Science.gov

Sample records for global change adaptative

  1. Adaptation Strategies for Global Environmental Change

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Corell, R.

    2007-12-01

    The global environmental challenges society faces today are unheralded due to the pace at which human activities are affecting the earth system. The rates of energy consumption, nitrogen use and production, and water use increases each year leading to greater global environmental changes affecting warming of the earth system and loss of ecosystem services. The challenge we face today as a society is the manner and speed at which we can adapt to these changes affecting the ecosystem services we depend upon. Innovative strategies are needed to develop the adaptive management tools to integrate the sectors and science necessary to deal with the complexity of effects. Developing strategies to better guide decision making related to climate change trends into changing weather patterns at meaningful temporal and spatial scales are needed, observations and prognostic analyses of climate related triggers of threshold events in ecosystem dynamics, and transfer of knowledge between science, technology, and decision makers. These strategies need to better integrate science (physical, biological, and social knowledge), engineering, policy, and economics interests to create a framework to develop strategies for adaptation and mitigation to global change and to create bridges with institutions and organizations that deal with these issues as a governmental agency or private sector enterprise.

  2. Global Climate Change Adaptation Priorities for Biodiversity and Food Security

    PubMed Central

    Hannah, Lee; Ikegami, Makihiko; Hole, David G.; Seo, Changwan; Butchart, Stuart H. M.; Peterson, A. Townsend; Roehrdanz, Patrick R.

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services. PMID:23991125

  3. Evolutionary adaptation of marine zooplankton to global change.

    PubMed

    Dam, Hans G

    2013-01-01

    Predicting the response of the biota to global change remains a formidable endeavor. Zooplankton face challenges related to global warming, ocean acidification, the proliferation of toxic algal blooms, and increasing pollution, eutrophication, and hypoxia. They can respond to these changes by phenotypic plasticity or genetic adaptation. Using the concept of the evolution of reaction norms, I address how adaptive responses can be unequivocally discerned from phenotypic plasticity. To date, relatively few zooplankton studies have been designed for such a purpose. As case studies, I review the evidence for zooplankton adaptation to toxic algal blooms, hypoxia, and climate change. Predicting the response of zooplankton to global change requires new information to determine (a) the trade-offs and costs of adaptation, (b) the rates of evolution versus environmental change, (c) the consequences of adaptation to stochastic or cyclic (toxic algal blooms, coastal hypoxia) versus directional (temperature, acidification, open ocean hypoxia) environmental change, and (d) the interaction of selective pressures, and evolutionary and ecological processes, in promoting or hindering adaptation. PMID:22809192

  4. IMPACTS OF GLOBAL CLIMATE CHANGE ADAPTION ON SUSTAINABILITY

    EPA Science Inventory

    This presentation presents the potential impacts that global climate change may have on the quality and quantity of water available to drinking water and wastewater treatment systems and the adaptations these systems might have to employ in order to remain in regulatory complianc...

  5. U.S. Global Climate Change Impacts Report, Adaptation

    NASA Astrophysics Data System (ADS)

    Pulwarty, R.

    2009-12-01

    Adaptation measures improve our ability to cope with or avoid harmful climate impacts and take advantage of beneficial ones, now and as climate varies and changes. Adaptation and mitigation are necessary elements of an effective response to climate change. Adaptation options also have the potential to moderate harmful impacts of current and future climate variability and change. The Global Climate Change Impacts Report identifies examples of adaptation-related actions currently being pursued in various sectors and regions to address climate change, as well as other environmental problems that could be exacerbated by climate change such as urban air pollution and heat waves. Some adaptation options that are currently being pursued in various regions and sectors to deal with climate change and/or other environmental issues are identified in this report. A range of adaptation responses can be employed to reduce risks through redesign or relocation of infrastructure, sustainability of ecosystem services, increased redundancy of critical social services, and operational improvements. Adapting to climate change is an evolutionary process and requires both analytic and deliberative decision support. Many of the climate change impacts described in the report have economic consequences. A significant part of these consequences flow through public and private insurance markets, which essentially aggregate and distribute society's risk. However, in most cases, there is currently insufficient robust information to evaluate the practicality, efficiency, effectiveness, costs, or benefits of adaptation measures, highlighting a need for research. Adaptation planning efforts such as that being conducted in New York City and the Colorado River will be described. Climate will be continually changing, moving at a relatively rapid rate, outside the range to which society has adapted in the past. The precise amounts and timing of these changes will not be known with certainty. The disaster research and emergency management communities have shown over that early warnings of impending hazards need to be complemented by information on the risks actually posed by the hazards (including those resulting from low levels of preparedness), existing strategies on the ground, and likely pathways to mitigate the loss and damage in the particular context in which they arise. Effective adaptations require information for long-term infrastructural planning and as critically deliberative mechanisms to structure learning and redesign in the face of emergent problems. Adaptation tends to be reactive, unevenly distributed, and focused on coping rather than preventing problems. Reduction in vulnerability will require anticipatory deliberative processes focused on incorporating adaptation into long-term municipal and public service planning, including energy, water, and health services, in the face of changing climate-related risks combined with ongoing changes in population, land use and development patterns.

  6. Adaptable Information Models in the Global Change Information System

    NASA Astrophysics Data System (ADS)

    Duggan, B.; Buddenberg, A.; Aulenbach, S.; Wolfe, R.; Goldstein, J.

    2014-12-01

    The US Global Change Research Program has sponsored the creation of the Global Change Information System () to provide a web based source of accessible, usable, and timely information about climate and global change for use by scientists, decision makers, and the public. The GCIS played multiple roles during the assembly and release of the Third National Climate Assessment. It provided human and programmable interfaces, relational and semantic representations of information, and discrete identifiers for various types of resources, which could then be manipulated by a distributed team with a wide range of specialties. The GCIS also served as a scalable backend for the web based version of the report. In this talk, we discuss the infrastructure decisions made during the design and deployment of the GCIS, as well as ongoing work to adapt to new types of information. Both a constrained relational database and an open ended triple store are used to ensure data integrity while maintaining fluidity. Using natural primary keys allows identifiers to propagate through both models. Changing identifiers are accomodated through fine grained auditing and explicit mappings to external lexicons. A practical RESTful API is used whose endpoints are also URIs in an ontology. Both the relational schema and the ontology are maleable, and stability is ensured through test driven development and continuous integration testing using modern open source techniques. Content is also validated through continuous testing techniques. A high degres of scalability is achieved through caching.

  7. Integrated Decision Support for Global Environmental Change Adaptation

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Cantrell, S.; Higgins, G. J.; Marshall, J.; VanWijngaarden, F.

    2011-12-01

    Environmental changes are happening now that has caused concern in many parts of the world; particularly vulnerable are the countries and communities with limited resources and with natural environments that are more susceptible to climate change impacts. Global leaders are concerned about the observed phenomena and events such as Amazon deforestation, shifting monsoon patterns affecting agriculture in the mountain slopes of Peru, floods in Pakistan, water shortages in Middle East, droughts impacting water supplies and wildlife migration in Africa, and sea level rise impacts on low lying coastal communities in Bangladesh. These environmental changes are likely to get exacerbated as the temperatures rise, the weather and climate patterns change, and sea level rise continues. Large populations and billions of dollars of infrastructure could be affected. At Northrop Grumman, we have developed an integrated decision support framework for providing necessary information to stakeholders and planners to adapt to the impacts of climate variability and change at the regional and local levels. This integrated approach takes into account assimilation and exploitation of large and disparate weather and climate data sets, regional downscaling (dynamic and statistical), uncertainty quantification and reduction, and a synthesis of scientific data with demographic and economic data to generate actionable information for the stakeholders and decision makers. Utilizing a flexible service oriented architecture and state-of-the-art visualization techniques, this information can be delivered via tailored GIS portals to meet diverse set of user needs and expectations. This integrated approach can be applied to regional and local risk assessments, predictions and decadal projections, and proactive adaptation planning for vulnerable communities. In this paper we will describe this comprehensive decision support approach with selected applications and case studies to illustrate how this system of systems approach could help the local governments and concerned institutions worldwide to adapt to gradually changing environmental conditions as well as manage impacts of extreme events such as droughts, floods, heat waves, wildfires, hurricanes, and storm surges.

  8. Transitional states in marine fisheries: adapting to predicted global change.

    PubMed

    MacNeil, M Aaron; Graham, Nicholas A J; Cinner, Joshua E; Dulvy, Nicholas K; Loring, Philip A; Jennings, Simon; Polunin, Nicholas V C; Fisk, Aaron T; McClanahan, Tim R

    2010-11-27

    Global climate change has the potential to substantially alter the production and community structure of marine fisheries and modify the ongoing impacts of fishing. Fish community composition is already changing in some tropical, temperate and polar ecosystems, where local combinations of warming trends and higher environmental variation anticipate the changes likely to occur more widely over coming decades. Using case studies from the Western Indian Ocean, the North Sea and the Bering Sea, we contextualize the direct and indirect effects of climate change on production and biodiversity and, in turn, on the social and economic aspects of marine fisheries. Climate warming is expected to lead to (i) yield and species losses in tropical reef fisheries, driven primarily by habitat loss; (ii) community turnover in temperate fisheries, owing to the arrival and increasing dominance of warm-water species as well as the reduced dominance and departure of cold-water species; and (iii) increased diversity and yield in Arctic fisheries, arising from invasions of southern species and increased primary production resulting from ice-free summer conditions. How societies deal with such changes will depend largely on their capacity to adapt--to plan and implement effective responses to change--a process heavily influenced by social, economic, political and cultural conditions. PMID:20980322

  9. Global Change adaptation in water resources management: the Water Change project.

    PubMed

    Pouget, Laurent; Escaler, Isabel; Guiu, Roger; Mc Ennis, Suzy; Versini, Pierre-Antoine

    2012-12-01

    In recent years, water resources management has been facing new challenges due to increasing changes and their associated uncertainties, such as changes in climate, water demand or land use, which can be grouped under the term Global Change. The Water Change project (LIFE+ funding) developed a methodology and a tool to assess the Global Change impacts on water resources, thus helping river basin agencies and water companies in their long term planning and in the definition of adaptation measures. The main result of the project was the creation of a step by step methodology to assess Global Change impacts and define strategies of adaptation. This methodology was tested in the Llobregat river basin (Spain) with the objective of being applicable to any water system. It includes several steps such as setting-up the problem with a DPSIR framework, developing Global Change scenarios, running river basin models and performing a cost-benefit analysis to define optimal strategies of adaptation. This methodology was supported by the creation of a flexible modelling system, which can link a wide range of models, such as hydrological, water quality, and water management models. The tool allows users to integrate their own models to the system, which can then exchange information among them automatically. This enables to simulate the interactions among multiple components of the water cycle, and run quickly a large number of Global Change scenarios. The outcomes of this project make possible to define and test different sets of adaptation measures for the basin that can be further evaluated through cost-benefit analysis. The integration of the results contributes to an efficient decision-making on how to adapt to Global Change impacts. PMID:22883209

  10. Transitional states in marine fisheries: adapting to predicted global change

    PubMed Central

    MacNeil, M. Aaron; Graham, Nicholas A. J.; Cinner, Joshua E.; Dulvy, Nicholas K.; Loring, Philip A.; Jennings, Simon; Polunin, Nicholas V. C.; Fisk, Aaron T.; McClanahan, Tim R.

    2010-01-01

    Global climate change has the potential to substantially alter the production and community structure of marine fisheries and modify the ongoing impacts of fishing. Fish community composition is already changing in some tropical, temperate and polar ecosystems, where local combinations of warming trends and higher environmental variation anticipate the changes likely to occur more widely over coming decades. Using case studies from the Western Indian Ocean, the North Sea and the Bering Sea, we contextualize the direct and indirect effects of climate change on production and biodiversity and, in turn, on the social and economic aspects of marine fisheries. Climate warming is expected to lead to (i) yield and species losses in tropical reef fisheries, driven primarily by habitat loss; (ii) community turnover in temperate fisheries, owing to the arrival and increasing dominance of warm-water species as well as the reduced dominance and departure of cold-water species; and (iii) increased diversity and yield in Arctic fisheries, arising from invasions of southern species and increased primary production resulting from ice-free summer conditions. How societies deal with such changes will depend largely on their capacity to adapt—to plan and implement effective responses to change—a process heavily influenced by social, economic, political and cultural conditions. PMID:20980322

  11. Adaptation pathways of global wheat production: Importance of strategic adaptation to climate change

    NASA Astrophysics Data System (ADS)

    Tanaka, Akemi; Takahashi, Kiyoshi; Masutomi, Yuji; Hanasaki, Naota; Hijioka, Yasuaki; Shiogama, Hideo; Yamanaka, Yasuhiro

    2015-09-01

    Agricultural adaptation is necessary to reduce the negative impacts of climate change on crop yields and to maintain food production. However, few studies have assessed the course of adaptation along with the progress of climate change in each of the current major food producing countries. Adaptation pathways, which describe the temporal sequences of adaptations, are helpful for illustrating the timing and intensity of the adaptation required. Here we present adaptation pathways in the current major wheat-producing countries, based on sequential introduction of the minimum adaptation measures necessary to maintain current wheat yields through the 21st century. We considered two adaptation options: (i) expanding irrigation infrastructure; and (ii) switching crop varieties and developing new heat-tolerant varieties. We find that the adaptation pathways differ markedly among the countries. The adaptation pathways are sensitive to both the climate model uncertainty and natural variability of the climate system, and the degree of sensitivity differs among countries. Finally, the negative impacts of climate change could be moderated by implementing adaptations steadily according to forecasts of the necessary future adaptations, as compared to missing the appropriate timing to implement adaptations.

  12. Adaptation pathways of global wheat production: Importance of strategic adaptation to climate change.

    PubMed

    Tanaka, Akemi; Takahashi, Kiyoshi; Masutomi, Yuji; Hanasaki, Naota; Hijioka, Yasuaki; Shiogama, Hideo; Yamanaka, Yasuhiro

    2015-01-01

    Agricultural adaptation is necessary to reduce the negative impacts of climate change on crop yields and to maintain food production. However, few studies have assessed the course of adaptation along with the progress of climate change in each of the current major food producing countries. Adaptation pathways, which describe the temporal sequences of adaptations, are helpful for illustrating the timing and intensity of the adaptation required. Here we present adaptation pathways in the current major wheat-producing countries, based on sequential introduction of the minimum adaptation measures necessary to maintain current wheat yields through the 21st century. We considered two adaptation options: (i) expanding irrigation infrastructure; and (ii) switching crop varieties and developing new heat-tolerant varieties. We find that the adaptation pathways differ markedly among the countries. The adaptation pathways are sensitive to both the climate model uncertainty and natural variability of the climate system, and the degree of sensitivity differs among countries. Finally, the negative impacts of climate change could be moderated by implementing adaptations steadily according to forecasts of the necessary future adaptations, as compared to missing the appropriate timing to implement adaptations. PMID:26373877

  13. Adaptation pathways of global wheat production: Importance of strategic adaptation to climate change

    PubMed Central

    Tanaka, Akemi; Takahashi, Kiyoshi; Masutomi, Yuji; Hanasaki, Naota; Hijioka, Yasuaki; Shiogama, Hideo; Yamanaka, Yasuhiro

    2015-01-01

    Agricultural adaptation is necessary to reduce the negative impacts of climate change on crop yields and to maintain food production. However, few studies have assessed the course of adaptation along with the progress of climate change in each of the current major food producing countries. Adaptation pathways, which describe the temporal sequences of adaptations, are helpful for illustrating the timing and intensity of the adaptation required. Here we present adaptation pathways in the current major wheat-producing countries, based on sequential introduction of the minimum adaptation measures necessary to maintain current wheat yields through the 21st century. We considered two adaptation options: (i) expanding irrigation infrastructure; and (ii) switching crop varieties and developing new heat-tolerant varieties. We find that the adaptation pathways differ markedly among the countries. The adaptation pathways are sensitive to both the climate model uncertainty and natural variability of the climate system, and the degree of sensitivity differs among countries. Finally, the negative impacts of climate change could be moderated by implementing adaptations steadily according to forecasts of the necessary future adaptations, as compared to missing the appropriate timing to implement adaptations. PMID:26373877

  14. Public Health Adaptation to Climate Change in Large Cities: A Global Baseline.

    PubMed

    Araos, Malcolm; Austin, Stephanie E; Berrang-Ford, Lea; Ford, James D

    2016-01-01

    Climate change will have significant impacts on human health, and urban populations are expected to be highly sensitive. The health risks from climate change in cities are compounded by rapid urbanization, high population density, and climate-sensitive built environments. Local governments are positioned to protect populations from climate health risks, but it is unclear whether municipalities are producing climate-adaptive policies. In this article, we develop and apply systematic methods to assess the state of public health adaptation in 401 urban areas globally with more than 1 million people, creating the first global baseline for urban public health adaptation. We find that only 10% of the sampled urban areas report any public health adaptation initiatives. The initiatives identified most frequently address risks posed by extreme weather events and involve direct changes in management or behavior rather than capacity building, research, or long-term investments in infrastructure. Based on our characterization of the current urban health adaptation landscape, we identify several gaps: limited evidence of reporting of institutional adaptation at the municipal level in urban areas in the Global South; lack of information-based adaptation initiatives; limited focus on initiatives addressing infectious disease risks; and absence of monitoring, reporting, and evaluation. PMID:26705309

  15. Climate change adaptation: where does global health fit in the agenda?

    PubMed

    Bowen, Kathryn J; Friel, Sharon

    2012-01-01

    Human-induced climate change will affect the lives of most populations in the next decade and beyond. It will have greatest, and generally earliest, impact on the poorest and most disadvantaged populations on the planet. Changes in climatic conditions and increases in weather variability affect human wellbeing, safety, health and survival in many ways. Some impacts are direct-acting and immediate, such as impaired food yields and storm surges. Other health effects are less immediate and typically occur via more complex causal pathways that involve a range of underlying social conditions and sectors such as water and sanitation, agriculture and urban planning. Climate change adaptation is receiving much attention given the inevitability of climate change and its effects, particularly in developing contexts, where the effects of climate change will be experienced most strongly and the response mechanisms are weakest. Financial support towards adaptation activities from various actors including the World Bank, the European Union and the United Nations is increasing substantially. With this new global impetus and funding for adaptation action come challenges such as the importance of developing adaptation activities on a sound understanding of baseline community needs and vulnerabilities, and how these may alter with changes in climate. The global health community is paying heed to the strengthening focus on adaptation, albeit in a slow and unstructured manner. The aim of this paper is to provide an overview of adaptation and its relevance to global health, and highlight the opportunities to improve health and reduce health inequities via the new and additional funding that is available for climate change adaptation activities. PMID:22632569

  16. Climate change adaptation: Where does global health fit in the agenda?

    PubMed Central

    2012-01-01

    Human-induced climate change will affect the lives of most populations in the next decade and beyond. It will have greatest, and generally earliest, impact on the poorest and most disadvantaged populations on the planet. Changes in climatic conditions and increases in weather variability affect human wellbeing, safety, health and survival in many ways. Some impacts are direct-acting and immediate, such as impaired food yields and storm surges. Other health effects are less immediate and typically occur via more complex causal pathways that involve a range of underlying social conditions and sectors such as water and sanitation, agriculture and urban planning. Climate change adaptation is receiving much attention given the inevitability of climate change and its effects, particularly in developing contexts, where the effects of climate change will be experienced most strongly and the response mechanisms are weakest. Financial support towards adaptation activities from various actors including the World Bank, the European Union and the United Nations is increasing substantially. With this new global impetus and funding for adaptation action come challenges such as the importance of developing adaptation activities on a sound understanding of baseline community needs and vulnerabilities, and how these may alter with changes in climate. The global health community is paying heed to the strengthening focus on adaptation, albeit in a slow and unstructured manner. The aim of this paper is to provide an overview of adaptation and its relevance to global health, and highlight the opportunities to improve health and reduce health inequities via the new and additional funding that is available for climate change adaptation activities. PMID:22632569

  17. Global Climate Change Adaptation Costs in the Industrial and Municipal Water Supply Sector

    NASA Astrophysics Data System (ADS)

    Ward, P. J.; Strzepek, K. M.; Hughes, G. A.; Aerts, J. C.; Pauw, P.; Brander, L. M.

    2009-12-01

    The results of global modelling studies show that many of the negative impacts of 21st century climate change will be felt through changes in the hydrological cycle, such as increased frequencies of drought and flooding. Moreover, these impacts are expected to strengthen over the course of the 21st century, regardless of whether greenhouse gas emission mitigation takes place (due to committed climate change as a result of anthropogenic greenhouse gases already emitted to the atmosphere). Hence, in addition to mitigation, it is essential to develop adequate adaptation measures to moderate the impacts and realise the opportunities associated with climate change in the water sector. Nevertheless, to date there has been little research on the costs of adaptation to climate change in the water sector at the global scale; this hampers planning and negotiating the financial resource allocations necessary for effective adaptation. Hence, we carried out a global study to estimate the costs of climate change related adaptation in the water supply sector. In this study, the cost of adaptation is defined as the cost of providing enough raw water to meet future industrial and municipal water demand, based on country-level demand projections until 2050. Increased water demand between present and the future scenarios is assumed to be met through reservoir yield by increasing the capacity of surface reservoir storage, except for when: (a) increasing supply from reservoir yield would increase withdrawals above a given threshold of river runoff; and/or (b) the cost of supplying water from reservoir yield is in excess of a given threshold. In these cases, supply is assumed to be met through alternative measures at a cost of 0.30 per cubic meter. The additional reservoir storage capacity required to meet future water demand was calculated using storage-yield curves, which show the storage capacity needed to provide a firm yield and reliability of water supply over the course of a year. The storage-yield curves were developed using simulated time-series of monthly runoff from the rainfall-runoff model CLIRUN-II. The country simulations were aggregated to 6 World Bank regions plus all high income countries, and the annual costs of adaptation were estimated between the years 2010 and 2050, using the results of two General Circulation Models (GCMs) forced by SRES emission scenario A2. The cost estimates were based on empirical relationships between reservoir capacity, slope, and costs, and were verified against a large database of reservoir construction projects. The annual costs of climate change related adaptation were estimated in two ways: (a) net costs (includes the avoided costs, or benefits, due to climate change); and (b) gross costs (ignores the avoided costs, or benefits, due to climate change). For high-income countries (i.e. non-World Bank client countries), we estimate the net costs to be 1-2 billion p.a. (USD2005), and the gross costs to be ca $3-3.5 billion p.a. The costs for developing countries are higher, and the results will be released in October 2009.

  18. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Wilbanks, T. J.; Kirshen, P. H.; Romero-Lankao, P.; Rosenzweig, C. E.; Ruth, M.; Solecki, W.; Tarr, J. A.

    2007-05-01

    Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been enunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAP) reports to support informed discussion and decision making regarding climate change and variability by policy makers, resource managers, stakeholders, the media, and the general public. We are working on a chapter of SAP 4.6 ("Analysis of the Effects of Global Chance on Human Health and Welfare and Human Systems") wherein we wish to describe the effects of global climate change on human settlements. This paper will present the thoughts and ideas that are being formulated for our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We wish to present these ideas and concepts as a "work in progress" that are subject to several rounds of review, and we invite comments from listeners at this session on the rationale and veracity of our thoughts. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e.g. public health, urban planning for mitigation strategies) on how cities can cope and adapt to climate change and variability. This latter point parallels the concepts and ideas presented in the U.S. National Academy of Sciences, Decadal Survey report on "Earth Science Applications from Space: National Imperatives for the Next Decade and Beyond" wherein the analysis of the impacts of climate change and variability, human health, and land use change are listed as key areas for development of future Earth observing remote sensing systems.

  19. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lnkao, Patricia; Rosenzweig, Cynthia; Ruth, Matthias; Solecki, William; Tarr, Joel

    2007-01-01

    Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been annunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAPs) reports to support informed discussion and decision making regarding climate change and variability by policy matters, resource managers, stakeholders, the media, and the general public. We are authors on a SAP describing the effects of global climate change on human settlements. This paper will present the elements of our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e.g. public health, urban planning for mitigation strategies) on how cities can cope and adapt to climate change and variability. This latter point parallels the concepts and ideas presented in the U.S. National Academy of Sciences, Decadal Survey report on "Earth Science Applications from Space: National Imperatives for the Next Decade and Beyond" wherein the analysis of the impacts of climate change and variability, human health, and land use change are listed as key areas for development of future Earth observing remote sensing systems.

  20. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lankao, Patricia; Rosenzweig, Cynthia; Ruth, Mattias; Solecki, William; Tarr, Joel

    2008-01-01

    This slide presentation reviews some of the effects that global change has on urban areas in the United States and how the growth of urban areas will affect the environment. It presents the elements of our Synthesis and Assessment Report (SAP) report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e.g. public health, urban planning for mitigation strategies) on how cities can cope and adapt to climate change and variability. This latter point parallels the concepts and ideas presented in the U.S. National Academy of Sciences, Decadal Survey report on "Earth Science Applications from Space: National Imperatives for the Next Decade and Beyond" wherein the analysis of the impacts of climate change and variability, human health, and land use change are listed as key areas for development of future Earth observing remote sensing systems.

  1. Adapting water treatment design and operations to the impacts of global climate change

    NASA Astrophysics Data System (ADS)

    Clark, Robert M.; Li, Zhiwei; Buchberger, Steven G.

    2011-12-01

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and will therefore, potentially, impact the design and operation of current and future water treatment systems. The USEPA has initiated an effort called the Water Resources Adaptation Program (WRAP) which is intended to develop tools and techniques that can assess the impact of global climate change on urban drinking water and wastewater infrastructure. A three step approach for assessing climate change impacts on water treatment operation and design is being persude in this effort. The first step is the stochastic characterization of source water quality, the second step is the application of the USEPA Water Treatment Plant model and the third step is the application of cost algorithms to provide a metric that can be used to assess the coat impact of climate change. A model has been validated using data collected from Cincinnati's Richard Miller Water Treatment Plant for the USEPA Information Collection Rule (ICR) database. An analysis of the water treatment processes in response to assumed perturbations in raw water quality identified TOC, pH, and bromide as the three most important parameters affecting performance of the Miller WTP. The Miller Plant was simulated using the EPA WTP model to examine the impact of these parameters on selected regulated water quality parameters. Uncertainty in influent water quality was analyzed to estimate the risk of violating drinking water maximum contaminant levels (MCLs).Water quality changes in the Ohio River were projected for 2050 using Monte Carlo simulation and the WTP model was used to evaluate the effects of water quality changes on design and operation. Results indicate that the existing Miller WTP might not meet Safe Drinking Water Act MCL requirements for certain extreme future conditions. However, it was found that the risk of MCL violations under future conditions could be controlled by enhancing existing WTP design and operation or by process retrofitting and modification.

  2. ADApT: A rapid integrated assessment and decision support tool to respond to global change in coastal regions

    NASA Astrophysics Data System (ADS)

    Cooley, S.; Bundy, A.; Chuenpagdee, R.; Isaacs, M.; Badjeck, M.; Defeo, O.; Glaeser, B.; Guillotreau, P.; Makino, M.; Perry, R. I.

    2012-12-01

    Ecosystem change is happening at a rate faster than predicted, impacting the livelihoods of coastal peoples globally and precipitating the need for timely and effective response to global change. While knowledge about best practices in coping and adaptation are evolving, countries still struggle with ways to enhance coastal peoples' capacity to respond to change and reduce their vulnerability. The complexity of coastal marine ecosystems, and the multitude of challenges faced, make it difficult to know what natural and social attributes contribute to, or limit the success of adaptations to global change. We are developing a rapid integrated assessment decision support tool (ADApT: Assessment from Description, Appraisal, and Typology) based on a global database of coastal and marine case studies. The tool focuses on 1) description of the ecological and social impacts of ecosystem stresses, and responses to those stresses; 2) appraisal of how successful those responses are in mitigating impacts, as well as what risks and uncertainties are involved; and 3) development of a typology that will enable an efficient assessment of impacts and the appropriate response. ADApT will enable decision makers and local actors to triage and improve their responses to global change, to make decisions efficiently for transitions towards coastal sustainability, and to evaluate where to most effectively invest funds to reduce vulnerability and enhance resilience of coastal peoples to global change.

  3. Operationalizing resilience for adaptive coral reef management under global environmental change.

    PubMed

    Anthony, Kenneth R N; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas A J; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie

    2015-01-01

    Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services. PMID:25196132

  4. Operationalizing resilience for adaptive coral reef management under global environmental change

    PubMed Central

    Anthony, Kenneth RN; Marshall, Paul A; Abdulla, Ameer; Beeden, Roger; Bergh, Chris; Black, Ryan; Eakin, C Mark; Game, Edward T; Gooch, Margaret; Graham, Nicholas AJ; Green, Alison; Heron, Scott F; van Hooidonk, Ruben; Knowland, Cheryl; Mangubhai, Sangeeta; Marshall, Nadine; Maynard, Jeffrey A; McGinnity, Peter; McLeod, Elizabeth; Mumby, Peter J; Nyström, Magnus; Obura, David; Oliver, Jamie; Possingham, Hugh P; Pressey, Robert L; Rowlands, Gwilym P; Tamelander, Jerker; Wachenfeld, David; Wear, Stephanie

    2015-01-01

    Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services. PMID:25196132

  5. Global Change

    USGS Publications Warehouse

    U.S. Geological Survey

    1993-01-01

    Global change is a relatively new area of scientific study using research from many disciplines to determine how Earth systems change, and to assess the influence of human activity on these changes. This teaching packet consists of a poster and three activity sheets. In teaching these activities four themes are important: time, change, cycles, and Earth as home.

  6. Global and local concerns: what attitudes and beliefs motivate farmers to mitigate and adapt to climate change?

    PubMed

    Haden, Van R; Niles, Meredith T; Lubell, Mark; Perlman, Joshua; Jackson, Louise E

    2012-01-01

    In response to agriculture's vulnerability and contribution to climate change, many governments are developing initiatives that promote the adoption of mitigation and adaptation practices among farmers. Since most climate policies affecting agriculture rely on voluntary efforts by individual farmers, success requires a sound understanding of the factors that motivate farmers to change practices. Recent evidence suggests that past experience with the effects of climate change and the psychological distance associated with people's concern for global and local impacts can influence environmental behavior. Here we surveyed farmers in a representative rural county in California's Central Valley to examine how their intention to adopt mitigation and adaptation practices is influenced by previous climate experiences and their global and local concerns about climate change. Perceived changes in water availability had significant effects on farmers' intention to adopt mitigation and adaptation strategies, which were mediated through global and local concerns respectively. This suggests that mitigation is largely motivated by psychologically distant concerns and beliefs about climate change, while adaptation is driven by psychologically proximate concerns for local impacts. This match between attitudes and behaviors according to the psychological distance at which they are cognitively construed indicates that policy and outreach initiatives may benefit by framing climate impacts and behavioral goals concordantly; either in a global context for mitigation or a local context for adaptation. PMID:23300805

  7. Global and Local Concerns: What Attitudes and Beliefs Motivate Farmers to Mitigate and Adapt to Climate Change?

    PubMed Central

    Haden, Van R.; Niles, Meredith T.; Lubell, Mark; Perlman, Joshua; Jackson, Louise E.

    2012-01-01

    In response to agriculture's vulnerability and contribution to climate change, many governments are developing initiatives that promote the adoption of mitigation and adaptation practices among farmers. Since most climate policies affecting agriculture rely on voluntary efforts by individual farmers, success requires a sound understanding of the factors that motivate farmers to change practices. Recent evidence suggests that past experience with the effects of climate change and the psychological distance associated with people's concern for global and local impacts can influence environmental behavior. Here we surveyed farmers in a representative rural county in California's Central Valley to examine how their intention to adopt mitigation and adaptation practices is influenced by previous climate experiences and their global and local concerns about climate change. Perceived changes in water availability had significant effects on farmers' intention to adopt mitigation and adaptation strategies, which were mediated through global and local concerns respectively. This suggests that mitigation is largely motivated by psychologically distant concerns and beliefs about climate change, while adaptation is driven by psychologically proximate concerns for local impacts. This match between attitudes and behaviors according to the psychological distance at which they are cognitively construed indicates that policy and outreach initiatives may benefit by framing climate impacts and behavioral goals concordantly; either in a global context for mitigation or a local context for adaptation. PMID:23300805

  8. Water Resources Adaptation to Global Changes: Risk Management through Sustainable Infrastructure Planning and Management - Paper

    EPA Science Inventory

    Global changes due to cyclic and long-term climatic variations, demographic changes and economic development, have impacts on the quality and quantity of potable and irrigation source waters. Internal and external climatic forcings, for example, redistribute precipitation season...

  9. Water Resources Adaptation to Global Changes: Risk Management through Sustainable Infrastructure Planning and Managements

    EPA Science Inventory

    Global changes due to cyclic and long-term climatic variations, demographic changes and economic development, have impacts on the quality and quantity of potable and irrigation source waters. Internal and external climatic forcings, for example, redistribute precipitation season...

  10. SAMCO: Society Adaptation for coping with Mountain risks in a global change COntext

    NASA Astrophysics Data System (ADS)

    Grandjean, Gilles; Bernardie, Severine; Malet, Jean-Philippe; Puissant, Anne; Houet, Thomas; Berger, Frederic; Fort, Monique; Pierre, Daniel

    2013-04-01

    The SAMCO project aims to develop a proactive resilience framework enhancing the overall resilience of societies on the impacts of mountain risks. The project aims to elaborate methodological tools to characterize and measure ecosystem and societal resilience from an operative perspective on three mountain representative case studies. To achieve this objective, the methodology is split in several points with (1) the definition of the potential impacts of global environmental changes (climate system, ecosystem e.g. land use, socio-economic system) on landslide hazards, (2) the analysis of these consequences in terms of vulnerability (e.g. changes in the location and characteristics of the impacted areas and level of their perturbation) and (3) the implementation of a methodology for quantitatively investigating and mapping indicators of mountain slope vulnerability exposed to several hazard types, and the development of a GIS-based demonstration platform. The strength and originality of the SAMCO project will be to combine different techniques, methodologies and models (multi-hazard assessment, risk evolution in time, vulnerability functional analysis, and governance strategies) and to gather various interdisciplinary expertises in earth sciences, environmental sciences, and social sciences. The multidisciplinary background of the members could potentially lead to the development of new concepts and emerging strategies for mountain hazard/risk adaptation. Research areas, characterized by a variety of environmental, economical and social settings, are severely affected by landslides, and have experienced significant land use modifications (reforestation, abandonment of traditional agricultural practices) and human interferences (urban expansion, ski resorts construction) over the last century.

  11. Global warming in the palliative care research environment: adapting to change.

    PubMed

    Fainsinger, R L

    2008-06-01

    Advocates of palliative care research have often described the cold and difficult environment that has constrained the development of research internationally. The development of palliative care research has been slow over the last few decades and has met with resistance and sometimes hostility to the idea of conducting research in 'vulnerable populations'. The seeds of advocacy for research can be found in palliative care literature from the 1980s and early 1990s. Although we have much to do, we need to recognize that palliative care research development has come a long way. Of particular note is the development of well-funded collaboratives that now exist in Europe, Canada, Australia and the USA. The European Association for Palliative Care and the International Association for Hospice and Palliative Care has recognized the need to develop and promote global research initiatives, with a special focus on developing countries. Time is needed to develop good research evidence and in a more complex healthcare environment takes increasingly more resources to be productive. The increased support (global warming) evident in the increased funding opportunities available to palliative care researchers in a number of countries brings both benefits and challenges. There is evidence that the advocacy of individuals such as Kathleen Foley, Neil MacDonald, Balfour Mount, Vittorio Ventafridda, Robert Twycross and Geoff Hanks is now providing fertile ground and a much friendlier environment for a new generation of interdisciplinary palliative care research. We have achieved many of the goals necessary to avoid failure of the 'palliative care experiment', and need to accept the challenge of our present climate and adapt and take advantage of the change. PMID:18541636

  12. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    PubMed

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation. PMID:26306792

  13. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    NASA Astrophysics Data System (ADS)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  14. Global assessment of technological innovation for climate change adaptation and mitigation in developing world.

    PubMed

    Adenle, Ademola A; Azadi, Hossein; Arbiol, Joseph

    2015-09-15

    Concerns about mitigating and adapting to climate change resulted in renewing the incentive for agricultural research investments and developing further innovation priorities around the world particularly in developing countries. In the near future, development of new agricultural measures and proper diffusion of technologies will greatly influence the ability of farmers in adaptation and mitigation to climate change. Using bibliometric approaches through output of academic journal publications and patent-based data, we assess the impact of research and development (R&D) for new and existing technologies within the context of climate change mitigation and adaptation. We show that many developing countries invest limited resources for R&D in relevant technologies that have great potential for mitigation and adaption in agricultural production. We also discuss constraints including weak infrastructure, limited research capacity, lack of credit facilities and technology transfer that may hinder the application of innovation in tackling the challenges of climate change. A range of policy measures is also suggested to overcome identified constraints and to ensure that potentials of innovation for climate change mitigation and adaptation are realized. PMID:26189184

  15. Assessing the components of adaptive capacity to improve conservation and management efforts under global change

    USGS Publications Warehouse

    Nicotra, Adrienne; Beever, Erik; Robertson, Amanda; Hofmann, Gretchen; O’Leary, John

    2015-01-01

    Natural-resource managers and other conservation practitioners are under unprecedented pressure to categorize and quantify the vulnerability of natural systems based on assessment of the exposure, sensitivity, and adaptive capacity of species to climate change. Despite the urgent need for these assessments, neither the theoretical basis of adaptive capacity nor the practical issues underlying its quantification has been articulated in a manner that is directly applicable to natural-resource management. Both are critical for researchers, managers, and other conservation practitioners to develop reliable strategies for assessing adaptive capacity. Drawing from principles of classical and contemporary research and examples from terrestrial, marine, plant, and animal systems, we examined broadly the theory behind the concept of adaptive capacity. We then considered how interdisciplinary, trait- and triage-based approaches encompassing the oft-overlooked interactions among components of adaptive capacity can be used to identify species and populations likely to have higher (or lower) adaptive capacity. We identified the challenges and value of such endeavors and argue for a concerted interdisciplinary research approach that combines ecology, ecological genetics, and eco-physiology to reflect the interacting components of adaptive capacity. We aimed to provide a basis for constructive discussion between natural-resource managers and researchers, discussions urgently needed to identify research directions that will deliver answers to real-world questions facing resource managers, other conservation practitioners, and policy makers. Directing research to both seek general patterns and identify ways to facilitate adaptive capacity of key species and populations within species, will enable conservation ecologists and resource managers to maximize returns on research and management investment and arrive at novel and dynamic management and policy decisions.

  16. Assessing the components of adaptive capacity to improve conservation and management efforts under global change.

    PubMed

    Nicotra, Adrienne B; Beever, Erik A; Robertson, Amanda L; Hofmann, Gretchen E; O'Leary, John

    2015-10-01

    Natural-resource managers and other conservation practitioners are under unprecedented pressure to categorize and quantify the vulnerability of natural systems based on assessment of the exposure, sensitivity, and adaptive capacity of species to climate change. Despite the urgent need for these assessments, neither the theoretical basis of adaptive capacity nor the practical issues underlying its quantification has been articulated in a manner that is directly applicable to natural-resource management. Both are critical for researchers, managers, and other conservation practitioners to develop reliable strategies for assessing adaptive capacity. Drawing from principles of classical and contemporary research and examples from terrestrial, marine, plant, and animal systems, we examined broadly the theory behind the concept of adaptive capacity. We then considered how interdisciplinary, trait- and triage-based approaches encompassing the oft-overlooked interactions among components of adaptive capacity can be used to identify species and populations likely to have higher (or lower) adaptive capacity. We identified the challenges and value of such endeavors and argue for a concerted interdisciplinary research approach that combines ecology, ecological genetics, and eco-physiology to reflect the interacting components of adaptive capacity. We aimed to provide a basis for constructive discussion between natural-resource managers and researchers, discussions urgently needed to identify research directions that will deliver answers to real-world questions facing resource managers, other conservation practitioners, and policy makers. Directing research to both seek general patterns and identify ways to facilitate adaptive capacity of key species and populations within species, will enable conservation ecologists and resource managers to maximize returns on research and management investment and arrive at novel and dynamic management and policy decisions. PMID:25926277

  17. Land system architecture: Using land systems to adapt and mitigate global environmental change

    SciTech Connect

    Turner, B.L.; Janetos, Anthony C.; Verbug, Peter H.; Murray, Alan T.

    2013-04-01

    Land systems (mosaics of land use and cover) are human environment systems, the changes in which drive and respond to local to global environmental changes, climate to macro-economy (Foley et al., 2005). Changes in land systems have been the principal proximate cause in the loss of habitats and biota globally, long contributed to atmospheric greenhouse gases, and hypothesized to have triggered climate changes in the early Holocene (Ruddiman, 2003). Land use, foremost agriculture, is the largest source of biologically active nitrogen to the atmosphere, critical to sources and sinks of carbon, and a major component in the hydrologic cycle (e.g., Bouwman et al., 2011). Changes in land systems also affect regional climate (Feddema et al., 2005; Pielke, 2005), ecosystem functions, and the array of ecosystem services they provide. Land systems, therefore, are a central feature of how humankind manages its relationship with nature-intended or not, or whether this relationship proceeds sustainably or not.

  18. Food security and climate change: On the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production is under increasing pressure by global anthropogenic changes, including rising population, diversion of cereals to biofuels, increased protein demands, and climatic extremes. Because of the immediate and dynamic nature of these changes, adaptation measures are urgently need...

  19. Development of a natural practice to adapt conservation goals to global change.

    PubMed

    Heller, Nicole E; Hobbs, Richard J

    2014-06-01

    Conservation goals at the start of the 21st century reflect a combination of contrasting ideas. Ideal nature is something that is historically intact but also futuristically flexible. Ideal nature is independent from humans, but also, because of the pervasiveness of human impacts, only able to reach expression through human management. These tensions emerge in current management rationales because scientists and managers are struggling to accommodate old and new scientific and cultural thinking, while also maintaining legal mandates from the past and commitments to preservation of individual species in particular places under the stresses of global change. Common management goals (such as integrity, wilderness, resilience), whether they are forward looking and focused on sustainability and change, or backward looking and focused on the persistence and restoration of historic states, tend to create essentialisms about how ecosystems should be. These essentialisms limit the options of managers to accommodate the dynamic, and often novel, response of ecosystems to global change. Essentialisms emerge because there is a tight conceptual coupling of place and historical species composition as an indicator of naturalness (e.g., normal, healthy, independent from humans). Given that change is increasingly the norm and ecosystems evolve in response, the focus on idealized ecosystem states is increasingly unwise and unattainable. To provide more open-ended goals, we propose greater attention be paid to the characteristics of management intervention. We suggest that the way we interact with other species in management and the extent to which those interactions reflect the interactions among other biotic organisms, and also reflect our conservation virtues (e.g., humility, respect), influences our ability to cultivate naturalness on the landscape. We call this goal a natural practice (NP) and propose it as a framework for prioritizing and formulating how, when, and where to intervene in this period of rapid change. PMID:24617971

  20. Vulnerability and adaptation to global climate change: The Estonian national report

    SciTech Connect

    Kont, A.; Punning, J.M.; Ainsaar, M.

    1996-04-01

    Because of its geography, wide coastal areas, water resources, forests, and wetlands, the environment of Estonia is sensitive to climate change and sea level rise. Therefore, the vulnerability and adaptation assessment focused on these sectors GCM-based and incremental climate change scenarios are used for V and A assessment in Estonia. The results of five GCMs provided by NCAR are available, and four of them (GISS, CCCM, GFDL30, GFDL transient) are chosen for the assessment in Estonia. The CERES-Barley model is used to assess crop productivity in four long-term (1966--1987) barley field trials situated on different types of soils in different parts of Estonia. The SPUR-2 model which was expected to be used to assess herbage sensitivity to climate change doesn`t fit Estonia. To estimate the responses of forests to proposed climate change scenarios, five study sites with relatively species rich forest stands and with different types of climate (continental and moderately maritime) are selected and the simple version of the Forest Gap Model is used. The Holdridge Life Zones Classification Models are also used to determine the potential evapotranspiration ratio for different tree species and the multiplier for temperature as a function of the forest growth. The WatBal model is used in water resources vulnerability assessment for three rivers with different hydrological regimes and landscape conditions.

  1. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data.

    PubMed

    Muis, Sanne; Güneralp, Burak; Jongman, Brenden; Aerts, Jeroen C J H; Ward, Philip J

    2015-12-15

    An accurate understanding of flood risk and its drivers is crucial for effective risk management. Detailed risk projections, including uncertainties, are however rarely available, particularly in developing countries. This paper presents a method that integrates recent advances in global-scale modeling of flood hazard and land change, which enables the probabilistic analysis of future trends in national-scale flood risk. We demonstrate its application to Indonesia. We develop 1000 spatially-explicit projections of urban expansion from 2000 to 2030 that account for uncertainty associated with population and economic growth projections, as well as uncertainty in where urban land change may occur. The projections show that the urban extent increases by 215%-357% (5th and 95th percentiles). Urban expansion is particularly rapid on Java, which accounts for 79% of the national increase. From 2000 to 2030, increases in exposure will elevate flood risk by, on average, 76% and 120% for river and coastal floods. While sea level rise will further increase the exposure-induced trend by 19%-37%, the response of river floods to climate change is highly uncertain. However, as urban expansion is the main driver of future risk, the implementation of adaptation measures is increasingly urgent, regardless of the wide uncertainty in climate projections. Using probabilistic urban projections, we show that spatial planning can be a very effective adaptation strategy. Our study emphasizes that global data can be used successfully for probabilistic risk assessment in data-scarce countries. PMID:26318682

  2. Global change effects on biogeochemical processes of Argentinian estuaries: an overview of vulnerabilities and ecohydrological adaptive outlooks.

    PubMed

    Kopprio, Germn A; Biancalana, Florencia; Fricke, Anna; Garzn Cardona, John E; Martnez, Ana; Lara, Rubn J

    2015-02-28

    The aims of this work are to provide an overview of the current stresses of estuaries in Argentina and to propose adaptation strategies from an ecohydrological approach. Several Argentinian estuaries are impacted by pollutants, derived mainly from sewage discharge and agricultural or industrial activities. Anthropogenic impacts are expected to rise with increasing human population. Climate-driven warmer temperature and hydrological changes will alter stratification, residence time, oxygen content, salinity, pollutant distribution, organism physiology and ecology, and nutrient dynamics. Good water quality is essential in enhancing estuarine ecological resilience to disturbances brought on by global change. The preservation, restoration, and creation of wetlands will help to protect the coast from erosion, increase sediment accretion rates, and improve water quality by removing excess nutrients and pollutants. The capacity of hydrologic basin ecosystems to absorb human and natural impacts can be improved through holistic management, which should consider social vulnerability in complex human-natural systems. PMID:25194878

  3. ASSESSING THE CONSEQUENCES OF GLOBAL CHANGE ON WATER QUALITY AND QUANTITY - ADAPTATION AND CO-CONTROL

    EPA Science Inventory

    Increased water temperatures and changes in rainfall patterns have been identified as two potential consequences of climate change. These changes could impact the types and levels of water pollutants across the country resulting in the presence of different microbial organisms, ...

  4. Climate change, carbon dioxide, and global crop production: Adaptation to uncertainty

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Documented and projected changes in atmospheric carbon dioxide are likely to alter agricultural productivity in two ways: directly, by supplying additional carbon for photosynthesis and growth, and indirectly by altering climate, specifically surface temperatures and precipitation. In this overview...

  5. Genetics of climate change adaptation.

    PubMed

    Franks, Steven J; Hoffmann, Ary A

    2012-01-01

    The rapid rate of current global climate change is having strong effects on many species and, at least in some cases, is driving evolution, particularly when changes in conditions alter patterns of selection. Climate change thus provides an opportunity for the study of the genetic basis of adaptation. Such studies include a variety of observational and experimental approaches, such as sampling across clines, artificial evolution experiments, and resurrection studies. These approaches can be combined with a number of techniques in genetics and genomics, including association and mapping analyses, genome scans, and transcription profiling. Recent research has revealed a number of candidate genes potentially involved in climate change adaptation and has also illustrated that genetic regulatory networks and epigenetic effects may be particularly relevant for evolution driven by climate change. Although genetic and genomic data are rapidly accumulating, we still have much to learn about the genetic architecture of climate change adaptation. PMID:22934640

  6. Application of the global Land-Potential Knowledge System (LandPKS) mobile apps to land degradation, restoration and climate change adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Combatting land degradation, promoting restoration and adapting to climate change all require an understanding of land potential. A global Land-Potential Knowledge System (LandPKS) is being developed that will address many of these limitations using an open source approach designed to allow anyone w...

  7. Successfully Adapting to Change.

    ERIC Educational Resources Information Center

    Baird, James R.

    1989-01-01

    Describes methods used to successfully adapt to reductions in budget allocations in the University of Utah's Instructional Media Services Department. Three main areas of concern are addressed: morale and staff development; adapting to change in the areas of funding, control, media priorities, and technology; and planning for the future. (LRW)

  8. Research, Adaptation, & Change.

    ERIC Educational Resources Information Center

    Morris, Lee A., Ed.; And Others

    Research adaptation is an endeavor that implies solid collaboration among school practitioners and university and college researchers. This volume addresses the broad issues of research as an educational endeavor, adaptation as a necessary function associated with applying research findings to school situations, and change as an inevitable

  9. Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide

    PubMed Central

    Ziska, Lewis H.; Bunce, James A.; Shimono, Hiroyuki; Gealy, David R.; Baker, Jeffrey T.; Newton, Paul C. D.; Reynolds, Matthew P.; Jagadish, Krishna S. V.; Zhu, Chunwu; Howden, Mark; Wilson, Lloyd T.

    2012-01-01

    Agricultural production is under increasing pressure by global anthropogenic changes, including rising population, diversion of cereals to biofuels, increased protein demands and climatic extremes. Because of the immediate and dynamic nature of these changes, adaptation measures are urgently needed to ensure both the stability and continued increase of the global food supply. Although potential adaption options often consider regional or sectoral variations of existing risk management (e.g. earlier planting dates, choice of crop), there may be a global-centric strategy for increasing productivity. In spite of the recognition that atmospheric carbon dioxide (CO2) is an essential plant resource that has increased globally by approximately 25 per cent since 1959, efforts to increase the biological conversion of atmospheric CO2 to stimulate seed yield through crop selection is not generally recognized as an effective adaptation measure. In this review, we challenge that viewpoint through an assessment of existing studies on CO2 and intraspecific variability to illustrate the potential biological basis for differential plant response among crop lines and demonstrate that while technical hurdles remain, active selection and breeding for CO2 responsiveness among cereal varieties may provide one of the simplest and direct strategies for increasing global yields and maintaining food security with anthropogenic change. PMID:22874755

  10. Climate Change: Life history adaptation by a global whitefly, Bemisia tabaci, with rising temperature and carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Climate change can have direct and indirect impacts on living organisms. A rise in ambient temperature and elevated carbon dioxide (CO2) concentrations due to global warming may have assorted impacts on arthropods such as altered life cycles, altered reproductive patterns, and change...

  11. Designing Global Climate Change

    NASA Astrophysics Data System (ADS)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  12. THE CENTRAL ROLE OF PLANT BIOLOGY, FROM MOLECULAR TO ECOPHYSIOLOGICAL RESEARCH, IN UNDERSTANDING AND ADAPTING TO GLOBAL ATMOSPHERIC CHANGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The CO2 concentration of the atmosphere is rising at 0.4 percent per year and tropospheric ozone concentrations are rising even faster. Both have large direct effects on plants that will be further modified by rising temperatures. Although global change research has focused on the impacts of rising...

  13. Adaptation strategies to climate change in the Arctic: a global patchwork of reactive community-scale initiatives

    NASA Astrophysics Data System (ADS)

    Loboda, Tatiana V.

    2014-11-01

    Arctic regions have experienced and will continue to experience the greatest rates of warming compared to any other region of the world. The people living in the Arctic are considered among most vulnerable to the impacts of environmental change ranging from decline in natural resources to increasing mental health concerns (IPCC 2014 Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press)). A meta-analysis study by Ford et al (2014 Environ. Res. Lett. 9 104005) has assessed the volume, scope and geographic distribution of reported in the English language peer-reviewed literature initiatives for adaptation to climate change in the Arctic. Their analysis highlights the reactive nature of the adopted policies with a strong emphasis on local and community-level policies mostly targeting indigenous population in Canada and Alaska. The study raises concerns about the lack of monitoring and evaluation mechanism to track the success rate of the existing policies and the need for long-term strategic planning in adaption policies spanning international boundaries and including all groups of population.

  14. Global climate change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Present processes of global climate change are reviewed. The processes determining global temperature are briefly described and the concept of effective temperature is elucidated. The greenhouse effect is examined, including the sources and sinks of greenhouse gases.

  15. Global coordination in adaptation to gene rewiring

    PubMed Central

    Murakami, Yoshie; Matsumoto, Yuki; Tsuru, Saburo; Ying, Bei-Wen; Yomo, Tetsuya

    2015-01-01

    Gene rewiring is a common evolutionary phenomenon in nature that may lead to extinction for living organisms. Recent studies on synthetic biology demonstrate that cells can survive genetic rewiring. This survival (adaptation) is often linked to the stochastic expression of rewired genes with random transcriptional changes. However, the probability of adaptation and the underlying common principles are not clear. We performed a systematic survey of an assortment of gene-rewired Escherichia coli strains to address these questions. Three different cell fates, designated good survivors, poor survivors and failures, were observed when the strains starved. Large fluctuations in the expression of the rewired gene were commonly observed with increasing cell size, but these changes were insufficient for adaptation. Cooperative reorganizations in the corresponding operon and genome-wide gene expression largely contributed to the final success. Transcriptome reorganizations that generally showed high-dimensional dynamic changes were restricted within a one-dimensional trajectory for adaptation to gene rewiring, indicating a general path directed toward cellular plasticity for a successful cell fate. This finding of global coordination supports a mechanism of stochastic adaptation and provides novel insights into the design and application of complex genetic or metabolic networks. PMID:25564530

  16. The effects of global climate change on Southeast Asia: A survey of likely impacts and problems of adaptation

    NASA Technical Reports Server (NTRS)

    Njoto, Sukrisno; Howe, Charles W.

