Sample records for global environment monitoring

  1. Global Atmospheric Monitoring

    ERIC Educational Resources Information Center

    Wallen, Carl C.

    1975-01-01

    The global atmospheric monitoring plans of the World Meteorological Organization are detailed. Single and multipurpose basic monitoring systems and the monitoring of chemical properties are discussed. The relationship of the World Meteorological Organization with the United Nations environment program is discussed. A map of the World…

  2. Stimulating innovation for global monitoring of agriculture and its impact on the environment in support of GEOGLAM

    NASA Astrophysics Data System (ADS)

    Bydekerke, Lieven; Gilliams, Sven; Gobin, Anne

    2015-04-01

    There is an urgent need to ensure food supply for a growing global population. To enable a sustainable growth of agricultural production, effective and timely information is required to support decision making and to improve management of agricultural resources. This requires innovative ways and monitoring methods that will not only improve short-term crop production forecasts, but also allow to assess changes in cultivation practices, agricultural areas, agriculture in general and, its impact on the environment. The G20 launched in June 2011 the "GEO Global Agricultural Monitoring initiative (GEOGLAM), requesting the GEO (Group on Earth Observations) Agricultural Community of Practice to implement GEOGLAM with the main objective to improve crop yield forecasts as an input to the Agricultural Market Information System (AMIS), in order to foster stabilisation of markets and increase transparency on agricultural production. In response to this need, the European Commission decided in 2013 to fund an international partnership to contribute to GEOGLAM and its research agenda. The resulting SIGMA project (Stimulating Innovation for Global Monitoring of Agriculture), a partnership of 23 globally distributed expert organisations, focusses on developing datasets and innovative techniques in support of agricultural monitoring and its impact on the environment in support of GEOGLAM. SIGMA has 3 generic objectives which are: (i) develop and test methods to characterise cropland and assess its changes at various scales; (ii) develop and test methods to assess changes in agricultural production levels; and; (iii) study environmental impacts of agriculture. Firstly, multi-scale remote sensing data sets, in combination with field and other ancillary data, will be used to generate an improved (global) agro-ecological zoning map and crop mask. Secondly, a combination of agro-meteorological models, satellite-based information and long-term time series will be explored to assess crop

  3. Global Monitoring for Environment and Security - Europe's next space initiative takes shape

    NASA Astrophysics Data System (ADS)

    Liebig, Volker; Aschbacher, Josef

    2005-08-01

    At the first Space Council in November 2004, Global Monitoring for Environment and Security (GMES) was proclaimed as the next flagship initiative for space in Europe after Galileo. This underlines that GMES has come a long way since its beginnings in 1998. Initially conceived as a relatively loosely coordinated forum for cooperation among space agencies, GMES today stands on firm ground. The European Commisson has assumed political leadership for GMES, and the European Union's policy priorities have been confirmed. A strong user base has been built up through numerous GMES projects funded since 2001 by ESA and the Commission. Currently ESA is preparing, with its Member States, a firm proposal for the 2005 Ministerial Council to start building up the space infrastructure necessary to sustain operational GMES services in the long term.

  4. The Ocean State Report of the Copernicus Marine Environment Monitoring Service

    NASA Astrophysics Data System (ADS)

    von Schuckmann, Karina

    2017-04-01

    COPERNICUS is the European Earth observation and monitoring programme, which aims to give the European Union autonomous and operational capability in space-based observation facilities (see the Sentinel missions) and in situ (measurements in the atmosphere, in the ocean and on the ground), and to operate six interlinked environmental monitoring services for the oceans, the atmosphere, territorial development, emergency situations, security and climate change. In this context, the Copernicus Marine Environment Monitoring Service provides an open and free access to regular and systematic information about the physical state and dynamics of the ocean and marine ecosystems for the global ocean and six European regional seas. Mercator Ocean, the French center of global ocean analysis and forecast has been entrusted by the EU to implement and operate the Copernicus Marine Service. The first Ocean State Report Copernicus Marine Environment Monitoring Service has been prepared, and is planned to appear at an annual basis (fall each year) as a unique reference for ocean state reporting. This report contains a state-of-the-art value-added synthesis of the ocean state for the global ocean and the European regional seas from the Copernicus Marine Environment Monitoring Service data products and expert analysis. This activity is aiming to reach a wide audience -from the scientific community, over climate and environmental service and agencies, environmental reporting and bodies to the general public. We will give here an overview on the report, highlight main outcomes, and introduce future plans and developments.

  5. The Ocean State Report of the Copernicus Marine Environment Monitoring Service

    NASA Astrophysics Data System (ADS)

    von Schuckmann, K.

    2016-12-01

    COPERNICUS is the European Earth observation and monitoring programme, which aims to give the European Union autonomous and operational capability in space-based observation facilities (see the Sentinel missions) and in situ (measurements in the atmosphere, in the ocean and on the ground), and to operate six interlinked environmental monitoring services for the oceans, the atmosphere, territorial development, emergency situations, security and climate change. In this context, the Copernicus Marine Environment Monitoring Service provides an open and free access to regular and systematic information about the physical state and dynamics of the ocean and marine ecosystems for the global ocean and six European regional seas. Mercator Ocean, the French center of global ocean analysis and forecast has been entrusted by the EU to implement and operate the Copernicus Marine Service. In fall 2016, the first Ocean State Report Copernicus Marine Environment Monitoring Service will be published, and is planned to appear at an annual basis (June each year) as a unique reference for ocean state reporting. This report contains a state-of-the-art value-added synthesis of the ocean state for the global ocean and the European regional seas from the Copernicus Marine Environment Monitoring Service data products and expert analysis. This activity is aiming to reach a wide audience -from the scientific community, over climate and environmental service and agencies, environmental reporting and bodies to the general public. We will give here an overview on the report, highlight main outcomes, and introduce future plans and developments.

  6. Towards a global terrestrial species monitoring program

    USGS Publications Warehouse

    Schmeller, Dirk S.; Julliard, Romain; Bellingham, Peter J.; Böhm, Monika; Brummitt, Neil; Chiarucci, Alessandro; Couvet, Denis; Elmendorf, Sarah; Forsyth, David M.; Moreno, Jaime García; Gregory, Richard D.; Magnusson, William E.; Martin, Laura J.; McGeoch, Melodie A.; Mihoub, Jean-Baptiste; Pereira, Henrique M.; Proença, Vânia; van Swaay, Chris A.M.; Yahara, Tetsukazu; Belnap, Jayne

    2015-01-01

    Introduction: The Convention for Biological Diversity’s (CBD) Strategic Plan for Biodiversity 2011-2020 envisions that “By 2050, biodiversity is valued, conserved, restored and wisely used, maintaining ecosystem services, sustaining a healthy planet and delivering benefits essential for all people.” Although 193 parties have adopted these goals, there is little infrastructure in place to monitor global biodiversity trends. Recent international conservation policy requires such data to be up-to-date, reliable, comparable among sites, relevant, and understandable; as is becoming obvious from the work plan adopted by the Intergovernmental Panel for Biodiversity and Ecosystem Services (IPBES: www.ipbes.net/; http://tinyurl.com/ohdnknq). In order to meet the five strategic goals of the Strategic Plan for Biodiversity 2011-2020 and its 20 accompanying Aichi Targets for 2020 (www.cbd.int/sp/targets/), advances need to be made in coordinating large-scale biodiversity monitoring and linking these with environmental data to develop a comprehensive Global Observation Network, as is the main idea behind GEOSS the Global Earth Observation System of Systems (Christian 2005)...Here we identify ten requirements important for the successful implementation of a global biodiversity monitoring network under the flag of GEO BON and especially a global terrestrial species monitoring program.

  7. (Global natural resource monitoring and assessment)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, V.H.

    1989-10-16

    The traveler participated in a major international forestry conference in Venice, Italy, and gave a presentation on the need for monitoring forests on a worldwide basis and a strategy to do so. She also participated in a working group on ways to promote institutional collaboration for global monitoring. Observations from this conference are summarized with focus on issues relating to Oak Ridge National Laboratory's (ORNL's) Center for Global Environmental Studies. The traveler also discussed the possibility of a joint ORNL-Swiss research program to develop a spatial model of forests.

  8. Integration of Wireless Sensor Networks into Cyberinfrastructure for Monitoring Hawaiian ``Mountain-to-Sea'' Environments

    NASA Astrophysics Data System (ADS)

    Kido, Michael H.; Mundt, Carsten W.; Montgomery, Kevin N.; Asquith, Adam; Goodale, David W.; Kaneshiro, Kenneth Y.

    2008-10-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.

  9. Integration of wireless sensor networks into cyberinfrastructure for monitoring Hawaiian "mountain-to-sea" environments.

    PubMed

    Kido, Michael H; Mundt, Carsten W; Montgomery, Kevin N; Asquith, Adam; Goodale, David W; Kaneshiro, Kenneth Y

    2008-10-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.

  10. Monitoring global vegetation

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Houston, A. G.; Heydorn, R. P.; Botkin, D. B.; Estes, J. E.; Strahler, A. H.

    1981-01-01

    An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth.

  11. On possibilities of using global monitoring in effective prevention of tailings storage facilities failures.

    PubMed

    Stefaniak, Katarzyna; Wróżyńska, Magdalena

    2018-02-01

    Protection of common natural goods is one of the greatest challenges man faces every day. Extracting and processing natural resources such as mineral deposits contributes to the transformation of the natural environment. The number of activities designed to keep balance are undertaken in accordance with the concept of integrated order. One of them is the use of comprehensive systems of tailings storage facility monitoring. Despite the monitoring, system failures still occur. The quantitative aspect of the failures illustrates both the scale of the problem and the quantitative aspect of the consequences of tailings storage facility failures. The paper presents vast possibilities provided by the global monitoring in the effective prevention of these failures. Particular attention is drawn to the potential of using multidirectional monitoring, including technical and environmental monitoring by the example of one of the world's biggest hydrotechnical constructions-Żelazny Most Tailings Storage Facility (TSF), Poland. Analysis of monitoring data allows to take preventive action against construction failures of facility dams, which can have devastating effects on human life and the natural environment.

  12. Environment quality monitoring using ARM processor

    NASA Astrophysics Data System (ADS)

    Vinaya, C. H.; Krishna Thanikanti, Vamsi; Ramasamy, Sudha

    2017-11-01

    This paper of air quality monitoring system describes a model of sensors network to continuously monitoring the environment with low cost developed model. At present time all over the world turned into a great revolution in industrial domain and on the other hand environment get polluting in a dangerous value. There are so many technologies present to reduce the polluting contents but still there is no completely reduction of that pollution. Even there are different methods to monitor the pollution content; these are much costly that not everyone can adapt those methods or devices. Now we are proposing a sensors connected network to monitor the environment continuously and displaying the pollutant gases percentage in air surroundings and can transmit the results to our mobiles by message. The advantage of this system is easy to design, establish at area to monitor, maintenance and most cost effective as well.

  13. The Copernicus Marine Environment Monitoring Service (CMEMS)

    NASA Astrophysics Data System (ADS)

    Le Traon, Pierre-Yves

    2017-04-01

    The oceans provide essential services to society. They regulate climate, they provide food and energy, and many economic activities depend on our seas and oceans. But our oceans and marine ecosystems are under threat. They are impacted by the effects of climate change as well as from other human-induced pressures. More than ever, there is a need to continuously monitor the oceans. This is imperative to understanding and predicting the evolution of our weather and climate. This is also essential for a better and sustainable management of our oceans and seas. The Copernicus Marine Environment Monitoring Service (CMEMS) has been set up to answer these challenges. CMEMS provides a unique monitoring of the global ocean and European seas based on satellite and in situ observations and models. CMEMS monitors past (over the last 30 years) and current marine conditions and provide short-term forecasts. Mercator Ocean was tasked by the EU to implement the service. The organisation is based on a strong European partnership with more than 60 marine operational and research centres in Europe that are involved in the service and its evolution. An overview of CMEMS, its drivers, organization and initial achievements will be given. The essential role of in-situ and satellite upstream observations will be discussed as well as CMEMS Service Evolution Strategy, associated R&D priorities and future scientific challenges.

  14. Review of the Applications of Formosat-2 on Rapidly Responding to Global Disasters and Monitoring Earth Environment

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2009-12-01

    Formosat-2 is the first satellite with high-spatial-resolution sensor deployed in a daily-revisit orbit in the world. Together with its agility of pointing ±45 degree both across and along track, we are able to observe each accessible scene from the same angle under the similar illumination conditions. These characteristics make Formosat-2 an ideal satellite for site surveillance. We developed a Formosat-2 automatic image processing system (F-2 AIPS) that can accurately and rapidly process a large amount of Formosat-2 images to produce the higher levels of products, including rigorous band-to-band coregistration, automatic orthorectification, multi-temporal image coregistration and radiance normalization, and pan-sharpening. This system has been successfully employed to rapidly respond to many international disaster events in the past five years, including flood caused by Typhoon Mindulle (2004), landslide caused by Typhoon Aere (2004), South Asia earthquake and tsunami (2004), Hurricane Katrina (2005), California wildfire (2007), Sichuan Earthquake (2008), Typhoon Kalmaegi (2008), Typhoon Sinlaku (2008), Mountain Ali wildfire (2009), Victoria bushfire in Australia (2009), Honduras earthquake (2009), Typhoon Morakot (2009). This paper reviews the applications of Formosat-2 on rapidly responding to global disasters and monitoring earth environment.

  15. AVHRR-based drought-observing system for monitoring the environment and socioeconomic activities

    NASA Astrophysics Data System (ADS)

    Kogan, F.

    From all natural disaster, drought is the least understandable and the most damaging environmental phenomenon. Although in pre-satellite era, climate data were used for drought monitoring, drought specifics created problems in early drought detection start/end, monitoring its expansion/contraction, intensity and area coverage and the most important, timely estimation of the impacts on the environment and socioeconomic activities. The latest prevented to take prompt measures in mitigating negative consequences of drought for the society. Advances in remote sensing of the past ten years, contributed to the development of comprehensive drought monitoring system and numerous applications, which helped to make decisions for monitoring the environment and predicting sustainable socioeconomic activities. This paper discusses satellite-based land-surface observing system, which provides wells of information used for monitoring such unusual natural disaster as drought. This system was developed from the observations of the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA operational polar-orbiting satellites. The AVHRR data were packed into the Global Vegetation Index (GVI) product, which have served the global community since 1981. The GVI provided reflectances and indices (4 km spacial resolution) every seven days for each 16 km map cell between 75EN and 55ES covering all land ecosystems. The data includes raw and calibrated radiances in the visible, near infrared and infrared spectral bands, processed (with eliminated high frequency noise) radiances, normalized difference vegetation index (NDVI), 20-year climatology, vegetation condition indices and also products, such as vegetation health, drought, vegetation fraction, fire risk etc. In the past ten years, users around the world used this information addressing different issues of drought impacts on socioeconomic activities and responded positively to real time drought information place regularly on the

  16. Long-Term Monitoring of Global Climate Forcings and Feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, J. (Editor); Rossow, W. (Editor); Fung, I. (Editor)

    1993-01-01

    A workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks was held February 3-4, 1992, at NASA's Goddard Institute for Space Studies to discuss the measurements required to interpret long-term global temperature changes, to critique the proposed contributions of a series of small satellites (Climsat), and to identify needed complementary monitoring. The workshop concluded that long-term (several decades) of continuous monitoring of the major climate forcings and feedbacks is essential for understanding long-term climate change.

  17. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

    NASA Astrophysics Data System (ADS)

    Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Carbone, Francesco; Cinnirella, Sergio; Mannarino, Valentino; Landis, Matthew; Ebinghaus, Ralf; Weigelt, Andreas; Brunke, Ernst-Günther; Labuschagne, Casper; Martin, Lynwill; Munthe, John; Wängberg, Ingvar; Artaxo, Paulo; Morais, Fernando; Barbosa, Henrique de Melo Jorge; Brito, Joel; Cairns, Warren; Barbante, Carlo; Diéguez, María del Carmen; Garcia, Patricia Elizabeth; Dommergue, Aurélien; Angot, Helene; Magand, Olivier; Skov, Henrik; Horvat, Milena; Kotnik, Jože; Read, Katie Alana; Mendes Neves, Luis; Gawlik, Bernd Manfred; Sena, Fabrizio; Mashyanov, Nikolay; Obolkin, Vladimir; Wip, Dennis; Feng, Xin Bin; Zhang, Hui; Fu, Xuewu; Ramachandran, Ramesh; Cossa, Daniel; Knoery, Joël; Marusczak, Nicolas; Nerentorp, Michelle; Norstrom, Claus

    2016-09-01

    Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

  18. People and Environment: Understanding Global Relationships.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Discusses impacts of global resources and environment, focusing on food, fisheries, forests, energy, water, and air. Includes graphs, charts, maps, and tables of the current environmental situation; they are suitable for classroom use. Also includes suggested guidelines for implementing a global studies program and an annotated list of resource…

  19. Monitoring the availability of healthy and unhealthy foods and non-alcoholic beverages in community and consumer retail food environments globally.

    PubMed

    Ni Mhurchu, C; Vandevijvere, S; Waterlander, W; Thornton, L E; Kelly, B; Cameron, A J; Snowdon, W; Swinburn, B

    2013-10-01

    Retail food environments are increasingly considered influential in determining dietary behaviours and health outcomes. We reviewed the available evidence on associations between community (type, availability and accessibility of food outlets) and consumer (product availability, prices, promotions and nutritional quality within stores) food environments and dietary outcomes in order to develop an evidence-based framework for monitoring the availability of healthy and unhealthy foods and non-alcoholic beverages in retail food environments. Current evidence is suggestive of an association between community and consumer food environments and dietary outcomes; however, substantial heterogeneity in study designs, methods and measurement tools makes it difficult to draw firm conclusions. The use of standardized tools to monitor local food environments within and across countries may help to validate this relationship. We propose a step-wise framework to monitor and benchmark community and consumer retail food environments that can be used to assess density of healthy and unhealthy food outlets; measure proximity of healthy and unhealthy food outlets to homes/schools; evaluate availability of healthy and unhealthy foods in-store; compare food environments over time and between regions and countries; evaluate compliance with local policies, guidelines or voluntary codes of practice; and determine the impact of changes to retail food environments on health outcomes, such as obesity. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  20. Building capacity in biodiversity monitoring at the global scale

    USGS Publications Warehouse

    Schmeller, Dirk S.; Bohm, Monika; Arvanitidis, Christos; Barber-Meyer, Shannon; Brummitt, Neil; Chandler, Mark; Chatzinikolaou, Eva; Costello, Mark J.; Ding, Hui; García-Moreno, Jaime; Gill, Michael J.; Haase, Peter; Jones, Miranda; Juillard, Romain; Magnusson, William E.; Martin, Corinne S.; McGeoch, Melodie A.; Mihoub, Jean-Baptiste; Pettorelli, Nathalie; Proença, Vânia; Peng, Cui; Regan, Eugenie; Schmiedel, Ute; Simsika, John P.; Weatherdon, Lauren; Waterman, Carly; Xu, Haigen; Belnap, Jayne

    2017-01-01

    Human-driven global change is causing ongoing declines in biodiversity worldwide. In order to address these declines, decision-makers need accurate assessments of the status of and pressures on biodiversity. However, these are heavily constrained by incomplete and uneven spatial, temporal and taxonomic coverage. For instance, data from regions such as Europe and North America are currently used overwhelmingly for large-scale biodiversity assessments due to lesser availability of suitable data from other, more biodiversity-rich, regions. These data-poor regions are often those experiencing the strongest threats to biodiversity, however. There is therefore an urgent need to fill the existing gaps in global biodiversity monitoring. Here, we review current knowledge on best practice in capacity building for biodiversity monitoring and provide an overview of existing means to improve biodiversity data collection considering the different types of biodiversity monitoring data. Our review comprises insights from work in Africa, South America, Polar Regions and Europe; in government-funded, volunteer and citizen-based monitoring in terrestrial, freshwater and marine ecosystems. The key steps to effectively building capacity in biodiversity monitoring are: identifying monitoring questions and aims; identifying the key components, functions, and processes to monitor; identifying the most suitable monitoring methods for these elements, carrying out monitoring activities; managing the resultant data; and interpreting monitoring data. Additionally, biodiversity monitoring should use multiple approaches including extensive and intensive monitoring through volunteers and professional scientists but also harnessing new technologies. Finally, we call on the scientific community to share biodiversity monitoring data, knowledge and tools to ensure the accessibility, interoperability, and reporting of biodiversity data at a global scale.

  1. Teaching about the Global Environment.

    ERIC Educational Resources Information Center

    Blackburn, Anne M.

    1985-01-01

    Social studies educators hold an important key to our future success in the management of "spaceship earth." Students must be made aware of the global environment and the many problems facing it. These problems are discussed. (RM)

  2. Early Action on the Global Environmental Monitoring System. A Report of the International Environmental Programs Committee.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Environmental Studies Board.

    The Global Environmental Monitoring System (GEMS) is one of four components of Earthwatch, a part of the United Nations Environment Program (UNEP). The purpose of GEMS is to provide early warning of impending natural or man-induced environmental changes or trends that threaten direct or indirect harm to human health or well-being. In 1975, the…

  3. Remote physiological monitoring in an austere environment: a future for battlefield care provision?

    PubMed

    Smyth, Matthew J; Round, J A; Mellor, A J

    2018-05-14

    Wearable technologies are making considerable advances into the mainstream as they become smaller and more user friendly. The global market for such devices is forecasted to be worth over US$5 billion in 2018, with one in six people owning a device. Many professional sporting teams use self-monitoring to assess physiological parameters and work rate on the pitch, highlighting the potential utility for military command chains. As size of device reduces and sensitivity improves, coupled with remote connectivity technology, integration into the military environment could be relatively seamless. Remote monitoring of personnel on the ground, giving live updates on their physiological status, would allow commanders or medical officers the ability to manage their soldiers appropriately and improve combat effectiveness. This paper explores a proof of concept for the use of a self-monitoring system in the austere high altitude environment of the Nepalese Himalayas, akin to those experienced by modern militaries fighting in remote locations. It also reviews, in part, the historical development of remote monitoring technologies. The system allowed for physiological recordings, plotted against GPS position, to be remotely monitored in Italy. Examples of the data recorded are given and the performance of the system is discussed, including limitations, potential areas of development and how systems like this one could be integrated into the military environment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Monitoring Ensures Protection for Workers, Public and Environment

    DTIC Science & Technology

    2007-10-01

    the best technology to protect workers , the public and the environment. Oversight and Health Standards There are several groups and agencies...2007 2. REPORT TYPE 3. DATES COVERED 00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE Monitoring Ensures Protection for Workers , Public and...Monitoring Ensures Protection for Workers , Public and Environment CMA_Monitoring_ensures_protection_fs_10-07.indd O V E R Safety is the primary

  5. Operational satellites and the global monitoring of snow and ice

    NASA Technical Reports Server (NTRS)

    Walsh, John E.

    1991-01-01

    The altitudinal dependence of the global warming projected by global climate models is at least partially attributable to the albedo-temperature feedback involving snow and ice, which must be regarded as key variables in the monitoring for global change. Statistical analyses of data from IR and microwave sensors monitoring the areal coverage and extent of sea ice have led to mixed conclusions about recent trends of hemisphere sea ice coverage. Seasonal snow cover has been mapped for over 20 years by NOAA/NESDIS on the basis of imagery from a variety of satellite sensors. Multichannel passive microwave data show some promise for the routine monitoring of snow depth over unforested land areas.

  6. Applications of the EOS SAR to monitoring global change

    NASA Technical Reports Server (NTRS)

    Schier, Marguerite; Way, Jobea; Holt, Benjamin

    1991-01-01

    The SAR employed by NASA's Earth Observing System (EOS) is a multifrequency multipolarization radar which can conduct global monitoring of geophysical and biophysical parameters. The present discussion of the EOS SAR's role in global monitoring emphasizes geophysical product variables applicable to global hydrologic, biogeochemical, and energy cycle models. EOS SAR products encompass biomass, wetland areas, and phenologic and environmental states, in the field of ecosystem dynamics; soil moisture, snow moisture and extent, and glacier and ice sheet extent and velocity, in hydrologic cycle studies; surface-wave fields and sea ice properties, in ocean/atmosphere circulation; and the topography, erosion, and land forms of the solid earth.

  7. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  8. An integrated hyperspectral and SAR satellite constellation for environment monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Jinnian; Ren, Fuhu; Xie, Chou; An, Jun; Tong, Zhanbo

    2017-09-01

    A fully-integrated, Hyperspectral optical and SAR (Synthetic Aperture Radar) constellation of small earth observation satellites will be deployed over multiple launches from last December to next five years. The Constellation is expected to comprise a minimum of 16 satellites (8 SAR and 8 optical ) flying in two orbital planes, with each plane consisting of four satellite pairs, equally-spaced around the orbit plane. Each pair of satellites will consist of a hyperspectral/mutispectral optical satellite and a high-resolution SAR satellite (X-band) flying in tandem. The constellation is expected to offer a number of innovative capabilities for environment monitoring. As a pre-launch experiment, two hyperspectral earth observation minisatellites, Spark 01 and 02 were launched as secondary payloads together with Tansat in December 2016 on a CZ-2D rocket. The satellites feature a wide-range hyperspectral imager. The ground resolution is 50 m, covering spectral range from visible to near infrared (420 nm - 1000 nm) and a swath width of 100km. The imager has an average spectral resolution of 5 nm with 148 channels, and a single satellite could obtain hyperspectral imagery with 2.5 million km2 per day, for global coverage every 16 days. This paper describes the potential applications of constellation image in environment monitoring.

  9. The Joint Experiment for Crop Assessment and Monitoring (JECAM) Initiative: Developing methods and best practices for global agricultural monitoring

    NASA Astrophysics Data System (ADS)

    Champagne, C.; Jarvis, I.; Defourny, P.; Davidson, A.

    2014-12-01

    Agricultural systems differ significantly throughout the world, making a 'one size fits all' approach to remote sensing and monitoring of agricultural landscapes problematic. The Joint Experiment for Crop Assessment and Monitoring (JECAM) was established in 2009 to bring together the global scientific community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally across an array of diverse agricultural systems. These methods form the research and development component of the Group on Earth Observation Global Agricultural Monitoring (GEOGLAM) initiative to harmonize global monitoring efforts and increase market transparency. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. Each test site works independently as well as together across multiple sites to test methods, sensors and field data collection techniques to derive key agricultural parameters, including crop type, crop condition, crop yield and soil moisture. The outcome of this project will be a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the research and development foundation for GEOGLAM and will help to inform the development of the GEOGLAM "system of systems" for global agricultural monitoring. The outcomes of the 2014 JECAM science meeting will be discussed as well as examples of methods being developed by JECAM scientists.

  10. Global integrated drought monitoring and prediction system

    PubMed Central

    Hao, Zengchao; AghaKouchak, Amir; Nakhjiri, Navid; Farahmand, Alireza

    2014-01-01

    Drought is by far the most costly natural disaster that can lead to widespread impacts, including water and food crises. Here we present data sets available from the Global Integrated Drought Monitoring and Prediction System (GIDMaPS), which provides drought information based on multiple drought indicators. The system provides meteorological and agricultural drought information based on multiple satellite-, and model-based precipitation and soil moisture data sets. GIDMaPS includes a near real-time monitoring component and a seasonal probabilistic prediction module. The data sets include historical drought severity data from the monitoring component, and probabilistic seasonal forecasts from the prediction module. The probabilistic forecasts provide essential information for early warning, taking preventive measures, and planning mitigation strategies. GIDMaPS data sets are a significant extension to current capabilities and data sets for global drought assessment and early warning. The presented data sets would be instrumental in reducing drought impacts especially in developing countries. Our results indicate that GIDMaPS data sets reliably captured several major droughts from across the globe. PMID:25977759

  11. Global integrated drought monitoring and prediction system.

    PubMed

    Hao, Zengchao; AghaKouchak, Amir; Nakhjiri, Navid; Farahmand, Alireza

    2014-01-01

    Drought is by far the most costly natural disaster that can lead to widespread impacts, including water and food crises. Here we present data sets available from the Global Integrated Drought Monitoring and Prediction System (GIDMaPS), which provides drought information based on multiple drought indicators. The system provides meteorological and agricultural drought information based on multiple satellite-, and model-based precipitation and soil moisture data sets. GIDMaPS includes a near real-time monitoring component and a seasonal probabilistic prediction module. The data sets include historical drought severity data from the monitoring component, and probabilistic seasonal forecasts from the prediction module. The probabilistic forecasts provide essential information for early warning, taking preventive measures, and planning mitigation strategies. GIDMaPS data sets are a significant extension to current capabilities and data sets for global drought assessment and early warning. The presented data sets would be instrumental in reducing drought impacts especially in developing countries. Our results indicate that GIDMaPS data sets reliably captured several major droughts from across the globe.

  12. The Role of Civil Society Organizations in Monitoring the Global AIDS Response.

    PubMed

    Smith, Julia; Mallouris, Christoforos; Lee, Kelley; Alfvén, Tobias

    2017-07-01

    Civil society organizations (CSOs) are recognized as playing an exceptional role in the global AIDS response. However, there is little detailed research to date on how they contribute to specific governance functions. This article uses Haas' framework on global governance functions to map CSO's participation in the monitoring of global commitments to the AIDS response by institutions and states. Drawing on key informant interviews and primary documents, it focuses specifically on CSO participation in Global AIDS Response Progress Reporting and in Global Fund to Fight AIDS, Tuberculosis and Malaria processes. It argues that the AIDS response is unique within global health governance, in that CSOs fulfill both formal and informal monitoring functions, and considers the strengths and weaknesses of these contributions. It concludes that future global health governance arrangements should include provisions and resources for monitoring by CSOs because their participation creates more inclusive global health governance and contributes to strengthening commitments to human rights.

  13. Satellite global monitoring of environmental quality

    NASA Technical Reports Server (NTRS)

    Schiffer, R. A.

    1975-01-01

    The missions of two NASA satellites for the monitoring of environmental quality are described: Nimbus G, the Air Pollution and Oceanographic Observing Satellite, and the Applications Explorer Mission (AEM) satellite to be used in the Stratospheric Aerosol and Gas Experiment (SAGE). The scientific payload of Nimbus G is described in detail with a discussion of limb infrared monitoring of the stratosphere, the stratospheric and mesospheric sounder, stratospheric aerosol measurement, the solar and backscatter UV spectrometer for ozone mapping, the earth radiation budget experiment, the scanning multichannel microwave radiometer, the coastal zone color scanner and the temperature-humidity infrared radiometer. A brief description is given of the SAGE program and future NASA plans relating to the global monitoring of environmental quality are outlined.

  14. Applications of wireless sensor networks in marine environment monitoring: a survey.

    PubMed

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-09-11

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.

  15. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    PubMed Central

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  16. Monitoring Seasons Through Global Learning Communities

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Robin, J. H.; Jeffries, M. O.; Gordon, L. S.; Verbyla, D. L.; Levine, E. R.

    2006-12-01

    Monitoring Seasons through Global Learning Communities (MSTGLC) is an inquiry- and project-based project that monitors seasons, specifically their interannual variability, in order to increase K-12 students' understanding of the Earth system by providing teacher professional development in Earth system science and inquiry, and engaging K-12 students in Earth system science research relevant to their local communities that connect globally. MSTGLC connects GLOBE students, teachers, and communities, with educators and scientists from three integrated Earth systems science programs: the International Arctic Research Center, and NASA Landsat Data Continuity and Terra Satellite Missions. The project organizes GLOBE schools by biomes into eight Global Learning Communities (GLCs) and students monitor their seasons through regional based field campaigns. The project expands the current GLOBE phenology network by adapting current protocols and making them biome-specific. In addition, ice and mosquito phenology protocols will be developed for Arctic and Tropical regions, respectively. Initially the project will focus on Tundra and Taiga biomes as phenological changes are so pronounced in these regions. However, our long-term goal is to determine similar changes in other biomes (Deciduous Forest, Desert, Grasslands, Rain Forest, Savannah and Shrubland) based upon what we learn from these two biomes. This project will also contribute to critically needed Earth system science data such as in situ ice, mosquito, and vegetation phenology measurements for ground validations of remotely sensed data, which are essential for regional climate change impact assessments. Additionally it will contribute environmental data critical to prevention and management of diseases such as malaria in Asian, African, and other countries. Furthermore, this project will enable students to participate in the International Polar Year (IPY) (2007-2009) through field campaigns conducted by students in

  17. Global Survey Method for the World Network of Neutron Monitors

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Eroshenko, E. A.; Yanke, V. G.; Oleneva, V. A.; Abunina, M. A.; Abunin, A. A.

    2018-05-01

    One of the variants of the global survey method developed and used for many years at the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences is described. Data from the world network of neutron monitors for every hour from July 1957 to the present has been processed by this method. A consistent continuous series of hourly characteristics of variation of the density and vector anisotropy of cosmic rays with a rigidity of 10 GV is obtained. A database of Forbush decreases in galactic cosmic rays caused by large-scale disturbances of the interplanetary medium for more than half a century has been created based on this series. The capabilities of the database make it possible to perform a correlation analysis of various parameters of the space environment (characteristics of the Sun, solar wind, and interplanetary magnetic field) with the parameters of cosmic rays and to study their interrelationships in the solar-terrestrial space. The features of reception coefficients for different stations are considered, which allows the transition from variations according to ground measurements to variations of primary cosmic rays. The advantages and disadvantages of this variant of the global survey method and the opportunities for its development and improvement are assessed. The developed method makes it possible to minimize the problems of the network of neutron monitors and to make significant use of its advantages.

  18. Monitoring and Evaluating the Transition of Large-Scale Programs in Global Health

    PubMed Central

    Bao, James; Rodriguez, Daniela C; Paina, Ligia; Ozawa, Sachiko; Bennett, Sara

    2015-01-01

    Purpose: Donors are increasingly interested in the transition and sustainability of global health programs as priorities shift and external funding declines. Systematic and high-quality monitoring and evaluation (M&E) of such processes is rare. We propose a framework and related guiding questions to systematize the M&E of global health program transitions. Methods: We conducted stakeholder interviews, searched the peer-reviewed and gray literature, gathered feedback from key informants, and reflected on author experiences to build a framework on M&E of transition and to develop guiding questions. Findings: The conceptual framework models transition as a process spanning pre-transition and transition itself and extending into sustained services and outcomes. Key transition domains include leadership, financing, programming, and service delivery, and relevant activities that drive the transition in these domains forward include sustaining a supportive policy environment, creating financial sustainability, developing local stakeholder capacity, communicating to all stakeholders, and aligning programs. Ideally transition monitoring would begin prior to transition processes being implemented and continue for some time after transition has been completed. As no set of indicators will be applicable across all types of health program transitions, we instead propose guiding questions and illustrative quantitative and qualitative indicators to be considered and adapted based on the transition domains identified as most important to the particular health program transition. The M&E of transition faces new and unique challenges, requiring measuring constructs to which evaluators may not be accustomed. Many domains hinge on measuring “intangibles” such as the management of relationships. Monitoring these constructs may require a compromise between rigorous data collection and the involvement of key stakeholders. Conclusion: Monitoring and evaluating transitions in global

  19. Wetland monitoring with Global Navigation Satellite System reflectometry

    PubMed Central

    Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T.; Mannucci, Anthony J.; Cardellach, Estel; Brakenridge, G. Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Abstract Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS‐R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS‐R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales. PMID:28331894

  20. The effects of monitoring environment on problem-solving performance.

    PubMed

    Laird, Brian K; Bailey, Charles D; Hester, Kim

    2018-01-01

    While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.

  1. Configuration Management and Infrastructure Monitoring Using CFEngine and Icinga for Real-time Heterogeneous Data Taking Environment

    NASA Astrophysics Data System (ADS)

    Poat, M. D.; Lauret, J.; Betts, W.

    2015-12-01

    The STAR online computing environment is an intensive ever-growing system used for real-time data collection and analysis. Composed of heterogeneous and sometimes groups of custom-tuned machines, the computing infrastructure was previously managed by manual configurations and inconsistently monitored by a combination of tools. This situation led to configuration inconsistency and an overload of repetitive tasks along with lackluster communication between personnel and machines. Globally securing this heterogeneous cyberinfrastructure was tedious at best and an agile, policy-driven system ensuring consistency, was pursued. Three configuration management tools, Chef, Puppet, and CFEngine have been compared in reliability, versatility and performance along with a comparison of infrastructure monitoring tools Nagios and Icinga. STAR has selected the CFEngine configuration management tool and the Icinga infrastructure monitoring system leading to a versatile and sustainable solution. By leveraging these two tools STAR can now swiftly upgrade and modify the environment to its needs with ease as well as promptly react to cyber-security requests. By creating a sustainable long term monitoring solution, the detection of failures was reduced from days to minutes, allowing rapid actions before the issues become dire problems, potentially causing loss of precious experimental data or uptime.

  2. Global positioning system (GPS) civil monitoring performance specification.

    DOT National Transportation Integrated Search

    2009-04-30

    This Civil Monitoring Performance Specification (CMPS) is published and maintained at : the direction of the Program Manager for Civil Applications, Global Positioning Systems : Wing (GPSW). The purpose of this document is to provide a comprehensive ...

  3. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.

    PubMed

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.

  4. Next generation of global land cover characterization, mapping, and monitoring

    USGS Publications Warehouse

    Giri, Chandra; Pengra, Bruce; Long, J.; Loveland, Thomas R.

    2013-01-01

    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  5. Remote-sensing supported monitoring of global biodiversity change

    NASA Astrophysics Data System (ADS)

    Jetz, W.; Tuanmu, M. N.; W, A.; Melton, F. S.; Parmentier, B.; Amatulli, G.; Guzman, A.

    2016-12-01

    Remote sensing combined with biodiversity observation offers an unrivalled tool for understanding and predicting species distributions and their changes at the planetary scale. I will illustrate recently developed high-resolution remote-sensing based layers targeted for spatiotemporal biodiversity modeling, addressing climate, environment, topography, and habitat heterogeneity. In particular, I will illustrate the development and use of global MODIS-derived environmental layers for biodiversity assessment and change monitoring. Remote-sensing based capture of these putative predictors of biodiversity dynamics provides more a reliable signal than spatially interpolated layers and avoids inflated spatial autocorrelation. The layers result in more accurate models of species occurrence and are more readily able to address the scale of processes underpinning species distributions, e.g. when combined with emerging hierarchical, cross-scale models. I illustrate the multiple ways in which this type of information, based on continuously collected data, supports the prediction of not just spatial but also temporal variation in biodiversity. Using implementations in the Map of Life infrastructure I will showcase new indicators of species distribution and change that demonstrate these new opportunities.

  6. Monitoring and control of atmosphere in a closed environment

    NASA Technical Reports Server (NTRS)

    Humphries, R.; Perry, J.

    1991-01-01

    Applications requiring new technologies for atmosphere monitoring and control in the closed environment and their principal functions aboard the Space Station Freedom are described. Oxygen loop closure, involving the conversion of carbon dioxide to oxygen; carbon dioxide reduction and removal; and monitoring of atmospheric contamination are discussed. The Trace Contaminant Monitor, the Major Constituent Analyzer, the Carbon Dioxide Monitor, and the Particulate Counter Monitor are discussed.

  7. Towards global benchmarking of food environments and policies to reduce obesity and diet-related non-communicable diseases: design and methods for nation-wide surveys

    PubMed Central

    Vandevijvere, Stefanie; Swinburn, Boyd

    2014-01-01

    Introduction Unhealthy diets are heavily driven by unhealthy food environments. The International Network for Food and Obesity/non-communicable diseases (NCDs) Research, Monitoring and Action Support (INFORMAS) has been established to reduce obesity, NCDs and their related inequalities globally. This paper describes the design and methods of the first-ever, comprehensive national survey on the healthiness of food environments and the public and private sector policies influencing them, as a first step towards global monitoring of food environments and policies. Methods and analysis A package of 11 substudies has been identified: (1) food composition, labelling and promotion on food packages; (2) food prices, shelf space and placement of foods in different outlets (mainly supermarkets); (3) food provision in schools/early childhood education (ECE) services and outdoor food promotion around schools/ECE services; (4) density of and proximity to food outlets in communities; food promotion to children via (5) television, (6) magazines, (7) sport club sponsorships, and (8) internet and social media; (9) analysis of the impact of trade and investment agreements on food environments; (10) government policies and actions; and (11) private sector actions and practices. For the substudies on food prices, provision, promotion and retail, ‘environmental equity’ indicators have been developed to check progress towards reducing diet-related health inequalities. Indicators for these modules will be assessed by tertiles of area deprivation index or school deciles. International ‘best practice benchmarks’ will be identified, against which to compare progress of countries on improving the healthiness of their food environments and policies. Dissemination This research is highly original due to the very ‘upstream’ approach being taken and its direct policy relevance. The detailed protocols will be offered to and adapted for countries of varying size and income in order to

  8. Linking Geophysical Networks to International Economic Development Through Integration of Global and National Monitoring

    NASA Astrophysics Data System (ADS)

    Lerner-Lam, A.

    2007-05-01

    Outside of the research community and mission agencies, global geophysical monitoring rarely receives sustained attention except in the aftermath of a humanitarian disaster. The recovery and rebuilding period focuses attention and resources for a short time on regional needs for geophysical observation, often at the national or sub-national level. This can result in the rapid deployment of national monitoring networks, but may overlook the longer-term benefits of integration with global networks. Even in the case of multinational disasters, such as the Indian Ocean tsunami, it has proved difficult to promote the integration of national solutions with global monitoring, research and operations infrastructure. More importantly, continuing operations at the national or sub-national scale are difficult to sustain once the resources associated with recovery and rebuilding are depleted. Except for some notable examples, the vast infrastructure associated with global geophysical monitoring is not utilized constructively to promote the integration of national networks with international efforts. This represents a missed opportunity not only for monitoring, but for developing the international research and educational collaborations necessary for technological transfer and capacity building. The recent confluence of highly visible disasters, global multi-hazard risk assessments, evaluations of the relationships between natural disasters and socio-economic development, and shifts in development agency policies, provides an opportunity to link global geophysical monitoring initiatives to central issues in international development. Natural hazard risk reduction has not been the first priority of international development agendas for understandable, mainly humanitarian reasons. However, it is now recognized that the so-called risk premium associated with making development projects more risk conscious or risk resilient is relatively small relative to potential losses. Thus

  9. The Global Fund's paradigm of oversight, monitoring, and results in Mozambique.

    PubMed

    Warren, Ashley; Cordon, Roberto; Told, Michaela; de Savigny, Don; Kickbusch, Ilona; Tanner, Marcel

    2017-12-12

    The Global Fund is one of the largest actors in global health. In 2015 the Global Fund was credited with disbursing close to 10 % of all development assistance for health. In 2011 it began a reform process in response to internal reviews following allegations of recipients' misuse of funds. Reforms have focused on grant application processes thus far while the core structures and paradigm have remained intact. We report results of discussions with key stakeholders on the Global Fund, its paradigm of oversight, monitoring, and results in Mozambique. We conducted 38 semi-structured in-depth interviews in Maputo, Mozambique and members of the Global Fund Board and Secretariat in Switzerland. In-country stakeholders were representatives from Global Fund country structures (eg. Principle Recipient), the Ministry of Health, health or development attachés bilateral and multilateral agencies, consultants, and the NGO coordinating body. Thematic coding revealed concerns about the combination of weak country oversight with stringent and cumbersome requirements for monitoring and evaluation linked to performance-based financing. Analysis revealed that despite the changes associated with the New Funding Model, respondents in both Maputo and Geneva firmly believe challenges remain in Global Fund's structure and paradigm. The lack of a country office has many negative downstream effects including reliance on in-country partners and ineffective coordination. Due to weak managerial and absorptive capacity, more oversight is required than is afforded by country team visits. In-country partners provide much needed support for Global Fund recipients, but roles, responsibilities, and accountability must be clearly defined for a successful long-term partnership. Furthermore, decision-makers in Geneva recognize in-country coordination as vital to successful implementation, and partners welcome increased Global Fund engagement. To date, there are no institutional requirements for

  10. Global Positioning System (GPS) civil signal monitoring (CSM) trade study report

    DOT National Transportation Integrated Search

    2014-03-07

    This GPS Civil Signal Monitoring (CSM) Trade Study has been performed at the direction of DOT/FAA Navigation Programs as the agency of reference for consolidating civil monitoring requirements on the Global Positioning System (GPS). The objective of ...

