will be a step-change in <span class="hlt">carbon</span> cycle research and enable an unprecedented robustness in the understanding of the current and future <span class="hlt">carbon</span> cycle.</p> <div class="credits"> <p class="dwt_author">Frankenberg, Christian; Fisher, Joshua B.; Worden, John; Badgley, Grayson; Saatchi, Sassan S.; Lee, Jung-Eun; Toon, Geoffrey C.; Butz, André; Jung, Martin; Kuze, Akihiko; Yokota, Tatsuya</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">435</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/790137"> <span id="translatedtitle">STRATEGIES AND TECHNOLOGY FOR <span class="hlt">MANAGING</span> HIGH-<span class="hlt">CARBON</span> ASH</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The overall objective of the present project is to identify and assess strategies and solutions for the <span class="hlt">management</span> of industry problems related to <span class="hlt">carbon</span> in ash. Specific research issues to be addressed include: the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; the effect of various low-NOx firing modes on ash properties and adsorptivity; and the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. This first project period, experiments were carried out to better understand the fundamental nature of the ozonation effect on ash. <span class="hlt">Carbon</span> surfaces were characterized by surfactant adsorption, and by X-ray Photoelectron Spectroscopy before and after oxidation, both by air at 440 C and by ozone at room temperature. The results strongly suggest that the beneficial effect of ozonation is in large part due to chemical modification of the <span class="hlt">carbon</span> surfaces.</p> <div class="credits"> <p class="dwt_author">Robert Hurt; Eric Suuberg; John Veranth</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-12-26</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">436</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/458873"> <span id="translatedtitle">Oceanic <span class="hlt">carbon</span> dioxide uptake in a model of century-scale <span class="hlt">global</span> warming</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In a model of ocean-atmosphere interaction that excluded biological processes, the oceanic uptake of atmospheric <span class="hlt">carbon</span> dioxide (CO{sub 2}) was substantially reduced in scenarios involving <span class="hlt">global</span> warming relative to control scenarios. The primary reason for the reduced uptake was the weakening or collapse of the ocean thermohaline circulation. Such a large reduction in this ocean uptake would have a major impact o the future growth rate of atmospheric CO{sub 2}. Model simulations that include a simple representation of biological processes show a potentially large offsetting effect resulting from the downward flux of biogenic <span class="hlt">carbon</span>. However, the magnitude of the offset is difficult to quantify with present knowledge. 19 refs., 3 figs., 2 tabs.</p> <div class="credits"> <p class="dwt_author">Sarmiento, J.L.; Le Quere, C. [Princeton Univ., NJ (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-11-22</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">437</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008AGUFM.B43D0458S"> <span id="translatedtitle"><span class="hlt">Carbon</span> and Nitrogen Cycling in Urban Landscapes: <span class="hlt">Global</span>, Regional Dynamics and Case Studies.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The urban population has been growing rapidly in the last decades and is predicted to continue its exponential trend, especially in the developing countries, which would create additional pressure on the environment by overpopulated unsustainable cities and will continue to substantially change the main Biogeochemical cycles. Such disturbances in the main driving cycle of the Biosphere (<span class="hlt">global</span> <span class="hlt">carbon</span> cycle) and the nitrogen cycle, induced by sprawling urban human activities, lead to <span class="hlt">global</span>, regional and local environmental problems, i.e. <span class="hlt">global</span> warming, photochemical smog, stratospheric ozone depletion, soil acidification, nitrate pollution of surface and ground water, coastal ecosystem disturbances. Since urban areas are expected to continue their rapid expansion in the 21st century, accompanied by growing energy production, increased food demand, expanding transportation and industrialization it becomes more and more important to be able to describe and forecast the dynamics of biogeochemical functioning of these landscapes (which have altered characteristics compared to the natural ecosystems). Moreover, from the environmental policy perspective, a high density of people makes cities focal points of vulnerability to <span class="hlt">global</span> environmental change. The model based on the forecasting the dynamics of urban area growth, allows us to forecast the dynamics of <span class="hlt">Carbon</span> and Nitrogen on the urban territories at different scales. However, nitrogen cycle is very complex and is closely interlinked with the other major biogeochemical cycles, such as oxygen and water. The system of water supply and liquid waste carried by water out of the system 'city' is investigated. In order to better understand the mechanisms of cycling, we consider the case studies, when we investigated the detailed fluxes of <span class="hlt">Carbon</span> and Nitrogen in Sao Paolo (Brazil) and Paris (France). When we know the yearly amounts of <span class="hlt">carbon</span> and nitrogen, produced by a city, we should be capable of coming up with what could be the first step in building of a complex 'biogeochemical portrait' of urban territory and its functions; and based on the scenarios of population dynamics, regional specifics of development, would be able to forecast emissions of greenhouse gases and some types of air and water pollution.</p> <div class="credits"> <p class="dwt_author">Svirejeva-Hopkins, A.; Nardoto, G. B.; Schellnhuber, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">438</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009EGUGA..11.7615S"> <span id="translatedtitle">Effect of <span class="hlt">global</span> warming on vegetation dynamics and <span class="hlt">carbon</span> storage in peatlands</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The effects of <span class="hlt">global</span> warming on water table height and <span class="hlt">carbon</span> storage in boreal peatlands and the interaction with vegetation dynamics have been investigated using a numerical model. Two types of vegetation have been considered in the model: a so-called "hummock community" dominated by vascular plants and a "hollow community" dominated by Sphagnum mosses. The hummock community is adapted to dryer conditions, whereas the hollow community is better adapted to wetter conditions. We simulated the long-term <span class="hlt">carbon</span> balance for hummock and hollow communities for multiple temperature scenarios (0, +2, +4, +6 °C). We first analyzed a model in which the interaction with vegetation dynamics was absent. Subsequently, we included this to examine its effect on the model results. Results showed that in absence of vegetation dynamics, the effect of increased temperature on water table depth and <span class="hlt">carbon</span> storage was small. Inclusion vegetation dynamics, however, led to different results. In this case, increased temperature led to decreased biomass production, especially for vascular plants. Interestingly, the modeled response of the water table to increased temperature depended on the dominant vegetation type. In vascular plant-dominated areas, decreased biomass outweighed the effect of increased evapotranspiration, causing a rise of the water table. The opposite trend was observed for Sphagnum dominated area, causing a lowering of the water table. The net effect of the change in biomass and water table height was a lowering of the <span class="hlt">carbon</span> storage capacity. Although this was the case for both vegetation types, the reduction was stronger for vascular plants. The magnitude of the change in <span class="hlt">carbon</span> fluxes, however, depends on the developmental stage of the peatland. More specifically, shallower (younger) peatlands generally hav