    1991-01-01

    Study results indicate the likelihood of significant net damages from climate change, in particular damages from sea-level rise and higher temperatures that seem unlikely to be offset by favorable shifts in precipitation and carbon dioxide. Also indicated was the importance of better climate models, in particular models that can calculate climate change on a regional scale appropriate to policy-making. In spite of this potential for damage, there seems to be a low level of awareness and concern, probably caused by the higher priority given to economic growth and reinforced by the great uncertainty in the forecasts. The common property nature of global environment systems also leads to a feeling of helplessness on the part of country governments.

  17. Towards an equitable allocation of the cost of a global change adaptation plan at the river basin scale: going beyond the perfect cooperation assumption

    NASA Astrophysics Data System (ADS)

    Girard, Corentin; Rinaudo, Jean-Daniel; Pulido-Velázquez, Manuel

    2015-04-01

    Adaptation to global change is a key issue in the planning of water resource systems in a changing world. Adaptation has to be efficient, but also equitable in the share of the costs of joint adaptation at the river basin scale. Least-cost hydro-economic optimization models have been helpful at defining efficient adaptation strategies. However, they often rely on the assumption of a "perfect cooperation" among the stakeholders, required for reaching the optimal solution. Nowadays, most adaptation decisions have to be agreed among the different actors in charge of their implementation, thus challenging the validity of a perfect command-and-control solution. As a first attempt to over-pass this limitation, our work presents a method to allocate the cost of an efficient adaptation programme of measures among the different stakeholders at the river basin scale. Principles of equity are used to define cost allocation scenarios from different perspectives, combining elements from cooperative game theory and axioms from social justice to bring some "food for thought" in the decision making process of adaptation. To illustrate the type of interactions between stakeholders in a river basin, the method has been applied in a French case study, the Orb river basin. Located on the northern rim of the Mediterranean Sea, this river basin is experiencing changes in demand patterns, and its water resources will be impacted by climate change, calling for the design of an adaptation plan. A least-cost river basin optimization model (LCRBOM) has been developed under GAMS to select the combination of demand- and supply-side adaptation measures that allows meeting quantitative water management targets at the river basin scale in a global change context. The optimal adaptation plan encompasses measures in both agricultural and urban sectors, up-stream and down-stream of the basin, disregarding the individual interests of the stakeholders. In order to ensure equity in the cost allocation of the adaptation plan, different allocation scenarios are considered. The LCRBOM allows defining a solution space based on economic rationality concepts from cooperative game theory (the core of the game), and then, to define equitable allocation of the cost of the programme of measures (the Shapley value and the nucleolus). Moreover, alternative allocation scenarios have been considered based on axiomatic principles of social justice, such as "utilitarian", "prior rights" or "strict equality", applied in the case study area. The comparison of the cost allocation scenarios brings insight to inform the decision making process at the river basin scale and potentially reap the efficiency gains from cooperation in the design of adaptation plan. The study has been partially supported by the IMPADAPT project /CGL2013-48424-C2-1-R) from the Spanish ministry MINECO (Ministerio de Economía y Competitividad) and European FEDER funds. Corentin Girard is supported by a grant from the University Lecturer Training Program (FPU12/03803) of the Ministry of Education, Culture and Sports of Spain.

  18. Farmer responses to multiple stresses in the face of global change: Assessing five case studies to enhance adaptation

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Feola, G.; Lerner, A. M.; Jain, M.; Montefrio, M.

    2013-12-01

    The global challenge of sustaining agricultural livelihoods and yields in the face of growing populations and increasing climate change is the topic of intense research. The role of on-the-ground decision-making by individual farmers actually producing food, fuel, and fiber is often studied in individual cases to determine its environmental, economic, and social effects. However, there are few efforts to link across studies in a way that provides opportunities to better understand empirical farmer behavior, design effective policies, and be able to aggregate from case studies to a broader scale. Here we synthesize existing literature to identify four general factors affecting farmer decision-making: local technical and socio-cultural contexts; actors and institutions involved in decision-making; multiple stressors at broader scales; and the temporal gradient of decision-making. We use these factors to compare five cases that illustrate agricultural decision-making and its impacts: cotton and castor farming in Gujarat, India; swidden cultivation of upland rice in the Philippines; potato cultivation in Andean Colombia; winegrowing in Northern California; and maize production in peri-urban central Mexico. These cases span a geographic and economic range of production systems, but we find that we are able to make valid comparisons and draw lessons common across all cases by using the four factors as an organizing principle. We also find that our understanding of why farmers make the decisions they do changes if we neglect to examine even one of the four general factors guiding decision-making. This suggests that these four factors are important to understanding farmer decision-making, and can be used to guide the design and interpretation of future studies, as well as be the subject of further research in and of themselves to promote an agricultural system that is resilient to climate and other global environmental changes.

  19. Technology and Global Change

    NASA Astrophysics Data System (ADS)

    Grübler, Arnulf

    2003-10-01

    Technology and Global Change describes how technology has shaped society and the environment over the last 200 years. Technology has led us from the farm to the factory to the internet, and its impacts are now global. Technology has eliminated many problems, but has added many others (ranging from urban smog to the ozone hole to global warming). This book is the first to give a comprehensive description of the causes and impacts of technological change and how they relate to global environmental change. Written for specialists and nonspecialists alike, it will be useful for researchers and professors, as a textbook for graduate students, for people engaged in long-term policy planning in industry (strategic planning departments) and government (R & D and technology ministries, environment ministries), for environmental activists (NGOs), and for the wider public interested in history, technology, or environmental issues.

  20. Global Surface Temperature Change

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Ruedy, R.; Sato, M.; Lo, K.

    2010-12-01

    We update the Goddard Institute for Space Studies (GISS) analysis of global surface temperature change, compare alternative analyses, and address questions about perception and reality of global warming. Satellite-observed night lights are used to identify measurement stations located in extreme darkness and adjust temperature trends of urban and periurban stations for nonclimatic factors, verifying that urban effects on analyzed global change are small. Because the GISS analysis combines available sea surface temperature records with meteorological station measurements, we test alternative choices for the ocean data, showing that global temperature change is sensitive to estimated temperature change in polar regions where observations are limited. We use simple 12 month (and n 12) running means to improve the information content in our temperature graphs. Contrary to a popular misconception, the rate of warming has not declined. Global temperature is rising as fast in the past decade as in the prior 2 decades, despite year-to-year fluctuations associated with the El Nio-La Nia cycle of tropical ocean temperature. Record high global 12 month running mean temperature for the period with instrumental data was reached in 2010.

  1. U.S. Global Change Research Program

    MedlinePLUS

    ... Browse Federal Adaptation Resources See All Resources National Climate Assessment In May 2014, USGCRP released the Third ... News Update Join the USGCRP Team Read more Climate Change Poses Risks for Agriculture and Global Food ...

  2. Classifying climate change adaptation frameworks

    NASA Astrophysics Data System (ADS)

    Armstrong, Jennifer

    2014-05-01

    Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

  3. Climate change adaptation strategies and mitigation policies

    NASA Astrophysics Data System (ADS)

    García Fernández, Cristina

    2015-04-01

    The pace of climate change and the consequent warming of the Earth's surface is increasing vulnerability and decreasing adaptive capacity. Achieving a successful adaptation depends on the development of technology, institutional organization, financing availability and the exchange of information. Populations living in arid and semi-arid zones, low-lying coastal areas, land with water shortages or at risk of overflow or small islands are particularly vulnerable to climate change. Due to increasing population density in sensitive areas, some regions have become more vulnerable to events such as storms, floods and droughts, like the river basins and coastal plains. Human activities have fragmented and increased the vulnerability of ecosystems, which limit both, their natural adaptation and the effectiveness of the measures adopted. Adaptation means to carry out the necessary modifications for society to adapt to new climatic conditions in order to reduce their vulnerability to climate change. Adaptive capacity is the ability of a system to adjust to climate change (including climate variability and extremes) and to moderate potential damages, to take advantage of opportunities or face the consequences. Adaptation reduces the adverse impacts of climate change and enhance beneficial impacts, but will not prevent substantial cost that are produced by all damages. The performances require adaptation actions. These are defined and implemented at national, regional or local levels since many of the impacts and vulnerabilities depend on the particular economic, geographic and social circumstances of each country or region. We will present some adaptation strategies at national and local level and revise some cases of its implementation in several vulnerable areas. However, adaptation to climate change must be closely related to mitigation policies because the degree of change planned in different climatic variables is a function of the concentration levels that are achieved by greenhouse gases in the atmosphere. Mitigation and adaptation are therefore complementary actions. In the long term, climate change without mitigation measures will likely exceed the adaptive capacity of natural, managed and human systems. Early adoption of mitigation measures would break the dependence on carbon-intensive infrastructures and reduce adaptation needs to climate change. It also can save on adaptation cost. Therefore mitigation is the key objective of the global warming problem but little is being done in this field. We will present some proposals of "preventive economically efficient" policies at a global and regional level which will constitute the complement to the adaptation aspect.

  4. Ecological effects of global change

    NASA Astrophysics Data System (ADS)

    Menzel, A.

    2010-03-01

    Mankind actually puts manifolds loads on our earth including stratospheric ozone depletion, rising freshwater use, changes of land cover and land use. For several of these threats, critical loads and thresholds may be already exceeded, e.g. nitrogen input, climate change and biodiversity loss (Röckström et al. 2009). The working group on Impacts, Adaptation and Vulnerability of the last IPCC report (AR4, 2007) concluded that anthropogenic warming over the last three decades has had a discernible influence on many physical and biological systems, thus global fingerprint of anthropogenic climate change was detectable on all continents and almost all ocean areas (Rosenzweig et al. 2007, 2008). 90% of the significant temperature related changes in 29000 records analysed were consistent with climate warming, e.g. in warming climates earlier spring events, distributional shifts pole wards and to higher altitudes, or community changes with reduced cold adapted species were observed. These impacts, already visible and only related to less than 1°C global warming, allow a limited glance at future changes and pressures on our ecosystems, as the rate of warming may accelerate and will be linked to stronger and more frequent extreme events. Vegetation is an important component of the climate system, part of biogeochemical cycles and the lower boundary of GCMs characterised by certain albedo and roughness. Thus, climate change impacts on vegetation exert feedbacks. The most striking and challenging problems in analysing climate change impacts on ecosystems are related to cases where one would expect major changes due to warming however there is reduced, limited or no reaction in the observed systems. This feature is known as divergence problem in tree ring research, called resilience in ecosystem dynamics or might be simply a time-lag or environmental monitoring problem. However, there are various other pressures by global change, e.g. land use change or pollution, leading to major changes in nature, which are not attributable to climate change and are dealt in these climate change impact assessments as ‘confounding factors’. Nevertheless, they have tremendous consequences for biodiversity, food security and human health.

  5. Global temperature change.

    PubMed

    Hansen, James; Sato, Makiko; Ruedy, Reto; Lo, Ken; Lea, David W; Medina-Elizade, Martin

    2006-09-26

    Global surface temperature has increased approximately 0.2 degrees C per decade in the past 30 years, similar to the warming rate predicted in the 1980s in initial global climate model simulations with transient greenhouse gas changes. Warming is larger in the Western Equatorial Pacific than in the Eastern Equatorial Pacific over the past century, and we suggest that the increased West-East temperature gradient may have increased the likelihood of strong El Nios, such as those of 1983 and 1998. Comparison of measured sea surface temperatures in the Western Pacific with paleoclimate data suggests that this critical ocean region, and probably the planet as a whole, is approximately as warm now as at the Holocene maximum and within approximately 1 degrees C of the maximum temperature of the past million years. We conclude that global warming of more than approximately 1 degrees C, relative to 2000, will constitute "dangerous" climate change as judged from likely effects on sea level and extermination of species. PMID:17001018

  6. Global temperature change

    PubMed Central

    Hansen, James; Sato, Makiko; Ruedy, Reto; Lo, Ken; Lea, David W.; Medina-Elizade, Martin

    2006-01-01

    Global surface temperature has increased ≈0.2°C per decade in the past 30 years, similar to the warming rate predicted in the 1980s in initial global climate model simulations with transient greenhouse gas changes. Warming is larger in the Western Equatorial Pacific than in the Eastern Equatorial Pacific over the past century, and we suggest that the increased West–East temperature gradient may have increased the likelihood of strong El Niños, such as those of 1983 and 1998. Comparison of measured sea surface temperatures in the Western Pacific with paleoclimate data suggests that this critical ocean region, and probably the planet as a whole, is approximately as warm now as at the Holocene maximum and within ≈1°C of the maximum temperature of the past million years. We conclude that global warming of more than ≈1°C, relative to 2000, will constitute “dangerous” climate change as judged from likely effects on sea level and extermination of species. PMID:17001018

  7. Local and global contrast adaptation in retinal ganglion cells.

    PubMed

    Garvert, Mona M; Gollisch, Tim

    2013-03-01

    Retinal ganglion cells react to changes in visual contrast by adjusting their sensitivity and temporal filtering characteristics. This contrast adaptation has primarily been studied under spatially homogeneous stimulation. Yet, ganglion cell receptive fields are often characterized by spatial subfields, providing a substrate for nonlinear spatial processing. This raises the question whether contrast adaptation follows a similar subfield structure or whether it occurs globally over the receptive field even for local stimulation. We therefore recorded ganglion cell activity in isolated salamander retinas while locally changing visual contrast. Ganglion cells showed primarily global adaptation characteristics, with notable exceptions in certain aspects of temporal filtering. Surprisingly, some changes in filtering were most pronounced for locations where contrast did not change. This seemingly paradoxical effect can be explained by a simple computational model, which emphasizes the importance of local nonlinearities in the retina and suggests a reevaluation of previously reported local contrast adaptation. PMID:23473321

  8. Global Environmental Change Symposium

    NASA Astrophysics Data System (ADS)

    Bush, Susan M.

    The global environmental warming issue has been catapulted to the forefront of media attention as a result of the drought of 1988 and extremely warm temperatures. NASA scientist James Hansen testified last year that the warming trend has begun and that part of the temperature rise is due to gases such as carbon dioxide, methane, and chlorofluro-carbons (CFCs) being released into the atmosphere by human activity.In response to recent scientific speculation on the issue, the National Academy of Sciences, Washington, D.C., hosted the symposium Global Environmental Change April 24 as part of their annual meeting. Speakers included Bert Bolin, University of Stockholm; Robert White, National Academy of Engineering; Stephen Schneider, National Center for Atmospheric Research; and Peter Raven, Missouri Botanical Garden. Moderator was Russell Train, World Wildlife Fund.

  9. Potential global climate change

    SciTech Connect

    1994-09-01

    Global economic integration and growth contribute much to the construction of energy plants, vehicles and other industrial products that produces carbon emission and in effect cause the destruction of the environment. A coordinated policy and response worldwide to curb emissions and to effect global climate change must be introduced. Improvement in scientific understanding is required to monitor how much emission reduction is necessary. In the near term, especially in the next seven years, sustained research and development for low carbon or carbon-free energy is necessary. Other measures must also be introduced, such as limiting the use of vehicles, closing down inefficient power plants, etc. In the long term, the use of the electric car, use solar energy, etc. is required. Reforestation must also be considered to absorb large amounts of carbon in the atmosphere.

  10. Global change research highlights

    SciTech Connect

    Krause, C.

    1995-12-31

    Wood - the fuel source of the past - is expected to be a fuel source of the future. Fast growing trees are being cloned and nurtured for conversion to biofuels to replace or supplement gasoline for transportation. The future may also bring higher temperatures and drought if global climate changes as predicted. So, it seems practical to raise fastgrowing trees that not only provide fuel by capturing carbon from the atmosphere (helping to deter climate change) but also flourish under dry conditions. A recent ORNL finding has bearing on this goal. Hybrid willow trees have been cloned because they grow fast and serve as good fuel sources. However, there are important gender differences. Male willow clones are generally more tolerant of drought than female willows. Also, male willows cause no weed problems because they do not disperse seeds. In addition research work has looked at the impact of enhanced carbon dioxide environments on the growth of trees and the potential sequestering of carbon dioxide into the trees or soils. Scientists have found that ground-level ozone in the environment can reduce the growth of the loblolly pine, a forest tree species of great economic importance in the Southeast. It is predicted that global warming could lead to changes in regional precipitation, even periods of drought. How would climate change affect the growth of forest trees? This is a question ORNL has been attempting to answer. Geologic records have been studied by means of isotope ratio techniques to study reasons for vegetation changes in the past. The question is what was the reason for these changes.

  11. Global change and mercury

    USGS Publications Warehouse

    Krabbenhoft, David P.; Sunderland, Elsie M.

    2013-01-01

    More than 140 nations recently agreed to a legally binding treaty on reductions in human uses and releases of mercury that will be signed in October of this year. This follows the 2011 rule in the United States that for the first time regulates mercury emissions from electricity-generating utilities. Several decades of scientific research preceded these important regulations. However, the impacts of global change on environmental mercury concentrations and human exposures remain a major uncertainty affecting the potential effectiveness of regulatory activities.

  12. Psychological research and global climate change

    NASA Astrophysics Data System (ADS)

    Clayton, Susan; Devine-Wright, Patrick; Stern, Paul C.; Whitmarsh, Lorraine; Carrico, Amanda; Steg, Linda; Swim, Janet; Bonnes, Mirilia

    2015-07-01

    Human behaviour is integral not only to causing global climate change but also to responding and adapting to it. Here, we argue that psychological research should inform efforts to address climate change, to avoid misunderstandings about human behaviour and motivations that can lead to ineffective or misguided policies. We review three key research areas: describing human perceptions of climate change; understanding and changing individual and household behaviour that drives climate change; and examining the human impacts of climate change and adaptation responses. Although much has been learned in these areas, we suggest important directions for further research.

  13. Adapting agriculture to climate change

    PubMed Central

    Howden, S. Mark; Soussana, Jean-François; Tubiello, Francesco N.; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-01-01

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists. PMID:18077402

  14. Managing global change information

    SciTech Connect

    Stoss, F.W.

    1995-12-31

    Which human activities add to atmospheric concentrations of carbon dioxide (CO{sub 2}), the greenhouse gas that may promote warming of the earth`s climate? How could CO{sub 2} emission restrictions change the use of fossil fuels? How would increases in atmospheric CO{sub 2} likely effect climate? Can one see any evidence that the world is getting warmer? What coastal-zone areas are more sensitive to potential sea-level rise from an accelerated melting of glaciers? What is El Nino and how does it affect the earth`s climate? These are among the thousands of questions to which ORNL data analysts respond every year. Recently, the topic of global environmental change, including climate change, has grown in importance. At ORNL researchers have improved their understanding of the science underlying this major environmental issue. At the same time the Laboratory is playing a pivotal role in directing the data and information management activities for what some researchers consider the most information-intensive science project ever undertaken. Long one of the world`s leading energy R&D facilities, ORNL has more recently emerged as one of the preeminent environmental research centers in the world. Within ORNL`s Environmental Sciences Division, the Environmental Information Analysis Program was established to serve as a focal point for the assimilation of data related to global environmental change. The three major components of the program are the Atmospheric Radiation Measurement Archive, the National Aeronautics and Space Administration`s Earth Observing System Data and Information System Distributed Active Archive Center, and the Carbon Dioxide Information Analysis Center (CDIAC). The World Data Center-A for Atmospheric Trace Gases is located in CDIAC.

  15. Beyond global warming: Ecology and global change

    SciTech Connect

    Vitousek, P.M. )

    1994-10-01

    While ecologists involved in management or policy often are advised to learn to deal with uncertainty, some components of global environmental change are certainly occurring and are certainly human-caused. All have important ecological consequences. Well-documented global changes include: Increasing concentrations of carbon dioxide in the atmosphere; alterations in the biogeochemistry of the global nitrogen cycle; and ongoing land use/land cover change. Human activity - now primarily fossil fuel combustion - has increased carbon dioxide concentrations from [approximately] 280 to 355 [mu]L/L since 1800 and is likely to have climatic consequences and direct effects on biota in all terrestrial ecosystems. The global nitrogen cycle has been altered so that more nitrogen is fixed annually by humanity than by all natural pathways combined. Altering atmospheric chemistry and aquatic ecosystems, contributes to eutrophication of the biosphere, and has substantial regional effects on biological diversity. Finally, human land use/land cover change has transformed one-third to one-half of Earth's ice-free surface, representing the most important component of global change now. Any clear dichotomy between pristine ecosystems and human-altered areas that may have existed in the past has vanished, and ecological research should account for this reality. Certain components of global environmental change are the primary causes of anticipated changes in climate, and of ongoing losses of biological diversity. They are caused by the extraordinary growth in size and resource use of the human population. On a broad scale, there is little uncertainty about any of these components of change or their causes. However, much of the public believes the causes of global change to be uncertain and contentious. By speaking out effectively,the focus of public discussion towards what can and should be done about global environmental change can be shifted. 135 refs., 13 figs., 1 tab.

  16. Forest health and global change.

    PubMed

    Trumbore, S; Brando, P; Hartmann, H

    2015-08-21

    Humans rely on healthy forests to supply energy, building materials, and food and to provide services such as storing carbon, hosting biodiversity, and regulating climate. Defining forest health integrates utilitarian and ecosystem measures of forest condition and function, implemented across a range of spatial scales. Although native forests are adapted to some level of disturbance, all forests now face novel stresses in the form of climate change, air pollution, and invasive pests. Detecting how intensification of these stresses will affect the trajectory of forests is a major scientific challenge that requires developing systems to assess the health of global forests. It is particularly critical to identify thresholds for rapid forest decline, because it can take many decades for forests to restore the services that they provide. PMID:26293952

  17. Global Governance, Educational Change

    ERIC Educational Resources Information Center

    Mundy, Karen

    2007-01-01

    In the last half decade, a rising literature has focused on the idea that processes of economic, political and social globalization require analysis in terms of governance at the global level. It is argued in this article that emerging forms of global governance have produced significant challenges to conventional conceptions of international

  18. FY 2002 GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    PRA Goal 6: Reducing Global and Transboundary Environmental Risks

    Objective 6.2: Greenhouse Gas Emissions

    Sub-Objective 6.2.3: Global Climate Change Research

    Activity F55 - Assessing the Consequences of Global Change on Ecosystem Health

    NRMRL

    R...

  19. Global perceptions of local temperature change

    NASA Astrophysics Data System (ADS)

    Howe, Peter D.; Markowitz, Ezra M.; Lee, Tien Ming; Ko, Chia-Ying; Leiserowitz, Anthony

    2013-04-01

    It is difficult to detect global warming directly because most people experience changes only in local weather patterns, which are highly variable and may not reflect long-term global climate trends. However, local climate-change experience may play an important role in adaptation and mitigation behaviour and policy support. Previous research indicates that people can perceive and adapt to aspects of climate variability and change based on personal observations. Experience with local weather may also influence global warming beliefs. Here we examine the extent to which respondents in 89 countries detect recent changes in average local temperatures. We demonstrate that public perceptions correspond with patterns of observed temperature change from climate records: individuals who live in places with rising average temperatures are more likely than others to perceive local warming. As global climate change intensifies, changes in local temperatures and weather patterns may be increasingly detected by the global public. These findings also suggest that public opinion of climate change may shift, at least in part, in response to the personal experience of climate change.

  20. Global Distributions of Vulnerability to Climate Change

    SciTech Connect

    Yohe, Gary; Malone, Elizabeth L.; Brenkert, Antoinette L.; Schlesinger, Michael; Meij, Henk; Xiaoshi, Xing

    2006-12-01

    Signatories of the United Nations Framework Convention on Climate Change (UNFCCC) have committed themselves to addressing the “specific needs and special circumstances of developing country parties, especially those that are particularly vulnerable to the adverse effects of climate change”.1 The Intergovernmental Panel on Climate Change (IPCC) has since concluded with high confidence that “developing countries will be more vulnerable to climate change than developed countries”.2 In their most recent report, however, the IPCC notes that “current knowledge of adaptation and adaptive capacity is insufficient for reliable prediction of adaptations” 3 because “the capacity to adapt varies considerably among regions, countries and socioeconomic groups and will vary over time”.4 Here, we respond to the apparent contradiction in these two statements by exploring how variation in adaptive capacity and climate impacts combine to influence the global distribution of vulnerability. We find that all countries will be vulnerable to climate change, even if their adaptive capacities are enhanced. Developing nations are most vulnerable to modest climate change. Reducing greenhouse-gas emissions would diminish their vulnerabilities significantly. Developed countries would benefit most from mitigation for moderate climate change. Extreme climate change overwhelms the abilities of all countries to adapt. These findings should inform both ongoing negotiations for the next commitment period of the Kyoto Protocol and emerging plans for implementing UNFCCC-sponsored adaptation funds.

  1. Bibliography of global change, 1992

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 585 reports, articles, and other documents introduced in the NASA Scientific and Technical Information Database in 1992. The areas covered include global change, decision making, earth observation (from space), forecasting, global warming, policies, and trends.

  2. Getting used to it: the adaptive global utility model.

    PubMed

    Bradford, W David; Dolan, Paul

    2010-12-01

    This paper expands the standard model of utility maximization to endogenize the ubiquitous phenomenon of adaptation. We assume that total utility is an aggregate function of the utility associated with different domains of life, with relative weights that are optimized according to the effort that the individual expends on producing utility in each domain. Comparative statics from the general maximization problem demonstrate that the traditional Slutsky equation should incorporate an additional response term to account for adaptation processes. Our adaptive global utility maximization model can be used to explain responses to changes in health. PMID:20728231

  3. Global atmospheric changes.

    PubMed Central

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation. PMID:1820255

  4. Global Climate Change.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1989-01-01

    Discusses recent changes in the Earth's climate. Summarizes reports on changes related to carbon dioxide, temperature, rain, sea level, and glaciers in polar areas. Describes the present effort to measure the changes. Lists 16 references. (YP)

  5. Evolutionary Adaptations to Dietary Changes

    PubMed Central

    Luca, F.; Perry, G.H.; Di Rienzo, A.

    2014-01-01

    Through cultural innovation and changes in habitat and ecology, there have been a number of major dietary shifts in human evolution, including meat eating, cooking, and those associated with plant and animal domestication. The identification of signatures of adaptations to such dietary changes in the genome of extant primates (including humans) may shed light not only on the evolutionary history of our species, but also on the mechanisms that underlie common metabolic diseases in modern human populations. In this review, we provide a brief overview of the major dietary shifts that occurred during hominin evolution, and we discuss the methods and approaches used to identify signals of natural selection in patterns of sequence variation. We then review the results of studies aimed at detecting the genetic loci that played a major role in dietary adaptations and conclude by outlining the potential of future studies in this area. PMID:20420525

  6. Space Observations for Global Change

    NASA Technical Reports Server (NTRS)

    Rasool, S. I.

    1991-01-01

    There is now compelling evidence that man's activities are changing both the composition of the atmospheric and the global landscape quite drastically. The consequences of these changes on the global climate of the 21st century is currently a hotly debated subject. Global models of a coupled Earth-ocean-atmosphere system are still very primitive and progress in this area appears largely data limited, specially over the global biosphere. A concerted effort on monitoring biospheric functions on scales from pixels to global and days to decades needs to be coordinated on an international scale in order to address the questions related to global change. An international program of space observations and ground research was described.

  7. Change points of global temperature

    NASA Astrophysics Data System (ADS)

    Cahill, Niamh; Rahmstorf, Stefan; Parnell, Andrew C.

    2015-08-01

    We aim to address the question of whether or not there is a significant recent hiatus, pause or slowdown of global temperature rise. Using a statistical technique known as change point (CP) analysis we identify the changes in four global temperature records and estimate the rates of temperature rise before and after these changes occur. For each record the results indicate that three CPs are enough to accurately capture the variability in the data with no evidence of any detectable change in the global warming trend since ?1970. We conclude that the term hiatus or pause cannot be statistically justified.

  8. Solar influences on global change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Monitoring of the Sun and the Earth has yielded new knowledge essential to this debate. There is now no doubt that the total radiative energy from the Sun that heats the Earth's surface changes over decadal time scales as a consequence of solar activity. Observations indicate as well that changes in ultraviolet radiation and energetic particles from the Sun, also connected with the solar activity, modulate the layer of ozone that protects the biosphere from the solar ultraviolet radiation. This report reassesses solar influences on global change in the light of this new knowledge of solar and atmospheric variability. Moreover, the report considers climate change to be encompassed within the broader concept of global change; thus the biosphere is recognized to be part of a larger, coupled Earth system. Implementing a program to continuously monitor solar irradiance over the next several decades will provide the opportunity to estimate solar influences on global change, assuming continued maintenance of observations of climate and other potential forcing mechanisms. In the lower atmosphere, an increase in solar radiation is expected to cause global warming. In the stratosphere, however, the two effects produce temperature changes of opposite sign. A monitoring program that would augment long term observations of tropospheric parameters with similar observations of stratospheric parameters could separate these diverse climate perturbations and perhaps isolate a greenhouse footprint of climate change. Monitoring global change in the troposphere is a key element of all facets of the United States Global Change Research Program (USGCRP), not just of the study of solar influences on global change. The need for monitoring the stratosphere is also important for global change research in its own right because of the stratospheric ozone layer.

  9. Adaptive wavelet simulation of global ocean dynamics

    NASA Astrophysics Data System (ADS)

    Kevlahan, N. K.-R.; Dubos, T.; Aechtner, M.

    2015-07-01

    In order to easily enforce solid-wall boundary conditions in the presence of complex coastlines, we propose a new mass and energy conserving Brinkman penalization for the rotating shallow water equations. This penalization does not lead to higher wave speeds in the solid region. The error estimates for the penalization are derived analytically and verified numerically for linearized one dimensional equations. The penalization is implemented in a conservative dynamically adaptive wavelet method for the rotating shallow water equations on the sphere with bathymetry and coastline data from NOAA's ETOPO1 database. This code could form the dynamical core for a future global ocean model. The potential of the dynamically adaptive ocean model is illustrated by using it to simulate the 2004 Indonesian tsunami and wind-driven gyres.

  10. Global Climatic Change.

    ERIC Educational Resources Information Center

    Houghton, Richard A.; Woodwell, George M.

    1989-01-01

    Cites some of the evidence which suggests that the production of carbon dioxide and methane from human activities has begun to change the climate. Describes some measures which should be taken to stop or slow this progression. (RT)

  11. Space sensors for global change

    SciTech Connect

    Canavan, G.H.

    1994-02-15

    Satellite measurements should contribute to a fuller understanding of the physical processes behind the radiation budget, exchange processes, and global change. Climate engineering requires global observation for early indications of predicted effects, which puts a premium on affordable, distributed constellations of satellites with effective, affordable sensors. Defense has a requirement for continuous global surveillance for warning of aggression, which could evolve from advanced sensors and satellites in development. Many climate engineering needs match those of defense technologies.

  12. GLOBAL CHANGE AND WATER RESOURCES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of global change on future water resources is difficult to predict because various components are likely to be affected in opposing ways. Global warming would tend to increase evapotranspiration (ET) rates and irrigation water requirements, while increasing precipitation would both dec...

  13. Science priorities for the human dimensions of global change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The topics covered include the following: defining research needs; understanding land use change; improving policy analysis -- research on the decision-making process; designing policy instruments and institutions to address energy-related environmental problems; assessing impacts, vulnerability, and adaptation to global changes; and understanding population dynamics and global change.

  14. Global climatic change

    SciTech Connect

    Houghton, R.A.; Woodwell, G.M.

    1989-04-01

    This paper reviews the climatic effects of trace gases such as carbon dioxide and methane. It discusses the expected changes from the increases in trace gases and the extent to which the expected changes can be found in the climate record and in the retreat of glaciers. The use of ice cores in correlating atmospheric composition and climate is discussed. The response of terrestrial ecosystems as a biotic feedback is discussed. Possible responses are discussed, including reduction in fossil-fuel use, controls on deforestation, and reforestation. International aspects, such as the implications for developing nations, are addressed.

  15. Transformational adaptation when incremental adaptations to climate change are insufficient

    PubMed Central

    Kates, Robert W.; Travis, William R.; Wilbanks, Thomas J.

    2012-01-01

    All human–environment systems adapt to climate and its natural variation. Adaptation to human-induced change in climate has largely been envisioned as increments of these adaptations intended to avoid disruptions of systems at their current locations. In some places, for some systems, however, vulnerabilities and risks may be so sizeable that they require transformational rather than incremental adaptations. Three classes of transformational adaptations are those that are adopted at a much larger scale, that are truly new to a particular region or resource system, and that transform places and shift locations. We illustrate these with examples drawn from Africa, Europe, and North America. Two conditions set the stage for transformational adaptation to climate change: large vulnerability in certain regions, populations, or resource systems; and severe climate change that overwhelms even robust human use systems. However, anticipatory transformational adaptation may be difficult to implement because of uncertainties about climate change risks and adaptation benefits, the high costs of transformational actions, and institutional and behavioral actions that tend to maintain existing resource systems and policies. Implementing transformational adaptation requires effort to initiate it and then to sustain the effort over time. In initiating transformational adaptation focusing events and multiple stresses are important, combined with local leadership. In sustaining transformational adaptation, it seems likely that supportive social contexts and the availability of acceptable options and resources for actions are key enabling factors. Early steps would include incorporating transformation adaptation into risk management and initiating research to expand the menu of innovative transformational adaptations. PMID:22509036

  16. [Review on farmer's climate change perception and adaptation].

    PubMed

    Zhao, Xue-Yan

    2014-08-01

    As the most serious challenge that the humankind is facing, climate change has been strengthened vulnerability in many countries and regions, and how to scientifically adapt to climate change has become the global issue of common concern to the international community today. The impact of climate change on farming people depending on the nature resource is especially remarkable, and understanding farmers' adaptation mechanism and process is very important to effectively make the adaptation policy. As the basis of understanding the human response action, public perception has provided a new perspective to verify the farmers' adaptation mechanism and process about climate change. Based on the recent theoretical and empirical developments of farmers' perception and adaptation, the impact of climate change on the farmers' livelihood was analyzed, and the main adaptation obstacles which the farmers faced in response to climate change were summarized systematically. Then, we analyzed the relationship between the farmers' climate change perception and adaptation, illuminated the key cognitive elements in the process of the farmers' climate change adaptation and introduced the framework to analyze the relationship between the farmers' climate change perception and adaptation. At last, this review put forward the key questions which should be considered in study on the relationship between the farmers' climate change perception and adaptation. PMID:25509101

  17. Boreal forests and global change

    SciTech Connect

    Apps, M.J.; Price, D.T.; Wisniewski

    1995-12-31

    This book presents a group of papers to provide some answers for the development of policies for management and conservation of global boreal forest resources in the face of global climatic change. Five categories are covered: governmental and policy issues in forest management; modeling investigations of ecosystem response to global change, regional carbon inventories and inventory methodology, observational studies of biogeochemistry and ecophysiology, and major scientific initiatives relating to boreal forests. papers include the first-peer reviewed publications in the western scientific literature from Russian scientists on the status of Russian boreal forests. The book serves as a good reference and outline, with useful examples from primary literature.

  18. Global Change and Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Walker, Brian H.; Steffen, Will

    1996-11-01

    This major new book presents a collection of essays by leading authorities who address the current state of knowledge. The chapters bring together the early results of an international scientific research program designed to address what will happen to our ability to produce food and fiber, and what effects there will be on biological diversity under rapid environmental change. This book addresses how these changes to terrestrial ecosystems will feed back to further environmental change. International in scope, this state-of-the-art assessment will interest policymakers, students and scientists interested in global change, climate change and biodiversity. Special features include descriptions of a dynamic global vegetation model, developing generic crop models and a special section on the emerging discipline of global ecology.

  19. Perspectives on global change theory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human-caused global changes in ecological drivers, such as carbon dioxide concentrations, climate, and nitrogen deposition, as well as direct human impacts (land use change, species movements and extinctions, etc.) are increasingly recognized as key to understanding contemporary ecosystem dynamics, ...

  20. Teaching about Global Climate Change

    ERIC Educational Resources Information Center

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  1. Teaching about Global Climate Change

    ERIC Educational Resources Information Center

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media

  2. Global Change Assessment Model (GCAM)

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is an integrated assessment model that links the world's energy, agriculture and land use systems with a climate model. The model is designed to assess various climate change policies and technology strategies for the globe over long tim...

  3. Future Global Change and Cognition.

    PubMed

    Lewandowsky, Stephan

    2016-01-01

    The 11 articles in this issue explore how people respond to climate change and other global challenges. The articles pursue three broad strands of enquiry that relate (1) to the effects and causes of "skepticism" about climate change, (2) the purely cognitive challenges that are posed by a complex scientific issue, and (3) the ways in which climate change can be communicated to a wider audience. Cognitive science can contribute to understanding people's responses to global challenges in many ways, and it may also contribute to implementing solutions to those problems. PMID:26749304

  4. Global Climate Change and Agriculture

    SciTech Connect

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 C by the end of the 21st century.

  5. Asia's changing role in global climate change.

    PubMed

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested. PMID:18991898

  6. Climate variability and climate change vulnerability and adaptation. Workshop summary

    SciTech Connect

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  7. Global change: Acronyms and abbreviations

    SciTech Connect

    Woodard, C.T.; Stoss, F.W.

    1995-05-01

    This list of acronyms and abbreviations is compiled to provide the user with a ready reference to dicipher the linguistic initialisms and abridgements for the study of global change. The terms included in this first edition were selected from a wide variety of sources: technical reports, policy documents, global change program announcements, newsletters, and other periodicals. The disciplinary interests covered by this document include agriculture, atmospheric science, ecology, environmental science, oceanography, policy science, and other fields. In addition to its availability in hard copy, the list of acronyms and abbreviations is available in DOS-formatted diskettes and through CDIAC`s anonymous File Transfer Protocol (FTP) area on the Internet.

  8. Global Climate Change and Children's Health.

    PubMed

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. PMID:26504134

  9. Global Change Education Resource Guide.

    ERIC Educational Resources Information Center

    Mortensen, Lynn L., Ed.

    This guide is intended as an aid to educators who conduct programs and activities on climate and global change issues for a variety of audiences. The selected set of currently available materials are appropriate for both formal and informal programs in environmental education and can help frame and clarify some of the key issues associated with…

  10. Global climatic change on Mars.

    PubMed

    Kargel, J S; Strom, R G

    1996-11-01

    The authors examine evidence from Mariner and Viking probes of the Martian environment to support theories of a global climate change on Mars. Similarities between some geographical features on Earth and Mars are used to suggest a warmer climate on Mars in the past. An overview of planned Mars exploration missions is included. PMID:11536741

  11. Global Climate Change Interaction Web.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.

    1998-01-01

    Students investigate the effects of global climate change on life in the Great Lakes region in this activity. Teams working together construct as many links as possible for such factors as rainfall, lake water, evaporation, skiing, zebra mussels, wetlands, shipping, walleye, toxic chemicals, coastal homes, and population. (PVD)

  12. The global land rush and climate change

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; D'Odorico, Paolo

    2015-08-01

    Climate change poses a serious global challenge in the face of rapidly increasing human demand for energy and food. A recent phenomenon in which climate change may play an important role is the acquisition of large tracts of land in the developing world by governments and corporations. In the target countries, where land is relatively inexpensive, the potential to increase crop yields is generally high and property rights are often poorly defined. By acquiring land, investors can realize large profits and countries can substantially alter the land and water resources under their control, thereby changing their outlook for meeting future demand. While the drivers, actors, and impacts involved with land deals have received substantial attention in the literature, we propose that climate change plays an important yet underappreciated role, both through its direct effects on agricultural production and through its influence on mitigative or adaptive policy decisions. Drawing from various literature sources as well as a new global database on reported land deals, we trace the evolution of the global land rush and highlight prominent examples in which the role of climate change is evident. We find that climate change—both historical and anticipated—interacts substantially with drivers of land acquisitions, having important implications for the resilience of communities in targeted areas. As a result of this synthesis, we ultimately contend that considerations of climate change should be integrated into future policy decisions relating to the large-scale land acquisitions.

  13. Climate change impacts on global food security.

    PubMed

    Wheeler, Tim; von Braun, Joachim

    2013-08-01

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security. PMID:23908229

  14. Climate change and global agriculture: Recent findings and issues

    SciTech Connect

    Reilly, J.

    1995-08-01

    This paper (a) reviews existing findings on the global impacts of climate change on agriculture, (b) identifies limitations of these findings, and (c) discusses three issues of interest on the Intergovernmental Panel on Climate Change (IPCC). The three issues are as follows: regional effects versus global efficiency: the issue of hunger; climate change, agriculture and economic development; cost and disruption of adaptation to climate change. 45 refs., 3 tabs.

  15. Global climate change: the quantifiable sustainability challenge.

    PubMed

    Princiotta, Frank T; Loughlin, Daniel H

    2014-09-01

    Population growth and the pressures spawned by increasing demands for energy and resource-intensive goods, foods, and services are driving unsustainable growth in greenhouse gas (GHG) emissions. Recent GHG emission trends are consistent with worst-case scenarios of the previous decade. Dramatic and near-term emission reductions likely will be needed to ameliorate the potential deleterious impacts of climate change. To achieve such reductions, fundamental changes are required in the way that energy is generated and used. New technologies must be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear and transportation technologies are particularly important; however, global research and development efforts related to these technologies currently appear to fall short relative to needs. Even with a proactive and international mitigation effort, humanity will need to adapt to climate change, but the adaptation needs and damages will be far greater if mitigation activities are not pursued in earnest. In this review, research is highlighted that indicates increasing global and regional temperatures and ties climate changes to increasing GHG emissions. GHG mitigation targets necessary for limiting future global temperature increases are discussed, including how factors such as population growth and the growing energy intensity of the developing world will make these reduction targets more challenging. Potential technological pathways for meeting emission reduction targets are examined, barriers are discussed, and global and US. modeling results are presented that suggest that the necessary pathways will require radically transformed electric and mobile sectors. While geoengineering options have been proposed to allow more time for serious emission reductions, these measures are at the conceptual stage with many unanswered cost, environmental, and political issues. Implications: This paper lays out the case that mitigating the potential for catastrophic climate change will be a monumental challenge, requiring the global community to transform its energy system in an aggressive, coordinated, and timely manner. If this challenge is to be met, new technologies will have to be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear, and transportation technologies are particularly important. Even with an aggressive international mitigation effort, humanity will still need to adapt to significant climate change. PMID:25282995

  16. Global Change in the Holocene

    NASA Astrophysics Data System (ADS)

    Alverson, Keith

    2004-05-01

    Many people, even perhaps the occasional Eos reader, associate the term ``global change'' with warming caused by mankind's recent addiction to fossil fuels. Some may also be well aware of enormous global changes in the distant past uninfluenced by humans; for example, Pleistocene ice ages. But was there any ``global change'' between the end of the last ice age and the onset of industrialization? The answer to this question is addressed early-in the title, even-in the new book Global Change in the Holocene. I don't suggest anyone stop reading after the title, though; the rest of the book is both highly informative and a real pleasure to read. The opening chapter tells us that the Holocene is certainly not, as sometimes charged, a ``bland, pastoral coda to the contrasted movements of a stirring Pleistocene symphony.'' Rather, it is a ``period of continuous change.'' Melodious language aside, the combination of sustained and high-amplitude climatic variability and a wealth of well-preserved, precisely datable paleoclimate archives make the Holocene unique. Only by studying the Holocene can we hope to unravel the low-frequency workings of the Earth system and the degree to which humans have changed our world. This book sets out to teach the reader how to obtain the relevant data and how to use it to do much more than showing static analogues of possible future climate states. It challenges researchers to discern in their data the effects of the dynamic processes underlying coupled variability in the Earth's climate and ecosystems. These processes continue to act today, and it is through providing an understanding of these system dynamics in the Holocene that paleo-environmental studies can make the greatest contribution to future-oriented concerns.

  17. Global Climate Change Pilot Course Project

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region's attitude towards climate change science, policy, and the stances taken by other regions on climate change. The professor will provide a model of integrative research using the U.S. as a focus, and on discussion days, prompt a sort of United Nations discussion on each of these topics with the intention of having the students look at climate change from a different point of view that contrasts their current U.S.-centric view, as well as realize the interdependence of regions particularly in regards to climate change.

  18. GLOBAL CHANGE MULTI-YEAR PLAN

    EPA Science Inventory

    The Global Change Research Act of 1990 establishes the U.S. Global Change Research Program to coordinate a comprehensive research program on global change. This is an inter-Agency effort, with EPA bearing responsibility to assess the consequences of global change on human health,...

  19. GeoChange Global Change Data

    USGS Publications Warehouse

    U.S. Geological Survey

    1997-01-01

    GeoChange is an online data system providing access to research results and data generated by the U.S. Geological Survey's Global Change Research Program. Researchers in this program study climate history and the causes of climatic variations, as well as providing baseline data sets on contemporary atmospheric chemistry, high-resolution meteorology, and dust deposition. Research results are packaged as data sets, groups of digital files containing scientific observations, documentation, and interpretation. The data sets are arranged in a consistent manner using standard file formats so that users of a variety of computer systems can access and use them.

  20. EMS adaptation for climate change

    NASA Astrophysics Data System (ADS)

    Pan, C.; Chang, Y.; Wen, J.; Tsai, M.

    2010-12-01

    The purpose of this study was to find an appropriate scenario of pre-hospital transportation of an emergency medical service (EMS) system for burdensome casualties resulting from extreme climate events. A case of natural catastrophic events in Taiwan, 88 wind-caused disasters, was reviewed and analyzed. A sequential-conveyance method was designed to shorten the casualty transportation time and to promote the efficiency of ambulance services. A proposed mobile emergency medical center was first constructed in a safe area, but nearby the disaster area. The Center consists of professional medical personnel who process the triage of incoming patients and take care of casualties with minor injuries. Ambulances in the Center were ready to sequentially convey the casualties with severer conditions to an assigned hospital that is distant from the disaster area for further treatment. The study suggests that if we could construct a spacious and well-equipped mobile emergency medical center, only a small portion of casualties would need to be transferred to distant hospitals. This would reduce the over-crowding problem in hospital ERs. First-line ambulances only reciprocated between the mobile emergency medical center and the disaster area, saving time and shortening the working distances. Second-line ambulances were highly regulated between the mobile emergency medical center and requested hospitals. The ambulance service of the sequential-conveyance method was found to be more efficient than the conventional method and was concluded to be more profitable and reasonable on paper in adapting to climate change. Therefore, additional practical work should be launched to collect more precise quantitative data.

  1. Enhancing Decision Support For Climate Adaptation At Sub-Regional To Local Scales Through Collaborative And Interdisciplinary Global Change Research And Application

    NASA Astrophysics Data System (ADS)

    Arnott, J. C.; Katzenberger, J.

    2012-12-01

    The science needed to inform society's response to global environmental change is increasingly demanded at sub-regional to local scales, placing a greater burden on the science community to respond to a wide variety of information needs. Oftentimes, communication barriers prevent even the basic articulation of information needs between the user and science research communities, and furthermore there is frequently a mismatch between available scientific talent within a sub region and the scientific resources demanded to respond appropriately to user inquiries. As a result, innovative approaches to the delivery of scientific information in response to user interests and needs at sub-regional to local levels is required. Here, the authors highlight lessons of three examples of delivering usable scientific information within a mountain watershed on questions relating to 1) local biomass energy production; 2) stream and forest health; and 3) watershed scale climate impacts assessment. We report that common elements to the success of these efforts include a) building relationships with both a broad range of disciplines within the science community as well as a wide range of stakeholder groups locally, b) collecting and translating existing monitoring data and filling monitoring gaps, c) gathering interdisciplinary teams to help answer difficult local scale questions not previously treated in literature, and d) communicating results through mechanisms such as stakeholder collaboratives, community forums, and innovative education and outreach products. We find that these components help communities at local to sub-regional scales identify vulnerabilities and adapative strategies.

  2. RISKS, OPPORTUNITIES, AND ADAPTATION TO CLIMATE CHANGE

    EPA Science Inventory

    Adaptation is an important approach for protecting human health, ecosystems, and economic systems from the risks posed by climate variability and change, and to exploit beneficial opportunities provided by a changing climate. This paper presents nine fundamental principles that ...

  3. Adapting Cropping Patterns to Climate Change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many studies on the potential impacts of climate change in agriculture have focused primarily on productivity of individual crops at specific locations rather than considering how cropping patterns may evolve adaptively. These adaptations likely would include both geographic and temporal changes. Th...

  4. Evaluating the potential for justice in urban climate change adaptation in the U.S.: The role of institutions

    EPA Science Inventory

    Global climate change requires that cities adapt to new conditions such as changing precipitation patterns, temperature extremes, and frequency of natural disasters. Adapting cities to climate change will have consequences for urban populations as it requires a reconfiguration of...

  5. Global change monitoring with lichens

    SciTech Connect

    Insarov, G.

    1997-12-31

    Environmental monitoring involves observations and assessment of changes in ecosystems and their components caused by anthropogenetic influence. An ideal monitoring system enables quantification of the contemporary state of the environment and detect changes in it. An important function of monitoring is to assess environment quality of areas that are not affected by local anthropogenic impacts, i.e. background areas. In background areas terrestrial ecosystems are mainly affected by such anthropogenic factors as lowered air pollution and global climate change. Assessment of biotic responses to altered climatic and atmospheric conditions provides an important basis for ecosystem management and environmental decision making. Without the ability to make such assessment, sustainability of ecosystems as a support system for humans remains uncertain.

  6. Climate change: Cropping system changes and adaptations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change impacts the life of every person; however, there is little comprehensive understanding of the direct and indirect effects of climate change on agriculture. Since our food, feed, fiber, and fruit is derived from agricultural systems, understanding the effects of changing temperature, p...

  7. Global view of bionetwork dynamics: adaptive landscape.

    PubMed

    Ao, Ping

    2009-02-01

    Based on recent work, I will give a nontechnical brief review of a powerful quantitative concept in biology, adaptive landscape, initially proposed by S. Wright over 70 years ago, reintroduced by one of the founders of molecular biology and by others in different biological contexts, but apparently forgotten by modern biologists for many years. Nevertheless, this concept finds an increasingly important role in the development of systems biology and bionetwork dynamics modeling, from phage lambda genetic switch to endogenous network for cancer genesis and progression. It is an ideal quantification to describe the robustness and stability of bionetworks. Here, I will first introduce five landmark proposals in biology on this concept, to demonstrate an important common thread in theoretical biology. Then I will discuss a few recent results, focusing on the studies showing theoretical consistency of adaptive landscape. From the perspective of a working scientist and of what is needed logically for a dynamical theory when confronting empirical data, the adaptive landscape is useful both metaphorically and quantitatively, and has captured an essential aspect of biological dynamical processes. Though at the theoretical level the adaptive landscape must exist and it can be used across hierarchical boundaries in biology, many associated issues are indeed vague in their initial formulations and their quantitative realizations are not easy, and are good research topics for quantitative biologists. I will discuss three types of open problems associated with the adaptive landscape in a broader perspective. PMID:19232305

  8. Global view of bionetwork dynamics: adaptive landscape

    PubMed Central

    Ao, Ping

    2011-01-01

    Based on recent work, I will give a nontechnical brief review of a powerful quantitative concept in biology, adaptive landscape, initially proposed by S. Wright over 70 years ago, reintroduced by one of the founders of molecular biology and by others in different biological contexts, but apparently forgotten by modern biologists for many years. Nevertheless, this concept finds an increasingly important role in the development of systems biology and bionetwork dynamics modeling, from phage lambda genetic switch to endogenous network for cancer genesis and progression. It is an ideal quantification to describe the robustness and stability of bionetworks. Here, I will first introduce five landmark proposals in biology on this concept, to demonstrate an important common thread in theoretical biology. Then I will discuss a few recent results, focusing on the studies showing theoretical consistency of adaptive landscape. From the perspective of a working scientist and of what is needed logically for a dynamical theory when confronting empirical data, the adaptive landscape is useful both metaphorically and quantitatively, and has captured an essential aspect of biological dynamical processes. Though at the theoretical level the adaptive landscape must exist and it can be used across hierarchical boundaries in biology, many associated issues are indeed vague in their initial formulations and their quantitative realizations are not easy, and are good research topics for quantitative biologists. I will discuss three types of open problems associated with the adaptive landscape in a broader perspective. PMID:19232305

  9. OverviewClimate Change and Adaptation

    NASA Astrophysics Data System (ADS)

    Aronson, Richard B.

    2009-07-01

    Climate change poses a grave threat to sustainability. The first section of Sustainability2009: The Next Horizon, therefore, is devoted to Climate Change and Adaptation. Contributions focus on the historical consequences of climate change for human societies, as well as the effects of current climate change on sea level, lightning intensity, fire, the El NioSouthern Oscillation (ENSO), and hurricane intensity. Chapters on fisheries and coral reefs highlight the cascading effects climatic warming, rising sea level, and ocean acidification. Adaptation to climate change and its consequences will be necessary to buy time for mitigation and reversal of the effects of greenhouse-gas emissions.

  10. Global climate change: Implications, challenges and mitigation measures

    SciTech Connect

    Majumdar, S.K.; Kalkstein, L.S.; Yarnal, B.M.; Miller, E.W.; Rosenfeld, L.M.

    1992-01-01

    The present volume discusses topics in the fields of natural climatic fluctuations, the greenhouse effect, climate modeling, the biophysical and socioeconomic impacts of climate change, climate-change effect mitigation and adaptation strategies, and domestic (US) and international perspectives on regulation of climate-affecting activities. Attention is given to past climates as a guide to the future, the certainty of contemporary global warming, the physics of the greenhouse effect, the global carbon cycle, general circulation model studies of global warming, the implications of sea-level rise, forests' role in global climate change, the ecological effects of rapid climate change, predicted effects of climate change on agriculture, the impact of global warming on human health, energy supply technologies for reducing greenhouse gas emissions, and the U.N.'s 1992 Earth Summit Conference.

  11. Climate Change and Agriculture: Effects and Adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This document is a synthesis of science literature on the effects of climate change on agriculture and issues associated with agricultural adaptation to climate change. Information is presented on how long-term changes in air temperatures, precipitation, and atmospheric levels of carbon dioxide wi...

  12. Climate change and health: impacts, vulnerability, adaptation and mitigation.

    PubMed

    Kjellstrom, Tord; Weaver, Haylee J

    2009-01-01

    Global climate change is progressing and health impacts have been observed in a number of countries, including Australia. The main health impacts will be due to direct heat exposure, extreme weather, air pollution, reduced local food production, food- and vectorborne infectious diseases and mental stress. The issue is one of major public health importance. Adaptation to reduce the effects of climate change involves many different sectors to minimise negative health outcomes. Wide-scale mitigation is also required, in order to reduce the effects of climate change. In addition, future urban design must be modified to mitigate and adapt to the effects of climate change. Strategies for mitigation and adaptation can create co-benefits for both individual and community health, by reducing non-climate-related health hazard exposures and by encouraging health promoting behaviours and lifestyles. PMID:19261209

  13. Living with climate change: avoiding conflict through adaptation in Malawi

    NASA Astrophysics Data System (ADS)

    Jørstad, H.; Webersik, C.