  11. Design of a Water Environment Monitoring System Based on Wireless Sensor Networks

    PubMed Central

    Jiang, Peng; Xia, Hongbo; He, Zhiye; Wang, Zheming

    2009-01-01

    A water environmental monitoring system based on a wireless sensor network is proposed. It consists of three parts: data monitoring nodes, data base station and remote monitoring center. This system is suitable for the complex and large-scale water environment monitoring, such as for reservoirs, lakes, rivers, swamps, and shallow or deep groundwaters. This paper is devoted to the explanation and illustration for our new water environment monitoring system design. The system had successfully accomplished the online auto-monitoring of the water temperature and pH value environment of an artificial lake. The system's measurement capacity ranges from 0 to 80 °C for water temperature, with an accuracy of ±0.5 °C; from 0 to 14 on pH value, with an accuracy of ±0.05 pH units. Sensors applicable to different water quality scenarios should be installed at the nodes to meet the monitoring demands for a variety of water environments and to obtain different parameters. The monitoring system thus promises broad applicability prospects. PMID:22454592

  12. Large space-based systems for dealing with global environment change

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1992-01-01

    Increased concern over the effects of global climate change and depletion of the ozone layer has resulted in support for the Global Change Research Program and the Mission to Planet Earth. Research to understand Earth system processes is critical, but it falls short of providing ways of mitigating the effects of change. Geoengineering options and alternatives to interactively manage change need to be developed. Space-based concepts for dealing with changes to the environment should be considered in addition to Earth-based actions. 'Mission for Planet Earth' describes those space-based geoengineering solutions that may combine with an international global change program to stabilize the Global environment. Large space systems that may be needed for this response challenge guidance and control engineering and technology. Definition, analysis, demonstration, and preparation of geoengineering technology will provide a basis for policy response if global change consequences are severe.

  13. Environment.

    ERIC Educational Resources Information Center

    White, Gilbert F.

    1980-01-01

    Presented are perspectives on the emergence of environmental problems. Six major trends in scientific thinking are identified including: holistic approaches to examining environments, life support systems, resource management, risk assessment, streamlined methods for monitoring environmental change, and emphasis on the global framework. (Author/SA)

  14. AVHRR for monitoring global tropical deforestation

    NASA Technical Reports Server (NTRS)

    Malingreau, J. P.; Laporte, N.; Tucker, C. J.

    1989-01-01

    Advanced Very High Resolution Radiometer (AVHRR) data have been used to assess the dynamics of forest trnsformations in three parts of the tropical belt. A large portion of the Amazon Basin has been systematically covered by Local Area Coverage (LAC) data in the 1985-1987 period. The analysis of the vegetation index and thermal data led to the identification and measurement of large areas of active deforestation. The Kalimantan/Borneo forest fires were monitored and their impact was evaluated using the Global Area Coverage (GAC) 4 km resolution data. Finally, High Resolution Picture Transmission (HRPT) data have provided preliminary information on current activities taking place at the boundary between the savanna and the forest in the Southern part of West Africa. The AVHRR approach is found to be a highly valuable means for carrying out deforestation assessments in regional and global perspectives.

  15. Implications of climate variability for monitoring the effectiveness of global mercury policy

    NASA Astrophysics Data System (ADS)

    Giang, A.; Monier, E.; Couzo, E. A.; Pike-thackray, C.; Selin, N. E.

    2016-12-01

    We investigate how climate variability affects ability to detect policy-related anthropogenic changes in mercury emissions in wet deposition monitoring data using earth system and atmospheric chemistry modeling. The Minamata Convention, a multilateral environmental agreement that aims to protect human health and the environment from anthropogenic emissions and releases of mercury, includes provisions for monitoring treaty effectiveness. Because meteorology can affect mercury chemistry and transport, internal variability is an important contributor to uncertainty in how effective policy may be in reducing the amount of mercury entering ecosystems through wet deposition. We simulate mercury chemistry using the GEOS-Chem global transport model to assess the influence of meteorology in the context of other uncertainties in mercury cycling and policy. In these simulations, we find that interannual variability in meteorology may be a dominant contributor to the spatial pattern and magnitude of historical regional wet deposition trends. To further assess the influence of climate variability in the GEOS-Chem mercury simulation, we use a 5-member ensemble of meteorological fields from the MIT Integrated Global System Model under present and future climate. Each member involves randomly initialized 20 year simulations centered around 2000 and 2050 (under a no-policy and a climate stabilization scenario). Building on previous efforts to understand climate-air quality interactions for ground-level O3 and particulate matter, we estimate from the ensemble the range of trends in mercury wet deposition given natural variability, and, to extend our previous results on regions that are sensitive to near-source vs. remote anthropogenic signals, we identify geographic regions where mercury wet deposition is most sensitive to this variability. We discuss how an improved understanding of natural variability can inform the Conference of Parties on monitoring strategy and policy ambition.

  16. Participatory monitoring to connect local and global priorities for forest restoration.

    PubMed

    Evans, Kristen; Guariguata, Manuel R; Brancalion, Pedro H S

    2018-06-01

    New global initiatives to restore forest landscapes present an unparalleled opportunity to reverse deforestation and forest degradation. Participatory monitoring could play a crucial role in providing accountability, generating local buy in, and catalyzing learning in monitoring systems that need scalability and adaptability to a range of local sites. We synthesized current knowledge from literature searches and interviews to provide lessons for the development of a scalable, multisite participatory monitoring system. Studies show that local people can collect accurate data on forest change, drivers of change, threats to reforestation, and biophysical and socioeconomic impacts that remote sensing cannot. They can do this at one-third the cost of professionals. Successful participatory monitoring systems collect information on a few simple indicators, respond to local priorities, provide appropriate incentives for participation, and catalyze learning and decision making based on frequent analyses and multilevel interactions with other stakeholders. Participatory monitoring could provide a framework for linking global, national, and local needs, aspirations, and capacities for forest restoration. © 2018 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  17. Level 4 Global and European Chl-a Daily Analyses for End Users and Data Assimilation in the Frame of the Copernicus-Marine Environment Monitoring Service

    NASA Astrophysics Data System (ADS)

    Saulquin, Bertrand; Gohin, Francis; Garnesson, Philippe; Demaria, Julien; Mangin, Antoine; Fanton d'Andon, Odile

    2016-08-01

    The level-4 daily chl-a products are a combination of a water typed merge of chl-a estimates and an optimal interpolation based on the kriging method with regional anisotropic models [1, 2]. The Level 4 products basically pro- vide a global continuous (cloud free) estimation of the surface chl-a concentration at 4 km resolution over the world and 1 km resolution over the Europe. The level-4 products gather MODIS, MERIS, SeaWiFS, VIIRS and OLCI daily observations from 1998 to now.The Level 4 product avoids end users to consider typical lack of data as observed during cloudy conditions and the historical multiplicity of available algorithms such as involved by case 1 (oligotrophic) and case 2 (turbid) water issues in ocean colour. [3, 4].A total product uncertainty, i.e. a combination of the interpolation and the estimation error, is provided for each daily product. The L4 products are freely distributed in the frame of the Copernicus - Marine environment monitoring service.

  18. Passive Wireless Hermetic Environment Monitoring System for Spray Painting Workshop

    PubMed Central

    Wang, Lifeng; Ma, Jingjing; Huang, Yan; Tang, Dan; Huang, Qing-An

    2016-01-01

    Passive wireless sensors have the advantages of operating without a power supply and remote sensing capability. Hence, they are very suitable for some harsh environments, such as hermetic environments, rotating parts, or very high temperature environments. The spray painting workshop is such a harsh environment, containing a large amount of flammable paint mist and organic gas. Aiming at this special environment of spray painting workshop, a passive wireless hermetic environment monitoring system was designed, fabricated, and demonstrated. The proposed system is composed of a transponder and a reader, and the circuit design of each part is given in detail in this paper. The power and the data transmission between the transponder and the reader are realized by the inductive coupling mechanism. Utilizing the back scatter modulation and channel multiplexing, the frequency signals generated by three different environmental sensors—together with their interfaces in the transponder—are wirelessly read out by the reader. Because of the harsh environment of the spray painting room, the package of the monitoring system is quite important. Three different kinds of filter films for the system package were compared. The experimental results show that the composite filter film aluminum anodic oxide/polytetrafluoroethylene (AAO/PTFE) has the best performance. After fabrication, the measured temperature, humidity, and pressure sensitivities were measured and found to be 180 Hz/°C in the range of 0~60 °C, 100 Hz/%RH in the range of 15~95 %RH, and 42 Hz/hPa in the range of 600~1100 hPa, respectively. Additionally, the remote sensing distance of the monitoring system reaches 4 cm. Finally, the passive wireless hermetic environment monitoring system was installed on the glass wall of the spray painting workshop and was successfully demonstrated. PMID:27490546

  19. Towards global benchmarking of food environments and policies to reduce obesity and diet-related non-communicable diseases: design and methods for nation-wide surveys.

    PubMed

    Vandevijvere, Stefanie; Swinburn, Boyd

    2014-05-15

    Unhealthy diets are heavily driven by unhealthy food environments. The International Network for Food and Obesity/non-communicable diseases (NCDs) Research, Monitoring and Action Support (INFORMAS) has been established to reduce obesity, NCDs and their related inequalities globally. This paper describes the design and methods of the first-ever, comprehensive national survey on the healthiness of food environments and the public and private sector policies influencing them, as a first step towards global monitoring of food environments and policies. A package of 11 substudies has been identified: (1) food composition, labelling and promotion on food packages; (2) food prices, shelf space and placement of foods in different outlets (mainly supermarkets); (3) food provision in schools/early childhood education (ECE) services and outdoor food promotion around schools/ECE services; (4) density of and proximity to food outlets in communities; food promotion to children via (5) television, (6) magazines, (7) sport club sponsorships, and (8) internet and social media; (9) analysis of the impact of trade and investment agreements on food environments; (10) government policies and actions; and (11) private sector actions and practices. For the substudies on food prices, provision, promotion and retail, 'environmental equity' indicators have been developed to check progress towards reducing diet-related health inequalities. Indicators for these modules will be assessed by tertiles of area deprivation index or school deciles. International 'best practice benchmarks' will be identified, against which to compare progress of countries on improving the healthiness of their food environments and policies. This research is highly original due to the very 'upstream' approach being taken and its direct policy relevance. The detailed protocols will be offered to and adapted for countries of varying size and income in order to establish INFORMAS globally as a new monitoring initiative

  20. Satellite missions, global environment, and the concept of a global satellite observation information network. The role of the committee on Earth observation satellites (CEOS)

    NASA Astrophysics Data System (ADS)

    Smith, D. Brent; Williams, David F.; Fujita, Akihiro

    The paper traces the development of the Committee on Earth Observation Satellites (CEOS) since its November 1990 Plenary: its restructuring to include major intergovernmental user and international scientific organizational affiliates; its focus on data sharing issues and completion of a CEOS resolution guaranteeing global change researchers access to satellite data at the cost of filling a user request; unfolding of a CEOS-associated initiative of the UK Prime Minister reporting to UNCED delegations on the relevance of satellite missions to the study of the global environment; development of a "Dossier" providing detailed information on all CEOS agency satellite missions, including sensor specifications, ground systems, standard data products, and other information relevant to users; creation of a permanent CEOS Secretariat; and efforts currently underway to assess the feasibility of a global satellite observation information network. Of particular relevance to developing countries, the paper will discuss CEOS efforts to assure broad user access and to foster acceptance of applications in such important areas as disaster monitoring and mitigation, land cover change, weather forecasting, and long-term climate modeling.

  1. Flood monitoring for ungauged rivers: the power of combining space-based monitoring and global forecasting models

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Netgeka, Victor; Raynaud, Damien; Thielen, Jutta

    2013-04-01

    Flood warning systems typically rely on forecasts from national meteorological services and in-situ observations from hydrological gauging stations. This capacity is not equally developed in flood-prone developing countries. Low-cost satellite monitoring systems and global flood forecasting systems can be an alternative source of information for national flood authorities. The Global Flood Awareness System (GloFAS) has been develop jointly with the European Centre for Medium-Range Weather Forecast (ECMWF) and the Joint Research Centre, and it is running quasi operational now since June 2011. The system couples state-of-the art weather forecasts with a hydrological model driven at a continental scale. The system provides downstream countries with information on upstream river conditions as well as continental and global overviews. In its test phase, this global forecast system provides probabilities for large transnational river flooding at the global scale up to 30 days in advance. It has shown its real-life potential for the first time during the flood in Southeast Asia in 2011, and more recently during the floods in Australia in March 2012, India (Assam, September-October 2012) and Chad Floods (August-October 2012).The Joint Research Centre is working on further research and development, rigorous testing and adaptations of the system to create an operational tool for decision makers, including national and regional water authorities, water resource managers, hydropower companies, civil protection and first line responders, and international humanitarian aid organizations. Currently efforts are being made to link GloFAS to the Global Flood Detection System (GFDS). GFDS is a Space-based river gauging and flood monitoring system using passive microwave remote sensing which was developed by a collaboration between the JRC and Dartmouth Flood Observatory. GFDS provides flood alerts based on daily water surface change measurements from space. Alerts are shown on a

  2. Methods for mapping and monitoring global glaciovolcanism

    NASA Astrophysics Data System (ADS)

    Curtis, Aaron; Kyle, Philip

    2017-03-01

    The most deadly (Nevado del Ruiz, 1985) and the most costly (Eyjafjallajökull, 2010) eruptions of the last 100 years were both glaciovolcanic. Considering its great importance to studies of volcanic hazards, global climate, and even astrobiology, the global distribution of glaciovolcanism is insufficiently understood. We present and assess three algorithms for mapping, monitoring, and predicting likely centers of glaciovolcanic activity worldwide. Each algorithm intersects buffer zones representing known Holocene-active volcanic centers with existing datasets of snow, ice, and permafrost. Two detection algorithms, RGGA and PZGA, are simple spatial join operations computed from the Randolph Glacier Inventory and the Permafrost Zonation Index, respectively. The third, MDGA, is an algorithm run on all 15 available years of the MOD10A2 weekly snow cover product from the Terra MODIS satellite radiometer. Shortcomings and advantages of the three methods are discussed, including previously unreported blunders in the MOD10A2 dataset. Comparison of the results leads to an effective approach for integrating the three methods. We show that 20.4% of known Holocene volcanic centers host glaciers or areas of permanent snow. A further 10.9% potentially interact with permafrost. MDGA and PZGA do not rely on any human input, rendering them useful for investigations of change over time. An intermediate step in MDGA involves estimating the snow-covered area at every Holocene volcanic center. These estimations can be updated weekly with no human intervention. To investigate the feasibility of an automatic ice-loss alert system, we consider three examples of glaciovolcanism in the MDGA weekly dataset. We also discuss the potential use of PZGA to model past and future glaciovolcanism based on global circulation model outputs. Combined, the three algorithms provide an automated system for understanding the geographic and temporal patterns of global glaciovolcanism which should be of use

  3. Promoting health equity: WHO health inequality monitoring at global and national levels.

    PubMed

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne

    2015-01-01

    Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO) has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level.

  4. Promoting health equity: WHO health inequality monitoring at global and national levels

    PubMed Central

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne

    2015-01-01

    Background Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO) has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. Objective This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. Design We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. Conclusions The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level. PMID:26387506

  5. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  6. Grid Cells Form a Global Representation of Connected Environments

    PubMed Central

    Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell

    2015-01-01

    Summary The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5–8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9–11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. PMID:25913404

  7. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    PubMed Central

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  8. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    PubMed

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  9. First evaluation of the utility of GPM precipitation in global flood monitoring

    NASA Astrophysics Data System (ADS)

    Wu, H.; Yan, Y.; Gao, Z.

    2017-12-01

    The Global Flood Monitoring System (GFMS) has been developed and used to provide real-time flood detection and streamflow estimates over the last few years with significant success shown by validation against global flood event data sets and observed streamflow variations (Wu et al., 2014). It has become a tool for various national and international organizations to appraise flood conditions in various areas, including where rainfall and hydrology information is limited. The GFMS has been using the TRMM Multi-satellite Precipitation Analysis (TMPA) as its main rainfall input. Now, with the advent of the Global Precipitation Measurement (GPM) mission there is an opportunity to significantly improve global flood monitoring and forecasting. GPM's Integrated Multi-satellitE Retrievals for GPM (IMERG) multi-satellite product is designed to take advantage of various technical advances in the field and combine that with an efficient processing system producing "early" (4 hrs) and "late" (12 hrs) products for operational use. Specifically, this study is focused on (1) understanding the difference between the new IMERG products and other existing satellite precipitation products, e.g., TMPA, CMORPH, and ground observations; (2) addressing the challenge in the usage of the IMERG for flood monitoring through hydrologic models, given that only a short period of precipitation data record has been accumulated since the lunch of GPM in 2014; and (3) comparing the statistics of flood simulation based on the DRIVE model with IMERG, TMPA, CMORPH etc. as precipitation inputs respectively. Derivation of a global threshold map is a necessary step to define flood events out of modelling results, which requires a relatively longer historic information. A set of sensitivity tests are conducted by adjusting IMERG's light, moderate, heavy rain to existing precipitation products with long-term records separately, to optimize the strategy of PDF matching. Other aspects are also examined

  10. A Seamless Framework for Global Water Cycle Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions

  11. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments.

    PubMed

    Port, Jesse A; Cullen, Alison C; Wallace, James C; Smith, Marissa N; Faustman, Elaine M

    2014-03-01

    High-throughput genomic technologies offer new approaches for environmental health monitoring, including metagenomic surveillance of antibiotic resistance determinants (ARDs). Although natural environments serve as reservoirs for antibiotic resistance genes that can be transferred to pathogenic and human commensal bacteria, monitoring of these determinants has been infrequent and incomplete. Furthermore, surveillance efforts have not been integrated into public health decision making. We used a metagenomic epidemiology-based approach to develop an ARD index that quantifies antibiotic resistance potential, and we analyzed this index for common modal patterns across environmental samples. We also explored how metagenomic data such as this index could be conceptually framed within an early risk management context. We analyzed 25 published data sets from shotgun pyrosequencing projects. The samples consisted of microbial community DNA collected from marine and freshwater environments across a gradient of human impact. We used principal component analysis to identify index patterns across samples. We observed significant differences in the overall index and index subcategory levels when comparing ecosystems more proximal versus distal to human impact. The selection of different sequence similarity thresholds strongly influenced the index measurements. Unique index subcategory modes distinguished the different metagenomes. Broad-scale screening of ARD potential using this index revealed utility for framing environmental health monitoring and surveillance. This approach holds promise as a screening tool for establishing baseline ARD levels that can be used to inform and prioritize decision making regarding management of ARD sources and human exposure routes. Port JA, Cullen AC, Wallace JC, Smith MN, Faustman EM. 2014. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect 122:222–228; http://dx.doi.org/10.1289/ehp

  12. Trust Model for Protection of Personal Health Data in a Global Environment.

    PubMed

    Ruotsalainen, Pekka; Blobel, Bernd

    2017-01-01

    Successful health care, eHealth, digital health, and personal health systems increasingly take place in cross-jurisdictional, dynamic and risk-encumbered information space. They require rich amount of personal health information (PHI). Trust is and will be the cornerstone and prerequisite for successful health services. In global environments, trust cannot be expected as granted. In this paper, health service in the global environment is perceived as a meta-system, and a trust management model is developed to support it. The predefined trusting belief currently used in health care is not transferable to global environments. In the authors' model, the level of trust is dynamically calculated from measurable attributes. These attributes describe trust features of the service provider and its environment. The calculated trust value or profile can be used in defining the risk service user has to accept when disclosing PHI, and in definition of additional privacy and security safeguards before disclosing PHI and/or using services.

  13. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring

    PubMed Central

    Salmanpour, Mohammad Saleh; Sharif Khodaei, Zahra; Aliabadi, Mohammad Hossein

    2016-01-01

    This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM) transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA)/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP) composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions. PMID:27973450

  14. A global change data base using Thematic Mapper data - Earth Monitoring Educational System (EMES)

    NASA Technical Reports Server (NTRS)

    D'Antoni, Hector L.; Peterson, David L.

    1992-01-01

    Some of the main directions in creating an education program in earth system science aimed at combining top science and technology with high academic performance are presented. The creation of an Earth Monitoring Educational System (EMES) integrated with the research interests of the NASA Ames Research Center and one or more universities is proposed. Based on the integration of a global network of cooperators to build a global data base for assessments of global change, EMES would promote degrees at all levels in global ecology at associated universities and colleges, and extracurricular courses for multilevel audiences. EMES objectives are to: train specialists; establish a tradition of solving regional problems concerning global change in a systemic manner, using remote sensing technology as the monitoring tool; and transfer knowledge on global change to the national and world communities. South America is proposed as the pilot continent for the project.

  15. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; hide

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  16. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    NASA Astrophysics Data System (ADS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; Blyth, Eleanor; de Roo, Ad; DöLl, Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffé, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivapalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-05-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (˜10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a "grand challenge" to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  17. Overview of Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Kohler, Philipp; Walther, Sophia; Frankenberg, Christian; Joiner, Joanna

    2016-01-01

    Despite the critical importance of photosynthesis for the Earth system, understanding how it is influenced by factors such as climate variability, disturbance history, and water or nutrient availability remains a challenge because of the complex interactions and the lack of GPP measurements at various temporal and spatial scales. Space observations of the sun-induced chlorophyll fluorescence (SIF) electromagnetic signal emitted by plants in the 650-850nm spectral range hold the promise of providing a new view of vegetation photosynthesis on a global basis. Global retrievals of SIF from space have recently been achieved from a number of spaceborne spectrometers originally intended for atmospheric research. Despite not having been designed for land applications, such instruments have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval from space. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission launched in 2009. The retrieval takes advantage of the high spectral resolution provided by GOSATs Fourier Transform Spectrometer (FTS) which allows the evaluation of the in-filling of solar Fraunhofer lines by SIF. Unfortunately, GOSAT only provides a sparse spatial sampling with individual soundings separated by several hundred kilometers. Complementary, the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B enable SIF retrievals since 2007 with a continuous and global spatial coverage. GOME-2 measures in the red and near-infrared (NIR) spectral regions with a spectral resolution of 0.5 nm and a pixel size of up to 40x40 km2. Most recently, another global and spatially continuous data set of SIF retrievals at 740 nm spanning the 2003-2012 time frame has been produced from ENVISATSCIAMACHY. This observational scenario has been completed by the first fluorescence data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming

  18. Grid cells form a global representation of connected environments.

    PubMed

    Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell

    2015-05-04

    The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5-8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9-11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Global Scale Remote Sensing Monitoring of Endorheic Lake Systems

    NASA Astrophysics Data System (ADS)

    Scuderi, L. A.

    2010-12-01

    Semi-arid regions of the world contain thousands of endorheic lakes in large shallow basins. Due to their generally remote locations few are continuously monitored. Documentation of recent variability is essential to assessing how endorheic lakes respond to short-term meteorological conditions and longer-term decadal-scale climatic variability and is critical in determining future disturbance of hydrological regimes with respect to predicted warming and drying in the mid-latitudes. Short- and long-term departures from climatic averages, rapid environmental shifts and increased population pressures may result in significant fluctuations in the hydrologic budgets of these lakes and adversely impact endorheic lake/basin ecosystems. Information on flooding variability is also critical in estimating changes in P/E balances and on the production of exposed and easily deflated surfaces that may impact dust loading locally and regionally. In order to provide information on how these lakes respond we need to understand how entire systems respond hydrologically to different climatic inputs. This requires monitoring and analysis of regional to continental-scale systems. To date, this level of monitoring has not been achieved in an operational system. In order to assess the possibility of creating a global-scale lake inundation database we analyzed two contrasting lake systems in western North America (Mexico and New Mexico, USA) and China (Inner Mongolia). We asked two major questions: 1) is it possible to quickly and accurately quantify current lake inundation events in near real time using remote sensing? and, 2) is it possible to differentiate variable meteorological sources and resultant lake inundation responses using this type of database? With respect to these results we outline an automated lake monitoring approach using MODIS data and real-time processing systems that may provide future global monitoring capabilities.

  20. Coastal Louisiana Wetlands Restoration Monitoring with Global Fiducials Program (GFP) Imagery

    NASA Astrophysics Data System (ADS)

    Fisher, G.

    2012-12-01

    Coastal Louisiana has experienced dramatic landscape change over the past century due to human induced changes to the environment as well as an onslaught of major coastal storms. Coastal Louisiana loses on average 25-35 square miles of land per year. The USGS has partnered with the National Oceanographic and Atmospheric Administration (NOAA) - National Marine Fisheries Service to provide cyclical remote sensing data for selected restoration sites along the coast of Louisiana. Three of these sites are actively maintained in the GFP archive - Atchafalaya River Delta, East Timbalier Island, and Pecan Island. These three sites coincide with NOAA restoration sites that have been monitored since early 2000. The GFP has provided a consistent set of remote sensing data that has greatly benefited the long-term monitoring of these restoration sites. Long-term monitoring of these sites includes both pre- and post-hurricane season data collection used to identify landscape change along the coast. The long-term monitoring also has helped to identify areas of success in the restoration projects, as well as areas that have continued to decline in spite of restoration efforts. These three sites are significant to the program because they provide a variety of coastal landscape types: an open water barrier island environment at East Timbalier Island; coastal wetlands at Pecan Island, which have experienced subsidence of the marsh and convergence to an open water environment; and a deltaic marsh environment at Atchafalaya River Delta. Long-term monitoring of these sites has provided a wealth of knowledge about the changes occurring, as well as a valuable tool for reliable shoreline measurements. Continued monitoring is necessary to accurately assess the condition of these areas as environmental conditions continue to shape the landscape.

  1. The use of PROBA-V data for Global Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Bydekerke, Lieven; Gilliams, Sven; Kempeneers, Pieter; Piccard, Isabelle; Deronde, Bart; Eerens, Herman; Gobin, Anne

    2015-04-01

    Land conversion, forest cutting, urban growth, agricultural expansion, take place at an unprecedented rate and scale such that they have a strong economic and environmental impact. Understanding and measuring dynamics becomes a prerequisite for companies, governments, agencies, NGO's, research institutes and society in general. In many cases the temporal frequency of the information is a requirement to detect phenomena that can occur within a few days and at a certain geographic scale. For example frequent updates on crop condition and projected production are needed to stabilise agricultural markets. Large initiatives such as the GEOGLAM AMIS (Group on Earth Observations Global Agricultural Monitoring - Agricultural Market Information System) respond to this increased need. Observations over large areas are available through satellites, however, the following challenges remain: • obtaining frequent and consistent observations at sufficient level of detail to identify spatial phenomena. At present, no single mission is capable of providing near daily information of any place in the world at scales appropriate to detect land cover/use changes in a consistent manner. • the need for a historical reference. For agricultural monitoring and early warning purposes the comparison of the actual data with a historical reference is of the utmost importance. The PROBA-V mission is an important attempt to overcome these challenges. From its design and within the GIO-Global Land component a lot of work has been done to ensure the consistency between the PROBA-V data and the 15 years historical archive of SPOT-VEGETATION. In this respect PROBA-V observations are comparable with the SPOT-VEGETATION historical baseline and will therefore ensure the continuation of the standard agricultural monitoring products. Next to this integration with the historical archive, PROBA -V also provides an increase in spatial resolution from 1km to 300m and even 100m. The latter ensures a global

  2. Monitoring Global Geophysical Fluids by Space Geodesy

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.

    1999-01-01

    Since its establishment on 1/1/1998 by the International Earth Rotation Service, the Coordinating Center for Monitoring Global Geophysical Fluids (MGGF) and its seven Special Bureaus have engaged in an effort to support and facilitate the understanding of the geophysical fluids in global geodynamics research. Mass transports in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") will cause the following geodynamic effects on a broad time scale: (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, with ever increasing precision/accuracy and temporal/spatial resolution. Each of the seven Special Bureaus within MGGF is responsible for calculations related to a specific Earth component or aspect -- Atmosphere, Ocean, Hydrology, Ocean Tides, Mantle, Core, and Gravity/Geocenter. Angular momenta and torques, gravitational coefficients, and geocenter shift will be computed for geophysical fluids based on global observational data, and from state-of-the-art models, some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. The results are archived and made available to the scientific research community. This paper reports the status of the MGGF activities and current results.

  3. Global Agricultural Monitoring (GLAM) using MODAPS and LANCE Data Products

    NASA Astrophysics Data System (ADS)

    Anyamba, A.; Pak, E. E.; Majedi, A. H.; Small, J. L.; Tucker, C. J.; Reynolds, C. A.; Pinzon, J. E.; Smith, M. M.

    2012-12-01

    The Global Inventory Modeling and Mapping Studies / Global Agricultural Monitoring (GIMMS GLAM) system is a web-based geographic application that offers Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and user interface tools to data query and plot MODIS NDVI time series. The system processes near real-time and science quality Terra and Aqua MODIS 8-day composited datasets. These datasets are derived from the MOD09 and MYD09 surface reflectance products which are generated and provided by NASA/GSFC Land and Atmosphere Near Real-time Capability for EOS (LANCE) and NASA/GSFC MODIS Adaptive Processing System (MODAPS). The GIMMS GLAM system is developed and provided by the NASA/GSFC GIMMS group for the U.S. Department of Agriculture / Foreign Agricultural Service / International Production Assessment Division (USDA/FAS/IPAD) Global Agricultural Monitoring project (GLAM). The USDA/FAS/IPAD mission is to provide objective, timely, and regular assessment of the global agricultural production outlook and conditions affecting global food security. This system was developed to improve USDA/FAS/IPAD capabilities for making operational quantitative estimates for crop production and yield estimates based on satellite-derived data. The GIMMS GLAM system offers 1) web map imagery including Terra & Aqua MODIS 8-day composited NDVI, NDVI percent anomaly, and SWIR-NIR-Red band combinations, 2) web map overlays including administrative and 0.25 degree Land Information System (LIS) shape boundaries, and crop land cover masks, and 3) user interface tools to select features, data query, plot, and download MODIS NDVI time series.

  4. Oversight role of the Independent Monitoring Board of the Global Polio Eradication Initiative.

    PubMed

    Rutter, Paul D; Donaldson, Liam J

    2014-11-01

    The Global Polio Eradication Initiative (GPEI) established its Independent Monitoring Board (IMB) in 2010 to monitor and guide its progress toward stopping polio transmission globally. The concept of an IMB is innovative, with no clear analogue in the history of the GPEI or in any other global health program. The IMB meets with senior program officials every 3-6 months. Its reports provide analysis and recommendations about individual polio-affected countries. The IMB also examines issues affecting the global program as a whole. Its areas of focus have included escalating the level of priority afforded to polio eradication (particularly by recommending a World Health Assembly resolution to declare polio eradication a programmatic emergency, which was enacted in May 2012), placing greater emphasis on people factors in the delivery of the program, encouraging innovation, strengthening focus on the small number of so-called sanctuaries where polio persists, and continuous quality improvement to reach every missed child with vaccination. The IMB's true independence from the agencies and countries delivering the program has enabled it to raise difficult issues that others cannot. Other global health programs might benefit from establishing similar independent monitoring mechanisms. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Infrared monitoring of the Space Station environment

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Jennings, Donald E.; Mumma, Michael J.

    1988-01-01

    The measurement and monitoring of infrared emission in the environment of the Space Station has a twofold importance - for the study of the phenomena itself and as an aid in planning and interpreting Station based infrared experiments. Spectral measurements of the infrared component of the spacecraft glow will, along with measurements in other spectral regions, provide data necessary to fully understand and model the physical and chemical processes producing these emissions. The monitoring of the intensity of these emissions will provide background limits for Space Station based infrared experiments and permit the determination of optimum instrument placement and pointing direction. Continuous monitoring of temporal changes in the background radiation (glow) will also permit better interpretation of Station-based infrared earth sensing and astronomical observations. The primary processes producing infrared emissions in the Space Station environment are: (1) Gas phase excitations of Station generated molecules ( e.g., CO2, H2O, organics...) by collisions with the ambient flux of mainly O and N2. Molecular excitations and generation of new species by collisions of ambient molecules with Station surfaces. They provide a list of resulting species, transition energies, excitation cross sections and relevant time constants. The modeled spectrum of the excited species occurs primarily at wavelengths shorter than 8 micrometer. Emissions at longer wavelengths may become important during rocket firing or in the presence of dust.

  6. Metagenomic Frameworks for Monitoring Antibiotic Resistance in Aquatic Environments

    PubMed Central

    Port, Jesse A.; Cullen, Alison C.; Wallace, James C.; Smith, Marissa N.

    2013-01-01

    Background: High-throughput genomic technologies offer new approaches for environmental health monitoring, including metagenomic surveillance of antibiotic resistance determinants (ARDs). Although natural environments serve as reservoirs for antibiotic resistance genes that can be transferred to pathogenic and human commensal bacteria, monitoring of these determinants has been infrequent and incomplete. Furthermore, surveillance efforts have not been integrated into public health decision making. Objectives: We used a metagenomic epidemiology–based approach to develop an ARD index that quantifies antibiotic resistance potential, and we analyzed this index for common modal patterns across environmental samples. We also explored how metagenomic data such as this index could be conceptually framed within an early risk management context. Methods: We analyzed 25 published data sets from shotgun pyrosequencing projects. The samples consisted of microbial community DNA collected from marine and freshwater environments across a gradient of human impact. We used principal component analysis to identify index patterns across samples. Results: We observed significant differences in the overall index and index subcategory levels when comparing ecosystems more proximal versus distal to human impact. The selection of different sequence similarity thresholds strongly influenced the index measurements. Unique index subcategory modes distinguished the different metagenomes. Conclusions: Broad-scale screening of ARD potential using this index revealed utility for framing environmental health monitoring and surveillance. This approach holds promise as a screening tool for establishing baseline ARD levels that can be used to inform and prioritize decision making regarding management of ARD sources and human exposure routes. Citation: Port JA, Cullen AC, Wallace JC, Smith MN, Faustman EM. 2014. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments

  7. Norwegian monitoring (1990-2015) of the marine environment around the sunken nuclear submarine Komsomolets.

    PubMed

    Gwynn, Justin P; Heldal, Hilde Elise; Flo, Janita K; Sværen, Ingrid; Gäfvert, Torbjörn; Haanes, Hallvard; Føyn, Lars; Rudjord, Anne Liv

    2018-02-01

    Norway has monitored the marine environment around the sunken Russian nuclear submarine Komsomolets since 1990. This study presents an overview of 25 years of Norwegian monitoring data (1990-2015). Komsomolets sank in 1989 at a depth of 1680 m in the Norwegian Sea while carrying two nuclear torpedoes in its armament. Subsequent Soviet and Russian expeditions to Komsomolets have shown that releases from the reactor have occurred and that the submarine has suffered considerable damage to its hulls. Norwegian monitoring detected 134 Cs in surface sediments around Komsomolets in 1993 and 1994 and elevated activity concentrations of 137 Cs in bottom seawater between 1991 and 1993. Since then and up to 2015, no increased activity concentrations of radionuclides above values typical for the Norwegian Sea have been observed in any environmental sample collected by Norwegian monitoring. In 2013 and 2015, Norwegian monitoring was carried out using an acoustic transponder on the sampling gear that allowed samples to be collected at precise locations, ∼20 m from the hull of Komsomolets. The observed 238 Pu/ 239,240 Pu activity ratios and 240 Pu/ 239 Pu atom ratios in surface sediments sampled close to Komsomolets in 2013 did not indicate any releases of Pu isotopes from reactor or the torpedo warheads. Rather, these values probably reflect the overprinting of global fallout ratios with fluxes of these Pu isotopes from long-range transport of authorised discharges from nuclear reprocessing facilities in Northern Europe. However, due to the depth at which Komsomolets lies, the collection of seawater and sediment samples in the immediate area around the submarine using traditional sampling techniques from surface vessels is not possible, even with the use of acoustic transponders. Further monitoring is required in order to have a clear understanding of the current status of Komsomolets as a potential source of radioactive contamination to the Norwegian marine environment

  8. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution.

    PubMed

    Kwon, Bum Gun; Koizumi, Koshiro; Chung, Seon-Yong; Kodera, Yoichi; Kim, Jong-Oh; Saido, Katsuhiko

    2015-12-30

    Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Laboratory and software applications for clinical trials: the global laboratory environment.

    PubMed

    Briscoe, Chad

    2011-11-01

    The Applied Pharmaceutical Software Meeting is held annually. It is sponsored by The Boston Society, a not-for-profit organization that coordinates a series of meetings within the global pharmaceutical industry. The meeting generally focuses on laboratory applications, but in recent years has expanded to include some software applications for clinical trials. The 2011 meeting emphasized the global laboratory environment. Global clinical trials generate massive amounts of data in many locations that must be centralized and processed for efficient analysis. Thus, the meeting had a strong focus on establishing networks and systems for dealing with the computer infrastructure to support such environments. In addition to the globally installed laboratory information management system, electronic laboratory notebook and other traditional laboratory applications, cloud computing is quickly becoming the answer to provide efficient, inexpensive options for managing the large volumes of data and computing power, and thus it served as a central theme for the meeting.

  10. Global AIDS Reporting-2001 to 2015: Lessons for Monitoring the Sustainable Development Goals.

    PubMed

    Alfvén, T; Erkkola, T; Ghys, P D; Padayachy, J; Warner-Smith, M; Rugg, D; de Lay, P

    2017-07-01

    Since 2001 the UNAIDS Secretariat has retained the responsibility for monitoring progress towards global commitments on HIV/AIDS. Key critical characteristics of the reporting system were assessed for the reporting period from 2004 to 2014 and analyses were undertaken of response rates and core indicator performance. Country submission rates ranged from 102 (53%) Member States in 2004 to 186 (96%) in 2012. There was great variance in response rates for specific indicators, with the highest response rates for treatment-related indicators. The Global AIDS reporting system has improved substantially over time and has provided key trend data on responses to the HIV epidemic, serving as the global accountability mechanism and providing reference data on the global AIDS response. It will be critical that reporting systems continue to evolve to support the monitoring of the Sustainable Development Goals, in view of ending the AIDS epidemic as a public health threat by 2030.

  11. SPECTRAL MONITORING OF FUGITIVE CONTAMINANTS IN THE ENVIRONMENT

    EPA Science Inventory


    The accidental or intentional release of hazardous chemical substances into the environment is an inevitable consequence of anthropogenic activity. The detection, monitoring and remediation of fugitive contaminants is a major risk factor for human and ecological health and i...

  12. Background monitoring and its role in global estimation and forecast of the state of the biosphere.

    PubMed

    Izrael, Y A

    1982-12-01

    (1) Scientific grounds and the concept of monitoring as the system for observations, assessment and prediction of man-induced changes in the state of natural environment, the program and aims of the background monitoring were developed by the author in 1972-1980. These questions were discussed in detail at the International Symposium on Global Integrated Monitoring (Riga, U.S.S.R., December, 1978). It should be stressed that along with significant anthropogenic loading on large cities and industrial areas, natural ecosystems covering most of the Earth's territory are also exposed to quite extended, though insignificant anthropogenic effects. This paper proposes to consider the ways of the background information use for the biosphere state assessment and prediction. (2) Classification of objects for monitoring from the point of view of the consequences of the man-made impact, pollution in the first hand, is as follows: - population (public health); - ecosystem elements employed by man whose production is used by population (soil, water bodies, forest, etc.); - biotic elements of ecosystems (without the immediate consumed production); - abiotic constituents of natural ecosystems, considerable components of the biosphere, climatic system. (3) Historically, monitoring in all countries involves the first two spheres. The background monitoring also extends on the next two spheres. It should differentially take into account physical, chemical and biological factors of impacts. Indentification of biological effects is most complex and vital. Human impact at the background level proceeds indirectly through a general (global or regional) deterioration of the state of the biosphere. (4) Gradually the background monitoring is being practiced on a larger and larger scale. It is shown that the long-range atmospheric transport of pollutants in various regions leads to a gradual general increase of all the natural media pollution and to perceptible biological effects (soil and

  13. GEOGLAM Crop Assessment Tool: Adapting from global agricultural monitoring to food security monitoring

    NASA Astrophysics Data System (ADS)

    Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.

    2014-12-01

    The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.

  14. Ancestral populations perform better in a novel environment: domestication of medfly populations from five global regions

    PubMed Central

    Diamantidis, Alexandros D.; Carey, James R.; Nakas, Christos T.; Papadopoulos, Nikos T.

    2010-01-01

    Geographically isolated populations of a species may differ in several aspects of life-history, morphology, behavior, and genetic structure as a result of adaptation in ecologically diverse habitats. We used a global invasive species, the Mediterranean fruit fly to investigate, whether adaptation to a novel environment differs among geographically isolated populations that vary in major life history components such as life span and reproduction. We used wild populations from five global regions (Kenya, Hawaii, Guatemala, Portugal, and Greece). Adult demographic traits were monitored in F2, F5, F7 and F9 generations in captivity. Although domestication in constant laboratory conditions had a different effect on the mortality and reproductive rates of the different populations, a general trend of decreasing life span and age of first reproduction was observed for most medfly populations tested. However, taking into account longevity of both sexes, age-specific reproductive schedules, and average reproductive rates we found that the ancestral Kenyan population kept the above life history traits stable during domestication compared to the other populations tested. These findings provide important insights in the life-history evolution of this model species, and suggest that ancestral medfly populations perform better than the derived – invasive ones in a novel environment. PMID:21278856

  15. Environment Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.

  16. Glacial and periglacial environment monitoring in Aosta Valley - Northwestern Italian Alps

    NASA Astrophysics Data System (ADS)

    Motta, Elena; Cremonese, Edoardo; Morra di Cella, Umberto; Pogliotti, Paolo; Vagliasindi, Marco

    2010-05-01

    Aosta Valley is a small alpine region of about 3.300 km2 located in the NW Italy, on the southern side of the Alps and surrounded by the highest Alpine peaks such as Mont Blanc (4810m), Mont Rose (4634m) and Cervino (4478m), More than 50% of the territory has an elevation above 2000 metres asl. High mountain, glacial and periglacial environments cover a significant part of the territory. As the cryosphere is strongly sensitive to climate change, global warming effects are particularly evident in this alpine region, and they often affect environment and social and economic life, thus representing a key issue for politicians and people working and living in the valley. Among these effects, some of the most important are the decrease of water storage due to glaciers retreat and the increasing natural hazards as a consequence of rapid environmental dynamics. Hence the importance of monitoring glacial and periglacial environment, in order to quantify effects of climate change, to detect new dynamics and to manage consequences on the environment and the social life. In Aosta Valley the understanding of these phenomena is carried out by means of several actions, both at a regional scale and on specific representative sites. A multi-temporal analysis of aerial photographs, orthophotos and satellite imagery allows to detect glaciers evolution trend at a regional scale. All this information is collected in a Regional Glacier inventory, according to the World Glaciers Inventory standard and recommendations. Analysis of the information collected in the Inventory show that the total area presently covered by glaciers is about 135 km2; area changes occurred in the past has been about -44.3 km2, and -17 km2. between 1975 and 2005. Glacier inventory also gathers - for each of the about 200 glaciers - morphological data, information about events and photos both historical and present. Glacier mass balance (the difference resulting from the mass gained by the glacier through the

  17. CTFS/ForestGEO: A global network to monitor forest interactions with a changing climate

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; Muller-Landau, H.; McMahon, S.; Davies, S. J.