    2015-11-01

    In recent years, research on climate change and human security has received much attention among policy makers and academia alike. Communities in the Global South that rely on an intact resource base will especially be affected by predicted changes in temperature and precipitation. The objective of this article is to better understand under what conditions local communities can adapt to anticipated impacts of climate change and avoid conflict over the loss of resources. The empirical part of the paper answers the question to what extent local communities in the Chilwa Basin in Malawi have experienced climate change and how they are affected by it. Further, it assesses one of Malawi's adaptation projects designed to build resilience to a warmer and more variable climate, and points to some of its limitations. This research shows that not all adaptation strategies are suited to cope with a warmer and more variable climate.

  14. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is broad scientific consensus that Earth's climate is warming rapidly and at an accelerating rate. Human activities, primarily the burning of fossil fuels, are very likely (>90% probability) to be the main cause of this warming. Climate-sensitive changes in ecosystems are already being observed, and fundamental, potentially irreversible, ecological changes may occur in the coming decades. Conservative environmental estimates of the impact of climate changes that are already in process indicate that they will result in numerous health effects to children. The nature and extent of these changes will be greatly affected by actions taken or not taken now at the global level. Physicians have written on the projected effects of climate change on public health, but little has been written specifically on anticipated effects of climate change on children's health. Children represent a particularly vulnerable group that is likely to suffer disproportionately from both direct and indirect adverse health effects of climate change. Pediatric health care professionals should understand these threats, anticipate their effects on children's health, and participate as children's advocates for strong mitigation and adaptation strategies now. Any solutions that address climate change must be developed within the context of overall sustainability (the use of resources by the current generation to meet current needs while ensuring that future generations will be able to meet their needs). Pediatric health care professionals can be leaders in a move away from a traditional focus on disease prevention to a broad, integrated focus on sustainability as synonymous with health. This policy statement is supported by a technical report that examines in some depth the nature of the problem of climate change, likely effects on children's health as a result of climate change, and the critical importance of responding promptly and aggressively to reduce activities that are contributing to this change. PMID:17967923

  15. SCIENTIFIC LINKAGES IN GLOBAL CHANGE

    EPA Science Inventory

    In the atmosphere, certain trace gases both promote global warming and deplete the ozone layer. he primary radiatively active trace gases, those that affect global warming, are carbon dioxide, nitrous oxide, chlorofluorocarbons, methane, and tropospheric ozone. n the troposphere,...

  16. Boreal forest health and global change.

    PubMed

    Gauthier, S; Bernier, P; Kuuluvainen, T; Shvidenko, A Z; Schepaschenko, D G

    2015-08-21

    The boreal forest, one of the largest biomes on Earth, provides ecosystem services that benefit society at levels ranging from local to global. Currently, about two-thirds of the area covered by this biome is under some form of management, mostly for wood production. Services such as climate regulation are also provided by both the unmanaged and managed boreal forests. Although most of the boreal forests have retained the resilience to cope with current disturbances, projected environmental changes of unprecedented speed and amplitude pose a substantial threat to their health. Management options to reduce these threats are available and could be implemented, but economic incentives and a greater focus on the boreal biome in international fora are needed to support further adaptation and mitigation actions. PMID:26293953

  17. Clouds and Climate Change. Understanding Global Change: Earth Science and Human Impacts. Global Change Instruction Program.

    ERIC Educational Resources Information Center

    Shaw, Glenn E.

    The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module introduces the basic features and classifications of clouds and cloud cover, and explains how clouds form, what they are made of, what roles they play in

  18. Clouds and Climate Change. Understanding Global Change: Earth Science and Human Impacts. Global Change Instruction Program.

    ERIC Educational Resources Information Center

    Shaw, Glenn E.

    The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module introduces the basic features and classifications of clouds and cloud cover, and explains how clouds form, what they are made of, what roles they play in…

  19. GLOBAL CARBON CYCLE AND CLIMATE CHANGE

    EPA Science Inventory

    The production of greenhouse gases due to anthropogenic activities may have begun to change the global climate. he global carbon cycle plays a significant role in projected climate change. owever, considerable uncertainty exists regarding pools and flux in the global cycle. iven ...

  20. Climate Change Adaptation in the Urban Environment

    SciTech Connect

    Wilbanks, Thomas J

    2011-01-01

    This overview chapter considers five questions that cut across the four case studies in the section to follow: (1) why are urban environments of particular interest; (2) what does an 'urban environment' mean as a focus for adaptation actions, (3) what do we know about climate change vulnerabilities and adaptation potentials in urban areas; (4) what can we expect in the future with adaptation in urban areas; and (5) what is happening with climate change adaptation in urban areas? After decades of inattention, adaptation to risks and impacts of climate change is now receiving long overdue attention, and it is only natural that a considerable share of this attention is focused on the places where most people live. This section considers climate change adaptation in the urban environment, defined as settings where human populations cluster - generally implying relatively large clusters, but not excluding smaller settlements that operate as coherent geopolitical and economic entities. Consistent with the topic of the book, the emphasis of this overview will be on urban environments in developed countries, but it will also draw on knowledge being developed from urban experiences across the globe.

  1. Global (Multi Conjugated) Adaptive Optics and beyond

    NASA Astrophysics Data System (ADS)

    Ragazzoni, Roberto

    Multi Conjugated Adaptive Optics is nowadays a well established achievement marked by the short-lived MAD at the VLT, although it still lacks the benefits of being employed in instrumentations at 8m class telescopes, with the sole exception of GeMS at GEMINI. While the next obvious extension of MCAO is reppresented by GMCAO that is briefly described, I speculate on which could be the areas where development is needed or where some outstanding achievement could have the chance to make a further leap, if not a novel revolution, in the field of ground based astronomical instrumentation.

  2. Towards typologies of urban climate and global environmental change

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix

    2015-10-01

    The beauty of cities is that every city is different. From the homogenizing perspective of global environmental change that speaks trouble. We need an understanding of which kind of cities can contribute what kind of measures to mitigate and adapt to global environmental change. Typologies of cities offer a bridge between the idiosyncratic and the global. Bounoua et al (2015 Environ. Res. Lett. 10 084010) analyse the impact of urbanization on surface climate. We discuss their results and suggest avenues for further systematic analysis.

  3. Local initiatives and adaptation to climate change.

    PubMed

    Blanco, Ana V Rojas

    2006-03-01

    Climate change is expected to lead to an increase in the number and strength of natural hazards produced by climatic events. This paper presents some examples of the experiences of community-based organisations (CBOs) and non-governmental organisations (NGOs) of variations in climate, and looks at how they have incorporated their findings into the design and implementation of local adaptation strategies. Local organisations integrate climate change and climatic hazards into the design and development of their projects as a means of adapting to their new climatic situation. Projects designed to boost the resilience of local livelihoods are good examples of local adaptation strategies. To upscale these adaptation initiatives, there is a need to improve information exchange between CBOs, NGOs and academia. Moreover, there is a need to bridge the gap between scientific and local knowledge in order to create projects capable of withstanding stronger natural hazards. PMID:16512866

  4. CLIMATE CHANGE AND GLOBAL ISOPRENE EMISSIONS

    EPA Science Inventory

    Emission of isoprene from vegetation affects tropospheric chemistry at the regional and global scales. rojected global climate change will potentially alter emission rates, with corresponding influences on concentrations of ozone and other radiatively important trace gases. rogre...

  5. Phytoplankton adapt to changing ocean environments

    PubMed Central

    Finkel, Zoe V.; Müller-Karger, Frank E.; Troccoli Ghinaglia, Luis

    2015-01-01

    Model projections indicate that climate change may dramatically restructure phytoplankton communities, with cascading consequences for marine food webs. It is currently not known whether evolutionary change is likely to be able to keep pace with the rate of climate change. For simplicity, and in the absence of evidence to the contrary, most model projections assume species have fixed environmental preferences and will not adapt to changing environmental conditions on the century scale. Using 15 y of observations from Station CARIACO (Carbon Retention in a Colored Ocean), we show that most of the dominant species from a marine phytoplankton community were able to adapt their realized niches to track average increases in water temperature and irradiance, but the majority of species exhibited a fixed niche for nitrate. We do not know the extent of this adaptive capacity, so we cannot conclude that phytoplankton will be able to adapt to the changes anticipated over the next century, but community ecosystem models can no longer assume that phytoplankton cannot adapt. PMID:25902497

  6. Phytoplankton adapt to changing ocean environments.

    PubMed

    Irwin, Andrew J; Finkel, Zoe V; Müller-Karger, Frank E; Troccoli Ghinaglia, Luis

    2015-05-01

    Model projections indicate that climate change may dramatically restructure phytoplankton communities, with cascading consequences for marine food webs. It is currently not known whether evolutionary change is likely to be able to keep pace with the rate of climate change. For simplicity, and in the absence of evidence to the contrary, most model projections assume species have fixed environmental preferences and will not adapt to changing environmental conditions on the century scale. Using 15 y of observations from Station CARIACO (Carbon Retention in a Colored Ocean), we show that most of the dominant species from a marine phytoplankton community were able to adapt their realized niches to track average increases in water temperature and irradiance, but the majority of species exhibited a fixed niche for nitrate. We do not know the extent of this adaptive capacity, so we cannot conclude that phytoplankton will be able to adapt to the changes anticipated over the next century, but community ecosystem models can no longer assume that phytoplankton cannot adapt. PMID:25902497

  7. Atmospheric Chemistry and Global Change

    NASA Astrophysics Data System (ADS)

    Wofsy, Steven C.

    Atmospheric Chemistry and Global Change is the result of the collective efforts of scientists at the National Center for Atmospheric Research (NCAR) to provide a comprehensive textbook for students at the graduate level and a reference book for teachers and scientists.There are 16 chapters, each authored by two or more NCAR scientists with contributions from many others, followed by a 2-page essay by a non- NCAR scientist reflecting on the subject matter.The book succeeds well beyond what one might expect from such a large group effort, with several chapters being true gems. For example, one is accustomed to reading chapters on dynamics and transport either written for dynamicists, thus incomprehensible to chemists, or simplified treatments or summaries written by chemists and lacking in real substance. Here the long chapter by Rolando Garcia et al. is outstanding in its clarity, completeness, and careful attention to both transport and the underlying principles and phenomena of geophysical fluid dynamics. It's not for the faint of heart (there are 162 equations and 32 figures), but the reader's effort is handsomely rewarded.

  8. Socio-economic data for global environmental change research

    NASA Astrophysics Data System (ADS)

    Otto, Ilona M.; Biewald, Anne; Coumou, Dim; Feulner, Georg; Khler, Claudia; Nocke, Thomas; Blok, Anders; Grber, Albert; Selchow, Sabine; Tyfield, David; Volkmer, Ingrid; Schellnhuber, Hans Joachim; Beck, Ulrich

    2015-06-01

    Subnational socio-economic datasets are required if we are to assess the impacts of global environmental changes and to improve adaptation responses. Institutional and community efforts should concentrate on standardization of data collection methodologies, free public access, and geo-referencing.

  9. U.S. Global Change Research Program National Climate Assessment Global Change Information System

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2012-01-01

    The program: a) Coordinates Federal research to better understand and prepare the nation for global change. b) Priori4zes and supports cutting edge scientific work in global change. c) Assesses the state of scientific knowledge and the Nation s readiness to respond to global change. d) Communicates research findings to inform, educate, and engage the global community.

  10. Global Environmental change: Understanding the Human Dimensions

    SciTech Connect

    Morrisette, P.M.

    1993-01-01

    This book is from the National Research Council's Committee on the Human dimensions of Global Change. The object is to examine what is known about human dimensions of global environmental change, identify the major immediate needs for knowledge, and recommend a strategy over the next 5-10 years. Case studies are used in human causes of global change. issues related to theory, methods, and data are covered, as well as institutional needs for interdicipinary approaches.

  11. Global change research: Science and policy

    SciTech Connect

    Rayner, S.

    1993-05-01

    This report characterizes certain aspects of the Global Change Research Program of the US Government, and its relevance to the short and medium term needs of policy makers in the public and private sectors. It addresses some of the difficulties inherent in the science and policy interface on the issues of global change. Finally, this report offers some proposals for improving the science for policy process in the context of global environmental change.

  12. Adapting agriculture to climate change: a review

    NASA Astrophysics Data System (ADS)

    Anwar, Muhuddin Rajin; Liu, De Li; Macadam, Ian; Kelly, Georgina

    2013-07-01

    The agricultural sector is highly vulnerable to future climate changes and climate variability, including increases in the incidence of extreme climate events. Changes in temperature and precipitation will result in changes in land and water regimes that will subsequently affect agricultural productivity. Given the gradual change of climate in the past, historically, farmers have adapted in an autonomous manner. However, with large and discrete climate change anticipated by the end of this century, planned and transformational changes will be needed. In light of these, the focus of this review is on farm-level and farmers responses to the challenges of climate change both spatially and over time. In this review of adapting agriculture to climate change, the nature, extent, and causes of climate change are analyzed and assessed. These provide the context for adapting agriculture to climate change. The review identifies the binding constraints to adaptation at the farm level. Four major priority areas are identified to relax these constraints, where new initiatives would be required, i.e., information generation and dissemination to enhance farm-level awareness, research and development (R&D) in agricultural technology, policy formulation that facilitates appropriate adaptation at the farm level, and strengthening partnerships among the relevant stakeholders. Forging partnerships among R&D providers, policy makers, extension agencies, and farmers would be at the heart of transformational adaptation to climate change at the farm level. In effecting this transformational change, sustained efforts would be needed for the attendant requirements of climate and weather forecasting and innovation, farmer's training, and further research to improve the quality of information, invention, and application in agriculture. The investment required for these would be highly significant. The review suggests a sequenced approach through grouping research initiatives into short-term, medium-term, and long-term initiatives, with each initiative in one stage contributing to initiatives in a subsequent stage. The learning by doing inherent in such a process-oriented approach is a requirement owing to the many uncertainties associated with climate change.

  13. Global Change Observation Mission (GCOM)

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa

    In order to meet the requirements of Global Earth Observation System of Systems (GEOSS) as well as to continue the ADEOS and ADEOS2 missions, JAXA is now planning the GCOM mission which is composed of a series of satellites. There are two series of satellites, and they are now called GCOM-W and GCOM-C satellites. Both series are composed of 3 satellites with 5 years lifetime. Hence, 13 years of continuous observation can be assured with 1 year overlaps. The first satellite of GCOM-W will be launched in fiscal 2011 while the first one of GCOM-C will be launched in fiscal 2013. In regard to global warming, the GCOM intends the measurement of most factors involved in the energy and water cycle and material cycle, which are the main mechanisms determining climate change, and also analysis of the relevant processes. Within the material cycle, measurement of the carbon cycle is a key subject. In this particular field, the GCOM aims at estimating the primary production as well as carbon flux based on measurement data on land vegetation and phytoplankton. In regard to changes of the land environment, the measuring subjects are tropical forests and the global distribution of vegetation and its changes. In regard to the cryosphere, the sea ice concentration and snow coverage are measured and their interaction with the climate is analyzed. GCOM-W1 will carry AMSR2 (AMSR F/O). AMSR2 will be very similar to AMSR on ADEOS2 and AMSR-E on EOS-Aqua with some modifications. The aperture of AMSR2 is 2m, and AMSR2 will have more accurate hot load than AMSR. Two kinds of modification are intro-duced. One is to use an actively controlled thermal reflector over the hot load. This reflector is called a temperature controlled plate (TCP). Another modification is to shield the ambient emissions. GCOM-C1 will carry GLI F/O (called the second generation GLI : SGLI). The SGLI will be rather different from GLI on ADEOS2. The main targets of SGLI are atmospheric aerosols, coastal zone and land. In order to measure aerosols over both ocean and land, it will have a near ultra violet channel, as well as polarization and bi-directional observation capability. The instrument will be composed of several components. They are VNR (visible and near infrared), polarization (POL), and IRS (short wave to long wave infrared (SWI TMI). The VNR and POL will adopt push broom scanners, while IRS will use a conventional whisk broom scanner. VNR is composed of 3 cameras. They have rather small FOVs and cover total of 70 degrees with 3 cameras. VNR is an 11 channel scanner. POL will have two spectral channels, while each spectral channel is composed of 3 polarizations. SWI will have 4 channels. TMI will have 2 split window channels. For, coastal zone and land observation, the IFOV of SGLI for these targets will be around 250m. All channels of VNR except 763 nm and 1.64 m channel of SWI have 250m IFOV. TMI channels have 250m IFOV and all the other channels have 1000m IFOV. There are several options on the orbit. The baseline option is 700km afternoon orbit for GCOM-W1 and 800km morning orbit for GCOM-C1 to continue the AMSR-E observation and GLI observation. Now, it is decided that GCOM-W1 will be in A-Train. By getting into A-train, cross calibration with AMSR-E will be very easy, and there could be many new products with other A-Train sensors. However, if AMSR-E will be operated a long time after GCOM-W1 launch, this orbit will miss observation frequency. Both satellites are medium sized spacecraft, i.e. 1.9 to 2.0 tons.

  14. Changing ideas of global limits.

    PubMed

    Goddy, D

    1984-03-01

    In this discussion of changing ideas of global limits, attention is directed to world trade, moral restraint, and the "green revolution." A fresh look at the work of those who first considered population problems, e.gg., Malthur, can help make some sense of the population problems the world faces today. Malthus, writing in the late 1700s, concluded that population multiplies with each generation. He saw that food production was limited by the amount of available cropland and that the more people there are, the less food they will have to eat -- assuming that all available cropland is planted. This grim view of the future led Malthus to oppose government aid to the poor maintaining that such assistance would only encourage poor people to have large families. His solution was "moral restratin," seeing it as the duty of each individual to refrain from marriage until he was able to support his children. At the time this advice seemed cruel and Malthus was bitterly attacked by writers everywhere in Europe. Karl Marx and other ctitics of Malthus believed that poverty was caused by unjust governments and the selfishness of the rich. Marx clamied that the problem was too few jobs rather than too many people. The dire predictions of Malthus were soon forgotten as manufacturing industries began to transform the economies of Western Europe in the 1800s. Along with soaring economic growth came a host of developments that improved people's lives, e.g., better transportation, better sanitiation and nutrition, and better medicine. New inventions helped farmers fo produce more food. Next came the "demographic transition." Population grew quickly in Europe and North America as people became healthier and lived longer. Gradually, people in the industrial nations began deciding to have smaller families to enable them to afford an even higher living standard. By the late 1920s birthrates in Europe and the US had dropped so low that mention of the "population problem" usually referred to the threat of underpopulation. Following World War II, developing countries such as Mexico and India began to introduce modern medicine and sanitation, and death rates dropped and thepopulations of these countries mushroomed. Suddenly, world leaders were taking Malthus' warning seriously. In the 1970s scientists began to worry that people were using up the earth's resources and polluting the environment. 150 years after the death of Malthus there is little to make Malthus change his theory. 1 difference is that for the 1st time in history governments are working to control population growth. PMID:12178305

  15. Global Education: A Study of School Change.

    ERIC Educational Resources Information Center

    Tye, Barbara Benham; Tye, Kenneth A.

    This book studies the role of the global education movement and its impact on educational change and reform. The volume discusses the importance of global education and considers the following topics: the influence of research on practice; global education as a social movement; meaning and activity; competing demands and the use of time in

  16. Global Change Research Program releases new strategic plan

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-05-01

    Global Change Research Program releases new strategic plan A new 10-year strategic plan released by the United States Global Change Research Program (USGCRP) on 27 April calls for the federal interagency program to focus on four key goals during 2012-2021 to coordinate federal research efforts related to global change. The goals include advancing scientific knowledge of the integrated natural and human components of the Earth system; providing the scientific basis to inform and enable timely decisions on adaptation and mitigation; building sustained assessment capacity that improves the nation's ability to understand, anticipate, and respond to global change impacts and vulnerabilities; and advancing communications and education to broaden understanding of global change and develop the scientific workforce of the future. The goals and related objectives recognize that to respond effectively to global change will require a deep understanding of the integrated Earth systeman understanding that incorporates physical, chemical, biological and behavioral information, the plan states. It is no longer enough to study the isolated physical, chemical, and biological factors affecting global change, said USGCRP executive director Tom Armstrong.

  17. Monitoring adaptive genetic responses to environmental change.

    PubMed

    Hansen, Michael M; Olivieri, Isabelle; Waller, Donald M; Nielsen, Einar E

    2012-03-01

    Widespread environmental changes including climate change, selective harvesting and landscape alterations now greatly affect selection regimes for most organisms. How animals and plants can adapt to these altered environments via contemporary evolution is thus of strong interest. We discuss how to use genetic monitoring to study adaptive responses via repeated analysis of the same populations over time, distinguishing between phenotypic and molecular genetics approaches. After describing monitoring designs, we develop explicit criteria for demonstrating adaptive responses, which include testing for selection and establishing clear links between genetic and environmental change. We then review a few exemplary studies that explore adaptive responses to climate change in Drosophila, selective responses to hunting and fishing, and contemporary evolution in Daphnia using resurrected resting eggs. We further review a broader set of 44 studies to assess how well they meet the proposed criteria, and conclude that only 23% fulfill all criteria. Approximately half (43%) of these studies failed to rule out the alternative hypothesis of replacement by a different, better-adapted population. Likewise, 34% of the studies based on phenotypic variation did not test for selection as opposed to drift. These shortcomings can be addressed via improved experimental designs and statistical testing. We foresee monitoring of adaptive responses as a future valuable tool in conservation biology, for identifying populations unable to evolve at sufficiently high rates and for identifying possible donor populations for genetic rescue. Technological advances will further augment the realization of this potential, especially next-generation sequencing technologies that allow for monitoring at the level of whole genomes. PMID:22269082

  18. GLOBAL CHANGE RESEARCH NEWS #15: WORKSHOP ON ANCILLARY BENEFITS AND COSTS OF CLIMATE CHANGE STRATEGIES

    EPA Science Inventory

    EPA's Global Change Research Program is co-sponsoring a three-day workshop to examine possible ancillary benefits of climate change adaptation and mitigation policies. The goals of the workshop are: (1)to establish a common basis of understanding about the conceptual and empiric...

  19. Global Change and Human Vulnerability to Vector-Borne Diseases

    PubMed Central

    Sutherst, Robert W.

    2004-01-01

    Global change includes climate change and climate variability, land use, water storage and irrigation, human population growth and urbanization, trade and travel, and chemical pollution. Impacts on vector-borne diseases, including malaria, dengue fever, infections by other arboviruses, schistosomiasis, trypanosomiasis, onchocerciasis, and leishmaniasis are reviewed. While climate change is global in nature and poses unknown future risks to humans and natural ecosystems, other local changes are occurring more rapidly on a global scale and are having significant effects on vector-borne diseases. History is invaluable as a pointer to future risks, but direct extrapolation is no longer possible because the climate is changing. Researchers are therefore embracing computer simulation models and global change scenarios to explore the risks. Credible ranking of the extent to which different vector-borne diseases will be affected awaits a rigorous analysis. Adaptation to the changes is threatened by the ongoing loss of drugs and pesticides due to the selection of resistant strains of pathogens and vectors. The vulnerability of communities to the changes in impacts depends on their adaptive capacity, which requires both appropriate technology and responsive public health systems. The availability of resources in turn depends on social stability, economic wealth, and priority allocation of resources to public health. PMID:14726459

  20. GLOBAL CLIMATE CHANGE: POLICY IMPLICATIONS FOR FISHERIES

    EPA Science Inventory

    Several government agencies are evaluating policy options for addressing global climate change. hese include planning for anticipated effects and developing mitigation options where feasible if climate does change as predicted. or fisheries resources, policy questions address eff...

  1. HOW WILL GLOBAL CLIMATE CHANGE AFFECT PARASITES?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Parasites are integral components of complex biotic assemblages that comprise the biosphere. Host switching correlated with episodic climate-change events are common in evolutionary and ecological time. Global climate change produces ecological perturbation, manifested in major geographical/pheno...

  2. Global Climate Change and the Mitigation Challenge

    EPA Science Inventory

    Book edited by Frank Princiotta titled Global Climate Change--The Technology Challenge Transparent modeling tools and the most recent literature are used, to quantify the challenge posed by climate change and potential technological remedies. The chapter examines forces driving ...

  3. Measuring Seawater Temperatures with Global Climate Change

    USGS Multimedia Gallery

    Researchers are experimentally determining the mechanisms corals will use to acclimatize to warmer seawater temperatures with global climate change. To determine the biochemical changes in corals, Dan did reciprocal transplant experiments between the forereef slope (benign environment, always around...

  4. Climate Change: Believing and Seeing Implies Adapting

    PubMed Central

    Blennow, Kristina; Persson, Johannes; Tom, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD 0.01) to 0.81 (SD 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD 0.008) to 0.91 (SD 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered. PMID:23185568

  5. Adaptation pathways in agriculture: A case study on global wheat production

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Takahashi, K.; Masutomi, Y.; Hanasaki, N.; Hijioka, Y.; Shiogama, H.

    2014-12-01

    When decision makers plan adaptation to climate change, they have to consider time variation of the effectiveness of adaptation. Since climate is expected to keep changing, the adaptation which is considered optimal at a certain time may become insufficient later. Several existing studies have proposed a concept termed "adaptation pathways" that are generated based on the assumption that another option needs to be implemented if a certain option no longer meets specific objectives (Haasnoot et al., 2012). We developed nation-wise adaptation pathways globally for wheat production under the projected climate change over the 21st century. We considered two adaptation options: (1) expanding irrigation infrastructure; and (2) switching crop varieties. We calculated wheat yield with varying irrigated area and the number of selectable crop varieties using a crop model called M-GAEZ. Then we generated adaptation pathways to maintain current country-based yield. We found that both the adaptation pathways and yield changes led were different among countries. In this session, we argue the difference in optimal timing and variety of adaptation options among countries.

  6. Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming.

    PubMed

    Hanna, Elizabeth G; Tait, Peter W

    2015-07-01

    Human thermoregulation and acclimatization are core components of the human coping mechanism for withstanding variations in environmental heat exposure. Amidst growing recognition that curtailing global warming to less than two degrees is becoming increasing improbable, human survival will require increasing reliance on these mechanisms. The projected several fold increase in extreme heat events suggests we need to recalibrate health protection policies and ratchet up adaptation efforts. Climate researchers, epidemiologists, and policy makers engaged in climate change adaptation and health protection are not commonly drawn from heat physiology backgrounds. Injecting a scholarly consideration of physiological limitations to human heat tolerance into the adaptation and policy literature allows for a broader understanding of heat health risks to support effective human adaptation and adaptation planning. This paper details the physiological and external environmental factors that determine human thermoregulation and acclimatization. We present a model to illustrate the interrelationship between elements that modulate the physiological process of thermoregulation. Limitations inherent in these processes, and the constraints imposed by differing exposure levels, and thermal comfort seeking on achieving acclimatization, are then described. Combined, these limitations will restrict the likely contribution that acclimatization can play in future human adaptation to global warming. We postulate that behavioral and technological adaptations will need to become the dominant means for human individual and societal adaptations as global warming progresses. PMID:26184272

  7. Limitations to Thermoregulation and Acclimatization Challenge Human Adaptation to Global Warming

    PubMed Central

    Hanna, Elizabeth G.; Tait, Peter W.

    2015-01-01

    Human thermoregulation and acclimatization are core components of the human coping mechanism for withstanding variations in environmental heat exposure. Amidst growing recognition that curtailing global warming to less than two degrees is becoming increasing improbable, human survival will require increasing reliance on these mechanisms. The projected several fold increase in extreme heat events suggests we need to recalibrate health protection policies and ratchet up adaptation efforts. Climate researchers, epidemiologists, and policy makers engaged in climate change adaptation and health protection are not commonly drawn from heat physiology backgrounds. Injecting a scholarly consideration of physiological limitations to human heat tolerance into the adaptation and policy literature allows for a broader understanding of heat health risks to support effective human adaptation and adaptation planning. This paper details the physiological and external environmental factors that determine human thermoregulation and acclimatization. We present a model to illustrate the interrelationship between elements that modulate the physiological process of thermoregulation. Limitations inherent in these processes, and the constraints imposed by differing exposure levels, and thermal comfort seeking on achieving acclimatization, are then described. Combined, these limitations will restrict the likely contribution that acclimatization can play in future human adaptation to global warming. We postulate that behavioral and technological adaptations will need to become the dominant means for human individual and societal adaptations as global warming progresses. PMID:26184272

  8. Climate change: Global risks, challenges and decisions

    NASA Astrophysics Data System (ADS)

    McBean, Gordon

    2012-05-01

    In 2009, world leaders at the 15th Conference of the Parties under the United Nations Framework Convention on Climate Change agreed to the Copenhagen Accord, which states in the opening paragraph, "To achieve the ultimate objective of the Convention to stabilize greenhouse gas concentration in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system, we shall, recognizing the scientific view that the increase in global temperature should be below 2 degrees Celsius, on the basis of equity and in the context of sustainable development, enhance our long-term cooperative action to combat climate change." This book addresses the key elements of that statement: On the basis of analyses of climate science, what is dangerous? Where does the 2C come from? What are possible response measures, and can we hold at 2C? What are the critical impacts and needs for adaptation? The book presents these issues in the basis of equity and in the context of sustainable development and, most important, talks about the challenges.

  9. Mutations in global regulators lead to metabolic selection during adaptation to complex environments

    DOE PAGESBeta

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie -Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; et al

    2014-12-11

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased geneticmore » and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management as a powerful strategy to adaptation.« less

  10. Global Change and the Terrestrial Biosphere

    SciTech Connect

    Rogers, Alistair

    2009-04-22

    Terrestrial ecosystems sustain life on Earth through the production of food, fuel, fiber, clean air, and naturally purified water. But how will agriculture and ecosystems be affected by global change? Rogers describes the impact of projected climate change on the terrestrial biosphere and explains why plants are not just passive respondents to global change, but play an important role in determining the rate of change.

  11. Estimating the Global Solar Magnetic Field Distribution Using ADAPT

    NASA Astrophysics Data System (ADS)

    Arge, C. N.; Henney, C. J.; Toussaint, W. A.; Godinez, H. C.; Hickmann, K. S.

    2014-12-01

    Estimation of the global solar photospheric magnetic field distribution is currently difficult, since only approximately half of the solar surface is magnetically observed at any given time. With the solar rotational period relative to Earth at approximately 27 days, these global maps include observed data that are more than 13 days old. Data assimilation between old and new observations can result in spatial polarity discontinuities that result in significant monopole signals. To help minimize these large discontinuities and to specify the global state of the photospheric magnetic flux distribution as accurately as possible, we have developed the ADAPT (Air Force Data Assimilative Photospheric flux Transport) model, which is comprised of a photospheric magnetic flux transport model that makes use of data assimilation methods. The ADAPT transport model evolves the solar magnetic flux for an ensemble of realizations using different model parameter values, e.g., for rotational, meridional, and super-granular diffusive transport processes. In this presentation, the ADAPT model and the data assimilative methods used within it will be reviewed. Coronal, solar wind, F10.7, and EUV model predictions based on ADAPT global photospheric magnetic field maps as input will be discussed.

  12. Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration

    NASA Astrophysics Data System (ADS)

    Douville, H.; Ribes, A.; Decharme, B.; Alkama, R.; Sheffield, J.

    2013-01-01

    Global warming is expected to intensify the global hydrological cycle, with an increase of both evapotranspiration (EVT) and precipitation. Yet, the magnitude and spatial distribution of this global and annual mean response remains highly uncertain. Better constraining land EVT in twenty-first-century climate scenarios is critical for predicting changes in surface climate, including heatwaves and droughts, evaluating impacts on ecosystems and water resources, and designing adaptation policies. Continental scale EVT changes may already be underway, but have never been attributed to anthropogenic emissions of greenhouse gases and sulphate aerosols. Here we provide global gridded estimates of annual EVT and demonstrate that the latitudinal and decadal differentiation of recent EVT variations cannot be understood without invoking the anthropogenic radiative forcings. In the mid-latitudes, the emerging picture of enhanced EVT confirms the end of the dimming decades and highlights the possible threat posed by increasing drought frequency to managing water resources and achieving food security in a changing climate.

  13. Solar variability: Implications for global change

    NASA Technical Reports Server (NTRS)

    Lean, Judith; Rind, David

    1994-01-01

    Solar variability is examined in search of implications for global change. The topics covered include the following: solar variation modification of global surface temperature; the significance of solar variability with respect to future climate change; and methods of reducing the uncertainty of the potential amplitude of solar variability on longer time scales.

  14. RESEARCH STRATEGY: GLOBAL CHANGE RESEARCH PROGRAM

    EPA Science Inventory

    The Research Strategy of ORD's Global Change Research Program outlines a ten-year plan and a major redirection of the Program towards an emphasis on assessing the consequences of global change and on conducting research to support such assessments. Assessments will be conducted o...

  15. Global Change in the Great Lakes: Scenarios.

    ERIC Educational Resources Information Center

    Garrison, Barbara K., Ed.; Rosser, Arrye R., Ed.

    The Ohio Sea Grant Education Program has produced this series of publications designed to help people understand how global change may affect the Great Lakes region. The possible implications of global change for this region of the world are explained in the hope that policymakers and individuals will be more inclined to make responsible decisions…

  16. Biodiversity: Interacting global change drivers

    NASA Astrophysics Data System (ADS)

    Settele, Josef; Wiemers, Martin

    2015-10-01

    Climate change impacts on species do not occur in isolation. Now research on drought-sensitive British butterflies uses citizen science to attribute the drivers of population changes and shows landscape management to be a key part of the solution.

  17. Climate Change Adaptation Challenges and EO Business Opportunities

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, Ernesto; Mathieu, Pierre-Philippe; Bansal, Rahul; Del Rey, Maria; Mohamed, Ebrahim; Ruiz, Paz; Signes, Marcos

    Climate change is one of the defining challenges of the 21st century, but is no longer a matter of just scientific concern. It encompasses economics, sociology, global politics as well as national and local politics, law, health and environmental security, etc. The challenge of facing the impacts of climate change is often framed in terms of two potential paths that civilization might take: mitigation and adaptation. On the one hand, mitigation involves reducing the magnitude of climate change itself and is composed of emissions reductions and geoengineering. On the other hand and by contrast, adaptation involves efforts to limit our vulnerability to climate change impacts through various measures. It refers to our ability to adjust ourselves to climate change -including climate variability and extremes, to moderate potential damage, to take advantage of opportunities, or to cope with the consequences. Therefore, we are now faced with a double challenge: next to deep cuts in greenhouse gas emissions, we also need to adapt to the changing climate conditions. The use of satellites to monitor processes and trends at the global scale is essential in the context of climate change. Earth Observation has the potential to improve our predictive vision and to advance climate models. Space sciences and technologies constitute a significant issue in Education and Public Awareness of Science. Space missions face the probably largest scientific and industrial challenges of humanity. It is thus a fact that space drives innovation in the major breakthrough and cutting edge technological advances of mankind (techniques, processes, new products, … as well as in markets and business models). Technology and innovation is the basis of all space activities. Space agencies offer an entire range of space-related activities - from space science and environmental monitoring to industrial competitiveness and end-user services. More specifically, Earth Observation satellites have a unique global view of planet Earth, providing us -with better data- with consistent and frequent information on the state of our environment at the regional and global scale, also in important but remote areas. Climate Knowledge and Innovation Communities (Climate-KIC), a relatively new initiative from the European Institute of Innovation & Technology (EIT), provides the innovations, entrepreneurship, education and expert guidance needed to shape Europe's climate change agenda. This paper shows some initiatives that the University of Valencia Climate-KIC Education Group is carrying out in collaboration with the Climate-KIC Central Education Lead in the field of space education to foster and encourage students and entrepreneurs to endevour in these new space business opportunities offered by this step forward towards climate change adaptation challenges.

  18. NASA NDATC Global Climate Change Education Initiative

    NASA Astrophysics Data System (ADS)

    Bennett, B.; Wood, E.; Meyer, D.; Maynard, N.; Pandya, R. E.

    2009-12-01

    This project aligns with NASA’s Strategic Goal 3A - “Study Earth from space to advance scientific understanding and meet societal needs and focuses on funding from the GCCE Funding Category 2: Strengthen the Teaching and Learning About Global Climate Change Within Formal Education Systems. According to the Intergovernmental Panel on Climate Change Report (2007) those communities with the least amount of resources will be most vulnerable, and least likely to adapt to the impacts brought on by a changing climate. Further, the level of vulnerability of these communities is directly correlated with their ability to implement short, medium and long range mitigation measures. The North Dakota Association of Tribal Colleges (NDATC) has established a climate change education initiative among its six member Tribal Colleges and Universities (TCUs). The goal of this project is to enhance the TCUs capacity to educate their constituents on the science of climate change and mitigation strategies specifically as they apply to Indian Country. NDATC is comprised of six American Indian tribally chartered colleges (TCUs) which include: Cankdeska Cikana Community College, serving the Spirit Lake Dakota Nation; Fort Berthold Community College, serving the Mandan, Hidatsa, and Arikara Nation; Sitting Bull College, serving the Hunkpapa Lakota and Dakota Nation; Turtle Mountain Community College, serving the Turtle Mountain Band of Chippewa; Sisseton Wahpeton College serving the Sisseton and Wahpeton Dakota Nation, and United Tribes Technical College, serving over 70 Tribal groups from across the United States. The purpose of this project is to (1) increase awareness of climate change and its potential impacts in Indian Country through education for students, faculty and presidents of the TCUs as well as Tribal leadership; (2) increase the capacity of TCUs to respond to this global threat on behalf of tribal people; (3) develop climate change mitigation strategies relevant to Indian Country in the Northern Plains; (4) strengthen our partnerships in the scientific community in addressing climate change issues that will impact our reservations; and (5) utilize NASA resources and instrumentation through LPDAAC (Landsat TM and ETM +, MODIS, ASTER and other remotely sensed data) to educate our TCU students about appropriate research and modeling applications. Few of the TCU STEM faculty have read and comprehend the “Summaries for Policy Makers” published by the IPCC working groups, the Global Climate Change Impacts in the United States, or the ACIA report. Many of these same faculty have little or no experience with remote sensing applications. Through this project we will empower our colleges and students to fully understand the threats posed by this important phenomenon. We will provide training for our TCU faculty, who, in turn, will prepare our students with the knowledge to implement the diverse and comprehensive mitigation strategies needed to sustain our resources and tribal communities.

  19. Population Growth. Understanding Global Change: Earth Science and Human Impacts. Global Change Instruction Program.

    ERIC Educational Resources Information Center

    Jacobsen, Judith E.

    The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module concentrates on interactions between population growth and human activities that produce global change. The materials are designed for undergraduate students

  20. Eighth symposium on global change studies

    SciTech Connect

    1997-11-01

    The conference proceedings contain papers from 16 of 20 sessions. The topics of the sessions from which papers were selected were: (1) implications of the IPCC projections of the 21st century climate, (2) natural and forced climate variability, (3) atmospheric circulation; (4) climate trends and abrupt changes; (5) clouds, water vapor, and precipitation; (6) climate impacts; (7) correcting observational biases; (8) the World Ocean Circulation Experiment; (9) land surface and land surface/atmosphere coupling; (10) detection of anthropogenic climate change; (11) climate and global change and the insurance industry; (12) the paleoclimate record; (13) proxy indicators of climate reconstruction; (14) climate predictions; (15) monitoring global change; and (16) historical, current, and project climate trends. Conference sessions from which papers were not selected were: (1) The United States Global Change Research Program perspectives; (2) CLIVAR; (3) the temperature record; and (4) global change educational initiatives. A total of 63 papers were selected for the database.

  1. Changing Rural Social Systems: Adaptation and Survival.

    ERIC Educational Resources Information Center

    Johnson, Nan E., Ed.; Wang, Ching-li, Ed.

    This book includes studies of globalization-related social changes in rural areas of the United States and other countries and implications of these studies for sociological theory. Although no chapter focuses exclusively on education, education-related themes include rural school dropouts and intergenerational poverty, the migration of rural

  2. Global asymptotic stabilization using adaptive fuzzy PD control.

    PubMed

    Pan, Yongping; Yu, Haoyong; Sun, Tairen

    2015-03-01

    It is well-known that standard adaptive fuzzy control (AFC) can only guarantee uniformly ultimately bounded stability due to inherent fuzzy approximation errors (FAEs). This paper proves that standard AFC with proportional-derivative (PD) control can guarantee global asymptotic stabilization even in the presence of FAEs for a class of uncertain affine nonlinear systems. Variable-gain PD control is designed to globally stabilize the plant. An optimal FAE is shown to be bounded by the norm of the plant state vector multiplied by a globally invertible and nondecreasing function, which provides a pivotal property for stability analysis. Without discontinuous control compensation, the closed-loop system achieves global and partially asymptotic stability in the sense that all plant states converge to zero. Compared with previous adaptive approximation-based global/asymptotic stabilization approaches, the major advantage of our approach is that global stability and asymptotic stabilization are achieved concurrently by a much simpler control law. Illustrative examples have further verified the theoretical results. PMID:25122847

  3. Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments

    PubMed Central

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie-Thrse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif

    2014-01-01

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a one-step mechanism of adaptation to a novel environment, which highlights the importance of global resource management as a powerful strategy to adaptation. PMID:25501822

  4. Mutations in global regulators lead to metabolic selection during adaptation to complex environments.

    PubMed

    Saxer, Gerda; Krepps, Michael D; Merkley, Eric D; Ansong, Charles; Deatherage Kaiser, Brooke L; Valovska, Marie-Thérèse; Ristic, Nikola; Yeh, Ping T; Prakash, Vittal P; Leiser, Owen P; Nakhleh, Luay; Gibbons, Henry S; Kreuzer, Helen W; Shamoo, Yousif

    2014-12-01

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a "one-step" mechanism of adaptation to a novel environment, which highlights the importance of global resource management as a powerful strategy to adaptation. PMID:25501822

  5. Can the desert annual Salvia columbariae adapt to global warming?

    SciTech Connect

    Soulanille, E.L.; Bierzychudek, P. |

    1995-06-01

    Atmospheric concentrations of {open_quotes}greenhouse{close_quotes} gases are increasing, and most atmospheric scientists agree that an increase in global mean air temperatures will follow. The predictions about possible biological consequences range from {open_quotes}significant{close_quotes} to {open_quotes}catastrophic.{close_quotes} To explore the possible effects of elevated temperatures on a winter germinating desert annual, we grew seeds from two populations of Salvia columbariae in controlled environments mimicking normal temperatures for those populations and in temperatures 4 C higher. Measures of individual fitness were successful germination and the number of seeds produced. For both populations, fitness was dramatically lower in the elevated temperatures: both percent germination and seed number were significantly reduced. Sixty-five percent of the family groups (same mother) failed to flower under the elevated temperatures, whereas, all of the families grown in the normal temperatures flowered and produced seeds. There were also differences between families grown in the increased temperature treatments, implying genetic differences in high temperature tolerance. Our results suggest that while some families will be able to survive and adapt to elevated air temperatures, most will not. This could lead to a serious eroding of the genetic variability of these populations and possibly hamper their ability to respond to other kinds of environmental change.

  6. Global change and the evolution of phenotypic plasticity in plants.

    PubMed

    Matesanz, Silvia; Gianoli, Ernesto; Valladares, Fernando

    2010-09-01

    Global change drivers create new environmental scenarios and selective pressures, affecting plant species in various interacting ways. Plants respond with changes in phenology, physiology, and reproduction, with consequences for biotic interactions and community composition. We review information on phenotypic plasticity, a primary means by which plants cope with global change scenarios, recommending promising approaches for investigating the evolution of plasticity and describing constraints to its evolution. We discuss the important but largely ignored role of phenotypic plasticity in range shifts and review the extensive literature on invasive species as models of evolutionary change in novel environments. Plasticity can play a role both in the short-term response of plant populations to global change as well as in their long-term fate through the maintenance of genetic variation. In new environmental conditions, plasticity of certain functional traits may be beneficial (i.e., the plastic response is accompanied by a fitness advantage) and thus selected for. Plasticity can also be relevant in the establishment and persistence of plants in novel environments that are crucial for populations at the colonizing edge in range shifts induced by climate change. Experimental studies show taxonomically widespread plastic responses to global change drivers in many functional traits, though there is a lack of empirical support for many theoretical models on the evolution of phenotypic plasticity. Future studies should assess the adaptive value and evolutionary potential of plasticity under complex, realistic global change scenarios. Promising tools include resurrection protocols and artificial selection experiments. PMID:20860682

  7. Changing social contracts in climate-change adaptation

    NASA Astrophysics Data System (ADS)

    Adger, W. Neil; Quinn, Tara; Lorenzoni, Irene; Murphy, Conor; Sweeney, John

    2013-04-01

    Risks from extreme weather events are mediated through state, civil society and individual action. We propose evolving social contracts as a primary mechanism by which adaptation to climate change proceeds. We use a natural experiment of policy and social contexts of the UK and Ireland affected by the same meteorological event and resultant flooding in November 2009. We analyse data from policy documents and from household surveys of 356 residents in western Ireland and northwest England. We find significant differences between perceptions of individual responsibility for protection across the jurisdictions and between perceptions of future risk from populations directly affected by flooding events. These explain differences in stated willingness to take individual adaptive actions when state support retrenches. We therefore show that expectations for state protection are critical in mediating impacts and promoting longer-term adaptation. We argue that making social contracts explicit may smooth pathways to effective and legitimate adaptation.

  8. Earth observations and global change decision making, 1990

    SciTech Connect

    Ginsberg, I.W. ); Angelo, J.A. )

    1991-01-01

    This book covers: technology to monitor global change; the World Meteorological Organization and its role in earth observations and global change; data policy supporting global change research; and guidelines for making decisions about global warming.

  9. Administration pro-active on global change

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    Some drastic climate events during the past year alone (March blizzard, mid-western flooding, intensifying El Nio) have raised even more concern lately about the effects of global environmental change, which may in part be caused by an increase in greenhouse gases in the atmosphere. We could see changes in climate greater than any we've seen in the past 10,000 years, said Katie McGinty, director of the White House Office of Environmental Policy.Addressing the attendees of a meeting entitled Global Change: A New Direction for Decision Making, held October 27-28 in Washington, D.C., where representatives of some federal science agencies, among others, presented their views on global environmental change policy and scientific issues, McGinty noted that the Clinton Administration is bringing a new direction to global change policy.

  10. Engineering change in global climate

    SciTech Connect

    Schneider, S.H.

    1996-12-31

    {open_quotes}With increased public focus on global warming and in the wake of the intense heat waves, drought, fires, and super-hurricanes that occurred in 1988 and 1989, interest in geoengineering has surged,{close_quotes} says Stephen H. Schneider, professor of biological science at Stanford University in Stanford, California. One scheme set forth in a National Research Council report proposes using 16-inch naval guns to fire aerosol shells into the stratosphere in hopes of offsetting {open_quotes}the radiative effects of increasing carbon dioxide,{close_quotes} Schneider says. Schneider, however, would prefer that we {open_quotes}seek measures that can cure our global {open_quote}addiction{close_quote} to polluting practices.{close_quotes} Rather than playing God, he says we should {open_quotes}stick to being human and pursue problem - solving methods currently within our grasp.{close_quotes} Such strategies include efforts to promote energy efficiency and reduce our reliance on automobiles.

  11. Global change and the ecology of cities.

    PubMed

    Grimm, Nancy B; Faeth, Stanley H; Golubiewski, Nancy E; Redman, Charles L; Wu, Jianguo; Bai, Xuemei; Briggs, John M

    2008-02-01

    Urban areas are hot spots that drive environmental change at multiple scales. Material demands of production and human consumption alter land use and cover, biodiversity, and hydrosystems locally to regionally, and urban waste discharge affects local to global biogeochemical cycles and climate. For urbanites, however, global environmental changes are swamped by dramatic changes in the local environment. Urban ecology integrates natural and social sciences to study these radically altered local environments and their regional and global effects. Cities themselves present both the problems and solutions to sustainability challenges of an increasingly urbanized world. PMID:18258902

  12. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is a broad scientific consensus that the global climate is warming, the process is accelerating, and that human activities are very likely (>90% probability) the main cause. This warming will have effects on ecosystems and human health, many of them adverse. Children will experience both the direct and indirect effects of climate change. Actions taken by individuals, communities, businesses, and governments will affect the magnitude and rate of global climate change and resultant health impacts. This technical report reviews the nature of the global problem and anticipated health effects on children and supports the recommendations in the accompanying policy statement on climate change and children's health. PMID:17967924

  13. Global lightning activity and climate change

    SciTech Connect

    Price, C.G.

    1993-12-31

    The relationship between global lightning frequencies and global climate change is examined in this thesis. In order to study global impacts of climate change, global climate models or General Circulations Models (GCMs) need to be utilized. Since these models have coarse resolutions many atmospheric phenomena that occur at subgrid scales, such as lightning, need to be parameterized whenever possible. We begin with a simple parameterization used to Simulate total (intracloud and cloud-to-ground) lightning frequencies. The parameterization uses convective cloud top height to approximate lightning frequencies. Then we consider a parameterization for simulating cloud-to-ground (CG) lightning around the globe. This parameterization uses the thickness of the cold cloud sector in thunderstorms (0{degrees}C to cloud top) to calculate the proportion of CG flashes in a particular thunderstorm. We model lightning in the Goddard Institute for Space Studies (GISS) GCM. We present two climate change scenarios. One for a climate where the solar constant is reduced by 2% (5.9{degrees}C global cooling), and one for a climate with twice the present concentration of CO{sub 2} in the atmosphere (4.2{degrees}C global warming). The results imply a 24%/30% decrease/increase in global lightning frequencies for the cooler/warmer climate. The possibility of using the above findings to monitor future global warming is discussed. The earth`s ionospheric potential, which is regulated by global thunderstorm activity, could supply valuable information regarding global surface temperature fluctuations. Finally, we look at the implications of changes in both lightning frequencies and the hydrological cycle, as a result of global warming, on natural forest fires. In the U.S. the annual mean number of lightning fires could increase by 40% while the area burned may increase by 65% in a 2{times}CO{sub 2} climate. On a global scale the largest increase in lightning fires can be expected in the tropics.

  14. Ozone, Climate, and Global Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1992-01-01

    The delicate balance of the gases that make up our atmosphere allows life to exist on Earth. Ozone depletion and global warming are related to changes in the concentrations of these gases. To solve global atmospheric problems, we need to understand the composition and chemistry of the Earth's atmosphere and the impact of human activities on them.

  15. 65 FR 81833 - NOAA Climate and Global Change Program, Program Announcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-12-27

    ... National Oceanic and Atmospheric Administration RIN 0648-ZA95 NOAA Climate and Global Change Program... consequences of, and adaptation to, longer term changes in the climate system. Relevance of This Joint... health issue through their jointly sponsored Conference on Human Health and Global Climate Change....

  16. Dictionary of global climate change

    SciTech Connect

    Maunder, W.J.

    1992-01-01

    This book represents a revision of the climate change lexicon that was prepared for the Second World Climate Conference in 1990. The conference had 1400 participants and consisted of a scientific component followed by a ministerial meeting. To foster communication among the different constituencies, a lexicon of climate and climate change was prepared for the participants. The dictionary includes definitions and descriptions of most of the scientific terms, organizations, and programs related to the physical aspects of climate change. Nearly 40% of the material describes organized projects, experiments, or programs, mostly international. Some information on biological topics, such as the difference between C3 and C4 plants, is also included. The length of definitions and descriptions ranges from one line to one or more pages, with the longer descriptions usually related to programs.

  17. Climate change adaptation: putting principles into practice.

    PubMed

    Ausden, Malcolm

    2014-10-01

    Carrying out wildlife conservation in a changing climate requires planning on long timescales at both a site and network level, while also having the flexibility to adapt actions at sites over short timescales in response to changing conditions and new information. The Royal Society for the Protection of Birds (RSPB), a land-owning wildlife conservation charity in the UK, achieves this on its nature reserves through its system of management planning. This involves setting network-wide objectives which inform the 25-year vision and 5-year conservation objectives for each site. Progress toward achieving each site's conservation objectives is reviewed annually, to identify any adjustments which might be needed to the site's management. The conservation objectives and 25-year vision of each site are reviewed every 5 years.Significant predicted [corrected] long-term impacts of climate change most frequently identified at RSPB reserves are: loss of intertidal habitat through coastal squeeze, loss of low-lying islands due to higher sea levels and coastal erosion, loss of coastal freshwater and brackish wetlands due to increased coastal flooding, and changes in the hydrology of wetlands. The main types of adaptation measures in place on RSPB reserves to address climate change-related impacts are: re-creation of intertidal habitat, re-creation and restoration of freshwater wetlands away from vulnerable coastal areas, blocking artificial drainage on peatlands, and addressing pressures on freshwater supply for lowland wet grasslands in eastern and southeastern England. Developing partnerships between organizations has been crucial in delivering large-scale adaptation projects. PMID:24363138

  18. Climate Change Adaptation: Putting Principles into Practice

    NASA Astrophysics Data System (ADS)

    Ausden, Malcolm

    2014-10-01

    Carrying out wildlife conservation in a changing climate requires planning on long timescales at both a site and network level, while also having the flexibility to adapt actions at sites over short timescales in response to changing conditions and new information. The Royal Society for the Protection of Birds (RSPB), a land-owning wildlife conservation charity in the UK, achieves this on its nature reserves through its system of management planning. This involves setting network-wide objectives which inform the 25-year vision and 5-year conservation objectives for each site. Progress toward achieving each site's conservation objectives is reviewed annually, to identify any adjustments which might be needed to the site's management. The conservation objectives and 25-year vision of each site are reviewed every 5 years. Significant long-term impacts of climate change most frequently identified at RSPB reserves are: loss of intertidal habitat through coastal squeeze, loss of low-lying islands due to higher sea levels and coastal erosion, loss of coastal freshwater and brackish wetlands due to increased coastal flooding, and changes in the hydrology of wetlands. The main types of adaptation measures in place on RSPB reserves to address climate change-related impacts are: re-creation of intertidal habitat, re-creation and restoration of freshwater wetlands away from vulnerable coastal areas, blocking artificial drainage on peatlands, and addressing pressures on freshwater supply for lowland wet grasslands in eastern and southeastern England. Developing partnerships between organizations has been crucial in delivering large-scale adaptation projects.