    2013-12-01

    Forests are an influential component of the global carbon cycle and strongly influence Earth's climate. Climate change is altering the dynamics of forests globally, which may result in significant climate feedbacks. Forest responses to climate change entail both short-term ecophysiological responses and longer-term directional shifts in community composition. These short- and long-term responses of forest communities to climate change may be better understood through long-term monitoring of large forest plots globally using standardized methodology. Here, we describe a global network of forest research plots (CTFS/ForestGEO) of utility for understanding forest responses to climate change and consequent feedbacks to the climate system. CTFS/ForestGEO is an international network consisting of 51 sites ranging in size from 2-150 ha (median size: 25 ha) and spanning from 25°S to 52°N latitude. At each site, every individual > 1cm DBH is mapped and identified, and recruitment, growth, and mortality are monitored every 5 years. Additional measurements include aboveground productivity, carbon stocks, soil nutrients, plant functional traits, arthropod and vertebrates monitoring, DNA barcoding, airborne and ground-based LiDAR, micrometeorology, and weather monitoring. Data from this network are useful for understanding how forest ecosystem structure and function respond to spatial and temporal variation in abiotic drivers, parameterizing and evaluating ecosystem and earth system models, aligning airborne and ground-based measurements, and identifying directional changes in forest productivity and composition. For instance, CTFS/ForestGEO data have revealed that solar radiation and night-time temperature are important drivers of aboveground productivity in moist tropical forests; that tropical forests are mixed in terms of productivity and biomass trends over the past couple decades; and that the composition of Panamanian forests has shifted towards more drought

  18. Keeping Scores: Audited Self-Monitoring of High-Stakes Testing Environments

    ERIC Educational Resources Information Center

    Padilla, Raymond; Richards, Michael

    2006-01-01

    To address a public relations problem faced by a large urban public school district in Texas, we conducted action research that resulted in an audited self-monitoring system for high-stakes testing environments. The system monitors violations of testing protocols while identifying and disseminating best practices to improve the education of…

  19. Coastal environment: historical and continuous monitoring

    NASA Astrophysics Data System (ADS)

    Ivaldi, Roberta; Surace, Luciano

    2010-05-01

    The monitoring is a tool providing essential data to study the process dynamic. The formation and transformation of coastal environment involve physical, chemical, geological and biological processes. The knowledge of the littoral systems and marine seafloor therefore requires a multidisciplinary approach. Since the phenomena observation occurs in a short period of time it requires the use of high quality data acquired with high accuracy and suitable processing procedures. This knowledge considerable increased during the past 50 years closely following significant progress in the methods of investigation at sea and laboratory. In addition seafloor exploration is deeply rooted in History. A sector actually subject to control results the coastal zone for its position as transition component between continental and marine environments with closely connected natural and human actions. Certainly these activities are important in the time to develop the technologies suited for the knowledge and to increase different protection, prevention, intervention and management tools. In this context the Istituto Idrografico della Marina (Hydrographic Institute of Italian Navy - I.I.M.) is a precursor because since its foundation (in 1872) it contributed to the monitoring activities related to charting and navigation, including hydrologic surveying, seafloor measurements and in consequence the landward limit, the shoreline. The coastal area is certainly the most changeable sector either natural or socio-economic causes. This is the most dynamic environment, subject both to marine (waves and currents) and continental (river and ice) actions, and continuously changing the intended use for the increase of industrial, commercial, recreation and the need for new structures to support. The coast has more recently taken on a growing value determined by some processes, including erosion and retreat are evidence of a transformation of which, however, undermine the system and impoverishing

  20. Towards monitoring land-cover and land-use changes at a global scale: the global land survey 2005

    USGS Publications Warehouse

    Gutman, G.; Byrnes, Raymond A.; Masek, J.; Covington, S.; Justice, C.; Franks, S.; Headley, Rachel

    2008-01-01

    Land cover is a critical component of the Earth system, infl uencing land-atmosphere interactions, greenhouse gas fl uxes, ecosystem health, and availability of food, fi ber, and energy for human populations. The recent Integrated Global Observations of Land (IGOL) report calls for the generation of maps documenting global land cover at resolutions between 10m and 30m at least every fi ve years (Townshend et al., in press). Moreover, despite 35 years of Landsat observations, there has not been a unifi ed global analysis of land-cover trends nor has there been a global assessment of land-cover change at Landsat-like resolution. Since the 1990s, the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) have supported development of data sets based on global Landsat observations (Tucker et al., 2004). These land survey data sets, usually referred to as GeoCover ™, provide global, orthorectifi ed, typically cloud-free Landsat imagery centered on the years 1975, 1990, and 2000, with a preference for leaf-on conditions. Collectively, these data sets provided a consistent set of observations to assess land-cover changes at a decadal scale. These data are freely available via the Internet from the USGS Center for Earth Resources Observation and Science (EROS) (see http://earthexplorer.usgs.gov or http://glovis.usgs.gov). This has resulted in unprecedented downloads of data, which are widely used in scientifi c studies of land-cover change (e.g., Boone et al., 2007; Harris et al., 2005; Hilbert, 2006; Huang et al. 2007; Jantz et al., 2005, Kim et al., 2007; Leimgruber, 2005; Masek et al., 2006). NASA and USGS are continuing to support land-cover change research through the development of GLS2005 - an additional global Landsat assessment circa 20051 . Going beyond the earlier initiatives, this data set will establish a baseline for monitoring changes on a 5-year interval and will pave the way toward continuous global land

  1. Global Monitoring of Water Supply and Sanitation: History, Methods and Future Challenges

    PubMed Central

    Bartram, Jamie; Brocklehurst, Clarissa; Fisher, Michael B.; Luyendijk, Rolf; Hossain, Rifat; Wardlaw, Tessa; Gordon, Bruce

    2014-01-01

    International monitoring of drinking water and sanitation shapes awareness of countries’ needs and informs policy, implementation and research efforts to extend and improve services. The Millennium Development Goals established global targets for drinking water and sanitation access; progress towards these targets, facilitated by international monitoring, has contributed to reducing the global disease burden and increasing quality of life. The experiences of the MDG period generated important lessons about the strengths and limitations of current approaches to defining and monitoring access to drinking water and sanitation. The methods by which the Joint Monitoring Programme (JMP) of WHO and UNICEF tracks access and progress are based on analysis of data from household surveys and linear regression modelling of these results over time. These methods provide nationally-representative and internationally-comparable insights into the drinking water and sanitation facilities used by populations worldwide, but also have substantial limitations: current methods do not address water quality, equity of access, or extra-household services. Improved statistical methods are needed to better model temporal trends. This article describes and critically reviews JMP methods in detail for the first time. It also explores the impact of, and future directions for, international monitoring of drinking water and sanitation. PMID:25116635

  2. Applications of TRMM-based Multi-Satellite Precipitation Estimation for Global Runoff Simulation: Prototyping a Global Flood Monitoring System

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold

    2008-01-01

    Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.

  3. A Low-Cost Sensor Buoy System for Monitoring Shallow Marine Environments

    PubMed Central

    Albaladejo, Cristina; Soto, Fulgencio; Torres, Roque; Sánchez, Pedro; López, Juan A.

    2012-01-01

    Monitoring of marine ecosystems is essential to identify the parameters that determine their condition. The data derived from the sensors used to monitor them are a fundamental source for the development of mathematical models with which to predict the behaviour of conditions of the water, the sea bed and the living creatures inhabiting it. This paper is intended to explain and illustrate a design and implementation for a new multisensor monitoring buoy system. The system design is based on a number of fundamental requirements that set it apart from other recent proposals: low cost of implementation, the possibility of application in coastal shallow-water marine environments, suitable dimensions for deployment and stability of the sensor system in a shifting environment like the sea bed, and total autonomy of power supply and data recording. The buoy system has successfully performed remote monitoring of temperature and marine pressure (SBE 39 sensor), temperature (MCP9700 sensor) and atmospheric pressure (YOUNG 61302L sensor). The above requirements have been satisfactorily validated by operational trials in a marine environment. The proposed buoy sensor system thus seems to offer a broad range of applications. PMID:23012562

  4. Value of Available Global Soil Moisture Products for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard

    2016-04-01

    The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS

  5. An experimental system for flood risk forecasting and monitoring at global scale

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Alfieri, Lorenzo; Kalas, Milan; Lorini, Valerio; Salamon, Peter

    2017-04-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by a wide range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasting, combining streamflow estimations with expected inundated areas and flood impacts. Finally, emerging technologies such as crowdsourcing and social media monitoring can play a crucial role in flood disaster management and preparedness. Here, we present some recent advances of an experimental procedure for near-real time flood mapping and impact assessment. The procedure translates in near real-time the daily streamflow forecasts issued by the Global Flood Awareness System (GloFAS) into event-based flood hazard maps, which are then combined with exposure and vulnerability information at global scale to derive risk forecast. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To increase the reliability of our forecasts we propose the integration of model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification and correction of impact forecasts. Finally, we present the results of preliminary tests which show the potential of the proposed procedure in supporting emergency response and management.

  6. A Review of Global Learning & Observations to Benefit the Environment (GLOBE)

    ERIC Educational Resources Information Center

    Executive Office of the President, 2010

    2010-01-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide, hands-on, primary and secondary school-based science and education program. GLOBE supports students, teachers, and scientists in collaborations using inquiry-based investigations of the environment and the earth system. GLOBE currently works in close…

  7. Monitoring the impacts of trade agreements on food environments.

    PubMed

    Friel, S; Hattersley, L; Snowdon, W; Thow, A-M; Lobstein, T; Sanders, D; Barquera, S; Mohan, S; Hawkes, C; Kelly, B; Kumanyika, S; L'Abbe, M; Lee, A; Ma, J; Macmullan, J; Monteiro, C; Neal, B; Rayner, M; Sacks, G; Swinburn, B; Vandevijvere, S; Walker, C

    2013-10-01

    The liberalization of international trade and foreign direct investment through multilateral, regional and bilateral agreements has had profound implications for the structure and nature of food systems, and therefore, for the availability, nutritional quality, accessibility, price and promotion of foods in different locations. Public health attention has only relatively recently turned to the links between trade and investment agreements, diets and health, and there is currently no systematic monitoring of this area. This paper reviews the available evidence on the links between trade agreements, food environments and diets from an obesity and non-communicable disease (NCD) perspective. Based on the key issues identified through the review, the paper outlines an approach for monitoring the potential impact of trade agreements on food environments and obesity/NCD risks. The proposed monitoring approach encompasses a set of guiding principles, recommended procedures for data collection and analysis, and quantifiable 'minimal', 'expanded' and 'optimal' measurement indicators to be tailored to national priorities, capacity and resources. Formal risk assessment processes of existing and evolving trade and investment agreements, which focus on their impacts on food environments will help inform the development of healthy trade policy, strengthen domestic nutrition and health policy space and ultimately protect population nutrition. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  8. On the reliable use of satellite-derived surface water products for global flood monitoring

    NASA Astrophysics Data System (ADS)

    Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.

    2015-12-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.

  9. Global Seismic Monitoring: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Zoback, M.; Benz, H.; Oppenheimer, D.

    2007-12-01

    Global seismological observations began in April 1889 when an earthquake in Tokyo, Japan was accurately recorded in Germany on two different horizontal pendulum instruments. However, modern global observational seismology really began 46 years ago when the 120-station World Wide Standard Seismograph Network was installed by the US to monitor underground nuclear tests and earthquakes using well-calibrated short- and long- period stations. At the same time rapid advances in computing technology enabled researchers to begin sophisticated analysis of the increasing amount of seismic data, which led to better understanding of earthquake source properties and their use in establishing plate tectonics. Today, global seismic networks are operated by German (Geophon), France (Geoscope), the United States (Global Seismograph Network) and the International Monitoring System. Presently, the Federation of Digital Seismograph Networks registers more than 1,000 broadband stations world-wide, a small percentage of the total number of digital seismic stations around the world. Following the devastating Kobe, Japan and Northridge, California earthquakes, Japan and the US have led the world in the integration of existing seismic sensor systems (weak and strong motion) into development of near-real-time, post-earthquake response products like ShakeMap, detailing the spatial distribution of strong shaking. Future challenges include expanding real-time integration of both seismic and geodetic sensor systems to produce early warning of strong shaking, rapid source determination, as well as near-realtime post- earthquake damage assessment. Seismic network data, hydro-acoustic arrays, deep water tide gauges, and satellite imagery of wave propagation should be integrated in real-time to provide input for hydrodynamic modeling yielding the distribution, timing and size of tsunamis runup--which would then be available instantly on the web, e.g. in a Google Earth format. Dense arrays of strong

  10. The Global Positioning System constellation as a space weather monitor

    NASA Astrophysics Data System (ADS)

    Morley, S.; Henderson, M. G.; Woodroffe, J. R.; Brito, T. V.

    2016-12-01

    The Global Positioning System (GPS) satellites are distributed across six orbital planes and follow near-circular orbits, with a 12 hour period, at an altitude of approximately 20200 km. The six orbital planes are distributed around the Earth and are nominally inclined at 55 degrees. Energetic particle detectors have been flown on the GPS constellation for more than two decades; by February 2016 there were 23 GPS satellites equipped with energetic particle instrumentation. The Combined X-ray Dosimeter (CXD), which is flown on 21 GPS satellites, has recently been cross-calibrated against electron data from the Van Allen Probes mission, demonstrating its utility for scientific research and radiation environment specification. Recently electron and proton flux data from these instruments, for the month of January 2014, have been publicly released. We will describe the GPS constellation from the perspective of its use as a monitor for space weather, review some of the key scientific results enabled by these instruments and show some recent observations from the constellation, including the 2015 St. Patrick's Day storm. Using data from multiple satellite missions we describe the dynamics of this storm in detail.

  11. Monitoring product safety in the postmarketing environment.

    PubMed

    Sharrar, Robert G; Dieck, Gretchen S

    2013-10-01

    The safety profile of a medicinal product may change in the postmarketing environment. Safety issues not identified in clinical development may be seen and need to be evaluated. Methods of evaluating spontaneous adverse experience reports and identifying new safety risks include a review of individual reports, a review of a frequency distribution of a list of the adverse experiences, the development and analysis of a case series, and various ways of examining the database for signals of disproportionality, which may suggest a possible association. Regulatory agencies monitor product safety through a variety of mechanisms including signal detection of the adverse experience safety reports in databases and by requiring and monitoring risk management plans, periodic safety update reports and postauthorization safety studies. The United States Food and Drug Administration is working with public, academic and private entities to develop methods for using large electronic databases to actively monitor product safety. Important identified risks will have to be evaluated through observational studies and registries.

  12. International Management: Creating a More Realistic Global Planning Environment.

    ERIC Educational Resources Information Center

    Waldron, Darryl G.

    2000-01-01

    Discusses the need for realistic global planning environments in international business education, introducing a strategic planning model that has teams interacting with teams to strategically analyze a selected multinational company. This dynamic process must result in a single integrated written analysis that specifies an optimal strategy for…

  13. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms

    PubMed Central

    Bonastre, Alberto; Ors, Rafael

    2017-01-01

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system—such as a wireless sensor network (WSN)—the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues. PMID:29295494

  14. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms.

    PubMed

    Navia, Marlon; Campelo, José Carlos; Bonastre, Alberto; Ors, Rafael

    2017-12-23

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system-such as a wireless sensor network (WSN)-the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues.

  15. Global characterization and monitoring of forest cover using Landsat data: opportunities and challanges

    USDA-ARS?s Scientific Manuscript database

    The compilation of global Landsat data-sets and the ever-lowering costs of computing now make it feasible to monitor the Earth’s land cover at Landsat resolutions of 30 m. In this article, we describe the methods to create global products of forest cover and cover change at Landsat resolutions. Neve...

  16. Monitoring tropical environments with Space Shuttle photography

    NASA Technical Reports Server (NTRS)

    Helfert, Michael R.; Lulla, Kamlesh P.

    1989-01-01

    Orbital photography from the Space Shuttle missions (1981-88) and earlier manned spaceflight programs (1962-1975) allows remote sensing time series to be constructed for observations of environmental change in selected portions of the global tropics. Particular topics and regions include deforestation, soil erosion, supersedimentation in streams, lacustrine, and estuarine environments, and desertification in the greater Amazon, tropical Africa and Madagascar, South and Southeast Asia, and the Indo-Pacific archipelagoes.

  17. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    USDA-ARS?s Scientific Manuscript database

    Global monitoring of agricultural productivity is critical in a world under a continuous increase of food demand. Here we have used new spaceborne retrievals of chlorophyll fluorescence, an emission quantity intrinsically linked to photosynthesis, to derive spatially explicit photosynthetic uptake r...

  18. Software for marine ecological environment comprehensive monitoring system based on MCGS

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Ma, R.; Cao, X.; Cao, L.; Chu, D. Z.; Zhang, L.; Zhang, T. P.

    2017-08-01

    The automatic integrated monitoring software for marine ecological environment based on MCGS configuration software is designed and developed to realize real-time automatic monitoring of many marine ecological parameters. The DTU data transmission terminal performs network communication and transmits the data to the user data center in a timely manner. The software adopts the modular design and has the advantages of stable and flexible data structure, strong portability and scalability, clear interface, simple user operation and convenient maintenance. Continuous site comparison test of 6 months showed that, the relative error of the parameters monitored by the system such as temperature, salinity, turbidity, pH, dissolved oxygen was controlled within 5% with the standard method and the relative error of the nutrient parameters was within 15%. Meanwhile, the system had few maintenance times, low failure rate, stable and efficient continuous monitoring capabilities. The field application shows that the software is stable and the data communication is reliable, and it has a good application prospect in the field of marine ecological environment comprehensive monitoring.

  19. Global Public Water Education: The World Water Monitoring Day Experience

    ERIC Educational Resources Information Center

    Araya, Yoseph Negusse; Moyer, Edward H.

    2006-01-01

    Public awareness of the impending world water crisis is an important prerequisite to create a responsible citizenship capable of participating to improve world water management. In this context, the case of a unique global water education outreach exercise, World Water Monitoring Day of October 18, is presented. Started in 2002 in the United…

  20. A review on bridge dynamic displacement monitoring using global positioning system and accelerometer

    NASA Astrophysics Data System (ADS)

    Yunus, Mohd Zulkifli Mohd; Ibrahim, Nuremira; Ahmad, Fatimah Shafinaz

    2018-02-01

    This paper reviews previous research on bridge dynamic displacement monitoring using Global Positioning System (GPS) and an accelerometer for Structural Health Monitoring (SHM) of bridge. These include the review of the advantages and disadvantages of the measurement as well as the methodology of the measurements used in the recent research study. This review could provide a preliminary decision overview for students or researchers before initiating a research related to the bridge dynamic displacement monitoring.

  1. University Leaders' Strategies in the Global Environment: A Comparative Study of Universitas Indonesia and the Australian National University

    ERIC Educational Resources Information Center

    Marginson, Simon; Sawir, Erlenawati

    2006-01-01

    In a global environment in which global, national and local nodes relate freely within common networks, all research universities must pursue strategies for building global capacity and facilitating cross-border staff and student movement and research collaboration. The study compares readings of the global environment, global and international…

  2. The Ozone Layer. UNEP/GEMS Environment Library No. 2.

    ERIC Educational Resources Information Center

    United Nations Environment Programme, Nairobi (Kenya).

    Since the United Nations Environment Program (UNEP) was created, more than a dozen years ago, public understanding of the environmental issues confronting our planet has increased enormously. The Global Environment Monitoring System (GEMS) has provided several environmental assessments. The aim of the UNEP/GEMS Environment Library is to provide…

  3. Environmental exposure modeling and monitoring of human pharmaceutical concentrations in the environment

    USGS Publications Warehouse

    Versteeg, D.J.; Alder, A. C.; Cunningham, V. L.; Kolpin, D.W.; Murray-Smith, R.; Ternes, T.

    2005-01-01

    Human pharmaceuticals are receiving increased attention as environmental contaminants. This is due to their biological activity and the number of monitoring programs focusing on analysis of these compounds in various environmental media and compartments. Risk assessments are needed to understand the implications of reported concentrations; a fundamental part of the risk assessment is an assessment of environmental exposures. The purpose of this chapter is to provide guidance on the use of predictive tools (e.g., models) and monitoring data in exposure assessments for pharmaceuticals in the environment. Methods to predict environmental concentrations from equations based on first principles are presented. These equations form the basis of existing GIS (geographic information systems)-based systems for understanding the spatial distribution of pharmaceuticals in the environment. The pharmaceutical assessment and transport (PhATE), georeferenced regional exposure assessment tool for European rivers (GREAT-ER), and geographical information system (GIS)-ROUT models are reviewed and recommendations are provided concerning the design and execution of monitoring studies. Model predictions and monitoring data are compared to evaluate the relative utility of each approach in environmental exposure assessments. In summary, both models and monitoring data can be used to define representative exposure concentrations of pharmaceuticals in the environment in support of environmental risk assessments.

  4. Global Disease Monitoring and Forecasting with Wikipedia

    PubMed Central

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid

    2014-01-01

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art. PMID:25392913

  5. Global disease monitoring and forecasting with Wikipedia.

    PubMed

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y; Priedhorsky, Reid

    2014-11-01

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with r2 up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  6. Global disease monitoring and forecasting with Wikipedia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore » logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  7. Global disease monitoring and forecasting with Wikipedia

    DOE PAGES

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; ...

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore » logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  8. The 'global health' education framework: a conceptual guide for monitoring, evaluation and practice

    PubMed Central

    2011-01-01

    Background In the past decades, the increasing importance of and rapid changes in the global health arena have provoked discussions on the implications for the education of health professionals. In the case of Germany, it remains yet unclear whether international or global aspects are sufficiently addressed within medical education. Evaluation challenges exist in Germany and elsewhere due to a lack of conceptual guides to develop, evaluate or assess education in this field. Objective To propose a framework conceptualising 'global health' education (GHE) in practice, to guide the evaluation and monitoring of educational interventions and reforms through a set of key indicators that characterise GHE. Methods Literature review; deduction. Results and Conclusion Currently, 'new' health challenges and educational needs as a result of the globalisation process are discussed and linked to the evolving term 'global health'. The lack of a common definition of this term complicates attempts to analyse global health in the field of education. The proposed GHE framework addresses these problems and presents a set of key characteristics of education in this field. The framework builds on the models of 'social determinants of health' and 'globalisation and health' and is oriented towards 'health for all' and 'health equity'. It provides an action-oriented construct for a bottom-up engagement with global health by the health workforce. Ten indicators are deduced for use in monitoring and evaluation. PMID:21501519

  9. INFORMAS (International Network for Food and Obesity/non-communicable diseases Research, Monitoring and Action Support): overview and key principles.

    PubMed

    Swinburn, B; Sacks, G; Vandevijvere, S; Kumanyika, S; Lobstein, T; Neal, B; Barquera, S; Friel, S; Hawkes, C; Kelly, B; L'abbé, M; Lee, A; Ma, J; Macmullan, J; Mohan, S; Monteiro, C; Rayner, M; Sanders, D; Snowdon, W; Walker, C

    2013-10-01

    Non-communicable diseases (NCDs) dominate disease burdens globally and poor nutrition increasingly contributes to this global burden. Comprehensive monitoring of food environments, and evaluation of the impact of public and private sector policies on food environments is needed to strengthen accountability systems to reduce NCDs. The International Network for Food and Obesity/NCDs Research, Monitoring and Action Support (INFORMAS) is a global network of public-interest organizations and researchers that aims to monitor, benchmark and support public and private sector actions to create healthy food environments and reduce obesity, NCDs and their related inequalities. The INFORMAS framework includes two 'process' modules, that monitor the policies and actions of the public and private sectors, seven 'impact' modules that monitor the key characteristics of food environments and three 'outcome' modules that monitor dietary quality, risk factors and NCD morbidity and mortality. Monitoring frameworks and indicators have been developed for 10 modules to provide consistency, but allowing for stepwise approaches ('minimal', 'expanded', 'optimal') to data collection and analysis. INFORMAS data will enable benchmarking of food environments between countries, and monitoring of progress over time within countries. Through monitoring and benchmarking, INFORMAS will strengthen the accountability systems needed to help reduce the burden of obesity, NCDs and their related inequalities. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  10. Long-term soil monitoring at U.S. Geological Survey reference watersheds

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason; Lawrence, Gregory B.; Mast, M. Alisa

    2014-01-01

    Monitoring the environment by making repeated measurements through time is essential to evaluate and track the health of ecosystems (fig. 1). Long-term datasets produced by such monitoring are indispensable for evaluating the effectiveness of environmental legislation and for designing mitigation strategies to address environmental changes in an era when human activities are altering the environment locally and globally.

  11. Monitoring the Effects of the Global Crisis on Education Provision

    ERIC Educational Resources Information Center

    Chang, Gwang-Chol

    2010-01-01

    This paper summarizes the experience and findings from the monitoring work carried out by UNESCO throughout 2009 to examine and assess the possible effects of the global financial and economic crisis on education provision in its Member States. The findings showed that although it was too early to ascertain the full extent of the impact of the…

  12. Monitoring the impact of trade agreements on national food environments: trade imports and population nutrition risks in Fiji.

    PubMed

    Ravuvu, Amerita; Friel, Sharon; Thow, Anne-Marie; Snowdon, Wendy; Wate, Jillian

    2017-06-13

    Trade agreements are increasingly recognised as playing an influential role in shaping national food environments and the availability and nutritional quality of the food supply. Global monitoring of food environments and trade policies can strengthen the evidence base for the impact of trade policy on nutrition, and support improved policy coherence. Using the INFORMAS trade monitoring protocol, we reviewed available food supply data to understand associations between Fiji's commitments under WTO trade agreements and food import volume trends. First, a desk review was conducted to map and record in one place Fiji's commitments to relevant existing trade agreements that have implications for Fiji's national food environment under the domains of the INFORMAS trade monitoring protocol. An excel database was developed to document the agreements and their provisions. The second aspect of the research focused on data extraction. We began with identifying food import volumes into Fiji by country of origin, with a particular focus on a select number of 'healthy and unhealthy' foods. We also developed a detailed listing of transnational food corporations currently operating in Fiji. The study suggests that Fiji's WTO membership, in conjunction with associated economic and agricultural policy changes have contributed to increased availability of both healthy and less healthy imported foods. In systematically monitoring the import volume trends of these two categories of food, the study highlights an increase in healthy foods such as fresh fruits and vegetables and whole-grain refined cereals. The study also shows that there has been an increase in less healthy foods including fats and oils; meat; processed dairy products; energy-dense beverages; and processed and packaged foods. By monitoring the trends of imported foods at country level from the perspective of trade agreements, we are able to develop appropriate and targeted interventions to improve diets and health. This

  13. PCDD, PCDF, dl-PCB and organochlorine pesticides monitoring in São Paulo City using passive air sampler as part of the Global Monitoring Plan.

    PubMed

    Tominaga, M Y; Silva, C R; Melo, J P; Niwa, N A; Plascak, D; Souza, C A M; Sato, M I Z

    2016-11-15

    The persistent organic pollutants (POPs), such as organochlorine pesticides and PCBs, are ordinarily monitored in the aquatic environment or in soil in the environmental quality monitoring programs in São Paulo, Brazil. One of the core matrices proposed in the POPs Global Monitoring Plan (GMP) from the Stockholm Convention list is the ambient air, which is not a usual matrix for POPs monitoring in the country. In this study POP levels were evaluated in the air samples from an urban site in São Paulo City over five years, starting in 2010 as a capacity building project for Latin America and the Caribbean region for POP monitoring in ambient air using passive samplers. Furthermore, after the end of the Project in 2012, the monitoring continued in the same sampling site as means to improving the analytical capacity building and contribute to the GMP data. The POPs monitored were 17 congeners of 2,3,7,8 chloro-substituted PCDDs and PCDFs, dioxin-like PCBs, indicator PCBs, organochlorine pesticides and toxaphene. The results show a slight decrease in PCDD/F, dl-PCBs and indicator PCBs levels along the five years. The organochlorine pesticide endosulfan was present at its highest concentration at the beginning of the monitoring period, but it was below detection level in the last year of the monitoring. Some other organochlorine pesticides were detected close to or below quantitation limits. The compounds identified were dieldrin, chlordane, α-HCH, γ-HCH, heptachlor, heptachlor epoxide, hexachlorobenzene and DDTs. Toxaphene congeners were not detected. These results have confirmed the efficacy of passive sampling for POP monitoring and the capacity building for POP analysis and monitoring was established. However more needs to be done, including expansion of sampling sites, new POPs and studies on sampling rates to be considered in calculating the concentration of POPs in ambient air using a passive sampler. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming.

    PubMed

    Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui

    2015-05-18

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.

  15. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    PubMed Central

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  16. [Organization of monitoring of electromagnetic radiation in the urban environment].

    PubMed

    Savel'ev, S I; Dvoeglazova, S V; Koz'min, V A; Kochkin, D E; Begishev, M R

    2008-01-01

    The authors describe new current approaches to monitoring the environment, including the sources of electromagnetic radiation and noise. Electronic maps of the area under study are shown to be made, by constructing the isolines or distributing the actual levels of controlled factors. These current approaches to electromagnetic and acoustic monitoring make it possible to automate a process of measurements, to analyze the established situation, and to simplify the risk controlling methodology.

  17. GLobal Integrated Design Environment

    NASA Technical Reports Server (NTRS)

    Kunkel, Matthew; McGuire, Melissa; Smith, David A.; Gefert, Leon P.

    2011-01-01

    The GLobal Integrated Design Environment (GLIDE) is a collaborative engineering application built to resolve the design session issues of real-time passing of data between multiple discipline experts in a collaborative environment. Utilizing Web protocols and multiple programming languages, GLIDE allows engineers to use the applications to which they are accustomed in this case, Excel to send and receive datasets via the Internet to a database-driven Web server. Traditionally, a collaborative design session consists of one or more engineers representing each discipline meeting together in a single location. The discipline leads exchange parameters and iterate through their respective processes to converge on an acceptable dataset. In cases in which the engineers are unable to meet, their parameters are passed via e-mail, telephone, facsimile, or even postal mail. The result of this slow process of data exchange would elongate a design session to weeks or even months. While the iterative process remains in place, software can now exchange parameters securely and efficiently, while at the same time allowing for much more information about a design session to be made available. GLIDE is written in a compilation of several programming languages, including REALbasic, PHP, and Microsoft Visual Basic. GLIDE client installers are available to download for both Microsoft Windows and Macintosh systems. The GLIDE client software is compatible with Microsoft Excel 2000 or later on Windows systems, and with Microsoft Excel X or later on Macintosh systems. GLIDE follows the Client-Server paradigm, transferring encrypted and compressed data via standard Web protocols. Currently, the engineers use Excel as a front end to the GLIDE Client, as many of their custom tools run in Excel.

  18. Global Assessment of Bisphenol A in the Environment

    PubMed Central

    Corrales, Jone; Kristofco, Lauren A.; Steele, W. Baylor; Yates, Brian S.; Breed, Christopher S.; Williams, E. Spencer

    2015-01-01

    Because bisphenol A (BPA) is a high production volume chemical, we examined over 500 peer-reviewed studies to understand its global distribution in effluent discharges, surface waters, sewage sludge, biosolids, sediments, soils, air, wildlife, and humans. Bisphenol A was largely reported from urban ecosystems in Asia, Europe, and North America; unfortunately, information was lacking from large geographic areas, megacities, and developing countries. When sufficient data were available, probabilistic hazard assessments were performed to understand global environmental quality concerns. Exceedances of Canadian Predicted No Effect Concentrations for aquatic life were >50% for effluents in Asia, Europe, and North America but as high as 80% for surface water reports from Asia. Similarly, maximum concentrations of BPA in sediments from Asia were higher than Europe. Concentrations of BPA in wildlife, mostly for fish, ranged from 0.2 to 13 000 ng/g. We observed 60% and 40% exceedences of median levels by the US Centers for Disease Control and Prevention’s National Health and Nutrition Examination Survey in Europe and Asia, respectively. These findings highlight the utility of coordinating global sensing of environmental contaminants efforts through integration of environmental monitoring and specimen banking to identify regions for implementation of more robust environmental assessment and management programs. PMID:26674671

  19. The Greenhouse Gases. UNEP/GEMS Environment Library No. 1.

    ERIC Educational Resources Information Center

    United Nations Environment Programme, Nairobi (Kenya).

    Since the United Nations Environment Program (UNEP) was created, more than a dozen years ago, public understanding of the environmental issues confronting our planet has increased enormously. The Global Environment Monitoring System (GEMS) has provided several environmental assessments including urban air pollution, climate modification,…

  20. Role of commercial aircraft in global monitoring systems.

    PubMed

    Steinberg, R

    1973-04-27

    The role of commercial aircraft in monitoring meteorological parameters and atmospheric constituents has been limited in the former case and virtually nonexistent in the latter. I have tried to point out that this situation can and should be changed now. The new family of wide-bodied jets such as the 747, DC-10, and L-1011 aircraft can be used to supply important global atmospheric and tropical meteorological data for which there is a pressing need. While scientists are not in total agreement on the magnitude of the effect of particulates and gases on the atmosphere, there is almost unanimous concurrence that we are severely limited in information, and that global baseline concentrations must be established for particulates and gases in the troposphere and lower stratosphere as soon as possible. Also, more synoptic meteorological information from the tropical troposphere is highly desirable. In the final analysis, commercial aircraft may offer the most inexpensive way to monitor our atmosphere in the near future. Much of the instrumentation technology is here and the rest is certainly within our grasp. The fact of the matter is that there are now over 220 Boeing 747's and Douglas DC-10's in service, flying an average of 10 hours a day. Long-range flights, such as those from Tokyo to Anchorage to London in the Northern Hemisphere and from Hawaii to Pago Pago to Sydney in the Southern Hemisphere, are commonplace. These aircraft are equipped with inertial navigation systems and central air data computers coupled to advanced data storage systems which can readily be interrogated by satellite. This means that there is now a large amount of snyoptic weather information which can be obtained with a minimum of effort and cost. Likewise, a start at obtaining measurements of atmospheric constituents on a global basis can be made now. All we need to do is make the effort.

  1. Sustainable development goals for global health: facilitating good governance in a complex environment.

    PubMed

    Haffeld, Just

    2013-11-01

    Increasing complexity is following in the wake of rampant globalization. Thus, the discussion about Sustainable Development Goals (SDGs) requires new thinking that departs from a critique of current policy tools in exploration of a complexity-friendly approach. This article argues that potential SDGs should: treat stakeholders, like states, business and civil society actors, as agents on different aggregate levels of networks; incorporate good governance processes that facilitate early involvement of relevant resources, as well as equitable participation, consultative processes, and regular policy and programme implementation reviews; anchor adoption and enforcement of such rules to democratic processes in accountable organizations; and include comprehensive systems evaluations, including procedural indicators. A global framework convention for health could be a suitable instrument for handling some of the challenges related to the governance of a complex environment. It could structure and legitimize government involvement, engage stakeholders, arrange deliberation and decision-making processes with due participation and regular policy review, and define minimum standards for health services. A monitoring scheme could ensure that agents in networks comply according to whole-systems targets, locally defined outcome indicators, and process indicators, thus resolving the paradox of government control vs. local policy space. A convention could thus exploit the energy created in the encounter between civil society, international organizations and national authorities. Copyright © 2013 Reproductive Health Matters. Published by Elsevier Ltd. All rights reserved.

  2. Microbial monitoring of spacecraft and associated environments

    NASA Technical Reports Server (NTRS)

    La Duc, M. T.; Kern, R.; Venkateswaran, K.

    2004-01-01

    Rapid microbial monitoring technologies are invaluable in assessing contamination of spacecraft and associated environments. Universal and widespread elements of microbial structure and chemistry are logical targets for assessing microbial burden. Several biomarkers such as ATP, LPS, and DNA (ribosomal or spore-specific), were targeted to quantify either total bioburden or specific types of microbial contamination. The findings of these assays were compared with conventional, culture-dependent methods. This review evaluates the applicability and efficacy of some of these methods in monitoring the microbial burden of spacecraft and associated environments. Samples were collected from the surfaces of spacecraft, from surfaces of assembly facilities, and from drinking water reservoirs aboard the International Space Station (ISS). Culture-dependent techniques found species of Bacillus to be dominant on these surfaces. In contrast, rapid, culture-independent techniques revealed the presence of many Gram-positive and Gram-negative microorganisms, as well as actinomycetes and fungi. These included both cultivable and noncultivable microbes, findings further confirmed by DNA-based microbial detection techniques. Although the ISS drinking water was devoid of cultivable microbes, molecular-based techniques retrieved DNA sequences of numerous opportunistic pathogens. Each of the methods tested in this study has its advantages, and by coupling two or more of these techniques even more reliable information as to microbial burden is rapidly obtained. Copyright 2004 Springer-Verlag.

  3. Design of the Resources and Environment Monitoring Website in Kashgar

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Lin, Q. Z.; Wang, Q. J.

    2014-03-01

    Despite the development of the web geographical information system (web GIS), many useful spatial analysis functions are ignored in the system implementation. As Kashgar is rich in natural resources, it is of great significance to monitor the ample natural resource and environment situation in the region. Therefore, with multiple uses of spatial analysis, resources and environment monitoring website of Kashgar was built. Functions of water, vegetation, ice and snow extraction, task management, change assessment as well as thematic mapping and reports based on TM remote sensing images were implemented in the website. The design of the website was presented based on database management tier, the business logic tier and the top-level presentation tier. The vital operations of the website were introduced and the general performance was evaluated.

  4. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  5. Monitoring Global Crop Condition Indicators Using a Web-Based Visualization Tool

    Treesearch

    Bob Tetrault; Bob Baldwin

    2006-01-01

    Global crop condition information for major agricultural regions in the world can be monitored using the web-based application called Crop Explorer. With this application, U.S. and international producers, traders, researchers, and the public can access remote sensing information used by agricultural economists and scientists who predict crop production worldwide. For...

  6. Energy harvesting schemes for building interior environment monitoring

    NASA Astrophysics Data System (ADS)

    Zylka, Pawel; Pociecha, Dominik

    2016-11-01

    A vision to supply microelectronic devices without batteries making them perpetual or extending time of service in battery-oriented mobile supply schemes is the driving force of the research related to ambient energy harvesting. Energy harnessing aims thus at extracting energy from various ambient energy "pools", which generally are cost- or powerineffective to be scaled up for full-size, power-plant energy generation schemes supplying energy in electric form. These include - but are not limited to - waste heat, electromagnetic hum, vibrations, or human-generated power in addition to traditional renewable energy resources like water flow, tidal and wind energy or sun radiation which can also be exploited at the miniature scale by energy scavengers. However, in case of taking advantage of energy harvesting strategies to power up sensors monitoring environment inside buildings adaptable energy sources are restrained to only some which additionally are limited in spatial and temporal accessibility as well as available power. The paper explores experimentally an energy harvesting scheme exploiting human kinesis applicable in indoor environment for supplying a wireless indoor micro-system, monitoring ambient air properties (pressure, humidity and temperature).

  7. Monitoring Global Food Security with New Remote Sensing Products and Tools

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Husak, G. J.; Magadzire, T.; Verdin, J. P.

    2012-12-01

    Global agriculture monitoring is a crucial aspect of monitoring food security in the developing world. The Famine Early Warning Systems Network (FEWS NET) has a long history of using remote sensing and crop modeling to address food security threats in the form of drought, floods, pests, and climate change. In recent years, it has become apparent that FEWS NET requires the ability to apply monitoring and modeling frameworks at a global scale to assess potential impacts of foreign production and markets on food security at regional, national, and local levels. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara (UCSB) Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of the increased mandate for remote monitoring. We present our monitoring products for measuring actual evapotranspiration (ETa), normalized difference vegetation index (NDVI) in a near-real-time mode, and satellite-based rainfall estimates and derivatives. USGS FEWS NET has implemented a Simplified Surface Energy Balance (SSEB) model to produce operational ETa anomalies for Africa and Central Asia. During the growing season, ETa anomalies express surplus or deficit crop water use, which is directly related to crop condition and biomass. We present current operational products and provide supporting validation of the SSEB model. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with an improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a relatively high spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. We provide an overview of these data and cite specific applications for crop monitoring. FEWS NET uses satellite rainfall estimates as inputs for

  8. Global Drought Monitoring and Forecasting based on Satellite Data and Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Lobell, D. B.; Wood, E. F.

    2010-12-01

    Monitoring drought globally is challenging because of the lack of dense in-situ hydrologic data in many regions. In particular, soil moisture measurements are absent in many regions and in real time. This is especially problematic for developing regions such as Africa where water information is arguably most needed, but virtually non-existent on the ground. With the emergence of remote sensing estimates of all components of the water cycle there is now the potential to monitor the full terrestrial water cycle from space to give global coverage and provide the basis for drought monitoring. These estimates include microwave-infrared merged precipitation retrievals, evapotranspiration based on satellite radiation, temperature and vegetation data, gravity recovery measurements of changes in water storage, microwave based retrievals of soil moisture and altimetry based estimates of lake levels and river flows. However, many challenges remain in using these data, especially due to biases in individual satellite retrieved components, their incomplete sampling in time and space, and their failure to provide budget closure in concert. A potential way forward is to use modeling to provide a framework to merge these disparate sources of information to give physically consistent and spatially and temporally continuous estimates of the water cycle and drought. Here we present results from our experimental global water cycle monitor and its African drought monitor counterpart (http://hydrology.princeton.edu/monitor). The system relies heavily on satellite data to drive the Variable Infiltration Capacity (VIC) land surface model to provide near real-time estimates of precipitation, evapotranspiraiton, soil moisture, snow pack and streamflow. Drought is defined in terms of anomalies of soil moisture and other hydrologic variables relative to a long-term (1950-2000) climatology. We present some examples of recent droughts and how they are identified by the system, including

  9. Feasibility study of microwave modulation DIAL system for global CO II monitoring

    NASA Astrophysics Data System (ADS)

    Hirano, Yoshihito; Kameyama, Shumpei; Ueno, Shinichi; Sugimoto, Nobuo; Kimura, Toshiyoshi

    2006-12-01

    A new concept of DIAL (DIfferential Absorption Lidar) system for global CO II monitoring using microwave modulation is introduced. This system uses quasi-CW lights which are intensity modulated in microwave region and receives a backscattered light from the ground. In this system, ON/OFF wavelength laser lights are modulated with microwave frequencies, and received lights of two wavelengths are able to be discriminated by modulation frequencies in electrical signal domain. Higher sensitivity optical detection can be realized compared with the conventional microwave modulation lidar by using direct down conversion of modulation frequency. The system also has the function of ranging by using pseudo-random coding in modulation. Fiber-based optical circuit using wavelength region of 1.6 micron is a candidate for the system configuration. After the explanation of this configuration, feasibility study of this system on the application to global CO II monitoring is introduced.

  10. Monitoring the price and affordability of foods and diets globally.

    PubMed

    Lee, A; Mhurchu, C N; Sacks, G; Swinburn, B; Snowdon, W; Vandevijvere, S; Hawkes, C; L'abbé, M; Rayner, M; Sanders, D; Barquera, S; Friel, S; Kelly, B; Kumanyika, S; Lobstein, T; Ma, J; Macmullan, J; Mohan, S; Monteiro, C; Neal, B; Walker, C

    2013-10-01

    Food prices and food affordability are important determinants of food choices, obesity and non-communicable diseases. As governments around the world consider policies to promote the consumption of healthier foods, data on the relative price and affordability of foods, with a particular focus on the difference between 'less healthy' and 'healthy' foods and diets, are urgently needed. This paper briefly reviews past and current approaches to monitoring food prices, and identifies key issues affecting the development of practical tools and methods for food price data collection, analysis and reporting. A step-wise monitoring framework, including measurement indicators, is proposed. 'Minimal' data collection will assess the differential price of 'healthy' and 'less healthy' foods; 'expanded' monitoring will assess the differential price of 'healthy' and 'less healthy' diets; and the 'optimal' approach will also monitor food affordability, by taking into account household income. The monitoring of the price and affordability of 'healthy' and 'less healthy' foods and diets globally will provide robust data and benchmarks to inform economic and fiscal policy responses. Given the range of methodological, cultural and logistical challenges in this area, it is imperative that all aspects of the proposed monitoring framework are tested rigorously before implementation. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  11. Enhance the Quality of Crowdsensing for Fine-Grained Urban Environment Monitoring via Data Correlation

    PubMed Central

    Kang, Xu; Liu, Liang; Ma, Huadong

    2017-01-01

    Monitoring the status of urban environments, which provides fundamental information for a city, yields crucial insights into various fields of urban research. Recently, with the popularity of smartphones and vehicles equipped with onboard sensors, a people-centric scheme, namely “crowdsensing”, for city-scale environment monitoring is emerging. This paper proposes a data correlation based crowdsensing approach for fine-grained urban environment monitoring. To demonstrate urban status, we generate sensing images via crowdsensing network, and then enhance the quality of sensing images via data correlation. Specifically, to achieve a higher quality of sensing images, we not only utilize temporal correlation of mobile sensing nodes but also fuse the sensory data with correlated environment data by introducing a collective tensor decomposition approach. Finally, we conduct a series of numerical simulations and a real dataset based case study. The results validate that our approach outperforms the traditional spatial interpolation-based method. PMID:28054968

  12. Global Ionospheric and Plasmaspheric Monitoring With FORMOSAT-3/COSMIC and Ground GPS Observables

    NASA Astrophysics Data System (ADS)

    Tsai, H.; Ho, T.; Cheng, M.; Hsu, B.; Liu, J. G.

    2011-12-01

    The global ionosphere map (GIM) provides instantaneous "snapshots" of the global total electron content (TEC) distribution by interpolating the ground-based GPS observables, which include the ionospheric and plasmaspheric content. The increasing use of the FORMOSAT-3/COSMIC (F3/C) satellites provides a change to monitor the global ionospheric and plasmaspheric content individually. The global plasmasphere map (GPM) is constructed by the F3/C non-radio occultation (RO) data in 3-hour snapshot, while the re-defined GIM in narrow sense is contructed with the blending of F3/C RO, the ground GPS observables, and the GPM. The result can be used to study the interaction between ionosphere and plasmasphere.

  13. The GMES Sentinel-5 mission for operational atmospheric monitoring: status and developments

    NASA Astrophysics Data System (ADS)

    Sierk, Bernd; Bezy, Jean-Loup; Caron, Jerôme; Meynard, Roland; Veihelmann, Ben; Ingmann, Paul

    2017-11-01

    Sentinel-5 is an atmospheric monitoring mission planned in the frame of the joint EU/ESA initiative Global Monitoring for Environment and Security (GMES). The objective of the mission, planned to be launched in 2020, is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications.

  14. Monitoring temporal and spatial trends of legacy and emerging contaminants in marine environment: results from the environmental specimen bank (es-BANK) of Ehime University, Japan.

    PubMed

    Tanabe, Shinsuke; Ramu, Karri

    2012-07-01

    The Environmental Specimen Bank (es-BANK) for Global Monitoring at the Center for Marine Environmental Studies, Ehime University, Japan has more than four decades of practical experience in specimen banking. Over the years, es-BANK has archived specimens representing a wide range of environmental matrices, i.e. fishes, reptiles, birds, aquatic mammals, terrestrial mammals, human, soils, and sediments. The samples have been collected as part of the various monitoring programs conducted worldwide. The current review is a summary of selected studies conducted at the Center for Marine Environmental Studies, on temporal and spatial trends of legacy and emerging contaminants in the marine environment. One of the major conclusions drawn from the studies is that environmental problems are no more regional issues and, thus, environmental specimen banking should not be limited to national boundaries, but should have a global outlook. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Geostationary Environment Monitoring Spectrometer (gems) Over the Korea Peninsula and Asia-Pacific Region

    NASA Astrophysics Data System (ADS)

    Lasnik, J.; Stephens, M.; Baker, B.; Randall, C.; Ko, D. H.; Kim, S.; Kim, Y.; Lee, E. S.; Chang, S.; Park, J. M.; SEO, S. B.; Youk, Y.; Kong, J. P.; Lee, D.; Lee, S. H.; Kim, J.

    2014-12-01

    Introduction: The Geostationary Environment Monitoring Spectrometer (GEMS) is one of two instruments manifested aboard the South Korean Geostationary Earth Orbit KOrea Multi-Purpose SATellite-2B (GEO-KOMPSAT-2B or GK2B), which is scheduled to launch in 2018. Jointly developed/built by KARI and Ball Aerospace, GEMS is a geostationary UV-Vis hyperspectral imager designed to monitor trans-boundary tropospheric pollution events over the Korean peninsula and Asia-Pacific region. The spectrometer provides high temporal and spatial resolution (3.5 km N/S by 7.2 km E/W) measurements of ozone, its precursors, and aerosols. Over the short-term, hourly measurements by GEMS will improve early warnings for potentially dangerous pollution events and monitor population exposure. Over the 10-year mission-life, GEMS will serve to enhance our understanding of long-term climate change and broader air quality issues on both a regional and global scale. The GEMS sensor design and performance are discussed, which includes an overview of measurement capabilities and the on-orbit concept of operations. GEMS Sensor Overview: The GEMS hyperspectral imaging system consists of a telescope and Offner grating spectrometer that feeds a single CCD detector array. A spectral range of 300-500 nm and sampling of 0.2 nm enables NO2, SO2, HCHO, O3, and aerosol retrieval. The GEMS field of regard (FOR), which extends from 5°S to 45°N in latitude and 75°E to 145°E in longitude, is operationally achieved using an onboard two-axis scan mirror. On-orbit, the radiometric calibration is maintained using solar measurements, which are performed using two onboard diffusers: a working diffuser that is deployed routinely for the purpose of solar calibration, and a reference diffuser that is deployed sparingly for the purpose of monitoring working diffuser performance degradation.

  16. New Challenges Facing Universities in the Internet-Driven Global Environment

    ERIC Educational Resources Information Center

    Rajasingham, Lalita

    2011-01-01

    This paper explores some new challenges facing universities in a global multimediated Internet-based environment, as they seek alternative paradigms and options to remain true to their core business. At a time of rapid technological change, and contested, complex concepts associated with globalisation, knowledge is becoming a primary factor of…

  17. Causes and consequences of timing errors associated with global positioning system collar accelerometer activity monitors

    Treesearch

    Adam J. Gaylord; Dana M. Sanchez

    2014-01-01

    Direct behavioral observations of multiple free-ranging animals over long periods of time and large geographic areas is prohibitively difficult. However, recent improvements in technology, such as Global Positioning System (GPS) collars equipped with motion-sensitive activity monitors, create the potential to remotely monitor animal behavior. Accelerometer-equipped...

  18. Ozone Profiles and Tropospheric Ozone from Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Liu, X.; Chance, K.; Sioris, C. E.; Sparr, R. J. D.; Kuregm, T. P.; Martin, R. V.; Newchurch, M. J.; Bhartia, P. K.

    2003-01-01

    Ozone profiles are derived from backscattered radiances in the ultraviolet spectra (290-340 nm) measured by the nadir-viewing Global Ozone Monitoring Experiment using optimal estimation. Tropospheric O3 is directly retrieved with the tropopause as one of the retrieval levels. To optimize the retrieval and improve the fitting precision needed for tropospheric O3, we perform extensive wavelength and radiometric calibrations and improve forward model inputs. Retrieved O3 profiles and tropospheric O3 agree well with coincident ozonesonde measurements, and the integrated total O3 agrees very well with Earth Probe TOMS and Dobson/Brewer total O3. The global distribution of tropospheric O3 clearly shows the influences of biomass burning, convection, and air pollution, and is generally consistent with our current understanding.

  19. A Global Rapid Integrated Monitoring System for Water Cycle and Water Resource Assessment (Global-RIMS)

    NASA Technical Reports Server (NTRS)

    Roads, John; Voeroesmarty, Charles

    2005-01-01

    The main focus of our work was to solidify underlying data sets, the data processing tools and the modeling environment needed to perform a series of long-term global and regional hydrological simulations leading eventually to routine hydrometeorological predictions. A water and energy budget synthesis was developed for the Mississippi River Basin (Roads et al. 2003), in order to understand better what kinds of errors exist in current hydrometeorological data sets. This study is now being extended globally with a larger number of observations and model based data sets under the new NASA NEWS program. A global comparison of a number of precipitation data sets was subsequently carried out (Fekete et al. 2004) in which it was further shown that reanalysis precipitation has substantial problems, which subsequently led us to the development of a precipitation assimilation effort (Nunes and Roads 2005). We believe that with current levels of model skill in predicting precipitation that precipitation assimilation is necessary to get the appropriate land surface forcing.

  20. Monitoring Biogeochemical Processes in Coral Reef Environments with Remote Sensing: A Cross-Disciplinary Approach.

    NASA Astrophysics Data System (ADS)

    Perez, D.; Phinn, S. R.; Roelfsema, C. M.; Shaw, E. C.; Johnston, L.; Iguel, J.; Camacho, R.

    2017-12-01

    Primary production and calcification are important to measure and monitor over time, because of their fundamental roles in the carbon cycling and accretion of habitat structure for reef ecosystems. However, monitoring biogeochemical processes in coastal environments has been difficult due to complications in resolving differences in water optical properties from biological productivity and other sources (sediment, dissolved organics, etc.). This complicates application of algorithms developed for satellite image data from open ocean conditions, and requires alternative approaches. This project applied a cross-disciplinary approach, using established methods for monitoring productivity in terrestrial environments to coral reef systems. Availability of regularly acquired high spatial (< 5m pixels), multispectral satellite imagery has improved mapping and monitoring capabilities for shallow, marine environments such as seagrass and coral reefs. There is potential to further develop optical models for remote sensing applications to estimate and monitor reef system processes, such as primary productivity and calcification. This project collected field measurements of spectral absorptance and primary productivity and calcification rates for two reef systems: Heron Reef, southern Great Barrier Reef and Saipan Lagoon, Commonwealth of the Northern Mariana Islands. Field data were used to parameterize a light-use efficiency (LUE) model, estimating productivity from absorbed photosynthetically active radiation. The LUE model has been successfully applied in terrestrial environments for the past 40 years, and could potentially be used in shallow, marine environments. The model was used in combination with a map of benthic community composition produced from objective based image analysis of WorldView 2 imagery. Light-use efficiency was measured for functional groups: coral, algae, seagrass, and sediment. However, LUE was overestimated for sediment, which led to overestimation

  1. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  2. Assessing and Monitoring Student Progress in an E-Learning Personnel Preparation Environment.

    ERIC Educational Resources Information Center

    Meyen, Edward L.; Aust, Ronald J.; Bui, Yvonne N.; Isaacson, Robert

    2002-01-01

    Discussion of e-learning in special education personnel preparation focuses on student assessment in e-learning environments. It includes a review of the literature, lessons learned by the authors from assessing student performance in e-learning environments, a literature perspective on electronic portfolios in monitoring student progress, and the…

  3. High-resolution global irradiance monitoring from photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    and meteorological parameters (e.g. from the model COSMO-DE) to calculate global irradiance by means of the generated power of individual photovoltaic systems. For the year 2012, our method is tested for PV systems in the Allgäu region (south Germany), the distribution area of the system operator "AllgäuNetz GmbH & Co". The test region includes 215 online-monitored photovoltaic systems and one pyranometer station located at the DWD (Deutscher WetterDienst) weather station Hohenpeißenberg (operated by the German Weather Service). The present talk provides an introduction to the newly developed method along with first results for clear sky scenarios. (1) B. Mayer and A. Kylling (2005): Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use. In: Chemistry and Physics Chemistry and Physics. Page: 1855 - 1877

  4. Remoteness from sources of persistent organic pollutants in the multi-media global environment.

    PubMed

    Göktaş, Recep Kaya; MacLeod, Matthew

    2016-10-01

    Quantifying the remoteness from sources of persistent organic pollutants (POPs) can inform the design of monitoring studies and the interpretation of measurement data. Previous work on quantifying remoteness has not explicitly considered partitioning between the gas phase and aerosols, and between the atmosphere and the Earth's surface. The objective of this study is to present a metric of remoteness for POPs transported through the atmosphere calculated with a global multimedia fate model, BETR-Research. We calculated the remoteness of regions covering the entire globe from emission sources distributed according to light emissions, and taking into account the multimedia partitioning properties of chemicals and using averaged global climate data. Remoteness for hypothetical chemicals with distinct partitioning properties (volatile, semi-volatile, hydrophilic, low-volatility) and having two different half-lives in air (60-day and 2-day) are presented. Differences in remoteness distribution among the hypothetical chemicals are most pronounced in scenarios assuming 60-day half-life in air. In scenarios with a 2-day half-life in air, degradation dominates over wet and dry deposition processes as a pathway for atmospheric removal of all chemicals except the low-volatility chemical. The remoteness distribution of the low-volatility chemical is strongly dependent on assumptions about degradability on atmospheric aerosols. Calculations that considered seasonal variability in temperature, hydroxyl radical concentrations in the atmosphere and global atmospheric and oceanic circulation patterns indicate that variability in hydroxyl radical concentrations largely determines the seasonal variability of remoteness. Concentrations of polybrominated diphenyl ethers (PBDEs) measured in tree bark from around the world are more highly correlated with remoteness calculated using our methods than with proximity to human population, and we see considerable potential to apply remoteness

  5. The global obesity pandemic: shaped by global drivers and local environments.

    PubMed

    Swinburn, Boyd A; Sacks, Gary; Hall, Kevin D; McPherson, Klim; Finegood, Diane T; Moodie, Marjory L; Gortmaker, Steven L

    2011-08-27

    The simultaneous increases in obesity in almost all countries seem to be driven mainly by changes in the global food system, which is producing more processed, affordable, and effectively marketed food than ever before. This passive overconsumption of energy leading to obesity is a predictable outcome of market economies predicated on consumption-based growth. The global food system drivers interact with local environmental factors to create a wide variation in obesity prevalence between populations. Within populations, the interactions between environmental and individual factors, including genetic makeup, explain variability in body size between individuals. However, even with this individual variation, the epidemic has predictable patterns in subpopulations. In low-income countries, obesity mostly affects middle-aged adults (especially women) from wealthy, urban environments; whereas in high-income countries it affects both sexes and all ages, but is disproportionately greater in disadvantaged groups. Unlike other major causes of preventable death and disability, such as tobacco use, injuries, and infectious diseases, there are no exemplar populations in which the obesity epidemic has been reversed by public health measures. This absence increases the urgency for evidence-creating policy action, with a priority on reduction of the supply-side drivers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Global 2000: The Presidential Task Force on Resources and the Environment--A Series of Responses.

    ERIC Educational Resources Information Center

    Scrofani, E. Robert; And Others

    A series of responses to "The Global 2000 Report to the President" is presented. The Global 2000 Report examines the issues and interdependencies of population, resources, and environment in the long term global perspective (ED 188 935). According to the above report, if present trends continue, serious stresses of overcrowding, pollution,…

  7. Global Biogeographic Analysis of Methanogenic Archaea Identifies Community-Shaping Environmental Factors of Natural Environments

    PubMed Central

    Wen, Xi; Yang, Sizhong; Horn, Fabian; Winkel, Matthias; Wagner, Dirk; Liebner, Susanne

    2017-01-01

    Methanogenic archaea are important for the global greenhouse gas budget since they produce methane under anoxic conditions in numerous natural environments such as oceans, estuaries, soils, and lakes. Whether and how environmental change will propagate into methanogenic assemblages of natural environments remains largely unknown owing to a poor understanding of global distribution patterns and environmental drivers of this specific group of microorganisms. In this study, we performed a meta-analysis targeting the biogeographic patterns and environmental controls of methanogenic communities using 94 public mcrA gene datasets. We show a global pattern of methanogenic archaea that is more associated with habitat filtering than with geographical dispersal. We identify salinity as the control on methanogenic community composition at global scale whereas pH and temperature are the major controls in non-saline soils and lakes. The importance of salinity for structuring methanogenic community composition is also reflected in the biogeography of methanogenic lineages and the physiological properties of methanogenic isolates. Linking methanogenic alpha-diversity with reported values of methane emission identifies estuaries as the most diverse methanogenic habitats with, however, minor contribution to the global methane budget. With salinity, temperature and pH our study identifies environmental drivers of methanogenic community composition facing drastic changes in many natural environments at the moment. However, consequences of this for the production of methane remain elusive owing to a lack of studies that combine methane production rate with community analysis. PMID:28769904

  8. Environments. Our Common Home: Earth. A Curriculum Strategy to Affect Student Skills Development and Exposure to Diverse Global Natural/Social Environments.

    ERIC Educational Resources Information Center

    Peters, Richard

    One of a series of global education instructional units, this unit on environments was designed to be infused with existing social studies courses aimed at students in grades 5-12. Concept-based and skills-oriented, the curriculum provides opportunities for students to develop an understanding of the nature and character of diverse global natural…

  9. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Teixeira, Kristina J.; Davies, Stuart J.; Bennett, Amy C.

    2014-09-25

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services, including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamic research sites useful for characterizing forest responses to global change. The broad suite of measurements made at the CTFS-ForestGEO sites make it possible to investigate the complex ways in which global change is impacting forest dynamics. ongoing research across the network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forestmore » diversity and dynamics in a era of global change« less

  10. The Global Environment

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2003-10-01

    What can we teachers do? For students we can provide a strong background in the process of science and in scientific ethics. We can encourage students to apply such knowledge wisely throughout their lives. For the public at large, we can speak out in favor of real science at every opportunity. It is possible that the current scientific consensus on global warming is based on incomplete evidence, but global warming ought not be dismissed as unscientific or a hoax, and scientists ought not allow that to happen. As we celebrate National Chemistry Week, we should resolve to support chemistry and science as strongly as we can.

  11. On the relevance of using open wireless sensor networks in environment monitoring.

    PubMed

    Bagula, Antoine B; Inggs, Gordon; Scott, Simon; Zennaro, Marco

    2009-01-01

    This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.

  12. Monitoring progress towards universal health coverage at country and global levels.

    PubMed

    Boerma, Ties; Eozenou, Patrick; Evans, David; Evans, Tim; Kieny, Marie-Paule; Wagstaff, Adam

    2014-09-01

    Universal health coverage (UHC) has been defined as the desired outcome of health system performance whereby all people who need health services (promotion, prevention, treatment, rehabilitation, and palliation) receive them, without undue financial hardship. UHC has two interrelated components: the full spectrum of good-quality, essential health services according to need, and protection from financial hardship, including possible impoverishment, due to out-of-pocket payments for health services. Both components should benefit the entire population. This paper summarizes the findings from 13 country case studies and five technical reviews, which were conducted as part of the development of a global framework for monitoring progress towards UHC. The case studies show the relevance and feasibility of focusing UHC monitoring on two discrete components of health system performance: levels of coverage with health services and financial protection, with a focus on equity. These components link directly to the definition of UHC and measure the direct results of strategies and policies for UHC. The studies also show how UHC monitoring can be fully embedded in often existing, regular overall monitoring of health sector progress and performance. Several methodological and practical issues related to the monitoring of coverage of essential health services, financial protection, and equity, are highlighted. Addressing the gaps in the availability and quality of data required for monitoring progress towards UHC is critical in most countries.

  13. Monitoring Progress towards Universal Health Coverage at Country and Global Levels

    PubMed Central

    Boerma, Ties; Eozenou, Patrick; Evans, David; Evans, Tim; Kieny, Marie-Paule; Wagstaff, Adam

    2014-01-01

    Universal health coverage (UHC) has been defined as the desired outcome of health system performance whereby all people who need health services (promotion, prevention, treatment, rehabilitation, and palliation) receive them, without undue financial hardship. UHC has two interrelated components: the full spectrum of good-quality, essential health services according to need, and protection from financial hardship, including possible impoverishment, due to out-of-pocket payments for health services. Both components should benefit the entire population. This paper summarizes the findings from 13 country case studies and five technical reviews, which were conducted as part of the development of a global framework for monitoring progress towards UHC. The case studies show the relevance and feasibility of focusing UHC monitoring on two discrete components of health system performance: levels of coverage with health services and financial protection, with a focus on equity. These components link directly to the definition of UHC and measure the direct results of strategies and policies for UHC. The studies also show how UHC monitoring can be fully embedded in often existing, regular overall monitoring of health sector progress and performance. Several methodological and practical issues related to the monitoring of coverage of essential health services, financial protection, and equity, are highlighted. Addressing the gaps in the availability and quality of data required for monitoring progress towards UHC is critical in most countries. PMID:25243899

  14. Relationship between urban eco-environment and competitiveness with the background of globalization: statistical explanation based on industry type newly classified with environment demand and environment pressure.

    PubMed

    Kang, Xiao-guang; Ma, Qing-Bin

    2005-01-01

    Within the global urban system, the statistical relationship between urban eco-environment (UE) and urban competitiveness (UC) (RUEC) is researched. Data showed that there is a statistically inverted-U relationship between UE and UC. Eco-environmental factor is put into the classification of industries, and gets six industrial types by two indexes viz. industries' eco-environmental demand and pressure. The statistical results showed that there is a strong relationship, for new industrial classification, between the changes of industrial structure and evolvement of UE. The drive mechanism of the evolvement of urban eco-environment, with human demand and global work division was analyzed. The conclusion is that the development stratege, industrial policies of cities, and environmental policies fo cities must be fit with their ranks among the global urban system. At the era of globalization, so far as the environmental policies, their rationality could not be assessed with the level of strictness, but it can enhance cities' competitiveness when they are fit with cities' capabilities to attract and control some sections of the industry's value-chain. None but these kinds of environmental policies can probably enhance the UC.

  15. Induced environment contamination monitor: Preliminary results from the Spacelab 1 flight

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (Editor)

    1984-01-01

    The STS-9/Induced Environment Contamination Monitor (IECM) mission is briefly described. Preliminary results and analyses are given for each of the 10 instruments comprising the IECM. The final section presents a summary of the major results.

  16. A Unified Cropland Layer at 250-m for global agriculture monitoring

    USGS Publications Warehouse

    Waldner, François; Fritz, Steffen; Di Gregorio, Antonio; Plotnikov, Dmitry; Bartalev, Sergey; Kussul, Nataliia; Gong, Peng; Thenkabail, Prasad S.; Hazeu, Gerard; Klein, Igor; Löw, Fabian; Miettinen, Jukka; Dadhwal, Vinay Kumar; Lamarche, Céline; Bontemps, Sophie; Defourny, Pierre

    2016-01-01

    Accurate and timely information on the global cropland extent is critical for food security monitoring, water management and earth system modeling. Principally, it allows for analyzing satellite image time-series to assess the crop conditions and permits isolation of the agricultural component to focus on food security and impacts of various climatic scenarios. However, despite its critical importance, accurate information on the spatial extent, cropland mapping with remote sensing imagery remains a major challenge. Following an exhaustive identification and collection of existing land cover maps, a multi-criteria analysis was designed at the country level to evaluate the fitness of a cropland map with regards to four dimensions: its timeliness, its legend, its resolution adequacy and its confidence level. As a result, a Unified Cropland Layer that combines the fittest products into a 250 m global cropland map was assembled. With an evaluated accuracy ranging from 82% to 95%, the Unified Cropland Layer successfully improved the accuracy compared to single global products.

  17. Global Monitoring of the CTBT: Progress, Capabilities and Plans (Invited)

    NASA Astrophysics Data System (ADS)

    Zerbo, L.

    2013-12-01

    The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), established in 1996, is tasked with building up the verification regime of the CTBT. The regime includes a global system for monitoring the earth, the oceans and the atmosphere for nuclear tests, and an on-site inspection (OSI) capability. More than 80% of the 337 facilities of the International Monitoring System (IMS) have been installed and are sending data to the International Data Centre (IDC) in Vienna, Austria for processing. These IMS data along with IDC processed and reviewed products are available to all States that have signed the Treaty. Concurrent with the build-up of the global monitoring networks, near-field geophysical methods are being developed and tested for OSIs. The monitoring system is currently operating in a provisional mode, as the Treaty has not yet entered into force. Progress in installing and operating the IMS and the IDC and in building up an OSI capability will be described. The capabilities of the monitoring networks have progressively improved as stations are added to the IMS and IDC processing techniques refined. Detection thresholds for seismic, hydroacoustic, infrasound and radionuclide events have been measured and in general are equal to or lower than the predictions used during the Treaty negotiations. The measurements have led to improved models and tools that allow more accurate predictions of future capabilities and network performance under any configuration. Unplanned tests of the monitoring network occurred when the DPRK announced nuclear tests in 2006, 2009, and 2013. All three tests were well above the detection threshold and easily detected and located by the seismic monitoring network. In addition, noble gas consistent with the nuclear tests in 2006 and 2013 (according to atmospheric transport models) was detected by stations in the network. On-site inspections of these tests were not conducted as the Treaty has not entered

  18. STS-2 Induced Environment Contamination Monitor (IECM): Quick-Look Report

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (Editor)

    1982-01-01

    The STS-2/induced environment contamination monitor (IECM) mission is described. The IECM system performance is discussed, and IECM mission time events are briefly described. Quick look analyses are presented for each of the 10 instruments comprising the IECM on the flight of STS-2. A short summary is presented.

  19. Monitoring the tobacco use epidemic V: The environment: factors that influence tobacco use.

    PubMed

    Farrelly, Matthew C

    2009-01-01

    This environment paper (V of V) summarizes important surveillance and evaluation systems that monitor influences on tobacco use such as smoke-free laws and other legislation, excise taxes, mass media, and a broad range of tobacco control activities, discusses their strengths and weaknesses, and makes recommendations for enhancement. We summarize and expand on the recommendations from the Environment Working Group of the National Tobacco Monitoring, Research, and Evaluation Workshop prioritized surveillance needs. This group rank-ordered surveillance needs various environmental influences, considering both the perceived importance of each environmental influence and the adequacy of the current surveillance systems. Based on this ranking and subsequent discussion, the group identified key priorities for enhancement. The group arrived at two key priorities: (1) develop and implement a national system for local tobacco control ordinance surveillance, and (2) develop and implement a comprehensive program monitoring system that is used by all states and supported by all funding agencies. Other environmental influences recommended for priority monitoring include cigarette prices and tobacco countermarketing. Systematic surveillance and monitoring of key program inputs and outputs and environmental influences is central to understand the effectiveness and cost-effectiveness of tobacco control efforts.

  20. Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction.

    PubMed

    Asselman, Jana; De Coninck, Dieter I M; Vandegehuchte, Michiel B; Jansen, Mieke; Decaestecker, Ellen; De Meester, Luc; Vanden Bussche, Julie; Vanhaecke, Lynn; Janssen, Colin R; De Schamphelaere, Karel A C

    2015-05-01

    The authors characterized global cytosine methylation levels in 2 different genotypes of the ecotoxicological model organism Daphnia magna after exposure to a wide array of biotic and abiotic environmental stressors. The present study aimed to improve the authors' understanding of the role of cytosine methylation in the organism's response to environmental conditions. The authors observed a significant genotype effect, an environment effect, and a genotype × environment effect. In particular, global cytosine methylation levels were significantly altered after exposure to Triops predation cues, Microcystis, and sodium chloride compared with control conditions. Significant differences between the 2 genotypes were observed when animals were exposed to Triops predation cues, Microcystis, Cryptomonas, and sodium chloride. Despite the low global methylation rate under control conditions (0.49-0.52%), global cytosine methylation levels upon exposure to Triops demonstrated a 5-fold difference between the genotypes (0.21% vs 1.02%). No effects were found in response to arsenic, cadmium, fish, lead, pH of 5.5, pH of 8, temperature, hypoxia, and white fat cell disease. The authors' results point to the potential role of epigenetic effects under changing environmental conditions such as predation (i.e., Triops), diet (i.e., Cryptomonas and Microcystis), and salinity. The results of the present study indicate that, despite global cytosine methylation levels being low, epigenetic effects may be important in environmental studies on Daphnia. © 2015 SETAC.

  1. Regaining legitimacy in the context of global governance? UNESCO, Education for All coordination and the Global Monitoring Report

    NASA Astrophysics Data System (ADS)

    Edwards, D. Brent; Okitsu, Taeko; da Costa, Romina; Kitamura, Yuto

    2017-06-01

    This research note shares insights which resulted from a larger study into the ways in which the United Nations Educational, Scientific and Cultural Organization (UNESCO) - during 2010-2014 - used its position as coordinator of the post-Dakar Framework for Action (initiated at the World Education Forum held in 2000 and designed to reinvigorate the Education for All initiative) to help it regain some of the legitimacy it had lost in the preceding decades. The research study focused on the role of both the UNESCO Education for All Follow-up Unit and the production of the Global Monitoring Report (GMR) during the 2000s because they were at the heart of UNESCO's efforts to repair its image and renew its impact in one area of global governance, specifically in the global education policy field. The study's findings were based on an analysis of documents, archives and interviews ( n = 17) with key actors inside and outside UNESCO, including representatives of UNESCO's peer institutions.

  2. Monitoring the Global Soil Moisture Climatology Using GLDAS/LIS

    NASA Astrophysics Data System (ADS)

    Meng, J.; Mitchell, K.; Wei, H.; Gottschalck, J.

    2006-05-01

    used for both climate variability assessment and as a source of land initial conditions for ensemble CFS/Noah seasonal hindcast experiments. Finally, this GLDAS/Noah climatology will serve as the foundation for a global drought/flood monitoring system that includes near realtime daily updates of the global land states.

  3. Resourcesat-1: A global multi-observation mission for resources monitoring

    NASA Astrophysics Data System (ADS)

    Seshadri, K. S. V.; Rao, Mukund; Jayaraman, V.; Thyagarajan, K.; Sridhara Murthi, K. R.

    2005-07-01

    With an array of Indian Remote Sensing Satellites (IRS), a wide variety of national applications have been developed as an inter-agency effort over the past 20 years. Now, the capacity of the programme has been extended into the global arena and IRS is providing operational data services to the global user community. The recently launched IRS satellite, Resourcesat-1, was placed into perfect orbit by India's PSLV and is providing valuable imaging services. Resourcesat-1 is actually like 3 satellites "rolled" into one, imaging a wide field of 710 km area at ˜55 m resolution in multispectral bands from the AWiFS, 23 m resolution in a systematic 142 km swath from four bands of the LISS-3 and the 5.8 m multi-spectral images from the most advanced sensor—LISS-4. Yet another aspect of Resourcesat-1 is it that it marks a "watershed" in terms of a quantum jump in technological capability that India has achieved compared to past missions. The mission has many newer features—the advanced imaging sensors, the more precise attitude and orbit determination systems, the satellite positioning system onboard, the mass storage devices and many other features. This mission has led IRS into a new technological era, and when combined with the technological capability of the forthcoming Cartosat missions, India would have developed technologies that will take us into the new generation of EO satellites for the coming years. This paper provides a detailed description of the Resourcesat-1 mission. From the applications point of view, Resourcesat-1 will open up new avenues for environmental monitoring and resources management—especially for vegetation assessment and disaster management support. The monitoring capability of this mission is also extremely important for a number of applications. The mission has global imaging and servicing capabilities and could be received through the Antrix-Space Imaging network, which markets Resourcesat-1 data worldwide. This paper also describes

  4. Pyrethroid pesticide residues in the global environment: An overview.

    PubMed

    Tang, Wangxin; Wang, Di; Wang, Jiaqi; Wu, Zhengwen; Li, Lingyu; Huang, Mingli; Xu, Shaohui; Yan, Dongyun

    2018-01-01

    Pyrethroids are synthetic organic insecticides with low mammalian toxicity that are widely used in both rural and urban areas worldwide. After entering the natural environment, pyrethroids circulate among the three phases of solid, liquid, and gas and enter organisms through food chains, resulting in substantial health risks. This review summarized the available studies on pyrethroid residues since 1986 in different media at the global scale and indicated that pyrethroids have been widely detected in a range of environments (including soils, water, sediments, and indoors) and in organisms. The concentrations and detection rates of agricultural pyrethroids, which always contain α-cyanogroup (α-CN), such as cypermethrin and fenvalerate, decline in the order of crops > sediments > soils > water. Urban pyrethroids (not contain α-CN), such as permethrin, have been detected at high levels in the indoor environment, and 3-phenoxybenzoic acid, a common pyrethroid metabolite in human urine, is frequently detected in the human body. Pyrethroid pesticides accumulate in sediments, which are a source of pyrethroid residues in aquatic products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Financing tuberculosis control: the role of a global financial monitoring system.

    PubMed

    Floyd, Katherine; Pantoja, Andrea; Dye, Christopher

    2007-05-01

    Control of tuberculosis (TB), like health care in general, costs money. To sustain TB control at current levels, and to make further progress so that global targets can be achieved, information about funding needs, sources of funding, funding gaps and expenditures is important at global, regional, national and sub-national levels. Such data can be used for resource mobilization efforts; to document how funding requirements and gaps are changing over time; to assess whether increases in funding can be translated into increased expenditures and whether increases in expenditure are producing improvements in programme performance; and to identify which countries or regions have the greatest needs and funding gaps. In this paper, we discuss a global system for financial monitoring of TB control that was established in WHO in 2002. By early 2007, this system had accounted for actual or planned expenditures of more than US$ 7 billion and was systematically reporting financial data for countries that carry more than 90% of the global burden of TB. We illustrate the value of this system by presenting major findings that have been produced for the period 2002-2007, including results that are relevant to the achievement of global targets for TB control set for 2005 and 2015. We also analyse the strengths and limitations of the system and its relevance to other health-care programmes.

  6. Fiber-optic sensing in cryogenic environments. [for rocket propellant tank monitoring

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Brooks, R. E.

    1980-01-01

    Passive optical sensors using fiber-optic signal transmission to a remote monitoring station are explored as an alternative to electrical sensors used to monitor the status of explosive propellants. The designs of passive optical sensors measuring liquid level, pressure, and temperature in cryogenic propellant tanks are discussed. Test results for an experimental system incorporating these sensors and operating in liquid nitrogen demonstrate the feasibility of passive sensor techniques and indicate that they can serve as non-hazardous replacements for more conventional measuring equipment in explosive environments.

  7. Accumulation and fragmentation of plastic debris in global environments

    PubMed Central

    Barnes, David K. A.; Galgani, Francois; Thompson, Richard C.; Barlaz, Morton

    2009-01-01

    One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly

  8. Accumulation and fragmentation of plastic debris in global environments.

    PubMed

    Barnes, David K A; Galgani, Francois; Thompson, Richard C; Barlaz, Morton

    2009-07-27

    One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly

  9. Man in the Living Environment. A Report on Global Ecological Problems.

    ERIC Educational Resources Information Center

    Inger, Robert F.; And Others

    The findings of four groups of ecologists are synthesized in chapter I of this report on global ecological problems prepared as a data base for the United Nations Conference on the Human Environment. The other chapters contain the reports of each group. In "Cycles of Elements" the biologically important elements, phosphorus, sulfur, and nitrogen,…

  10. Global biodiversity monitoring: from data sources to essential biodiversity variables

    USGS Publications Warehouse

    Proenca, Vania; Martin, Laura J.; Pereira, Henrique M.; Fernandez, Miguel; McRae, Louise; Belnap, Jayne; Böhm, Monika; Brummitt, Neil; Garcia-Moreno, Jaime; Gregory, Richard D.; Honrado, Joao P; Jürgens, Norbert; Opige, Michael; Schmeller, Dirk S.; Tiago, Patricia; van Sway, Chris A

    2016-01-01

    Essential Biodiversity Variables (EBVs) consolidate information from varied biodiversity observation sources. Here we demonstrate the links between data sources, EBVs and indicators and discuss how different sources of biodiversity observations can be harnessed to inform EBVs. We classify sources of primary observations into four types: extensive and intensive monitoring schemes, ecological field studies and satellite remote sensing. We characterize their geographic, taxonomic and temporal coverage. Ecological field studies and intensive monitoring schemes inform a wide range of EBVs, but the former tend to deliver short-term data, while the geographic coverage of the latter is limited. In contrast, extensive monitoring schemes mostly inform the population abundance EBV, but deliver long-term data across an extensive network of sites. Satellite remote sensing is particularly suited to providing information on ecosystem function and structure EBVs. Biases behind data sources may affect the representativeness of global biodiversity datasets. To improve them, researchers must assess data sources and then develop strategies to compensate for identified gaps. We draw on the population abundance dataset informing the Living Planet Index (LPI) to illustrate the effects of data sources on EBV representativeness. We find that long-term monitoring schemes informing the LPI are still scarce outside of Europe and North America and that ecological field studies play a key role in covering that gap. Achieving representative EBV datasets will depend both on the ability to integrate available data, through data harmonization and modeling efforts, and on the establishment of new monitoring programs to address critical data gaps.

  11. A NASA-NOAA Update on Global Fire Monitoring Capabilities for Studying Fire-Climate Interactions: Focus on Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Gutman, G.; Csiszar, I.

    2012-04-01

    The global, long-term effects of fires are not well understood and we are learning more every year about its global impacts and potential feedbacks to climate change. The frequency, intensity, severity, and emissions of fires may be changing as a result of climate warming as has been manifested by the observations in northern Eurasia. The climate-fire interaction may produce important societal and environmental impacts in the long run. NASA and NOAA have been developing long-term fire datasets and improving systems to monitor active fires, study fire severity, fire growth, emissions into the atmosphere, and fire effects on carbon stocks. Almost every year there are regions in the world that experience particularly severe fires. For example, less than two years ago the European part of Russia was the focus of attention due to the anomalous heat and dry wave with record high temperatures that caused wildfires rage for weeks and that led to thousands of deaths. The fires also have spread to agricultural land and damaged crops, causing sharp increases of global wheat commodity prices. Remote sensing observations are widely used to monitor fire occurrence, fire spread; smoke dispersion, and atmospheric pollutant levels. In the context of climate warming and acute interest to large-scale emissions from various land-cover disturbances studying spatial-temporal dynamics of forest fire activity is critical. NASA supports several activities related to fires and the Earth system. These include GOFC-GOLD Fire Project Office at University of Maryland and the Rapid Response System for global fire monitoring. NASA has funded many research projects on biomass burning, which cover various geographic regions of the world and analyze impacts of fires on atmospheric carbon in support of REDD initiative, as well as on atmospheric pollution with smoke. Monitoring active fires, studying their severity and burned areas, and estimating fire-induced atmospheric emissions has been the

  12. Monitoring Wildlife Interactions with Their Environment: An Interdisciplinary Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles-Smith, Lauren E.; Domnguez, Ignacio X.; Fornaro, Robert J.

    In a rapidly changing world, wildlife ecologists strive to correctly model and predict complex relationships between animals and their environment, which facilitates management decisions impacting public policy to conserve and protect delicate ecosystems. Recent advances in monitoring systems span scientific domains, including animal and weather monitoring devices and landscape classification mapping techniques. The current challenge is how to combine and use detailed output from various sources to address questions spanning multiple disciplines. WolfScout wildlife and weather tracking system is a software tool capable of filling this niche. WolfScout automates integration of the latest technological advances in wildlife GPS collars, weathermore » stations, drought conditions, and severe weather reports, and animal demographic information. The WolfScout database stores a variety of classified landscape maps including natural and manmade features. Additionally, WolfScout’s spatial database management system allows users to calculate distances between animals’ location and landscape characteristics, which are linked to the best approximation of environmental conditions at the animal’s location during the interaction. Through a secure website, data are exported in formats compatible with multiple software programs including R and ArcGIS. The WolfScout design promotes interoperability in data, between researchers, and software applications while standardizing analyses of animal interactions with their environment.« less

  13. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments

    EPA Science Inventory

    Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to significantly alleviate difficulties associated with traditional monitoring approac...

  14. Global lightning and severe storm monitoring from GPS orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suszcynsky, D. M.; Jacobson, A. R.; Linford, J

    Over the last few decades, there has been a growing interest to develop and deploy an automated and continuously operating satellite-based global lightning mapper [e.g. Christian et al., 1989; Weber et al., 1998; Suszcynsky et al., 2000]. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. Satellite-based lightning mappers are designed to exploit this relationship by using lightning detection as a proxy for remotely identifying, locating and characterizing strong convective activity on a global basis. Global lightning and convection mapping promises to provide users with (1) an enhancedmore » global severe weather monitoring and early warning capability [e.g. Weber et al., 1998] (2) improved ability to optimize aviation flight paths around convective cells, particularly over oceanic and remote regions that are not sufficiently serviced by existing weather radar [e.g. Weber et al., 1998], and (3) access to regional and global proxy data sets that can be used for scientific studies and as input into meteorological forecast and global climatology models. The physical foundation for satellite-based remote sensing of convection by way of lightning detection is provided by the basic interplay between the electrical and convective states of a thundercloud. It is widely believed that convection is a driving mechanism behind the hydrometeor charging and transport that produces charge separation and lightning discharges within thunderclouds [e.g. see chapter 3 in MacGorman and Rust, 1998]. Although cloud electrification and discharge processes are a complex function of the convective dynamics and microphysics of the cloud, the fundamental relationship between convection and electrification is easy to observe. For example, studies have shown that the strength of the convective process within a thundercell can be loosely parameterized (with large variance) by the intensity

  15. Executive Perceptions on International Education in a Globalized Environment: The Travel Industry's Point of View

    ERIC Educational Resources Information Center

    Munoz, J. Mark; Katsioloudes, Marios I.

    2004-01-01

    Research on globalization has determined travel executives' perceptions of the psychological implications brought about by an interconnected global environment and the implications on international education. With the concepts of Clyne and Rizvi (1998) and Pittaway, Ferguson, and Breen (1998) on the value of cross-cultural interaction as a…

  16. International environmental law and global public health.

    PubMed Central

    Schirnding, Yasmin von; Onzivu, William; Adede, Andronico O.

    2002-01-01

    The environment continues to be a source of ill-health for many people, particularly in developing countries. International environmental law offers a viable strategy for enhancing public health through the promotion of increased awareness of the linkages between health and environment, mobilization of technical and financial resources, strengthening of research and monitoring, enforcement of health-related standards, and promotion of global cooperation. An enhanced capacity to utilize international environmental law could lead to significant worldwide gains in public health. PMID:12571726

  17. PROBA-V, the small saellite for global vegetation monitoring

    NASA Astrophysics Data System (ADS)

    Deronde, Bart; Benhadj, Iskander; Clarijs, Dennis; Dierckx, Wouter; Dries, Jan; Sterckx, Sindy; van Roey, Tom; Wolters, erwin

    2015-04-01

    PROBA-V, the small satellite for global vegetation monitoring Bart Deronde, Iskander Benhadj, Dennis Clarijs, Wouter Dierckx, Jan Dries, Sindy Sterck, Tom Van Roey, Erwin Wolters (VITO NV) Exactly one year ago, in December 2013, VITO (Flemish Institute for Technological Research) started up the real time operations of PROBA-V. This miniaturised ESA (European Space Agency) satellite was launched by ESA's Vega rocket from Kourou, French-Guyana on May 7th, 2013. After six months of commissioning the mission was taken into operations. Since mid-December 2013 PROBA-V products are processed on an operational basis and distributed to a worldwide user community. PROVA-V is tasked with a full-scale mission: to map land cover and vegetation growth across the entire planet every two days. It is flying a lighter but fully functional redesign of the 'VEGETATION' imaging instruments previously flown on France's full-sized SPOT-4 and SPOT-5 satellites, which have been observing Earth since 1998. PROBA-V, entirely built by a Belgian consortium, continues this valuable and uninterrupted time series with daily products at 300 m and 1 km resolution. Even 100 m products will become available early 2015, delivering a global coverage every 5 days. The blue, red, near-infrared and mid-infrared wavebands allow PROBA-V to distinguish between different types of land cover/use and plant species, including crops. Vital uses of these data include day-by-day tracking of vegetation development, alerting authorities to crop failures, monitoring inland water resources and tracing the steady spread of deserts and deforestation. As such the data is also highly valuable to study climate change and the global carbon cycle. In this presentation we will discuss the in-flight results, one year after launch, from the User Segment (i.e. the processing facility) point of view. The focus will be on geometric and radiometric accuracy and stability. Furthermore, we will elaborate on the lessons learnt from the

  18. Real-time on-line space research laboratory environment monitoring with off-line trend and prediction analysis

    NASA Astrophysics Data System (ADS)

    Jules, Kenol; Lin, Paul P.

    2007-06-01

    With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.

  19. The Global Integrated Drought Monitoring and Prediction System (GIDMaPS): Overview and Capabilities

    NASA Astrophysics Data System (ADS)

    AghaKouchak, A.; Hao, Z.; Farahmand, A.; Nakhjiri, N.

    2013-12-01

    Development of reliable monitoring and prediction indices and tools are fundamental to drought preparedness and management. Motivated by the Global Drought Information Systems (GDIS) activities, this paper presents the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) which provides near real-time drought information using both remote sensing observations and model simulations. The monthly data from the NASA Modern-Era Retrospective analysis for Research and Applications (MERRA-Land), North American Land Data Assimilation System (NLDAS), and remotely sensed precipitation data are used as input to GIDMaPS. Numerous indices have been developed for drought monitoring based on various indicator variables (e.g., precipitation, soil moisture, water storage). Defining droughts based on a single variable (e.g., precipitation, soil moisture or runoff) may not be sufficient for reliable risk assessment and decision making. GIDMaPS provides drought information based on multiple indices including Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI) and the Multivariate Standardized Drought Index (MSDI) which combines SPI and SSI probabilistically. In other words, MSDI incorporates the meteorological and agricultural drought conditions for overall characterization of droughts. The seasonal prediction component of GIDMaPS is based on a persistence model which requires historical data and near-past observations. The seasonal drought prediction component is based on two input data sets (MERRA and NLDAS) and three drought indicators (SPI, SSI and MSDI). The drought prediction model provides the empirical probability of drought for different severity levels. In this presentation, both monitoring and prediction components of GIDMaPS will be discussed, and the results from several major droughts including the 2013 Namibia, 2012-2013 United States, 2011-2012 Horn of Africa, and 2010 Amazon Droughts will be presented. The results indicate

  20. An International Haze-Monitoring Network for Students.

    ERIC Educational Resources Information Center

    Mims, Forrest M.

    1999-01-01

    Describes the haze-monitoring program that was added to the protocols of the Global Learning and Observations to Benefit the Environment (GLOBE) Program. Finds that sun photometry provides a convenient means for allowing students to perform hands-on science while learning about various topics in history, electronics, algebra, statistics, graphing,…

  1. The role of 'Big Society' in monitoring the state of the natural environment.

    PubMed

    Mackechnie, Colin; Maskell, Lindsay; Norton, Lisa; Roy, David

    2011-10-01

    Environmental monitoring is essential for assessing the current state of the environment, measuring impacts of environmental pressures and providing evidence to government. Recent UK government announcements have indicated an increased role for 'Big Society' in monitoring. In this paper, we review available literature concerning the use of citizen science for monitoring, present examples of successful volunteer monitoring work and highlight important issues surrounding the use of volunteers. We argue that in order to ensure that environmental monitoring continues to be effective it is important to learn from examples where volunteers are currently used, acknowledging constraints and identifying potential approaches which will help to maximise both their engagement and data quality. Effective partnerships between environmental monitoring organisations and volunteers may thus aid the UK in developing robust coordinated monitoring systems that will be less vulnerable to funding variances.

  2. An Experimental Global Monitoring System for Rainfall-triggered Landslides using Satellite Remote Sensing Information

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2006-01-01

    Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration thresholds and information related to land surface susceptibility. However, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides due to the lack of extensive ground-based observing network in many parts of the world. Recent advances in satellite remote sensing technology and increasing availability of high-resolution geospatial products around the globe have provided an unprecedented opportunity for such a study. In this paper, a framework for developing an experimental real-time monitoring system to detect rainfall-triggered landslides is proposed by combining two necessary components: surface landslide susceptibility and a real-time space-based rainfall analysis system (http://trmm.gsfc.nasa.aov). First, a global landslide susceptibility map is derived from a combination of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a GIs weighted linear combination approach. Second, an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess landslide risks at areas with high susceptibility. A major outcome of this work is the availability of a first-time global assessment of landslide risk, which is only possible because of the utilization of global satellite remote sensing products. This experimental system can be updated continuously due to the availability of new satellite remote sensing products. This proposed system, if pursued through wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide hazard analyses into a global decision-making support system for landslide disaster preparedness and risk mitigation activities across the world.