  19. Global environmental change: Its nature and impact

    SciTech Connect

    Hidore, J.J.

    1996-12-31

    This book is intended as an entry-level textbook on environmental science for nonscience majors. Twenty chapters address topics from historical geology and climatic change to population dynamics, land-use, water pollution, ozone depletion and biodiversity, global warming.

  20. Global vegetation changes from satellite data

    SciTech Connect

    Nemani, R.; Running, S.

    1995-09-01

    Long-term climate, soils data along with satellite observations are sued to quantify global land cover changes between pre-agricultural and present conditions. Changes in global land cover expressed as summer, mid-afternoon, radiometric surface temperatures, T{sub r}, ranged from -8 to +16 {degrees}C. Deforestation resulted in an increase in T{sub r}, while irrigated agriculture reduced the T{sub r}. The spatial heterogeneity in land surface fluxes created by the estimated land cover changes, currently not accounted for in Global Circulation Models, could have significant impact on climate. Potential and actual land cover datasets are available for climate modelers at 0.5x0.5{degrees} resolution to study the possible impacts of land cover changes on global temperatures and circulation patterns.

  1. Global River Flood Risk in a Changing World (Invited)

    NASA Astrophysics Data System (ADS)

    Winsemius, H.; Ward, P.; Bouwman, A.; Van Beek, L. P.; Jongman, B.; Stehfest, E.; Bierkens, M. F.; Aerts, J.; Ligtvoet, W.; Kwadijk, J.; Sperna Weiland, F.

    2013-12-01

    Flooding is the most frequent and damaging natural hazard for society globally. Over the last decades, we have seen indications that the impacts of flooding are becoming more severe. The increases in risk may be cause by on the one hand increasing frequency and intensity of flood events under climate change, and on the other, by growing potential impacts due to increases in population and the economic utilization of flood prone areas. In 2012, the global damage from floods was estimated to be about US 29 billion. For the first half of 2013, the global damage was already estimated to be US 45 billion. Almost half of this amount was due to river flooding such as the devastating floods in East Germany in June 2013. In this contribution we give insights into the size and causes of growth of river flood risk in the future and the consequences for adaptation investments. We investigate this by comparing estimates of current and future river flood risk at the global scale, taking into account that risks are likely to grow due to changes in climate change and socio-economic development. The flood risk estimates are based on a validated physical global flood risk model that utilizes current meteorological data, as well as climate scenario data as forcing to estimate hazard, and current as well as future socio-economic conditions as drivers for flood impact. Our study reveals that flood risk changes are very diverse from region to region, as are the drivers of that change. The results emphasize the importance of future investments in flood risk adaptation across the world and show which adaptation strategies should receive most attention.

  2. Future battlegrounds for conservation under global change.

    PubMed

    Lee, Tien Ming; Jetz, Walter

    2008-06-01

    Global biodiversity is under significant threat from the combined effects of human-induced climate and land-use change. Covering 12% of the Earth's terrestrial surface, protected areas are crucial for conserving biodiversity and supporting ecological processes beneficial to human well-being, but their selection and design are usually uninformed about future global change. Here, we quantify the exposure of the global reserve network to projected climate and land-use change according to the Millennium Ecosystem Assessment and set these threats in relation to the conservation value and capacity of biogeographic and geopolitical regions. We find that geographical patterns of past human impact on the land cover only poorly predict those of forecasted change, thus revealing the inadequacy of existing global conservation prioritization templates. Projected conservation risk, measured as regional levels of land-cover change in relation to area protected, is the greatest at high latitudes (due to climate change) and tropics/subtropics (due to land-use change). Only some high-latitude nations prone to high conservation risk are also of high conservation value, but their high relative wealth may facilitate additional conservation efforts. In contrast, most low-latitude nations tend to be of high conservation value, but they often have limited capacity for conservation which may exacerbate the global biodiversity extinction crisis. While our approach will clearly benefit from improved land-cover projections and a thorough understanding of how species range will shift under climate change, our results provide a first global quantitative demonstration of the urgent need to consider future environmental change in reserve-based conservation planning. They further highlight the pressing need for new reserves in target regions and support a much extended 'north-south' transfer of conservation resources that maximizes biodiversity conservation while mitigating global climate change. PMID:18302999

  3. Potential effects of global climate change

    SciTech Connect

    Gucinski, H.; Vance, E.; Reiners, W.A.

    1995-07-01

    The difficulties of detecting climatic changes do not diminish the need to examine the consequences of a changing global radiative energy balance. In part, detecting global changes is difficult (even though many, though by no means all, theoretical climatic processes are well understood) because the potential effects of changes on the unmanaged ecosystems of the globe, especially forests, which may have great human significance, involve tightly woven ecosystems, inextricably linked to global habitat. Coniferous forests are of particular interest because they dominate high-latitude forest systems, and potential effects of global climate change are likely to be greatest at high latitudes. The degree of projected climate change is a function of many likely scenarios of fossil fuel consumption, and the ratios of manmade effects to natural sources and sinks of CO{sub 2}. Because CO{sub 2}, like water vapor, CH{sub 4}, CFCs, and other gases, absorbs infrared energy, it will alter the radiation balance of the global atmosphere. The consequences of this alteration to the radiation balance cannot simply be translated into changing climate because (1) the existence of large energy reservoirs (the oceans) can introduce a lag in responses, (2) feedback loops between atmosphere, oceans, and biosphere can change the net rate of buildup of greenhouse gases in the atmosphere, (3) complex interactions in the atmospheric water balance can change the rate of cloud formation with their persistence, in turn, changing the global albedo and the energy balance, and (4) there is intrusion of other global effects, such as periodic volcanic gas injections to the stratosphere.

  4. An Adaptive Unified Differential Evolution Algorithm for Global Optimization

    SciTech Connect

    Qiang, Ji; Mitchell, Chad

    2014-11-03

    In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.

  5. Global Change: A Biogeochemical Perspective

    NASA Technical Reports Server (NTRS)

    Mcelroy, M.

    1983-01-01

    A research program that is designed to enhance our understanding of the Earth as the support system for life is described. The program change, both natural and anthropogenic, that might affect the habitability of the planet on a time scale roughly equal to that of a human life is studied. On this time scale the atmosphere, biosphere, and upper ocean are treated as a single coupled system. The need for understanding the processes affecting the distribution of essential nutrients--carbon, nitrogen, phosphorous, sulfur, and water--within this coupled system is examined. The importance of subtle interactions among chemical, biological, and physical effects is emphasized. The specific objectives are to define the present state of the planetary life-support system; to ellucidate the underlying physical, chemical, and biological controls; and to provide the body of knowledge required to assess changes that might impact the future habitability of the Earth.

  6. Seventh symposium on global change studies

    SciTech Connect

    1996-12-31

    The conference proceedings contain papers from seven sessions. The topics of the sessions are: (1) intergovernmental panel on climate change, (2) special topics, (3) end-to-end seasonal-to-interannual prediction, (4) global change trends, (5) clouds and radiation, (6) biomass burning, and (7) global change topics. Of the 42 papers included in the proceedings, 26 were selected for the database. Those papers selected are predominantly concerned with climate modeling and/or observational data analysis. Subtopics include sea level changes, water vapor feedback, land-surface parameterization, precipitation, hurricane activity, upper tropospheric parameterization, optical properties of clouds, solar flux, and radiative forcing by aerosols.

  7. Climate Effects of Global Land Cover Change

    SciTech Connect

    Gibbard, S G; Caldeira, K; Bala, G; Phillips, T; Wickett, M

    2005-08-24

    There are two competing effects of global land cover change on climate: an albedo effect which leads to heating when changing from grass/croplands to forest, and an evapotranspiration effect which tends to produce cooling. It is not clear which effect would dominate in a global land cover change scenario. We have performed coupled land/ocean/atmosphere simulations of global land cover change using the NCAR CAM3 atmospheric general circulation model. We find that replacement of current vegetation by trees on a global basis would lead to a global annual mean warming of 1.6 C, nearly 75% of the warming produced under a doubled CO{sub 2} concentration, while global replacement by grasslands would result in a cooling of 0.4 C. These results suggest that more research is necessary before forest carbon storage should be deployed as a mitigation strategy for global warming. In particular, high latitude forests probably have a net warming effect on the Earth's climate.

  8. Global changes in marine systems: A social-ecological approach

    NASA Astrophysics Data System (ADS)

    Perry, R. Ian; Barange, Manuel; Ommer, Rosemary E.

    2010-10-01

    This paper presents the case for the adoption of a social-ecological approach to marine systems, which recognises the interdependence of biophysical and human social components. It discusses the management and governance challenges that arise when biophysical marine systems and fishing-dependent human communities, considered as interdependent marine social-ecological systems, are stressed by global changes. Drivers of change in marine biophysical systems include processes such as climate variability and change, human processes such as fishing, habitat degradation, and contaminants, and their interactions. Fishing makes marine populations, marine communities, and ecosystems more sensitive to climate forcing. Human communities’ responses to marine ecosystem variability can ameliorate or exacerbate these changes. Drivers of change in fishing-dependent human communities include environmental and resource changes, human social changes relating to demographics, health issues, and shifting societal values, and their interactions at local and global scales. This multi-faceted interdependence means that fisheries management needs to develop approaches which maintain the capacities of both fish and fishing communities, acting as interactive social-ecological systems, to adapt to the impacts of globalization and environmental change. In general, a less-heavily fished marine system managed on an ecosystem basis is likely to provide more stable catches under normal conditions than would a heavily fished system. However, under climate change the whole ecosystem may alter in ways that cannot yet be predicted. Issues of scale are crucial, and fisheries governance needs a concerted effort to contrast and compare multiple local management ‘experiments’, since the exposure, susceptibility, and adaptive capacities of biophysical and human social marine systems varies immensely. These ‘experiments’ should be conducted in developed and developing nations so as to understand the range of policy issues which support marine social-ecological systems in an era of global change.

  9. Uncertainty and global climate change research

    SciTech Connect

    Tonn, B.E.; Weiher, R.

    1994-06-01

    The Workshop on Uncertainty and Global Climate Change Research March 22--23, 1994, in Knoxville, Tennessee. This report summarizes the results and recommendations of the workshop. The purpose of the workshop was to examine in-depth the concept of uncertainty. From an analytical point of view, uncertainty is a central feature of global climate science, economics and decision making. The magnitude and complexity of uncertainty surrounding global climate change has made it quite difficult to answer even the most simple and important of questions-whether potentially costly action is required now to ameliorate adverse consequences of global climate change or whether delay is warranted to gain better information to reduce uncertainties. A major conclusion of the workshop is that multidisciplinary integrated assessments using decision analytic techniques as a foundation is key to addressing global change policy concerns. First, uncertainty must be dealt with explicitly and rigorously since it is and will continue to be a key feature of analysis and recommendations on policy questions for years to come. Second, key policy questions and variables need to be explicitly identified, prioritized, and their uncertainty characterized to guide the entire scientific, modeling, and policy analysis process. Multidisciplinary integrated assessment techniques and value of information methodologies are best suited for this task. In terms of timeliness and relevance of developing and applying decision analytic techniques, the global change research and policy communities are moving rapidly toward integrated approaches to research design and policy analysis.

  10. Energy and global climate change: Why ORNL?

    SciTech Connect

    Farrell, M.P.

    1995-12-31

    Subtle signs of global warming have been detected in studies of the climate record of the past century after figuring in the cooling effects of sulfur emissions from volcanoes and human sources. According to the December 1995 report of the Intergovernment Panel on Climate Change (IPCC), the earth`s surface temperature has increased by about 0.2{degrees}C per decade since 1975. the panel projects about a 2{degrees} increase in global temperature by 2100. The IPCC report states that pollutants-greenhouse gases such as carbon dioxide and fluorocarbons that warm the globe and sulfur emission that cool it-are responsible for recent patterns of climate change. {open_quotes}The balance of evidence,{close_quotes} states the report, {open_quotes}suggests that there is a discrenible human influence on global climate.{close_quotes} This human influence stems largely from fossil fuel combustion, cement production, and the burning of forests, and could intensify as populations grow and developing countries increase energy production and industrial development. The two facts have caught the attention of the news media and public. First, 1995 was declared the hottest year in the 140-year-long record of reliable global measurements. Second, recent years have been marked by an unusually high number of extreme weather events, such as hurricanes, blizzards, and floods. In the 1990`s the world has become more aware of the prospect and possible impacts of global climate change. In the late 1950`s, global climate change was an unknown threat to the world`s environment and social systems. Except for a few ORNL researchers who had just completed their first briefing to the U.S. Atomic Energy Commission on the need to understand the global carbon cycle, the connection between rising carbon dioxide concentrations and potential changes in global climate was not common knowledge, nor were the consequences of climate change understood.

  11. Adaptive robot path planning in changing environments

    SciTech Connect

    Chen, P.C.

    1994-08-01

    Path planning needs to be fast to facilitate real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To overcome this difficulty, we present an adaptive algorithm that uses past experience to speed up future performance. It is a learning algorithm suitable for incrementally-changing environments such as those encountered in manufacturing of evolving products and waste-site remediation. The algorithm allows the robot to adapt to its environment by having two experience manipulation schemes: For minor environmental change, we use an object-attached experience abstraction scheme to increase the flexibility of the learned experience; for major environmental change, we use an on-demand experience repair scheme to retain those experiences that remain valid and useful. Using this algorithm, we can effectively reduce the overall robot planning time by re-using the computation result for one task to plan a path for another.

  12. Rapid ecosystem change challenges the adaptive capacity of Local Environmental Knowledge

    PubMed Central

    Fernández-Llamazares, Álvaro; Díaz-Reviriego, Isabel; Luz, Ana C.; Cabeza, Mar; Pyhälä, Aili; Reyes-García, Victoria

    2015-01-01

    The use of Local Environmental Knowledge has been considered as an important strategy for adaptive management in the face of Global Environmental Change. However, the unprecedented rates at which global change occurs may pose a challenge to the adaptive capacity of local knowledge systems. In this paper, we use the concept of the shifting baseline syndrome to examine the limits in the adaptive capacity of the local knowledge of an indigenous society facing rapid ecosystem change. We conducted semi-structured interviews regarding perceptions of change in wildlife populations and in intergenerational transmission of knowledge amongst the Tsimane’, a group of hunter-gatherers of Bolivian Amazonia (n = 300 adults in 13 villages). We found that the natural baseline against which the Tsimane’ measure ecosystem changes might be shifting with every generation as a result of (a) age-related differences in the perception of change and (b) a decrease in the intergenerational sharing of environmental knowledge. Such findings suggest that local knowledge systems might not change at a rate quick enough to adapt to conditions of rapid ecosystem change, hence potentially compromising the adaptive success of the entire social-ecological system. With the current pace of Global Environmental Change, widening the gap between the temporal rates of on-going ecosystem change and the timescale needed for local knowledge systems to adjust to change, efforts to tackle the shifting baseline syndrome are urgent and critical for those who aim to use Local Environmental Knowledge as a tool for adaptive management. PMID:26097291

  13. Hormonally mediated maternal effects, individual strategy and global change

    PubMed Central

    Meylan, Sandrine; Miles, Donald B.; Clobert, Jean

    2012-01-01

    A challenge to ecologists and evolutionary biologists is predicting organismal responses to the anticipated changes to global ecosystems through climate change. Most evidence suggests that short-term global change may involve increasing occurrences of extreme events, therefore the immediate response of individuals will be determined by physiological capacities and life-history adaptations to cope with extreme environmental conditions. Here, we consider the role of hormones and maternal effects in determining the persistence of species in altered environments. Hormones, specifically steroids, are critical for patterning the behaviour and morphology of parents and their offspring. Hence, steroids have a pervasive influence on multiple aspects of the offspring phenotype over its lifespan. Stress hormones, e.g. glucocorticoids, modulate and perturb phenotypes both early in development and later into adulthood. Females exposed to abiotic stressors during reproduction may alter the phenotypes by manipulation of hormones to the embryos. Thus, hormone-mediated maternal effects, which generate phenotypic plasticity, may be one avenue for coping with global change. Variation in exposure to hormones during development influences both the propensity to disperse, which alters metapopulation dynamics, and population dynamics, by affecting either recruitment to the population or subsequent life-history characteristics of the offspring. We suggest that hormones may be an informative index to the potential for populations to adapt to changing environments. PMID:22566673

  14. Hormonally mediated maternal effects, individual strategy and global change.

    PubMed

    Meylan, Sandrine; Miles, Donald B; Clobert, Jean

    2012-06-19

    A challenge to ecologists and evolutionary biologists is predicting organismal responses to the anticipated changes to global ecosystems through climate change. Most evidence suggests that short-term global change may involve increasing occurrences of extreme events, therefore the immediate response of individuals will be determined by physiological capacities and life-history adaptations to cope with extreme environmental conditions. Here, we consider the role of hormones and maternal effects in determining the persistence of species in altered environments. Hormones, specifically steroids, are critical for patterning the behaviour and morphology of parents and their offspring. Hence, steroids have a pervasive influence on multiple aspects of the offspring phenotype over its lifespan. Stress hormones, e.g. glucocorticoids, modulate and perturb phenotypes both early in development and later into adulthood. Females exposed to abiotic stressors during reproduction may alter the phenotypes by manipulation of hormones to the embryos. Thus, hormone-mediated maternal effects, which generate phenotypic plasticity, may be one avenue for coping with global change. Variation in exposure to hormones during development influences both the propensity to disperse, which alters metapopulation dynamics, and population dynamics, by affecting either recruitment to the population or subsequent life-history characteristics of the offspring. We suggest that hormones may be an informative index to the potential for populations to adapt to changing environments. PMID:22566673

  15. The Psychological Impacts of Global Climate Change

    ERIC Educational Resources Information Center

    Doherty, Thomas J.; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological…

  16. The Psychological Impacts of Global Climate Change

    ERIC Educational Resources Information Center

    Doherty, Thomas J.; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological

  17. Global climate change in the instrumental period.

    PubMed

    Hulme, M; Jones, P D

    1994-01-01

    The instrumental period of climate history began in the 18th century with the commencement of routine weather observations at fixed sites. Estimates of global-mean climate (e.g. temperature and precipitation) were not possible, however, until the establishment of extensive observing networks midway through the 19th century. This paper reviews our knowledge of global climate change in the instrumental period. Time series of global-mean temperature and precipitation are examined and a comparison is made between two independent 30-year climatologies: 1931-1960 and 1961-1990. Examples are also provided of regional-scale climate changes. Such assessments are important for two reasons. First, they establish the variability of climate on the time-scale of decades, time-scales upon which it is reasonable to plan economic and socio-political activities. Second, and more specifically, they enable us to quantify the magnitude of global-mean climate change which has occurred over this period. Such detailed diagnostic climate information is a necessary, although not sufficient, prerequisite for the detection of global-scale warming which may have occurred due to the enhanced greenhouse effect. Some attention is given to explanations of the observed changes in global-mean climate. PMID:15091747

  18. Global climate change and international security.

    SciTech Connect

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national and international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.

  19. Mapping vulnerability and conservation adaptation strategies under climate change

    NASA Astrophysics Data System (ADS)

    Watson, James E. M.; Iwamura, Takuya; Butt, Nathalie

    2013-11-01

    Identification of spatial gradients in ecosystem vulnerability to global climate change and local stressors is an important step in the formulation and implementation of appropriate countermeasures. Here we build on recent work to map ecoregional exposure to future climate, using an envelope-based gauge of future climate stability--defined as a measure of how similar the future climate of a region will be to the present climate. We incorporate an assessment of each ecoregion's adaptive capacity, based on spatial analysis of its natural integrity--the proportion of intact natural vegetation--to present a measure of global ecosystem vulnerability. The relationship between intactness (adaptive capacity) and stability (exposure) varies widely across ecoregions, with some of the most vulnerable, according to this measure, located in southern and southeastern Asia, western and central Europe, eastern South America and southern Australia. To ensure the applicability of these findings to conservation, we provide a matrix that highlights the potential implications of this vulnerability assessment for adaptation planning and offers a spatially explicit management guide.

  20. Information technology and global change science

    SciTech Connect

    Baxter, F.P.

    1990-01-01

    The goal of this paper is to identify and briefly describe major existing and near term information technologies that cold have a positive impact on the topics being discussed at this conference by helping to manage the data of global change science and helping global change scientists conduct their research. Desktop computer systems have changed dramatically during the past seven years. Faster data processing can be expected in the future through full development of traditional serial computer architectures. Some other proven information technologies may be currently underutilized by global change scientists. Relational database management systems and good organization of data through the use of thoughtful database design would enable the scientific community to better share and maintain quality research data. Custodians of the data should use rigorous data administration to ensure integrity and long term value of the data resource. Still other emerging information technologies that involve the use of artificial intelligence, parallel computer architectures, and new sensors for data collection will be in relatively common use in the near term and should become part of the global science community's technical toolkit. Consideration should also be given to the establishment of Information Analysis Centers to facilitate effective organization and management of interdisciplinary data and the prototype testing and use of advanced information technology to facilitate rapid and cost-effective integration of these tools into global change science. 8 refs.

  1. Widespread parallel population adaptation to climate variation across a radiation: implications for adaptation to climate change.

    PubMed

    Thorpe, Roger S; Barlow, Axel; Malhotra, Anita; Surget-Groba, Yann

    2015-03-01

    Global warming will impact species in a number of ways, and it is important to know the extent to which natural populations can adapt to anthropogenic climate change by natural selection. Parallel microevolution within separate species can demonstrate natural selection, but several studies of homoplasy have not yet revealed examples of widespread parallel evolution in a generic radiation. Taking into account primary phylogeographic divisions, we investigate numerous quantitative traits (size, shape, scalation, colour pattern and hue) in anole radiations from the mountainous Lesser Antillean islands. Adaptation to climatic differences can lead to very pronounced differences between spatially close populations with all studied traits showing some evidence of parallel evolution. Traits from shape, scalation, pattern and hue (particularly the latter) show widespread evolutionary parallels within these species in response to altitudinal climate variation greater than extreme anthropogenic climate change predicted for 2080. This gives strong evidence of the ability to adapt to climate variation by natural selection throughout this radiation. As anoles can evolve very rapidly, it suggests anthropogenic climate change is likely to be less of a conservation threat than other factors, such as habitat loss and invasive species, in this, Lesser Antillean, biodiversity hot spot. PMID:25644484

  2. Adaptive path planning in changing environments

    SciTech Connect

    Chen, Pang C.

    1993-10-01

    Path planning needs to be fast to facilitate real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To overcome this difficulty, we present an adaptive algorithm that uses previous experience to speed up future performance. It is a learning algorithm suitable for incrementally-changing environments such as those encountered in manufacturing of evolving products and waste-site remediation. The algorithm extends our previous work for stationary environments in two directions: For minor environmental change, an object-attached experience abstraction scheme is introduced to increase the flexibility of the learned experience; for major environmental change, an on-demand experience repair scheme is also introduced to retain those experiences that remain valid and useful. In addition to presenting this algorithm, we identify three other variants with different repair strategies. To compare these algorithms, we develop an analytic model to compare the costs and benefits of the corresponding repair processes. Using this model, we formalize the concept of incremental change, and prove the optimality of our proposed algorithm under such change. Empirically, we also characterize the performance curve of each variant, confirm our theoretical optimality results, and demonstrate the practicality of our algorithm.

  3. Global climate change and international security

    SciTech Connect

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  4. Global change and terrestrial hydrology - A review

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    1991-01-01

    This paper reviews the role of terrestrial hydrology in determining the coupling between the surface and atmosphere. Present experience with interactive numerical simulation is discussed and approaches to the inclusion of land hydrology in global climate models ae considered. At present, a wide range of answers as to expected changes in surface hydrology is given by nominally similar models. Studies of the effects of tropical deforestation and global warming illustrate this point.

  5. Earth observations and global change decision making, 1989

    SciTech Connect

    Ginsberg, I.W. ); Angelo, J.A. Jr. )

    1990-01-01

    This book covers: global change databases;; satellite data for climate and global change; reversing the greenhouse effect; hydrological implications of the greenhouse effect; and policy models for global change.

  6. Decadal Changes in Global Ocean Chlorophyll

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Conkright, Margarita E.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The global ocean chlorophyll archive produced by the Coastal Zone Color Scanner (CZCS) was revised using compatible algorithms with the Sea-viewing Wide Field-of-view Sensor (SeaWIFS), and both were blended with in situ data. This methodology permitted a quantitative comparison of decadal changes in global ocean chlorophyll from the CZCS (1979-1986) and SeaWiFS (Sep. 1997-Dec. 2000) records. Global seasonal means of ocean chlorophyll decreased over the two observational segments, by 8% in winter to 16% in autumn. Chlorophyll in the high latitudes was responsible for most of the decadal change. Conversely, chlorophyll concentrations in the low latitudes increased. The differences and similarities of the two data records provide evidence of how the Earth's climate may be changing and how ocean biota respond. Furthermore, the results have implications for the ocean carbon cycle.

  7. Natural disaster reduction and global change

    SciTech Connect

    Bruce, J.P.

    1994-10-01

    There are three types of global change that affect human and economic losses due to natural disasters. The three kinds of changes are: (1) increasing economic development, especially along coastlines, in flood plains, and other hazard-prone areas; (2) changes in land surfaces and vegetation; and (3) variability and change in frequency and severity of natural hazards. Any program for reduction of disaster losses must take these factors into account, and trends in losses are due to these changes. 17 refs., 2 tabs.

  8. Global change integrating factors: Tropical tropopause trends

    SciTech Connect

    Reck, R.A.

    1994-10-01

    This research proposes new criteria, shifts in the height and temperature of the tropical tropopause, as measures of global climate change. The search for signs of global warming in the temperature signal near the earth`s surface is extremely difficult, largely because numerous factors contribute to surface temperature forcing with only a small signal-to-noise ratio relative to long-term effects. In the long term, no part of the atmosphere can be considered individually because the evolution will be a function of all states of all portions. A large surface greenhouse signal might ultimately be expected, but the analysis of surface temperature may not be particularly useful for early detection. What is suggested here is not an analysis of trends in the surface temperature field or any of its spatial averages, but rather an integrating factor or integrator, a single measure of global change that could be considered a test of significant change for the entire global system. Preferably, this global change integrator would vary slowly and would take into account many of the causes of climate change, with a relatively large signal-to-noise ratio. Such an integrator could be monitored, and abrupt or accelerated changes could serve as an early warning signal for policy makers and the public. Earlier work has suggested that temperature has much less short-term and small-scale noise in the lower stratosphere, and thus the global warming signal at that level might be more easily deconvoluted, because the cooling rate near the 200-mb level is almost constant with latitude. A study of the temperature signal at this pressure level might show a clearer trend due to increased levels of greenhouse gases, but it would yield information about the troposphere only by inference.

  9. Mitigation strategies and unforseen consequences: A systematic assessment of the adaption of upper midwest agriculture to future climate change

    SciTech Connect

    Doering, O.; Lowenberg-DeBoer, J.; Habeck, M.

    1997-12-31

    Our starting point is the assumption of global climate change that doubles CO{sub 2} in the Upper Midwest by 2050. This work then concentrates on determining agriculture in the Upper Midwest successfully adapts to such a climate change.

  10. A global pattern of thermal adaptation in marine phytoplankton.

    PubMed

    Thomas, Mridul K; Kremer, Colin T; Klausmeier, Christopher A; Litchman, Elena

    2012-11-23

    Rising ocean temperatures will alter the productivity and composition of marine phytoplankton communities, thereby affecting global biogeochemical cycles. Predicting the effects of future ocean warming on biogeochemical cycles depends critically on understanding how existing global temperature variation affects phytoplankton. Here we show that variation in phytoplankton temperature optima over 150 degrees of latitude is well explained by a gradient in mean ocean temperature. An eco-evolutionary model predicts a similar relationship, suggesting that this pattern is the result of evolutionary adaptation. Using mechanistic species distribution models, we find that rising temperatures this century will cause poleward shifts in species' thermal niches and a sharp decline in tropical phytoplankton diversity in the absence of an evolutionary response. PMID:23112294

  11. Deep solar minimum and global climate changes

    PubMed Central

    Hady, Ahmed A.

    2013-01-01

    This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue. PMID:25685420

  12. Deep solar minimum and global climate changes

    NASA Astrophysics Data System (ADS)

    Hady, Ahmed A.

    2013-05-01

    This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue.

  13. Deep solar minimum and global Climate Changes

    NASA Astrophysics Data System (ADS)

    Abdel Hady, Ahmed

    2012-07-01

    This paper examines the deep minimum of solar cycle 23 and its likely impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 100 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activities are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue.

  14. Deep solar minimum and global climate changes.

    PubMed

    Hady, Ahmed A

    2013-05-01

    This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue. PMID:25685420

  15. Open access: changing global science publishing.

    PubMed

    Gasparyan, Armen Yuri; Ayvazyan, Lilit; Kitas, George D

    2013-08-01

    The article reflects on open access as a strategy of changing the quality of science communication globally. Successful examples of open-access journals are presented to highlight implications of archiving in open digital repositories for the quality and citability of research output. Advantages and downsides of gold, green, and hybrid models of open access operating in diverse scientific environments are described. It is assumed that open access is a global trend which influences the workflow in scholarly journals, changing their quality, credibility, and indexability. PMID:23986284

  16. Global change technology architecture trade study

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard (Editor); Hypes, Warren D. (Editor); Wright, Robert L. (Editor)

    1991-01-01

    Described here is an architecture trade study conducted by the Langley Research Center to develop a representative mix of advanced space science instrumentation, spacecraft, and mission orbits to assist in the technology selection processes. The analyses concentrated on the highest priority classes of global change measurements which are the global climate changes. Issues addressed in the tradeoffs includes assessments of the economics of scale of large platforms with multiple instruments relative to smaller spacecraft; the influences of current and possible future launch vehicles on payload sizes, and on-orbit assembly decisions; and the respective roles of low-Earth versus geostationary Earth orbiting systems.

  17. Open access: changing global science publishing

    PubMed Central

    Gasparyan, Armen Yuri; Ayvazyan, Lilit; Kitas, George D.

    2013-01-01

    The article reflects on open access as a strategy of changing the quality of science communication globally. Successful examples of open-access journals are presented to highlight implications of archiving in open digital repositories for the quality and citability of research output. Advantages and downsides of gold, green, and hybrid models of open access operating in diverse scientific environments are described. It is assumed that open access is a global trend which influences the workflow in scholarly journals, changing their quality, credibility, and indexability. PMID:23986284

  18. Mutations in global regulators lead to metabolic selection during adaptation to complex environments

    SciTech Connect

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie -Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif; Matic, Ivan

    2014-12-11

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management as a powerful strategy to adaptation.

  19. Global climate change and infectious diseases

    SciTech Connect

    Shope, R. )

    1991-12-01

    The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in North America. Vibrio cholera is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help as to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. 12 refs., 1 tab.

  20. Global climate change and infectious diseases.

    PubMed

    Shope, R

    1991-12-01

    The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in North America. Vibrio cholerae is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help us to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. PMID:1820262

  1. Biological consequences of global change for birds.

    PubMed

    Mller, Anders Pape

    2013-06-01

    Climate is currently changing at an unprecedented rate; so also human exploitation is rapidly changing the Earth for agriculture, forestry, fisheries and urbanization. In addition, pollution has affected even the most remote ecosystems, as has the omnipresence of humans, with consequences in particular for animals that keep a safe distance from potential predators, including human beings. Importantly, all of these changes are occurring simultaneously, with increasing intensity, and further deterioration in both the short and the long-term is predicted. While the consequences of these components of global change are relatively well studied on their own, the effects of their interactions, such as the combined effects of climate change and agriculture, or the combined effects of agriculture through nutrient leakage to freshwater and marine ecosystems and fisheries, and the effects of climate change and urbanization, are poorly understood. Here, I provide a brief overview of the effects of climate change on phenology, diversity, abundance, interspecific interactions and population dynamics of birds. I address whether these effects of changing temperatures are direct, or indirect through effects of climate change on the phenology, distribution or abundance of food, parasites and predators. Finally, I review interactions between different components of global change. PMID:23731810

  2. Global change: Geographical approaches (A Review)*

    PubMed Central

    Kotlyakov, V. M.; Mather, J. R.; Sdasyuk, G. V.; White, G. F.

    1988-01-01

    The International Geosphere Biosphere Program sponsored by the International Council of Scientific Unions is directing attention to geophysical and biological change as influenced by human modifications in global energy and mass exchanges. Geographers in the Soviet Union and the United States have joined in critical appraisal of their experience in studying environmental change. This initial report is on some promising approaches, such as the reconstruction of earlier landscape processes, modeling of the dynamics of present-day landscapes, analysis of causes and consequences of anthropogenic changes in specified regions, appraisal of social response to change, and enhanced geographic information systems supported by detailed site studies. PMID:16593971

  3. Forecasting Agriculturally Driven Global Environmental Change

    NASA Astrophysics Data System (ADS)

    Tilman, David; Fargione, Joseph; Wolff, Brian; D'Antonio, Carla; Dobson, Andrew; Howarth, Robert; Schindler, David; Schlesinger, William H.; Simberloff, Daniel; Swackhamer, Deborah

    2001-04-01

    During the next 50 years, which is likely to be the final period of rapid agricultural expansion, demand for food by a wealthier and 50% larger global population will be a major driver of global environmental change. Should past dependences of the global environmental impacts of agriculture on human population and consumption continue, 109 hectares of natural ecosystems would be converted to agriculture by 2050. This would be accompanied by 2.4- to 2.7-fold increases in nitrogen- and phosphorus-driven eutrophication of terrestrial, freshwater, and near-shore marine ecosystems, and comparable increases in pesticide use. This eutrophication and habitat destruction would cause unprecedented ecosystem simplification, loss of ecosystem services, and species extinctions. Significant scientific advances and regulatory, technological, and policy changes are needed to control the environmental impacts of agricultural expansion.

  4. Adapting to climate change or to stakeholders?

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Camera, Corrado; Giannakis, Elias; Zoumides, Christos; Eliades, Marinos; Djuma, Hakan

    2015-04-01

    The Tamassos dam protects the Pedieos watershed in Cyprus against floods. The waterbody behind the dam serves as a new biodiversity and recreational resource. Water from the dam is also used for domestic water supply for nearby rural communities. However, this peaceful picture is threatened by climate change. Regional Climate Models indicate a drier and warmer Pedieos watershed in the near future (2020-2050). Interviews and meetings with a wide variety of stakeholders, for the development of a climate change adaptation plan for the Pedieos watershed, has created even more uncertainties than climate change. Environmental-minded stakeholders suggested to demolish the dam and to return the watershed to its natural state and the water to downstream ecosystems. Agricultural producers would also like to see the return of stream flows, such that they can divert or impound the water for groundwater recharge and subsequent irrigation. Community leaders similarly prefer stream flows for the recharge of the alluvial river aquifers, to allow them to abstract more groundwater for community water supply. Downstream authorities have different concerns. Here the usually dry river bed serves as the drainage of the urban agglomeration of the capital of Nicosia; and has been identified as an area of potentially significant flood risk for the European Flood Directive (2007/60/EC). The largest storm event in the upstream area in the recent past occurred in January 1989, before the construction of the dam. The runoff totalled 3.1 million m3 in one day and 4.4 million m3 in two days. Thus, part of the runoff would have flown straight through the spillway of the 2.8 million m3 dam reservoir. Average annual precipitation in the highly sloping, forested upstream area is 500 mm, while stream flows average 4.7 million m3/yr (1981-2001). This results in an average runoff coefficient of 19% for the 45-km2 upstream area. Past observations, climate change projections and hydrologic models facilitate the development of sustainable adaptation solutions. However, reconciling the diverging visions and water demands of the stakeholders will be a tougher problem to solve. This research is supported by the European Union's FP7 BEWATER project (GA 612385).

  5. Global Change: A View from Space

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2003-01-01

    In this talk, I will discuss the fundamental science and society problems associated with global change, with an emphasis on the view from space. I will provide an overview of the vision and activities of the World Climate Research Program in the next two decades. Then I will show regional climate changes and environmental problems in the East Asian region, such as biomass burning, urban pollutions, yellow sand, and their possible interaction with the Asian monsoon, particularly over Southern China.

  6. Global climate change and US agriculture

    NASA Technical Reports Server (NTRS)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  7. Global change: state of the science.

    PubMed

    Wuebbles, D J; Jain, A; Edmonds, J; Harvey, D; Hayhoe, K

    1999-01-01

    Only recently, within a few decades, have we realized that humanity significantly influences the global environment. In the early 1980s, atmospheric measurements confirmed basic concepts developed a decade earlier. These basic concepts showed that human activities were affecting the ozone layer. Later measurements and theoretical analyses have clearly connected observed changes in ozone to human-related increases of chlorine and bromine in the stratosphere. As a result of prompt international policy agreements, the combined abundances of ozone-depleting compounds peaked in 1994 and ozone is already beginning a slow path to recovery. A much more difficult problem confronting humanity is the impact of increasing levels of carbon dioxide and other greenhouse gases on global climate. The processes that connect greenhouse gas emissions to climate are very complex. This complexity has limited our ability to make a definitive projection of future climate change. Nevertheless, the range of projected climate change shows that global warming has the potential to severely impact human welfare and our planet as a whole. This paper evaluates the state of the scientific understanding of the global change issues, their potential impacts, and the relationships of scientific understanding to policy considerations. PMID:15093113

  8. Capturing provenance of global change information

    NASA Astrophysics Data System (ADS)

    Ma, Xiaogang; Fox, Peter; Tilmes, Curt; Jacobs, Katharine; Waple, Anne

    2014-06-01

    Global change information demands access to data sources and well-documented provenance to provide the evidence needed to build confidence in scientific conclusions and decision making. A new generation of web technology, the Semantic Web, provides tools for that purpose.

  9. Surfing Global Change: Negotiating Sustainable Solutions

    ERIC Educational Resources Information Center

    Ahamer, Gilbert

    2006-01-01

    SURFING GLOBAL CHANGE (SGC) serves as a procedural shell for attaining sustainable solutions for any interdisciplinary issue and is intended for use in advanced university courses. The participants' activities evolve through five levels from individual argumentation to molding one's own views for the "common good." The paradigm of "ethics of…

  10. GLOBAL CHANGE EFFECTS ON CORAL REEF CONDITION

    EPA Science Inventory

    Fisher, W., W. Davis, J. Campbell, L. Courtney, P. Harris, B. Hemmer, M. Parsons, B. Quarles and D. Santavy. In press. Global Change Effects on Coral Reef Condition (Abstract). To be presented at the EPA Science Forum: Healthy Communities and Ecosystems, 1-3 June 2004, Washington...

  11. Global climate change and life on earth

    SciTech Connect

    Wyman, R.L.

    1991-01-01

    This books presents papers given at the April 1989 conference Global Climate Change and Life on Earth: Evidence, Predictions and Policy. In general, the text is written to provide understanding for non-professionals, but there is considerable variation. Each chapter is virtually independent.

  12. Surfing Global Change: Negotiating Sustainable Solutions

    ERIC Educational Resources Information Center

    Ahamer, Gilbert

    2006-01-01

    SURFING GLOBAL CHANGE (SGC) serves as a procedural shell for attaining sustainable solutions for any interdisciplinary issue and is intended for use in advanced university courses. The participants' activities evolve through five levels from individual argumentation to molding one's own views for the "common good." The paradigm of "ethics of

  13. Aiding cities in their work on climate change adaptation

    NASA Astrophysics Data System (ADS)

    Hamilton, P.

    2013-12-01

    Urban areas around the world are at the frontlines of climate change because of their enormous aggregate populations and because of their vulnerability to multiple climate change stressors. Half of our planet's 7.1 billion inhabitants currently reside in cities with six billion people projected to call cities home by 2050. In the U.S. and much of the rest of the world, cities are warming at twice the rate of the planet. Superimposed on urban climate changes driven by global warming are the regional effects of urban heat domes driven by large differences in land use, building materials, and vegetation between cities and their rural surroundings. In megacities - those with populations exceeding 10 million people - such as Tokyo - urban heat domes can contribute to daytime temperatures that soar to more than 11C higher than their rural surroundings. In addition, the localized warming can alter patterns of precipitation in metropolitan regions and perhaps even influence the frequency and severity of severe weather. Municipal officials need to accelerate their efforts to prepare and implement climate change adaptation strategies but what are the institutions that can help enable this work? Informal science education centers can play vital roles because they are overwhelmingly in urban settings and because they can act as ';competent outsiders.' They are neither responsible for conducting climate change research nor accountable for implementing public policies to address climate change. They instead can play an essential role of ensuring that solid science informs the formulation of good practices and policies. It is incumbent, therefore, for informal science education centers to accelerate and enhance their abilities to help translate scientific insights into on-the-ground actions. This session will explore the potential roles of informal science education centers to advance climate change adaptation through a review of the urban climate change education initiatives for municipal officials that the Science Museum of Minnesota has implemented over the past two years.

  14. WATERSHED BOUNDARY CONDITIONS FOR GLOBAL CHANGE IMPACT ANALYSIS

    EPA Science Inventory

    The US Global Change Research Program (USGCRP) studies (among other issues) the impact of global change on water quality. This field study evaluates the impact of global changes (land-use change and climate change) on source water quality. Changes in source water quality change...

  15. Costs and benefits of adapting to river floods at the global scale

    NASA Astrophysics Data System (ADS)

    Ward, Philip; Aerts, Jeroen; Botzen, Wouter; Hallegatte, Stephane; Jongman, Brenden; Kind, Jarl; Scussolini, Paolo; Winsemius, Hessel

    2015-04-01

    It is well known that the economic losses associated with flooding are huge; for example in 2012 alone the economic losses from flooding exceeded 19 billion. As a result, different models have been developed to assess global scale flood risk. Recently, these have been used in several studies to assess current flood risk at the global scale, and to project how risk may increase as a result of climate change and/or socioeconomic development. In most regions, these studies show rapid increases in risk into the future, and therefore call for urgent adaptation. However, to date no studies have attempted to assess the costs of carrying out such adaptation, nor the benefits. In this paper, we therefore present the first global scale estimate of the costs and benefits of adapting to increased river flood risk caused by factors such as climate change and socioeconomic development. For this study, we concentrate on structural adaptation measures, such as dikes, designed to prevent flood hazard up to a certain design standard. We address two questions: 1. What would be the costs and benefits of maintaining current flood protection standards, accounting for future climate and socioeconomic change until 2100? 2. What flood protection standards would be required by 2100 to keep future flood risk constant at today's levels? And what would be the costs and benefits associated with this? In this paper, we will present our first global estimates of the costs and benefits of adaptation to increased flood risk, as well as maps of these findings per country and river basin. We present the results under 4 emission scenarios (RCPs), 5 socioeconomic scenarios (SSPs), and under several assumptions relating to total potential flood damages, discount rates, construction costs, maintenance costs, and so forth. The research was carried out using the GLOFRIS modelling cascade. This global flood risk model calculates flood risk in terms of annual expected damage, and has been developed and validated over the past few years. For this study we have extended GLOFRIS by developing a module that calculates the costs and benefits of adaptation by increasing dike flood protection standards. In brief, this is carried out by calculating, per cell, the length of dikes that would be required to provide flood protection, multiplying this with the change in dike height that would be required to offer a certain flood protection standard, and multiplying this with data on the costs of dike construction and maintenance.

  16. Satellite Contributions to Global Change Studies

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2009-01-01

    By providing a global view with a level playing field (no region missed because of unfavorable surface conditions or political boundaries), satellites have made major contributions to improved monitoring and understanding of our constantly changing planet. The global view has allowed surprising realizations like the relative sparsity of lightning strikes over oceans and the large-scale undulations on the massive Antarctic ice sheet. It has allowed the tracking of all sorts of phenomena, including aerosols, both natural and anthropogenic, as they move with the atmospheric circulation and impact weather and human health. But probably nothing that the global view allows is more important in the long term than its provision. of unbiased data sets to address the issue of global change, considered by many to be among the most important issues facing humankind today. With satellites we can monitor atmospheric temperatures at all latitudes and longitudes, and obtain a global average that lessens the likelihood of becoming endlessly mired in the confusions brought about by the certainty of regional differences. With satellites we can monitor greenhouse gases such as CO2 not just above individual research stations but around the globe. With satellites we can monitor the polar sea ice covers, as we have done since the late 1970s, determining and quantifying the significant reduction in Arctic sea ice and the slight growth in Antarctic sea ice over that period, With satellites we can map the full extent and changes in the Antarctic stratospheric ozone depletions that were first identified from using a single ground station; and through satellite data we have witnessed from afar land surface changes brought about by humans both intentionally, as with wide-scale deforestation, and unintentionally, as with the decay of the Aral Sea. The satellite data are far from sufficient for all that we need in order to understand the global system and forecast its changes, as we also need sophisticated climate models, in situ process studies, and data sets that extend back well before the introduction of satellite technology. Nonetheless, the repetitive, global view provided by satellites is contributing in a major way to our improved recognition of how the Earth im changing, a recognition that is none too soon in view of the magnitude of the impacts that humans can now have.

  17. Seagrass meadows in a globally changing environment.

    PubMed

    Unsworth, Richard K F; van Keulen, Mike; Coles, Rob G

    2014-06-30

    Seagrass meadows are valuable ecosystem service providers that are now being lost globally at an unprecedented rate, with water quality and other localised stressors putting their future viability in doubt. It is therefore critical that we learn more about the interactions between seagrass meadows and future environmental change in the anthropocene. This needs to be with particular reference to the consequences of poor water quality on ecosystem resilience and the effects of change on trophic interactions within the food web. Understanding and predicting the response of seagrass meadows to future environmental change requires an understanding of the natural long-term drivers of change and how these are currently influenced by anthropogenic stress. Conservation management of coastal and marine ecosystems now and in the future requires increased knowledge of how seagrass meadows respond to environmental change, and how they can be managed to be resilient to these changes. Finding solutions to such issues also requires recognising people as part of the social-ecological system. This special issue aims to further enhance this knowledge by bringing together global expertise across this field. The special issues considers issues such as ecosystem service delivery of seagrass meadows, the drivers of long-term seagrass change and the socio-economic consequences of environmental change to seagrass. PMID:24874505

  18. Global Change: Logs of Straw; Dendrochronology

    SciTech Connect

    1994-09-01

    The U.S. Geological Survey has produced a teacher`s packet targeted for grades 4 through 6 entitled Global Change. Each Global Change packet contains the following inserts: (1) A color poster depicting the earth as a fragile planet on one side, and examples of visible global change on the reverse. (2) Three activities addressing {open_quotes}Time and Cycles,{close_quotes} {open_quotes}Change and Cycles,{close_quotes} and {open_quotes}Earth as Home{close_quotes} (3) A teacher guide (4) An evaluation questionnaire. Trees are some of nature`s most accurate time-keepers. Their growth layers, appearing as rings in the cross section of the tree trunk, record evidence of floods, droughts, insect attacks, lightning strikes, and even earthquakes. Tree growth depends on local conditions, which include the availability of water. Because the water cycle, or hydrologic cycle, is uneven-that is, the amount of water in the environment varies from year to year-scientist use tree-ring patterns to reconstruct regional patterns of drought and climatic change. This field of study, known as dendrochronology, was begun in the early 1900s by an American astronomer named Andrew Ellicott Douglass.

  19. Global Climate Change and Children's Health.

    PubMed

    2015-11-01

    Rising global temperatures are causing major physical, chemical, and ecological changes in the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as "climate change," are the result of contemporary human activity. Climate change poses threats to human health, safety, and security, and children are uniquely vulnerable to these threats. The effects of climate change on child health include: physical and psychological sequelae of weather disasters; increased heat stress; decreased air quality; altered disease patterns of some climate-sensitive infections; and food, water, and nutrient insecurity in vulnerable regions. The social foundations of children's mental and physical health are threatened by the specter of far-reaching effects of unchecked climate change, including community and global instability, mass migrations, and increased conflict. Given this knowledge, failure to take prompt, substantive action would be an act of injustice to all children. A paradigm shift in production and consumption of energy is both a necessity and an opportunity for major innovation, job creation, and significant, immediate associated health benefits. Pediatricians have a uniquely valuable role to play in the societal response to this global challenge. PMID:26504130

  20. Thermohaline circulations and global climate change

    SciTech Connect

    Hanson, H.P.

    1992-01-01

    Thermohaline Circulations and Global Climate Change'' is concerned with investigating the hypothesis that changes in surface thermal and hydrological forcing of the North Atlantic, changes that might be expected to accompany CO{sub 2}-induced global warming, could result in ocean-atmosphere interactions' exerting a positive feedback on the climate system. Because the North Atlantic is the source of much of the global ocean's reservoir of deep water, and because this deep water could sequester large amounts of anthropogenically produced Co{sub 2}, changes in the rate of deep-water production are important to future climates. Since deep-water production is controlled, in part, by the annual cycle of the atmospheric forcing of the North Atlantic, and since this forcing depends strongly on both hydrological and thermal processes as well as the windstress, there is the potential for feedback between the relatively short-term response of the atmosphere to changing radiative forcing and the longer-term processes in the oceans. Work over the past 12 months has proceeded in several directions.

  1. Thermohaline circulations and global climate change

    SciTech Connect

    Hanson, H.P.

    1992-01-01

    This report discusses research activities conducted during the period 15 January 1992--14 December 1992. Thermohaline Circulations and Global Climate Change is concerned with investigating the hypothesis that changes in surface thermal and hydrological forcing of the North Atlantic, changes that might be expected to accompany C0[sub 2]-induced global warming, could result in ocean-atmosphere interactions' exerting a positive feedback on the climate system. Because the North Atlantic is the source of much of the global ocean's reservoir of deep water, and because this deep water could sequester large amounts of anthropogenically produced C0[sub 2], changes in the rate of deep-water production are important to future climates. Since deep-water Production is controlled, in part, by the annual cycle of the atmospheric forcing of the North Atlantic, and since this forcing depends strongly on both hydrological and thermal processes as well as the windstress, there is the potential for feedback between the relatively short-term response of the atmosphere to changing radiative forcing and the longer-term processes in the oceans. Work over the past 11 months has proceeded according to the continuation discussion of last January and several new results have arisen.

  2. Aspen Global Change Institute Summer Science Sessions

    SciTech Connect

    Katzenberger, John; Kaye, Jack A

    2006-10-01

    The Aspen Global Change Institute (AGCI) successfully organized and convened six interdisciplinary meetings over the course of award NNG04GA21G. The topics of the meetings were consistent with a range of issues, goals and objectives as described within the NASA Earth Science Enterprise Strategic Plan and more broadly by the US Global Change Research Program/Our Changing Planet, the more recent Climate Change Program Strategic Plan and the NSF Pathways report. The meetings were chaired by two or more leaders from within the disciplinary focus of each session. 222 scholars for a total of 1097 participants-days were convened under the auspices of this award. The overall goal of each AGCI session is to further the understanding of Earth system science and global environmental change through interdisciplinary dialog. The format and structure of the meetings allows for presentation by each participant, in-depth discussion by the whole group, and smaller working group and synthesis activities. The size of the group is important in terms of the group dynamics and interaction, and the ability for each participant's work to be adequately presented and discussed within the duration of the meeting, while still allowing time for synthesis

  3. Terrestrial ecosystem feedbacks to global climate change

    SciTech Connect

    Lashof, D.A.; DeAngelo, B.J.; Saleska, S.R.; Harte, J.

    1997-12-31

    Anthropogenic greenhouse gases are expected to induce changes in global climate that can alter ecosystems in ways that, in turn, may further affect climate. Such climate-ecosystem interactions can generate either positive or negative feedbacks to the climate system, thereby either enhancing or diminishing the magnitude of global climate change. Important terrestrial feedback mechanisms include CO{sub 2} fertilization (negative feedbacks), carbon storage in vegetation and soils (positive and negative feedbacks), vegetation albedo (positive feedbacks), and peatland methane emissions (positive and negative feedbacks). While the processes involved are complex, not readily quantifiable, and demonstrate both positive and negative feedback potential, the authors conclude that the combined effect of the feedback mechanisms reviewed here will likely amplify climate change relative to current projections that have not yet adequately incorporated these mechanisms. 162 refs., 7 figs., 3 tabs.

  4. Biomass burning a driver for global change

    SciTech Connect

    Levine, J.S.; Cofer, W.R. III; Cahoon, D.R. Jr.; Winstead, E.L.

    1995-03-01

    Recent research has identified another biospheric process that has instantaneous and longer term effects on the production of atmospheric gases: biomass burning. Biomass burning includes the burning of the world`s vegetation-forests, savannas. and agricultural lands, to clear the land and change its use. Only in the past decade have researchers realized the important contributions of biomass burning to the global budgets of many radiatively and chemically active gases - carbon dioxide, methane, nitric oxide, tropospheric ozone, methyl chloride - and elemental carbon particulates. International field experiments and satellite data are yielding a clearer understanding of this important global source of atmospheric gases and particulates. It is seen that in addition to being a significant instantaneous global source of atmospheric gases and particulates, burning enhances the biogenic emissions of nitric oxide and nitrous oxide from the world`s soils. Biomass burning affects the reflectivity and emissivity of the Earth`s surface as well as the hydrological cycle by changing rates of land evaporation and water runoff. For these reasons, it appears that biomass burning is a significant driver of global change. 20 refs., 4 figs., 2 tabs.

  5. Aphids in the face of global changes.

    PubMed

    Hullé, Maurice; Coeur d'Acier, Armelle; Bankhead-Dronnet, Stéphanie; Harrington, Richard

    2010-01-01

    Global warming is one of the principal challenges facing insects worldwide. It affects individual species and interactions between species directly through effects on their physiology and indirectly through effects on their habitat. Aphids are particularly sensitive to temperature changes due to certain specific biological features of this group. Effects on individuals have repercussions for aphid diversity and population dynamics. At a pan-European scale, the EXAMINE observation network has provided evidence for an increase in the number of aphid species present over the last 30 years and for earlier spring flights. We review these results and provide a review of the principal effects of global warming on aphid communities. PMID:20541161

  6. Aphids in the face of global changes.

    TOXLINE Toxicology Bibliographic Information

    Hullé M; Coeur d'Acier A; Bankhead-Dronnet S; Harrington R

    2010-06-01

    Global warming is one of the principal challenges facing insects worldwide. It affects individual species and interactions between species directly through effects on their physiology and indirectly through effects on their habitat. Aphids are particularly sensitive to temperature changes due to certain specific biological features of this group. Effects on individuals have repercussions for aphid diversity and population dynamics. At a pan-European scale, the EXAMINE observation network has provided evidence for an increase in the number of aphid species present over the last 30 years and for earlier spring flights. We review these results and provide a review of the principal effects of global warming on aphid communities.