  3. Strengthening of accountability systems to create healthy food environments and reduce global obesity.

    PubMed

    Swinburn, Boyd; Kraak, Vivica; Rutter, Harry; Vandevijvere, Stefanie; Lobstein, Tim; Sacks, Gary; Gomes, Fabio; Marsh, Tim; Magnusson, Roger

    2015-06-20

    To achieve WHO's target to halt the rise in obesity and diabetes, dramatic actions are needed to improve the healthiness of food environments. Substantial debate surrounds who is responsible for delivering effective actions and what, specifically, these actions should entail. Arguments are often reduced to a debate between individual and collective responsibilities, and between hard regulatory or fiscal interventions and soft voluntary, education-based approaches. Genuine progress lies beyond the impasse of these entrenched dichotomies. We argue for a strengthening of accountability systems across all actors to substantially improve performance on obesity reduction. In view of the industry opposition and government reluctance to regulate for healthier food environments, quasiregulatory approaches might achieve progress. A four step accountability framework (take the account, share the account, hold to account, and respond to the account) is proposed. The framework identifies multiple levers for change, including quasiregulatory and other approaches that involve government-specified and government-monitored progress of private sector performance, government procurement mechanisms, improved transparency, monitoring of actions, and management of conflicts of interest. Strengthened accountability systems would support government leadership and stewardship, constrain the influence of private sector actors with major conflicts of interest on public policy development, and reinforce the engagement of civil society in creating demand for healthy food environments and in monitoring progress towards obesity action objectives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A Global Framework for Monitoring Phenological Responses to Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Michael A; Hoffman, Forrest M; Hargrove, William Walter

    2005-01-01

    Remote sensing of vegetation phenology is an important method with which to monitor terrestrial responses to climate change, but most approaches include signals from multiple forcings, such as mixed phenological signals from multiple biomes, urbanization, political changes, shifts in agricultural practices, and disturbances. Consequently, it is difficult to extract a clear signal from the usually assumed forcing: climate change. Here, using global 8 km 1982 to 1999 Normalized Difference Vegetation Index (NDVI) data and an eight-element monthly climatology, we identified pixels whose wavelet power spectrum was consistently dominated by annual cycles and then created phenologically and climatically self-similar clusters, whichmore » we term phenoregions. We then ranked and screened each phenoregion as a function of landcover homogeneity and consistency, evidence of human impacts, and political diversity. Remaining phenoregions represented areas with a minimized probability of non-climatic forcings and form elemental units for long-term phenological monitoring.« less

  5. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

    PubMed Central

    Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  6. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    PubMed

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.

  7. Monitoring Natural Events Globally in Near Real-Time Using NASA's Open Web Services and Tools

    NASA Technical Reports Server (NTRS)

    Boller, Ryan A.; Ward, Kevin Alan; Murphy, Kevin J.

    2015-01-01

    Since 1960, NASA has been making global measurements of the Earth from a multitude of space-based missions, many of which can be useful for monitoring natural events. In recent years, these measurements have been made available in near real-time, making it possible to use them to also aid in managing the response to natural events. We present the challenges and ongoing solutions to using NASA satellite data for monitoring and managing these events.

  8. Monitoring human health behaviour in one's living environment: a technological review.

    PubMed

    Lowe, Shane A; Ólaighin, Gearóid

    2014-02-01

    The electronic monitoring of human health behaviour using computer techniques has been an active research area for the past few decades. A wide array of different approaches have been investigated using various technologies including inertial sensors, Global Positioning System, smart homes, Radio Frequency IDentification and others. It is only in recent years that research has turned towards a sensor fusion approach using several different technologies in single systems or devices. These systems allow for an increased volume of data to be collected and for activity data to be better used as measures of behaviour. This change may be due to decreasing hardware costs, smaller sensors, increased power efficiency or increases in portability. This paper is intended to act as a reference for the design of multi-sensor behaviour monitoring systems. The range of technologies that have been used in isolation for behaviour monitoring both in research and commercial devices are reviewed and discussed. Filtering, range, sensitivity, usability and other considerations of different technologies are discussed. A brief overview of commercially available activity monitors and their technology is also included. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. The ASTER Volcano Archive (AVA): High Spatial Resolution Global Monitoring of Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Linick, J. P.; Pieri, D. C.; Davies, A. G.; Reath, K.; Mars, J. C.; Hubbard, B. E.; Sanchez, R. M.; Tan, H. L.

    2017-12-01

    The ASTER Volcano Archive (AVA) is a data system focused on collecting and cataloguing higher level remote sensing data products for all Holocene volcanoes over the last several decades, producing volcanogenic science products for global detection, mapping, and modeling of effusive eruptions at high spatial resolution, and providing rapid bulk dissemination of relevant data products to the science community at large. Space-based optical platforms such as ASTER, EO-1, and Landsat, are a critical component for global monitoring systems to provide the capability for volcanic hazard assessment and modeling, and are a vital addition to in-situ measurements. The AVA leverages these instruments for the automated generation of lava flow emplacement maps, sulfur dioxide monitoring, thermal anomaly detection, and modeling of integrated thermal emission across the world's volcanoes. Additionally, we provide slope classified alteration and lahar inundation maps with potential inundation zones for certain relevant volcanoes. We explore the AVA's data product retrieval API, and describe how scientists can rapidly retrieve bulk products using the AVA platform with a focus on practical applications for both general analysis and hazard response.

  10. Global monitoring of atmospheric properties by the EOS MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1993-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) being developed for the Earth Observing System (EOS) is well suited to the global monitoring of atmospheric properties from space. Among the atmospheric properties to be examined using MODIS observations, clouds are especially important, since they are a strong modulator of the shortwave and longwave components of the earth's radiation budget. A knowledge of cloud properties (such as optical thickness and effective radius) and their variation in space and time, which are our task objectives, is also crucial to studies of global climate change. In addition, with the use of related airborne instrumentation, such as the Cloud Absorption Radiometer (CAR) and MODIS Airborne Simulator (MAS) in intensive field experiments (both national and international campaigns, see below), various types of surface and cloud properties can be derived from the measured bidirectional reflectances. These missions have provided valuable experimental data to determine the capability of narrow bandpass channels in examining the Earth's atmosphere and to aid in defining algorithms and building an understanding of the ability of MODIS to remotely sense atmospheric conditions for assessing global change. Therefore, the primary task objective is to extend and expand our algorithm for retrieving the optical thickness and effective radius of clouds from radiation measurements to be obtained from MODIS. The secondary objective is to obtain an enhanced knowledge of surface angular and spectral properties that can be inferred from airborne directional radiance measurements.

  11. Monitoring global snow cover

    NASA Technical Reports Server (NTRS)

    Armstrong, Richard; Hardman, Molly

    1991-01-01

    A snow model that supports the daily, operational analysis of global snow depth and age has been developed. It provides improved spatial interpolation of surface reports by incorporating digital elevation data, and by the application of regionalized variables (kriging) through the use of a global snow depth climatology. Where surface observations are inadequate, the model applies satellite remote sensing. Techniques for extrapolation into data-void mountain areas and a procedure to compute snow melt are also contained in the model.

  12. Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Anbo

    This report summarizes technical progress on the program “Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology at Virginia Tech. The objective of this project is to develop a first-of-a-kind technology for remote fiber optic generation and detection of acoustic waves for structural health monitoring in harsh environments. During the project period, which is from April 1, 2013 to Septemeber 30, 2016, three different acoustic generation mechanisms were studied in detail for their applications inmore » building a fiber optic acoustic generation unit (AGU), including laser induced plasma breakdown (LIP), Erbium-doped fiber laser absorption, and metal laser absorption. By comparing the performance of the AGUs designed based on these three mechanisms and analyzing the experimental results with simulations, the metal laser absorption method was selected to build a complete fiber optic structure health monitoring (FO-SHM) system for the proposed high temperature multi-parameter structure health monitoring application. Based on the simulation of elastic wave propagation and fiber Bragg grating acoustic pulse detection, an FO-SHM element together with a completed interrogation system were designed and built. This system was first tested on an aluminum piece in the low-temperature range and successfully demonstrated its capability of multi-parameter monitoring and multi-point sensing. In the later stages of the project, the research was focused on improving the surface attachment design and preparing the FO-SHM element for high temperature environment tests. After several upgrades to the surface attachment methods, the FO-SHM element was able to work reliably up to 600oC when attached to P91 pipes, which are the target material of this project. In the final stage of this project, this FO

  13. A quasi-global precipitation time series for drought monitoring

    USGS Publications Warehouse

    Funk, Chris C.; Peterson, Pete J.; Landsfeld, Martin F.; Pedreros, Diego H.; Verdin, James P.; Rowland, James D.; Romero, Bo E.; Husak, Gregory J.; Michaelsen, Joel C.; Verdin, Andrew P.

    2014-01-01

    Estimating precipitation variations in space and time is an important aspect of drought early warning and environmental monitoring. An evolving drier-than-normal season must be placed in historical context so that the severity of rainfall deficits may quickly be evaluated. To this end, scientists at the U.S. Geological Survey Earth Resources Observation and Science Center, working closely with collaborators at the University of California, Santa Barbara Climate Hazards Group, have developed a quasi-global (50°S–50°N, 180°E–180°W), 0.05° resolution, 1981 to near-present gridded precipitation time series: the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) data archive.

  14. Physical and performance characteristics of instruments selected for global change monitoring

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    1991-01-01

    The following appendix (appendix B) lists the instruments chosen for the Global Change Monitoring program. The instruments are described according to the following categories: (1) Title; (2) Measurement; (3) Contact; (4) Instrument Type; (5) Dimensions; (6) Mass; (7) Average Operational Power; (8) Data Rate; (9) Spectral/Frequency Range; (10) Number of Channels/Frequencies; (11) Viewing Field; (12) Scanning Characteristics; (13) Resolution (Horizontal/Vertical); (14) Swath Width; (15) Satellite Application; and (16) Technology Status. A technical drawing of each instrument is also provided.

  15. Near Real-Time Monitoring of Global Evapotranspiration and its Application to Water Resource Management

    NASA Astrophysics Data System (ADS)

    Halverson, G. H.; Fisher, J.; Jewell, L. A.; Moore, G.; Verma, M.; McDonald, T.; Kim, S.; Muniz, A.

    2016-12-01

    Water scarcity and its impact on agriculture is a pressing world concern. At the heart of this crisis is the balance of water exchange between the land and the atmosphere. The ability to monitor evapotranspiration provides a solution by enabling sustainable irrigation practices. The Priestley-Taylor Jet Propulsion Laboratory model of evapotranspiration has been implemented to meet this need as a daily MODIS product with 1 to 5 km resolution. An automated data pipeline for this model implementation provides daily data with global coverage and near real-time latency using the Geospatial Data Abstraction Library. An interactive map providing on-demand statistical analysis enables water resource managers to monitor rates of water loss. To demonstrate the application of remotely-sensed evapotranspiration to water resource management, a partnership has been arranged with the New Mexico Office of the State Engineer (NMOSE). The online water research management tool was developed to meet the specifications of NMOSE using the Leaflet, GeoServer, and Django frameworks. NMOSE will utilize this tool to monitor drought and fire risk and manage irrigation. Through this test-case, it is hoped that real-time, user-friendly remote sensing tools will be adopted globally to make resource management decisions informed by the NASA Earth Observation System.

  16. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring.

    PubMed

    Trasviña-Moreno, Carlos A; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-02-24

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.

  17. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring

    PubMed Central

    Trasviña-Moreno, Carlos A.; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-01-01

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario. PMID:28245587

  18. Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments.

    PubMed

    Kocman, David; Wilson, Simon J; Amos, Helen M; Telmer, Kevin H; Steenhuisen, Frits; Sunderland, Elsie M; Mason, Robert P; Outridge, Peter; Horvat, Milena

    2017-02-01

    Aquatic ecosystems are an essential component of the biogeochemical cycle of mercury (Hg), as inorganic Hg can be converted to toxic methylmercury (MeHg) in these environments and reemissions of elemental Hg rival anthropogenic Hg releases on a global scale. Quantification of effluent Hg releases to aquatic systems globally has focused on discharges to the global oceans, rather than contributions to freshwater systems that affect local exposures and risks associated with MeHg. Here we produce a first-estimate of sector-specific, spatially resolved global aquatic Hg discharges to freshwater systems. We compare our release estimates to atmospheric sources that have been quantified elsewhere. By analyzing available quantitative and qualitative information, we estimate that present-day global Hg releases to freshwater environments (rivers and lakes) associated with anthropogenic activities have a lower bound of ~1000 Mg· a-1. Artisanal and small-scale gold mining (ASGM) represents the single largest source, followed by disposal of mercury-containing products and domestic waste water, metal production, and releases from industrial installations such as chlor-alkali plants and oil refineries. In addition to these direct anthropogenic inputs, diffuse inputs from land management activities and remobilization of Hg previously accumulated in terrestrial ecosystems are likely comparable in magnitude. Aquatic discharges of Hg are greatly understudied and further constraining associated data gaps is crucial for reducing the uncertainties in the global biogeochemical Hg budget.

  19. Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments

    PubMed Central

    Kocman, David; Wilson, Simon J.; Amos, Helen M.; Telmer, Kevin H.; Steenhuisen, Frits; Sunderland, Elsie M.; Mason, Robert P.; Outridge, Peter; Horvat, Milena

    2017-01-01

    Aquatic ecosystems are an essential component of the biogeochemical cycle of mercury (Hg), as inorganic Hg can be converted to toxic methylmercury (MeHg) in these environments and reemissions of elemental Hg rival anthropogenic Hg releases on a global scale. Quantification of effluent Hg releases to aquatic systems globally has focused on discharges to the global oceans, rather than contributions to freshwater systems that affect local exposures and risks associated with MeHg. Here we produce a first-estimate of sector-specific, spatially resolved global aquatic Hg discharges to freshwater systems. We compare our release estimates to atmospheric sources that have been quantified elsewhere. By analyzing available quantitative and qualitative information, we estimate that present-day global Hg releases to freshwater environments (rivers and lakes) associated with anthropogenic activities have a lower bound of ~1000 Mg·a−1. Artisanal and small-scale gold mining (ASGM) represents the single largest source, followed by disposal of mercury-containing products and domestic waste water, metal production, and releases from industrial installations such as chlor-alkali plants and oil refineries. In addition to these direct anthropogenic inputs, diffuse inputs from land management activities and remobilization of Hg previously accumulated in terrestrial ecosystems are likely comparable in magnitude. Aquatic discharges of Hg are greatly understudied and further constraining associated data gaps is crucial for reducing the uncertainties in the global biogeochemical Hg budget. PMID:28157152

  20. Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments

    PubMed Central

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie-Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif

    2014-01-01

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management

  1. Contributions of national and global health estimates to monitoring health-related sustainable development goals.

    PubMed

    Bundhamcharoen, Kanitta; Limwattananon, Supon; Kusreesakul, Khanitta; Tangcharoensathien, Viroj

    2016-01-01

    The millennium development goals triggered an increased demand for data on child and maternal mortalities for monitoring progress. With the advent of the sustainable development goals and growing evidence of an epidemiological transition toward non-communicable diseases, policymakers need data on mortality and disease trends and distribution to inform effective policies and support monitoring progress. Where there are limited capacities to produce national health estimates (NHEs), global health estimates (GHEs) can fill gaps for global monitoring and comparisons. This paper discusses lessons learned from Thailand's burden of disease (BOD) study on capacity development on NHEs and discusses the contributions and limitations of GHEs in informing policies at the country level. Through training and technical support by external partners, capacities are gradually strengthened and institutionalized to enable regular updates of BOD at national and subnational levels. Initially, the quality of cause-of-death reporting in death certificates was inadequate, especially for deaths occurring in the community. Verbal autopsies were conducted, using domestic resources, to determine probable causes of deaths occurring in the community. This method helped to improve the estimation of years of life lost. Since the achievement of universal health coverage in 2002, the quality of clinical data on morbidities has also considerably improved. There are significant discrepancies between the Global Burden of Disease 2010 study estimates for Thailand and the 1999 nationally generated BOD, especially for years of life lost due to HIV/AIDS, and the ranking of priority diseases. National ownership of NHEs and an effective interface between researchers and decision-makers contribute to enhanced country policy responses, whereas subnational data are intended to be used by various subnational partners. Although GHEs contribute to benchmarking country achievement compared with global health

  2. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors

    NASA Technical Reports Server (NTRS)

    Van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Hsu, N. Christina; Kahn, Ralph A.; Levy, Robert C.; Lyapustin, Alexei; Sayer, Andrew M.; Winker, David M.

    2016-01-01

    We estimated global fine particulate matter (PM(sub 2.5)) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically-based satellite-derived PM(sub 2.5) estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM(sub 2.5) estimates were highly consistent (R(sup 2) equals 0.81) with out-of-sample cross-validated PM(sub 2.5) concentrations from monitors. The global population-weighted annual average PM(sub 2.5) concentrations were 3-fold higher than the 10 micrograms per cubic meter WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM(sub 2.5) data sources can yield valuable improvements to PM(sub 2.5) characterization on a global scale.

  3. Childhood socioeconomic status and risk in early family environments: predictors of global sleep quality in college students.

    PubMed

    Counts, Cory J; Grubin, Fiona C; John-Henderson, Neha A

    2018-06-01

    Low socioeconomic status (SES) in childhood associates with poor sleep quality in adulthood. Separately, childhood family environments shape health into adulthood. Here, we investigated whether these early life factors independently or interactively inform global sleep quality in college students. Cross-sectional. College students at a state university (N = 391). As a measure of childhood SES, we asked participants to consider their families' socioeconomic standing relative to the rest of the society during their childhood. We used the Risky Family questionnaire to measure adversity and the presence of warmth and affection in the family environment during childhood, and the Pittsburgh Sleep Quality Index as a measure of current global sleep quality. We used linear regressions adjusting for age and sex to examine relationships between childhood SES, risk in childhood family environments, and global sleep quality. Lower childhood SES and greater risk in childhood family environments independently predicted poor sleep quality. Importantly, in low-risk family environments, there was no significant difference in sleep quality as a function of childhood SES. However, students who were from low childhood SES backgrounds who also reported high levels of risk in their early family environments had the worst sleep quality. Findings highlight the importance of considering socioeconomic and family environments in childhood as informants of sleep quality across the lifespan. Compromised sleep quality in college students could affect academic performance and health over time. Copyright © 2018 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  4. The thermal environment of the human being on the global scale.

    PubMed

    Jendritzky, Gerd; Tinz, Birger

    2009-11-11

    The close relationship between human health, performance, well-being and the thermal environment is obvious. Nevertheless, most studies of climate and climate change impacts show amazing shortcomings in the assessment of the environment. Populations living in different climates have different susceptibilities, due to socio-economic reasons, and different customary behavioural adaptations. The global distribution of risks of hazardous thermal exposure has not been analysed before. To produce maps of the baseline and future bioclimate that allows a direct comparison of the differences in the vulnerability of populations to thermal stress across the world. The required climatological data fields are obtained from climate simulations with the global General Circulation Model ECHAM4 in T106-resolution. For the thermo-physiologically relevant assessment of these climate data a complete heat budget model of the human being, the 'Perceived Temperature' procedure has been applied which already comprises adaptation by clothing to a certain degree. Short-term physiological acclimatisation is considered via Health Related Assessment of the Thermal Environment. The global maps 1971-1980 (control run, assumed as baseline climate) show a pattern of thermal stress intensities as frequencies of heat. The heat load for people living in warm-humid climates is the highest. Climate change will lead to clear differences in health-related thermal stress between baseline climate and the future bioclimate 2041-2050 based on the 'business-as-usual' greenhouse gas scenario IS92a. The majority of the world's population will be faced with more frequent and more intense heat strain in spite of an assumed level of acclimatisation. Further adaptation measures are crucial in order to reduce the vulnerability of the populations. This bioclimatology analysis provides a tool for various questions in climate and climate change impact research. Considerations of regional or local scale require climate

  5. The thermal environment of the human being on the global scale

    PubMed Central

    Jendritzky, Gerd; Tinz, Birger

    2009-01-01

    Background The close relationship between human health, performance, well-being and the thermal environment is obvious. Nevertheless, most studies of climate and climate change impacts show amazing shortcomings in the assessment of the environment. Populations living in different climates have different susceptibilities, due to socio-economic reasons, and different customary behavioural adaptations. The global distribution of risks of hazardous thermal exposure has not been analysed before. Objective To produce maps of the baseline and future bioclimate that allows a direct comparison of the differences in the vulnerability of populations to thermal stress across the world. Design The required climatological data fields are obtained from climate simulations with the global General Circulation Model ECHAM4 in T106-resolution. For the thermo-physiologically relevant assessment of these climate data a complete heat budget model of the human being, the ‘Perceived Temperature’ procedure has been applied which already comprises adaptation by clothing to a certain degree. Short-term physiological acclimatisation is considered via Health Related Assessment of the Thermal Environment. Results The global maps 1971–1980 (control run, assumed as baseline climate) show a pattern of thermal stress intensities as frequencies of heat. The heat load for people living in warm–humid climates is the highest. Climate change will lead to clear differences in health-related thermal stress between baseline climate and the future bioclimate 2041–2050 based on the ‘business-as-usual’ greenhouse gas scenario IS92a. The majority of the world's population will be faced with more frequent and more intense heat strain in spite of an assumed level of acclimatisation. Further adaptation measures are crucial in order to reduce the vulnerability of the populations. Conclusions This bioclimatology analysis provides a tool for various questions in climate and climate change impact

  6. Design and package of a {sup 14}CO{sub 2} field analyzer The Global Monitor Platform (GMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bright, Michelle; Marino, Bruno D.V.; Gronniger, Glen

    2011-08-01

    Carbon Capture and Sequestration (CCS) is widely accepted as a means to reduce and eliminate the fossil fuel CO{sub 2} (ff- CO{sub 2}) emissions from coal fired power plants. Success of CCS depends on near zero leakage rates over decadal time scales. Currently no commercial methods to determine leakage of ff-CO{sub 2} are available. The Global Monitor Platform (GMP) field analyzer provides high precision analysis of CO{sub 2} isotopes [12C (99%), 13C (<1%), 14C (1.2x10-10 %)] that can differentiate between fossil and biogenic CO{sub 2} emissions. Fossil fuels contain no {sup 14}C; their combustion should lower atmospheric amounts on localmore » to global scales. There is a clear mandate for monitoring, verification and accounting (MVA) of CCS systems nationally and globally to verify CCS integrity, treaty verification (Kyoto Protocol) and to characterize the nuclear fuel cycle. Planetary Emissions Management (PEM), working with the National Secure Manufacturing Center (NSMC), has the goal of designing, ruggedizing and packaging the GMP for field deployment. The system will conduct atmosphere monitoring then adapt the system to monitor water and soil evaluations. Measuring {sup 14}CO{sub 2} in real time will provide quantitative concentration data for ff-CO{sub 2} in the atmosphere and CCS leakage detection. Initial results will be discussed along with design changes for improved detection sensitivity and manufacturability.« less

  7. Initial Results in Global Flood Monitoring System (GFMS) Using GPM Data

    NASA Astrophysics Data System (ADS)

    Wu, H.; Adler, R. F.; Kirschbaum, D.; Huffman, G. J.; Tian, Y.

    2016-12-01

    The Global Flood Monitoring System (GFMS) (http://flood.umd.edu) has been developed and used to provide real-time flood detection and streamflow estimates over the last few years with significant success shown by validation against global flood event data sets and observed streamflow variations. It has become a tool for various national and international organizations to appraise flood conditions in various areas, including where rainfall and hydrology information is limited. The GFMS has been using the TRMM Multi-satellite Precipitation Analysis (TMPA) as its main rainfall input. Now, with the advent of NASA's Global Precipitation Measurement (GPM) mission there is an opportunity to significantly improve global flood monitoring and forecasting. GPM's Integrated Multi-satellitE Retrievals for GPM (IMERG) multi-satellite product is designed to take advantage of various technical advances in the field and combine that with an efficient processing system producing "early" (4 hrs) and "late" (12 hrs) products for operational use. The products are also more uniform in results than TMPA among the various satellites going into the analysis and available at finer time and space resolutions. On the road to replacing TMPA with the IMERG in the operational version of the GFMS parallel systems were run for periods to understand the impact of the new type of data on the streamflow and flood estimates. Results of this comparison are the basis for this presentation. It is expected that an improvement will be noted both in the accuracy of the precipitation estimates and a smoother transition in and out of heavy rain events, helping to reduce "shock" in the hydrology model. The finer spatial resolution should also help in this regard. The GFMS will be initially run at its primary resolution of 1/8th degree latitude/longitude with both data sets to isolate the impact of the rain information change. Other aspects will also be examined, including higher latitude events, where GPM

  8. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  9. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change.

    PubMed

    Anderson-Teixeira, Kristina J; Davies, Stuart J; Bennett, Amy C; Gonzalez-Akre, Erika B; Muller-Landau, Helene C; Wright, S Joseph; Abu Salim, Kamariah; Almeyda Zambrano, Angélica M; Alonso, Alfonso; Baltzer, Jennifer L; Basset, Yves; Bourg, Norman A; Broadbent, Eben N; Brockelman, Warren Y; Bunyavejchewin, Sarayudh; Burslem, David F R P; Butt, Nathalie; Cao, Min; Cardenas, Dairon; Chuyong, George B; Clay, Keith; Cordell, Susan; Dattaraja, Handanakere S; Deng, Xiaobao; Detto, Matteo; Du, Xiaojun; Duque, Alvaro; Erikson, David L; Ewango, Corneille E N; Fischer, Gunter A; Fletcher, Christine; Foster, Robin B; Giardina, Christian P; Gilbert, Gregory S; Gunatilleke, Nimal; Gunatilleke, Savitri; Hao, Zhanqing; Hargrove, William W; Hart, Terese B; Hau, Billy C H; He, Fangliang; Hoffman, Forrest M; Howe, Robert W; Hubbell, Stephen P; Inman-Narahari, Faith M; Jansen, Patrick A; Jiang, Mingxi; Johnson, Daniel J; Kanzaki, Mamoru; Kassim, Abdul Rahman; Kenfack, David; Kibet, Staline; Kinnaird, Margaret F; Korte, Lisa; Kral, Kamil; Kumar, Jitendra; Larson, Andrew J; Li, Yide; Li, Xiankun; Liu, Shirong; Lum, Shawn K Y; Lutz, James A; Ma, Keping; Maddalena, Damian M; Makana, Jean-Remy; Malhi, Yadvinder; Marthews, Toby; Mat Serudin, Rafizah; McMahon, Sean M; McShea, William J; Memiaghe, Hervé R; Mi, Xiangcheng; Mizuno, Takashi; Morecroft, Michael; Myers, Jonathan A; Novotny, Vojtech; de Oliveira, Alexandre A; Ong, Perry S; Orwig, David A; Ostertag, Rebecca; den Ouden, Jan; Parker, Geoffrey G; Phillips, Richard P; Sack, Lawren; Sainge, Moses N; Sang, Weiguo; Sri-Ngernyuang, Kriangsak; Sukumar, Raman; Sun, I-Fang; Sungpalee, Witchaphart; Suresh, Hebbalalu Sathyanarayana; Tan, Sylvester; Thomas, Sean C; Thomas, Duncan W; Thompson, Jill; Turner, Benjamin L; Uriarte, Maria; Valencia, Renato; Vallejo, Marta I; Vicentini, Alberto; Vrška, Tomáš; Wang, Xihua; Wang, Xugao; Weiblen, George; Wolf, Amy; Xu, Han; Yap, Sandra; Zimmerman, Jess

    2015-02-01

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥ 1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 °S-61 °N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ± 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m(-2) yr(-1) and 3.1 g S m(-2) yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change. © 2014 John Wiley & Sons Ltd.

  10. An Induced Environment Contamination Monitor for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (Editor); Decher, R. (Editor)

    1978-01-01

    The Induced Environment Contamination Monitor (IECM), a set of ten instruments integrated into a self-contained unit and scheduled to fly on shuttle Orbital Flight Tests 1 through 6 and on Spacelabs 1 and 2, is described. The IECM is designed to measure the actual environment to determine whether the strict controls placed on the shuttle system have solved the contamination problem. Measurements are taken during prelaunch, ascent, on-orbit, descent, and postlanding. The on-orbit measurements are molecular return flux, background spectral intensity, molecular deposition, and optical surface effects. During the other mission phases dew point, humidity, aerosol content, and trace gas are measured as well as optical surface effects and molecular deposition. The IECM systems and thermal design are discussed. Preflight and ground operations are presented together with associated ground support equipment. Flight operations and data reduction plans are given.

  11. NOAA's Role in Sustaining Global Ocean Observations: Future Plans for OAR's Ocean Observing and Monitoring Division

    NASA Astrophysics Data System (ADS)

    Todd, James; Legler, David; Piotrowicz, Stephen; Raymond, Megan; Smith, Emily; Tedesco, Kathy; Thurston, Sidney

    2017-04-01

    The Ocean Observing and Monitoring Division (OOMD, formerly the Climate Observation Division) of the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office provides long-term, high-quality global observations, climate information and products for researchers, forecasters, assessments and other users of environmental information. In this context, OOMD-supported activities serve a foundational role in an enterprise that aims to advance 1) scientific understanding, 2) monitoring and prediction of climate and 3) understanding of potential impacts to enable a climate resilient society. Leveraging approximately 50% of the Global Ocean Observing System, OOMD employs an internationally-coordinated, multi-institution global strategy that brings together data from multiple platforms including surface drifting buoys, Argo profiling floats, flux/transport moorings (RAMA, PIRATA, OceanSITES), GLOSS tide gauges, SOOP-XBT and SOOP-CO2, ocean gliders and repeat hydrographic sections (GO-SHIP). OOMD also engages in outreach, education and capacity development activities to deliver training on the social-economic applications of ocean data. This presentation will highlight recent activities and plans for 2017 and beyond.

  12. Global Sources and Pathways of Mercury in the Context of Human Health.

    PubMed

    Sundseth, Kyrre; Pacyna, Jozef M; Pacyna, Elisabeth G; Pirrone, Nicola; Thorne, Rebecca J

    2017-01-22

    This paper reviews information from the existing literature and the EU GMOS (Global Mercury Observation System) project to assess the current scientific knowledge on global mercury releases into the atmosphere, on global atmospheric transport and deposition, and on the linkage between environmental contamination and potential impacts on human health. The review concludes that assessment of global sources and pathways of mercury in the context of human health is important for being able to monitor the effects from implementation of the Minamata Convention targets, although new research is needed on the improvement of emission inventory data, the chemical and physical behaviour of mercury in the atmosphere, the improvement of monitoring network data, predictions of future emissions and speciation, and on the subsequent effects on the environment, human health, as well as the economic costs and benefits of reducing these aspects.

  13. Global Sources and Pathways of Mercury in the Context of Human Health

    PubMed Central

    Sundseth, Kyrre; Pacyna, Jozef M.; Pacyna, Elisabeth G.; Pirrone, Nicola; Thorne, Rebecca J.

    2017-01-01

    This paper reviews information from the existing literature and the EU GMOS (Global Mercury Observation System) project to assess the current scientific knowledge on global mercury releases into the atmosphere, on global atmospheric transport and deposition, and on the linkage between environmental contamination and potential impacts on human health. The review concludes that assessment of global sources and pathways of mercury in the context of human health is important for being able to monitor the effects from implementation of the Minamata Convention targets, although new research is needed on the improvement of emission inventory data, the chemical and physical behaviour of mercury in the atmosphere, the improvement of monitoring network data, predictions of future emissions and speciation, and on the subsequent effects on the environment, human health, as well as the economic costs and benefits of reducing these aspects. PMID:28117743

  14. Subterranean karst environments as a global sink for atmospheric methane

    NASA Astrophysics Data System (ADS)

    Webster, Kevin D.; Drobniak, Agnieszka; Etiope, Giuseppe; Mastalerz, Maria; Sauer, Peter E.; Schimmelmann, Arndt

    2018-03-01

    The air in subterranean karst cavities is often depleted in methane (CH4) relative to the atmosphere. Karst is considered a potential sink for the atmospheric greenhouse gas CH4 because its subsurface drainage networks and solution-enlarged fractures facilitate atmospheric exchange. Karst landscapes cover about 14% of earth's continental surface, but observations of CH4 concentrations in cave air are limited to localized studies in Gibraltar, Spain, Indiana (USA), Vietnam, Australia, and by incomplete isotopic data. To test if karst is acting as a global CH4 sink, we measured the CH4 concentrations, δ13CCH4, and δ2HCH4 values of cave air from 33 caves in the USA and three caves in New Zealand. We also measured CO2 concentrations, δ13CCO2, and radon (Rn) concentrations to support CH4 data interpretation by assessing cave air residence times and mixing processes. Among these caves, 35 exhibited subatmospheric CH4 concentrations in at least one location compared to their local atmospheric backgrounds. CH4 concentrations, δ13CCH4, and δ2HCH4 values suggest that microbial methanotrophy within caves is the primary CH4 consumption mechanism. Only 5 locations from 3 caves showed elevated CH4 concentrations compared to the atmospheric background and could be ascribed to local CH4 sources from sewage and outgassing swamp water. Several associated δ13CCH4 and δ2HCH4 values point to carbonate reduction and acetate fermentation as biochemical pathways of limited methanogenesis in karst environments and suggest that these pathways occur in the environment over large spatial scales. Our data show that karst environments function as a global CH4 sink.

  15. Global atmospheric monitoring of noble gases: insight into transport processes in the southern hemisphere.

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Kalinowski, M.; Bourgouin, P.; Schoeppner, M.

    2017-12-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which 31 stations are located in the Southern Hemisphere. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases supported by atmospheric transport modeling (ATM). The air mass trajectory provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. One of the important noble gases, monitored on a daily basis, is xenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). On the southern hemisphere the number of IPF is rather limited in comparison to the northern hemisphere. Among the major sources are: the ANSTO facility in Sydney (Australia), CNEA in Ezeiza (Argentina), BaTek/INUKI in Jakarta (Indonesia) and NECSA in Pelindaba (South Africa). This study will demonstrate the examples of seasonal contribution of Xe-133 emissions from major sources as observed at selected IMS stations located in the southern hemisphere. It will show as well examples of the atmospheric transport from the northern to the southern hemisphere, and the influence of strong atmospheric convection.

  16. Citizen Action. Teacher's Guide to World Resources. Comprehensive Coursework on the Global Environment.

    ERIC Educational Resources Information Center

    Snyder, Sarah A.

    This teacher's guide presents teaching suggestions and presentation materials about citizen action in the global environment. Focusing on the nongovernmental organizations (NGOs), the lessons describe the roles NGOs play in positively influencing future trends in social development, natural resources management, and environmental quality. NGOs are…

  17. Sample project: establishing a global forest monitoring capability using multi-resolution and multi-temporal remotely sensed data sets

    USGS Publications Warehouse

    Hansen, Matt; Stehman, Steve; Loveland, Tom; Vogelmann, Jim; Cochrane, Mark

    2009-01-01

    Quantifying rates of forest-cover change is important for improved carbon accounting and climate change modeling, management of forestry and agricultural resources, and biodiversity monitoring. A practical solution to examining trends in forest cover change at global scale is to employ remotely sensed data. Satellite-based monitoring of forest cover can be implemented consistently across large regions at annual and inter-annual intervals. This research extends previous research on global forest-cover dynamics and land-cover change estimation to establish a robust, operational forest monitoring and assessment system. The approach integrates both MODIS and Landsat data to provide timely biome-scale forest change estimation. This is achieved by using annual MODIS change indicator maps to stratify biomes into low, medium and high change categories. Landsat image pairs can then be sampled within these strata and analyzed for estimating area of forest cleared.

  18. Water in the Global Environment. Pathways in Geography Series, Title No. 3.

    ERIC Educational Resources Information Center

    Waterstone, Marvin

    This report deals with the importance of water to life. The physical characteristics of water, its distribution, and a number of current water-related problems are examined. The issue of water management is discussed, along with the ways water is made available for our many uses in life. The introductory essay, "Water in the Global Environment,"…

  19. Affiliation with substance-using peers: Examining gene-environment correlations among parent monitoring, polygenic risk, and children's impulsivity.

    PubMed

    Elam, Kit K; Chassin, Laurie; Lemery-Chalfant, Kathryn; Pandika, Danielle; Wang, Frances L; Bountress, Kaitlin; Dick, Danielle; Agrawal, Arpana

    2017-07-01

    Parental monitoring can buffer the effect of deviant peers on adolescents' substance use by reducing affiliation with substance-using peers. However, children's genetic predispositions may evoke poorer monitoring, contributing to negative child outcomes. We examined evocative genotype-environment correlations underlying children's genetic predisposition for behavioral undercontrol and parental monitoring in early adolescence via children's impulsivity in middle childhood, and the influence of parental monitoring on affiliation with substance-using peers a year and a half later (n = 359). Genetic predisposition for behavioral undercontrol was captured using a polygenic risk score, and a portion of passive rGE was controlled by including parents' polygenic risk scores. Children's polygenic risk predicted poorer parental monitoring via greater children's impulsivity, indicating evocative rGE, controlling for a portion of passive rGE. Poorer parental monitoring predicted greater children's affiliation with substance-using peers a year and a half later. Results are discussed with respect to gene-environment correlations within developmental cascades. © 2017 Wiley Periodicals, Inc.

  20. Modeling of Global BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes the initial modeling of the global response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris(MMOD) impacts using a structural, nonlinear, transient dynamic, finite element code. These models complement the on-orbit deployment of the Distributed Impact Detection System (DIDS) to support structural health monitoring studies. Two global models were developed. The first focused exclusively on impacts on the soft-goods (fabric-envelop) portion of BEAM. The second incorporates the bulkhead to support understanding of bulkhead impacts. These models were exercised for random impact locations and responses monitored at the on-orbit sensor locations. The report concludes with areas for future study.

  1. Tropical Rainfall Measuring Mission: Monitoring the Global Tropics for 3 Years and Beyond. 1.1

    NASA Technical Reports Server (NTRS)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 as a joint U.S.-Japanese mission to advance understanding of the global energy and water cycle by providing distributions of rainfall and latent heating over the global tropics. As a part of NASA's Earth System Enterprise, TRMM seeks to understand the mechanisms through which changes in tropical rainfall influence global circulation. Additionally, a goal is to improve the ability to model these processes in order to predict global circulations and rainfall variability at monthly and longer time scales. Such understanding has implications for assessing climate processes related to El Nino/La Nina and Global Warming. TRMM has also provided unexpected and exciting new knowledge and applications in areas related to hurricane monitoring, lightning, pollution, hydrology, and other areas. This CD-ROM includes a self-contained PowerPoint presentation that provides an overview of TRMM and significant science results; a set of data movies or animation; and listings of current TRMM-related publications in the literature.

  2. Global monitoring of Sea Surface Salinity with Aquarius

    NASA Technical Reports Server (NTRS)

    Lagerloef, G. S. E.; LeVine, D. M.; Chao, Yi; Colomb, R.; Nollmann, I.

    2005-01-01

    Aquarius is a microwave remote sensing system designed to obtain global maps of the surface salinity field of the oceans from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for late in 2008. The objective of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This will provide data to address scientific questions associated with ocean circulation and its impact on climate. For example, salinity is needed to understand the large scale thermohaline circulation, driven by buoyancy, which moves large masses of water and heat around the globe. Of the two variables that determine buoyancy (salinity and temperature), temperature is already being monitored. Salinity is the missing variable needed to understand this circulation. Salinity also has an important role in energy exchange between the ocean and atmosphere, for example in the development of fresh water lenses (buoyant water that forms stable layers and insulates water below from the atmosphere) which alter the air-sea coupling. Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument,for measuring salinity is the radiometer which is able to detect salinity because of the modulation salinity produces on the thermal emission from sea water. This change is detectable at the long wavelength end of the microwave spectrum. The scatterometer will provide a correction for surface roughness (waves) which is one of the greatest unknowns in the retrieval. The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6am/6pm. The antenna for these two instruments is a 3 meter offset fed reflector with three feeds arranged in pushbroom fashion looking away from the sun toward the shadow side of the orbit to

  3. Global Monitoring of Air Pollution Using Spaceborne Sensors

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Tanre, D.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The MODIS sensor onboard EOS-Terra satellite provides not only daily global coverage but also high spectral (36 channels from 0.41 to 14 microns wavelength) and spatial (250m, 500m and 1km) resolution measurements. A similar MODIS instrument will be also configured into EOS-Aqua satellite to be launched soon. Using the complementary EOS-Terra and EOS-Aqua sun-synchronous orbits (10:30 AM and 1:30 PM equator-crossing time respectively), it enables us also to study the diurnal changes of the Earth system. It is unprecedented for the derivation of aerosol properties with such high spatial resolution and daily global converge. Aerosol optical depth and other aerosol properties, e.g., Angstrom coefficient over land and particle size over ocean, are derived as standard products at a spatial resolution of 10 x 10 sq km. The high resolution results are found surprisingly useful in detecting aerosols in both urban and rural regions as a result of urban/industrial pollution and biomass burning. For long-lived aerosols, the ability to monitoring the evolution of these aerosol events could help us to establish an system of air quality especially for highly populated areas. Aerosol scenarios with city pollution and biomass burning will be presented. Also presented are the method used in the derivation of aerosol optical properties and preliminary results will be presented, and issue as well as obstacles in validating aerosol optical depth with AERONET ground-based observations.

  4. An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments.

    PubMed

    Mora, Higinio; Gil, David; Terol, Rafael Muñoz; Azorín, Jorge; Szymanski, Julian

    2017-10-10

    The new Internet of Things paradigm allows for small devices with sensing, processing and communication capabilities to be designed, which enable the development of sensors, embedded devices and other 'things' ready to understand the environment. In this paper, a distributed framework based on the internet of things paradigm is proposed for monitoring human biomedical signals in activities involving physical exertion. The main advantages and novelties of the proposed system is the flexibility in computing the health application by using resources from available devices inside the body area network of the user. This proposed framework can be applied to other mobile environments, especially those where intensive data acquisition and high processing needs take place. Finally, we present a case study in order to validate our proposal that consists in monitoring footballers' heart rates during a football match. The real-time data acquired by these devices presents a clear social objective of being able to predict not only situations of sudden death but also possible injuries.

  5. An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments

    PubMed Central

    Szymanski, Julian

    2017-01-01

    The new Internet of Things paradigm allows for small devices with sensing, processing and communication capabilities to be designed, which enable the development of sensors, embedded devices and other ‘things’ ready to understand the environment. In this paper, a distributed framework based on the internet of things paradigm is proposed for monitoring human biomedical signals in activities involving physical exertion. The main advantages and novelties of the proposed system is the flexibility in computing the health application by using resources from available devices inside the body area network of the user. This proposed framework can be applied to other mobile environments, especially those where intensive data acquisition and high processing needs take place. Finally, we present a case study in order to validate our proposal that consists in monitoring footballers’ heart rates during a football match. The real-time data acquired by these devices presents a clear social objective of being able to predict not only situations of sudden death but also possible injuries. PMID:28994743

  6. Real-time continuous glucose monitoring systems in the classroom/school environment.

    PubMed

    Benassi, Kari; Drobny, Jessica; Aye, Tandy

    2013-05-01

    Children with type 1 diabetes (T1D) spend 4-7 h/day in school with very little supervision of their diabetes management. Therefore, families have become more dependent on technology, such as use of real-time continuous glucose monitoring (RT-CGM), to provide increased supervision of their diabetes management. We sought to assess the impact of RT-CGM use in the classroom/school environment. Children with T1D using RT-CGM, their parents, and teachers completed a questionnaire about RT-CGM in the classroom/school environment. The RT-CGM was tolerated well in the classroom/school environment. Seventy percent of parents, 75% of students, and 51% of teachers found RT-CGM useful in the classroom/school environment. The students found the device to be more disruptive than did their parents and teachers. However, all three groups agreed that RT-CGM increased their comfort with diabetes management at school. Our study suggests that RT-CGM is useful and not disruptive in the classroom/school environment. The development of education materials for teachers could further increase its acceptance in the classroom/school environment.

  7. STS-3 Induced Environment Contamination Monitor (IECM): Quick-look report

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (Editor); Fountain, J. A. (Editor)

    1982-01-01

    The STS-3/Induced Environment Contamination Monitor (IECM) mission is described. The IECM system performance is discussed, and IECM mission time events are briefly described. Quick look analyses are presented for each of the 10 instruments comprising the IECM on the flight of STS-3. Finally, a short summary is presented and plans are discussed for future IECM flights, and opportunities for direct mapping of Orbiter effluents using the Remote manipulator System.

  8. Volcano monitoring using the Global Positioning System: Filtering strategies

    USGS Publications Warehouse

    Larson, K.M.; Cervelli, Peter; Lisowski, M.; Miklius, Asta; Segall, P.; Owen, S.

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/???h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours. Copyright 2001 by the American Geophysical Union.

  9. Defining functional biomes and monitoring their change globally.

    PubMed

    Higgins, Steven I; Buitenwerf, Robert; Moncrieff, Glenn R

    2016-11-01

    Biomes are important constructs for organizing understanding of how the worlds' major terrestrial ecosystems differ from one another and for monitoring change in these ecosystems. Yet existing biome classification schemes have been criticized for being overly subjective and for explicitly or implicitly invoking climate. We propose a new biome map and classification scheme that uses information on (i) an index of vegetation productivity, (ii) whether the minimum of vegetation activity is in the driest or coldest part of the year, and (iii) vegetation height. Although biomes produced on the basis of this classification show a strong spatial coherence, they show little congruence with existing biome classification schemes. Our biome map provides an alternative classification scheme for comparing the biogeochemical rates of terrestrial ecosystems. We use this new biome classification scheme to analyse the patterns of biome change observed over recent decades. Overall, 13% to 14% of analysed pixels shifted in biome state over the 30-year study period. A wide range of biome transitions were observed. For example, biomes with tall vegetation and minimum vegetation activity in the cold season shifted to higher productivity biome states. Biomes with short vegetation and low seasonality shifted to seasonally moisture-limited biome states. Our findings and method provide a new source of data for rigorously monitoring global vegetation change, analysing drivers of vegetation change and for benchmarking models of terrestrial ecosystem function. © 2016 John Wiley & Sons Ltd.

  10. Global and Regional Real-time Systems for Flood and Drought Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Gourley, J. J.; Xue, X.; Flamig, Z.

    2015-12-01

    A Hydrometeorological Extreme Mapping and Prediction System (HyXtreme-MaP), initially built upon the Coupled Routing and Excess STorage (CREST) distributed hydrological model, is driven by real-time quasi-global TRMM/GPM satellites and by the US Multi-Radar Multi-Sensor (MRMS) radar network with dual-polarimetric upgrade to simulate streamflow, actual ET, soil moisture and other hydrologic variables at 1/8th degree resolution quasi-globally (http://eos.ou.edu) and at 250-meter 2.5-mintue resolution over the Continental United States (CONUS: http://flash.ou.edu).­ Multifaceted and collaborative by-design, this end-to-end research framework aims to not only integrate data, models, and applications but also brings people together (i.e., NOAA, NASA, University researchers, and end-users). This presentation will review the progresses, challenges and opportunities of such HyXTREME-MaP System used to monitor global floods and droughts, and also to predict flash floods over the CONUS.

  11. Mapping and Modeling Web Portal to Advance Global Monitoring and Climate Research

    NASA Astrophysics Data System (ADS)

    Chang, G.; Malhotra, S.; Bui, B.; Sadaqathulla, S.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Rodriguez, L.; Law, E.

    2011-12-01

    principal investigators to share their research and analysis seamlessly. In addition, this extension will allow users to easily share their tools and data, and to enrich their mapping and analysis experiences. In this talk, we will describe the advanced data management and portal technologies used to power this collaborative environment. We will further illustrate how this environment can enable, enhance and advance global monitoring and climate research.

  12. Building a data set over 12 globally distributed sites to support the development of agriculture monitoring applications with Sentinel-2

    USDA-ARS?s Scientific Manuscript database

    Developing better agricultural monitoring capabilities based on Earth Observation data is critical for strengthening food production information and market transparency. The coming Sentinel-2 mission has the optimal capacity for regional to global agriculture monitoring in terms of resolution (10-20...

  13. Mutations in global regulators lead to metabolic selection during adaptation to complex environments

    DOE PAGES

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; ...

    2014-12-11

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased geneticmore » and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel

  14. The Heritage of the Operational Usda/nasa Global Reservoir and Lake Monitor

    NASA Astrophysics Data System (ADS)

    Birkett, C. M.; Beckley, B. D.; Reynolds, C. A.

    2012-12-01

    Satellite radar altimetry has the ability to monitor variations in surface water height for large lakes and reservoirs. A clear advantage is the provision of data where in situ data are lacking or where there is restricted access to ground-based measurements. A USDA/NASA funded program is performing altimetric monitoring of the largest lakes and reservoirs around the world. The near-real time height measurements are currently derived from NASA/CNES Jason-2/OSTM mission data. Archived data are also utilized from the NASA/CNES Topex/Poseidon and Jason-1 missions, the NRL GFO mission, and the ESA ENVISAT mission. Lake level products are output within 1-2 weeks after satellite overpass, a time delay which will improve to a few days as the project moves into its next phase. The USDA/FAS utilize the products for assessing irrigation potential (and thus crop production estimates), and for general observation of high-water status and short-term drought. Other end-users explore the products to study climate trends, observe anthropogenic effects, and to consider water management and regional security issues. This presentation explores the heritage of the Global Reservoir and Lake Monitor (GRLM) which has its origins in the field of ocean surface topography and the exploration of radar altimetry techniques over non-ocean surfaces. The current system closely follows the software design of the historical NASA Ocean Pathfinder Project and utilizes a global lakes catalogue that was created for climate change/aridity studies. The output of lake level products, imagery and information also echoes an earlier trial (UNDP-funded) lakes database which first offered altimetric products via the world wide web and which enabled world-wide interest to be both assessed and highlighted.;

  15. Grey Incidence analyze of Environment Monitoring Data and Research on the Disease Prevention Measures of Longmen Grottoes

    NASA Astrophysics Data System (ADS)

    LeiLei, Zheng; XueZhi, Fu; Fei, Chu

    2018-05-01

    Longmen Grottoes was afflicted with many diseases for a long period such as weathering, seepage water and organism growth. Those adverse factors were threatening to preserve cultural relic. Longmen Grottoes conservation and restoration project being put into effect by UNESCO in 2002. The Longmen Grottoes area environmental monitoring system was built in order to comprehensively master the distribution law of environmental factors over the Longmen Grottoes. The monitoring items contains temperature, humidity, wind direction, wind speed, precipitation, light intensity,water content in soil, the rock surface temperature and so on. At the same time, monitoring three experiment caves, monitoring the inside temperature, humidity, seepage water and the wall face temperature etc. So as to analyze the relationship between cave environment and regional environment. We statistical and arrange the data using Excel software, Kgraph software and DPS software. Through the grey incidence analyze, the incidence matrix and the correlation degree of the environmental factors was obtained[1]. The main environment factors for the formation of the disease had been researched. Based on the existing environmental monitor data, the relevance of seepage water and fracture displacement with other environmental factors had been studied, and the relational order was obtained. Corresponding preventive measures were put forward by the formation mechanism analyze of the disease.

  16. Terrestrial Feedbacks Incorporated in Global Vegetation Models through Observed Trait-Environment Responses

    NASA Astrophysics Data System (ADS)

    Bodegom, P. V.

    2015-12-01

    Most global vegetation models used to evaluate climate change impacts rely on plant functional types to describe vegetation responses to environmental stresses. In a traditional set-up in which vegetation characteristics are considered constant within a vegetation type, the possibility to implement and infer feedback mechanisms are limited as feedback mechanisms will likely involve a changing expression of community trait values. Based on community assembly concepts, we implemented functional trait-environment relationships into a global dynamic vegetation model to quantitatively assess this feature. For the current climate, a different global vegetation distribution was calculated with and without the inclusion of trait variation, emphasizing the importance of feedbacks -in interaction with competitive processes- for the prevailing global patterns. These trait-environmental responses do, however, not necessarily imply adaptive responses of vegetation to changing conditions and may locally lead to a faster turnover in vegetation upon climate change. Indeed, when running climate projections, simulations with trait variation did not yield a more stable or resilient vegetation than those without. Through the different feedback expressions, global and regional carbon and water fluxes were -however- strongly altered. At a global scale, model projections suggest an increased productivity and hence an increased carbon sink in the next decades to come, when including trait variation. However, by the end of the century, a reduced carbon sink is projected. This effect is due to a downregulation of photosynthesis rates, particularly in the tropical regions, even when accounting for CO2-fertilization effects. Altogether, the various global model simulations suggest the critical importance of including vegetation functional responses to changing environmental conditions to grasp terrestrial feedback mechanisms at global scales in the light of climate change.

  17. Integrity mechanism for eHealth tele-monitoring system in smart home environment.

    PubMed

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2009-01-01

    During the past few years, a lot of effort has been invested in research and development of eHealth tele-monitoring systems that will provide many benefits for healthcare delivery from the healthcare provider to the patient's home. However, there is a plethora of security requirements in eHealth tele-monitoring systems. Data integrity of the transferred medical data is one of the most important security requirements that should be satisfied in these systems, since medical information is extremely sensitive information, and even sometimes life threatening information. In this paper, we present a data integrity mechanism for eHealth tele-monitoring system that operates in a smart home environment. Agent technology is applied to achieve data integrity with the use of cryptographic smart cards. Furthermore, the overall security infrastructure and its various components are described.

  18. Global warming in the palliative care research environment: adapting to change.

    PubMed

    Fainsinger, R L

    2008-06-01

    Advocates of palliative care research have often described the cold and difficult environment that has constrained the development of research internationally. The development of palliative care research has been slow over the last few decades and has met with resistance and sometimes hostility to the idea of conducting research in 'vulnerable populations'. The seeds of advocacy for research can be found in palliative care literature from the 1980s and early 1990s. Although we have much to do, we need to recognize that palliative care research development has come a long way. Of particular note is the development of well-funded collaboratives that now exist in Europe, Canada, Australia and the USA. The European Association for Palliative Care and the International Association for Hospice and Palliative Care has recognized the need to develop and promote global research initiatives, with a special focus on developing countries. Time is needed to develop good research evidence and in a more complex healthcare environment takes increasingly more resources to be productive. The increased support (global warming) evident in the increased funding opportunities available to palliative care researchers in a number of countries brings both benefits and challenges. There is evidence that the advocacy of individuals such as Kathleen Foley, Neil MacDonald, Balfour Mount, Vittorio Ventafridda, Robert Twycross and Geoff Hanks is now providing fertile ground and a much friendlier environment for a new generation of interdisciplinary palliative care research. We have achieved many of the goals necessary to avoid failure of the 'palliative care experiment', and need to accept the challenge of our present climate and adapt and take advantage of the change.

  19. Global hexachlorocyclohexane use trends and their impact on the Arctic atmospheric environment

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Bidleman, T. F.; Barrie, L. A.; McConnell, L. L.

    The relationship between the global technical HCH use trends and their impact on the arctic atmospheric environment has been studied. Two significant drops in global technical HCH usage were identified. In 1983, China banned the use of technical HCH. This represented the largest drop ever in global use rates. In 1990 India stopped technical HCH usage in agriculture and the former Soviet Union banned the use of technical HCH. Since 1990, India has been the biggest user of technical HCH in the world. Significant drops in atmospheric α-HCH in the arctic were observed between 1982 and 1983, and again between 1990 and 1992. The rapid response in atmospheric concentrations to usage is encouraging; however, since α-HCH concentrations in the arctic waters have remained relatively unchanged, the decline in atmospheric α-HCH has reversed the net direction of air-sea gas flux. The accumulated mass in oceans and large lakes may represent a new source of HCH to the arctic atmosphere.

  20. Nitrous oxide fluxes in estuarine environments: response to global change.

    PubMed

    Murray, Rachel H; Erler, Dirk V; Eyre, Bradley D

    2015-09-01

    Nitrous oxide is a powerful, long-lived greenhouse gas, but we know little about the role of estuarine areas in the global N2 O budget. This review summarizes 56 studies of N2 O fluxes and associated biogeochemical controlling factors in estuarine open waters, salt marshes, mangroves, and intertidal sediments. The majority of in situ N2 O production occurs as a result of sediment denitrification, although the water column contributes N2 O through nitrification in suspended particles. The most important factors controlling N2 O fluxes seem to be dissolved inorganic nitrogen (DIN) and oxygen availability, which in turn are affected by tidal cycles, groundwater inputs, and macrophyte density. The heterogeneity of coastal environments leads to a high variability in observations, but on average estuarine open water, intertidal and vegetated environments are sites of a small positive N2 O flux to the atmosphere (range 0.15-0.91; median 0.31; Tg N2 O-N yr(-1) ). Global changes in macrophyte distribution and anthropogenic nitrogen loading are expected to increase N2 O emissions from estuaries. We estimate that a doubling of current median NO3 (-) concentrations would increase the global estuary water-air N2 O flux by about 0.45 Tg N2 O-N yr(-1) or about 190%. A loss of 50% of mangrove habitat, being converted to unvegetated intertidal area, would result in a net decrease in N2 O emissions of 0.002 Tg N2 O-N yr(-1) . In contrast, conversion of 50% of salt marsh to unvegetated area would result in a net increase of 0.001 Tg N2 O-N yr(-1) . Decreased oxygen concentrations may inhibit production of N2 O by nitrification; however, sediment denitrification and the associated ratio of N2 O:N2 is expected to increase. © 2015 John Wiley & Sons Ltd.

  1. Ground Monitoring Neotropical Dry Forests: A Sensor Network for Forest and Microclimate Dynamics in Semi-Arid Environments (Enviro-Net°)

    NASA Astrophysics Data System (ADS)

    Rankine, C. J.; Sánchez-Azofeifa, G.

    2011-12-01

    In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data

  2. Environmental geochemistry at the global scale

    USGS Publications Warehouse

    Plant, J.; Smith, D.; Smith, B.; Williams, L.

    2000-01-01

    Land degradation and pollution caused by population pressure and economic development pose a threat to the sustainability of the Earth's surface, especially in tropical regions where a long history of chemical weathering has made the surface environment particularly fragile. Systematic baseline geochemical data provide a means of monitoring the state of the environment and identifying problem areas. Regional surveys have already been carried out in some countries, and with increased national and international funding they can be extended to cover the rest of the land surface of the globe. Preparations have been made, under the auspices of the IUGS, for the establishment of just such an integrated global database.

  3. The Copernicus Atmosphere Monitoring Service: facilitating the prediction of air quality from global to local scales

    NASA Astrophysics Data System (ADS)

    Engelen, R. J.; Peuch, V. H.

    2017-12-01

    The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The regional forecasts are produced by an ensemble of seven operational European air quality models that take their boundary conditions from the global system and provide an ensemble median with ensemble spread as their main output. Both the global and regional forecasting systems are feeding their output into air quality models on a variety of scales in various parts of the world. We will introduce the CAMS service chain and provide illustrations of its use in downstream applications. Both the usage of the daily forecasts and the usage of global and regional reanalyses will be addressed.

  4. Implementing a Global Tool for Mercy Corps Based on Spatially Continuous Precipitation Analysis for Resiliency Monitoring and Measuring at the Community-Scale

    NASA Astrophysics Data System (ADS)

    Tomlin, J. N.; El-Behaedi, R.; McCartney, S.; Lingo, R.; Thieme, A.

    2017-12-01

    Global water resources are important for societies, economies, and the environment. In Niger, limited water resources restrict the expansion of agriculture and communities. Mercy Corps currently works in over 40 countries around the world to address a variety of stresses which include water resources and building long-term food resilience. As Mercy Corps seeks to integrate the use of Earth observations, NASA has established a partnership to help facilitate this effort incorporating Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Measurement (GPM), and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data to create a standardized precipitation index that highlights low and high rainfall from 1981 - 2016. The team created a Google Earth Engine tool that combines precipitation data with other metrics of stress in Niger. The system is designed to be able to incorporate groundwater storage data as it becomes available. This tool allows for near real-time updates of trends in precipitation and improves Mercy Corps' ability to spatially evaluate changes in resiliency by monitoring shocks and stressors.

  5. Unattended wireless proximity sensor networks for counterterrorism, force protection, littoral environments, PHM, and tamper monitoring ground applications

    NASA Astrophysics Data System (ADS)

    Forcier, Bob

    2003-09-01

    This paper describes a digital-ultrasonic ground network, which forms an unique "unattended mote sensor system" for monitoring the environment, personnel, facilities, vehicles, power generation systems or aircraft in Counter-Terrorism, Force Protection, Prognostic Health Monitoring (PHM) and other ground applications. Unattended wireless smart sensor/tags continuously monitor the environment and provide alerts upon changes or disruptions to the environment. These wireless smart sensor/tags are networked utilizing ultrasonic wireless motes, hybrid RF/Ultrasonic Network Nodes and Base Stations. The network is monitored continuously with a 24/7 remote and secure monitoring system. This system utilizes physical objects such as a vehicle"s structure or a building to provide the media for two way secure communication of key metrics and sensor data and eliminates the "blind spots" that are common in RF solutions because of structural elements of buildings, etc. The digital-ultrasonic sensors have networking capability and a 32-bit identifier, which provide a platform for a robust data acquisition (DAQ) for a large amount of sensors. In addition, the network applies a unique "signature" of the environment by comparing sensor-to-sensor data to pick up on minute changes, which would signal an invasion of unknown elements or signal a potential tampering in equipment or facilities. The system accommodates satellite and other secure network uplinks in either RF or UWB protocols. The wireless sensors can be dispersed by ground or air maneuvers. In addition, the sensors can be incorporated into the structure or surfaces of vehicles, buildings, or clothing of field personnel.

  6. An Environment Monitoring Package for the International Space Station

    NASA Technical Reports Server (NTRS)

    Carruth, M. Ralph; Clifton, Kenneth S.

    1998-01-01

    The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments, provide data and supply power from ISS. From the beginning of the space station program it has been recognized that experiments will require knowledge of the external local environment which can affect the science being performed and may impact lifetime and operations of the experiment hardware. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP). This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.

  7. Developing the remote sensing-based water environmental model for monitoring alpine river water environment over Plateau cold zone

    NASA Astrophysics Data System (ADS)

    You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.

    2017-12-01

    Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key

  8. How to Address a Global Problem with Earth Observations? Developing Best Practices to Monitor Forests Around the World

    NASA Technical Reports Server (NTRS)

    Flores Cordova, Africa I.; Cherrington, Emil A.; Vadrevu, Krishna; Thapa, Rajesh Bahadur; Odour, Phoebe; Mehmood, Hamid; Quyen, Nguyen Hanh; Saah, David; Yero, Kadidia; Mamane, Bako; hide

    2017-01-01

    Forests represent a key natural resource, for which degradation or disturbance is directly associated to economic implications, particularly in the context of the United Nations program REDD+ in supporting national policies to fight illegal deforestation. SERVIR, a joint NASA-USAID initiative that brings Earth observations (EO) for improved environmental decision making in developing countries, works with established institutions, called SERVIR hubs, in four regions around the world. SERVIR is partnering with global programs with great experience in providing best practices in forest monitoring systems, such as SilvaCarbon and the Global Forest Observation Initiative (GFOI), to develop a capacity building plan that prioritizes user needs. Representatives from the SERVIR global network met in February 2017 with experts in the field of Synthetic Aperture Radar (SAR) for forest applications to envisage this capacity building plan that aims to leverage the state-of-the-art knowledge on remote sensing to enhance forest monitoring for user agencies in SERVIR regions.

  9. The Global Drought Information System - A Decision Support Tool with Global Applications

    NASA Astrophysics Data System (ADS)

    Arndt, D. S.; Brewer, M.; Heim, R. R., Jr.

    2014-12-01

    Drought is a natural hazard which can cause famine in developing countries and severe economic hardship in developed countries. Given current concerns with the increasing frequency and magnitude of droughts in many regions of the world, especially in the light of expected climate change, drought monitoring and dissemination of early warning information in a timely fashion on a global scale is a critical concern as an important adaptation and mitigation strategy. While a number of nations, and a few continental-scale activities have developed drought information system activities, a global drought early warning system (GDEWS) remains elusive, despite the benefits highlighted by ministers to the Global Earth Observation System of System in 2008. In an effort to begin a process of drought monitoring with international collaboration, the National Integrated Drought Information System's (NIDIS) U.S. Drought Portal, a web-based information system created to address drought services and early warning in the United States, including drought monitoring, forecasting, impacts, mitigation, research, and education, volunteered to develop a prototype Global Drought Monitoring Portal (GDMP). Through integration of data and information at the global level, and with four continental-level partners, the GDMP has proven successful as a tool to monitor drought around the globe. At a past meeting between NIDIS, the World Meteorological Organization, and the Global Earth Observation System of Systems, it was recommended that the GDMP form the basis for a Global Drought Information System (GDIS). Currently, GDIS activities are focused around providing operational global drought monitoring products and assessments, incorporating additional drought monitoring information, especially from those areas without regional or continental-scale input, and incorporating drought-specific climate forecast information from the World Climate Research Programme. Additional GDIS pilot activities are

  10. [The marine coastal water monitoring program of the Italian Ministry of the Environment].

    PubMed

    Di Girolamo, Irene

    2003-01-01

    The Ministry of the Environment carries out marine and coastal monitoring programs with the collaboration of the coastal Regions. The program in progress (2001-2003), on the basis of results of the previous one, has identified 73 particulary significant areas (57 critical areas and 16 control areas). The program investigates several parameters on water, plancton, sediments, mollusks and benthos with analyses fortnightly, six-monthly and annual. The main aim of these three year monitoring programs is to assess the quality of national marine ecosystem.

  11. Global temperature monitoring from space

    NASA Technical Reports Server (NTRS)

    Spencer, R. W.

    1994-01-01

    Global and regional temperature variations in the lower troposphere and lower stratosphere are examined for the period 1979-92 from Microwave Sounder Unit (MSU) data obtained by the Television Infrared Observation Satellite (TIROS)-N series of National Oceanic and Atmospheric Administration (NOAA) operational satellites. In the lower troposphere, globally-averaged temperature variations appear to be dominated by tropical El Nino (warm) and La Nina (cool) events and volcanic eruptions. The Pinatubo volcanic eruption in June 1991 appears to have initiated a cooling trend which persisted through the most recent data analyzed (July, 1992), and largely overwhelmed the warming from the 1991-92 El Nino. The cooling has been stronger in the Northern Hemisphere than in the Southern Hemisphere. The temperature trend over the 13.5 year satellite record is small (+0.03 C) compared to the year-to-year variability (0.2-0.4 C), making detection of any global warming signal fruitless to date. However, the future global warming trend, currently predicted to be around 0.3 C/decade, will be much easier to discern should it develop. The lower stratospheric temperature record is dominated by warm episodes from the Pinatubo eruption and the March 1982 eruption of El Chichon volcano.

  12. The global ozone monitoring by occultation of stars (GOMOS) instrument on ENVISAT requirements, design and development status

    NASA Astrophysics Data System (ADS)

    Popescu, Alexandru F.; Paulsen, Togeir; Ratier, Guy

    2018-04-01

    This paper, "The global ozone monitoring by occultation of stars (GOMOS) instrument on ENVISAT requirements, design and development status," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  13. Developing Urban Environment Indicators for Neighborhood Sustainability Assessment in Tripoli-Libya

    NASA Astrophysics Data System (ADS)

    Elgadi, Ahmed. A.; Hakim Ismail, Lokman; Abass, Fatma; Ali, Abdelmuniem

    2016-11-01

    Sustainability assessment frameworks are becoming increasingly important to assist in the transition towards a sustainable urban environment. The urban environment is an effective system and requires regular monitoring and evaluation through a set of relevant indicators. The indicator provides information about the state of the environment through the production value of quantity. The indicator creates sustainability assessment requests to be considered on all spatial scales to specify efficient information of urban environment sustainability in Tripoli-Libya. Detailed data is necessary to assess environmental modification in the urban environment on a local scale and ease the transfer of this information to national and global stages. This paper proposes a set of key indicators to monitor urban environmental sustainability developments of Libyan residential neighborhoods. The proposed environmental indicator framework measures the sustainability performance of an urban environment through 13 sub-categories consisting of 21 indicators. This paper also explains the theoretical foundations for the selection of all indicators with reference to previous studies.

  14. From ecological records to big data: the invention of global biodiversity.

    PubMed

    Devictor, Vincent; Bensaude-Vincent, Bernadette

    2016-12-01

    This paper is a critical assessment of the epistemological impact of the systematic quantification of nature with the accumulation of big datasets on the practice and orientation of ecological science. We examine the contents of big databases and argue that it is not just accumulated information; records are translated into digital data in a process that changes their meanings. In order to better understand what is at stake in the 'datafication' process, we explore the context for the emergence and quantification of biodiversity in the 1980s, along with the concept of the global environment. In tracing the origin and development of the global biodiversity information facility (GBIF) we describe big data biodiversity projects as a techno-political construction dedicated to monitoring a new object: the global diversity. We argue that, biodiversity big data became a powerful driver behind the invention of the concept of the global environment, and a way to embed ecological science in the political agenda.

  15. High frequency monitoring of the coastal marine environment using the MAREL buoy.

    PubMed

    Blain, S; Guillou, J; Tréguer, P; Woerther, P; Delauney, L; Follenfant, E; Gontier, O; Hamon, M; Leilde, B; Masson, A; Tartu, C; Vuillemin, R

    2004-06-01

    The MAREL Iroise data buoy provides physico-chemical measurements acquired in surface marine water in continuous and autonomous mode. The water is pumped 1.5 m from below the surface through a sampling pipe and flows through the measuring cell located in the floating structure. Technological innovations implemented inside the measuring cell atop the buoy allow a continuous cleaning of the sensor, while injection of chloride ions into the circuit prevents biological fouling. Specific sensors for temperature, salinity, oxygen and fluorescence investigated in this paper have been evaluated to guarantee measurement precision over a 3 month period. A bi-directional link under Internet TCP-IP protocols is used for data, alarms and remote-control transmissions with the land-based data centre. Herein, we present a 29 month record for 4 parameters measured using a MAREL buoy moored in a coastal environment (Iroise Sea, Brest, France). The accuracy of the data provided by the buoy is assessed by comparison with measurements of sea water weekly sampled at the same site as part of SOMLIT (Service d'Observation du Milieu LIToral), the French network for monitoring of the coastal environment. Some particular events (impact of intensive fresh water discharges, dynamics of a fast phytoplankton bloom) are also presented, demonstrating the worth of monitoring a highly variable environment with a high frequency continuous reliable system.

  16. Meeting Report: Long Term Monitoring of Global Vegetation using Moderate Resolution Satellites

    NASA Technical Reports Server (NTRS)

    Morisette, Jeffrey; Heinsch, Fath Ann; Running, Steven W.

    2006-01-01

    The international community has long recognized the need to coordinate observations of Earth from space. In 1984, this situation provided the impetus for creating the Committee on Earth Observation Satellites (CEOS), an international coordinating mechanism charged with coordinating international civil spaceborne missions designed to observe and study planet Earth. Within CEOS, its Working Group on Calibration and Validation (WGCV) is tasked with coordinating satellite-based global observations of vegetation. Currently, several international organizations are focusing on the requirements for Earth observation from space to address key science questions and societal benefits related to our terrestrial environment. The Global Vegetation Workshop, sponsored by the WGCV and held in Missoula, Montana, 7-10 August, 2006, was organized to establish a framework to understand the inter-relationships among multiple, global vegetation products and identify opportunities for: 1) Increasing knowledge through combined products, 2) Realizing efficiency by avoiding redundancy, and 3) Developing near- and long-term plans to avoid gaps in our understanding of critical global vegetation information. The Global Vegetation Workshop brought together 135 researchers from 25 states and 14 countries to advance these themes and formulate recommendations for CEOS members and the Global Earth Observation System of Systems (GEOSS). The eighteen oral presentations and most of the 74 posters presented at the meeting can be downloaded from the meeting website (www.ntsg.umt.edu/VEGMTG/). Meeting attendees were given a copy of the July 2006 IEEE Transactions on Geoscience and Remote Sensing Special Issue on Global Land Product Validation, coordinated by the CEOS Working Group on Calibration and Validation (WGCV). This issue contains 29 articles focusing on validation products from several of the sensors discussed during the workshop.

  17. Construct mine environment monitoring system based on wireless mesh network

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun

    2018-04-01

    The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.

  18. The Global Drought Information System - A Decision Support Tool with Global Applications

    NASA Astrophysics Data System (ADS)

    Heim, R. R.; Brewer, M.

    2012-12-01

    Drought is a natural hazard which can cause famine in developing countries and severe economic hardship in developed countries. Given current concerns with the increasing frequency and magnitude of droughts in many regions of the world, especially in the light of expected climate change, drought monitoring and dissemination of early warning information in a timely fashion on a global scale is a critical concern as an important adaptation and mitigation strategy. While a number of nations, and a few continental-scale activities have developed drought information system activities, a global drought early warning system (GDEWS) remains elusive, despite the benefits highlighted by ministers to the Global Earth Observation System of System in 2008. In an effort to begin a process of drought monitoring with international collaboration, the National Integrated Drought Information System's (NIDIS) U.S. Drought Portal, a web-based information system created to address drought services and early warning in the United States, including drought monitoring, forecasting, impacts, mitigation, research, and education, volunteered to develop a prototype Global Drought Monitoring Portal (GDMP). Through integration of data and information at the global level, and with four continental-level partners, the GDMP has proven successful as a tool to monitor drought around the globe. At a recent meeting between NIDIS, the World Meteorological Organization, and the Global Earth Observation System of Systems, it was recommended that the GDMP form the basis for a Global Drought Information System (GDIS). Currently, GDIS activities are focused around incorporating additional drought monitoring information, especially from those areas without regional or continental-scale input, and incorporating drought-specific climate forecast information from the World Climate Research Programme. Additional GDIS pilot activities are underway with an emphasis on information and decision making, and how to

  19. A Movement-Assisted Deployment of Collaborating Autonomous Sensors for Indoor and Outdoor Environment Monitoring.

    PubMed

    Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał

    2016-09-14

    Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.

  20. Toward Global Drought Early Warning Capability - Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting

    NASA Technical Reports Server (NTRS)

    Pozzi, Will; Sheffield, Justin; Stefanski, Robert; Cripe, Douglas; Pulwarty, Roger; Vogt, Jurgen V.; Heim, Richard R., Jr.; Brewer, Michael J.; Svoboda, Mark; Westerhoff, Rogier; hide

    2013-01-01

    Drought has had a significant impact on civilization throughout history in terms of reductions in agricultural productivity, potable water supply, and economic activity, and in extreme cases this has led to famine. Every continent has semiarid areas, which are especially vulnerable to drought. The Intergovernmental Panel on Climate Change has noted that average annual river runoff and water availability are projected to decrease by 10 percent-13 percent over some dry and semiarid regions in mid and low latitudes, increasing the frequency, intensity, and duration of drought, along with its associated impacts. The sheer magnitude of the problem demands efforts to reduce vulnerability to drought by moving away from the reactive, crisis management approach of the past toward a more proactive, risk management approach that is centered on reducing vulnerability to drought as much as possible while providing early warning of evolving drought conditions and possible impacts. Many countries, unfortunately, do not have adequate resources to provide early warning, but require outside support to provide the necessary early warning information for risk management. Furthermore, in an interconnected world, the need for information on a global scale is crucial for understanding the prospect of declines in agricultural productivity and associated impacts on food prices, food security, and potential for civil conflict. This paper highlights the recent progress made toward a Global Drought Early Warning Monitoring Framework (GDEWF), an underlying partnership and framework, along with its Global Drought Early Warning System (GDEWS), which is its interoperable information system, and the organizations that have begun working together to make it a reality. The GDEWF aims to improve existing regional and national drought monitoring and forecasting capabilities by adding a global component, facilitating continental monitoring and forecasting (where lacking), and improving these tools at

  1. Advancing UAS methods for monitoring coastal environments

    NASA Astrophysics Data System (ADS)

    Ridge, J.; Seymour, A.; Rodriguez, A. B.; Dale, J.; Newton, E.; Johnston, D. W.

    2017-12-01

    Utilizing fixed-wing Unmanned Aircraft Systems (UAS), we are working to improve coastal monitoring by increasing the accuracy, precision, temporal resolution, and spatial coverage of habitat distribution maps. Generally, multirotor aircraft are preferred for precision imaging, but recent advances in fixed-wing technology have greatly increased their capabilities and application for fine-scale (decimeter-centimeter) measurements. Present mapping methods employed by North Carolina coastal managers involve expensive, time consuming and localized observation of coastal environments, which often lack the necessary frequency to make timely management decisions. For example, it has taken several decades to fully map oyster reefs along the NC coast, making it nearly impossible to track trends in oyster reef populations responding to harvesting pressure and water quality degradation. It is difficult for the state to employ manned flights for collecting aerial imagery to monitor intertidal oyster reefs, because flights are usually conducted after seasonal increases in turbidity. In addition, post-storm monitoring of coastal erosion from manned platforms is often conducted days after the event and collects oblique aerial photographs which are difficult to use for accurately measuring change. Here, we describe how fixed wing UAS and standard RGB sensors can be used to rapidly quantify and assess critical coastal habitats (e.g., barrier islands, oyster reefs, etc.), providing for increased temporal frequency to isolate long-term and event-driven (storms, harvesting) impacts. Furthermore, drone-based approaches can accurately image intertidal habitats as well as resolve information such as vegetation density and bathymetry from shallow submerged areas. We obtain UAS imagery of a barrier island and oyster reefs under ideal conditions (low tide, turbidity, and sun angle) to create high resolution (cm scale) maps and digital elevation models to assess habitat condition

  2. Protective environment for hematopoietic cell transplant (HSCT) recipients: The Infectious Diseases Working Party EBMT analysis of global recommendations on health-care facilities.

    PubMed

    Styczynski, Jan; Tridello, Gloria; Donnelly, J Peter; Iacobelli, Simona; Hoek, Jennifer; Mikulska, Malgorzata; Aljurf, Mahmoud; Gil, Lidia; Cesaro, Simone

    2018-03-13

    International guidelines on protective environment for HSCT recipients proposed a set of 10 global recommendations in 2009 on protective environment (GRPE) concerning hospital room design and ventilation. The EBMT Infectious Diseases Working Party undertook a survey on the status on protective environment for HSCT recipients with the aim of surveying current practices and their agreement with GRPE recommendations. The questionnaire consisted of 37 questions divided into 5 sections about filtration, air changes, maintenance, and the protective environment in rooms and the surrounding unit. Overall, 177 centres (response rate 33%) from 36 countries responded, indicating that 99.4% of patient rooms were equipped with HEPA filters, but only 48.6% of the centre's staff were aware of, and could confirm, regular replacement of filters based on manufacturers' recommendations. Well-sealed rooms were used in terms of windows (70.6%), ceilings (35%), and plumbing pipes (51.4%). The sensor monitors in the patient room used to determine when the HEPA filters require changing were installed only in 18.1% of centres. Only 1 centre fulfilled all 10 GRPE recommendations, while 62 centres fulfilled the 3 level "A" recommendations. In conclusion, HEPA-filtered rooms are available in almost all centres, while fewer centres fulfilled other requirements. Knowledge on the details and maintenance of protective environments in the HSCT setting was inadequate, reflecting a lack of communication between the health personnel involved, hospital infection control and the hospital maintenance services.

  3. CMEMS (Copernicus Marine Environment Monitoring Service) In Situ Thematic Assembly Centre: A service for operational Oceanography

    NASA Astrophysics Data System (ADS)

    Manzano Muñoz, Fernando; Pouliquen, Sylvie; Petit de la Villeon, Loic; Carval, Thierry; Loubrieu, Thomas; Wedhe, Henning; Sjur Ringheim, Lid; Hammarklint, Thomas; Tamm, Susanne; De Alfonso, Marta; Perivoliotis, Leonidas; Chalkiopoulos, Antonis; Marinova, Veselka; Tintore, Joaquin; Troupin, Charles

    2016-04-01

    Copernicus, previously known as GMES (Global Monitoring for Environment and Security), is the European Programme for the establishment of a European capacity for Earth Observation and Monitoring. Copernicus aims to provide a sustainable service for Ocean Monitoring and Forecasting validated and commissioned by users. From May 2015, the Copernicus Marine Environment Monitoring Service (CMEMS) is working on an operational mode through a contract with services engagement (result is regular data provision). Within CMEMS, the In Situ Thematic Assembly Centre (INSTAC) distributed service integrates in situ data from different sources for operational oceanography needs. CMEMS INSTAC is collecting and carrying out quality control in a homogeneous manner on data from providers outside Copernicus (national and international networks), to fit the needs of internal and external users. CMEMS INSTAC has been organized in 7 regional Dissemination Units (DUs) to rely on the EuroGOOS ROOSes. Each DU aggregates data and metadata provided by a series of Production Units (PUs) acting as an interface for providers. Homogeneity and standardization are key features to ensure coherent and efficient service. All DUs provide data in the OceanSITES NetCDF format 1.2 (based on NetCDF 3.6), which is CF compliant, relies on SeaDataNet vocabularies and is able to handle profile and time-series measurements. All the products, both near real-time (NRT) and multi-year (REP), are available online for every CMEMS registered user through an FTP service. On top of the FTP service, INSTAC products are available through Oceanotron, an open-source data server dedicated to marine observations dissemination. It provides services such as aggregation on spatio-temporal coordinates and observed parameters, and subsetting on observed parameters and metadata. The accuracy of the data is checked on various levels. Quality control procedures are applied for the validity of the data and correctness tests for the

  4. A 3-year hygiene and safety monitoring of a meat processing plant which uses raw materials of global origin.

    PubMed

    Manios, Stavros G; Grivokostopoulos, Nikolaos C; Bikouli, Vasiliki C; Doultsos, Dimitrios A; Zilelidou, Evangelia A; Gialitaki, Maria A; Skandamis, Panagiotis N

    2015-09-16

    A systematic approach in monitoring the hygiene of a meat processing plant using classical microbiological analyses combined with molecular characterization tools may assist in the safety of the final products. This study aimed: (i) to evaluate the total hygiene level and, (ii) to monitor and characterize the occurrence and spread of Salmonella spp. and Listeria monocytogenes in the environment and the final products of a meat industry that processes meat of global origin. In total, 2541 samples from the processing environment, the raw materials, and the final products were collected from a Greek meat industry in the period 2011-2013. All samples were subjected to enumeration of total viable counts (TVC), Escherichia coli (EC) and total coliforms (TCC) and the detection of Salmonella spp., while 709 of these samples were also analyzed for the presence L. monocytogenes. Pathogen isolates were serotyped and further characterized for their antibiotic resistance and subtyped by PFGE. Raw materials were identified as the primary source of contamination, while improper handling might have also favored the proliferation of the initial microbial load. The occurrence of Salmonella spp. and L. monocytogenes reached 5.5% and 26.9%, respectively. Various (apparent) cross-contamination or persistence trends were deduced based on PFGE analysis results. Salmonella isolates showed wide variation in their innate antibiotic resistance, contrary to L. monocytogenes ones, which were found susceptible to all antibiotics except for cefotaxime. The results emphasize the biodiversity of foodborne pathogens in a meat industry and may be used by meat processors to understand the spread of pathogens in the processing environment, as well as to assist the Food Business Operator (FBO) in establishing effective criteria for selection of raw materials and in improving meat safety and quality. This approach can limit the increase of microbial contamination during the processing steps observed in

  5. Youth, Skills Development, and Work in the Education for All Global Monitoring Report 2012: Learning from Asia or for Asia?

    ERIC Educational Resources Information Center

    King, Kenneth

    2014-01-01

    The article underlines the historic importance of the treatment of skills development, finally, by the Education for All Global Monitoring Report (GMR) team. Among the many challenges in its analysis are the multiple and overlapping meanings of the word skill, and the consequent difficulties of quantifying and monitoring efforts at skills…

  6. Eco-analytical Methodology in Environmental Problems Monitoring

    NASA Astrophysics Data System (ADS)

    Agienko, M. I.; Bondareva, E. P.; Chistyakova, G. V.; Zhironkina, O. V.; Kalinina, O. I.

    2017-01-01

    Among the problems common to all mankind, which solutions influence the prospects of civilization, the problem of ecological situation monitoring takes very important place. Solution of this problem requires specific methodology based on eco-analytical comprehension of global issues. Eco-analytical methodology should help searching for the optimum balance between environmental problems and accelerating scientific and technical progress. The fact that Governments, corporations, scientists and nations focus on the production and consumption of material goods cause great damage to environment. As a result, the activity of environmentalists is developing quite spontaneously, as a complement to productive activities. Therefore, the challenge posed by the environmental problems for the science is the formation of geo-analytical reasoning and the monitoring of global problems common for the whole humanity. So it is expected to find the optimal trajectory of industrial development to prevent irreversible problems in the biosphere that could stop progress of civilization.

  7. Contributions of national and global health estimates to monitoring health-related Sustainable Development Goals in Thailand.

    PubMed

    Bundhamcharoen, Kanitta; Limwattananon, Supon; Kusreesakul, Khanitta; Tangcharoensathien, Viroj

    2017-01-01

    The Millennium Development Goals (MDGs) triggered increased demand for data on child and maternal mortality for monitoring progress. With the advent of the Sustainable Development Goals (SDGs) and growing evidence of an epidemiological transition towards non-communicable diseases, policy makers need data on mortality and disease trends and distribution to inform effective policies and support monitoring progress. Where there are limited capacities to produce national health estimates (NHEs), global health estimates (GHEs) can fill gaps for global monitoring and comparisons. This paper draws lessons learned from Thailand's burden of disease study (BOD) on capacity development for NHEs, and discusses the contributions and limitation of GHEs in informing policies at country level. Through training and technical support by external partners, capacities are gradually strengthened and institutionalized to enable regular updates of BOD at national and sub-national levels. Initially, the quality of cause of death reporting in the death certificates was inadequate, especially for deaths occurring in the community. Verbal autopsies were conducted, using domestic resources, to determine probable causes of deaths occurring in the community. This helped improve the estimation of years of life lost. Since the achievement of universal health coverage in 2002, the quality of clinical data on morbidities has also considerably improved. There are significant discrepancies between the 2010 Global Burden of Diseases (GBD) estimates for Thailand and the 1999 nationally generated BOD, especially for years of life lost due to HIV/AIDS, and the ranking of priority diseases. National ownership of NHEs and effective interfaces between researchers and decision makers contribute to enhanced country policy responses, while sub-national data are intended to be used by various sub-national-level partners. Though GHEs contribute to benchmarking country achievement compared with global health

  8. Pollution monitoring using networks of honey bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromenshenk, J.J.; Dewart, M.L.; Thomas, J.M.

    1983-08-01

    Each year thousands of chemicals in large quantities are introduced into the global environment and the need for effective methods of monitoring these substances has steadily increased. Most monitoring programs rely upon instrumentation to measure specific contaminants in air, water, or soil. However, it has become apparent that humans and their environment are exposed to complex mixtures of chemicals rather than single entities. As our ability to detect ever smaller quantities of pollutants has increased, the biological significance of these findings has become more uncertain. Also, it is clear that monitoring efforts should shift from short-term studies of easily identifiablemore » sources in localized areas to long-term studies of multiple sources over widespread regions. Our investigations aim at providing better tools to meet these exigencies. Honey bees are discussed as an effective, long-term, self-sustaining system for monitoring environmental impacts. Our results indicate that the use of regional, and possibly national or international, capability can be realized with the aid of beekeepers in obtaining samples and conducting measurements. This approach has the added advantage of public involvement in environmental problem solving and protection of human health and environmental quality.« less

  9. Lidar Remote Sensing for Industry and Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  10. An Intelligent System for Monitoring the Microgravity Environment Quality On-Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Lin, Paul P.; Jules, Kenol

    2002-01-01

    An intelligent system for monitoring the microgravity environment quality on-board the International Space Station is presented. The monitoring system uses a new approach combining Kohonen's self-organizing feature map, learning vector quantization, and back propagation neural network to recognize and classify the known and unknown patterns. Finally, fuzzy logic is used to assess the level of confidence associated with each vibrating source activation detected by the system.

  11. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    USGS Publications Warehouse

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal dumping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  12. "Evolution Canyon," a potential microscale monitor of global warming across life.

    PubMed

    Nevo, Eviatar

    2012-02-21

    Climatic change and stress is a major driving force of evolution. The effects of climate change on living organisms have been shown primarily on regional and global scales. Here I propose the "Evolution Canyon" (EC) microscale model as a potential life monitor of global warming in Israel and the rest of the world. The EC model reveals evolution in action at a microscale involving biodiversity divergence, adaptation, and incipient sympatric speciation across life from viruses and bacteria through fungi, plants, and animals. The EC consists of two abutting slopes separated, on average, by 200 m. The tropical, xeric, savannoid, "African" south-facing slope (AS = SFS) abuts the forested "European" north-facing slope (ES = NFS). The AS receives 200-800% higher solar radiation than the ES. The ES represents the south European forested maquis. The AS and ES exhibit drought and shade stress, respectively. Major adaptations on the AS are because of solar radiation, heat, and drought, whereas those on the ES relate to light stress and photosynthesis. Preliminary evidence suggests the extinction of some European species on the ES and AS. In Drosophila, a 10-fold higher migration was recorded in 2003 from the AS to ES. I advance some predictions that could be followed in diverse species in EC. The EC microclimatic model is optimal to track global warming at a microscale across life from viruses and bacteria to mammals in Israel, and in additional ECs across the planet.