  7. Global Warning: Project-Based Science Inspired by the Intergovernmental Panel on Climate Change

    ERIC Educational Resources Information Center

    Colaianne, Blake

    2015-01-01

    Misconceptions about climate change are common, which suggests a need to effectively address the subject in the classroom. This article describes a project-based science activity in which students report on the physical basis, adaptations, and mitigation of this global problem, adapting the framework of the United Nations' Intergovernmental Panel…

  8. Global Warning: Project-Based Science Inspired by the Intergovernmental Panel on Climate Change

    ERIC Educational Resources Information Center

    Colaianne, Blake

    2015-01-01

    Misconceptions about climate change are common, which suggests a need to effectively address the subject in the classroom. This article describes a project-based science activity in which students report on the physical basis, adaptations, and mitigation of this global problem, adapting the framework of the United Nations' Intergovernmental Panel

  9. Global Squeeze: Assessing Climate-Critical Resource Constraints for Coastal Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Chase, N. T.; Becker, A.; Schwegler, B.; Fischer, M.

    2014-12-01

    The projected impacts of climate change in the coastal zone will require local planning and local resources to adapt to increasing risks of social, environmental, and economic consequences from extreme events. This means that, for the first time in human history, aggregated local demands could outpace global supply of certain "climate-critical resources." For example, construction materials such as sand and gravel, steel, and cement may be needed to fortify many coastal locations at roughly the same point in time if decision makers begin to construct new storm barriers or elevate coastal lands. Where might adaptation bottlenecks occur? Can the world produce enough cement to armour the world's seaports as flood risks increase due to sea-level rise and more intense storms? Just how many coastal engineers would multiple such projects require? Understanding such global implications of adaptation requires global datasets—such as bathymetry, coastal topography, local sea-level rise and storm surge projections, and construction resource production capacity—that are currently unavailable at a resolution appropriate for a global-scale analysis. Our research group has identified numerous gaps in available data necessary to make such estimates on both the supply and demand sides of this equation. This presentation examines the emerging need and current availability of these types of datasets and argues for new coordinated efforts to develop and share such data.

  10. Mycotoxins in a changing global environment--a review.

    PubMed

    Marroqun-Cardona, A G; Johnson, N M; Phillips, T D; Hayes, A W

    2014-07-01

    Mycotoxins are toxic metabolites produced by fungal species that commonly contaminate staple foods and feeds. They represent an unavoidable problem due to their presence in globally consumed cereals such as rice, maize and wheat. Most mycotoxins are immunosuppressive agents and some are carcinogens, hepatotoxins, nephrotoxins, and neurotoxins. Worldwide trends envision a stricter control of mycotoxins, however, the changing global environment may not be the ideal setting to control and reduce the exposure to these toxins. Although new technologies allow us to inspect the multi-mycotoxin presence in foods, new sources of exposure, gaps in knowledge of mycotoxins interactions, appearance of "emergent" mycotoxins and elucidation of consequent health effects can complicate their control even more. While humans are adapting to cope with environmental changes, such as food scarcity, decreased food quality, mycotoxin regulations, crop production and seasonality, and other climate related modifications, fungal species are also adapting and increased cases of mycotoxin adverse health effects are likely to occur in the future. To guarantee access to quality food for all, we need a way to balance global mycotoxin standards with the realistic feasibility of reaching them, considering limitations of producers and designing strategies to reduce mycotoxin exposure based on sound research. PMID:24769018

  11. Adapting to and Coping with the Threat and Impacts of Climate Change

    ERIC Educational Resources Information Center

    Reser, Joseph P.; Swim, Janet K.

    2011-01-01

    This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to

  12. Adapting to and Coping with the Threat and Impacts of Climate Change

    ERIC Educational Resources Information Center

    Reser, Joseph P.; Swim, Janet K.

    2011-01-01

    This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to…

  13. Towards the global monitoring of biodiversity change.

    PubMed

    Pereira, Henrique M; David Cooper, H

    2006-03-01

    Governments have set the ambitious target of reducing biodiversity loss by the year 2010. The scientific community now faces the challenge of assessing the progress made towards this target and beyond. Here, we review current monitoring efforts and propose a global biodiversity monitoring network to complement and enhance these efforts. The network would develop a global sampling programme for indicator taxa (we suggest birds and vascular plants) and would integrate regional sampling programmes for taxa that are locally relevant to the monitoring of biodiversity change. The network would also promote the development of comparable maps of global land cover at regular time intervals. The extent and condition of specific habitat types, such as wetlands and coral reefs, would be monitored based on regional programmes. The data would then be integrated with other environmental and socioeconomic indicators to design responses to reduce biodiversity loss. PMID:16701487

  14. Climate change refugia as a tool for climate adaptation

    EPA Science Inventory

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  15. Response of Earth's Ecosystem to Global Change

    NASA Technical Reports Server (NTRS)

    Peterson, David L.

    1996-01-01

    The Earth is in the midst of rapid and unprecedented change, much of it caused by the enormous reproductive and resource acquisition success of the human population. For the first time in Earth's history, the actions of one species-humans-are altering the atmospheric, climatic, biospheric, and edaphic processes on a scale that rivals natural processes. How will ecosystems, involving those manipulated and managed by humans largely for human use, respond to these changes? Clearly ecosystems have been adjusting to change throughout Earth's history and evolving in ways to adapt and to maintain self-organizing behavior. And in this process, the metabolic activity of the biosphere has altered the environmental conditions it experiences. I am going to confine this presentation to a few thoughts on the present state of terrestrial ecosystems and the urgency that changes in it is bringing to all of us.

  16. Global atmospheric change and human health

    SciTech Connect

    Piver, W.T.

    1991-12-01

    On November 6-7, 1989, the National Institute of Environmental Health Sciences (NIEHS) held a Conference on Global Atmospheric Change and Human Health. Since this conference, presented papers have been transformed and revised as articles that address several potential impacts on human health of global warming. Coming when it did, this was a very important conference. At the present time, there is still much uncertainty about whether or not global warming is occurring and, if it is, what effect it will have no human health. All the participants in this conference recognized this uncertainty and addressed potential impacts on human health if surface temperatures continue to rise and greater amounts of shorter wavelength ultraviolet (UV) radiation continue to reach the earth's surface as a result of depletion of the ozone layer. Because global warming and ozone depletion will occur over many decades, adverse impacts on human health and the environment may not be reversible. In short, we are in the midst of a huge geophysical experiment with global climate, and we will not know what the outcome will be for many years.

  17. Stellar activity: Astrophysics relevant to global change

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.

    1994-01-01

    FRESIP will obtain a great deal of data on stellar activity and flares on F, G and K dwarfs. Rotation periods, flare distributions and possibly stellar cycles will emerge. This apparently curiosity-driven research actually has implications for our understanding of global climate change. Significant climate change during the seventeenth-century Maunder Minimum is thought to be related to a change in the solar condition. Recently acquired data from the Greenland Ice-core Project suggest that far greater climate changes on decade time scales may have occurred during the previous interglacial. It is possible that a yet more drastic change in state of the Sun was responsible. We have no relevant solar data, but can begin to explore this possibility by observing an ensemble of solar-like stars.

  18. Adapting wheat in Europe for climate change.

    PubMed

    Semenov, M A; Stratonovitch, P; Alghabari, F; Gooding, M J

    2014-05-01

    Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat. PMID:24882934

  19. Adapting wheat in Europe for climate change

    PubMed Central

    Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J.

    2014-01-01

    Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat. PMID:24882934

  20. Changing recruitment capacity in global fish stocks.

    PubMed

    Britten, Gregory L; Dowd, Michael; Worm, Boris

    2016-01-01

    Marine fish and invertebrates are shifting their regional and global distributions in response to climate change, but it is unclear whether their productivity is being affected as well. Here we tested for time-varying trends in biological productivity parameters across 262 fish stocks of 127 species in 39 large marine ecosystems and high-seas areas (hereafter LMEs). This global meta-analysis revealed widespread changes in the relationship between spawning stock size and the production of juvenile offspring (recruitment), suggesting fundamental biological change in fish stock productivity at early life stages. Across regions, we estimate that average recruitment capacity has declined at a rate approximately equal to 3% of the historical maximum per decade. However, we observed large variability among stocks and regions; for example, highly negative trends in the North Atlantic contrast with more neutral patterns in the North Pacific. The extent of biological change in each LME was significantly related to observed changes in phytoplankton chlorophyll concentration and the intensity of historical overfishing in that ecosystem. We conclude that both environmental changes and chronic overfishing have already affected the productive capacity of many stocks at the recruitment stage of the life cycle. These results provide a baseline for ecosystem-based fisheries management and may help adjust expectations for future food production from the oceans. PMID:26668368

  1. Beyond Reduction: Climate Change Adaptation Planning for Universities and Colleges

    ERIC Educational Resources Information Center

    Owen, Rochelle; Fisher, Erica; McKenzie, Kyle

    2013-01-01

    Purpose: The purpose of this paper is to outline a unique six-step process for the inclusion of climate change adaption goals and strategies in a University Climate Change Plan. Design/methodology/approach: A mixed-method approach was used to gather data on campus climate change vulnerabilities and adaption strategies. A literature review…

  2. Beyond Reduction: Climate Change Adaptation Planning for Universities and Colleges

    ERIC Educational Resources Information Center

    Owen, Rochelle; Fisher, Erica; McKenzie, Kyle

    2013-01-01

    Purpose: The purpose of this paper is to outline a unique six-step process for the inclusion of climate change adaption goals and strategies in a University Climate Change Plan. Design/methodology/approach: A mixed-method approach was used to gather data on campus climate change vulnerabilities and adaption strategies. A literature review

  3. Technologies for global change earth observations

    NASA Technical Reports Server (NTRS)

    Johnston, Gordon I.; Hudson, Wayne R.

    1990-01-01

    Advances in the areas of space-based observations, data/information analysis, and spacecraft/operations for the studying of global changes are discussed. Research involving systems analysis, observation technologies, information technologies, and spacecraft technologies is examined. Consideration is given to cryogenic coolers, IR arrays, laser and submillimeter sensing, large array CCD, information visualization, design knowledge capture, optical communications, multiinstrument pointing, propulsion, space environmental effects, and platform thermal systems.

  4. National Institute for Global Environmental Change

    SciTech Connect

    Werth, G.C.

    1992-04-01

    This document is the Semi-Annual Report of the National Institute for Global Environmental Change for the reporting period July 1 to December 31, 1991. The report is in two parts. Part I presents the mission of the Institute, examples of progress toward that mission, a brief description of the revised management plan, and the financial report. Part II presents the statements of the Regional Center Directors along with progress reports of the projects written by the researchers themselves.

  5. Time series analyses of global change data.

    PubMed

    Lane, L J; Nichols, M H; Osborn, H B

    1994-01-01

    The hypothesis that statistical analyses of historical time series data can be used to separate the influences of natural variations from anthropogenic sources on global climate change is tested. Point, regional, national, and global temperature data are analyzed. Trend analyses for the period 1901-1987 suggest mean annual temperatures increased (in degrees C per century) globally at the rate of about 0.5, in the USA at about 0.3, in the south-western USA desert region at about 1.2, and at the Walnut Gulch Experimental Watershed in south-eastern Arizona at about 0.8. However, the rates of temperature change are not constant but vary within the 87-year period. Serial correlation and spectral density analysis of the temperature time series showed weak periodicities at various frequencies. The only common periodicity among the temperature series is an apparent cycle of about 43 years. The temperature time series were correlated with the Wolf sunspot index, atmospheric CO(2) concentrations interpolated from the Siple ice core data, and atmospheric CO(2) concentration data from Mauna Loa measurements. Correlation analysis of temperature data with concurrent data on atmospheric CO(2) concentrations and the Wolf sunspot index support previously reported significant correlation over the 1901-1987 period. Correlation analysis between temperature, atmospheric CO(2) concentration, and the Wolf sunspot index for the shorter period, 1958-1987, when continuous Mauna Loa CO(2) data are available, suggest significant correlation between global warming and atmospheric CO(2) concentrations but no significant correlation between global warming and the Wolf sunspot index. This may be because the Wolf sunspot index apparently increased from 1901 until about 1960 and then decreased thereafter, while global warming apparently continued to increase through 1987. Correlation of sunspot activity with global warming may be spurious but additional analyses are required to test this hypothesis. Given the inconclusive correlation between temperature and solar activity, the significant intercorrelation between time, temperature, and atmospheric CO(2) concentrations, and the suggestion of weak periodicity in the temperature data, additional research is needed to separate the anthropogenic component from the natural variability in temperature when assessing local, regional, and global warming trends. PMID:15091751

  6. Changing Conceptions of Globalization: Changing Conceptions of Education.

    ERIC Educational Resources Information Center

    Fitzsimons, Patrick

    2000-01-01

    Examines changing conceptions of globalization in education, highlighting new electronic information technologies that, rather than promoting homogeneity, are producing a stimulus for a politics of difference. Cyborgs and cyberspace are emerging as discourses of disunity and difference. The essay recommends a form of critical localism to challenge

  7. An adaptability limit to climate change due to heat stress.

    PubMed

    Sherwood, Steven C; Huber, Matthew

    2010-05-25

    Despite the uncertainty in future climate-change impacts, it is often assumed that humans would be able to adapt to any possible warming. Here we argue that heat stress imposes a robust upper limit to such adaptation. Peak heat stress, quantified by the wet-bulb temperature T(W), is surprisingly similar across diverse climates today. T(W) never exceeds 31 degrees C. Any exceedence of 35 degrees C for extended periods should induce hyperthermia in humans and other mammals, as dissipation of metabolic heat becomes impossible. While this never happens now, it would begin to occur with global-mean warming of about 7 degrees C, calling the habitability of some regions into question. With 11-12 degrees C warming, such regions would spread to encompass the majority of the human population as currently distributed. Eventual warmings of 12 degrees C are possible from fossil fuel burning. One implication is that recent estimates of the costs of unmitigated climate change are too low unless the range of possible warming can somehow be narrowed. Heat stress also may help explain trends in the mammalian fossil record. PMID:20439769

  8. An adaptability limit to climate change due to heat stress

    PubMed Central

    Sherwood, Steven C.; Huber, Matthew

    2010-01-01

    Despite the uncertainty in future climate-change impacts, it is often assumed that humans would be able to adapt to any possible warming. Here we argue that heat stress imposes a robust upper limit to such adaptation. Peak heat stress, quantified by the wet-bulb temperature TW, is surprisingly similar across diverse climates today. TW never exceeds 31 °C. Any exceedence of 35 °C for extended periods should induce hyperthermia in humans and other mammals, as dissipation of metabolic heat becomes impossible. While this never happens now, it would begin to occur with global-mean warming of about 7 °C, calling the habitability of some regions into question. With 11–12 °C warming, such regions would spread to encompass the majority of the human population as currently distributed. Eventual warmings of 12 °C are possible from fossil fuel burning. One implication is that recent estimates of the costs of unmitigated climate change are too low unless the range of possible warming can somehow be narrowed. Heat stress also may help explain trends in the mammalian fossil record. PMID:20439769

  9. A DBMS architecture for global change research

    NASA Astrophysics Data System (ADS)

    Hachem, Nabil I.; Gennert, Michael A.; Ward, Matthew O.

    1993-08-01

    The goal of this research is the design and development of an integrated system for the management of very large scientific databases, cartographic/geographic information processing, and exploratory scientific data analysis for global change research. The system will represent both spatial and temporal knowledge about natural and man-made entities on the eath's surface, following an object-oriented paradigm. A user will be able to derive, modify, and apply, procedures to perform operations on the data, including comparison, derivation, prediction, validation, and visualization. This work represents an effort to extend the database technology with an intrinsic class of operators, which is extensible and responds to the growing needs of scientific research. Of significance is the integration of many diverse forms of data into the database, including cartography, geography, hydrography, hypsography, images, and urban planning data. Equally important is the maintenance of metadata, that is, data about the data, such as coordinate transformation parameters, map scales, and audit trails of previous processing operations. This project will impact the fields of geographical information systems and global change research as well as the database community. It will provide an integrated database management testbed for scientific research, and a testbed for the development of analysis tools to understand and predict global change.

  10. Change in global temperature: A statistical analysis

    SciTech Connect

    Richards, G.R. )

    1993-03-01

    This paper investigates several issues relating to global climatic change using statistical techniques that impose minimal restrictions on the data. The main findings are as follows: (1) The global temperature increase since the last century is a systematic development. (2) Short-term variations in temperature do not have long-lasting effects on the final realizations of the series over time, stochastic perturbations dissipate and temperature reverts to trend. (3) Multivariate tests for causality demonstrate that atmospheric CO[sub 2] is a significant forcing factor. The implied change in temperature with respect to a doubling of atmospheric CO[sub 2] lies in a range of 2.17[degrees] to 2.57[degrees]C, with a mean value of 2.34[degrees]C. The contributions of solar irradiance and volcanic loading are much smaller. (4) In a multivariate system, shocks to forcing factors generate stochastic cycles in temperature comparable to the results from unforced simulations of climatological models. (5) Extrapolation of regression equations predict changes in global temperature that are marginally lower than the results from climatological simulation models.

  11. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    SciTech Connect

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  12. Binary adaptive semi-global matching based on image edges

    NASA Astrophysics Data System (ADS)

    Hu, Han; Rzhanov, Yuri; Hatcher, Philip J.; Bergeron, R. D.

    2015-07-01

    Image-based modeling and rendering is currently one of the most challenging topics in Computer Vision and Photogrammetry. The key issue here is building a set of dense correspondence points between two images, namely dense matching or stereo matching. Among all dense matching algorithms, Semi-Global Matching (SGM) is arguably one of the most promising algorithms for real-time stereo vision. Compared with global matching algorithms, SGM aggregates matching cost from several (eight or sixteen) directions rather than only the epipolar line using Dynamic Programming (DP). Thus, SGM eliminates the classical "streaking problem" and greatly improves its accuracy and efficiency. In this paper, we aim at further improvement of SGM accuracy without increasing the computational cost. We propose setting the penalty parameters adaptively according to image edges extracted by edge detectors. We have carried out experiments on the standard Middlebury stereo dataset and evaluated the performance of our modified method with the ground truth. The results have shown a noticeable accuracy improvement compared with the results using fixed penalty parameters while the runtime computational cost was not increased.

  13. Moving Towards Leading Indicators for Global Change

    NASA Astrophysics Data System (ADS)

    Janetos, A.

    2014-12-01

    The development and implementation of a national indicators network relevant to climate change, impacts, and response options has taken advantage of the scientific expertise of a large number of disciplines related to global change. Like many previous and current indicators networks, this effort is focused on describing changes in the condition of a small number of indicators of current status and condition of important resources and processes. But an additional challenge remains, which is critically important for indicators that are meant to be used not only scientifically, but also to inform decision-makers: how should we think about indicators that are meant to impart information on future trajectories of the Earth system? In this presentation, I examine two different ways in which this might be accomplished - first is the use of leading indicators that are measures of current conditions, but for which their change over time is strongly correlated with future directions. The second is the use of model-based indicators. Both have strengths and weaknesses, and we explore how each can be approached in the context of global change.

  14. Preparing for Change: Challenges and Opportunities in a Global World

    NASA Astrophysics Data System (ADS)

    O'Hara, Sabine

    2009-03-01

    Our world is becoming increasingly global. This may sound like a clich'e, yet it is true nonetheless, and poses unprecedented challenges for graduate education. For the new generation of researchers, teachers and professionals to be successful they must be prepared in more than the content area of their chosen field. They must also acquire proficiency in global awareness, cultural literacy, multicultural teamwork and language facility. These global skill sets form the basis for effective multicultural collaboration and will become increasingly important even for those who do not intend to study or work abroad. Knowledge has become more portable in the internet age; large data bases and reports can be accessed in real time from various locations around the globe; information is exchanged in multifaceted knowledge networks; collaborative research takes place within and outside of the traditional venue of the research university in the private sector, research institutes, and associations; research networks span multiple disciplines as progress invariably occurs at the intersection of previously discrete fields of inquiry. Global collaboration thus is no longer dependent on the physical proximity of collaborators but can take place anywhere any time. This then requires yet another set of skills, namely the ability to adapt to change, exhibit flexibility and transfer skills to a range of contexts and applications. Effective graduate education must address these realities and expose students to learning opportunities that will enable them to acquire these much needed global skills sets.

  15. Global Change Impacts on Mangrove Ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems. Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use efficiency, but the consequences of this growth enhancement for the ecosystem are unknown.

  16. Evaluating Global Climate Change Education Initiative

    NASA Astrophysics Data System (ADS)

    Weston, T. J.

    2011-12-01

    The Global Climate Change Education initiative (GCCE) is a multi-site effort funded by the National Science Foundation to develop web resources. The objective of curricular modules is to improve content knowledge and change attitudes about climate change among undergraduate science students. The two-year evaluation of the project was conducted by Tim Weston from the University of Colorado. The small-scale evaluation first developed measures for attitude and content about climate change, and then administered the measures online. Analysis of results is ongoing. The evaluator wanted to know the attitudes and content knowledge of students after completing the modules, and if attitudes and content knowledge shifted from pre to post. An additional component of the evaluation focused on student understanding of specific global warming topics after completing the modules. Developing the test and survey involved reviewing existing measures, soliciting content from stakeholders in the grant, and then establishing a content framework that covered the important topics in climate change linked to project curricula. The pilot attitude measure contained fourteen agree/disagree items (I believe people should change their lifestyles to help minimize climate change), five self-assessment questions (How informed are you about the different causes of climate change? ), and wo previous experience questions about previous science courses taken, and actions related to climate change. The content measure contained 10 multiple-choice items asking about changes in global average temperature, the scientific methods of climate change, and the primary countries and human activities responsible for climate change. Questions were designed to reflect a mixture of general science literacy about climate change and more specific content related knowledge taught in the curricula. Both content and attitude measures were piloted with students, who answered questions using a think-aloud" interview protocol meant to clarify any ambiguous wording or over-specialized vocabulary in the items. Corrected versions of the measures were then given to small groups of students to check for instrument and sub-scale reliability and to learn if any items had ceiling or floor effects. Results from administration of the post attitude survey showed a majority of students in multiple courses agreed with attitude items across the range of topics. For instance, 72 - 90% or students in 8 courses using the modules agreed or strongly agreed with the statement "I believe people should change their lifestyles to help minimize climate change." A majority of students also agreed with statements such as "Human actions are causing climate change, " and "there is sufficient scientific evidence that climate change is taking place." Where pre/post data was available, average scores across items increased after students used the curricula by an average of .5 on a scale of 1 - 5. Students also scored high on the climate change content measure. Average percentage correct scores per item ranged from 32% to 90%. Average scores also gained by 2 -4 points depending on course.

  17. Adaptation potential of European agriculture in response to climate change

    NASA Astrophysics Data System (ADS)

    Moore, Frances C.; Lobell, David B.

    2014-07-01

    Projecting the impacts of climate change on agriculture requires knowing or assuming how farmers will adapt. However, empirical estimates of the effectiveness of this private adaptation are scarce and the sensitivity of impact assessments to adaptation assumptions is not well understood. Here we assess the potential effectiveness of private farmer adaptation in Europe by jointly estimating both short-run and long-run response functions using time-series and cross-sectional variation in subnational yield and profit data. The difference between the impacts of climate change projected using the short-run (limited adaptation) and long-run (substantial adaptation) response curves can be interpreted as the private adaptation potential. We find high adaptation potential for maize to future warming but large negative effects and only limited adaptation potential for wheat and barley. Overall, agricultural profits could increase slightly under climate change if farmers adapt but could decrease in many areas if there is no adaptation. Decomposing the variance in 2040 projected yields and farm profits using an ensemble of 13 climate model runs, we find that the rate at which farmers will adapt to rising temperatures is an important source of uncertainty.

  18. Weather Extremes, Climate Change and Adaptive Governance

    NASA Astrophysics Data System (ADS)

    Veland, S.; Lynch, A. H.

    2014-12-01

    Human societies have become a geologic agent of change, and with this is an increasing awareness of the environment risks that confront human activities and values. More frequent and extreme hydroclimate events, anomalous tropical cyclone seasons, heat waves and droughts have all been documented, and many rigorously attributed to fossil fuel emissions (e.g. DeGaetano 2009; Hoyos et al. 2006). These extremes, however, do not register themselves in the abstract - they occur in particular places, affecting particular populations and ecosystems (Turner et al. 2003). This can be considered to present a policy window to decrease vulnerability and enhance emergency management. However, the asymmetrical character of these events may lead some to treat remote areas or disenfranchised populations as capable of absorbing the environmental damage attributable to the collective behavior of those residing in wealthy, populous, industrialized societies (Young 1989). Sound policies for adaptation to changing extremes must take into account the multiple interests and resource constraints for the populations affected and their broader contexts. Minimizing vulnerability to weather extremes is only one of many interests in human societies, and as noted, this interest competes with the others for limited time, attention, funds and other resources. Progress in reducing vulnerability also depends on policy that integrates the best available local and scientific knowledge and experience elsewhere. This improves the chance that each policy will succeed, but there are no guarantees. Each policy must be recognized as a matter of trial and error to some extent; surprises are inevitable. Thus each policy should be designed to fail gracefully if it fails, to learn from the experience, and to leave resources sufficient to implement the lessons learned. Overall policy processes must be quasi-evolutionary, avoiding replication without modification of failed policies and building on the successes. DeGaetano A.T. 2009 J.APP.METEOROL.CLIMATOL. Hoyos C.D et al. 2006 SCIENCE Turner B.L. et al. 2003 PROC.NAT.ACAD.SCI. Young, O.R. 1989 CURR. RES. PEACE VIOLENCE

  19. Toward an understanding of global change

    NASA Technical Reports Server (NTRS)

    1988-01-01

    In the international scientific community, the International Council of Scientific Unions has organized the International Geosphere Biosphere Program (IGBP) to address the problems of global change. The objective of the IGBP is to describe and understand the interactive physical, chemical, and biological processes that regulate the total earth system, the unique environment that it provides for life, the changes that are occurring in this system, and the manner in which they are influenced by human activities. The IGBP is currently in its preparatory phase, during which the program's goals and research components are slowly evolving and coming into focus. In this report, a limited number of high-priority research initiatives are recommended for early implementation as part of the U.S. contribution to the preparatory phase of the IGBP. The recommendations are based on the committee's analysis of the most critical gaps, not being addressed by existing programs, in the scientific knowledge needed to understand the changes that are occurring in the earth system on time scales of decades to centuries. These initiatives will build upon the capabilities of the U.S. program in global change.

  20. Global fish production and climate change

    SciTech Connect

    Brander, K.M.

    2007-12-11

    Current global fisheries production of {approx}160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but there is low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Nino-Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are giverned by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipiation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the pricipal feasible means of reducing the impacts of climate change.

  1. A dissenting view on global climate change

    SciTech Connect

    Linden, H.R.

    1993-07-01

    Global warming alarmists are vastly overstating the risks of climate change, often to further other agendas. The science of global warming simply does not support their claims of impending doom - as policy makers would be wise to note. There is scientific consensus on the existence of a benign natural greenhouse effect that keeps the Earth habitable by raising its average surface temperature by about 33 [degrees]C. Global warming alarmists, however, have falsely claimed that this consensus also extends to the belief that human activity is significantly enhancing this effect. This is simply untrue. Based on a wealth of new information, there is now strong and rapidly growing scientific dissent on the inevitability of catastrophic and even mildly detrimental anthropogenic climate change. This casts serious doubts on the need for binding international agreements to curtail emissions of greenhouse gases from fossil fuel combustion, or to limit conversion of tropical forests to agricultural uses in areas where increased food supply is a critical issue.

  2. Adapting Natural Resource Management to Climate Change: The Blue Mountains and Northern Rockies Adaptation Partnerships

    NASA Astrophysics Data System (ADS)

    Halofsky, J.; Peterson, D. L.

    2014-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and other key stakeholders in the Blue Mountains region of northeastern Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  3. Global change and human susceptibility to disease

    SciTech Connect

    Daily, G.C.; Ehrlich, P.R.

    1996-12-31

    Although the loss of good health is inherently unpredictable, human behavior at the individual and societal levels profoundly influences the incidence and evolution of disease. In this review, the authors define the human epidemiological environment and describe key biophysical, economic, sociocultural, and political factors that shape it. The potential impact upon the epidemiological environment of biophysical aspects of global change--changes in the size; mobility, and geographic distribution of the human population; land conversion; agricultural intensification; and climate change--is then examined. Human vulnerability to disease is strongly and deleteriously influenced by many of these ongoing, intensifying alterations. The authors then examine threats to human defenses against disease, including immune suppression, loss of biodiversity and indigenous knowledge, and the evolution of antibiotic resistance. Effective responses will require greatly enhanced attention by and collaboration among experts in diverse academic disciplines, in the private sector, and in government worldwide. 157 refs.

  4. Marine ecosystem responses to Cenozoic global change.

    PubMed

    Norris, R D; Turner, S Kirtland; Hull, P M; Ridgwell, A

    2013-08-01

    The future impacts of anthropogenic global change on marine ecosystems are highly uncertain, but insights can be gained from past intervals of high atmospheric carbon dioxide partial pressure. The long-term geological record reveals an early Cenozoic warm climate that supported smaller polar ecosystems, few coral-algal reefs, expanded shallow-water platforms, longer food chains with less energy for top predators, and a less oxygenated ocean than today. The closest analogs for our likely future are climate transients, 10,000 to 200,000 years in duration, that occurred during the long early Cenozoic interval of elevated warmth. Although the future ocean will begin to resemble the past greenhouse world, it will retain elements of the present "icehouse" world long into the future. Changing temperatures and ocean acidification, together with rising sea level and shifts in ocean productivity, will keep marine ecosystems in a state of continuous change for 100,000 years. PMID:23908226

  5. Explaining Climate Change - a Global Educational Initiative

    NASA Astrophysics Data System (ADS)

    Martin, B.; Mahaffy, P.; Kirchhoff, M.

    2012-12-01

    Understanding and responding to human caused climate change is one of the defining challenges facing humanity in the early 21st century. The need to both educate our youth and equip them to take decisive and effective action must become a critical focus of education. To this end we present www.explainingclimatechange.ca - a comprehensive learning package that presents the underlying science of climate change to a global student cohort aged 16 - 19 years. The materials within this resource include many interactive components that encourage an active learning approach to understanding the evidential bases for the science of climate change as well as tools enabling students to begin to develop mitigation strategies to reduce human impact on climate. These materials are a joint International Year of Chemistry legacy project of the International Union of Pure and Applied Chemistry, UNESCO, the American Chemical Society, the Royal Society of Chemistry and the King's Centre for Visualization in Science.

  6. Global warming and changes in ocean circulation

    SciTech Connect

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  7. Global Changes of the Water Cycle Intensity

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Walker, Gregory K.

    2003-01-01

    In this study, we evaluate numerical simulations of the twentieth century climate, focusing on the changes in the intensity of the global water cycle. A new diagnostic of atmospheric water vapor cycling rate is developed and employed, that relies on constituent tracers predicted at the model time step. This diagnostic is compared to a simplified traditional calculation of cycling rate, based on monthly averages of precipitation and total water content. The mean sensitivity of both diagnostics to variations in climate forcing is comparable. However, the new diagnostic produces systematically larger values and more variability than the traditional average approach. Climate simulations were performed using SSTs of the early (1902-1921) and late (1979- 1998) twentieth century along with the appropriate C02 forcing. In general, the increase of global precipitation with the increases in SST that occurred between the early and late twentieth century is small. However, an increase of atmospheric temperature leads to a systematic increase in total precipitable water. As a result, the residence time of water in the atmosphere increased, indicating a reduction of the global cycling rate. This result was explored further using a number of 50-year climate simulations from different models forced with observed SST. The anomalies and trends in the cycling rate and hydrologic variables of different GCMs are remarkably similar. The global annual anomalies of precipitation show a significant upward trend related to the upward trend of surface temperature, during the latter half of the twentieth century. While this implies an increase in the hydrologic cycle intensity, a concomitant increase of total precipitable water again leads to a decrease in the calculated global cycling rate. An analysis of the land/sea differences shows that the simulated precipitation over land has a decreasing trend while the oceanic precipitation has an upward trend consistent with previous studies and the available observations. The decreasing continental trend in precipitation is located primarily over tropical land regions, with some other regions, such as North America experiencing an increasing trend. Precipitation trends are diagnosed further using the water tracers to delineate the precipitation that occurs because of continental evaporation, as opposed to oceanic evaporation. These diagnostics show that over global land areas, the recycling of continental moisture is decreasing in time. However, the recycling changes are not spatially uniform so that some regions, most notably over the United States, experience continental recycling of water that increases in time.

  8. Earth orbiting technologies for understanding global change

    NASA Astrophysics Data System (ADS)

    Harris, Leonard A.; Johnston, Gordon I.; Hudson, Wayne R.; Couch, Lana M.

    We are all becoming more aware of concerns such as the ozone hole and ozone layer depletion, the build-up of greenhouse gasses and the potential for global climate change, the damage to our lakes and forests from acid rain, and the loss of species and genetic diversity. These are not only of scientific interest, but are of growing public media, federal governmental, and international concern, with the potential for major impacts on the international economy, potential for future development, and global standard of living. Yet our current understanding of how our global environment behaves is embryonic, and does not allow us to predict with confidence the consequences or long term significance of these phenomena. NASA has a significant national responsibility in Global Change research, which will require a major agency investment over the next few decades in obtaining the science data associated with understanding the Earth as a total system. Technology research and development is a natural complement to this national scientific program. In her report to the NASA Administrator, Dr. Sally K. Ride states that Mission to Planet Earth "requires advances in technology to enhance observations, to handle and deliver the enormous quantities of data, and to ensure a long operating life." These three themes (1) space-based observation technologies, (2) data/information technologies, and (3) spacecraft/operations technologies form the basis for NASA's efforts to identify the technologies needed to support the Mission to Planet Earth. In the observation area, developments in spacecraft and space-based instrument technologies are required to enable the accurate measurement of key parameters crucial to the understanding of global change. In the data/information area, developments in technologies are required to enable the long-term documentation of these parameters and the timely understanding of the data. And in the spacecraft/operations area, developments in spacecraft, platform, and operations technologies are required to enable consistent long-term collection of data through increased system reliability and operations effectiveness. Development of automation technologies for ground-based planning and operations systems would enable more flexible spacecraft and inter-spacecraft operations. This paper summarizes the effort to identify these technology requirements.

  9. Public Health Adaptation to Climate Change in Canadian Jurisdictions

    PubMed Central

    Austin, Stephanie E.; Ford, James D.; Berrang-Ford, Lea; Araos, Malcolm; Parker, Stephen; Fleury, Manon D.

    2015-01-01

    Climate change poses numerous risks to the health of Canadians. Extreme weather events, poor air quality, and food insecurity in northern regions are likely to increase along with the increasing incidence and range of infectious diseases. In this study we identify and characterize Canadian federal, provincial, territorial and municipal adaptation to these health risks based on publically available information. Federal health adaptation initiatives emphasize capacity building and gathering information to address general health, infectious disease and heat-related risks. Provincial and territorial adaptation is varied. Quebec is a leader in climate change adaptation, having a notably higher number of adaptation initiatives reported, addressing almost all risks posed by climate change in the province, and having implemented various adaptation types. Meanwhile, all other Canadian provinces and territories are in the early stages of health adaptation. Based on publically available information, reported adaptation also varies greatly by municipality. The six sampled Canadian regional health authorities (or equivalent) are not reporting any adaptation initiatives. We also find little relationship between the number of initiatives reported in the six sampled municipalities and their provinces, suggesting that municipalities are adapting (or not adapting) autonomously. PMID:25588156

  10. 61 FR 30593 - Climate and Global Change Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    1996-06-17

    ... National Oceanic and Atmospheric Administration RIN: 0648-XX12 Climate and Global Change Program AGENCY.... SUMMARY: The Climate and Global Change Program represents a National Oceanic and Atmospheric... the Climate and Global Change Program is to provide reliable predictions of climate change...

  11. Gene pleiotropy constrains gene expression changes in fish adapted to different thermal conditions

    PubMed Central

    Papakostas, Spiros; Vllestad, L. Asbjrn; Bruneaux, Matthieu; Aykanat, Tutku; Vanoverbeke, Joost; Ning, Mei; Primmer, Craig R.; Leder, Erica H.

    2014-01-01

    Understanding the factors that shape the evolution of gene expression is a central goal in biology, but the molecular mechanisms behind this remain controversial. A related major goal is ascertaining how such factors may affect the adaptive potential of a species or population. Here we demonstrate that temperature-driven gene expression changes in fish adapted to differing thermal environments are constrained by the level of gene pleiotropy estimated by either the number of protein interactions or gene biological processes. Genes with low pleiotropy levels were the main drivers of both plastic and evolutionary global expression profile changes, while highly pleiotropic genes had limited expression response to temperature treatment. Our study provides critical insights into the molecular mechanisms by which natural populations can adapt to changing environments. In addition to having important implications for climate change adaptation, these results suggest that gene pleiotropy should be considered more carefully when interpreting expression profiling data. PMID:24892934

  12. The environmental impact of climate change adaptation on land use and water quality

    NASA Astrophysics Data System (ADS)

    Fezzi, Carlo; Harwood, Amii R.; Lovett, Andrew A.; Bateman, Ian J.

    2015-03-01

    Encouraging adaptation is an essential aspect of the policy response to climate change. Adaptation seeks to reduce the harmful consequences and harness any beneficial opportunities arising from the changing climate. However, given that human activities are the main cause of environmental transformations worldwide, it follows that adaptation itself also has the potential to generate further pressures, creating new threats for both local and global ecosystems. From this perspective, policies designed to encourage adaptation may conflict with regulation aimed at preserving or enhancing environmental quality. This aspect of adaptation has received relatively little consideration in either policy design or academic debate. To highlight this issue, we analyse the trade-offs between two fundamental ecosystem services that will be impacted by climate change: provisioning services derived from agriculture and regulating services in the form of freshwater quality. Results indicate that climate adaptation in the farming sector will generate fundamental changes in river water quality. In some areas, policies that encourage adaptation are expected to be in conflict with existing regulations aimed at improving freshwater ecosystems. These findings illustrate the importance of anticipating the wider impacts of human adaptation to climate change when designing environmental policies.

  13. Recommendation for funding the 1992 Global Change Summer Institute: Industrial ecology and global change

    SciTech Connect

    Fein, J.S.

    1992-12-31

    A summer institute on Industrial Ecology and Global Change was held at Snow Mass, Colorado, July 20--31, 1992. Topics of discussion included the following: the patterns and prospects of global industrialization; the vulnerability of the global environment to human activity; how industrial activity might be reconfigured in response to a deeper understanding of the major biogeochemical cycles in which this activity is embedded; how industrial activity might be reconfigured in response to a deeper understanding of associated exotic disturbances of the environment; interactions of human activity with basic environmental cycles; human activity in the form of exotic disturbance of the environment; and the dynamics of industrial development and the environmental implications.

  14. Global coccolithophore diversity: Drivers and future change

    NASA Astrophysics Data System (ADS)

    O'Brien, Colleen J.; Vogt, Meike; Gruber, Nicolas

    2016-01-01

    We use the MAREDAT global compilation of coccolithophore species distribution and combine them with observations of climatological environmental conditions to determine the global-scale distribution of coccolithophore species diversity, its underlying drivers, and potential future changes. To this end, we developed a feed-forward neural network, which predicts 78% of the observed variance in coccolithophore diversity from environmental input variables (temperature, PAR, nitrate, silicic acid, mixed layer depth, excess phosphate (P∗) and chlorophyll). Light and temperature are the strongest predictors of coccolithophore diversity. Coccolithophore diversity is highest in the low latitudes, where coccolithophores are a relatively dominant component of the total phytoplankton community. Particularly high diversity is predicted in the western equatorial Pacific and the southern Indian Ocean, with additional peaks at approximately 30°N and 30°S. The global, zonal mean pattern is dominated by the Pacific Ocean, which shows a clear latitudinal gradient with diversity peaking at the equator, whereas in the Atlantic Ocean diversity is highest in the subtropics. We find a unimodal relationship between coccolithophore diversity and biomass, as has previously been observed for total phytoplankton assemblages. In contrast, diversity shows a negative relationship with total chlorophyll. Applying our diversity model to projections from the CMIP5 climate models, we project an increase in the diversity of coccolithophore assemblages by the end of this century.

  15. The impacts of climate change on global irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.

    2011-12-01

    Climate change tends to affect the irrigation water requirement of current irrigated agricultural land, and also changes the water availability for current rain-fed land by the end of this century. We use the most up-to-date climatic and crop datasets (e.g., global irrigated/rain-fed crop areas and grid level crop growing calendar (Portmann, Siebert and Döll, 2010, Global Biogeochemical Cycles 24)) to evaluate the requirements of currently irrigated land and the water deficit for rain-fed land for all major crops under current and projected climate. Six general circulation models (GCMs) under two emission scenarios, A1B & B1, are assembled using two methods, the Simple Average Method (SAM) and Root Mean Square Error Ensemble Method (RMSEMM), to deal with the GCM regional variability. It is found that the global irrigation requirement and the water deficit are both going to increase significantly under all scenarios, particularly under the A1B emission scenario. For example, the projected irrigation requirement is expected to increase by about 2500 million m3 for wheat, 3200 million m3 for maize and another 3300 million m3 for rice. At the same time, the water deficit for current rain-fed cropland will be widened by around 3000, 4000, 2100 million m3 for wheat, maize and rice respectively. Regional analysis is conducted for Africa, China, Europe, India, South America and the United States. It is found that the U.S. may expect the greatest rise in irrigation requirements for wheat and maize, while the South America may suffer the greatest increase for rice. In addition, Africa and the U.S. may face a larger water deficit for both wheat and maize on rain-fed land, and South America just for rice. In summary, climate change is likely to bring severe challenges for irrigation systems and make global water shortage even worse by the end of this century. These pressures will call for extensive adaptation measures. The change in crop water requirements and availability will lead to changes in regional food production, demand and trade, and will affect global food markets. It is also likely that the network and paths of the so-called global virtual water flow will be altered due to the impact of climate change on food production at the regional level.

  16. A roadmap for climate change adaptation in Sweden's forests: addressing wicked problems using adaptive management

    NASA Astrophysics Data System (ADS)

    Rist, L.; Felton, A.; Samuelsson, L.; Marald, E.; Karlsson, B.; Johansson, U.; Rosvall, O.

    2013-12-01

    Climate change is expected to have significant direct and indirect effects on forest ecosystems. Forests will have to adapt not only to changes in mean climate variables but also to increased climatic variability and altered disturbance regimes. Rates of change will likely exceed many forests capabilities to naturally adapt and many of today's trees will be exposed to the climates of 2090. In Sweden the effects are already being seen and more severe impacts are expected in the future. Exacerbating the challenge posed by climate change, a large proportion of Sweden's forests are, as a consequence of dominant production goals, greatly simplified and thus potentially more vulnerable to the uncertainties and risks associated with climate change. This simplification also confers reduced adaptive capacity to respond to potential impacts. Furthermore, many adaptation measures themselves carry uncertainties and risks. Future changes and effects are thus uncertain, yet forest managers, policymakers, scientists and other stakeholders must act. Strategies that build social and ecological resilience in the face of multiple interacting unknowns and surprises are needed. Adaptive management aims to collect and integrate knowledge about how a managed system is likely to respond to alternative management schemes and changing environmental conditions within a continuous decision process. There have been suggestions that adaptive management is not well suited to the large complex uncertainties associated with climate change and associated adaptation measures. However, more recently it has been suggested that adaptive management can handle such wicked problems, given adequate resources and a suitable breakdown of the targeted uncertainties. Here we test this hypothesis by evaluating how an adaptive management process could be used to manage the uncertainties and risks associated with securing resilient, biodiverse and productive forests in Sweden in the face of climate change. We illustrate how, along with the engagement of other stakeholders, scientific research and management agency actions can interact to develop and implement measures to assist climate change adaptation in Sweden's forests.

  17. Global climate changes and the soil cover

    NASA Astrophysics Data System (ADS)

    Kudeyarov, V. N.; Demkin, V. A.; Gilichinskii, D. A.; Goryachkin, S. V.; Rozhkov, V. A.

    2009-09-01

    The relationships between climate changes and the soil cover are analyzed. The greenhouse effect induced by the rising concentrations of CO2, CH4, N2O, and many other trace gases in the air has been one of the main factors of the global climate warming in the past 30-40 years. The response of soils to climate changes is considered by the example of factual data on soil evolution in the dry steppe zone of Russia. Probable changes in the carbon cycle under the impact of rising CO2 concentrations are discussed. It is argued that this rise may have an effect of an atmospheric fertilizer and lead to a higher productivity of vegetation, additional input of organic residues into the soils, and activation of soil microflora. Soil temperature and water regimes, composition of soil gases, soil biotic parameters, and other dynamic soil characteristics are most sensitive to climate changes. For the territory of Russia, in which permafrost occupies more than 50% of the territory, the response of this highly sensitive natural phenomenon to climate changes is particularly important. Long-term data on soil temperatures at a depth of 40 cm are analyzed for four large regions of Russia. In all of them, except for the eastern sector of Russian Arctic, a stable trend toward the rise in the mean annual soil temperature. In the eastern sector (the Verkhoyansk weather station), the soil temperature remains stable.

  18. Coastal Adaptation Planning for Sea Level Rise and Extremes: A Global Model for Adaptation Decision-making at the Local Level Given Uncertain Climate Projections

    NASA Astrophysics Data System (ADS)

    Turner, D.

    2014-12-01

    Understanding the potential economic and physical impacts of climate change on coastal resources involves evaluating a number of distinct adaptive responses. This paper presents a tool for such analysis, a spatially-disaggregated optimization model for adaptation to sea level rise (SLR) and storm surge, the Coastal Impact and Adaptation Model (CIAM). This decision-making framework fills a gap between very detailed studies of specific locations and overly aggregate global analyses. While CIAM is global in scope, the optimal adaptation strategy is determined at the local level, evaluating over 12,000 coastal segments as described in the DIVA database (Vafeidis et al. 2006). The decision to pursue a given adaptation measure depends on local socioeconomic factors like income, population, and land values and how they develop over time, relative to the magnitude of potential coastal impacts, based on geophysical attributes like inundation zones and storm surge. For example, the model's decision to protect or retreat considers the costs of constructing and maintaining coastal defenses versus those of relocating people and capital to minimize damages from land inundation and coastal storms. Uncertain storm surge events are modeled with a generalized extreme value distribution calibrated to data on local surge extremes. Adaptation is optimized for the near-term outlook, in an "act then learn then act" framework that is repeated over the model time horizon. This framework allows the adaptation strategy to be flexibly updated, reflecting the process of iterative risk management. CIAM provides new estimates of the economic costs of SLR; moreover, these detailed results can be compactly represented in a set of adaptation and damage functions for use in integrated assessment models. Alongside the optimal result, CIAM evaluates suboptimal cases and finds that global costs could increase by an order of magnitude, illustrating the importance of adaptive capacity and coastal policy.

  19. Dawn of astronomy and global climate change

    NASA Astrophysics Data System (ADS)

    Nakamura, Tsuko

    2007-12-01

    The author proposes that the birth of astronomy in ancient civilizations, which took place nearly simultaneously (4000 - 5000 years ago) around the Nile, Tigris and Euphrates, Indus, and the Yellow River, was caused by the global climate change (cooling and drying) that started about 5000 years ago after the hypsithermal (high-temperature) period. It is also pointed out that a few names of Twenty-Four Qi's appearing in old Chinese calendars are remnants of the calm climate in the hypsithermal period. It is discussed that numerous meteorological records seen in divination inscriptions on bones and tortoise-shells excavated at the capital of the ancient Yin (Shang) dynasty suggest occurrence of the climatic cooling and drying at that time and this change triggered spawning the early Chinese astronomy.

  20. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    The atmospheric branch of the water cycle, although containing just a tiny fraction of the Earth's total water reserves, presents a crucial interface between the physical climate (such as large-scale rainfall patterns) and the ecosystems upon which human societies ultimately depend. Because of the central importance of water in the Earth system, the question of how the water cycle is changing, and how it may alter in future as a result of anthropogenic changes, present one of the greatest challenges of this century. The recent Intergovernmental Panel on Climate Change report on Climate Change and Water (Bates et al 2008) highlighted the increasingly strong evidence of change in the global water cycle and associated environmental consequences. It is of critical importance to climate prediction and adaptation strategies that key processes in the atmospheric water cycle are precisely understood and determined, from evaporation at the surface of the ocean, transport by the atmosphere, condensation as cloud and eventual precipitation, and run-off through rivers following interaction with the land surface, sub-surface, ice, snow and vegetation. The purpose of this special focus issue of Environmental Research Letters on anticipated changes in the global atmospheric water cycle is to consolidate the recent substantial advances in understanding past, present and future changes in the global water cycle through evidence built upon theoretical understanding, backed up by observations and borne out by climate model simulations. Thermodynamic rises in water vapour provide a central constraint, as discussed in a guest editorial by Bengtsson (2010). Theoretical implications of the Clausius-Clapeyron equation are presented by O'Gorman and Muller (2010) and with reference to a simple model (Sherwood 2010) while observed humidity changes confirm these anticipated responses at the land and ocean surface (Willett et al 2008). Rises in low-level moisture are thought to fuel an intensification of precipitation (O'Gorman and Schneider 2009) and analysis of observed and simulated changes in extreme rainfall for Europe (Lenderink and van Mijgaard 2008) and over tropical oceans by Allan et al (2010) appear to corroborate this. Radiative absorption by water vapour (Previdi 2010, Stephens and Ellis 2008) also provides a thermodynamic feedback on the water cycle, and explains why climate model projections of global precipitation and evaporation of around 1-3% K-1 are muted with respect to the expected 7% K-1 increases in low-level moisture. Climate models achieve dynamical responses through reductions in strength of the Walker circulation (Vecchi et al 2006) and small yet systematic changes in the atmospheric boundary layer over the ocean that modify evaporation (Richter and Xie 2008). A further consequence is anticipated sub-tropical drying (Neelin et al 2006, Chou et al 2007); Allan et al (2010) confirm a decline in dry sub-tropical precipitation while the wet regions become wetter both in model simulations and satellite-based observations. Discrepancies between observed and climate model simulated hydrological response to warming (Wentz et al 2007, Yu and Weller 2007) are of immediate concern in understanding and predicting future responses. Over decadal time-scales it is important to establish whether such discrepancies relate to the observing system, climate modeling deficiencies, or are a statistical artifact of the brevity of the satellite records (Liepert and Previdi 2009). Techniques for extracting information on century-scale changes in precipitation are emerging (Smith et al 2009) but are also subject to severe limitations. Past decadal-scale changes in the water cycle may be further influenced by regionally and temporally varying forcings and resulting feedbacks which must be represented realistically by models (Andrews et al 2009). The radiative impact of aerosols and their indirect effects on clouds and precipitation (Liepert et al 2004) provide an important example. Understanding surface solar 'dimming' and 'brightening' trends in the context of past and current changes in the water cycle are discussed in a guest editorial by Wild and Liepert (2010). The key roles anthropogenic aerosols can play on a regional scale are discussed by Lau et al (2010) through their study of the regional impact of absorbing aerosols on warming and snow melt over the Himalayas. The overarching goal of climate prediction is to provide reliable, probabilistic estimates of future changes. Relating hydrological responses back to a sound physical basis, the motivation for this special focus issue, is paramount in building confidence in anticipated changes, especially in the global water cycle. We are grateful to the reviewers and the journal editorial board for making this focus issue possible. Focus on Anticipated Changes in the Global Atmospheric Water Cycle Contents Editorials The global atmospheric water cycle Lennart Bengtsson The Earth radiation balance as driver of the global hydrological cycle Martin Wild and Beate Liepert Letters Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols William K M Lau, Maeng-Ki Kim, Kyu-Myong Kim and Woo-Seop Lee Current changes in tropical precipitation Richard P Allan, Brian J Soden, Viju O John, William Ingram and Peter Good Direct versus indirect effects of tropospheric humidity changes on the hydrologic cycle S C Sherwood How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations? P A O'Gorman and C J Muller Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes Geert Lenderink and Erik van Meijgaard Are climate-related changes to the character of global-mean precipitation predictable? Graeme L Stephens and Yongxiang Hu A comparison of large scale changes in surface humidity over land in observations and CMIP3 general circulation models Katharine M Willett, Philip D Jones, Peter W Thorne and Nathan P Gillett Radiative feedbacks on global precipitation Michael Previdi The transient response of global-mean precipitation to increasing carbon dioxide levels Timothy Andrews and Piers M Forster The observed sensitivity of the global hydrological cycle to changes in surface temperature Phillip A Arkin, Thomas M Smith, Mathew R P Sapiano and John Janowiak Precipitation changes within dynamical regimes in a perturbed climate Jonny Williams and Mark A Ringer

  1. Global fish production and climate change.

    PubMed

    Brander, K M

    2007-12-11

    Current global fisheries production of approximately 160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but we have low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Nio-Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are governed by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipitation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the principal feasible means of reducing the impacts of climate change. PMID:18077405

  2. Global fish production and climate change

    PubMed Central

    Brander, K. M.

    2007-01-01

    Current global fisheries production of ?160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but we have low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El NioSouthern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are governed by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipitation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the principal feasible means of reducing the impacts of climate change. PMID:18077405

  3. The Sea Level Fingerprints of Global Change

    NASA Astrophysics Data System (ADS)

    Mitrovica, J. X.; Hay, C.; Kopp, R. E., III; Morrow, E.

    2014-12-01

    It may be difficult to persuade those living in northern Europe that the sea level changes that their coastal communities face depends less on the total melting of polar ice sheets and glaciers than on the individual contributions to this total. In particular, melting of a specific ice sheet or mountain glacier drives deformational, gravitational and rotational perturbations to the Earth system that are manifest in a unique geometry, or fingerprint, of global sea level change. For example, melting from the Greenland Ice Sheet equivalent to 1 mm/yr of global mean sea level (GMSL) rise will lead to sea level rise of ~0 mm/yr in Dublin, ~0.2 mm/yr in Amsterdam, ~0.4 mm/yr in Boston and ~1.2 mm/yr in Cape Town. In contrast, if the same volume of ice melted from the West Antarctic Ice Sheet, all of the above sites would experience a sea level rise in the range 1.1-1.2 mm/yr. These fingerprints of modern ice melting, together with ocean thermal expansion and dynamic effects, and the ongoing signal from glacial isostatic adjustment in response to the last ice age, combine to produce a sea level field with significant geographic variability. In this talk I will highlight an analysis of global tide gauge records that takes full advantage of this variability to estimate both GMSL and the sources of meltwater over the last century, and to project GMSL to the end of the current century.