  13. Autonomous Environment-Monitoring Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2004-01-01

    Autonomous environment-monitoring networks (AEMNs) are artificial neural networks that are specialized for recognizing familiarity and, conversely, novelty. Like a biological neural network, an AEMN receives a constant stream of inputs. For purposes of computational implementation, the inputs are vector representations of the information of interest. As long as the most recent input vector is similar to the previous input vectors, no action is taken. Action is taken only when a novel vector is encountered. Whether a given input vector is regarded as novel depends on the previous vectors; hence, the same input vector could be regarded as familiar or novel, depending on the context of previous input vectors. AEMNs have been proposed as means to enable exploratory robots on remote planets to recognize novel features that could merit closer scientific attention. AEMNs could also be useful for processing data from medical instrumentation for automated monitoring or diagnosis. The primary substructure of an AEMN is called a spindle. In its simplest form, a spindle consists of a central vector (C), a scalar (r), and algorithms for changing C and r. The vector C is constructed from all the vectors in a given continuous stream of inputs, such that it is minimally distant from those vectors. The scalar r is the distance between C and the most remote vector in the same set. The construction of a spindle involves four vital parameters: setup size, spindle-population size, and the radii of two novelty boundaries. The setup size is the number of vectors that are taken into account before computing C. The spindle-population size is the total number of input vectors used in constructing the spindle counting both those that arrive before and those that arrive after the computation of C. The novelty-boundary radii are distances from C that partition the neighborhood around C into three concentric regions (see Figure 1). During construction of the spindle, the changing spindle radius

  14. Public road infrastructure inventory in degraded global navigation satellite system signal environments

    NASA Astrophysics Data System (ADS)

    Sokolova, N.; Morrison, A.; Haakonsen, T. A.

    2015-04-01

    Recent advancement of land-based mobile mapping enables rapid and cost-effective collection of highquality road related spatial information. Mobile Mapping Systems (MMS) can provide spatial information with subdecimeter accuracy in nominal operation environments. However, performance in challenging environments such as tunnels is not well characterized. The Norwegian Public Roads Administration (NPRA) manages the country's public road network and its infrastructure, a large segment of which is represented by road tunnels (there are about 1 000 road tunnels in Norway with a combined length of 800 km). In order to adopt mobile mapping technology for streamlining road network and infrastructure management and maintenance tasks, it is important to ensure that the technology is mature enough to meet existing requirements for object positioning accuracy in all types of environments, and provide homogeneous accuracy over the mapping perimeter. This paper presents results of a testing campaign performed within a project funded by the NPRA as a part of SMarter road traffic with Intelligent Transport Systems (ITS) (SMITS) program. The testing campaign objective was performance evaluation of high end commercial MMSs for inventory of public areas, focusing on Global Navigation Satellite System (GNSS) signal degraded environments.

  15. Development of the virtual research environment for analysis, evaluation and prediction of global climate change impacts on the regional environment

    NASA Astrophysics Data System (ADS)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Fazliev, Alexander

    2017-04-01

    Description and the first results of the Russian Science Foundation project "Virtual computational information environment for analysis, evaluation and prediction of the impacts of global climate change on the environment and climate of a selected region" is presented. The project is aimed at development of an Internet-accessible computation and information environment providing unskilled in numerical modelling and software design specialists, decision-makers and stakeholders with reliable and easy-used tools for in-depth statistical analysis of climatic characteristics, and instruments for detailed analysis, assessment and prediction of impacts of global climate change on the environment and climate of the targeted region. In the framework of the project, approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platform of the Russian leading institution involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research laboratory focused on interdisciplinary environmental studies. VRE under development will comprise best features and functionality of earlier developed information and computing system CLIMATE (http://climate.scert.ru/), which is widely used in Northern Eurasia environment studies. The Project includes several major directions of research listed below. 1. Preparation of geo-referenced data sets, describing the dynamics of the current and possible future climate and environmental changes in detail. 2. Improvement of methods of analysis of climate change. 3. Enhancing the functionality of the VRE prototype in order to create a convenient and reliable tool for the study of regional social, economic and political consequences of climate change. 4. Using the output of the first three tasks, compilation of the VRE prototype, its validation, preparation of applicable detailed description of

  16. A Movement-Assisted Deployment of Collaborating Autonomous Sensors for Indoor and Outdoor Environment Monitoring

    PubMed Central

    Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał

    2016-01-01

    Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper. PMID:27649186

  17. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.

    Treesearch

    David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon

    2005-01-01

    Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...

  18. EDITORIAL: Siberia Integrated Regional Study: multidisciplinary investigations of the dynamic relationship between the Siberian environment and global climate change

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Vaganov, E. A.

    2010-03-01

    partners. Conclusions Devoted to regional-global linkages, understanding, monitoring and assessment of global change impacts on a regional level, SIRS targets provide substantiated recommendations for regional decision makers to understand and work towards mitigating the negative effects of climate change for Siberia and its population. This approach will allow the Siberian Branch of the Russian National Committee for IGBP to perform its mission, ensuring the growth of scientific knowledge of the dynamic Siberian environment and its subsystems, and to develop a solid basis for mitigation and adaptation strategies for the negative consequences of global change. 1 For example, 'Complex monitoring of the Great Vasyugan Bog: modern state and development processes investigations' and 'Ecological problems of Siberian cities'. 2 For example, 'Models of biosphere change based on the boreal ecosystems' carbon balance using field and satellite data observations' and 'Information technologies, mathematical models and methods for monitoring and control of ecosystems intended for stationary, mobile and remote observations'. 3 'Environmental observations, modeling and information systems' (http://enviromis.scert.ru/) and 'Man-induced environmental risks: monitoring, management and mitigation of man-made changes in Siberia (Enviro-RISKS)'. References [1] Brasseur G 2003 IGBP Newsletter No 50 (June 2002) IGBP II - Special Edition Issue 3rd IGBP Congress Overview Global Change Newsletter No 55 pp 2-4 [2] 2005 Bulletin of the Russian National Committee for the International Geosphere Biosphere Programme 4 [3] Ippolitov I I, Kabanov M V, Komarov A I and Kuskov A I 2004 Patterns of modern natural-climatic changes in Siberia: observed changes of annual temperature and pressure Geogr. Nat. Resources 3 90-6 [4] Volodin E M and Dianskii N A 2003 Response of a coupled atmosphere-ocean general circulation model to increased carbon dioxide Izvestiya, Atmospheric and Oceanic Physics 239 170-86 [5

  19. Monitoring of Space and Earth electromagnetic environment by MAGDAS project: Collaboration with IKIR - Introduction to ICSWSE/MAGDAS project

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akimasa; Fujimoto, Akiko; Ikeda, Akihiro; Uozumi, Teiji; Abe, Shuji

    2017-10-01

    For study of coupling processes in the Solar-Terrestrial System, International Center for Space Weather Science and Education (ICSWSE), Kyushu University has developed a real time magnetic data acquisition system (the MAGDAS project) around the world. The number of observational sites is increasing every year with the collaboration of host countries. Now at this time, the MAGDAS Project has installed 78 real time magnetometers - so it is the largest magnetometer array in the world. The history of global observation at Kyushu University is over 30 years and number of developed observational sites is over 140. Especially, Collaboration between IKIR is extended back to 1990's. Now a time, we are operating Flux-gate magnetometer and FM-CW Radar. It is one of most important collaboration for space weather monitoring. By using MAGDAS data, ICSWSE produces many types of space weather index, such as EE-index (for monitoring long tern and shot term variation of equatorial electrojet), Pc5 index (for monitoring solar-wind velocity and high energy electron flux), Sq-index (for monitoring global change of ionospheric low and middle latitudinal current system), and Pc3 index (for monitoring of plasma density variation at low latitudes). In this report, we will introduce recent development of MAGDAS/ICSWSE Indexes project and topics for new open policy for MAGDAS data will be also discussed.

  20. Real Time On-line Space Research Laboratory Environment Monitoring with Off-line Trend and Prediction Analysis

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2006-01-01

    One of the responsibilities of the NASA Glenn Principal Investigator Microgravity Services is to support NASA sponsored investigators in the area of reduced-gravity acceleration data analysis, interpretation and the monitoring of the reduced-gravity environment on-board various carriers. With the International Space Station currently operational, a significant amount of acceleration data is being down-linked and processed on ground for both the space station onboard environment characterization (and verification) and scientific experiments. Therefore, to help principal investigator teams monitor the acceleration level on-board the International Space Station to avoid undesirable impact on their experiment, when possible, the NASA Glenn Principal Investigator Microgravity Services developed an artificial intelligence monitoring system, which detects in near real time any change in the environment susceptible to affect onboard experiments. The main objective of the monitoring system is to help research teams identify the vibratory disturbances that are active at any instant of time onboard the International Space Station that might impact the environment in which their experiment is being conducted. The monitoring system allows any space research scientist, at any location and at any time, to see the current acceleration level on-board the Space Station via the World Wide Web. From the NASA Glenn s Exploration Systems Division web site, research scientists can see in near real time the active disturbances, such as pumps, fans, compressor, crew exercise, re-boost, extra-vehicular activity, etc., and decide whether or not to continue operating or stopping (or making note of such activity for later correlation with science results) their experiments based on the g-level associated with that specific event. A dynamic graphical display accessible via the World Wide Web shows the status of all the vibratory disturbance activities with their degree of confidence as well as

  1. Design research and the globalization of healthcare environments.

    PubMed

    Shepley, Mardelle McCuskey; Song, Yilin

    2014-01-01

    Global healthcare practice has expanded in the past 20 years. At the same time the incorporation of research into the design process has gained prominence as a best practice among architects. The authors of this study investigated the status of design research in a variety of international settings. We intended to answer the question, "how pervasive is healthcare design research outside of the United States?" The authors reviewed the international literature on the design of healthcare facilities. More than 500 international studies and conference proceedings were incorporated in this literature review. A team of five research assistants searched multiple databases comparing approximately 16 keywords to geographic location. Some of those keywords included: evidence-based design, salutogenic design, design research, and healthcare environment. Additional articles were gathered by contacting prominent researchers and asking for their personal assessment of local health design research studies. While there are design researchers in most parts of the world, the majority of studies focus on the needs of populations in developed countries and generate guidelines that have significant cost and cultural implications that prohibit their implementation in developing countries. Additionally, the body of literature discussing the role of culture in healthcare environments is extremely limited. Design researchers must address the cultural implications of their studies. Additionally, we need to expand our research objectives to address healthcare design in countries that have not been previous considered. © 2014 Vendome Group, LLC.

  2. Remote Arrhythmia Monitoring System Developed

    NASA Technical Reports Server (NTRS)

    York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.

    2004-01-01

    Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.

  3. DEGAS: Dynamic Exascale Global Address Space Programming Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmel, James

    The Dynamic, Exascale Global Address Space programming environment (DEGAS) project will develop the next generation of programming models and runtime systems to meet the challenges of Exascale computing. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speed and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics. The Berkeley part of the project concentrated on communication-optimal code generation to optimize speedmore » and energy efficiency by reducing data movement. Our work developed communication lower bounds, and/or communication avoiding algorithms (that either meet the lower bound, or do much less communication than their conventional counterparts) for a variety of algorithms, including linear algebra, machine learning and genomics.« less

  4. Global Characterization and Monitoring of Forest Cover Using Landsat Data: Opportunities and Challenges

    NASA Technical Reports Server (NTRS)

    Townshend, John R.; Masek, Jeffrey G.; Huang, ChengQuan; Vermote, Eric F.; Gao, Feng; Channan, Saurabh; Sexton, Joseph O.; Feng, Min; Narasimhan, Ramghuram; Kim, Dohyung; hide

    2012-01-01

    The compilation of global Landsat data-sets and the ever-lowering costs of computing now make it feasible to monitor the Earth's land cover at Landsat resolutions of 30 m. In this article, we describe the methods to create global products of forest cover and cover change at Landsat resolutions. Nevertheless, there are many challenges in ensuring the creation of high-quality products. And we propose various ways in which the challenges can be overcome. Among the challenges are the need for atmospheric correction, incorrect calibration coefficients in some of the data-sets, the different phenologies between compilations, the need for terrain correction, the lack of consistent reference data for training and accuracy assessment, and the need for highly automated characterization and change detection. We propose and evaluate the creation and use of surface reflectance products, improved selection of scenes to reduce phenological differences, terrain illumination correction, automated training selection, and the use of information extraction procedures robust to errors in training data along with several other issues. At several stages we use Moderate Resolution Spectroradiometer data and products to assist our analysis. A global working prototype product of forest cover and forest cover change is included.

  5. Monitoring Global Precipitation through UCI CHRS's RainMapper App on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Nguyen, P.; Huynh, P.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.

    2014-12-01

    The Water and Development Information for Arid Lands-a Global Network (G-WADI) Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System (PERSIANN-CCS) GeoServer has been developed through a collaboration between the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine (UCI) and the UNESCO's International Hydrological Program (IHP). G-WADI PERSIANN-CCS GeoServer provides near real-time high resolution (0.04o, approx 4km) global (60oN - 60oS) satellite precipitation estimated by the PERSIANN-CCS algorithm developed by the scientists at CHRS. The G-WADI PERSIANN-CCS GeoServer utilizes the open-source MapServer software from the University of Minnesota to provide a user-friendly web-based mapping and visualization of satellite precipitation data. Recent efforts have been made by the scientists at CHRS to provide free on-the-go access to the PERSIANN-CCS precipitation data through an application named RainMapper for mobile devices. RainMapper provides visualization of global satellite precipitation of the most recent 3, 6, 12, 24, 48 and 72-hour periods overlaid with various basemaps. RainMapper uses the Google maps application programing interface (API) and embedded global positioning system (GPS) access to better monitor the global precipitation data on mobile devices. Functionalities include using geographical searching with voice recognition technologies make it easy for the user to explore near real-time precipitation in a certain location. RainMapper also allows for conveniently sharing the precipitation information and visualizations with the public through social networks such as Facebook and Twitter. RainMapper is available for iOS and Android devices and can be downloaded (free) from the App Store and Google Play. The usefulness of RainMapper was demonstrated through an application in tracking the evolution of the recent Rammasun Typhoon over the

  6. Evolutionary and anthropological perspectives on optimal foraging in obesogenic environments.

    PubMed

    Lieberman, Leslie Sue

    2006-07-01

    The nutrition transition has created an obesogenic environment resulting in a growing obesity pandemic. An optimal foraging approach provides cost/benefit models of cognitive, behavioral and physiological strategies that illuminate the causes of caloric surfeit and consequent obesity in current environments of abundant food cues; easy-access and reliable food patches; low processing costs and enormous variety of energy-dense foods. Experimental and naturalistic observations demonstrate that obesogenic environments capitalize on human proclivities by displaying colorful advertising, supersizing meals, providing abundant variety, increasing convenience, and utilizing distractions that impede monitoring of food portions during consumption. The globalization of fast foods propels these trends.

  7. Mobile Carbon Monoxide Monitoring System Based on Arduino-Matlab for Environmental Monitoring Application

    NASA Astrophysics Data System (ADS)

    Azieda Mohd Bakri, Nur; Junid, Syed Abdul Mutalib Al; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2015-11-01

    Nowadays, the increasing level of carbon monoxide globally has become a serious environmental issue which has been highlighted in most of the country globally. The monitoring of carbon monoxide content is one of the approaches to identify the level of carbon monoxide pollution towards providing the solution for control the level of carbon monoxide produced. Thus, this paper proposed a mobile carbon monoxide monitoring system for measuring the carbon monoxide content based on Arduino-Matlab General User Interface (GUI). The objective of this project is to design, develop and implement the real-time mobile carbon monoxide sensor system and interfacing for measuring the level of carbon monoxide contamination in real environment. Four phases or stages of work have been carried out for the accomplishment of the project, which classified as sensor development, controlling and integrating sensor, data collection and data analysis. As a result, a complete design and developed system has been verified with the handheld industrial standard carbon monoxide sensor for calibrating the sensor sensitivity and measurement in the laboratory. Moreover, the system has been tested in real environments by measuring the level of carbon monoxide in three different lands used location; industrial area; residential area and main road (commercial area). In this real environment test, the industrial area recorded the highest reading with 71.23 ppm and 82.59 ppm for sensor 1 and sensor 2 respectively. As a conclusion, the mobile realtime carbon monoxide system based on the Arduino-Matlab is the best approach to measure the carbon monoxide concentration in different land-used since it does not require a manual data collection and reduce the complexity of the existing carbon monoxide level concentration measurement practise at the same time with a complete data analysis facilities.

  8. Predicted persistence and response times of linear and cyclic volatile methylsiloxanes in global and local environments.

    PubMed

    Kim, Jaeshin; Mackay, Donald; Whelan, Michael John

    2018-03-01

    We investigated the response times of eight volatile methylsiloxanes (VMSs) in environmental systems at different scales from local to global, with a particular focus on overall loss rates after cessation of emissions. In part, this is driven by proposals to restrict the use of some of these compounds in certain products in Europe. The GloboPOP model estimated low absolute Arctic Contamination Potentials for all VMSs and rapid response times in all media except sediment. VMSs are predicted to be distributed predominantly in air where they react with OH radicals, leading to short response times. After cessation of emissions VMSs concentrations in the environment are expected to decrease rapidly from current levels. Response times in specific water and sediment systems were evaluated using a dynamic QWASI model. Response times were sensitive to both physico-chemical properties and environmental characteristics. Degradation was predicted to play the most important role in determining response times in water and sediment. In the case of the lowest molecular weight VMSs such as L2 and D3, response times were essentially independent of environmental characteristics due to fast hydrolysis in water and sediment. However, response times for the other VMSs are system-specific. They are relatively short in shallow water bodies but increase with depth due to the diminishing role of volatilization on concentration change as volume to surface area ratio increases. In sediment, degradation and resuspension rates also contribute most to the response times. The estimated response times for local environments are useful for planning future monitoring programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) web service to support Area Navigation (RNAV) flight planning

    DOT National Transportation Integrated Search

    2008-01-28

    The Volpe Center designed, implemented, and deployed a Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) prediction system in the mid 1990s to support both Air Force and Federal Aviation Administration (FAA) use of TSO C...

  10. How to address a global problem with Earth Observations? Developing best practices to monitor forests around the world

    NASA Astrophysics Data System (ADS)

    Flores Cordova, A. I.; Cherrington, E. A.; Vadrevu, K.; Thapa, R. B.; Oduor, P.; Mehmood, H.; Quyen, N. H.; Saah, D. S.; Yero, K.; Mamane, B.; Bartel, P.; Limaye, A. S.; French, R.; Irwin, D.; Wilson, S.; Gottielb, S.; Notman, E.

    2017-12-01

    Forests represent a key natural resource, for which degradation or disturbance is directly associated to economic implications, particularly in the context of the United Nations program REDD+ in supporting national policies to fight illegal deforestation. SERVIR, a joint NASA-USAID initiative that brings Earth observations (EO) for improved environmental decision making in developing countries, works with established institutions, called SERVIR hubs, in four regions around the world. SERVIR is partnering with global programs with great experience in providing best practices in forest monitoring systems, such as SilvaCarbon and the Global Forest Observation Initiative (GFOI), to develop a capacity building plan that prioritizes user needs. Representatives from the SERVIR global network met in February 2017 with experts in the field of Synthetic Aperture Radar (SAR) for forest applications to envisage this capacity building plan that aims to leverage the state-of-the-art knowledge on remote sensing to enhance forest monitoring for user agencies in SERVIR regions. SERVIR Hubs in West Africa, Eastern and Southern Africa, Hindu Kush-Himalaya and Lower Mekong, have long-lasting relations with local, national and regional initiatives, and there is a strong understanding of needs, concerns and best practices when addressing forest monitoring and capacity building. SERVIR Hubs also have a wealth of experience in building capacity on the use of EO to monitor forests, mostly using optical imagery. Most of the forest cover maps generated with SERVIR support have been used as the official national forest cover dataset for international reporting commitments. However, as new EO datasets become available, and in view of the inherent limitations of optical imagery, there is a strong need to use all freely available EO datasets, including SAR, to improve Monitoring & Measurement, Reporting and Verification (MRV) systems and provide more frequent and accurate information. SERVIR

  11. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment

    EPA Science Inventory

    We reviewed compliance monitoring requirements in the European Union (EU), the United States(USA), and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic (OSPAR), and evaluated if these are met by passive sampling methods for nonpola...

  12. Mahali: Space Weather Monitoring Using Multicore Mobile Devices

    NASA Astrophysics Data System (ADS)

    Pankratius, V.; Lind, F. D.; Coster, A. J.; Erickson, P. J.; Semeter, J. L.

    2013-12-01

    Analysis of Total Electron Content (TEC) measurements derived from Global Positioning System (GPS) signals has led to revolutionary new data products for space weather monitoring and ionospheric research. However, the current sensor network is sparse, especially over the oceans and in regions like Africa and Siberia, and the full potential of dense, global, real-time TEC monitoring remains to be realized. The Mahali project will prototype a revolutionary architecture that uses mobile devices, such as phones and tablets, to form a global space weather monitoring network. Mahali exploits the existing GPS infrastructure - more specifically, delays in multi-frequency GPS signals observed at the ground - to acquire a vast set of global TEC projections, with the goal of imaging multi-scale variability in the global ionosphere at unprecedented spatial and temporal resolution. With connectivity available worldwide, mobile devices are excellent candidates to establish crowd sourced global relays that feed multi-frequency GPS sensor data into a cloud processing environment. Once the data is within the cloud, it is relatively straightforward to reconstruct the structure of the space environment, and its dynamic changes. This vision is made possible owing to advances in multicore technology that have transformed mobile devices into parallel computers with several processors on a chip. For example, local data can be pre-processed, validated with other sensors nearby, and aggregated when transmission is temporarily unavailable. Intelligent devices can also autonomously decide the most practical way of transmitting data with in any given context, e.g., over cell networks or Wifi, depending on availability, bandwidth, cost, energy usage, and other constraints. In the long run, Mahali facilitates data collection from remote locations such as deserts or on oceans. For example, mobile devices on ships could collect time-tagged measurements that are transmitted at a later point in

  13. Transforming Academic Globalization into Globalization for All

    ERIC Educational Resources Information Center

    Ramalhoto, M. F.

    2006-01-01

    Driving innovation and continuous improvement with regard to ecological, environmental and human sustainability is essential for win-win globalization. That calls for research on strategic and monitoring planning to manage globalization and technological and scientific change. This paper describes a new basic function of the university institution…

  14. Harsh-environment fiber optic sensors for structural monitoring applications

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Stinson-Bagby, Kelly L.; Palmer, Matthew E.

    2004-07-01

    The objective of the work presented was to develop a suite of sensors for use in high-temperature aerospace environments, including turbine engine monitoring, hypersonic vehicle skin friction measurements, and support ground and flight test operations. A fiber optic sensor platform was used to construct the sensor suite. Successful laboratory demonstrations include calibration of a pressure sensor to 100psi at a gas temperature of 800°C, calibration of an accelerometer to 2.5g at a substrate temperature of 850°C. Temperature sensors have been field tested up to 1400°C, and a skin friction sensor designed for 870°C operation has been constructed. The key advancement that enabled the operation of these novel harsh environment sensors was a fiber optic packaging methodology that allowed the coupling of alumina and sapphire transducer components, optical fiber, and high-temperature alloy housing materials. The basic operation of the sensors and early experimental results are presented. Each of the sensors described here represent a quantifiable advancement in the state of the art in high-temperature physical sensors and will have a significant impact on the aerospace propulsion instrumentation industry.

  15. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2006-01-01

    This presentation focuses on the latest spectacular images from NASA's remote sensing missions like TRMM, SeaWiFS, Landsat 7, Terra, and Aqua which will be visualized and explained in the context of global change and man's impact on our world's environment. Visualizations of global data currently available from Earth orbiting satellites include the Earth at night with its city lights, high resolutions of tropical cyclone Eline and the resulting flooding of Mozambique as well as flybys of Cape Town, South Africa with its dramatic mountains and landscape, imagery of fires that occurred globally, with a special emphasis on fires in the western US during summer 2001. Visualizations of the global atmosphere and oceans are shown and demonstrations of the 3-dimensional structure of hurricane and cloud structures derived from recently launched Earth-orbiting satellites are are presented with other topics with a dynamic theater-style , along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  16. Global hierarchical classification of deepwater and wetland environments from remote sensing products

    NASA Astrophysics Data System (ADS)

    Fluet-Chouinard, E.; Lehner, B.; Aires, F.; Prigent, C.; McIntyre, P. B.

    2017-12-01

    Global surface water maps have improved in spatial and temporal resolutions through various remote sensing methods: open water extents with compiled Landsat archives and inundation with topographically downscaled multi-sensor retrievals. These time-series capture variations through time of open water and inundation without discriminating between hydrographic features (e.g. lakes, reservoirs, river channels and wetland types) as other databases have done as static representation. Available data sources present the opportunity to generate a comprehensive map and typology of aquatic environments (deepwater and wetlands) that improves on earlier digitized inventories and maps. The challenge of classifying surface waters globally is to distinguishing wetland types with meaningful characteristics or proxies (hydrology, water chemistry, soils, vegetation) while accommodating limitations of remote sensing data. We present a new wetland classification scheme designed for global application and produce a map of aquatic ecosystem types globally using state-of-the-art remote sensing products. Our classification scheme combines open water extent and expands it with downscaled multi-sensor inundation data to capture the maximal vegetated wetland extent. The hierarchical structure of the classification is modified from the Cowardin Systems (1979) developed for the USA. The first level classification is based on a combination of landscape positions and water source (e.g. lacustrine, riverine, palustrine, coastal and artificial) while the second level represents the hydrologic regime (e.g. perennial, seasonal, intermittent and waterlogged). Class-specific descriptors can further detail the wetland types with soils and vegetation cover. Our globally consistent nomenclature and top-down mapping allows for direct comparison across biogeographic regions, to upscale biogeochemical fluxes as well as other landscape level functions.

  17. Monitoring structural response in pressurized environments. Part 2: Applications

    NASA Astrophysics Data System (ADS)

    Roach, D. P.

    There are various methods which can be used to monitor the structural response of electrical components, weapon systems, pressure vessels, submerged pipelines, deep sea vehicles and offshore structures. Numerous experimental techniques have been developed at Sandia National Labs in order to measure the strain, displacement and acceleration of a structural member. These techniques have been successfully implemented in adverse environments of 25 ksi and 300 F. A separate paper discusses the performance of various instrumentation schemes, the environmental protection of these diagnostics under pressure, and the means by which data is extracted from a closed pressure system. In this paper, specific hydrostatic and dynamic pressure tests are used to demonstrate how these techniques are employed, the problems encountered, and the importance of the data obtained.

  18. The Challenges of Developing a Framework for Global Water Cycle Monitoring and Prediction (Alfred Wegener Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Wood, Eric F.

    2014-05-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ("From Observations to Decisions") recognizes that "water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity", and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the developments at Princeton University towards a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict

  19. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  20. Monitoring the Environment

    ERIC Educational Resources Information Center

    Heins, Conrad F.; And Others

    1975-01-01

    New ways of obtaining environmental data are being developed to meet the demand for comprehensive, accurate, and timely information on the environment. This article examines four developments that are transforming the entire field of environmental measurement: spectroscopy; satellite transmission of environmental data; remote sensing; and…

  1. Industrial Lead in the Global Environment

    NASA Astrophysics Data System (ADS)

    Flegal, A. R.; Ericson, J. E.

    2004-12-01

    Although the rates of emission, fluxes and recycling of natural and industrial lead in biogeochemical systems are needed to quantify environmental lead pollution, those geochemical processes are rarely incorporated in either Earth Science or Environmental Health Science curriculum. The need for an understanding of the global lead cycle in those diverse fields is due to the omnipresence of industrial lead contamination that was initiated over five millennia ago, which has often exceeded natural emissions of lead by orders of magnitude. That contamination has been repeatedly demonstrated in environmental analyses ranging from the most remote polar regions and oceans of the Earth to urban and industrial regions. The latter include studies of soil lead in Baltimore, New Orleans, St. Paul-Minneapolis, Los Angeles, Tijuana, and Ottawa, which show that lead from past combustion of leaded gasoline remains in those cities and it is bioavailable. With the protracted residence time of that soil lead (102 - 103 years), it is estimated that generations of urban children will continue to be exposed to this toxicant, unless there is abatement. Moreover, many third world countries are still using leaded gasoline and other sources of industrial lead continue to be emitted into the environment, albeit at reduced levels. Consequently, the geochemical cycling of lead is and will continue to be a most appropriate and topical subject of study in the curriculum of earth science and environmental health science.

  2. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  3. Effective radiological contamination control and monitoring techniques in high alpha environments.

    PubMed

    Funke, Kevin C

    2003-02-01

    In the decommissioning of a highly contaminated alpha environment, such as the one at Hanford's 233-S Plutonium Concentration Facility, one of the key elements of a successful radiological control program is an integrated safety approach. This approach begins with the job-planning phase where the scope of the work is described. This is followed by a brainstorming session involving engineering and craft to identify how to perform the work in a logical sequence of events. Once the brainstorming session is over, a Job Hazard Analysis is performed to identify any potential problems. Mockups are utilized to enable the craft to get hands on experience and provide feedback and ideas to make the job run smoother. Ideas and experience gained during mockups are incorporated into the task instruction. To assure appropriate data are used in planning and executing the job, our principal evaluation tools included lapel and workplace air sampling, plus continuous air monitors and frequent surveys to effectively monitor job progress. In this highly contaminated alpha environment, with contamination levels ranging from 0.3 Bq cm-2 to approximately 100,000 Bq cm-2 (2,000 dpm per 100 cm2 to approximately 600 million dpm per 100 cm2), with average working levels of 1,600-3,200 Bq cm-2 (10-20 million dpm per 100 cm2) without concomitant ambient radiation levels, control of the spread of contamination is key to keeping airborne levels As Low As Reasonably Achievable.

  4. Effective Radiological Contamination Control and Monitoring Techniques In High Alpha Environments.

    PubMed

    Funke, Kevin C.

    2003-02-01

    In the decommissioning of a highly contaminated alpha environment, such as the one at Hanford's 233-S Plutonium Concentration Facility, one of the key elements of a successful radiological control program is an integrated safety approach. This approach begins with the job-planning phase where the scope of the work is described. This is followed by a brainstorming session involving engineering and craft to identify how to perform the work in a logical sequence of events. Once the brainstorming session is over, a Job Hazard Analysis is performed to identify any potential problems. Mockups are utilized to enable the craft to get hands on experience and provide feedback and ideas to make the job run smoother. Ideas and experience gained during mockups are incorporated into the task instruction. To assure appropriate data are used in planning and executing the job, our principal evaluation tools included lapel and workplace air sampling, plus continuous air monitors and frequent surveys to effectively monitor job progress. In this highly contaminated alpha environment, with contamination levels ranging from 0.3 Bq cm to approximately 100,000 Bq cm (2,000 dpm per 100 cm to approximately 600 million dpm per 100 cm ), with average working levels of 1,600-3,200 Bq cm (10-20 million dpm per 100 cm ) without concomitant ambient radiation levels, control of the spread of contamination is key to keeping airborne levels As Low As Reasonably Achievable.

  5. Off-the-shelf real-time monitoring of satellite constellations in a visual 3-D environment

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Hervias, Felipe; Cheng, Cecilia Han; Mactutis, Anthony; Angelino, Robert

    1996-01-01

    The multimission spacecraft analysis system (MSAS) data monitor is a generic software product for future real-time data monitoring and analysis. The system represents the status of a satellite constellation through the shape, color, motion and position of graphical objects floating in a three dimensional virtual reality environment. It may be used for the monitoring of large volumes of data, for viewing results in configurable displays, and for providing high level and detailed views of a constellation of monitored satellites. It is considered that the data monitor is an improvement on conventional graphic and text-based displays as it increases the amount of data that the operator can absorb in a given period, and can be installed and configured without the requirement for software development by the end user. The functionality of the system is described, including: the navigation abilities; the representation of alarms in the cybergrid; limit violation; real-time trend analysis, and alarm status indication.

  6. Distributed intelligent urban environment monitoring system

    NASA Astrophysics Data System (ADS)

    Du, Jinsong; Wang, Wei; Gao, Jie; Cong, Rigang

    2018-02-01

    The current environmental pollution and destruction have developed into a world-wide major social problem that threatens human survival and development. Environmental monitoring is the prerequisite and basis of environmental governance, but overall, the current environmental monitoring system is facing a series of problems. Based on the electrochemical sensor, this paper designs a small, low-cost, easy to layout urban environmental quality monitoring terminal, and multi-terminal constitutes a distributed network. The system has been small-scale demonstration applications and has confirmed that the system is suitable for large-scale promotion

  7. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    NASA Astrophysics Data System (ADS)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located <10 km from the epicenter exceeds 70%. Due to the sensor's self-noise, smaller magnitude events at short epicentral distances are very difficult to detect. To increase the signal-to-noise ratio, we employ array back-projection techniques on continuous data recorded by thousands of phones. In this class of methods, the array is used as a spatial filter that suppresses signals emitted from shallow noise sources. Filtered traces are stacked to further enhance seismic signals from deep sources. We benchmark our technique against traditional location algorithms using recordings from California, a region with large MyShake user database. We find that locations derived from back-projection images of M 3 events recorded by >20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los

  8. A Multimodel Global Drought Information System (GDIS) for Near Real-Time Monitoring of Surface Water Conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Nijssen, B.

    2013-12-01

    While the absolute magnitude of economic losses associated with weather and climate disasters such as droughts is greatest in the developed world, the relative impact is much larger in the developing world, where agriculture typically constitutes a much larger percentage of the labor force and food insecurity is a major concern. Nonetheless, our ability to monitor and predict the development and occurrence of droughts at a global scale in near real-time is limited and long-term records of soil moisture are essentially non-existent globally The problem is particularly critical given that many of the most damaging droughts occur in parts of the world that are most deficient in terms of in situ precipitation observations. In recent years, a number of near real-time drought monitoring systems have been developed with regional or global extent. While direct observations of key variables such as moisture storage are missing, the evolution of land surface models that are globally applicable provides a means of reconstructing them. The implementation of a multi-model drought monitoring system is described, which provides near real-time estimates of surface moisture storage for the global land areas between 50S and 50N with a time lag of about one day. Near real-time forcings are derived from satellite-based precipitation estimates and modeled air temperatures. The system is distinguished from other operational systems in that it uses multiple land surface models to simulate surface moisture storage, which are then combined to derive a multi-model estimate of drought. Previous work has shown that while land surface models agree in broad context, particularly in terms of soil moisture percentiles, important differences remain, which motivates a multi-model ensemble approach. The system is an extension of similar systems developed by at the University of Washington for the Pacific Northwest and for the United States, but global application of the protocols used in the U

  9. Monitoring of continuous-variable quantum key distribution system in real environment.

    PubMed

    Liu, Weiqi; Peng, Jinye; Huang, Peng; Huang, Duan; Zeng, Guihua

    2017-08-07

    How to guarantee the practical security of continuous-variable quantum key distribution (CVQKD) system has been an important issue in the quantum cryptography applications. In contrast to the previous practical security strategies, which focus on the intercept-resend attack or the Gaussian attack, we investigate the practical security strategy based on a general attack, i.e., an arbitrated individual attack or collective attack on the system by Eve in this paper. The low bound of intensity disturbance of the local oscillator signal for eavesdropper successfully concealing herself is obtained, considering all noises can be used by Eve in the practical environment. Furthermore, we obtain an optimal monitoring condition for the practical CVQKD system so that legitimate communicators can monitor the general attack in real-time. As examples, practical security of two special systems, i.e., the Gaussian modulated coherent state CVQKD system and the middle-based CVQKD system, are investigated under the intercept-resend attacks.

  10. High Resolution Displacement Monitoring for Urban Environments in Seattle, Washington using Terrestrial Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Lowry, B. W.; Schrock, G.; Werner, C. L.; Zhou, W.; Pugh, N.

    2015-12-01

    Displacement monitoring using Terrestrial Radar Interferometry (TRI) over an urban environment was conducted to monitor for potential movement of buildings, roadways, and urban infrastructure in Seattle, Washington for a 6 week deployment in March and April of 2015. A Gamma Portable Radar Interferometer was deployed on a the lower roof of the Smith Tower at an elevation of about 100 m, overlooking the historical district of Pioneer Square. Radar monitoring in this context provides wide area coverage, sub millimeter precision, near real time alarming, and reflectorless measurement. Image georectification was established using a previously collected airborne lidar scan which was used to map the radar image onto a 3D 1st return elevation model of downtown Seattle. Platform stability concerns were monitored using high rate GPS and a 3-axis accelerometer to monitor for building movement or platform instability. Displacements were imaged at 2 minute intervals and stacked into 2 hour averages to aid in noise characterization. Changes in coherence are characterized based on diurnal fluctuations of temperature, cultural noise, and target continuity. These informed atmospheric and image selection filters for optimizing interferogram generation and displacement measurement quality control. An urban monitoring workflow was established using point target interferometric analysis to create a monitoring set of approximately 100,000 stable monitoring points measured at 2 minute to 3 hour intervals over the 6 week deployment. Radar displacement measurements were verified using ongoing survey and GPS monitoring program and with corner reflector tests to verify look angle corrections to settlement motion. Insights from this monitoring program can be used to design TRI monitoring programs for underground tunneling, urban subsidence, and earthquake damage assessment applications.

  11. Construction and application of an intelligent air quality monitoring system for healthcare environment.

    PubMed

    Yang, Chao-Tung; Liao, Chi-Jui; Liu, Jung-Chun; Den, Walter; Chou, Ying-Chyi; Tsai, Jaw-Ji

    2014-02-01

    Indoor air quality monitoring in healthcare environment has become a critical part of hospital management and policy. Manual air sampling and analysis are cost-inhibitive and do not provide real-time air quality data and response measures. In this month-long study over 14 sampling locations in a public hospital in Taiwan, we observed a positive correlation between CO(2) concentration and population, total bacteria, and particulate matter concentrations, thus monitoring CO(2) concentration as a general indicator for air quality could be a viable option. Consequently, an intelligent environmental monitoring system consisting of a CO(2)/temperature/humidity sensor, a digital plug, and a ZigBee Router and Coordinator was developed and tested. The system also included a backend server that received and analyzed data, as well as activating ventilation and air purifiers when CO(2) concentration exceeded a pre-set value. Alert messages can also be delivered to offsite users through mobile devices.

  12. Short-term monitoring of benzene air concentration in an urban area: a preliminary study of application of Kruskal-Wallis non-parametric test to assess pollutant impact on global environment and indoor.

    PubMed

    Mura, Maria Chiara; De Felice, Marco; Morlino, Roberta; Fuselli, Sergio

    2010-01-01

    In step with the need to develop statistical procedures to manage small-size environmental samples, in this work we have used concentration values of benzene (C6H6), concurrently detected by seven outdoor and indoor monitoring stations over 12 000 minutes, in order to assess the representativeness of collected data and the impact of the pollutant on indoor environment. Clearly, the former issue is strictly connected to sampling-site geometry, which proves critical to correctly retrieving information from analysis of pollutants of sanitary interest. Therefore, according to current criteria for network-planning, single stations have been interpreted as nodes of a set of adjoining triangles; then, a) node pairs have been taken into account in order to estimate pollutant stationarity on triangle sides, as well as b) node triplets, to statistically associate data from air-monitoring with the corresponding territory area, and c) node sextuplets, to assess the impact probability of the outdoor pollutant on indoor environment for each area. Distributions from the various node combinations are all non-Gaussian, in the consequently, Kruskal-Wallis (KW) non-parametric statistics has been exploited to test variability on continuous density function from each pair, triplet and sextuplet. Results from the above-mentioned statistical analysis have shown randomness of site selection, which has not allowed a reliable generalization of monitoring data to the entire selected territory, except for a single "forced" case (70%); most important, they suggest a possible procedure to optimize network design.

  13. Global Resources, Environment, and Population.

    ERIC Educational Resources Information Center

    Carter, Jimmy

    1984-01-01

    Former President Jimmy Carter discusses the "Global 2000 Report" and the need for coordination, political leadership, unified action, research and development, and for education. A list of recommendations based on the issues and topics discussed is included. (JN)

  14. Development of a global education environment to study the Equatorial Ionosphere with Cognitive Radars

    NASA Astrophysics Data System (ADS)

    Urbina, J. V.

    2011-12-01

    The author has recently been awarded the NSF Career award to develop a radar with cognitive sensing capabilities to study Equatorial plasma instabilities in the Peruvian Andes. Educational research has shown that a rich learning environment contributes tremendously toward improvement in learning achievements and also attitudes toward studies. One of the benefits of this project is that it provides such an environment and a global platform to involve several students at both graduate and undergraduate levels from the US, Puerto Rico, and Peru, and who will benefit from designing, installing, and deploying a radar in multi-instrument science campaigns. In addition to working in the laboratories, students will gain invaluable real world experience building this complex instrument and making it work under challenging conditions at remote sites. The PI will describe how these components are being developed in a Freshman Seminar course and Graduate courses in the Department of Electrical Engineering at Penn State University, and how they are aligned well with the department's and university's strategy for greater global engagement through a network of Global Engagement Nodes in South America (GENSA). The issues of mentoring, recruitment, and retention become particularly important in consideration of the educational objective of this career project to involve underrepresented students with diverse backgrounds and interest them in research projects. The author is working very closely with the Office of Engineering Diversity to leverage existing programs at Penn State designed to increase the participation of women and minority students in science and engineering research: (a) WISER (Women In Science and Engineering Research), and (b) MURE (Minority Undergraduate Research Experience). The Electrical Engineering Department at Penn State is also currently an NSF REU (Research Experience for Undergraduates) site. The PI will also present his efforts in connecting his career

  15. Near Real Time Structural Health Monitoring with Multiple Sensors in a Cloud Environment

    NASA Astrophysics Data System (ADS)

    Bock, Y.; Todd, M.; Kuester, F.; Goldberg, D.; Lo, E.; Maher, R.

    2017-12-01

    A repeated near real time 3-D digital surrogate representation of critical engineered structures can be used to provide actionable data on subtle time-varying displacements in support of disaster resiliency. We describe a damage monitoring system of optimally-integrated complementary sensors, including Global Navigation Satellite Systems (GNSS), Micro-Electro-Mechanical Systems (MEMS) accelerometers coupled with the GNSS (seismogeodesy), light multi-rotor Unmanned Aerial Vehicles (UAVs) equipped with high-resolution digital cameras and GNSS/IMU, and ground-based Light Detection and Ranging (LIDAR). The seismogeodetic system provides point measurements of static and dynamic displacements and seismic velocities of the structure. The GNSS ties the UAV and LIDAR imagery to an absolute reference frame with respect to survey stations in the vicinity of the structure to isolate the building response to ground motions. The GNSS/IMU can also estimate the trajectory of the UAV with respect to the absolute reference frame. With these constraints, multiple UAVs and LIDAR images can provide 4-D displacements of thousands of points on the structure. The UAV systematically circumnavigates the target structure, collecting high-resolution image data, while the ground LIDAR scans the structure from different perspectives to create a detailed baseline 3-D reference model. UAV- and LIDAR-based imaging can subsequently be repeated after extreme events, or after long time intervals, to assess before and after conditions. The unique challenge is that disaster environments are often highly dynamic, resulting in rapidly evolving, spatio-temporal data assets with the need for near real time access to the available data and the tools to translate these data into decisions. The seismogeodetic analysis has already been demonstrated in the NASA AIST Managed Cloud Environment (AMCE) designed to manage large NASA Earth Observation data projects on Amazon Web Services (AWS). The Cloud provides

  16. Environmental geochemistry at the global scale

    USGS Publications Warehouse

    Plant, J.; Smith, D.; Smith, B.; Williams, L.

    2001-01-01

    Land degradation and pollution caused by population pressure and economic development pose a threat to the sustainability of the earth's surface, especially in tropical regions where a long history of chemical weathering has made the surface environment particularly fragile. Systematic baseline geochemical data provide a means of monitoring the state of the environment and identifying problem areas. Regional surveys have already been carried out in some countries, and with increased national and international funding they can be extended to cover the rest of the land surface of the globe. Preparations have been made, under the auspices of the International Union of Geological Surveys (IUGS) and the International Association of Geochemistry and Cosmochemistry (IAGC) for the establishment of just such an integrated global database. ?? 2001 NERC. Published by Elsevier Science Ltd.

  17. Space Station Induced Monitoring

    NASA Technical Reports Server (NTRS)

    Spann, James F. (Editor); Torr, Marsha R. (Editor)

    1988-01-01

    This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.

  18. Wireless physiological monitoring and ocular tracking: 3D calibration in a fully-immersive virtual health care environment.

    PubMed

    Zhang, Lelin; Chi, Yu Mike; Edelstein, Eve; Schulze, Jurgen; Gramann, Klaus; Velasquez, Alvaro; Cauwenberghs, Gert; Macagno, Eduardo

    2010-01-01

    Wireless physiological/neurological monitoring in virtual reality (VR) offers a unique opportunity for unobtrusively quantifying human responses to precisely controlled and readily modulated VR representations of health care environments. Here we present such a wireless, light-weight head-mounted system for measuring electrooculogram (EOG) and electroencephalogram (EEG) activity in human subjects interacting with and navigating in the Calit2 StarCAVE, a five-sided immersive 3-D visualization VR environment. The system can be easily expanded to include other measurements, such as cardiac activity and galvanic skin responses. We demonstrate the capacity of the system to track focus of gaze in 3-D and report a novel calibration procedure for estimating eye movements from responses to the presentation of a set of dynamic visual cues in the StarCAVE. We discuss cyber and clinical applications that include a 3-D cursor for visual navigation in VR interactive environments, and the monitoring of neurological and ocular dysfunction in vision/attention disorders.