  4. Global climate change: The dangers are real

    SciTech Connect

    Lashof, D.A.

    1994-02-01

    A series of carefully reviewed scientific assessments over the past decade have all concluded that substantial global warming is likely to occur in the absence of policies to limit emissions of carbon dioxide and other greenhouse gases. The most recent report of the National Academy of Sciences concluded that [open quotes]despite the great uncertainties, greenhouse warming is a potential threat sufficient to justify action now.[close quotes] Following this advice, the Clinton Administrations's Climate Change Action Plan released last October sets forth a plan designed to return greenhouse gas emissions to their 1990 levels by the year 2000. In this article the author attempts to set out the fundamental understanding of the global climate system that has been synthesized in scientific assessments over the past 15 years, starting with the 1979 report by the National Academy of Sciences, and continuing through the reports of the Intergovernmental Panel on Climate Change (IPCC) in 1990 and 1992. The author makes reference to papers published in the refereed journals only when needed to supplement these assessments, or to respond directly to challenges by the skeptics. Decision makers should, however, read the original reports for themselves rather than rely on this or any other secondary source of information.

  5. Mitigation and adaptation within a climate change policy portfolio: A research program

    EPA Science Inventory

    It is now recognized that optimal global climate policy is a portfolio of the two key responses for reducing the risks of climate change: mitigation and adaptation. Significant differences between the two responses have inhibited understanding of how to appropriately view these...

  6. Antarctic Benthic Fauna in the Global Climate Change

    NASA Astrophysics Data System (ADS)

    Kidawa, Anna; Janecki, Tomasz

    2011-01-01

    In the last 50 years a significant climatic shift has been observed along the Antarctic Peninsula (air and seawater temperature rise, glacial retreat, localized instances of lowered shallow waters salinities). Many Antarctic marine benthic invertebrates are adapted to specific environmental conditions (e.g. low stable temperatures, high salinity and oxygen content). Changes caused by global climate changes and subsequent glacial melting can be expected to have significant impacts on species physiology and distribution. The rise of sea water temperature coupled with such additional stress factors as melt water run-off, increased ice disturbance, disruption of food webs or invasion of alien species can be a serious problem for their long-term survival.

  7. Reconciling adaptation and mitigation to climate change in agricultureast

    NASA Astrophysics Data System (ADS)

    Olesen, J. E.

    2006-12-01

    An effective adaptation to the changing climate at farm, sector and policy level is a prerequisite for reducing negative impacts and for obtaining possible benefits. These adaptations include land use and land management, as well as changes in inputs of water, nutrients and pesticides. Some of the most wide ranging adaptations involve changes in water management and water conservation, which involves issues such as changing irrigation, adoption of drought tolerant crops and water saving cropping methods (e.g. mulching and minimum tillage). Many of these adaptation options have substantial effects on greenhouse gas emissions from agriculture. However, so far few studies have attempted to link the issue of adaptation and mitigation in agriculture. This is primarily because the issues have so far been dealt with by different research communities and within different policy contexts. As both issues are becoming increasingly relevant from a policy perspective, these issues will have to be reconciled. Dealing with these issues requires a highly interdisciplinary approach.

  8. Integrating Climate Change Adaptation into Public Health Practice: Using Adaptive Management to Increase Adaptive Capacity and Build Resilience

    PubMed Central

    McDowell, Julia Z.; Luber, George

    2011-01-01

    Background: Climate change is expected to have a range of health impacts, some of which are already apparent. Public health adaptation is imperative, but there has been little discussion of how to increase adaptive capacity and resilience in public health systems. Objectives: We explored possible explanations for the lack of work on adaptive capacity, outline climatehealth challenges that may lie outside public healths coping range, and consider changes in practice that could increase public healths adaptive capacity. Methods: We conducted a substantive, interdisciplinary literature review focused on climate change adaptation in public health, social learning, and management of socioeconomic systems exhibiting dynamic complexity. Discussion: There are two competing views of how public health should engage climate change adaptation. Perspectives differ on whether climate change will primarily amplify existing hazards, requiring enhancement of existing public health functions, or present categorically distinct threats requiring innovative management strategies. In some contexts, distinctly climate-sensitive health threats may overwhelm public healths adaptive capacity. Addressing these threats will require increased emphasis on institutional learning, innovative management strategies, and new and improved tools. Adaptive management, an iterative framework that embraces uncertainty, uses modeling, and integrates learning, may be a useful approach. We illustrate its application to extreme heat in an urban setting. Conclusions: Increasing public health capacity will be necessary for certain climatehealth threats. Focusing efforts to increase adaptive capacity in specific areas, promoting institutional learning, embracing adaptive management, and developing tools to facilitate these processes are important priorities and can improve the resilience of local public health systems to climate change. PMID:21997387

  9. From global change science to action with social sciences

    SciTech Connect

    Weaver, C. P.; Mooney, Sian; Allen, D.; Beller-Simms, Nancy; Fish, T.; Grambsch, A.; Hohenstein, W.; Jacobs, Kathy; Kenney, Melissa A.; Lane, Meredith A.; Langner, L.; Larson, E.; McGinnis, D. L.; Moss, Richard H.; Nichols, L. G.; Nierenberg, Claudia; Seyller, E. A.; Stern, Paul; Winthrop, R.

    2014-08-01

    US efforts to integrate social and biophysical sciences to address the issue of global change exist within a wider movement to understand global change as a societal challenge and to inform policy. Insights from the social sciences can help transform global change research into action.

  10. Stormy Weather: 101 Solutions to Global Climate Change.

    ERIC Educational Resources Information Center

    Dauncey, Guy

    This document presents 101 solutions to global climate change. These solutions are actions that are well suited to every level of society. This book creates awareness about global climate change. The history of Earth and the greenhouse effect are discussed, and explanations and solutions to global climate change are provided including traveling…

  11. 59 FR- NOAA Climate and Global Change Program, Program Announcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    1994-05-13

    ... National Oceanic and Atmospheric Administration RIN: 0648-AG51 NOAA Climate and Global Change Program.... SUMMARY: The Climate and Global Change Program represents a National Oceanic and Atmospheric... . SUPPLEMENTARY INFORMATION: Funding Availability NOAA believes that the Climate and Global Change Program...

  12. Stormy Weather: 101 Solutions to Global Climate Change.

    ERIC Educational Resources Information Center

    Dauncey, Guy

    This document presents 101 solutions to global climate change. These solutions are actions that are well suited to every level of society. This book creates awareness about global climate change. The history of Earth and the greenhouse effect are discussed, and explanations and solutions to global climate change are provided including traveling

  13. Climate Change Education for Mitigation and Adaptation

    ERIC Educational Resources Information Center

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  14. Climate Change Education for Mitigation and Adaptation

    ERIC Educational Resources Information Center

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social

  15. Flood risk and adaptation strategies in Indonesia: a probabilistic analysis using globally available data

    NASA Astrophysics Data System (ADS)

    Muis, Sanne; Gneralp, Burak; Jongman, Brenden; Aerts, Jeroen; Ward, Philip

    2015-04-01

    In recent years, global flood losses are increasing due to socio-economic development and climate change, with the largest risk increases in developing countries such as Indonesia. For countries to undertake effective risk-management, an accurate understanding of both current and future risk is required. However, detailed information is rarely available, particularly for developing countries. We present a first of its kind country-scale analysis of flood risk using globally available data that combines a global inundation model with a land use change model and more local data on flood damages. To assess the contribution and uncertainty of different drivers of future risk, we integrate thousands of socio-economic and climate projections in a probabilistic way and include multiple adaptation strategies. Indonesia is used as a case-study as it a country that already faces high flood risk, and is undergoing rapid urbanization. We developed probabilistic and spatially-explicit urban expansion projections from 2000 to 2030 that show that the increase in urban extent ranges from 215% to 357% (5th and 95th percentile). We project rapidly rising flood risk, both for coastal and river floods. This increase is largely driven by economic growth and urban expansion (i.e. increasing exposure). Whilst sea level rise will amply this trend, the response of river floods to climate change is uncertain with the impact of the mean ensemble of 20 climate projections (5 GCMs and 4 RCPs) being close to zero. However, as urban expansion is the main driving force of future risk, we argue that the implementation of adaptation measures is increasingly pressing, regardless of the wide uncertainty in climate projections. Hence, we evaluated the effectiveness of two adaptation measures: spatial planning in flood prone areas and enhanced flood protection. Both strategies have a large potential to effectively offset the increasing risk trend. The risk reduction is in the range of 22-85% and 53-95% for spatial planning and flood protection, respectively. With this contribution, we demonstrate that globally available data can be used successfully for probabilistic risk assessment and the evaluation of adaptation strategies in data-scarce areas.

  16. Adapting to the Effects of Climate Change on Inuit Health

    PubMed Central

    Ford, James D.; Willox, Ashlee Cunsolo; Chatwood, Susan; Furgal, Christopher; Harper, Sherilee; Mauro, Ian; Pearce, Tristan

    2014-01-01

    Climate change will have far-reaching implications for Inuit health. Focusing on adaptation offers a proactive approach for managing climate-related health risksone that views Inuit populations as active agents in planning and responding at household, community, and regional levels. Adaptation can direct attention to the root causes of climate vulnerability and emphasize the importance of traditional knowledge regarding environmental change and adaptive strategies. An evidence base on adaptation options and processes for Inuit regions is currently lacking, however, thus constraining climate policy development. In this article, we tackled this deficit, drawing upon our understanding of the determinants of health vulnerability to climate change in Canada to propose key considerations for adaptation decision-making in an Inuit context. PMID:24754615

  17. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation

    PubMed Central

    Morton, Lois Wright; Hobbs, Jon

    2015-01-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336

  18. No increase in global temperature variability despite changing regional patterns.

    PubMed

    Huntingford, Chris; Jones, Philip D; Livina, Valerie N; Lenton, Timothy M; Cox, Peter M

    2013-08-15

    Evidence from Greenland ice cores shows that year-to-year temperature variability was probably higher in some past cold periods, but there is considerable interest in determining whether global warming is increasing climate variability at present. This interest is motivated by an understanding that increased variability and resulting extreme weather conditions may be more difficult for society to adapt to than altered mean conditions. So far, however, in spite of suggestions of increased variability, there is considerable uncertainty as to whether it is occurring. Here we show that although fluctuations in annual temperature have indeed shown substantial geographical variation over the past few decades, the time-evolving standard deviation of globally averaged temperature anomalies has been stable. A feature of the changes has been a tendency for many regions of low variability to experience increases, which might contribute to the perception of increased climate volatility. The normalization of temperature anomalies creates the impression of larger relative overall increases, but our use of absolute values, which we argue is a more appropriate approach, reveals little change. Regionally, greater year-to-year changes recently occurred in much of North America and Europe. Many climate models predict that total variability will ultimately decrease under high greenhouse gas concentrations, possibly associated with reductions in sea-ice cover. Our findings contradict the view that a warming world will automatically be one of more overall climatic variation. PMID:23883935

  19. GLOBAL CHANGE RESEARCH NEWS #18: SYMPOSIUM SESSION ON "GLOBAL ATMOSPHERIC CHANGE"

    EPA Science Inventory

    A session on "Understanding and Managing Effects of Global Atmospheric Change" will be held at the Fifth Symposium of the U.S. EPA National Health and Environmental Effects Research Laboratory. The Symposium topic is "Indicators in Health and Ecological Risk Assessment." The s...

  20. COMMUNICATING GLOBAL CLIMATE CHANGE: INVESTIGATING MESSAGE STRATEGIES FOR COMMUNICATING THE IMPACT OF GLOBAL CLIMATE CHANGE.

    EPA Science Inventory

    The research program is designed to generate findings that provide specific guidance to science communicators and government officials on how to best communicate knowledge about global climate change and other environmental issues to diverse lay audiences. Beyond providing gui...

  1. Global Change. Teaching Activities on Global Change for Grades 4-6.

    ERIC Educational Resources Information Center

    Geological Survey (Dept. of Interior), Reston, VA.

    This packet contains a series of teaching guides on global change. The series includes lessons on dendrochronology; land, air, and water; and island living. Included is information such as : laws of straws; where land, air, and water meet; and Earth as home. Each section provides an introductory description of the activity, the purpose of the

  2. ATLAS-1 and middle atmosphere global change

    NASA Technical Reports Server (NTRS)

    Torr, Marsha R.

    1994-01-01

    To understand the extent and trends of middle atmosphere change, it is necessary to establish the baseline of atmospheric behavior and its response to changes in solar irradiance over at least a solar cycle. An element in NASA's global change program is the ATLAS shuttle series. The international payload includes several instruments intended to make precise, absolute measurements of solar irradiance, each being calibrated before and after each shuttle flight. These instruments, in addition to obtaining an 11-year database, will also intercalibrate solar instruments on the Earth Radiation Budget (ERB) and Upper Atmosphere Research (UARS) satellites. Other instruments will measure the atmospheric composition and temperature, also intercalibrating instruments on Television and Infrared Observation Satellite (TIROS)-N and UARS. Some have flown on shuttle missions dating back to 1983 and it is hoped that the ATLAS series will provide a capability until the turn of the century. This paper reviews the early results of the ATLAS-1 mission, which flew between March 24 and April 2, 1992.

  3. Talking about Climate Change and Global Warming.

    PubMed

    Lineman, Maurice; Do, Yuno; Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  4. Talking about Climate Change and Global Warming

    PubMed Central

    Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  5. Sustainable biochar to mitigate global climate change

    PubMed Central

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen

    2010-01-01

    Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722

  6. White House Conference on Global Climate Change

    SciTech Connect

    Not Available

    1993-11-01

    President Clinton has directed the White House office on Environmental Policy to coordinate an interagency process to develop a plan to fulfill the commitment he made in his Earth Day address on April 21, 1993. This plan will become the cornerstone of the Climate Change Plan that will be completed shortly after the Rio Accord enters into force. The Office on Environmental Policy established the Interagency Climate Change Mitigation Group to draw on the expertise of federal agencies including the National Economic Council; the Council of Economic Advisors; the Office of Science and Technology Policy; the Office of Management and Budget; the National Security Council; the Domestic Policy Council; the Environmental Protection Agency; and the Departments of Energy, Transportation, Agriculture, Interior, Treasury, Commerce, and State. Working groups have been established to examine six key policy areas: energy demand, energy supply, joint implementation, methane and other gases, sinks, and transportation. The purpose of the White House Conference on Global Climate Change was to ``tap the real-world experiences`` of diverse participants and seek ideas and information for meeting the President`s goals. During the opening session, senior administration officials defined the challenge ahead and encouraged open and frank conversation about the best possible ways to meet it.

  7. Assessing institutional capacities to adapt to climate change - integrating psychological dimensions in the Adaptive Capacity Wheel

    NASA Astrophysics Data System (ADS)

    Grothmann, T.; Grecksch, K.; Winges, M.; Siebenhüner, B.

    2013-03-01

    Several case studies show that "soft social factors" (e.g. institutions, perceptions, social capital) strongly affect social capacities to adapt to climate change. Many soft social factors can probably be changed faster than "hard social factors" (e.g. economic and technological development) and are therefore particularly important for building social capacities. However, there are almost no methodologies for the systematic assessment of soft social factors. Gupta et al. (2010) have developed the Adaptive Capacity Wheel (ACW) for assessing the adaptive capacity of institutions. The ACW differentiates 22 criteria to assess six dimensions: variety, learning capacity, room for autonomous change, leadership, availability of resources, fair governance. To include important psychological factors we extended the ACW by two dimensions: "adaptation motivation" refers to actors' motivation to realise, support and/or promote adaptation to climate. "Adaptation belief" refers to actors' perceptions of realisability and effectiveness of adaptation measures. We applied the extended ACW to assess adaptive capacities of four sectors - water management, flood/coastal protection, civil protection and regional planning - in North Western Germany. The assessments of adaptation motivation and belief provided a clear added value. The results also revealed some methodological problems in applying the ACW (e.g. overlap of dimensions), for which we propose methodological solutions.

  8. Global change - Geoengineering and space exploration

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1992-01-01

    Geoengineering options and alternatives are proposed for mitigating the effects of global climate change and depletion of the ozone layer. Geoengineering options were discussed by the National Academy of Science Panel on the Policy Implications of Greenhouse Warming. Several of the ideas conveyed in their published report are space-based or depend on space systems for implementation. Among the geoengineering options using space that are discussed include the use of space power systems as an alternative to fossil fuels for generating electricity, the use of lunar He-3 to aid in the development of fusion energy, and the establishment of a lunar power system for solar energy conversion and electric power beaming back to earth. Other geoengineering options are discussed. They include the space-based modulation of hurricane forces and two space-based approaches in dealing with ozone layer depletion. The engineering challenges and policy implementation issues are discussed for these geongineering options.

  9. Modeling Two Types of Adaptation to Climate Change

    EPA Science Inventory

    Mitigation and adaptation are the two key responses available to policymakers to reduce the risks of climate change. We model these two policies together in a new DICE-based integrated assessment model that characterizes adaptation as either short-lived flow spending or long-live...

  10. Spatial modeling of agricultural land use change at global scale

    NASA Astrophysics Data System (ADS)

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling communities.

  11. ECOLOGICAL RISK ASSESSMENT IN THE CONTEXT OF GLOBAL CLIMATE CHANGE

    PubMed Central

    Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L

    2013-01-01

    Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause–effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses—include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Environ. Toxicol. Chem. 2013;32:79–92. © 2012 SETAC PMID:23161373

  12. Engaging Undergraduates in Methods of Communicating Global Climate Change

    NASA Astrophysics Data System (ADS)

    Hall, C.; Colgan, M. W.; Humphreys, R. R.

    2010-12-01

    Global Climate Change has become a politically contentious issue in large part because of the failure of scientists to effectively communicate this complex subject to the general public. In a Global Change class, offered within a science department and therefore focused primarily on the underlying science, we have incorporated a citizen science module into the course to raise awareness among future scientists to the importance of communicating information to a broad and diverse audience. The citizen science component of this course focuses on how the predicted climate changes will alter the ecologic and economic landscape of the southeastern region. Helping potential scientists to learn to effectively communicate with the general public is particularly poignant for this predominate southern student body. A Pew Research Center for the People and the Press study found that less than 50% of Southerners surveyed felt that global warming is a very serious problem and over 30% of Southerners did not believe that there was any credible evidence that the Earth is warming. This interdisciplinary and topical nature of the course attracts student from a variety of disciplines, which provides the class with a cross section of students not typically found in most geology classes. This mixture provides a diversity of skills and interest that leads to success of the Citizen Science component. This learning approach was adapted from an education module developed through the Earth System Science Education Alliance and a newly developed component to that program on citizen science. Student teams developed several citizen science-related public service announcements concerning projected global change effects on Charleston and the South Carolina area. The scenario concerned the development of an information campaign for the City of Charleston, culminating with the student presentations on their findings to City officials. Through this real-life process, the students developed new strategies that inform their own means of communicating science, whether to the general public, to peers, or to other scientists. This course with the citizen science component serves as a model for other programs. Incorporating a communication aspect into science courses that revolve around complex but socially important topics, such as global climate change, is necessary in building the confidence in our science students to communicate effectively, imaginatively, and memorably. In addition, the students gain a deeper understanding and appreciation of the necessity to communicate to public audiences and the value of outreach to the community.

  13. European information on climate change impacts, vulnerability and adaptation

    NASA Astrophysics Data System (ADS)

    Jol, A.; Isoard, S.

    2010-09-01

    Vulnerability to natural and technological disasters is increasing due to a combination of intensifying land use, increasing industrial development, further urban expansion and expanding infrastructure and also climate change. At EU level the European Commission's White Paper on adaptation to climate change (published in 2009) highlights that adaptation actions should be focused on the most vulnerable areas and communities in Europe (e.g. mountains, coastal areas, river flood prone areas, Mediterranean, Arctic). Mainstreaming of climate change into existing EU policies will be a key policy, including within the Water Framework Directive, Marine Strategy Framework Directive, Nature protection and biodiversity policies, integrated coastal zone management, other (sectoral) policies (agriculture, forestry, energy, transport, health) and disaster risk prevention. 2010 is the international year on biodiversity and the Conference of Parties of the biodiversity convention will meet in autumn 2010 (Japan) to discuss amongst other post-2010 strategies, objectives and indicators. Both within the Biodiversity Convention (CBD) and the Climate Change Convention (UNFCCC) there is increasing recognition of the need for integration of biodiversity conservation into climate change mitigation and adaptation activities. Furthermore a number of European countries and also some regions have started to prepare and/or have adopted national adaptation plans or frameworks. Sharing of good practices on climate change vulnerability methods and adaptation actions is so far limited, but is essential to improve such plans, at national, sub national and local level where much of the adaptation action is already taking place and will be expanding in future, also involving increasingly the business community. The EU Clearinghouse on CC impacts, vulnerability and adaptation should address these needs and it is planned to be operational end of 2011. The EEA is expected to have a role in its development in 2010 and is likely to manage the system after 2011. The European Commission in its Communication in 2009 on disaster risk prevention also calls for improving and better sharing of data on disasters, disaster risk mapping and disaster risk management, in the context of the EU civil protection mechanism. Such information might also be linked to the planned EU Clearinghouse on climate change adaptation. The activities of EEA on climate change impacts, vulnerability and adaptation (including disaster risk reduction) include indicators of the impacts of climate change; a regularly updated overview of national assessments and adaptation plans on the EEA web site and specific focused reports, e.g. on adaptation to the challenges of changing water resources in the Alps (2009) and on analysis of past trends in natural disasters (due in 2010) and regular expert meetings and workshops with EEA member countries. The ECAC presentation will include the latest developments in the EU Clearinghouse on adaptation and progress in relevant EEA activities.

  14. Hurricanes and Climate Change: Global Systems and Local Impacts

    NASA Astrophysics Data System (ADS)

    Santer, J.

    2011-12-01

    With funding from NOAA, the Miami Science Museum has been working with exhibit software developer Ideum to create an interactive exhibit exploring the global dimensions and local impacts of climate change. A particular focus is on climate-related impacts on coastal communities, including the potential effects on South Florida of ocean acidification, rising sea level, and the possibility of more intense hurricanes. The exhibit is using a 4-foot spherical display system in conjunction with a series of touchscreen kiosks and accompanying flat screens to create a user-controlled, multi-user interface that lets visitors control the sphere and choose from a range of global and local content they wish to explore. The exhibit has been designed to promote engagement of diverse, multigenerational audiences through development of a fully bilingual user interface that promotes social interaction and conversation among visitors as they trade off control of global content on the sphere and related local content on the flat screens. The open-source learning module will be adaptable by other museums, to explore climate impacts specific to their region.

  15. Feedbacks and Acceleration of Global Change

    NASA Astrophysics Data System (ADS)

    Hay, William

    2014-05-01

    The burning of fossil fuels since the beginning of the Industrial revolution has increased the level of atmospheric CO2 by about 45 % over that of earlier times. The increasing greenhouse effect is augmented by a series of feedbacks; most have been positive, but a few are negative. The most important are 1) Slowing of the thermohaline circulation system; 2) Decreasing Atlantic to Pacific vapor transport; 3) Increasing Arctic river runoff; 4) Melting of Arctic sea ice; 5) Periodic replacement of the Arctic atmospheric high by a cyclonic low pressure system; 6) Increased exchange of waters between the Arctic and North Atlantic; 7) Lessening of the Northern Hemisphere ice-albedo feedback effect; 8) Addition of methane from melting permafrost; 9) Overall changes in the rate of ocean mixing; 10) Overall changes in vegetation cover of land; 11) Increase in the area covered by C4 vegetation; 12) Addition of nitrous oxide from agricultural practices; 13) Changes in insect populations and their effect on vegetation; 14) Wildfires; 15) Soot accumulation on snow and ice; 16) Accelerated melting of the Greenland Ice Sheet; 17) Changes in the East Antarctic Ice Sheet; 18) Closing of the ozone hole over Antarctica; 19) Decay of the West Antarctic Ice Sheet; 20) Expansion of Southern Ocean sea ice; 21) Slowing of the rate of organic matter sinking into the deep ocean; 22) Decrease in insolation reaching the surface of the Earth as a result of introduction of aerosols into the atmosphere; 23) Depletion of stratospheric ozone by nitrous oxide. The global and regional effects and relative importance of many of these feedbacks are uncertain, and they may change both in magnitude and sign with time. New and unexpected mechanisms are constantly being discovered. The uncertainties and complexity associated with climate system feedbacks are responsible for the acceleration of climate change beyond the rates predicted by numerical modeling. To add to the difficulties inherent in predictions of future climate change, the increasingly chaotic weather is an indication that the Earth's climate system is becoming unstable in response to the ongoing perturbations.

  16. Flood Risk and Global Change: Future Prospects

    NASA Astrophysics Data System (ADS)

    Serra-Llobet, A.

    2014-12-01

    Global flood risk is increasing in response to population growth in flood-prone areas, human encroachment into natural flood paths (exacerbating flooding in areas formerly out of harm's way), and climate change (which alters variables driving floods). How will societies respond to and manage flood risk in coming decades? Analysis of flood policy evolution in the EU and US demonstrates that changes occurred in steps, in direct response to disasters. After the flood produced by the collapse of Tous Dam in 1982, Spain initiated a systematic assessment of areas of greatest flood risk and civil protection response. The devastating floods on the Elbe and elsewhere in central Europe in 2002 motivated adoption of the EU Floods Directive (2007), which requires member states to develop systematic flood risk maps (now due) and flood risk management plans (due in 2015). The flooding of New Orleans by Hurricane Katrina in 2005 resulted in a nationwide levee-safety assessment and improvements in communicating risk, but overall less fundamental change in US flood management than manifest in the EU since 2007. In the developing world, large (and increasing) concentrations of populations in low-lying floodplains, deltas, and coasts are increasingly vulnerable, and governments mostly ill-equipped to implement fundamental changes in land use to prevent future increases in exposure, nor to develop responses to the current threats. Even in the developed world, there is surprisingly little research on how well residents of flood-prone lands understand their true risk, especially when they are 'protected' by '100-year' levees. Looking ahead, researchers and decision makers should prioritize improvements in flood risk perception, river-basin-scale assessment of flood runoff processes (under current and future climate and land-use conditions) and flood management alternatives, and bridging the disconnect between national and international floodplain management policies and local land-use decisions.

  17. Diatom Community Response to Global Change

    NASA Astrophysics Data System (ADS)

    Hook, W. F.; Rose, J.; Langley, J. A.; Coyne, K. J.

    2008-12-01

    Diatoms are ubiquitous components of marine and freshwater environments and are responsible for nearly a quarter of the world's primary production. These microscopic algae are excellent indicators of environmental change and are routinely used as indicators of water quality. Diatom frustules have also been used to infer past climate change. With anticipated increases in atmospheric CO2 and eutrophication, understanding the contribution by diatoms as sinks for carbon in the world's oceans and estuaries is crucial. Benthic diatoms are especially significant in this respect due to their interactions with both atmospheric and sedimentary carbon cycling. We investigated changes in marsh sediment diatom community structure in response to elevated atmospheric carbon dioxide and nitrogen input. Twenty plots of brackish marsh were enclosed in environmental chambers and exposed to two levels of atmospheric CO2 (ambient and elevated) crossed with a nitrogen-addition treatment (2 x 2 factorial) beginning in May 2006. DNA was extracted from sediment samples obtained from environmentally controlled marsh plots in June, 2008. Using diatom-specific primers, the diatom community was amplified by PCR and evaluated by denaturing gradient gel electrophoresis (DGGE). The diatom community composition was then compared across the four treatments (Amb, Amb+N, Elev, Elev+N) using multivariate statistical methods. Multidimensional scaling plots revealed clear grouping of samples according to treatment. A global analysis of similarity test was significant, as were all pairwise comparisons of treatments. The greatest changes in community structure occurred in the elevated CO2 group. In contrast, Amb+N was more similar to Elev+N, suggesting that nitrogen effects may mask elevated CO2 effects on diatom community structure in these plots.

  18. Agriculture and climate change: Mitigation opportunities and adaptation imperatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintenance of critical agroecosystem functions will require proactive responses through the strategic application of management practices that mitigate greenhouse gas (GHG) emissions and/or adapt to impacts from climate change. Numerous management strategies currently exist to mitigate GHG emissio...

  19. The state of climate change adaptation in the Arctic

    NASA Astrophysics Data System (ADS)

    Ford, James D.; McDowell, Graham; Jones, Julie

    2014-10-01

    The Arctic climate is rapidly changing, with wide ranging impacts on natural and social systems. A variety of adaptation policies, programs and practices have been adopted to this end, yet our understanding of if, how, and where adaptation is occurring is limited. In response, this paper develops a systematic approach to characterize the current state of adaptation in the Arctic. Using reported adaptations in the English language peer reviewed literature as our data source, we document 157 discrete adaptation initiatives between 2003 and 2013. Results indicate large variations in adaptation by region and sector, dominated by reporting from North America, particularly with regards to subsistence harvesting by Inuit communities. Few adaptations were documented in the European and Russian Arctic, or have a focus on the business and economy, or infrastructure sectors. Adaptations are being motivated primarily by the combination of climatic and non-climatic factors, have a strong emphasis on reducing current vulnerability involving incremental changes to existing risk management processes, and are primarily initiated and led at the individual/community level. There is limited evidence of trans-boundary adaptations or initiatives considering potential cross-scale/sector impacts.

  20. Global agricultural intensification during climate change: a role for genomics.

    PubMed

    Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Bryant, John; Cai, Hongwei; Cockram, James; Costa de Oliveira, Antonio; Cseke, Leland J; Dempewolf, Hannes; De Pace, Ciro; Edwards, David; Gepts, Paul; Greenland, Andy; Hall, Anthony E; Henry, Robert; Hori, Kiyosumi; Howe, Glenn Thomas; Hughes, Stephen; Humphreys, Mike; Lightfoot, David; Marshall, Athole; Mayes, Sean; Nguyen, Henry T; Ogbonnaya, Francis C; Ortiz, Rodomiro; Paterson, Andrew H; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K; Yano, Masahiro

    2016-04-01

    Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change. PMID:26360509

  1. Using Immersion to teach Global Climate Change

    NASA Astrophysics Data System (ADS)

    Sumners, C. T.; Handron, K.; Reiff, P. H.; Law, C. C.

    2004-12-01

    Students are increasingly jaded to programs that preach, and museums are increasingly finding it difficult to attract students who can retrieve information quickly from the internet or cable TV. A new medium of immersive theater can now engulf the viewer in the subject, bringing a novel view to the exciting new data sets and images now available. By telling a compelling story with characters they can identify with, global climate change can be experienced and its effects brought home in a dramatic and effective way. We have developed several shows highlighting climate change (Powers of Time, Secrets of the Dead Sea), and are developing new shows (Earth's Wild Ride, Earth in the Balance) which can be used to take the visitor into the past or into the future. Clips from the shows and evidence of their effectiveness as an educational tool for Earth science will be shown. If possible, our new portable dome system will be set up in the poster hall for longer live demos of our shows.

  2. Savings in locomotor adaptation explained by changes in learning parameters following initial adaptation.

    PubMed

    Mawase, Firas; Shmuelof, Lior; Bar-Haim, Simona; Karniel, Amir

    2014-04-01

    Faster relearning of an external perturbation, savings, offers a behavioral linkage between motor learning and memory. To explain savings effects in reaching adaptation experiments, recent models suggested the existence of multiple learning components, each shows different learning and forgetting properties that may change following initial learning. Nevertheless, the existence of these components in rhythmic movements with other effectors, such as during locomotor adaptation, has not yet been studied. Here, we study savings in locomotor adaptation in two experiments; in the first, subjects adapted to speed perturbations during walking on a split-belt treadmill, briefly adapted to a counter-perturbation and then readapted. In a second experiment, subjects readapted after a prolonged period of washout of initial adaptation. In both experiments we find clear evidence for increased learning rates (savings) during readaptation. We show that the basic error-based multiple timescales linear state space model is not sufficient to explain savings during locomotor adaptation. Instead, we show that locomotor adaptation leads to changes in learning parameters, so that learning rates are faster during readaptation. Interestingly, we find an intersubject correlation between the slow learning component in initial adaptation and the fast learning component in the readaptation phase, suggesting an underlying mechanism for savings. Together, these findings suggest that savings in locomotion and in reaching may share common computational and neuronal mechanisms; both are driven by the slow learning component and are likely to depend on cortical plasticity. PMID:24431403

  3. Assessing institutional capacities to adapt to climate change: integrating psychological dimensions in the Adaptive Capacity Wheel

    NASA Astrophysics Data System (ADS)

    Grothmann, T.; Grecksch, K.; Winges, M.; Siebenhüner, B.

    2013-12-01

    Several case studies show that social factors like institutions, perceptions and social capital strongly affect social capacities to adapt to climate change. Together with economic and technological development they are important for building social capacities. However, there are almost no methodologies for the systematic assessment of social factors. After reviewing existing methodologies we identify the Adaptive Capacity Wheel (ACW) by Gupta et al. (2010), developed for assessing the adaptive capacity of institutions, as the most comprehensive and operationalised framework to assess social factors. The ACW differentiates 22 criteria to assess 6 dimensions: variety, learning capacity, room for autonomous change, leadership, availability of resources, fair governance. To include important psychological factors we extended the ACW by two dimensions: "adaptation motivation" refers to actors' motivation to realise, support and/or promote adaptation to climate; "adaptation belief" refers to actors' perceptions of realisability and effectiveness of adaptation measures. We applied the extended ACW to assess adaptive capacities of four sectors - water management, flood/coastal protection, civil protection and regional planning - in northwestern Germany. The assessments of adaptation motivation and belief provided a clear added value. The results also revealed some methodological problems in applying the ACW (e.g. overlap of dimensions), for which we propose methodological solutions.

  4. The state of climate change vulnerability, impacts, and adaptation research: strengthening knowledge base and community

    SciTech Connect

    Wilbanks, Thomas J; Rosenzweig, Dr. Cynthia

    2010-01-01

    It has taken about 35 years for scientists to bring the global climate change issue to the attention of the world s people and their leaders. With the Copenhagen Climate Change Conference of December 2009, it was hoped that the issue identification phase would segue at last into the solution phase. However, the outcome of COP15 shows that interdisciplinary work on impacts, adaptation, and vulnerability is still critically needed to advance the development of the solution phase.

  5. Implications of simultaneously mitigating and adapting to climate change: Initial experiments using GCAM

    SciTech Connect

    Calvin, Katherine V.; Wise, Marshall A.; Clarke, Leon E.; Edmonds, James A.; Kyle, G. Page; Luckow, Patrick W.; Thomson, Allison M.

    2013-04-01

    Historically climate impacts research and climate mitigation research have been two separate and independent domains of inquiry. Climate mitigation research has investigated greenhouse gas emissions assuming that climate is unchanging. At the same time climate mitigation research has investigated the implications of climate change on the assumption that climate mitigation will proceed without affecting the degree of climate impacts or the ability of human and natural systems to adapt. The Global Change Assessment Model (GCAM) has largely been employed to study climate mitigation. Here we explore the development of capabilities to assess climate change impacts and adaptation within the GCAM model. These capabilities are being developed so as to be able to simultaneously reconcile the joint implications of climate change mitigation, impacts and adaptive potential. This is an important step forward in that it enables direct comparison between climate mitigation activities and climate impacts and the opportunity to understand interactions between the two.

  6. The U.S. EPA's Climate Change Adaptation Plans and the Nation Climate Assessment

    NASA Astrophysics Data System (ADS)

    Marr, S.; Kemmerer, J.

    2014-12-01

    When the Council on Environmental Quality directed the U.S. EPA and other Federal departments and agencies to identify how they will maintain their missions in the face of a changing climate, the need for sound science as an essential foundation for climate preparedness was apparent. Fortunately, since 2000, the U.S. Global Change Research Program has produced the National Climate Assessment three times, with the most recent version being issued in May, 2014. The EPA turned to the National Climate Assessment for a key source of sound science as it drafted its national and regional climate adaptation plans. The assessment continues to be used as EPA staff are trained on climate change adaptation issues. Examples of recent EPA climate change adaptation national and regional products will be presented that highlight the utility of the National Climate Assessment. The importance to EPA of the National Climate Assessment as a common ground for all Federal agencies will also be discussed.

  7. Local adaptation in brown trout early life-history traits: implications for climate change adaptability

    PubMed Central

    Jensen, Lasse Fast; Hansen, Michael M; Pertoldi, Cino; Holdensgaard, Gert; Mensberg, Karen-Lise Dons; Loeschcke, Volker

    2008-01-01

    Knowledge of local adaptation and adaptive potential of natural populations is becoming increasingly relevant due to anthropogenic changes in the environment, such as climate change. The concern is that populations will be negatively affected by increasing temperatures without the capacity to adapt. Temperature-related adaptability in traits related to phenology and early life history are expected to be particularly important in salmonid fishes. We focused on the latter and investigated whether four populations of brown trout (Salmo trutta) are locally adapted in early life-history traits. These populations spawn in rivers that experience different temperature conditions during the time of incubation of eggs and embryos. They were reared in a common-garden experiment at three different temperatures. Quantitative genetic differentiation (QST) exceeded neutral molecular differentiation (FST) for two traits, indicating local adaptation. A temperature effect was observed for three traits. However, this effect varied among populations due to locally adapted reaction norms, corresponding to the temperature regimes experienced by the populations in their native environments. Additive genetic variance and heritable variation in phenotypic plasticity suggest that although increasing temperatures are likely to affect some populations negatively, they may have the potential to adapt to changing temperature regimes. PMID:18755673

  8. Local adaptation in brown trout early life-history traits: implications for climate change adaptability.

    PubMed

    Jensen, Lasse Fast; Hansen, Michael M; Pertoldi, Cino; Holdensgaard, Gert; Mensberg, Karen-Lise Dons; Loeschcke, Volker

    2008-12-22

    Knowledge of local adaptation and adaptive potential of natural populations is becoming increasingly relevant due to anthropogenic changes in the environment, such as climate change. The concern is that populations will be negatively affected by increasing temperatures without the capacity to adapt. Temperature-related adaptability in traits related to phenology and early life history are expected to be particularly important in salmonid fishes. We focused on the latter and investigated whether four populations of brown trout (Salmo trutta) are locally adapted in early life-history traits. These populations spawn in rivers that experience different temperature conditions during the time of incubation of eggs and embryos. They were reared in a common-garden experiment at three different temperatures. Quantitative genetic differentiation (QST) exceeded neutral molecular differentiation (FST) for two traits, indicating local adaptation. A temperature effect was observed for three traits. However, this effect varied among populations due to locally adapted reaction norms, corresponding to the temperature regimes experienced by the populations in their native environments. Additive genetic variance and heritable variation in phenotypic plasticity suggest that although increasing temperatures are likely to affect some populations negatively, they may have the potential to adapt to changing temperature regimes. PMID:18755673

  9. E-Infrastructure and Data Management for Global Change Research

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Gurney, R. J.; Cesar, R.; Cossu, R.; Gemeinholzer, B.; Koike, T.; Mokrane, M.; Peters, D.; Nativi, S.; Samors, R.; Treloar, A.; Vilotte, J. P.; Visbeck, M.; Waldmann, H. C.

    2014-12-01

    The Belmont Forum, a coalition of science funding agencies from 15 countries, is supporting an 18-month effort to assess the state of international of e-infrastructures and data management so that global change data and information can be more easily and efficiently exchanged internationally and across domains. Ultimately, this project aims to address the Belmont "Challenge" to deliver knowledge needed for action to avoid and adapt to detrimental environmental change, including extreme hazardous events. This effort emerged from conclusions by the Belmont Forum that transformative approaches and innovative technologies are needed for heterogeneous data/information to be integrated and made interoperable for researchers in disparate fields, and for myriad uses across international, institutional, disciplinary, spatial and temporal boundaries. The project will deliver a Community Strategy and Implementation Plan to prioritize international funding opportunities and long-term policy recommendations on how the Belmont Forum can implement a more coordinated, holistic, and sustainable approach to funding and supporting global change research. The Plan is expected to serve as the foundation of future Belmont Forum funding calls for proposals in support of research science goals as well as to establish long term e-infrastructure. More than 120 scientists, technologists, legal experts, social scientists, and other experts are participating in six Work Packages to develop the Plan by spring, 2015, under the broad rubrics of Architecture/Interoperability and Governance: Data Integration for Multidisciplinary Research; Improved Interface between Computation & Data Infrastructures; Harmonization of Global Data Infrastructure; Data Sharing; Open Data; and Capacity Building. Recommendations could lead to a more coordinated approach to policies, procedures and funding mechanisms to support e-infrastructures in a more sustainable way.

  10. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation.

    PubMed

    Holmner, Asa; Rocklv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on 'green information and communication technology (ICT)' are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies. PMID:22679398

  11. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation

    PubMed Central

    Holmner, sa; Rocklv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on green information and communication technology (ICT) are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies. PMID:22679398

  12. An adaptive Cauchy differential evolution algorithm for global numerical optimization.

    PubMed

    Choi, Tae Jong; Ahn, Chang Wook; An, Jinung

    2013-01-01

    Adaptation of control parameters, such as scaling factor (F), crossover rate (CR), and population size (NP), appropriately is one of the major problems of Differential Evolution (DE) literature. Well-designed adaptive or self-adaptive parameter control method can highly improve the performance of DE. Although there are many suggestions for adapting the control parameters, it is still a challenging task to properly adapt the control parameters for problem. In this paper, we present an adaptive parameter control DE algorithm. In the proposed algorithm, each individual has its own control parameters. The control parameters of each individual are adapted based on the average parameter value of successfully evolved individuals' parameter values by using the Cauchy distribution. Through this, the control parameters of each individual are assigned either near the average parameter value or far from that of the average parameter value which might be better parameter value for next generation. The experimental results show that the proposed algorithm is more robust than the standard DE algorithm and several state-of-the-art adaptive DE algorithms in solving various unimodal and multimodal problems. PMID:23935445

  13. An Adaptive Cauchy Differential Evolution Algorithm for Global Numerical Optimization

    PubMed Central

    Choi, Tae Jong; Ahn, Chang Wook; An, Jinung

    2013-01-01

    Adaptation of control parameters, such as scaling factor (F), crossover rate (CR), and population size (NP), appropriately is one of the major problems of Differential Evolution (DE) literature. Well-designed adaptive or self-adaptive parameter control method can highly improve the performance of DE. Although there are many suggestions for adapting the control parameters, it is still a challenging task to properly adapt the control parameters for problem. In this paper, we present an adaptive parameter control DE algorithm. In the proposed algorithm, each individual has its own control parameters. The control parameters of each individual are adapted based on the average parameter value of successfully evolved individuals' parameter values by using the Cauchy distribution. Through this, the control parameters of each individual are assigned either near the average parameter value or far from that of the average parameter value which might be better parameter value for next generation. The experimental results show that the proposed algorithm is more robust than the standard DE algorithm and several state-of-the-art adaptive DE algorithms in solving various unimodal and multimodal problems. PMID:23935445

  14. Future Arctic climate changes: Adaptation and mitigation time scales

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Wang, Muyin; Walsh, John E.; Stroeve, Julienne C.

    2014-02-01

    The climate in the Arctic is changing faster than in midlatitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75% since the 1980s. Long-lasting global anthropogenic forcing from carbon dioxide has increased over the previous decades and is anticipated to increase over the next decades. Temperature increases in response to greenhouse gases are amplified in the Arctic through feedback processes associated with shifts in albedo, ocean and land heat storage, and near-surface longwave radiation fluxes. Thus, for the next few decades out to 2040, continuing environmental changes in the Arctic are very likely, and the appropriate response is to plan for adaptation to these changes. For example, it is very likely that the Arctic Ocean will become seasonally nearly sea ice free before 2050 and possibly within a decade or two, which in turn will further increase Arctic temperatures, economic access, and ecological shifts. Mitigation becomes an important option to reduce potential Arctic impacts in the second half of the 21st century. Using the most recent set of climate model projections (CMIP5), multimodel mean temperature projections show an Arctic-wide end of century increase of +13C in late fall and +5C in late spring for a business-as-usual emission scenario (RCP8.5) in contrast to +7C in late fall and +3C in late spring if civilization follows a mitigation scenario (RCP4.5). Such temperature increases demonstrate the heightened sensitivity of the Arctic to greenhouse gas forcing.

  15. Sustainable biochar to mitigate global climate change

    SciTech Connect

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. A.; Lehmann, Johannes C.; Joseph, Stephen

    2010-08-10

    Production of biochar (the carbon-rich solid formed by pyrolysis of biomass), in combination with its storage in soils, has been suggested as a means to abate anthropogenic climate change, while simultaneously increasing crop yields. The climate mitigation potential stems primarily from the highly recalcitrant nature of biochar, which slows the rate at which photosynthetically fixed carbon is returned to the atmosphere. Significant uncertainties exist, however, regarding the impact, capacity, and sustainability of biochar for carbon capture and storage when scaled to the global level. Previous estimates, based on simple assumptions, vary widely. Here we show that, subject to strict environmental and modest economic constraints on biomass procurement and biochar production methods, annual net emissions of CO2, CH4 and N2O could be reduced by 1.1 - 1.9 Pg CO2-C equivalent (CO2-Ce)/yr (7 - 13% of current anthropogenic CO2-Ce emissions; 1Pg = 1 Gt). Over one century, cumulative net emissions of these gases could be reduced by 72-140 Pg CO2-Ce. The lower end of this range uses currently untapped residues and wastes; the upper end requires substantial alteration to global biomass management, but would not endanger food security, habitat or soil conservation. Half the avoided emissions are due to the net C sequestered as biochar, one-quarter to replacement of fossil-fuel energy by pyrolysis energy, and one-quarter to avoided emissions of CH4 and N2O. The total mitigation potential is 18-30% greater than if the same biomass were combusted to produce energy. Despite limited data for the decomposition rate of biochar in soils and the effects of biochar additions on soil greenhouse-gas fluxes, sensitivity within realistic ranges of these parameters is small, resulting in an uncertainty of ±8% (±1 s.d.) in our estimates. Achieving these mitigation results requires, however, that biochar production be performed using only low-emissions technologies and feedstocks obtained sustainably, with minimal carbon debt incurred from land-use change.

  16. EPA'S GLOBAL CLIMATE CHANGE PROGRAM -- GLOBAL LANDFILL METHANE

    EPA Science Inventory

    The paper discusses AEERL's research efforts on global landfill methane (CH4). H4 is of particular concern because its radiative forcing potential is thought to be much greater than that of carbon dioxide. lthough the major sources of CH4 are known qualitatively, considerable unc...

  17. Optimizing Reservoir Operation to Adapt to the Climate Change

    NASA Astrophysics Data System (ADS)

    Madadgar, S.; Jung, I.; Moradkhani, H.

    2010-12-01

    Climate change and upcoming variation in flood timing necessitates the adaptation of current rule curves developed for operation of water reservoirs as to reduce the potential damage from either flood or draught events. This study attempts to optimize the current rule curves of Cougar Dam on McKenzie River in Oregon addressing some possible climate conditions in 21th century. The objective is to minimize the failure of operation to meet either designated demands or flood limit at a downstream checkpoint. A simulation/optimization model including the standard operation policy and a global optimization method, tunes the current rule curve upon 8 GCMs and 2 greenhouse gases emission scenarios. The Precipitation Runoff Modeling System (PRMS) is used as the hydrology model to project the streamflow for the period of 2000-2100 using downscaled precipitation and temperature forcing from 8 GCMs and two emission scenarios. An ensemble of rule curves, each associated with an individual scenario, is obtained by optimizing the reservoir operation. The simulation of reservoir operation, for all the scenarios and the expected value of the ensemble, is conducted and performance assessment using statistical indices including reliability, resilience, vulnerability and sustainability is made.

  18. Global Positioning System Antenna Fixed Height Tripod Adapter

    NASA Technical Reports Server (NTRS)

    Dinardo, Steven J.; Smith, Mark A.

    1997-01-01

    An improved Global Positioning em antenna adaptor allows fixed antenna height measurements by removably attaching an adaptor plate to a conventional surveyor's tripod. Antenna height is controlled by an antenna boom which is a fixed length rod. The antenna is attached to one end of the boom. The opposite end of the boom tapers to a point sized to fit into a depression at the center of survey markers. The boom passes through the hollow center of a universal ball joint which is mounted at the center of the adaptor plate so that the point of the rod can be fixed in the marker's central depression. The mountains of the ball joint allow the joint to be moved horizontally in any direction relative to the tripod. When the ball joint is moved horizontally, the angle between the boom and the vertical changes because the boom's position is fixed at its lower end. A spirit level attached to the rod allows an operator to determine when the boom is plumb. The position of the ball joint is adjusted horizontally until the boom is plumb. At that time the antenna is positioned exactly over the center of the monument and the elevation of the antenna is precisely set by the length of the boom.

  19. Adapting Dairy Farms to Climate Change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is projected to affect many aspects of dairy production. These aspects include the growing season length, crop growth processes, harvest timing and losses, heat stress on cattle, nutrient emissions and losses, and ultimately farm profitability. To assess the sensitivity of dairy farms...

  20. Evolutionary history underlies plant physiological responses to global change since the last glacial maximum

    PubMed Central

    Becklin, Katie M.; Medeiros, Juliana S.; Sale, Kayla R.; Ward, Joy K.

    2014-01-01

    Assessing family- and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Here, we used stable carbon isotopes, leaf nitrogen content and stomatal measurements to assess changes in leaf-level physiology in a mixed conifer community that underwent significant changes in composition since the last glacial maximum (LGM) (21 kyr BP). Our results indicate that most plant taxa decreased stomatal conductance and/or maximum photosynthetic capacity in response to changing conditions since the LGM. However, plant families and species differed in the timing and magnitude of these physiological responses, and responses were more similar within families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time. PMID:24636555

  1. Forest climate change Vulnerability and Adaptation Assessment in Himalayas

    NASA Astrophysics Data System (ADS)

    Chitale, V. S.; Shrestha, H. L.; Agarwal, N. K.; Choudhurya, D.; Gilani, H.; Dhonju, H. K.; Murthy, M. S. R.

    2014-11-01

    Forests offer an important basis for creating and safeguarding more climate-resilient communities over Hindu Kush Himalayan region. The forest ecosystem vulnerability assessment to climate change and developing knowledge base to identify and support relevant adaptation strategies is realized as an urgent need. The multi scale adaptation strategies portray increasing complexity with the increasing levels in terms of data requirements, vulnerability understanding and decision making to choose a particular adaptation strategy. We present here how such complexities could be addressed and adaptation decisions could be either directly supported by open source remote sensing based forestry products or geospatial analysis and modelled products. The forest vulnerability assessment under climate change scenario coupled with increasing forest social dependence was studied using IPCC Landscape scale Vulnerability framework in Chitwan-Annapurna Landscape (CHAL) situated in Nepal. Around twenty layers of geospatial information on climate, forest biophysical and forest social dependence data was used to assess forest vulnerability and associated adaptation needs using self-learning decision tree based approaches. The increase in forest fires, evapotranspiration and reduction in productivity over changing climate scenario was observed. The adaptation measures on enhancing productivity, improving resilience, reducing or avoiding pressure with spatial specificity are identified to support suitable decision making. The study provides spatial analytical framework to evaluate multitude of parameters to understand vulnerabilities and assess scope for alternative adaptation strategies with spatial explicitness.

  2. Climate change vulnerability of global hydropower generation

    NASA Astrophysics Data System (ADS)

    Farinosi, F.; De Cian, E.; Sue Wing, I.

    2014-12-01

    This paper explores the vulnerability of global hydropower generation to the variability in seasonal averages as well as changes in extreme conditions of precipitation, surface runoff, and temperature. A statistical model is used to estimate the elasticity of hydroelectricity generation to the historical variation (1962-2010) in precipitation or runoff, while controlling for potential confounding factors and temperature changes. The estimated elasticities, which informs about hydropower sensitivity to meteorological variations, are combined with changes in future exposure around 2050 in different warming scenarios as simulated by an ensemble of GCMs participating in the CMIP5 project (Taylor et al., 2012). We use a panel regression model to estimate the parameters characterizing a reduced-form relationship between hydropower electricity generation at country level, a set of meteorological indicators, and number of other covariates that control for time-invariant country-specific heterogeneity (country effect), unspecified exogenous influences affecting all countries and units (time effects), and other confounding factors such the electricity generation mix. The estimated model shows that total annual runoff has a significant impact on the annual generation from the small and medium-sized units, whereas large-sized units do not appear to be sensitive to the inter-annual variation in runoff. This finding is reasonably explained by the greater buffer effect of reservoir capacity, which sensibly increases the resilience of these plants to inter-annual runoff variability. In medium-sized units an increase in total runoff by 1% increases electricity generation by 0.028%. Small-sized units are more sensitivity to inter-annual variations in runoff, and the same change in total runoff (1%) increases electricity generation by 0.037%. Seasonal temperature has also a significant impact. A 1% increase in spring temperature reduces electricity generation by 1.63%, while a 1% increase in summer temperature reduces electricity generation by 1.58%. While an increased frequency of warm days has a positive coefficient. Including the SPI indicators reduces marginal effects of the inter-annual variation in total runoff from 0.028 to 0.022 for the medium units and from 0.037 to 0.031 for the small units.

  3. Global change and the groundwater management challenge

    NASA Astrophysics Data System (ADS)

    Gorelick, Steven M.; Zheng, Chunmiao

    2015-05-01

    With rivers in critical regions already exploited to capacity throughout the world and groundwater overdraft as well as large-scale contamination occurring in many areas, we have entered an era in which multiple simultaneous stresses will drive water management. Increasingly, groundwater resources are taking a more prominent role in providing freshwater supplies. We discuss the competing fresh groundwater needs for human consumption, food production, energy, and the environment, as well as physical hazards, and conflicts due to transboundary overexploitation. During the past 50 years, groundwater management modeling has focused on combining simulation with optimization methods to inspect important problems ranging from contaminant remediation to agricultural irrigation management. The compound challenges now faced by water planners require a new generation of aquifer management models that address the broad impacts of global change on aquifer storage and depletion trajectory management, land subsidence, groundwater-dependent ecosystems, seawater intrusion, anthropogenic and geogenic contamination, supply vulnerability, and long-term sustainability. The scope of research efforts is only beginning to address complex interactions using multiagent system models that are not readily formulated as optimization problems and that consider a suite of human behavioral responses.

  4. New Directions: Megacities and global change

    NASA Astrophysics Data System (ADS)

    Gurjar, B. R.; Lelieveld, J.

    2005-01-01

    Perhaps 3% of the world's population lived in cities around the year 1800 (Brunn and Williams, 1983. Cities of the World. HarperCollins, New York, 506pp.). Subsequently, industrialization and urbanization intensified during the "Anthropocene" (Crutzen, 2002. Nature 415, 23) in the fossil fuel based economy (or carbon-economy). As a result, by 1900 the urban population fraction had increased to 13%, and to 47% by 2000 (UN, 2004; see reference in Table 1). Over the last 50 years, the world's urban population has grown faster (?2.7% yr-1) than the total population (?1.8% yr-1). This trend is likely to continue in the foreseeable future marking for the first time in human history that the world will have more urban than rural residents by 2007. The striking offshoots of rapid-and-massive urbanization are the megacities that emerged as a most visible physical sign of anthropogenic global change in the 20th century. In 1950, there were only two megacities, New York and Tokyo with 12.4 and 11.3 million people, respectively. At present there are 20 megacities with a combined population of 283 million (UN, 2004).

  5. Beyond Adapting to Climate Change: Embedding Adaptation in Responses to Multiple Threats and Stresses

    SciTech Connect

    Wilbanks, Thomas J; Kates, Dr. Robert W.

    2010-01-01

    Climate change impacts are already being experienced in every region of the United States and every part of the world most severely in Arctic regions and adaptation is needed now. Although climate change adaptation research is still in its infancy, significant adaptation planning in the United States has already begun in a number of localities. This article seeks to broaden the adaptation effort by integrating it with broader frameworks of hazards research, sustainability science, and community and regional resilience. To extend the range of experience, we draw from ongoing case studies in the Southeastern United States and the environmental history of New Orleans to consider the multiple threats and stresses that all communities and regions experience. Embedding climate adaptation in responses to multiple threats and stresses helps us to understand climate change impacts, themselves often products of multiple stresses, to achieve community acceptance of needed adaptations as co-benefits of addressing multiple threats, and to mainstream the process of climate adaptation through the larger envelope of social relationships, communication channels, and broad-based awareness of needs for risk management that accompany community resilience.

  6. Changes in adaptive capacity of Kenyan fishing communities

    NASA Astrophysics Data System (ADS)

    Cinner, Joshua E.; Huchery, Cindy; Hicks, Christina C.; Daw, Tim M.; Marshall, Nadine; Wamukota, Andrew; Allison, Edward H.

    2015-09-01

    Coastal communities are particularly at risk from the impacts of a changing climate. Building the capacity of coastal communities to cope with and recover from a changing environment is a critical means to reducing their vulnerability. Yet, few studies have quantitatively examined adaptive capacity in such communities. Here, we build on an emerging body of research examining adaptive capacity in natural resource-dependent communities in two important ways. We examine how nine indicators of adaptive capacity vary: among segments of Kenyan fishing communities; and over time. Socially disaggregated analyses found that the young, those who had migrated, and those who do not participate in decision-making seemed least prepared for adapting to change in these resource-dependent communities. These results highlight the most vulnerable segments of society when it comes to preparing for and adapting to change in resource-dependent communities. Comparisons through time showed that aspects of adaptive capacity seemed to have increased between 2008 and 2012 owing to higher observed community infrastructure and perceived availability of credit.

  7. U.S. Global Climate Change Impacts Overview

    NASA Astrophysics Data System (ADS)

    Karl, T. R.

    2009-12-01

    This past year the US Global Change Research Program released a report that summarized the science of climate change and the impacts of climate change on the United States, now and in the future. The report underscores the importance of measures to reduce climate change. In the context of impacts, the report identifies examples of actions currently being pursued in various sectors and regions to address climate change as well as other environmental problems that could be exacerbated by climate change. This state-of-knowledge report also identifies areas in which scientific uncertainty limits our ability to estimate future climate changes and its impacts. Key findings of the report include: (1) Global warming is unequivocal and primarily human induced. - This statement is stronger than the IPCC (2007) statement because new attribution studies since that report continue to implicate human caused changes over the past 50 years. (2) Climate Changes are underway in the Unites States and are projected to grow. - These include increases in heavy downpours, rising temperature and sea level, rapidly retreating glaciers, thawing permafrost, lengthening growing seasons lengthening ice-free seasons in the oceans and on lakes and rivers, earlier snowmelt and alteration in river flows. (3) Widespread climate-related impacts are occurring now and are expected to increase. - The impacts vary from region to region, but are already affecting many sectors e.g., water, energy, transportation, agriculture, ecosystems, etc. (4) Climate change will stress water resources. - Water is an issue in every region of the US, but the nature of the impacts vary (5) Crop and livestock production will be increasingly challenged. - Warming related to high emission scenarios often negatively affect crop growth and yields levels. Increased pests, water stress, diseases, and weather extremes will pose adaptation challenges for crops and livestock production. (6) Coastal areas are at increased risk from sea-level rise and storm surge. - Sea-level rise and storm surge place many U.S. coastal cities at risk of erosion and flooding. Estimates for sea level rise by the end of this century are up to five feet for portions of the Gulf Coast where global sea level rise acts in concert with sinking coastal land. Global sea level projections are as high as 3 to 3.5 feet for emission scenarios that are comparable to business as usual. (7) Risk to human health will increase. - Robust public health infrastructure can reduce the potential for negative impacts. (8) Climate change will interact with many social and environmental stresses. - Climate change will combine with pollutions, population growth, overuse of resources, urbanization, and other social, economic, and environmental stresses to create larger impacts than from any of these factors alone. (9) Thresholds will be crossed, leading to large changes in climate and ecosystems

  8. Vulnerability Assessment, Climate Change Impacts and Adaptation Measures in Slovenia

    NASA Astrophysics Data System (ADS)

    Cegnar, T.

    2010-09-01

    In relation to the priority tasks of the climate change measures, the Republic of Slovenia estimates that special attention needs to be devoted to the following sectors in general: - sectors that currently indicate a strong vulnerability for the current climate variability (for instance, agriculture), - sectors where the vulnerability for climate change is increased by current trends (for instance, urban development, use of space), - sectors where the adaptation time is the longest and the subsequent development changes are connected with the highest costs (for instance, use of space, infrastructural objects, forestry, urban development, building stock). Considering the views of Slovenia to the climate change problem in Europe and Slovenia, priority measures and emphasis on future adaptation to climate change, the Republic of Slovenia has especially exposed the following action areas: - sustainable and integrated management of water sources for water power production, prevention of floods, provision of water for the enrichment of low flow rates, and preservation of environmental function as well as provision of water for other needs; - sustainable management of forest ecosystems, adjusted to changes, for the provision of their environmental function as well as being a source of biomass, wood for products for the conservation of carbon, and carbon sinks; - spatial planning as one of the important preventive instruments for the adaptation to climate change through the processes of integral planning of spatial and urban development; - sustainable use and preservation of natural wealth and the preservation of biodiversity as well as ecosystem services with measures and policies that enable an enhanced resistance of ecosystems to climate change, and the role of biological diversity in integral adaptation measures; - informing and awareness on the consequences of climate change and adaptation possibilities. For years, the most endangered sectors have been agriculture and forestry; therefore, they are also the only sectors for which a national adaptation strategy was adopted.

  9. Environmental insurance adapts to changing needs

    SciTech Connect

    Vuono, M. )

    1995-03-01

    No longer simply a specialty service niche, environmental insurance has become an increasingly important asset to businesses worldwide. Companies of all sizes are using insurance as a proactive tool for prudent environmental risk management. During the last five years, the environmental insurance industry has matured to meet the ever-changing environmental insurance needs of business. A broad range of policies and programs offers coverage against damages caused by chemical spills, hazardous material and related environmental contaminants. Securing environmental insurance coverage has become as customary for many businesses as acquiring general liability and automobile insurance.

  10. INVESTIGATION OF EXISTING POLICIES CONTRIBUTION TO PROMOTING CLIMATE CHANGE ADAPTATION -A CASE STUDY IN TOKYO-

    NASA Astrophysics Data System (ADS)

    Hijioka, Yasuaki; Oka, Kazutaka; Takano, Saneyuki; Yoshikawa, Minoru; Ichihashi, Arata

    The impacts of global warming are already appearing in various regions of the world. Therefore, in addition to strongly promoting mitigation policies, it is an urgent need to study and implement adaptation policies from a long-term perspective in preparation for some possible negative impacts. The Japanese Government has long promoted various countermeasures for disaster prevention, environmental management, food production and protection of the nation's health. These counterm easures are considered to have potential effects asclimate change adaptation. This study investigated to what extent the existing policies for Tokyo can contribute to its climate change adaptation on the basis of comprehensively organizing targeted fields an dindicators in which adaptation policies should be taken. Research results indicated that the existing policies could be useful as climate change adaptation in many fields and indicators. Furthermore, the present problems were clarified accompanied with implementation of climate change adaptation at the municipalities' level, and solutions were proposed on how to use scientific knowledge to solve the problems.

  11. Climate Change and Agricultural Sustainability - A Global Assessment

    NASA Astrophysics Data System (ADS)

    Cai, X.; Zhang, X.

    2012-12-01

    This study provides a spatially explicit estimate of climate change impact on world-wide agricultural sustainability, considering uncertainty in climate change projections. The potential changes in agricultural land and crop water requirement and availability are assessed by region in the world. Uncertainty in General Circulation Model (GCM) projections is addressed using data assembled from a number of GCMs and representative emission scenarios. Erroneous data and the uncertain nature of land classifications based on multiple indices (i.e., soil properties, land slope, temperature, and humidity) are handled with fuzzy logic modeling. It is found that global arable land area is likely to be affected by emission scenarios, for example, it may decrease by 0.8% ~ 1.7% under scenario A1B (CO2-equivalent GHG concentrations of 850 ppmv) but increase by 2.0% ~ 4.4% under scenario B1 (CO2-equivalent GHG concentrations of 600 ppmv, which represents a greener economy than A1B). However, at the regional scale, although the magnitudes of the projected changes vary by scenario, the increasing or decreasing trends in arable land area are consistent: Regions with relative high latitudes - Russia, China and the U.S. - could see a significant increase in arable land in coming years, but South America, Africa, Europe and India could lose land area. For agricultural water use, the following questions are addressed: Where will there be a need for irrigation expansion and by how much? Where and how much of current irrigation pressures or water deficits for rainfed crops can be mitigated or aggravated? And finally, what is the overall situation for the entire world? It is found that despite the universally rising mean temperature, the global irrigation requirements are likely to decrease. This is probably due to the declining diurnal temperature range, which plays a key role in the evapotranspiration control, as well as the increasing precipitation in many areas contributing to the global balance-out of irrigation requirement. Regional impacts vary by direction and magnitude over the GCM and emission scenarios. In particular, the statistics of changes in the wetness index, referring to the ratio of effective rainfall over crop evapotranspiration, are investigated for different regions, showing the possible regional change trends in the future. Agricultural adaptations to climate change are necessary measures to sustain the world's agriculture, which are addressed considering the possible changes of both land and water. The adverse impacts of climate change require new irrigated areas or higher irrigation demands for some regions; while climate change can reduce irrigation while remaining suitable for cultivation in other regions; new agricultural land may emerge in some areas with reasonable productivity for rainfed crops. These situations will be discussed with regard to appropriate agricultural adaptations in different regions considering the robustness and uncertainty of the assessments under the various scenarios.

  12. The potential roles of science centers in climate change adaptation

    NASA Astrophysics Data System (ADS)

    Hamilton, P.

    2012-12-01

    The overwhelming consensus amongst climatologists is that anthropogenic climate change is underway, but leading climate scientists also anticipate that over the next 20 years research may only modestly reduce the uncertainty about where, when and by how much climate will change. Uncertainty presents not only scientific challenges but social, political and economic quandaries as well. Both scientific and educational communities understand that climate change will test the resilience of societies especially because of the uncertainties regarding the timing, nature and severity of climate change. Thus the need is great for civic conversations regarding climate change adaptation. What roles might science centers play in helping their audiences and communities make decisions about climate change adaptation despite less-than-perfect knowledge? And how might informal and formal education work together on this task? This session will begin with a review of some initial efforts by selected science centers and their partners to engage their audiences in and help their communities grapple with climate change adaptation. It then will conclude with an audience discussion about potential future efforts by science centers both individually and in collaboration with formal education institutions to elevate public and policymaker awareness and appreciation of the need for climate change adaptation.

  13. The Competencies Demonstrated by Farmers while Adapting to Climate Change

    ERIC Educational Resources Information Center

    Pruneau, Diane; Kerry, Jackie; Mallet, Marie-Andree; Freiman, Viktor; Langis, Joanne; Laroche, Anne-Marie; Evichnevetski, Evgueni; Deguire, Paul; Therrien, Jimmy; Lang, Mathieu; Barbier, Pierre-Yves

    2012-01-01

    World population growth, overconsumption of resources, competition among countries and climate change are putting significant pressure on agriculture. In Canada, changes in precipitation, the appearance of new pests and poor soil quality are threatening the prosperity of small farmers. What human competencies could facilitate citizens' adaptation

  14. Ozone, Climate, and Global Atmospheric Change.

    ERIC Educational Resources Information Center

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  15. Ozone, Climate, and Global Atmospheric Change.

    ERIC Educational Resources Information Center

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of

  16. Changing Composition of the Global Stratosphere.

    ERIC Educational Resources Information Center

    McElroy, Michael B.; Salawitch, Ross J.

    1989-01-01

    Discusses the chemistry of the stratosphere at mid-latitudes, the Antarctic phenomenon, and temporal trends in ozone levels. Includes equations, diagrams of the global distribution of ozone, and halogen growth projections. Concludes that studies of stratospheric ozone demonstrate that the global environment is fragile and is impacted by human

  17. Management implications of global change for Great Plains rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Just as water and temperature drive the ecology of Great Plains rangelands, we predict that the impacts of global change on this region will be experienced largely through changes in these two important environmental variables. A third global change factor which will impact rangelands is increasing ...

  18. National Hydroclimatic Change and Infrastructure Adaptation Assessment: Region-Specific Adaptation Factors

    EPA Science Inventory

    Climate change, land use and socioeconomic developments are principal variables that define the need and scope of adaptive engineering and management to sustain water resource and infrastructure development. As described in IPCC (2007), hydroclimatic changes in the next 30-50 ye...

  19. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture

    NASA Astrophysics Data System (ADS)

    Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander; Müller, Christoph; Havlík, Petr; Herrero, Mario; Schmitz, Christoph; Rolinski, Susanne

    2015-09-01

    Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.

  20. Water - The key to global change. [of weather and climate

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A.

    1988-01-01

    The role of water in processes of global change is discussed. The importance of water in global warming, the loss of biological diversity, the activity of the El Nino southern oscillation, and the melting of polar ice are examined. Plans for a mission to measure tropical rainfall using a two frequency radar, a visible/IR radiometer and a passive microwave radiometer are noted. The way in which global change is affected by changes in patterns of available water is considered.

  1. Comparing Recent Changes in Global Surface Humidity with Temperature Changes and Global Circulation Model Output

    NASA Astrophysics Data System (ADS)

    Willett, K. M.; Thorne, P. W.; Jones, P. D.; Gillett, N.

    2008-12-01

    Water vapour, a very significant greenhouse gas, has increased significantly at the surface over most of the globe since the 1970s (Willett et al in press). Surface humidity is the source of the atmospheric component of the hydrological cycle, and so is key to understanding changes in free atmosphere humidity, cloud and precipitation. Considering this, constraining the spatial and temporal pattern of observed changes in surface humidity alongside changes in the surface temperature record and GCM reconstructions, is key to our furthering our understanding of the climate system. Here we will present key findings from HadCRUH, a homogenised monthly mean anomaly gridded global surface humidity dataset (available along with several other datasets at http://www.metoffice.gov.uk/hadobs/). Comparisons between HadCRUH and the independently constructed HadCRUT3 temperature record (Brohan et al 2006) will be made at a range of scales. Timeseries behaviour, trends and the temperature- humidity relationship are then compared with that found in a suite of CMIP4 'Climate of the 20th Century' runs (complimenting our formal detection and attribution study which considered only one model). This provides a comprehensive picture of our understanding of recent changes in global surface humidity.

  2. Possible implications of global climate change on global lightning distributions and frequencies

    NASA Technical Reports Server (NTRS)

    Price, Colin; Rind, David

    1994-01-01

    The Goddard Institute for Space Studies (GISS) general circulation model (GCM) is used to study the possible implications of past and future climate change on global lightning frequencies. Two climate change experiments were conducted: one for a 2 x CO2 climate (representing a 4.2 degs C global warming) and one for a 2% decrease in the solar constant (representing a 5.9 degs C global cooling). The results suggest at 30% increase in global lightning activity for the warmer climate and a 24% decrease in global lightning activity for the colder climate. This implies an approximate 5-6% change in global lightning frequencies for every 1 degs C global warming/cooling. Both intracloud and cloud-to-ground frequencies are modeled, with cloud-to-ground lightning frequencies showing larger sensitivity to climate change than intracloud frequencies. The magnitude of the modeled lightning changes depends on season, location, and even time of day.

  3. Problem free nuclear power and global change

    SciTech Connect

    Teller, E.; Wood, L.; Nuckolls, J.; Ishikawa, M.; Hyde, R.

    1997-08-15

    Nuclear fission power reactors represent a solution-in-principle to all aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high- grade heat for electricity generation, space heating and industrial process-driving around the world, without emitting greenhouse gases or atmospheric particulates. However, a substantial number of major issues currently stand between nuclear power implemented with light- water reactors and widespread substitution for large stationary fossil fuel-fired systems, including long-term fuel supply, adverse public perceptions regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps more seriously - cost. We describe a GW-scale, high-temperature nuclear reactor heat source that can operate with no human intervention for a few decades and that may be widely acceptable, since its safety features are simple, inexpensive and easily understood. We provide first-level details of a reactor system designed to satisfy these requirements. Such a back-solving approach to realizing large-scale nuclear fission power systems potentially leads to an energy source capable of meeting all large-scale stationary demands for high- temperature heat. If widely employed to support such demands, it could, for example, directly reduce present-day world-wide CO{sub 2} emissions by two-fold; by using it to produce non-carbonaceous fuels for small mobile demands, a second two-fold reduction could be attained. Even the first such reduction would permit continued slow power-demand growth in the First World and rapid development of the Third World, both without any governmental suppression of fossil fuel usage.

  4. Change in agricultural land use constrains adaptation of national wildlife refuges to climate change

    USGS Publications Warehouse

    Hamilton, Christopher M.; Thogmartin, Wayne E.; Radeloff, Volker C.; Plantinga, Andrew J.; Heglund, Patricia J.; Martinuzzi, Sebastian; Pidgeon, Anna M.

    2015-01-01

    Land-use change around protected areas limits their ability to conserve biodiversity by altering ecological processes such as natural hydrologic and disturbance regimes, facilitating species invasions, and interfering with dispersal of organisms. This paper informs USA National Wildlife Refuge System conservation planning by predicting future land-use change on lands within 25 km distance of 461 refuges in the USA using an econometric model. The model contained two differing policy scenarios, namely a ‘business-as-usual’ scenario and a ‘pro-agriculture’ scenario. Regardless of scenario, by 2051, forest cover and urban land use were predicted to increase around refuges, while the extent of range and pasture was predicted to decrease; cropland use decreased under the business-as-usual scenario, but increased under the pro-agriculture scenario. Increasing agricultural land value under the pro-agriculture scenario slowed an expected increase in forest around refuges, and doubled the rate of range and pasture loss. Intensity of land-use change on lands surrounding refuges differed by regions. Regional differences among scenarios revealed that an understanding of regional and local land-use dynamics and management options was an essential requirement to effectively manage these conserved lands. Such knowledge is particularly important given the predicted need to adapt to a changing global climate.

  5. Climate change adaptation and Integrated Water Resource Management in the water sector

    NASA Astrophysics Data System (ADS)

    Ludwig, Fulco; van Slobbe, Erik; Cofino, Wim

    2014-10-01

    Integrated Water Resources Management (IWRM) was introduced in 1980s to better optimise water uses between different water demanding sectors. However, since it was introduced water systems have become more complicated due to changes in the global water cycle as a result of climate change. The realization that climate change will have a significant impact on water availability and flood risks has driven research and policy making on adaptation. This paper discusses the main similarities and differences between climate change adaptation and IWRM. The main difference between the two is the focus on current and historic issues of IWRM compared to the (long-term) future focus of adaptation. One of the main problems of implementing climate change adaptation is the large uncertainties in future projections. Two completely different approaches to adaptation have been developed in response to these large uncertainties. A top-down approach based on large scale biophysical impacts analyses focussing on quantifying and minimizing uncertainty by using a large range of scenarios and different climate and impact models. The main problem with this approach is the propagation of uncertainties within the modelling chain. The opposite is the bottom up approach which basically ignores uncertainty. It focusses on reducing vulnerabilities, often at local scale, by developing resilient water systems. Both these approaches however are unsuitable for integrating into water management. The bottom up approach focuses too much on socio-economic vulnerability and too little on developing (technical) solutions. The top-down approach often results in an explosion of uncertainty and therefore complicates decision making. A more promising direction of adaptation would be a risk based approach. Future research should further develop and test an approach which starts with developing adaptation strategies based on current and future risks. These strategies should then be evaluated using a range of future scenarios in order to develop robust adaptation measures and strategies.

  6. A meta-analysis of crop yield under climate change and adaptation

    NASA Astrophysics Data System (ADS)

    Challinor, A. J.; Watson, J.; Lobell, D. B.; Howden, S. M.; Smith, D. R.; Chhetri, N.

    2014-04-01

    Feeding a growing global population in a changing climate presents a significant challenge to society. The projected yields of crops under a range of agricultural and climatic scenarios are needed to assess food security prospects. Previous meta-analyses have summarized climate change impacts and adaptive potential as a function of temperature, but have not examined uncertainty, the timing of impacts, or the quantitative effectiveness of adaptation. Here we develop a new data set of more than 1,700 published simulations to evaluate yield impacts of climate change and adaptation. Without adaptation, losses in aggregate production are expected for wheat, rice and maize in both temperate and tropical regions by 2 C of local warming. Crop-level adaptations increase simulated yields by an average of 7-15%, with adaptations more effective for wheat and rice than maize. Yield losses are greater in magnitude for the second half of the century than for the first. Consensus on yield decreases in the second half of the century is stronger in tropical than temperate regions, yet even moderate warming may reduce temperate crop yields in many locations. Although less is known about interannual variability than mean yields, the available data indicate that increases in yield variability are likely.

  7. Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Sriharan, S.; Fan, C.

    2014-12-01

    As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.

  8. Adapting to Change: The Value of Change Information and Meaning-Making

    ERIC Educational Resources Information Center

    van den Heuvel, Machteld; Demerouti, Evangelia; Bakker, Arnold B.; Schaufeli, Wilmar B.

    2013-01-01

    The purpose of this 3-wave study is to examine the micro process of how employees adapt to change over time. We combined Conservation of Resources theory with insights from the organizational change literature to study employees in a Dutch police district undergoing reorganization. A model was tested where employee adaptability, operationalized by

  9. Agricultural Adaptations to Climate Changes in West Africa

    NASA Astrophysics Data System (ADS)

    Guan, K.; Sultan, B.; Lobell, D. B.; Biasutti, M.; Piani, C.; Hammer, G. L.; McLean, G.

    2014-12-01

    Agricultural production in West Africa is highly vulnerable to climate variability and change and a fast growing demand for food adds yet another challenge. Assessing possible adaptation strategies of crop production in West Africa under climate change is thus critical for ensuring regional food security and improving human welfare. Our previous efforts have identified as the main features of climate change in West Africa a robust increase in temperature and a complex shift in the rainfall pattern (i.e. seasonality delay and total amount change). Unaddressed, these robust climate changes would reduce regional crop production by up to 20%. In the current work, we use two well-validated crop models (APSIM and SARRA-H) to comprehensively assess different crop adaptation options under future climate scenarios. Particularly, we assess adaptations in both the choice of crop types and management strategies. The expected outcome of this study is to provide West Africa with region-specific adaptation recommendations that take into account both climate variability and climate change.

  10. Guiding Climate Change Adaptation Within Vulnerable Natural Resource Management Systems

    NASA Astrophysics Data System (ADS)

    Bardsley, Douglas K.; Sweeney, Susan M.

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  11. Guiding climate change adaptation within vulnerable natural resource management systems.

    PubMed

    Bardsley, Douglas K; Sweeney, Susan M

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making. PMID:20383706

  12. Climate Change Adaptation Science Activities at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Lulla, Kamlesh

    2012-01-01

    The Johnson Space Center (JSC), located in the southeast metropolitan region of Houston, TX is the prime NASA center for human spaceflight operations and astronaut training, but it also houses the unique collection of returned extraterrestrial samples, including lunar samples from the Apollo missions. The Center's location adjacent to Clear Lake and the Clear Creek watershed, an estuary of Galveston Bay, puts it at direct annual risk from hurricanes, but also from a number of other climate-related hazards including drought, floods, sea level rise, heat waves, and high wind events all assigned Threat Levels of 2 or 3 in the most recent NASA Center Disaster/Risk Matrix produced by the Climate Adaptation Science Investigator Working Group. Based on prior CASI workshops at other NASA centers, it is recognized that JSC is highly vulnerable to climate-change related hazards and has a need for adaptation strategies. We will present an overview of prior CASI-related work at JSC, including publication of a climate change and adaptation informational data brochure, and a Resilience and Adaptation to Climate Risks Workshop that was held at JSC in early March 2012. Major outcomes of that workshop that form a basis for work going forward are 1) a realization that JSC is embedded in a regional environmental and social context, and that potential climate change effects and adaptation strategies will not, and should not, be constrained by the Center fence line; 2) a desire to coordinate data collection and adaptation planning activities with interested stakeholders to form a regional climate change adaptation center that could facilitate interaction with CASI; 3) recognition that there is a wide array of basic data (remotely sensed, in situ, GIS/mapping, and historical) available through JSC and other stakeholders, but this data is not yet centrally accessible for planning purposes.

  13. The Role of Decision Support in Adapting to Climate Change: Findings from Three Place-based Regional Assessments

    EPA Science Inventory

    This report summarizes the methodologies and findings of three regional assessments and considers the role of decision support in assisting adaptation to climate change. Background. In conjunction with the US Global Change Research Programs (USGCRPs) National Assessment of ...

  14. A framework to diagnose barriers to climate change adaptation

    PubMed Central

    Moser, Susanne C.; Ekstrom, Julia A.

    2010-01-01

    This article presents a systematic framework to identify barriers that may impede the process of adaptation to climate change. The framework targets the process of planned adaptation and focuses on potentially challenging but malleable barriers. Three key sets of components create the architecture for the framework. First, a staged depiction of an idealized, rational approach to adaptation decision-making makes up the process component. Second, a set of interconnected structural elements includes the actors, the larger context in which they function (e.g., governance), and the object on which they act (the system of concern that is exposed to climate change). At each of these stages, we ask (i) what could impede the adaptation process and (ii) how do the actors, context, and system of concern contribute to the barrier. To facilitate the identification of barriers, we provide a series of diagnostic questions. Third, the framework is completed by a simple matrix to help locate points of intervention to overcome a given barrier. It provides a systematic starting point for answering critical questions about how to support climate change adaptation at all levels of decision-making. PMID:21135232

  15. Global hydropower potential during recent droughts and under changing climate

    NASA Astrophysics Data System (ADS)

    Van Vliet, Michelle T. H.; Sheffield, Justin; Wiberg, David; Wood, Eric F.

    2015-04-01

    There is a strong dependency of world's electricity sector on available water resources for hydropower generation. Recent droughts showed the vulnerability of the electricity sector to surface water constraints with reduced potentials for hydropower generation in different regions worldwide. Using a global modelling framework consisting of the VIC hydrological model and a hydropower model, we assess the impacts of recent droughts and future climate change on hydropower generation potentials worldwide. Our hydrological-electricity modelling framework was optimized and evaluated for 1981-2010, showing a realistic representation of observed streamflow and hydropower generation. We assessed the impacts of recent droughts and future climate change for more than 25,000 hydropower plants worldwide. Our results show that hydropower production potentials were significantly reduced during severe recent streamflow droughts (including e.g. summer of 2003 in Europe and 2007 in the United States). Model simulations with bias-corrected CMIP5 general circulation model output indicate that in several regions considerable reductions in hydropower production potentials are projected due to declines in streamflow during parts of the year. Considering these impacts and the long design life of power plant infrastructure, adaptation options should be included in today's planning and strategies to meet the growing electricity demand in the 21st century.

  16. More than taking the heat: crops and global change.

    PubMed

    Long, Stephen P; Ort, Donald R

    2010-06-01

    Grain production per unit of land will need to more than double over this century to address rising population and demand. This at a time when the procedures that have delivered increased yields over the past 50 years may have reached their ceiling for some of the world's most important crops. Rising global temperature and more frequent droughts will act to drive down yields. The projected rise in atmospheric [CO(2)] by mid-century could in theory increase crop photosynthesis by over 30%, but this is not realized in grain yields in current C(3) cultivars in the field. Emerging understanding of gene networks controlling responses to these environmental changes indicates biotechnological opportunities for adaptation. Considerably more basic research, particularly under realistic field conditions, is critical before these opportunities can be adequately understood and validated. Given the time needed between discovery in a model plant species and translation to traits or stacked changes in a commercial grain crop cultivar, there is an urgent need to vigorously pursue and develop these opportunities now. PMID:20494611

  17. Global environmental change: Modifying human contributions through education

    SciTech Connect

    Carter, L.M.

    1997-12-31

    The 1995 Intergovernmental Panel on Climate Change (IPCC) Science report concludes that evidence now available {open_quotes}points toward a discernible human influence on global climate{close_quotes}. Reductions in emissions will require changes in human behavior. Knowledge, often through education, is an important moderator of human environmental behavior. This study assessed whether gains in global environmental change knowledge would lead to changes in human behaviors that could be deemed environmentally responsible.

  18. Using the Global Electric Circuit to monitor global climate change (Invited)

    NASA Astrophysics Data System (ADS)

    Price, C. G.

    2013-12-01

    The global atmospheric electric circuit describes the global link between fair weather electric fields and currents measured at the Earth's surface, and the generator of these fields and currents in regions of stormy weather. Ever since the 1920s we have known about the global nature of these electric parameters, which appear to vary as a function of universal time (UT) and not local time (LT). It was also shown in the late 1920s that the "batteries" of the GEC are related to thunderstorm activity around the globe, that produce a clear global diurnal cycle due to the longitudinal distribution of the tropical landmasses. Due to the global nature of these electric fields and currents, the GEC supplies perhaps the only global geophysical index that can be measured at a single location on the Earth's surface, representing global electrical activity on the planet. The GEC can be broken down into a DC (direct current) part, and an AC (alternating current) part. Due to the global nature of the electric circuit it has been proposed by some to use geo-electric indices as proxies for changes in the global climate. If global warming results in changes in thunderstorm distribution, number and/or intensity, the GEC may allow us to monitor these changes from only a few ground stations. The advantages and disadvantages of using the GEC to monitor climate change will be presented together with some examples of how the global electric circuit has already been used to monitor changes in the Earth's climate.

  19. Water governance: learning by developing adaptive capacity to incorporate climate variability and change.

    PubMed

    Kashyap, A

    2004-01-01

    There is increasing evidence that global climate variability and change is affecting the quality and availability of water supplies. Integrated water resources development, use, and management strategies, represent an effective approach to achieve sustainable development of water resources in a changing environment with competing demands. It is also a key to achieving the Millennium Development Goals. It is critical that integrated water management strategies must incorporate the impacts of climate variability and change to reduce vulnerability of the poor, strengthen sustainable livelihoods and support national sustainable development. UNDP's strategy focuses on developing adaptation in the water governance sector as an entry point within the framework of poverty reduction and national sustainable development. This strategy aims to strengthen the capacity of governments and civil society organizations to have access to early warning systems, ability to assess the impact of climate variability and change on integrated water resources management, and developing adaptation intervention through hands-on learning by undertaking pilot activities. PMID:15195430

  20. Adaptation to climate change--exploring the potential of locally adapted breeds.

    PubMed

    Hoffmann, Irene

    2013-06-01

    The livestock sector and agriculture as a whole face unprecedented challenges to increase production while improving the environment. On the basis of a literature review, the paper first discusses challenges related to climate change, food security and other drivers of change in livestock production. On the basis of a recent discourse in ecology, a framework for assessing livestock species' and breeds' vulnerability to climate change is presented. The second part of the paper draws on an analysis of data on breed qualities obtained from the Food and Agriculture Organization's Domestic Animal Diversity Information System (DAD-IS) to explore the range of adaptation traits present in today's breed diversity. The analysis produced a first mapping of a range of ascribed adaptation traits of national breed populations. It allowed to explore what National Coordinators understand by 'locally adapted' and other terms that describe general adaptation, to better understand the habitat, fodder and temperature range of each species and to shed light on the environments in which targeted search for adaptation traits could focus. PMID:23739476

  1. Anthropogenic influence on multi-decadal changes in reconstructed global evapotranspiration

    NASA Astrophysics Data System (ADS)

    Douville, H.

    2012-12-01

    Global warming is expected to intensify the global hydrological cycle, with an increase of both evapotranspiration (ET) and precipitation. Yet, the magnitude and spatial distribution of this global and annual mean response remains highly uncertain. Better constraining land ET in 21st century climate scenarios is critical for predicting changes in surface climate, including heat waves and droughts, evaluating impacts on ecosystems and water resources, and designing adaptation policies. Continental-scale ET changes may already be under way, but have never been attributed to anthropogenic emissions of greenhouse gases and sulphate aerosols. Here we provide global gridded estimates of annual ET and demonstrate that the latitudinal and decadal differentiation of recent ET variations cannot be understood without invoking the anthropogenic radiative forcings. In the mid-latitudes, the emerging picture of enhanced ET confirms the end of the "dimming" decades and highlights the possible threat posed by increasing drought frequency to managing water resources and achieving food security in a changing climate.

  2. Anthropogenic influence on multi-decadal changes in reconstructed global evapotranspiration

    NASA Astrophysics Data System (ADS)

    Douville, Hervé; Decharme, Bertrand; Ribes, Aurélien; Alkama, Ramdane

    2013-04-01

    Global warming is expected to intensify the global hydrological cycle, with an increase of both evapotranspiration (ET) and precipitation. Yet, the regional distribution of this global and annual mean response remains highly uncertain. Better constraining land ET in 21st century climate scenarios is critical for predicting changes in surface climate, including heat waves and droughts, evaluating impacts on ecosystems and water resources, and designing adaptation policies. Continental-scale ET changes may already be under way, but have never been attributed to anthropogenic emissions of greenhouse gases and sulphate aerosols. Here we provide global gridded estimates of annual ET and demonstrate that the latitudinal and decadal differentiation of recent ET variations cannot be understood without invoking both anthropogenic and natural radiative forcings. In the mid-latitudes, the emerging picture of enhanced ET confirms the end of the "dimming" decades and highlights the possible threat posed by increasing drought frequency to managing water resources and achieving food security in a changing climate.

  3. Global Responses to Potential Climate Change: A Simulation.

    ERIC Educational Resources Information Center

    Williams, Mary Louise; Mowry, George

    This interdisciplinary five-day unit provides students with an understanding of the issues in the debate on global climate change. Introductory lessons enhance understanding of the "greenhouse gases" and their sources with possible global effects of climate change. Students then roleplay negotiators from 10 nations in a simulation of the…

  4. Predicting plant invasion in an era of global change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have indicated that ongoing global change will promote the spread of invasive plants. Recent research points to a more complex response. The components of global change that increase plant resources (e.g., rising CO2, N deposition) most consistently favor invasive species, but, chan...

  5. Global Climate Change. Selected Annotated Bibliography. Second Edition.

    ERIC Educational Resources Information Center

    Jones, Douglas E.

    This annotated bibliography on global climate change contains 27 articles designed to expand the breadth and depth of information presented in the Global Change Information Packet. Most articles were chosen from journals likely to be available in most medium-sized public or college libraries. The articles cover a variety of topics related to…

  6. Global Responses to Potential Climate Change: A Simulation.

    ERIC Educational Resources Information Center

    Williams, Mary Louise; Mowry, George

    This interdisciplinary five-day unit provides students with an understanding of the issues in the debate on global climate change. Introductory lessons enhance understanding of the "greenhouse gases" and their sources with possible global effects of climate change. Students then roleplay negotiators from 10 nations in a simulation of the

  7. Balancing Change and Tradition in Global Education Reform

    ERIC Educational Resources Information Center

    Rotberg, Iris C., Ed.

    2004-01-01

    In Balancing Change and Tradition in Global Education Reform, Rotberg brings together examples of current education reforms in sixteen countries, written by "insiders". This book goes beyond myths and stereotypes and describes the difficult trade-offs countries make as they attempt to implement reforms in the context of societal and global change.…

  8. Balancing Change and Tradition in Global Education Reform

    ERIC Educational Resources Information Center

    Rotberg, Iris C., Ed.

    2004-01-01

    In Balancing Change and Tradition in Global Education Reform, Rotberg brings together examples of current education reforms in sixteen countries, written by "insiders". This book goes beyond myths and stereotypes and describes the difficult trade-offs countries make as they attempt to implement reforms in the context of societal and global change.

  9. Adapting the US Food System to Climate Change Goes Beyond the Farm Gate

    NASA Astrophysics Data System (ADS)

    Easterling, W. E.

    2014-12-01

    The literature on climate change effects on food and agriculture has concentrated primarily on how crops and livestock likely will be directly affected by climate variability and change and by elevated carbon dioxide. Integrated assessments have simulated large-scale economic response to shifting agricultural productivity caused by climate change, including possible changes in food costs and prices. A small but growing literature has shown how different facets of agricultural production inside the farm gate could be adapted to climate variability and change. Very little research has examined how the full food system (production, processing and storage, transportation and trade, and consumption) is likely to be affected by climate change and how different adaptation approaches will be required by different parts of the food system. This paper will share partial results of a major assessment sponsored by USDA to determine how climate change-induced changes in global food security could affect the US food system. Emphasis is given to understanding how adaptation strategies differ widely across the food system. A common thread, however, is risk management-based decision making. Technologies and management strategies may co-evolve with climate change but a risk management framework for implementing those technologies and strategies may provide a stable foundation.

  10. Adapting environmental management to uncertain but inevitable change.

    PubMed

    Nicol, Sam; Fuller, Richard A; Iwamura, Takuya; Chads, Iadine

    2015-06-01

    Implementation of adaptation actions to protect biodiversity is limited by uncertainty about the future. One reason for this is the fear of making the wrong decisions caused by the myriad future scenarios presented to decision-makers. We propose an adaptive management (AM) method for optimally managing a population under uncertain and changing habitat conditions. Our approach incorporates multiple future scenarios and continually learns the best management strategy from observations, even as conditions change. We demonstrate the performance of our AM approach by applying it to the spatial management of migratory shorebird habitats on the East Asian-Australasian flyway, predicted to be severely impacted by future sea-level rise. By accounting for non-stationary dynamics, our solution protects 25,000 more birds per year than the current best stationary approach. Our approach can be applied to many ecological systems that require efficient adaptation strategies for an uncertain future. PMID:25972463

  11. Ecological response to global climatic change

    USGS Publications Warehouse

    Malanson, G.P.; Butler, D.R.; Walsh, S. J.

    2004-01-01

    Climate change and ecological change go hand in hand. Because we value our ecological environment, any change has the potential to be a problem. Geographers have been drawn to this challenge, and have been successful in addressing it, because the primary ecological response to climate changes in the past — the waxing and waning of the great ice sheets over the past 2 million years – was the changing geographic range of the biota. Plants and animals changed their location. Geographers have been deeply involved in documenting the changing biota of the past, and today we are called upon to help assess the possible responses to ongoing and future climatic change and, thus, their impacts. Assessing the potential responses is important for policy makers to judge the outcomes of action or inaction and also sets the stage for preparation for and mitigation of change.

  12. An Integrated Systems Approach to Designing Climate Change Adaptation Policy in Water Resources

    NASA Astrophysics Data System (ADS)

    Ryu, D.; Malano, H. M.; Davidson, B.; George, B.

    2014-12-01

    Climate change projections are characterised by large uncertainties with rainfall variability being the key challenge in designing adaptation policies. Climate change adaptation in water resources shows all the typical characteristics of 'wicked' problems typified by cognitive uncertainty as new scientific knowledge becomes available, problem instability, knowledge imperfection and strategic uncertainty due to institutional changes that inevitably occur over time. Planning that is characterised by uncertainties and instability requires an approach that can accommodate flexibility and adaptive capacity for decision-making. An ability to take corrective measures in the event that scenarios and responses envisaged initially derive into forms at some future stage. We present an integrated-multidisciplinary and comprehensive framework designed to interface and inform science and decision making in the formulation of water resource management strategies to deal with climate change in the Musi Catchment of Andhra Pradesh, India. At the core of this framework is a dialogue between stakeholders, decision makers and scientists to define a set of plausible responses to an ensemble of climate change scenarios derived from global climate modelling. The modelling framework used to evaluate the resulting combination of climate scenarios and adaptation responses includes the surface and groundwater assessment models (SWAT & MODFLOW) and the water allocation modelling (REALM) to determine the water security of each adaptation strategy. Three climate scenarios extracted from downscaled climate models were selected for evaluation together with four agreed responses—changing cropping patterns, increasing watershed development, changing the volume of groundwater extraction and improving irrigation efficiency. Water security in this context is represented by the combination of level of water availability and its associated security of supply for three economic activities (agriculture, urban, industrial) on a spatially distributed basis. The resulting combinations of climate scenarios and adaptation responses were subjected to a combined hydro-economic assessment based on the degree of water security together with its cost-effectiveness against the Business-as-usual scenario.

  13. GLOBAL CLIMATE CHANGE--THE TECHNOLOGY CHALLENGE

    EPA Science Inventory

    Anthropogenic emissions of greenhouse gases, such as carbon dioxide, have led to increasing atmospheric concentrations which are at least partly responsible for the roughly 0.7% degree C global warming earth has experienced since the industrial revolution. With industrial activit...

  14. Changing Engineering Curriculum in the Globalizing World

    ERIC Educational Resources Information Center

    Chung, Chak

    2011-01-01

    Background: Under the impact of globalization and the coming of the Information Age, there is a paradigm shift occurring in the engineering curriculum and academic structure. Apart from the creation of new programs for the emerging fields in engineering, the approach and orientation have also been shifted from objective-based/input-based education

  15. Managing the Risks of Extreme Events and Disasters in a Changing Climate: Lessons for Adaptation to Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Mastrandrea, M.; Field, C. B.; Mach, K. J.; Barros, V.

    2013-12-01

    The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, published in 2012, integrates expertise in climate science, disaster risk reduction, and adaptation to inform discussions on how to reduce and manage the risks of extreme events and disasters in a changing climate. Impacts and the risks of disasters are determined by the interaction of the physical characteristics of weather and climate events with the vulnerability of exposed human society and ecosystems. The Special Report evaluates the factors that make people and infrastructure vulnerable to extreme events, trends in disaster losses, recent and future changes in the relationship between climate change and extremes, and experience with a wide range of options used by institutions, organizations, and communities to reduce exposure and vulnerability, and improve resilience, to climate extremes. Actions ranging from incremental improvements in governance and technology to more transformational changes are assessed. The Special Report provides a knowledge base that is also relevant to the broader context of managing the risks of climate change through mitigation, adaptation, and other responses, assessed in the IPCC's Fifth Assessment Report (AR5), to be completed in 2014. These themes include managing risks through an iterative process involving learning about risks and the effectiveness of responses, employing a portfolio of actions tailored to local circumstances but with links from local to global scales, and considering additional benefits of actions such as improving livelihoods and well-being. The Working Group II contribution to the AR5 also examines the ways that extreme events and their impacts contribute to understanding of vulnerabilities and adaptation deficits in the context of climate change, the extent to which impacts of climate change are experienced through changes in the frequency and severity of extremes as opposed to mean changes, and the emergence of risks that are place-based vs. systemic.

  16. Adapting the Transtheoretical Model of Change to the Bereavement Process

    ERIC Educational Resources Information Center

    Calderwood, Kimberly A.

    2011-01-01

    Theorists currently believe that bereaved people undergo some transformation of self rather than returning to their original state. To advance our understanding of this process, this article presents an adaptation of Prochaska and DiClemente's transtheoretical model of change as it could be applied to the journey that bereaved individuals

  17. Climate change: could it help develop 'adaptive expertise'?

    PubMed

    Bell, Erica; Horton, Graeme; Blashki, Grant; Seidel, Bastian M

    2012-05-01

    Preparing health practitioners to respond to the rising burden of disease from climate change is emerging as a priority in health workforce policy and planning. However, this issue is hardly represented in the medical education research. The rapidly evolving wide range of direct and indirect consequences of climate change will require health professionals to have not only broad content knowledge but also flexibility and responsiveness to diverse regional conditions as part of complex health problem-solving and adaptation. It is known that adaptive experts may not necessarily be quick at solving familiar problems, but they do creatively seek to better solve novel problems. This may be the result of an acquired approach to practice or a pathway that can be fostered by learning environments. It is also known that building adaptive expertise in medical education involves putting students on a learning pathway that requires them to have, first, the motivation to innovatively problem-solve and, second, exposure to diverse content material, meaningfully presented. Including curriculum content on the health effects of climate change could help meet these two conditions for some students at least. A working definition and illustrative competencies for adaptive expertise for climate change, as well as examples of teaching and assessment approaches extrapolated from rural curricula, are provided. PMID:21063771

  18. Separating the nature and nurture of the allocation of energy in response to global change.

    PubMed

    Applebaum, Scott L; Pan, T-C Francis; Hedgecock, Dennis; Manahan, Donal T

    2014-07-01

    Understanding and predicting biological stability and change in the face of rapid anthropogenic modifications of ecosystems and geosystems are grand challenges facing environmental and life scientists. Physiologically, organisms withstand environmental stress through changes in biochemical regulation that maintain homeostasis, which necessarily demands tradeoffs in the use of metabolic energy. Evolutionarily, in response to environmentally forced energetic tradeoffs, populations adapt based on standing genetic variation in the ability of individual organisms to reallocate metabolic energy. Combined study of physiology and genetics, separating "Nature and Nurture," is, thus, the key to understanding the potential for evolutionary adaptation to future global change. To understand biological responses to global change, we need experimentally tractable model species that have the well-developed physiological, genetic, and genomic resources necessary for partitioning variance in the allocation of metabolic energy into its causal components. Model species allow for discovery and for experimental manipulation of relevant phenotypic contrasts and enable a systems-biology approach that integrates multiple levels of analyses to map genotypic-to-phenotypic variation. Here, we illustrate how combined physiological and genetic studies that focus on energy metabolism in developmental stages of a model marine organism contribute to an understanding of the potential to adapt to environmental change. This integrative research program provides insights that can be readily incorporated into individual-based ecological models of population persistence under global change. PMID:24907199

  19. Some guidelines for helping natural resources adapt to climate change

    USGS Publications Warehouse

    Baron, Jill S.; Julius, Susan Herrod; West, Jordan M.; Joyce, Linda A.; Blate, Geoffrey; Peterson, Charles H.; Palmer, Margaret; Keller, Brian D.; Kareiva, Peter; Scott, J. Michael; Griffith, Brad

    2008-01-01

    The changes occurring in mountain regions are an epitome of climate change. The dramatic shrinkage of major glaciers over the past century and especially in the last 30 years is one of several iconic images that have come to symbolize climate change. Climate creates the context for ecosystems, and climate variables strongly influence the structure, composition, and processes that characterize distinct ecosystems. Climate change, therefore, is having direct and indirect effects on species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue regardless of emissions mitigation, management strategies to enhance the resilience of ecosystems will become increasingly important. It is essential that management responses to climate change proceed using the best available science despite uncertainties associated with the future path of climate change, the response of ecosystems to climate effects, and the effects of management. Given these uncertainties, management adaptation will require flexibility to reflect our growing understanding of climate change impacts and management effectiveness.

  20. GLOBAL CLIMATE CHANGE: GOVERNMENT OF CANADA

    EPA Science Inventory

    The Government of Canada Climate Change Site was developed to inform Canadians about climate change and how it affects our environment. The site explains what the Government of Canada is doing about climate change and how individuals, communities, businesses, industries, and ever...

  1. GLOBAL CLIMATE CHANGE AND ITS IMPACTS

    EPA Science Inventory

    Outline of talk:
    A. What causes climate change
    B. Possible changes in the world's and the Pacific Northwest's climate
    C. Possible impacts of climate change
    I. The world and U.S.
    II. Oregon
    D. Possible solutions
    E. Discussion

  2. Climate Change Adaptation Among Tibetan Pastoralists: Challenges in Enhancing Local Adaptation Through Policy Support

    NASA Astrophysics Data System (ADS)

    Fu, Yao; Grumbine, R. Edward; Wilkes, Andreas; Wang, Yun; Xu, Jian-Chu; Yang, Yong-Ping

    2012-10-01

    While researchers are aware that a mix of Local Ecological Knowledge (LEK), community-based resource management institutions, and higher-level institutions and policies can facilitate pastoralists' adaptation to climate change, policy makers have been slow to understand these linkages. Two critical issues are to what extent these factors play a role, and how to enhance local adaptation through government support. We investigated these issues through a case study of two pastoral communities on the Tibetan Plateau in China employing an analytical framework to understand local climate adaptation processes. We concluded that LEK and community-based institutions improve adaptation outcomes for Tibetan pastoralists through shaping and mobilizing resource availability to reduce risks. Higher-level institutions and policies contribute by providing resources from outside communities. There are dynamic interrelationships among these factors that can lead to support, conflict, and fragmentation. Government policy could enhance local adaptation through improvement of supportive relationships among these factors. While central government policies allow only limited room for overt integration of local knowledge/institutions, local governments often have some flexibility to buffer conflicts. In addition, government policies to support market-based economic development have greatly benefited adaptation outcomes for pastoralists. Overall, in China, there are still questions over how to create innovative institutions that blend LEK and community-based institutions with government policy making.

  3. Development of Climate Change Adaptation Platform using Spatial Information

    NASA Astrophysics Data System (ADS)

    Lee, J.; Oh, K. Y.; Lee, M. J.; Han, W. J.

    2014-12-01

    Climate change adaptation has attracted growing attention with the recent extreme weather conditions that affect people around the world. More and more countries, including the Republic of Korea, have begun to hatch adaptation plan to resolve these matters of great concern. They all, meanwhile, have mentioned that it should come first to integrate climate information in all analysed areas. That's because climate information is not independently made through one source; that is to say, the climate information is connected one another in a complicated way. That is the reason why we have to promote integrated climate change adaptation platform before setting up climate change adaptation plan. Therefore, the large-scaled project has been actively launched and worked on. To date, we researched 620 literatures and interviewed 51 government organizations. Based on the results of the researches and interviews, we obtained 2,725 impacts about vulnerability assessment information such as Monitoring and Forecasting, Health, Disaster, Agriculture, Forest, Water Management, Ecosystem, Ocean/Fisheries, Industry/Energy. Among 2,725 impacts, 995 impacts are made into a database until now. This database is made up 3 sub categories like Climate-Exposure, Sensitivity, Adaptive capacity, presented by IPCC. Based on the constructed database, vulnerability assessments were carried out in order to evaluate climate change capacity of local governments all over the country. These assessments were conducted by using web-based vulnerability assessment tool which was newly developed through this project. These results have shown that, metropolitan areas like Seoul, Pusan, Inchon, and so on have high risks more than twice than rural areas. Acknowledgements: The authors appreciate the support that this study has received from "Development of integrated model for climate change impact and vulnerability assessment and strengthening the framework for model implementation ", an initiative of the Korea Environmental & Industry Technology Institute .

  4. Evolutionary genomics of Culex pipiens: global and local adaptations associated with climate, life-history traits and anthropogenic factors

    PubMed Central

    Asgharian, Hosseinali; Chang, Peter L.; Lysenkov, Sergey; Scobeyeva, Victoria A.; Reisen, William K.; Nuzhdin, Sergey V.

    2015-01-01

    We present the first genome-wide study of recent evolution in Culex pipiens species complex focusing on the genomic extent, functional targets and likely causes of global and local adaptations. We resequenced pooled samples of six populations of C. pipiens and two populations of the outgroup Culex torrentium. We used principal component analysis to systematically study differential natural selection across populations and developed a phylogenetic scanning method to analyse admixture without haplotype data. We found evidence for the prominent role of geographical distribution in shaping population structure and specifying patterns of genomic selection. Multiple adaptive events, involving genes implicated with autogeny, diapause and insecticide resistance were limited to specific populations. We estimate that about 5–20% of the genes (including several histone genes) and almost half of the annotated pathways were undergoing selective sweeps in each population. The high occurrence of sweeps in non-genic regions and in chromatin remodelling genes indicated the adaptive importance of gene expression changes. We hypothesize that global adaptive processes in the C. pipiens complex are potentially associated with South to North range expansion, requiring adjustments in chromatin conformation. Strong local signature of adaptation and emergence of hybrid bridge vectors necessitate genomic assessment of populations before specifying control agents. PMID:26085592

  5. A need for planned adaptation to climate change in the wine industry

    NASA Astrophysics Data System (ADS)

    Metzger, Marc J.; Rounsevell, Mark D. A.

    2011-09-01

    The diversity of wine production depends on subtle differences in microclimate and is therefore especially sensitive to climate change. A warmer climate will impact directly on wine-grapes through over-ripening, drying out, rising acidity levels, and greater vulnerability to pests and disease, resulting in changes in wine quality (e.g. complexity, balance and structure) or potentially the style of wine that can be produced. The growing scientific evidence for significant climate change in the coming decades means that adaptation will be of critical importance to the multi-billion dollar global wine-industry in general, and to quality wine producers in particular (White et al 2006, 2009; Hertsgaard 2011). Adaptation is understood as an adjustment in natural or human systems in response to actual or expected environmental change, which moderates harm or exploits beneficial opportunities (IPCC 2007). Autonomous adaptation has been an integral part of the 20th century wine industry. Technological advances, changes in consumer demand, and global competition have meant that growers and producers have had to adapt to stay in business. The gradual temperature rise in the 20th Century (0.7 °C globally) has been accommodated successfully by gradual changes in vine management, technological measures, production control, and marketing (White et al 2009), although this has in many cases resulted in the production of bolder, more alcoholic wines (Hertsgaard 2011). In spite of this success, the wine industry is surprisingly conservative when it comes to considering longer term planned adaptation for substantial climate change impacts. A few producers are expanding to new locations at higher altitudes or cooler climates (e.g. Torres is developing new vineyards high in the Pyrenees, and Mouton Rothschild is setting up new vineyards in South America), and the legal and cultural restrictions of Appelation d'Origine Cȏntrollée (AOC) systems are being discussed (White et al 2009). Changes in the AOC regulations would, for example, be imperative if different grape varieties were to be cultivated in response to climate change. Thus far, however, there has been little coordinated action to plan ahead. The third Climate Change and Wine conference organised by the wine industry (April 2011 in Marbella, Spain; www.climatechangeandwine.com), exemplifies this situation since it focused on observed impacts and sustainable production (mitigation), rather than on adaptation to cope with projected change. Awareness and understanding of potential change is crucial in raising adaptive capacity (Metzger et al 2008). Diffenbaugh et al (2011) have recently developed a novel method for communicating potential climate change impacts for the wine industry using climate adaptation wedges. These diagrams summarise projected climate change impacts over time and distinguish the net gain or loss in wine production under a range of adaptation strategies. The climate adaptation wedges form a strong synthesis, illustrating how some losses can be negated with continued autonomous adaptation, but that even with effective planned adaptation the quality of premium wine-grapes is likely to alter. Although the study focused on the western US, the adaptation wedges can be compiled fairly easily for other wine regions, or even individual producers. As such, they can form an important communication tool, but can also help guide longer term strategic planning. Adaptation wedges require careful interpretation and it is probably this interpretation process that will provide the most valuable insights. The climate change impacts in the diagrams are based on observed relationships between climate and wine production, which is assumed to stay unchanged in the future. However, rapid climate change will be a great stimulus for a complex and unprecedented transformation of the industry. Similarly, the potential contributions of the alternative adaptation strategies to cope with climate change are best-estimates given current knowledge, but are open to discussion among experts. As such, the adaptation wedges can form an important component of strategic conversations (cf Van der Heijden 2000) as part of wider foresight analysis regarding the future directions for a region or a producer. However, changes in the wine sector will not be mediated by physical changes in the climate alone. Changes in consumer preferences and the geography of global wine demand will have a strong effect on what wine is produced where. Moreover the method of changing grape varieties as an adaptation to climate change has potential pitfalls since consumers associate wine produced in a region with certain grape varieties. Changing this will change dramatically the content of the wine bottle, and how consumers will react to this is unknown. Regions such as Burgundy are likely to be strongly adversely affected by this issue since the pinot noir grape used to produce most Burgundian red wines is especially sensitive to climate conditions (White et al 2009). Would Burgundy wines continue to command such high prices if they were produced from Syrah rather than Pinot noir? There are clearly challenging times ahead for the wine industry. Greater awareness of the likely changes ahead will benefit the industry at large, while strategic planning will provide individual producers with a comparative advantage over competitors. To cope with projected change, long term planned adaptation strategies deserve greater attention. These include possible geographic shifts in production, adjustments to AOC systems, and marketing strategies to influence consumer demand. Foresight methods, including scenario analysis (Rounsevell & Metzger 2010) and the exploration of climate adaptation wedges (Diffenbaugh et al 2011) are important tools that can help the wine industry in planning for an uncertain future. References Diffenbaugh N S, White M A, Jones G V and Ashfaq M 2011 Climate adaptation wedges: a case study of premium wine in the western United States Environ. Res. Lett. 6 024024 Hertsgaard M 2011 Hot: Living Through the Next Fifty Years on Earth (New York: Houghton Mifflin Harcourt) IPCC 2007 Climate Change 2007: Impacts, Adaption and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed M L Parry, O F Canziani, J P Palutikof, P J van der Linden and C E Hanson (Cambridge: Cambridge University Press) Metzger M J, Schröter D, Leemans R and Cramer W 2008 A spatially explicit and quantitative vulnerability assessment of ecosystem service change in Europe Reg. Environ. Change 8 91-107 Rounsevell M D A and Metzger M J 2010 Developing qualitative scenario storylines for environmental change assessment Wiley Interdisciplinary Reviews: Climate Change 1 606-19 Van der Heijden K 2000 Scenarios: The Art of Strategic Conversation 2nd ed (Chichester: John Wiley & Sons) White M A, Diffenbaugh N S, Jones G V, Pal J S and Giorgi F 2006 Extreme heat reduces and shifts United States premium wine production in the 21st century Proc. Natl Acad. Sci. 103 11217-22 White M A, Whalen P and Jones G V 2009 Land and wine Nature Geoscience 2 82-4

  6. Online participation in climate change adaptation: A case study of agricultural adaptation measures in Northern Italy.

    PubMed

    Bojovic, Dragana; Bonzanigo, Laura; Giupponi, Carlo; Maziotis, Alexandros

    2015-07-01

    The new EU strategy on adaptation to climate change suggests flexible and participatory approaches. Face-to-face contact, although it involves time-consuming procedures with a limited audience, has often been considered the most effective participatory approach. In recent years, however, there has been an increase in the visibility of different citizens' initiatives in the online world, which strengthens the possibility of greater citizen agency. This paper investigates whether the Internet can ensure efficient public participation with meaningful engagement in climate change adaptation. In elucidating issues regarding climate change adaptation, we developed an eParticipation framework to explore adaptation capacity of agriculture to climate change in Northern Italy. Farmers were mobilised using a pre-existing online network. First they took part in an online questionnaire for revealing their perceptions of and reactions to the impacts of ongoing changes in agriculture. We used these results to suggest a portfolio of policy measures and to set evaluation criteria. Farmers then evaluated these policy options, using a multi criteria analysis tool with a simple user-friendly interface. Our results showed that eParticipation is efficient: it supports a rapid data collection, while involving high number of participants. Moreover, we demonstrated that the digital divide is decreasingly an obstacle for using online spaces for public engagement. This research does not present eParticipation as a panacea. Rather, eParticipation was implemented with well-established participatory approaches to both validate the results and, consequently, communicate meaningful messages on local agricultural adaptation practices to regional decision-makers. Feedbacks from the regional decision-makers showed their interest in using eParticipation to improve communication with farmers in the future. We expect that, with further Internet proliferation, eParticipation may allow the inclusion of more representative samples, which would contribute to an informed and legitimate decision-making process. PMID:25874588

  7. Limited evolutionary rescue of locally adapted populations facing climate change

    PubMed Central

    Schiffers, Katja; Bourne, Elizabeth C.; Lavergne, Sbastien; Thuiller, Wilfried; Travis, Justin M. J.

    2013-01-01

    Dispersal is a key determinant of a population's evolutionary potential. It facilitates the propagation of beneficial alleles throughout the distributional range of spatially outspread populations and increases the speed of adaptation. However, when habitat is heterogeneous and individuals are locally adapted, dispersal may, at the same time, reduce fitness through increasing maladaptation. Here, we use a spatially explicit, allelic simulation model to quantify how these equivocal effects of dispersal affect a population's evolutionary response to changing climate. Individuals carry a diploid set of chromosomes, with alleles coding for adaptation to non-climatic environmental conditions and climatic conditions, respectively. Our model results demonstrate that the interplay between gene flow and habitat heterogeneity may decrease effective dispersal and population size to such an extent that substantially reduces the likelihood of evolutionary rescue. Importantly, even when evolutionary rescue saves a population from extinction, its spatial range following climate change may be strongly narrowed, that is, the rescue is only partial. These findings emphasize that neglecting the impact of non-climatic, local adaptation might lead to a considerable overestimation of a population's evolvability under rapid environmental change. PMID:23209165

  8. Climate Change and Expected Impacts on the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Rind, David; Hansen, James E. (Technical Monitor)

    2002-01-01

    How the elements of the global hydrologic cycle may respond to climate change is reviewed, first from a discussion of the physical sensitivity of these elements to changes in temperature, and then from a comparison of observations of hydrologic changes over the past 100 million years. Observations of current changes in the hydrologic cycle are then compared with projected future changes given the prospect of global warming. It is shown that some of the projections come close to matching the estimated hydrologic changes that occurred long ago when the earth was very warm.

  9. Providing Global Change Information for Decision-Making: Capturing and Presenting Provenance

    NASA Technical Reports Server (NTRS)

    Ma, Xiaogang; Fox, Peter; Tilmes, Curt; Jacobs, Katherine; Waple, Anne

    2014-01-01

    Global change information demands access to data sources and well-documented provenance to provide evidence needed to build confidence in scientific conclusions and, in specific applications, to ensure the information's suitability for use in decision-making. A new generation of Web technology, the Semantic Web, provides tools for that purpose. The topic of global change covers changes in the global environment (including alterations in climate, land productivity, oceans or other water resources, atmospheric composition and or chemistry, and ecological systems) that may alter the capacity of the Earth to sustain life and support human systems. Data and findings associated with global change research are of great public, government, and academic concern and are used in policy and decision-making, which makes the provenance of global change information especially important. In addition, since different types of decisions benefit from different types of information, understanding how to capture and present the provenance of global change information is becoming more of an imperative in adaptive planning.

  10. Marine viruses and global climate change.

    PubMed

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'anno, Antonio; Fuhrman, Jed A; Middelburg, Jack J; Noble, Rachel T; Suttle, Curtis A

    2011-11-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface oceans. Changing climate has direct and indirect consequences on marine viruses, including cascading effects on biogeochemical cycles, food webs, and the metabolic balance of the ocean. We discuss here a range of case studies of climate change and the potential consequences on virus function, viral assemblages and virus-host interactions. In turn, marine viruses influence directly and indirectly biogeochemical cycles, carbon sequestration capacity of the oceans and the gas exchange between the ocean surface and the atmosphere. We cannot yet predict whether the viruses will exacerbate or attenuate the magnitude of climate changes on marine ecosystems, but we provide evidence that marine viruses interact actively with the present climate change and are a key biotic component that is able to influence the oceans' feedback on climate change. Long-term and wide spatial-scale studies, and improved knowledge of host-virus dynamics in the world's oceans will permit the incorporation of the viral component into future ocean climate models and increase the accuracy of the predictions of the climate change impacts on the function of the oceans. PMID:21204862

  11. PERSPECTIVE: Climate change, biofuels, and global food security

    NASA Astrophysics Data System (ADS)

    Cassman, Kenneth G.

    2007-03-01

    There is a new urgency to improve the accuracy of predicting climate change impact on crop yields because the balance between food supply and demand is shifting abruptly from surplus to deficit. This reversal is being driven by a rapid rise in petroleum prices and, in response, a massive global expansion of biofuel production from maize, oilseed, and sugar crops. Soon the price of these commodities will be determined by their value as feedstock for biofuel rather than their importance as human food or livestock feed [1]. The expectation that petroleum prices will remain high and supportive government policies in several major crop producing countries are providing strong momentum for continued expansion of biofuel production capacity and the associated pressures on global food supply. Farmers in countries that account for a majority of the world's biofuel crop production will enjoy the promise of markedly higher commodity prices and incomesNote1. In contrast, urban and rural poor in food-importing countries will pay much higher prices for basic food staples and there will be less grain available for humanitarian aid. For example, the developing countries of Africa import about 10 MMt of maize each year; another 3 5 MMt of cereal grains are provided as humanitarian aid (figure 1). In a world where more than 800 million are already undernourished and the demand for crop commodities may soon exceed supply, alleviating hunger will no longer be solely a matter of poverty alleviation and more equitable food distribution, which has been the situation for the past thirty years. Instead, food security will also depend on accelerating the rate of gain in crop yields and food production capacity at both local and global scales. Maize imports and cereal donations as humanitarian aid to the developing countries of Africa Figure 1. Maize imports (yellow bar) and cereal donations as humanitarian aid to the developing countries of Africa, 2001 2003. MMT = million metric tons. Data source: faostat.fao.org/site/395/default.aspx. Given this situation, the question of whether global climate change will have a net positive, negative, or negligible impact on crop yields takes on a larger significance because additional hundreds of millions of people could be at risk of hunger and the window of opportunity for mounting an effective response is closing. To answer this question, Lobell and Field use an innovative empirical/geostatistical approach to estimate the impact of increased temperature since 1980 on crop yields—a period when global mean temperature increased ~0.4 °C [2]. For three major crops—maize, wheat, and barley—there was a significant negative response to increased temperature. For all six crops evaluated (also including rice, soybean, and sorghum), the net impact of climate trends on yield since 1980 was negative. While the approach used by Lobell and Field can be questioned on several pointsNote2, the body of their work represents an ambitious global assessment of recent climate impact on crop yields. Most noteworthy is their conclusion that: the combined effects of increased atmospheric CO2 concentration and climate trends have largely cancelled each other over the past two decades. They contrast their finding with the conclusion of the International Panel on Climate Change (IPCC) that CO2 benefits will exceed temperature-related yield reductions up to a 2 °C increase in mean temperature [3]. It should be noted, however, that the IPCC is coming out with a new assessment to be released in April 2007 (www.ipcc.ch/), and it remains to be seen if this conclusion still holds. The purpose here is not to support or challenge the conclusions of either Lobell and Field or the IPCC, but rather to highlight the fact that there are substantive differences between results obtained from geostatistical assessments based on recent climate trends and actual crop yields versus assessments based on results from controlled experiments in growth chambers, greenhouses, and field enclosures and crop modeling. And while there appears to be good agreement on the predicted impact of atmospheric CO2 enrichment on crop yields across a wide range of studies conducted using different approaches [4], there is less convincing evidence on the impact of warming temperatures. There are three reasons for greater uncertainty about temperature effects. First, it is logistically more difficult to control temperature at elevated levels in studies that allow crops to grow in an 'open-air' environment comparable to field-grown plants. The 'free-air carbon dioxide enrichment' (FACE) systems were specifically designed to avoid such problems for study of CO2 effects and appear to have been largely successful [4]. In contrast, growth chamber, greenhouse, and small-enclosure studies used for temperature-effect experiments have confounding effects associated with differences in humidity, air turbulence, and reduced light intensity that result from the need to more fully enclose experimental units with a transparent barrier to achieve adequate temperature control. Second, unlike CO2 effects, yield response to temperature is often discontinuous. In many crops, pollination fails if temperatures rise above a critical threshold, which can result in dramatic yield reductions due to very small changes in temperature. Also, because climate change is predicted to increase both average temperature and temperature variability, changes in both factors must be evaluated in experiments with realistic growth conditions to fully understand climate change impact on crop yields. Such experiments would require expensive infrastructure with creative new designs—studies that have yet to be conducted, in part due to lack of adequate funding. A third factor is the interactive effect of temperature and plant nitrogen (protein) content on respiration, which is poorly understood. In the absence of such studies, it is sobering to note that one long-term field study in which the effect of temperature on rice yield could be isolated from other factors documented a 15% decrease in yield for every 1 °C increase in mean temperature [5]. The magnitude of this decrease is considerably larger than predictions of yield decreases from higher temperature obtained from crop simulation models. Like the results of Lobell and Field [2], we see a discrepancy between estimates of the effects of warmer temperatures on crop yields based on the relationship between crop yields and temperature under field conditions versus those derived from modeling and experiments conducted under controlled conditions. As we make the historic transition from an extended period of surplus food production to one in which demand for staple crop commodities exceeds supply, there is a vital need to better understand the impact of warming temperatures on current and future crop yields. References [1] Council for Agricultural Science and Technology 2006 Convergence of agriculture and energy: Implications for Research and Policy CAST Commentary QTA 2006-3 (Ames, Iowa: CAST) (www.cast-science.org) [2] Lobell D B and Field C B 2007 Global scale climate-crop yield relationships and the impacts of recent warming Environ. Res. Lett. 2 014002 [3] Intergovernmental Panel on Climate Change, Working Group 2 Climate Change 2001 Impacts, Adaptation and Vulnerability IPCC Working Group 2, Third Assessment (New York: Cambridge University Press) [4] Tubiello F N et al 2006 Crop response to elevated CO2 and world food supply: A comment on 'Food for Thought...' by Long et al, Science 312:1918-1921, 2006 Eur. J. Agron. 26 215 23 [5] Peng S, Huang J, Sheehy J E, Laza R, Visperas R M, Zhong X, Centeno G S, Khush G and Cassman K G 2004 Rice yields decline with higher night temperature from global warming Proc. Natl Acad. Sci. 101 9971 5 Notes Note1 USA (40% of global maize, 56% of global maize exports), Brazil (33% of global sugar, 36% of global sugar exports), Indonesia and Malaysia (81% of global palm oil, 88% of global palm oil exports)—2005 data from FAOSTAT: faostat.fao.org/site/395/default.aspx. Note2 For example, the use of a 'global season' for calculating temperatures is problematic. In the case of soybean, a substantial portion of global soybean production occurs in the southern hemisphere, mostly in Brazil and Argentina, yet the global season for temperature was July August—a time when soybean is not grown in these countries. Likewise the global season for rice was January October, a period in which two consecutive rice crops are grown in tropical and subtropical irrigated systems of Asia—systems that account for a large portion of global rice production. Photo of Kenneth G Cassman Dr Cassman is Director of the Nebraska Center for Energy Science Research at the University of Nebraska and the Heuermann Professor of Agronomy. His work focuses on ensuring local and global food security while improving environmental quality in many of the world's most productive cropping systems. Previous positions include: research agronomist in Brazil, Egypt and the Philippines; faculty member at the University of California-Davis; division/department head at the International Rice Research Institute and the University of Nebraska. He received a PhD from the University of Hawaii's College of Tropical Agriculture (1979) and a BS in Biology from the University of California, San Diego (1975).

  12. Global climate change and infectious diseases.

    PubMed

    Shuman, E K

    2011-01-01

    Climate change is occurring as a result of warming of the earth's atmosphere due to human activity generating excess amounts of greenhouse gases. Because of its potential impact on the hydrologic cycle and severe weather events, climate change is expected to have an enormous effect on human health, including on the burden and distribution of many infectious diseases. The infectious diseases that will be most affected by climate change include those that are spread by insect vectors and by contaminated water. The burden of adverse health effects due to these infectious diseases will fall primarily on developing countries, while it is the developed countries that are primarily responsible for climate change. It is up to governments and individuals to take the lead in halting climate change, and we must increase our understanding of the ecology of infectious diseases in order to protect vulnerable populations. PMID:23022814

  13. European network infrastructures of observatories for terrestrial Global Change research

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Bogena, H.; Lehning, M.

    2009-04-01

    The earth's climate is significantly changing (e.g. IPCC, 2007) and thus directly affecting the terrestrial systems. The number and intensity hydrological extremes, such as floods and droughts, are continually increasing, resulting in major economical and social impacts. Furthermore, the land cover in Europe has been modified fundamentally by conversions for agriculture, forest and for other purposes such as industrialisation and urbanisation. Additionally, water resources are more than ever used for human development, especially as a key resource for agricultural and industrial activities. As a special case, the mountains of the world are of significant importance in terms of water resources supply, biodiversity, economy, agriculture, traffic and recreation but particularly vulnerable to environmental change. The Alps are unique because of the pronounced small scale variability they contain, the high population density they support and their central position in Europe. The Alps build a single coherent physical and natural environment, artificially cut by national borders. The scientific community and governmental bodies have responded to these environmental changes by performing dedicated experiments and by establishing environmental research networks to monitor, analyse and predict the impact of Global Change on different terrestrial systems of the Earths' environment. Several European network infrastructures for terrestrial Global Change research are presently immerging or upgrading, such as ICOS, ANAEE, LifeWatch or LTER-Europe. However, the strongest existing networks are still operating on a regional or national level and the historical growth of such networks resulted in a very heterogeneous landscape of observation networks. We propose therefore the establishment of two complementary networks: The NetwOrk of Hydrological observAtories, NOHA. NOHA aims to promote the sustainable management of water resources in Europe, to support the prediction of hydrological system changes, and to develop and implement tools and technologies for monitoring, prevention and mitigation of environmental risks and pressures. In addition, NOHA will provide long-term statistical series of hydrological state variables and fluxes for the analysis and prognosis of Global Change consequences using integrated model systems. These data will support the development and establishment of efficient prevention, mitigation and adaptation strategies (E.g. EU-Water Framework Directive) and spur the development and validation of hydrological theories and models. The second network, ALPS, - the Alpine Observing System - will create an unique infrastructure for environmental and climate research and observation for the whole Alpine region, providing a common platform for the benefit of the society in Europe as a whole. The initiative will build on existing infrastructure in the participating countries and on new and emerging technology, allowing an unprecedented coverage of observation systems at affordable cost. ALPS will create a new collaboration between scientists, engineers, monitoring agencies, public and decision makers, with the aim to gain an integrated understanding of complex environmental systems. The ALPS effort will be structured along three major axes: (i) harmonize and strengthen the backbone of permanent measurement infrastructures and complement these with dense deployments of intelligent networks, to improve the recording of environmental parameters overcoming disciplinary and national borders, (ii) link the main data centres to create a distributed cyber-infrastructure with the final aim to enable effective data access and retrieval to all science and society users, and (iii) invest in data assimilation and exploitation toward scientific and practical results in particular with respect to dealing with extreme events and natural hazards. In this presentation, we will focus on the motivation, the concept and the scientific and organizational challenges of ALPS and NOHA.

  14. Beneath the surface of global change: Impacts of climate change on groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global change encompasses changes in the characteristics of inter-related climate variables in space and time, and derived changes in terrestrial processes. As such, projected global change includes groundwater systems. Here, groundwater is defined as all subsurface water including soil water, dee...

  15. Earth observations and global change decision making, 1990: A national partnership. Vol. 2

    SciTech Connect

    Ginsberg, I.W.; Angelo, J.A. Jr.

    1991-01-01

    Papers are presented on multispectral sensor technology to monitor global change, the global change master directory, application of the dynamic systems-engineering process to global change initiative data systems, and global change and biodiversity loss. Also considered are rational guidelines for national and international decision about global warming, and the dissemination of global change research data available to educators.

  16. Systems approaches in global change and biogeochemistry research

    PubMed Central

    Smith, Pete; Albanito, Fabrizio; Bell, Madeleine; Bellarby, Jessica; Blagodatskiy, Sergey; Datta, Arindam; Dondini, Marta; Fitton, Nuala; Flynn, Helen; Hastings, Astley; Hillier, Jon; Jones, Edward O.; Kuhnert, Matthias; Nayak, Dali R.; Pogson, Mark; Richards, Mark; Sozanska-Stanton, Gosia; Wang, Shifeng; Yeluripati, Jagadeesh B.; Bottoms, Emily; Brown, Chris; Farmer, Jenny; Feliciano, Diana; Hao, Cui; Robertson, Andy; Vetter, Sylvia; Wong, Hon Man; Smith, Jo

    2012-01-01

    Systems approaches have great potential for application in predictive ecology. In this paper, we present a range of examples, where systems approaches are being developed and applied at a range of scales in the field of global change and biogeochemical cycling. Systems approaches range from Bayesian calibration techniques at plot scale, through data assimilation methods at regional to continental scales, to multi-disciplinary numerical model applications at country to global scales. We provide examples from a range of studies and show how these approaches are being used to address current topics in global change and biogeochemical research, such as the interaction between carbon and nitrogen cycles, terrestrial carbon feedbacks to climate change and the attribution of observed global changes to various drivers of change. We examine how transferable the methods and techniques might be to other areas of ecosystem science and ecology. PMID:22144393

  17. Coastal wetlands and global change: overview

    USGS Publications Warehouse

    Guntenspergen, G.R.; Vairin, B.; Burkett, V.R.

    1997-01-01

    The potential impacts of climate change are of great practical concern to those interested in coastal wetland resources. Among the areas of greatest risk in the United States are low-lying coastal habitats with easily eroded substrates which occur along the northern Gulf of Mexico and southeast Atlantic coasts. The Intergovernmental Panel on Climate Change (IPCC) and the World Meteorological Organization (WMO) have identified coastal wetlands as ecosystems most vulnerable to direct, large-scale impacts of climate change, primarily because of their sensitivity to increases in sea-level rise.

  18. Thermohaline circulations and global climate change. Final report

    SciTech Connect

    Hanson, H.P.

    1996-10-01

    This report discusses results from the project entitled Thermohaline Circulations and Global Climate Change. Results are discussed in three sections related to the development of the Miami Isopycnic Coordinate Ocean Model (MICOM), surface forcing of the ocean by the atmosphere, and experiments with the MICOM related to the problem of the ocean`s response to global climate change. It will require the use of a global, coupled ocean-atmospheric climate model to quantify the feedbacks between ocean and atmosphere associated with climate changes. The results presented here do provide guidance for such studies in the future.

  19. Sensorimotor adaptation changes the neural coding of somatosensory stimuli.

    PubMed

    Nasir, Sazzad M; Darainy, Mohammad; Ostry, David J

    2013-04-01

    Motor learning is reflected in changes to the brain's functional organization as a result of experience. We show here that these changes are not limited to motor areas of the brain and indeed that motor learning also changes sensory systems. We test for plasticity in sensory systems using somatosensory evoked potentials (SEPs). A robotic device is used to elicit somatosensory inputs by displacing the arm in the direction of applied force during learning. We observe that following learning there are short latency changes to the response in somatosensory areas of the brain that are reliably correlated with the magnitude of motor learning: subjects who learn more show greater changes in SEP magnitude. The effects we observe are tied to motor learning. When the limb is displaced passively, such that subjects experience similar movements but without experiencing learning, no changes in the evoked response are observed. Sensorimotor adaptation thus alters the neural coding of somatosensory stimuli. PMID:23343897

  20. Modeling soil processes for adapting agricultural systems to climate variability and change

    NASA Astrophysics Data System (ADS)

    Basso, B.

    2014-12-01

    Climate change, drought, and agricultural intensification are increasing the demand for enhanced resource use efficiency (water, nitrogen and radiation). There is a global consensus between climate and agricultural scientists about the need to quantify the likely impacts of climate change on crop yields due to their significant consequences on food prices as well as the global economy. Crop models have been extensively tested for yields, but their validation for soil water balance, and carbon and nitrogen cycling in agricultural systems has been limited. The objective of this research is to illustrate the importance of modeling soil processes correctly to identify management strategy that allow cropping systems to adapt to climate variability and change. Results from the first phase of the AgMIP soil and crop rotation initiative will also be discussed.

  1. Long-term adaptation to change in implicit contextual learning.

    PubMed

    Zellin, Martina; von Mhlenen, Adrian; Mller, Hermann J; Conci, Markus

    2014-08-01

    The visual world consists of spatial regularities that are acquired through experience in order to guide attentional orienting. For instance, in visual search, detection of a target is faster when a layout of nontarget items is encountered repeatedly, suggesting that learned contextual associations can guide attention (contextual cuing). However, scene layouts sometimes change, requiring observers to adapt previous memory representations. Here, we investigated the long-term dynamics of contextual adaptation after a permanent change of the target location. We observed fast and reliable learning of initial context-target associations after just three repetitions. However, adaptation of acquired contextual representations to relocated targets was slow and effortful, requiring 3 days of training with overall 80 repetitions. A final test 1 week later revealed equivalent effects of contextual cuing for both target locations, and these were comparable to the effects observed on day 1. That is, observers learned both initial target locations and relocated targets, given extensive training combined with extended periods of consolidation. Thus, while implicit contextual learning efficiently extracts statistical regularities of our environment at first, it is rather insensitive to change in the longer term, especially when subtle changes in context-target associations need to be acquired. PMID:24395095

  2. Adaptive strategies to climate change in Southern Malawi

    NASA Astrophysics Data System (ADS)

    Chidanti-Malunga, J.

    Climate change poses a big challenge to rural livelihoods in the Shire Valley area of Southern Malawi, where communities have depended almost entirely on rain-fed agriculture for generations. The Shire Valley area comprises of low-altitude dambo areas and uplands which have been the main agricultural areas. Since early to mid 1980s, the uplands have experienced prolonged droughts and poor rainfall distribution, while the dambos have experienced recurrent seasonal floods. This study assessed some of the adaptive strategies exercised by small-scale rural farmers in response to climate change in the Shire Valley. The methodology used in collecting information includes group discussions, household surveys in the area, secondary data, and field observations. The results show that small-scale rural farmers exercise a number of adaptive strategies in response to climate change. These adaptive strategies include: increased use of water resources for small-scale irrigation or wetland farming, mostly using simple delivery techniques; increased management of residual moisture; and increased alternative sources of income such as fishing and crop diversity. It was also observed that government promoted the use of portable motorized pumps for small-scale irrigation in order to mitigate the effects of climate change. However, these external interventions were not fully adopted; instead the farmers preferred local interventions which mostly had indigenous elements.

  3. GLOBALLY ADAPTIVE QUANTILE REGRESSION WITH ULTRA-HIGH DIMENSIONAL DATA

    PubMed Central

    Zheng, Qi; Peng, Limin; He, Xuming

    2015-01-01

    Quantile regression has become a valuable tool to analyze heterogeneous covaraite-response associations that are often encountered in practice. The development of quantile regression methodology for high dimensional covariates primarily focuses on examination of model sparsity at a single or multiple quantile levels, which are typically prespecified ad hoc by the users. The resulting models may be sensitive to the specific choices of the quantile levels, leading to difficulties in interpretation and erosion of confidence in the results. In this article, we propose a new penalization framework for quantile regression in the high dimensional setting. We employ adaptive L1 penalties, and more importantly, propose a uniform selector of the tuning parameter for a set of quantile levels to avoid some of the potential problems with model selection at individual quantile levels. Our proposed approach achieves consistent shrinkage of regression quantile estimates across a continuous range of quantiles levels, enhancing the flexibility and robustness of the existing penalized quantile regression methods. Our theoretical results include the oracle rate of uniform convergence and weak convergence of the parameter estimators. We also use numerical studies to confirm our theoretical findings and illustrate the practical utility of our proposal. PMID:26604424

  4. Demographic aspects of climate change mitigation and adaptation.

    PubMed

    Lutz, Wolfgang; Striessnig, Erich

    2015-01-01

    This paper addresses the contribution of changes in population size and structures to greenhouse gas emissions and to the capacity to adapt to climate change. The paper goes beyond the conventional focus on the changing composition by age and sex. It does so by addressing explicitly the changing composition of the population by level of educational attainment, taking into account new evidence about the effect of educational attainment in reducing significantly the vulnerability of populations to climatic challenges. This evidence, which has inspired a new generation of socio-economic climate change scenarios, is summarized. While the earlier IPCC-SRES (Intergovernmental Panel on Climate Change-Special Report on Emissions Scenarios) scenarios only included alternative trajectories for total population size (treating population essentially as a scaling parameter), the Shared Socio-economic Pathways (SSPs) in the new scenarios were designed to capture the socio-economic challenges to climate change mitigation and adaptation, and include full age, sex, and education details for all countries. PMID:25912918

  5. Creating a New Model for Mainstreaming Climate Change Adaptation for Critical Infrastructure: The New York City Climate Change Adaptation Task Force and the NYC Panel on Climate Change

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Solecki, W. D.; Freed, A. M.

    2008-12-01

    The New York City Climate Change Adaptation Task Force, launched in August 2008, aims to secure the city's critical infrastructure against rising seas, higher temperatures and fluctuating water supplies projected to result from climate change. The Climate Change Adaptation Task Force is part of PlaNYC, the city's long- term sustainability plan, and is composed of over 30 city and state agencies, public authorities and companies that operate the region's roads, bridges, tunnels, mass transit, and water, sewer, energy and telecommunications systems - all with critical infrastructure identified as vulnerable. It is one of the most comprehensive adaptation efforts yet launched by an urban region. To guide the effort, Mayor Michael Bloomberg has formed the New York City Panel on Climate Change (NPCC), modeled on the Intergovernmental Panel on Climate Change (IPCC). Experts on the panel include climatologists, sea-level rise specialists, adaptation experts, and engineers, as well as representatives from the insurance and legal sectors. The NPCC is developing planning tools for use by the Task Force members that provide information about climate risks, adaptation and risk assessment, prioritization frameworks, and climate protection levels. The advisory panel is supplying climate change projections, helping to identify at- risk infrastructure, and assisting the Task Force in developing adaptation strategies and guidelines for design of new structures. The NPCC will also publish an assessment report in 2009 that will serve as the foundation for climate change adaptation in the New York City region, similar to the IPCC reports. Issues that the Climate Change Adaptation Task Force and the NPCC are addressing include decision- making under climate change uncertainty, effective ways for expert knowledge to be incorporated into public actions, and strategies for maintaining consistent and effective attention to long-term climate change even as municipal governments cycle through their administrations.

  6. Radar altimetry and global climatic change

    SciTech Connect

    Dobson, E.B.; Monaldo, F.M.; Porter, D.L.; Robinson, A.R.; Kilgus, C.C.; Goldhirsh, J.; Glenn, S.M. Harvard Univ., Cambridge, MA Rutgers Univ., New Brunswick, NJ )

    1992-09-01

    The use of satellite radar altimetry for monitoring global climatic variables is examined in the context of the altimeter for the Geosat Follow-On program. The requirements of studying climate and ocean circulation are described for the particular case of the North Atlantic, and the use of spaceborne altimetry is discussed for three measurement types. Altimeters measure sea-surface height and the ice edge to give data on mesoscale variability and circulation, interannual variability, and air-sea interactions. The altimeters for the Geosat program are expected to include orbit-determination systems for removal of the orbital signature and a radiometer for measuring water vapor. The altimeters are expected to be useful in studying ocean circulation and climate, and existing data support in situ measurements. Spaceborne radar altimetry can provide important data for understanding CO[sub 2] uptake, biogeochemical fluxes, and the thermocline conveyor belt. 30 refs.

  7. Impacts of climate change on the global forest sector

    USGS Publications Warehouse

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors that strongly influence the effects of climate change on the global forest sector.

  8. Watershed Conservation, Groundwater Management, and Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Roumasset, J.; Burnett, K.; Wada, C.

    2009-12-01

    Sustainability science is transdisciplinary, organizing research to deliver meaningful and practical contributions to critical issues of resource management. As yet, however, sustainability science has not been integrated with the policy sciences. We provide a step towards integration by providing an integrated model of optimal groundwater management and investment in watershed conservation. The joint optimization problem is solved under alternative forecasts of the changing rainfall distribution for the Koolau Watershed in Oahu, Hawaii. Optimal groundwater management is solved using a simplified one-dimensional model of the groundwater aquifer for analytical tractability. For a constant aquifer recharge, the model solves for the optimal trajectories of water extraction up to the desalination steady state and an incentive compatible pricing scheme. The Koolau Watershed is currently being degraded, however, by invasive plants such as Miconia calvescens and feral animals, especially wild pigs. Runoff and erosion have increased and groundwater recharge is at risk. The Koolau Partnership, a coalition of private owners, the State Department of Land and Natural Resources have proposed a $5 million (present value) conservation plan that promises to halt further losses of recharge. We compare this to the enhanced present value of the aquifer, showing the benefits are an order of magnitude greater than the costs. If conservation is done in the absence of efficient groundwater management, however, more than 40% of the potential benefits would be wasted by under-pricing and overconsumption. We require an estimate of the rainfall-generating distribution and how that distribution is changing over time. We obtain these from statistical downsizing of IPCC climate models. Despite the finding that global warming will increase precipitation for most of the world, the opposite is forecast for Hawaii. A University of Hawaii study finds that the most likely precipitation scenario is a 5-10% reduction in wet season mean precipitation and a 5% increase during the dry season by the end of the 21st century. These trends will be used to condition the time series analysis through Bayesian updating. The resulting distributions, conditioned for seasonality and long-run climate change, will be used to recursively simulate daily rainfalls, thereby allowing for serial correlation and forming a basis for the watershed model to recursively determine components of the water balance equation. The methodology will allow us to generate different sequences of rainfall from the estimated distribution and the corresponding recharge functions. These in turn are used as the basis of optimizing groundwater management under both the watershed conservation program and no conservation. We calculate how much adaptation via joint optimization of watershed conservation and groundwater management decreases the damages from declining precipitation. Inasmuch as groundwater scarcity increases with the forecasted climate change, even under optimal groundwater management, the value of watershed conservation also increases.

  9. Climate change and Public health: vulnerability, impacts, and adaptation

    NASA Astrophysics Data System (ADS)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change on public health and identify appropriate adaptation strategies. Several studies have evaluated the impact of climate change on health, which have included evaluating the current associations between the recent changes in climate, and the evidence base analysis of current, as well as projecting the future impacts of climate change on health. This study will document the use of building an integrated approach for sustainable management of climate, environmental, health surveillance and epidemiological data that will support the assessment of vulnerability, impact and adaption to climate change.

  10. Children in Psychodynamic Psychotherapy: Changes in Global Functioning

    ERIC Educational Resources Information Center

    Odhammar, Fredrik; Sundin, Eva C.; Jonson, Mattias; Carlberg, Gunnar

    2011-01-01

    This study was part of the Erica Process and Outcome Study. The aim was to investigate if children's global functioning improves after psychodynamic psychotherapy. Variables that may predict changes in global functioning were examined both statistically and qualitatively, for example, the child's age and gender; diagnosis and comorbidity;

  11. Children in Psychodynamic Psychotherapy: Changes in Global Functioning

    ERIC Educational Resources Information Center

    Odhammar, Fredrik; Sundin, Eva C.; Jonson, Mattias; Carlberg, Gunnar

    2011-01-01

    This study was part of the Erica Process and Outcome Study. The aim was to investigate if children's global functioning improves after psychodynamic psychotherapy. Variables that may predict changes in global functioning were examined both statistically and qualitatively, for example, the child's age and gender; diagnosis and comorbidity;…

  12. Global food security under climate change

    PubMed Central

    Schmidhuber, Josef; Tubiello, Francesco N.

    2007-01-01

    This article reviews the potential impacts of climate change on food security. It is found that of the four main elements of food security, i.e., availability, stability, utilization, and access, only the first is routinely addressed in simulation studies. To this end, published results indicate that the impacts of climate change are significant, however, with a wide projected range (between 5 million and 170 million additional people at risk of hunger by 2080) strongly depending on assumed socio-economic development. The likely impacts of climate change on the other important dimensions of food security are discussed qualitatively, indicating the potential for further negative impacts beyond those currently assessed with models. Finally, strengths and weaknesses of current assessment studies are discussed, suggesting improvements and proposing avenues for new analyses. PMID:18077404

  13. International Peer Collaboration to Learn about Global Climate Changes

    ERIC Educational Resources Information Center

    Korsager, Majken; Slotta, James D.

    2015-01-01

    Climate change is not local; it is global. This means that many environmental issues related to climate change are not geographically limited and hence concern humans in more than one location. There is a growing body of research indicating that today's increased climate change is caused by human activities and our modern lifestyle. Consequently,…

  14. Assessing Elementary Science Methods Students' Understanding about Global Climate Change

    ERIC Educational Resources Information Center

    Lambert, Julie L.; Lindgren, Joan; Bleicher, Robert

    2012-01-01

    Global climate change, referred to as climate change in this paper, has become an important planetary issue, and given that K-12 students have numerous alternative conceptions or lack of prior knowledge, it is critical that teachers have an understanding of the fundamental science underlying climate change. Teachers need to understand the natural…

  15. Assessing Elementary Science Methods Students' Understanding about Global Climate Change

    ERIC Educational Resources Information Center

    Lambert, Julie L.; Lindgren, Joan; Bleicher, Robert

    2012-01-01

    Global climate change, referred to as climate change in this paper, has become an important planetary issue, and given that K-12 students have numerous alternative conceptions or lack of prior knowledge, it is critical that teachers have an understanding of the fundamental science underlying climate change. Teachers need to understand the natural

  16. Trend survey of the global environment adaptation type industry technology

    NASA Astrophysics Data System (ADS)

    1992-03-01

    A global CO2 recycling system which combines utilization of natural energy and CO2 recovered from combustion of fossil fuel is studied. In the model, CO2 recovered at the place of energy demand is transported to the place where energy is produced, and from the CO2 fuels are synthesized by use of solar energy and transported to the place of energy demand. Facilities worth a large amount of money are required to transmit electric power generated by the photovoltaic power generation in the desert to the fuel synthesizing plant. Therefore, production of electrolytic hydrogen by the on-site power generation and transport by pipe may be considered. As a synthetic fuel being sent back by ocean transport, methanol is considered, and synthetic methane (LNG) can also be a candidate. CO2 is recovered as liquid carbon dioxide. Possibility of CO2 recycling is dependent on development of the desert solar base, as well as depletion of fossil fuel and price increase, CO2 penalty. It has still been difficult to say which of the fuel synthesis, CO2 tanker or securing of the solar base becomes a bottleneck. Entry of recycling fuels to the market will be possible in proportion to restrictions on fossil fuels, and evaluation of the system depends almost on the rate of energy arriving from the energy-producing region.

  17. Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Sohn, Andrew

    1996-01-01

    Dynamic mesh adaption on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load imbalance among processors on a parallel machine. This paper describes the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution cost is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35% of the mesh is randomly adapted. For large-scale scientific computations, our load balancing strategy gives almost a sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remapper yields processor assignments that are less than 3% off the optimal solutions but requires only 1% of the computational time.

  18. Global Load Balancing with Parallel Mesh Adaption on Distributed-Memory Systems

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Oliker, Leonid; Sohn, Andrew

    1996-01-01

    Dynamic mesh adaptation on unstructured grids is a powerful tool for efficiently computing unsteady problems to resolve solution features of interest. Unfortunately, this causes load inbalances among processors on a parallel machine. This paper described the parallel implementation of a tetrahedral mesh adaption scheme and a new global load balancing method. A heuristic remapping algorithm is presented that assigns partitions to processors such that the redistribution coast is minimized. Results indicate that the parallel performance of the mesh adaption code depends on the nature of the adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35 percent of the mesh is randomly adapted. For large scale scientific computations, our load balancing strategy gives an almost sixfold reduction in solver execution times over non-balanced loads. Furthermore, our heuristic remappier yields processor assignments that are less than 3 percent of the optimal solutions, but requires only 1 percent of the computational time.

  19. A SUMMARY OF NHEERL ECOLOGICAL RESEARCH ON GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    The purpose of this document is to review ecological research conducted by scientists at the National Health and Environmental Research Laboratory (NHEERL) under the Environmental Protection Agency's (EPA) contribution to the US Global Change Research Program (USGCRP). The inten...

  20. Interagency working group on data management for global change

    SciTech Connect

    Barton, G.

    1992-12-31

    This article describes the Interagency Working Group on Data Management for Global Change, organized in 1987. Approaches of the Group to data management problems are given along with its accomplishments.

  1. Examining Long-Term Global Climate Change on the Web.

    ERIC Educational Resources Information Center

    Huntoon, Jacqueline E.; Ridky, Robert K.

    2002-01-01

    Describes a web-based, inquiry-oriented activity that enables students to examine long-term global climate change. Supports instruction in other topics such as population growth. (Contains 34 references.) (DDR)

  2. Twenty-Five Years of Interdisciplinary Global Change Science

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.; Moss, Richard

    2014-12-01

    An interdisciplinary approach to global change research is required for scientific advances that are both fundamental and relevant to real-world problems. The Aspen Global Change Institute (AGCI), under the leadership of director John Katzenberger, has provided global leadership for such interdisciplinary science over the past 25 years. From its first workshop, AGCI has brought together physical and social scientists researching the drivers of change, Earth system response, natural and human system impacts, and options for risk management. The sessions are small (usually around 30 participants), held in a retreat-like setting (recently in a tent near a stream), and long enough (a week or more) to allow communication, reflection, and planning. Landmark AGCI science sessions have frequently set the course of future global change research.

  3. Temperature, global climate change and food security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accelerated climate change is expected to have a significant, but variable impact on the worlds major cropping zones. Crops will experience increasingly warmer, drier and more variable growing conditions in the temperate to subtropical latitudes towards 2050 and beyond. Short-term (1-5 day) spikes ...

  4. Technological Change, Globalization, and the Community College

    ERIC Educational Resources Information Center

    Romano, Richard M.; Dellow, Donald A.

    2009-01-01

    In early nineteenth-century England, workers now known as Luddites roamed the countryside destroying machinery that they saw as creating unemployment and upsetting their traditional way of life. They believed that the growing mechanization of production, what people would now call technological change, and the expanding volume of trade ushered in

  5. Global lightning activity and climate change. Ph.D. Thesis

    SciTech Connect

    Price, C.G.

    1993-01-01

    The relationship between global lightning frequencies and global climate change is examined in this thesis. In order to study global impacts of climate change, global climate models or General Circulations Models (GCM`s) need to be utilized. Since these models have coarse resolutions many atmospheric phenomena that occur at subgrid scales, such as lightning, need to be parameterized whenever possible. The first chapter introduces a simple parameterization used to simulate total (intracloud and cloud-to-ground) lightning frequencies. The parameterization uses convective cloud top height to approximate lightning frequencies. The second chapter deals with a parameterization for simulating cloud-to-ground (CG) lightning around the globe. This parameterization uses the thickness of the cold cloud sector in thunderstorms (0 C to cloud top) to calculate the proportion of CG flashes in a particular thunderstorm. The third chapter deals with the modelling of lightning in the Goddard Institute for Space Studies (GISS) GCM. This chapter presents results from the model`s control run. The fourth chapter presents two climate change scenarios. One for a climate where the solar constant is reduced by 2% (5.9 C global cooling), and one for a climate with twice the present concentration of CO2 in the atmosphere (4.2 C global warming). The results imply a 24% / 30% decrease/increase in global lightning frequencies for the cooler/warmer climate. The fifth chapter considers the possibility of using the above findings to monitor future global warming. The results show that the earth`s ionospheric potential, which is regulated by global thunderstorm activity, could possibly supply valuable information regarding global surface temperature fluctuations. The sixth and final chapter looks at the implications of changes in both lightning frequencies and the hydrological cycle, as a result of global warming, on natural forest fires.

  6. Global environmental changes: setting priorities for Latin American coastal habitats.

    PubMed

    Turra, Alexander; Crquer, Aldo; Carranza, Alvar; Mansilla, Andrs; Areces, Arsenio J; Werlinger, Camilo; Martnez-Bayn, Carlos; Nassar, Cristina Aparecida Gomes; Plastino, Estela; Schwindt, Evangelina; Scarabino, Fabrizio; Chow, Fungyi; Figueroa, Felix Lopes; Berchez, Flvio; Hall-Spencer, Jason M; Soto, Luis A; Buckeridge, Marcos Silveira; Copertino, Margareth S; de Szchy, Maria Tereza Menezes; Ghilardi-Lopes, Natalia Pirani; Horta, Paulo; Coutinho, Ricardo; Fraschetti, Simonetta; Leo, Zelinda Margarida de Andrade Nery

    2013-07-01

    As the effects of the Global Climate Changes on the costal regions of Central and South Americas advance, there is proportionally little research being made to understand such impacts. This commentary puts forward a series of propositions of strategies to improve performance of Central and South American science and policy making in order to cope with the future impacts of the Global Climate Changes in their coastal habitats. PMID:23504820

  7. Global climate change and vector-borne diseases

    USGS Publications Warehouse

    Ginsberg, H.S.

    2002-01-01

    Global warming will have different effects on different diseases because of the complex and idiosynchratic interactions between vectors, hosts, and pathogens that influence transmission dynamics of each pathogen. Human activities, including urbanization, rapid global travel, and vector management, have profound effects on disease transmission that can operate on more rapid time scales than does global climate change. The general concern about global warming encouraging the spread of tropical diseases is legitimate, but the effects vary among diseases, and the ecological implications are difficult to predict.

  8. Sensitivity of global wildfire occurrences to various factors in the context of global change

    NASA Astrophysics Data System (ADS)

    Huang, Yaoxian; Wu, Shiliang; Kaplan, Jed O.

    2015-11-01

    The occurrence of wildfires is very sensitive to fire meteorology, vegetation type and coverage. We investigate the potential impacts of global change (including changes in climate, land use/land cover, and population density) on wildfire frequencies over the period of 2000-2050. We account for the impacts associated with the changes in fire meteorology (such as temperature, precipitation, and relative humidity), vegetation density, as well as lightning and anthropogenic ignitions. Fire frequencies under the 2050 conditions are projected to increase by approximately 27% globally relative to the 2000 levels. Significant increases in fire occurrence are calculated over the Amazon area, Australia and Central Russia, while Southeast Africa shows a large decreasing trend due to significant increases in land use and population. Changes in fire meteorology driven by 2000-2050 climate change are found to increase the global annual total fires by around 19%. Modest increases (∼4%) in fire frequency at tropical regions are calculated in response to climate-driven changes in lightning activities, relative to the present-day levels. Changes in land cover by 2050 driven by climate change and increasing CO2 fertilization are expected to increase the global wildfire occurrences by 15% relative to the 2000 conditions while the 2000-2050 anthropogenic land use changes show little effects on global wildfire frequency. The 2000-2050 changes in global population are projected to reduce the total wildfires by about 7%. In general, changes in future fire meteorology plays the most important role in enhancing the future global wildfires, followed by land cover, lightning activities and land use while changes in population density exhibits the opposite effects during the period of 2000-2050.

  9. Global Change and the Earth System

    NASA Astrophysics Data System (ADS)

    Pollack, Henry N.

    2004-08-01

    The Earth system in recent years has come to mean the complex interactions of the atmosphere, biosphere, lithosphere and hydrosphere, through an intricate network of feedback loops. This system has operated over geologic time, driven principally by processes with long time scales. Over the lifetime of the solar system, the Sun has slowly become more radiant, and the geography of continents and oceans basins has evolved via plate tectonics. This geography has placed a first-order constraint on the circulation of ocean waters, and thus has strongly influenced regional and global climate. At shorter time scales, the Earth system has been influenced by Milankovitch orbital factors and occasional exogenous events such as bolide impacts. Under these influences the system chugged along for eons, until some few hundred thousand years ago, when one remarkable species evolved: Homo sapiens. As individuals, humans are of course insignificant in shaping the Earth system, but collectively the six billion human occupants of the planet now rival ``natural'' processes in modifying the Earth system. This profound human influence underlies the dubbing of the present epoch of geologic history as the ``Anthropocene.''

  10. Global climate change and the mitigation challenge

    SciTech Connect

    Frank Princiotta

    2009-10-15

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO{sub 2}), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8{sup o}C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO{sub 2} emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5{sup o}C in 2100, the recent annual 3% CO{sub 2} emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. 20 refs., 18 figs., 4 tabs.

  11. Global climate change and the mitigation challenge.

    PubMed

    Princiotta, Frank

    2009-10-01

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO2), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8 degrees C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO2 emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5 degrees C in 2100, the recent annual 3% CO2 emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. PMID:19842327

  12. Assessing Climate Change Adaptation Strategies for Transportation Infrastructure

    NASA Astrophysics Data System (ADS)

    Armstrong, A.; Keller, J.; Meyer, M. D.; Flood, M.

    2011-12-01

    The transportation infrastructure, with long design life of 50 years and more, is susceptible to climate change. This paper describes an approach for assessing climate change adaptation strategies for transportation infrastructure, principally roadways and bridges. It is acknowledged that the affects and timing of climate changes are difficult to anticipate and that planning and design has its own inherent risks that must be considered on top of the uncertainty of climate change. Those conditions notwithstanding, climatologists, planners, and engineers are working on ways to reduce uncertainty and deal with risks in ways that can result in facilities that can provide reasonable levels of service, appropriate to their requirements in ways that are safe, efficient, and cost-effective. This paper first identifies the potential changes in climate and local environmental conditions and impacts that will be of interest to the transportation designer; then discusses the status of climate forecasting, one of the great uncertainties in climate adaptation planning; and finally addresses climate and design risk and suggests approaches to dealing with expected changes. The adaptation strategy must be responsive to future conditions that can be very different than those of the past. Therefore, the paper describes approaches that include allowing for flexibility in designs, developing alternative scenarios and responses, performing sensitivity analysis, incorporating risk assessment / management techniques integrated with climate forecasting and infrastructure design. By utilizing these approaches, transportation facilities can be designed so that they can be expected to meet their requirements without being over designed. Such an approach will also minimize the total life-cycle cost.

  13. Global Climate Change and Ocean Education

    NASA Astrophysics Data System (ADS)

    Spitzer, W.; Anderson, J.

    2011-12-01

    The New England Aquarium, collaborating with other aquariums across the country, is leading a national effort to enable aquariums and related informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine animals, habitats and ecosystems. Our goal is to build on visitors' emotional connection with ocean animals, connect to their deeply held values, help them understand causes and effects of climate change and motivate them to embrace effective solutions. Our objectives are to: (1) Build a national coalition of aquariums and related informal education institutions collaborating on climate change education; (2) Develop an interpretive framework for climate change and the ocean that is scientifically sound, research-based, field tested and evaluated; and (3) Build capacity of aquariums to interpret climate change via training for interpreters, interactive exhibits and activities and communities of practice for ongoing support. Centers of informal learning have the potential to bring important environmental issues to the public by presenting the facts, explaining the science, connecting with existing values and interests, and motivating concern and action. Centers that work with live animals (including aquariums, zoos, nature centers, national parks, national marine sanctuaries, etc.) are unique in that they attract large numbers of people of all ages (over 140 million in the US), have strong connections to the natural, and engage many visitors who may not come with a primary interest in science. Recent research indicates that that the public expects and trusts aquariums, zoos, and museums to communicate solutions to environmental and ocean issues, and to advance ocean conservation, and that climate change is the environmental issue of most concern to the public; Ironically, however, most people do not associate climate change with ocean health, or understand the critical role that the ocean plays in the Earth's climate system. The problem is not simply that the public lacks information. In fact, the problem is often that there is too much information available with much of it complicated and even contradictory. The news media, both print and electronic, tend to exacerbate this by aiming for "balance" even when there is an overwhelming scientific or policy consensus. An additional problem is "reinforcement bias," which tends to lead people to focus on information that supports what they already believe or think they know. Instead, we need an approach that facilitates "meaning-making." A "framing" approach to communication (Frameworks Institute, 2010) supports meaning-making by appealing to strongly held values, providing metaphoric language and models, and illustrating specific applications to real world problems. This approach translates complex science in a way that allows people to examine evidence, make well-informed decisions, and embrace science-based solutions. However, interpreters need specialized training, resources, up-to-date information, and ongoing support to help understand a complex topic such as climate change, its connections to the ocean, and how to relate it to the live animals, habitats and exhibits they interpret.

  14. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system