  19. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications.

    PubMed

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-02-14

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO₂ concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  20. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications

    PubMed Central

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-01-01

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers. PMID:28216556

  1. Real Time, On Line Crop Monitoring and Analysis with Near Global Landsat-class Mosaics

    NASA Astrophysics Data System (ADS)

    Varlyguin, D.; Hulina, S.; Crutchfield, J.; Reynolds, C. A.; Frantz, R.

    2015-12-01

    The presentation will discuss the current status of GDA technology for operational, automated generation of 10-30 meter near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A imagery will be added once it is operationally available. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world and 16 day time window. 2014-most current dates are supported. The mosaics are updated in real-time, as soon as GDA downloads Landsat imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics can be used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform. The imagery is of great value for improved, persistent monitoring of global croplands and for the operational in-season analysis and mapping of crops across the globe in USDA FAS purview as mandated by the US government. The presentation will overview operational processing of Landsat-class mosaics in support of USDA FAS efforts and will look into 2015 and beyond.

  2. Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Green, David N.; Le Pichon, Alexis; Shearer, Peter M.; Fee, David; Mialle, Pierrick; Ceranna, Lars

    2017-04-01

    We experiment with a new method to search systematically through multiyear data from the International Monitoring System (IMS) infrasound network to identify explosive volcanic eruption signals originating anywhere on Earth. Detecting, quantifying, and cataloging the global occurrence of explosive volcanism helps toward several goals in Earth sciences and has direct applications in volcanic hazard mitigation. We combine infrasound signal association across multiple stations with source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent unwanted infrasound signals (clutter) in a global grid, without needing to screen array processing detection lists from individual stations prior to association. We develop the algorithm using case studies of explosive eruptions: 2008 Kasatochi, Alaska; 2009 Sarychev Peak, Kurile Islands; and 2010 Eyjafjallajökull, Iceland. We apply the method to global IMS infrasound data from 2005-2010 to construct a preliminary acoustic catalog that emphasizes sustained explosive volcanic activity (long-duration signals or sequences of impulsive transients lasting hours to days). This work represents a step toward the goal of integrating IMS infrasound data products into global volcanic eruption early warning and notification systems. Additionally, a better understanding of volcanic signal detection and location with the IMS helps improve operational event detection, discrimination, and association capabilities.

  3. Monitoring the Social Environment for Forestry: The case of National Forest Benefits and Values

    Treesearch

    David N. Bengston; David P. Fan; Doris N. Celarier

    1997-01-01

    This paper describes a new approach for monitoring the social environment for forestry. Computer methods were used to analyze almost 30,000 online news media stories about the national forests for expressions of four main categories of benefits and values. Recreation benefits and values were expressed more often than other categories, both at the national and regional...

  4. Prospective HyspIRI global observations of tidal wetlands

    USGS Publications Warehouse

    Kevin Turpie,; Victor Klemas,; Byrd, Kristin B.; Maggi Kelly,; Young-Heon Jo,

    2015-01-01

    Tidal wetlands are highly productive and act as critical habitat for a wide variety of plants, fish, shellfish, and other wildlife. These ecotones between aquatic and terrestrial environments also provide protection from storm damage, run-off filtering, and recharge of aquifers. Many wetlands along coasts have been exposed to stress-inducing alterations globally, including dredge and fill operations, hydrologic modifications, pollutants, impoundments, fragmentation by roads/ditches, and sea level rise. For wetland protection and sensible coastal development, there is a need to monitor these ecosystems at global and regional scales. Recent advances in satellite sensor design and data analysis are providing practical methods for monitoring natural and man-made changes in wetlands. However, available satellite remote sensors have been limited to mapping primarily wetland location and extent. This paper describes how the HyspIRI hyperspectral and thermal infrared sensors can be used to study and map key ecological properties, such as species composition, biomass, hydrology, and evapotranspiration of tidal salt and brackish marshes and mangroves, and perhaps other major wetland types, including freshwater marshes and wooded/shrub wetlands.

  5. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  6. IMPLICATIONS OF GLOBAL CLIMATE CHANGE FOR THE ASSESSMENT AND MANAGEMENT OF HUMAN HEALTH RISKS OF CHEMICALS IN THE NATURAL ENVIRONMENT

    PubMed Central

    Balbus, John M; Boxall, Alistair BA; Fenske, Richard A; McKone, Thomas E; Zeise, Lauren

    2013-01-01

    Global climate change (GCC) is likely to alter the degree of human exposure to pollutants and the response of human populations to these exposures, meaning that risks of pollutants could change in the future. The present study, therefore, explores how GCC might affect the different steps in the pathway from a chemical source in the environment through to impacts on human health and evaluates the implications for existing risk-assessment and management practices. In certain parts of the world, GCC is predicted to increase the level of exposure of many environmental pollutants due to direct and indirect effects on the use patterns and transport and fate of chemicals. Changes in human behavior will also affect how humans come into contact with contaminated air, water, and food. Dietary changes, psychosocial stress, and coexposure to stressors such as high temperatures are likely to increase the vulnerability of humans to chemicals. These changes are likely to have significant implications for current practices for chemical assessment. Assumptions used in current exposure-assessment models may no longer apply, and existing monitoring methods may not be robust enough to detect adverse episodic changes in exposures. Organizations responsible for the assessment and management of health risks of chemicals therefore need to be more proactive and consider the implications of GCC for their procedures and processes. Environ. Toxicol. Chem. 2013;32:62–78. © 2012 SETAC PMID:23147420

  7. Fiber Bragg grating sensors in harsh environments: considerations and industrial monitoring applications

    NASA Astrophysics Data System (ADS)

    Méndez, Alexis

    2017-06-01

    Over the last few years, fiber optic sensors (FOS) have seen an increased acceptance and widespread use in industrial sensing and in structural monitoring in civil, aerospace, marine, oil & gas, composites and other applications. One of the most prevalent types in use today are fiber Bragg grating (FBG) sensors. Historically, FOS have been an attractive solution because of their EM immunity and suitability for use in harsh environments and rugged applications with extreme temperatures, radiation exposure, EM fields, high voltages, water contact, flammable atmospheres, or other hazards. FBG sensors have demonstrated that can operate reliably in many different harsh environment applications but proper type and fabrication process are needed, along with suitable packaging and installation procedure. In this paper, we review the impact that external factors and environmental conditions play on FBG's performance and reliability, and describe the appropriate sensor types and protection requirements suitable for a variety of harsh environment applications in industrial furnaces, cryogenic coolers, nuclear plants, maritime vessels, oil & gas wells, aerospace crafts, automobiles, and others.

  8. Electronic Data Collection and Management System for Global Adult Tobacco Survey

    PubMed Central

    Pujari, Sameer J; Palipudi, Krishna M; Morton, Jeremy; Levinsohn, Jay; Litavecz, Steve; Green, Michael

    2012-01-01

    Introduction: Portable handheld computers and electronic data management systems have been used for national surveys in many high-income countries, however their use in developing countries has been challenging due to varying geographical, economic, climatic, political and cultural environments. In order to monitor and measure global adult tobacco use, the World Health Organization and the US Centers for Disease Control and Prevention initiated the Global Adult Tobacco Survey, a nationally representative household survey of adults, 15 years of age or older, using a standard core questionnaire, sample design, and data collection and management procedures. The Survey has been conducted in 14 low- and middle-income countries, using an electronic data collection and management system. This paper describes implementation of the electronic data collection system and associated findings. Methods: The Survey was based on a comprehensive data management protocol, to enable standardized, globally comparable high quality data collection and management. It included adaptation to specific country needs, selection of appropriate handheld hardware devices, use of open source software, and building country capacity and provide technical support. Results: In its first phase, the Global Adult Tobacco Survey was successfully conducted between 2008 and 2010, using an electronic data collection and management system for interviews in 302,800 households in 14 countries. More than 2,644 handheld computers were fielded and over 2,634 fieldworkers, supervisors and monitors were trained to use them. Questionnaires were developed and programmed in 38 languages and scripts. The global hardware failure rate was < 1% and data loss was almost 0%. Conclusion: Electronic data collection and management systems can be used effectively for conducting nationally representative surveys, particularly in low- and middle-income countries, irrespective of geographical, climatic, political and cultural

  9. Electronic data collection and management system for global adult tobacco survey.

    PubMed

    Pujari, Sameer J; Palipudi, Krishna M; Morton, Jeremy; Levinsohn, Jay; Litavecz, Steve; Green, Michael

    2012-01-01

    Portable handheld computers and electronic data management systems have been used for national surveys in many high-income countries, however their use in developing countries has been challenging due to varying geographical, economic, climatic, political and cultural environments. In order to monitor and measure global adult tobacco use, the World Health Organization and the US Centers for Disease Control and Prevention initiated the Global Adult Tobacco Survey, a nationally representative household survey of adults, 15 years of age or older, using a standard core questionnaire, sample design, and data collection and management procedures. The Survey has been conducted in 14 low- and middle-income countries, using an electronic data collection and management system. This paper describes implementation of the electronic data collection system and associated findings. The Survey was based on a comprehensive data management protocol, to enable standardized, globally comparable high quality data collection and management. It included adaptation to specific country needs, selection of appropriate handheld hardware devices, use of open source software, and building country capacity and provide technical support. In its first phase, the Global Adult Tobacco Survey was successfully conducted between 2008 and 2010, using an electronic data collection and management system for interviews in 302,800 households in 14 countries. More than 2,644 handheld computers were fielded and over 2,634 fieldworkers, supervisors and monitors were trained to use them. Questionnaires were developed and programmed in 38 languages and scripts. The global hardware failure rate was < 1% and data loss was almost 0%. Electronic data collection and management systems can be used effectively for conducting nationally representative surveys, particularly in low- and middle-income countries, irrespective of geographical, climatic, political and cultural environments, and capacity-building at the

  10. "What Price Respect"--Exploring the Notion of Respect in a 21st Century Global Learning Environment

    ERIC Educational Resources Information Center

    Wilson, Doirean

    2010-01-01

    This paper evaluates the meaning of respect in a 21st century global learning environment, with a view to exploring the implications for promoting harmonious working relationships among students of culturally diverse ethnic backgrounds in the classroom. Research conducted since 2005 that investigates the understanding, meaning and experience of…

  11. Effective monitoring of agriculture: a response.

    PubMed

    Sachs, Jeffrey D; Remans, Roseline; Smukler, Sean M; Winowiecki, Leigh; Andelman, Sandy J; Cassman, Kenneth G; Castle, David; DeFries, Ruth; Denning, Glenn; Fanzo, Jessica; Jackson, Louise E; Leemans, Rik; Lehmann, Johannes; Milder, Jeffrey C; Naeem, Shahid; Nziguheba, Generose; Palm, Cheryl A; Pingali, Prabhu L; Reganold, John P; Richter, Daniel D; Scherr, Sara J; Sircely, Jason; Sullivan, Clare; Tomich, Thomas P; Sanchez, Pedro A

    2012-03-01

    The development of effective agricultural monitoring networks is essential to track, anticipate and manage changes in the social, economic and environmental aspects of agriculture. We welcome the perspective of Lindenmayer and Likens (J. Environ. Monit., 2011, 13, 1559) as published in the Journal of Environmental Monitoring on our earlier paper, "Monitoring the World's Agriculture" (Sachs et al., Nature, 2010, 466, 558-560). In this response, we address their three main critiques labeled as 'the passive approach', 'the problem with uniform metrics' and 'the problem with composite metrics'. We expand on specific research questions at the core of the network design, on the distinction between key universal and site-specific metrics to detect change over time and across scales, and on the need for composite metrics in decision-making. We believe that simultaneously measuring indicators of the three pillars of sustainability (environmentally sound, social responsible and economically viable) in an effectively integrated monitoring system will ultimately allow scientists and land managers alike to find solutions to the most pressing problems facing global food security. This journal is © The Royal Society of Chemistry 2012

  12. Breeding blueberries for a changing global environment: a review

    PubMed Central

    Lobos, Gustavo A.; Hancock, James F.

    2015-01-01

    Today, blueberries are recognized worldwide as one of the foremost health foods, becoming one of the crops with the highest productive and commercial projections. Over the last 100 years, the geographical area where highbush blueberries are grown has extended dramatically into hotter and drier environments. The expansion of highbush blueberry growing into warmer regions will be challenged in the future by increases in average global temperature and extreme fluctuations in temperature and rainfall patterns. Considerable genetic variability exists within the blueberry gene pool that breeders can use to meet these challenges, but traditional selection techniques can be slow and inefficient and the precise adaptations of genotypes often remain hidden. Marker assisted breeding (MAB) and phenomics could aid greatly in identifying those individuals carrying adventitious traits, increasing selection efficiency and shortening the rate of cultivar release. While phenomics have begun to be used in the breeding of grain crops in the last 10 years, their use in fruit breeding programs it is almost non-existent. PMID:26483803

  13. An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater.

    PubMed

    Adrian-Kalchhauser, Irene; Burkhardt-Holm, Patricia

    2016-01-01

    Ponto-Caspian gobies are a flock of five invasive fish species that have colonized freshwaters and brackish waters in Europe and North America. One of them, the round goby Neogobius melanostomus, figures among the 100 worst invaders in Europe. Current methods to detect the presence of Ponto-Caspian gobies involve catching or sighting the fish. These approaches are labor intense and not very sensitive. Consequently, populations are usually detected only when they have reached high densities and when management or containment efforts are futile. To improve monitoring, we developed an assay based on the detection of DNA traces (environmental DNA, or eDNA) of Ponto-Caspian gobies in river water. The assay specifically detects invasive goby DNA and does not react to any native fish species. We apply the assay to environmental samples and demonstrate that parameters such as sampling depth, sampling location, extraction protocol, PCR protocol and PCR inhibition greatly impact detection. We further successfully outline the invasion front of Ponto-Caspian gobies in a large river, the High Rhine in Switzerland, and thus demonstrate the applicability of the assay to lotic environments. The eDNA assay requires less time, equipment, manpower, skills, and financial resources than the conventional monitoring methods such as electrofishing, angling or diving. Samples can be taken by untrained individuals, and the assay can be performed by any molecular biologist on a conventional PCR machine. Therefore, this assay enables environment managers to map invaded areas independently of fishermen's' reports and fish community monitorings.

  14. An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater

    PubMed Central

    Adrian-Kalchhauser, Irene; Burkhardt-Holm, Patricia

    2016-01-01

    Ponto-Caspian gobies are a flock of five invasive fish species that have colonized freshwaters and brackish waters in Europe and North America. One of them, the round goby Neogobius melanostomus, figures among the 100 worst invaders in Europe. Current methods to detect the presence of Ponto-Caspian gobies involve catching or sighting the fish. These approaches are labor intense and not very sensitive. Consequently, populations are usually detected only when they have reached high densities and when management or containment efforts are futile. To improve monitoring, we developed an assay based on the detection of DNA traces (environmental DNA, or eDNA) of Ponto-Caspian gobies in river water. The assay specifically detects invasive goby DNA and does not react to any native fish species. We apply the assay to environmental samples and demonstrate that parameters such as sampling depth, sampling location, extraction protocol, PCR protocol and PCR inhibition greatly impact detection. We further successfully outline the invasion front of Ponto-Caspian gobies in a large river, the High Rhine in Switzerland, and thus demonstrate the applicability of the assay to lotic environments. The eDNA assay requires less time, equipment, manpower, skills, and financial resources than the conventional monitoring methods such as electrofishing, angling or diving. Samples can be taken by untrained individuals, and the assay can be performed by any molecular biologist on a conventional PCR machine. Therefore, this assay enables environment managers to map invaded areas independently of fishermen’s’ reports and fish community monitorings. PMID:26814998

  15. Importing food damages domestic environment: Evidence from global soybean trade.

    PubMed

    Sun, Jing; Mooney, Harold; Wu, Wenbin; Tang, Huajun; Tong, Yuxin; Xu, Zhenci; Huang, Baorong; Cheng, Yeqing; Yang, Xinjun; Wei, Dan; Zhang, Fusuo; Liu, Jianguo

    2018-05-22

    Protecting the environment and enhancing food security are among the world's Sustainable Development Goals and greatest challenges. International food trade is an important mechanism to enhance food security worldwide. Nonetheless, it is widely concluded that in international food trade importing countries gain environmental benefits, while exporting countries suffer environmental problems by using land and other resources to produce food for exports. Our study shows that international food trade can also lead to environmental pollution in importing countries. At the global level, our metaanalysis indicates that there was increased nitrogen (N) pollution after much farmland for domestically cultivated N-fixing soybeans in importing countries was converted to grow high N-demanding crops (wheat, corn, rice, and vegetables). The findings were further verified by an intensive study at the regional level in China, the largest soybean-importing country, where the conversion of soybean lands to corn fields and rice paddies has also led to N pollution. Our study provides a sharp contrast to the conventional wisdom that only exports contribute substantially to environmental woes. Our results suggest the need to evaluate environmental consequences of international trade of all other major goods and products in all importing countries, which have significant implications for fundamental rethinking in global policy-making and debates on environmental responsibilities among consumers, producers, and traders across the world.

  16. Solar influences on global change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Monitoring of the Sun and the Earth has yielded new knowledge essential to this debate. There is now no doubt that the total radiative energy from the Sun that heats the Earth's surface changes over decadal time scales as a consequence of solar activity. Observations indicate as well that changes in ultraviolet radiation and energetic particles from the Sun, also connected with the solar activity, modulate the layer of ozone that protects the biosphere from the solar ultraviolet radiation. This report reassesses solar influences on global change in the light of this new knowledge of solar and atmospheric variability. Moreover, the report considers climate change to be encompassed within the broader concept of global change; thus the biosphere is recognized to be part of a larger, coupled Earth system. Implementing a program to continuously monitor solar irradiance over the next several decades will provide the opportunity to estimate solar influences on global change, assuming continued maintenance of observations of climate and other potential forcing mechanisms. In the lower atmosphere, an increase in solar radiation is expected to cause global warming. In the stratosphere, however, the two effects produce temperature changes of opposite sign. A monitoring program that would augment long term observations of tropospheric parameters with similar observations of stratospheric parameters could separate these diverse climate perturbations and perhaps isolate a greenhouse footprint of climate change. Monitoring global change in the troposphere is a key element of all facets of the United States Global Change Research Program (USGCRP), not just of the study of solar influences on global change. The need for monitoring the stratosphere is also important for global change research in its own right because of the stratospheric ozone layer.

  17. Thinking Globally, Acting Locally: Using the Local Environment to Explore Global Issues.

    ERIC Educational Resources Information Center

    Simmons, Deborah

    1994-01-01

    Asserts that water pollution is a global problem and presents statistics indicating how much of the world's water is threatened. Presents three elementary school classroom activities on water quality and local water resources. Includes a figure describing the work of the Global Rivers Environmental Education Network. (CFR)

  18. Global Monitoring of Clouds and Aerosols Using a Network of Micro-Pulse Lidar Systems

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Scott, V. Stanley

    2000-01-01

    Long-term global radiation programs, such as AERONET and BSRN, have shown success in monitoring column averaged cloud and aerosol optical properties. Little attention has been focused on global measurements of vertically resolved optical properties. Lidar systems are the preferred instrument for such measurements. However, global usage of lidar systems has not been achieved because of limits imposed by older systems that were large, expensive, and logistically difficult to use in the field. Small, eye-safe, and autonomous lidar systems are now currently available and overcome problems associated with older systems. The first such lidar to be developed is the Micro-pulse lidar System (MPL). The MPL has proven to be useful in the field because it can be automated, runs continuously (day and night), is eye-safe, can easily be transported and set up, and has a small field-of-view which removes multiple scattering concerns. We have developed successful protocols to operate and calibrate MPL systems. We have also developed a data analysis algorithm that produces data products such as cloud and aerosol layer heights, optical depths, extinction profiles, and the extinction-backscatter ratio. The algorithm minimizes the use of a priori assumptions and also produces error bars for all data products. Here we present an overview of our MPL protocols and data analysis techniques. We also discuss the ongoing construction of a global MPL network in conjunction with the AERONET program. Finally, we present some early results from the MPL network.

  19. Inferential monitoring of global change impact on biodiversity through remote sensing and species distribution modeling

    NASA Astrophysics Data System (ADS)

    Sangermano, Florencia

    2009-12-01

    The world is suffering from rapid changes in both climate and land cover which are the main factors affecting global biodiversity. These changes may affect ecosystems by altering species distributions, population sizes, and community compositions, which emphasizes the need for a rapid assessment of biodiversity status for conservation and management purposes. Current approaches on monitoring biodiversity rely mainly on long term observations of predetermined sites, which require large amounts of time, money and personnel to be executed. In order to overcome problems associated with current field monitoring methods, the main objective of this dissertation is the development of framework for inferential monitoring of the impact of global change on biodiversity based on remotely sensed data coupled with species distribution modeling techniques. Several research pieces were performed independently in order to fulfill this goal. First, species distribution modeling was used to identify the ranges of 6362 birds, mammals and amphibians in South America. Chapter 1 compares the power of different presence-only species distribution methods for modeling distributions of species with different response curves to environmental gradients and sample sizes. It was found that there is large variability in the power of the methods for modeling habitat suitability and species ranges, showing the importance of performing, when possible, a preliminary gradient analysis of the species distribution before selecting the method to be used. Chapter 2 presents a new methodology for the redefinition of species range polygons. Using a method capable of establishing the uncertainty in the definition of existing range polygons, the automated procedure identifies the relative importance of bioclimatic variables for the species, predicts their ranges and generates a quality assessment report to explore prediction errors. Analysis using independent validation data shows the power of this

  20. FORUM: A Suggestion for an Improved Vegetation Scheme for Local and Global Mapping and Monitoring.

    PubMed

    ADAMS

    1999-01-01

    / Understanding of global ecological problems is at least partly dependent on clear assessments of vegetation change, and such assessment is always dependent on the use of a vegetation classification scheme. Use of satellite remotely sensed data is the only practical means of carrying out any global-scale vegetation mapping exercise, but if the resulting maps are to be useful to most ecologists and conservationists, they must be closely tied to clearly defined features of vegetation on the ground. Furthermore, much of the mapping that does take place involves more local-scale description of field sites; for purposes of cost and practicality, such studies usually do not involve remote sensing using satellites. There is a need for a single scheme that integrates the smallest to the largest scale in a way that is meaningful to most environmental scientists. Existing schemes are unsatisfactory for this task; they are ambiguous, unnecessarily complex, and their categories do not correspond to common-sense definitions. In response to these problems, a simple structural-physiognomically based scheme with 23 fundamental categories is proposed here for mapping and monitoring on any scale, from local to global. The fundamental categories each subdivide into more specific structural categories for more detailed mapping, but all the categories can be used throughout the world and at any scale, allowing intercomparison between regions. The next stage in the process will be to obtain the views of as many people working in as many different fields as possible, to see whether the proposed scheme suits their needs and how it should be modified. With a few modifications, such a scheme could easily be appended to an existing land cover classification scheme, such as the FAO system, greatly increasing the usefulness and accessability of the results of the landcover classification. KEY WORDS: Vegetation scheme; Mapping; Monitoring; Land cover

  1. Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment

    PubMed Central

    Pavlin, Marko; Belavic, Darko; Novak, Franc

    2012-01-01

    This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing. PMID:22368471

  2. Evaluation of Local Media Surveillance for Improved Disease Recognition and Monitoring in Global Hotspot Regions

    PubMed Central

    Schwind, Jessica S.; Wolking, David J.; Brownstein, John S.; Mazet, Jonna A. K.; Smith, Woutrina A.

    2014-01-01

    Digital disease detection tools are technologically sophisticated, but dependent on digital information, which for many areas suffering from high disease burdens is simply not an option. In areas where news is often reported in local media with no digital counterpart, integration of local news information with digital surveillance systems, such as HealthMap (Boston Children’s Hospital), is critical. Little research has been published in regards to the specific contribution of local health-related articles to digital surveillance systems. In response, the USAID PREDICT project implemented a local media surveillance (LMS) pilot study in partner countries to monitor disease events reported in print media. This research assessed the potential of LMS to enhance digital surveillance reach in five low- and middle-income countries. Over 16 weeks, select surveillance system attributes of LMS, such as simplicity, flexibility, acceptability, timeliness, and stability were evaluated to identify strengths and weaknesses in the surveillance method. Findings revealed that LMS filled gaps in digital surveillance network coverage by contributing valuable localized information on disease events to the global HealthMap database. A total of 87 health events were reported through the LMS pilot in the 16-week monitoring period, including 71 unique reports not found by the HealthMap digital detection tool. Furthermore, HealthMap identified an additional 236 health events outside of LMS. It was also observed that belief in the importance of the project and proper source selection from the participants was crucial to the success of this method. The timely identification of disease outbreaks near points of emergence and the recognition of risk factors associated with disease occurrence continue to be important components of any comprehensive surveillance system for monitoring disease activity across populations. The LMS method, with its minimal resource commitment, could be one tool used

  3. Introducing the Global Register of Introduced and Invasive Species

    PubMed Central

    Pagad, Shyama; Genovesi, Piero; Carnevali, Lucilla; Schigel, Dmitry; McGeoch, Melodie A.

    2018-01-01

    Harmonised, representative data on the state of biological invasions remain inadequate at country and global scales, particularly for taxa that affect biodiversity and ecosystems. Information is not readily available in a form suitable for policy and reporting. The Global Register of Introduced and Invasive Species (GRIIS) provides the first country-wise checklists of introduced (naturalised) and invasive species. GRIIS was conceived to provide a sustainable platform for information delivery to support national governments. We outline the rationale and methods underpinning GRIIS, to facilitate transparent, repeatable analysis and reporting. Twenty country checklists are presented as exemplars; GRIIS Checklists for close to all countries globally will be submitted through the same process shortly. Over 11000 species records are currently in the 20 country exemplars alone, with environmental impact evidence for just over 20% of these. GRIIS provides significant support for countries to identify and prioritise invasive alien species, and establishes national and global baselines. In future this will enable a global system for sustainable monitoring of trends in biological invasions that affect the environment. PMID:29360103

  4. Monitoring global vegetation using Nimbus-7 37 GHz data - Some empirical relations

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Tucker, C. J.

    1987-01-01

    The difference of the vertically and horizontally polarized brightness temperatures observed by the 37 GHz channel of the SMMR on board the Nimbus-7 satellite are correlated temporally with three indicators of vegetation density, namely the temporal variation of the atmospheric CO2 concentration at Mauna Loa (Hawaii), rainfall over the Sahel and the normalized difference vegetation index derived from the AVHRR on board the NOAA-7 satellite. SMMR 37 GHz and AVHRR provide complementary data sets for monitoring global vegetation, the 37 GHz data being more suitable for arid and semiarid regions as these data are more sensitive to changes in sparse vegetation. The 37-GHz data might be useful for understanding desertification and indexing Co2 exchange between the biosphere and the atmosphere.

  5. Wireless microwave acoustic sensor system for condition monitoring in power plant environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira da Cunha, Mauricio

    This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures upmore » to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including

  6. Protocol to monitor trade agreement food-related aspects: the Fiji case study.

    PubMed

    Ravuvu, Amerita; Friel, Sharon; Thow, Anne Marie; Snowdon, Wendy; Wate, Jillian

    2017-04-26

    Despite the growing rates of obesity and diet-related non-communicable diseases, globally, public health attention has only relatively recently turned to the links between trade agreements and the nutritional risks associated with it. Specific trade agreements appear to have played an influential role in the volume and types of foods entering different countries, yet there is currently no systematic and objective monitoring of trade agreements for their impacts on food environments. Recently, INFORMAS was set up to monitor and benchmark food environments, government policies and private sector actions within countries and globally. One of its projects/modules focuses on trade policy and in particular the food-related aspects of trade agreements. This paper describes the INFORMAS trade protocol, an approach to collecting food-related information about four domains of trade: trade in goods; trade in services and foreign direct investment; domestic supports, and policy space. Specifically, the protocol is tested in Fiji. The development and testing of this protocol in Fiji represents the first effort to set out a framework and process for objectively monitoring trade agreements and their impacts on national food supply and the wider food environment. It has shown that entry into WTO trade agreements contributed to the nutrition transition in Fiji through the increased availability of imported foods with varying nutritional quality. We observed an increase in imports of both healthy and less healthy foods. The application of the monitoring protocol also highlights challenges for data collection associated with each trade domain that should be considered for future data collection and analysis in other low and middle income countries. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Application of thin layer activation technique for monitoring corrosion of carbon steel in hydrocarbon processing environment.

    PubMed

    Saxena, R C; Biswal, Jayashree; Pant, H J; Samantray, J S; Sharma, S C; Gupta, A K; Ray, S S

    2018-05-01

    Acidic crude oil transportation and processing in petroleum refining and petrochemical operations cause corrosion in the pipelines and associated components. Corrosion monitoring is invariably required to test and prove operational reliability. Thin Layer Activation (TLA) technique is a nuclear technique used for measurement of corrosion and erosion of materials. The technique involves irradiation of material with high energy ion beam from an accelerator and measurement of loss of radioactivity after the material is subjected to corrosive environment. In the present study, TLA technique has been used to monitor corrosion of carbon steel (CS) in crude oil environment at high temperature. Different CS coupons were irradiated with a 13 MeV proton beam to produce Cobalt-56 radioisotope on the surface of the coupons. The corrosion studies were carried out by subjecting the irradiated coupons to a corrosive environment, i.e, uninhibited straight run gas oil (SRGO) containing known amount of naphthenic acid (NA) at high temperature. The effects of different parameters, such as, concentration of NA, temperature and fluid velocity (rpm) on corrosion behaviour of CS were studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Big Data solution for CTBT monitoring: CEA-IDC joint global cross correlation project

    NASA Astrophysics Data System (ADS)

    Bobrov, Dmitry; Bell, Randy; Brachet, Nicolas; Gaillard, Pierre; Kitov, Ivan; Rozhkov, Mikhail

    2014-05-01

    Waveform cross-correlation when applied to historical datasets of seismic records provides dramatic improvements in detection, location, and magnitude estimation of natural and manmade seismic events. With correlation techniques, the amplitude threshold of signal detection can be reduced globally by a factor of 2 to 3 relative to currently standard beamforming and STA/LTA detector. The gain in sensitivity corresponds to a body wave magnitude reduction by 0.3 to 0.4 units and doubles the number of events meeting high quality requirements (e.g. detected by three and more seismic stations of the International Monitoring System (IMS). This gain is crucial for seismic monitoring under the Comprehensive Nuclear-Test-Ban Treaty. The International Data Centre (IDC) dataset includes more than 450,000 seismic events, tens of millions of raw detections and continuous seismic data from the primary IMS stations since 2000. This high-quality dataset is a natural candidate for an extensive cross correlation study and the basis of further enhancements in monitoring capabilities. Without this historical dataset recorded by the permanent IMS Seismic Network any improvements would not be feasible. However, due to the mismatch between the volume of data and the performance of the standard Information Technology infrastructure, it becomes impossible to process all the data within tolerable elapsed time. To tackle this problem known as "BigData", the CEA/DASE is part of the French project "DataScale". One objective is to reanalyze 10 years of waveform data from the IMS network with the cross-correlation technique thanks to a dedicated High Performance Computer (HPC) infrastructure operated by the Centre de Calcul Recherche et Technologie (CCRT) at the CEA of Bruyères-le-Châtel. Within 2 years we are planning to enhance detection and phase association algorithms (also using machine learning and automatic classification) and process about 30 terabytes of data provided by the IDC to

  9. Network architecture for global biomedical monitoring service.

    PubMed

    Lopez-Casado, Carmen; Tejero-Calado, Juan; Bernal-Martin, Antonio; Lopez-Gomez, Miguel; Romero-Romero, Marco; Quesada, Guillermo; Lorca, Julio; Garcia, Eugenia

    2005-01-01

    Most of the patients who are in hospitals and, increasingly, patients controlled remotely from their homes, at-home monitoring, are continuously monitored in order to control their evolution. The medical devices used up to now, force the sanitary staff to go to the patients' room to control the biosignals that are being monitored, although in many cases, patients are in perfect conditions. If patient is at home, it is he or she who has to go to the hospital to take the record of the monitored signal. New wireless technologies, such as BlueTooth and WLAN, make possible the deployment of systems that allow the display and storage of those signals in any place where the hospital intranet is accessible. In that way, unnecessary displacements are avoided. This paper presents a network architecture that allows the identification of the biosignal acquisition device as IP network nodes. The system is based on a TCP/IP architecture which is scalable and avoids the deployment of a specific purpose network.

  10. GLOBIL: WWF's Global Observation and Biodiversity Information Portal

    NASA Astrophysics Data System (ADS)

    Shapiro, A. C.; Nijsten, L.; Schmitt, S.; Tibaldeschi, P.

    2015-04-01

    Despite ever increasing availability of satellite imagery and spatial data, conservation managers, decision makers and planners are often unable to analyze data without special knowledge or software. WWF is bridging this gap by putting extensive spatial data into an easy to use online mapping environment, to allow visualization, manipulation and analysis of large data sets by any user. Consistent, reliable and repeatable ecosystem monitoring information for priority eco-regions is needed to increase transparency in WWF's global conservation work, to measure conservation impact, and to provide communications with the general public and organization members. Currently, much of this monitoring and evaluation data is isolated, incompatible, or inaccessible and not readily usable or available for those without specialized software or knowledge. Launched in 2013 by WWF Netherlands and WWF Germany, the Global Observation and Biodiversity Information Portal (GLOBIL) is WWF's new platform to unite, centralize, standardize and visualize geo-spatial data and information from more than 150 active GIS users worldwide via cloud-based ArcGIS Online. GLOBIL is increasing transparency, providing baseline data for monitoring and evaluation while communicating impacts and conservation successes to the public. GLOBIL is currently being used in the worldwide marine campaign as an advocacy tool for establishing more marine protected areas, and a monitoring interface to track the progress towards ocean protection goals. In the Kavango-Zambezi (KAZA) Transfrontier Conservation area, local partners are using the platform to monitor land cover changes, barriers to species migrations, potential human-wildlife conflict and local conservation impacts in vast wildlife corridor. In East Africa, an early warning system is providing conservation practitioners with real-time alerts of threats particularly to protected areas and World Heritage Sites by industrial extractive activities. And for

  11. Modeling global mangrove soil carbon stocks: filling the gaps in coastal environments

    NASA Astrophysics Data System (ADS)

    Rovai, A.; Twilley, R.

    2017-12-01

    We provide an overview of contemporaneous global mangrove soil organic carbon (SOC) estimates, focusing on a framework to explain disproportionate differences among observed data as a way to improve global estimates. This framework is based on a former conceptual model, the coastal environmental setting, in contrast to the more popular latitude-based hypotheses largely believed to explain hemispheric variation in mangrove ecosystem properties. To demonstrate how local and regional estimates of SOC linked to coastal environmental settings can render more realistic global mangrove SOC extrapolations we combined published and unpublished data, yielding a total of 106 studies, reporting on 552 sites from 43 countries. These sites were classified into distinct coastal environmental setting types according to two concurrent worldwide typology of nearshore coastal systems classifications. Mangrove SOC density varied substantially across coastal environmental settings, ranging from 14.9 ± 0.8 in river dominated (deltaic) soils to 53.9 ± 1.6 mg cm-3 (mean ± SE) in karstic coastlines. Our findings reveal striking differences between published values and contemporary global mangrove SOC extrapolation based on country-level mean reference values, particularly for karstic-dominated coastlines where mangrove SOC stocks have been underestimated by up to 50%. Correspondingly, climate-based global estimates predicted lower mangrove SOC density values (32-41 mg C cm-3) for mangroves in karstic environments, differing from published (21-126 mg C cm-3) and unpublished (47-58 mg C cm-3) values. Moreover, climate-based projections yielded higher SOC density values (27-70 mg C cm-3) for river-dominated mangroves compared to lower ranges reported in the literature (11-24 mg C cm-3). We argue that this inconsistent reporting of SOC stock estimates between river-dominated and karstic coastal environmental settings is likely due to the omission of geomorphological and geophysical

  12. New study on the correlation between carbon dioxide concentration in the environment and radon monitor devices.

    PubMed

    Shahrokhi, A; Burghele, B D; Fábián, F; Kovács, T

    2015-12-01

    The influence of high geogenic carbon dioxide concentrations on monitoring devices might present a significant challenge to the measurement of radon concentrations in environments with a high level of carbon dioxide concentration such as volcano sites, mofettes, caves, etc. In this study, the influence of carbon dioxide concentration on several different types of radon monitor devices - including Alpha Spectrometry (Sarad RTM 2200, EQF 3220, RAD7), Ionizing Chamber (AlphaGUARD PQ2000 PRO) and Active Cell (Active scintillation cell, Pylon 300A) - was examined to represent new aspects of radon measuring in environments with carbon dioxide. In light of the results, all measuring devices were exposed to variable conditions affected by carbon dioxide concentration, except for the AlphaGUARD, which was kept in a steady state throughout the experiment. It was observed that alpha spectroscopy devices were affected by carbon dioxide, since measured radon concentrations decreased in the presence of 70% and 90% carbon dioxide concentrations by 26.5 ± 2% and 14.5 ± 2.5% for EQF 3220, and 32 ± 2% and 35.5 ± 2% for RTM 2200. However, the ionizing chamber instrument was unaffected by changes in carbon dioxide concentration. It was determined that the RAD7 performed relatively inefficiently in the presence of carbon dioxide concentrations higher than 67% by an overall efficiency factor of approximately 0.52, confirming that it is not an admissible radon monitor instrument in environments with high carbon dioxide concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Performance and quality assessment of the recent updated CMEMS global ocean monitoring and forecasting real-time system

    NASA Astrophysics Data System (ADS)

    Le Galloudec, Olivier; Lellouche, Jean-Michel; Greiner, Eric; Garric, Gilles; Régnier, Charly; Drévillon, Marie; Drillet, Yann

    2017-04-01

    Since May 2015, Mercator Ocean opened the Copernicus Marine Environment and Monitoring Service (CMEMS) and is in charge of the global eddy resolving ocean analyses and forecast. In this context, Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity. R&D activities have been conducted at Mercator Ocean these last years to improve the real-time 1/12° global system for recent updated CMEMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefited of the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting, … This presentation will show the impact of some updates separately, with a particular focus on adaptive tuning experiments of satellite Sea Level Anomaly (SLA) and Sea Surface Temperature (SST) observations errors. For the SLA, the a priori prescribed observation error is globally greatly reduced. The median value of the error changed

  14. The case for a Supersite for real-time GNSS hazard monitoring on a global scale

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y. E.

    2017-12-01

    Real-time measurements from many hundreds of GNSS tracking sites around the world are publicly available today, and the amount of streaming data is steadily increasing as national agencies densify their local and global infrastructure for natural hazard monitoring and a variety of geodetic, cadastral, and other civil applications. Thousands of such sites can soon be expected on a global scale. It is a challenge to manage and make optimal use of this massive amount of real-time data. We advocate the creation of Supersite(s), in the parlance of the U.N. Global Earth Observation System of Systems (https://www.earthobservations.org/geoss.php), to generate high level real-time data products from the raw GNSS measurements from all available sources (many thousands of sites). These products include: • High rate, real-time positioning time series for assessing rapid crustal motion due to Earthquakes, volcanic activities, land slides, etc. • Co-seismic displacement to help resolve earthquake mechanism and moment magnitude • Real-time total electron content (TEC) fluctuations to augment Dart buoy in detecting and tracking tsunamis • Aggregation of the many disparate raw data dispensation servers (Casters)Recognizing that natural hazards transcend national boundaries in terms of direct and indirect (e.g., economical, security) impact, the benefits from centralized, authoritative processing of GNSS measurements is manifold: • Offers a one-stop shop to less developed nations and institutions for raw and high-level products, in support of research and applications • Promotes the installation of tracking sites and the contribution of data from nations without the ability to process the data • Reduce dependency on local responsible agencies impacted by a natural disaster • Reliable 24/7 operations, independent of voluntary, best effort contributions from good-willing scientific organizationsThe JPL GNSS Real-Time Earthquake and Tsunami (GREAT) Alert has been

  15. “Evolution Canyon,” a potential microscale monitor of global warming across life

    PubMed Central

    Nevo, Eviatar

    2012-01-01

    Climatic change and stress is a major driving force of evolution. The effects of climate change on living organisms have been shown primarily on regional and global scales. Here I propose the “Evolution Canyon” (EC) microscale model as a potential life monitor of global warming in Israel and the rest of the world. The EC model reveals evolution in action at a microscale involving biodiversity divergence, adaptation, and incipient sympatric speciation across life from viruses and bacteria through fungi, plants, and animals. The EC consists of two abutting slopes separated, on average, by 200 m. The tropical, xeric, savannoid, “African” south-facing slope (AS = SFS) abuts the forested “European” north-facing slope (ES = NFS). The AS receives 200–800% higher solar radiation than the ES. The ES represents the south European forested maquis. The AS and ES exhibit drought and shade stress, respectively. Major adaptations on the AS are because of solar radiation, heat, and drought, whereas those on the ES relate to light stress and photosynthesis. Preliminary evidence suggests the extinction of some European species on the ES and AS. In Drosophila, a 10-fold higher migration was recorded in 2003 from the AS to ES. I advance some predictions that could be followed in diverse species in EC. The EC microclimatic model is optimal to track global warming at a microscale across life from viruses and bacteria to mammals in Israel, and in additional ECs across the planet. PMID:22308456

  16. The Worldviews Network: Transformative Global Change Education in Immersive Environments

    NASA Astrophysics Data System (ADS)

    Hamilton, H.; Yu, K. C.; Gardiner, N.; McConville, D.; Connolly, R.; "Irving, Lindsay", L. S.

    2011-12-01

    Our modern age is defined by an astounding capacity to generate scientific information. From DNA to dark matter, human ingenuity and technologies create an endless stream of data about ourselves and the world of which we are a part. Yet we largely founder in transforming information into understanding, and understanding into rational action for our society as a whole. Earth and biodiversity scientists are especially frustrated by this impasse because the data they gather often point to a clash between Earth's capacity to sustain life and the decisions that humans make to garner the planet's resources. Immersive virtual environments offer an underexplored link in the translation of scientific data into public understanding, dialogue, and action. The Worldviews Network is a collaboration of scientists, artists, and educators focused on developing best practices for the use of immersive environments for science-based ecological literacy education. A central tenet of the Worldviews Network is that there are multiple ways to know and experience the world, so we are developing scientifically accurate, geographically relevant, and culturally appropriate programming to promote ecological literacy within informal science education programs across the United States. The goal of Worldviews Network is to offer transformative learning experiences, in which participants are guided on a process integrating immersive visual explorations, critical reflection and dialogue, and design-oriented approaches to action - or more simply, seeing, knowing, and doing. Our methods center on live presentations, interactive scientific visualizations, and sustainability dialogues hosted at informal science institutions. Our approach uses datasets from the life, Earth, and space sciences to illuminate the complex conditions that support life on earth and the ways in which ecological systems interact. We are leveraging scientific data from federal agencies, non-governmental organizations, and our

  17. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; hide

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  18. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    PubMed Central

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50–75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle. PMID:24706867

  19. ERATOSTHENES: excellence research Centre for Earth surveillance and space-based monitoring of the environment, the EXCELSIOR Horizon 2020 teaming project

    NASA Astrophysics Data System (ADS)

    Hadjimitsis, Diofantos G.; Kontoes, Haris; Schreier, Gunter; Ansmann, Albert; Komodromos, George; Themistocleous, Kyriacos; Mamouri, Rodanthi; Michaelides, Silas; Nisantzi, Argyro; Papoutsa, Christiana; Neocleous, Kyriacos; Mettas, Christodoulos; Tzouvaras, Marios; Evagorou, Evagoras; Christofe, Andreas; Melillos, George; Papoutsis, Ioannis

    2017-10-01

    The aim of this paper is to present the strategy and vision to upgrade the existing ERATOSTHENES Research Centre (ERC) established within the Cyprus University of Technology (CUT) into a sustainable, viable and autonomous Centre of Excellence (CoE) for Earth Surveillance and Space-Based Monitoring of the Environment, which will provide the highest quality of related services on the National, European and International levels. EXCELSIOR is a Horizon 2020 Teaming project which addresses a specific challenge defined by the work program, namely, the reduction of substantial disparities in the European Union by supporting research and innovation activities and systems in low performing countries. It also aims at establishing long-term and strategic partnerships between the Teaming partners, thus reducing internal research and innovation disparities within European Research and Innovation landscape. The proposed CoE envisions the upgrading of the existing ERC into an inspiring environment for conducting basic and applied research and innovation in the areas of the integrated use of remote sensing and space-based techniques for monitoring the environment. Environment has been recognized by the Smart Specialization Strategy of Cyprus as the first horizontal priority for future growth of the island. The foreseen upgrade will regard the expansion of this vision to systematic monitoring of the environment using Earth Observation, space and ground based integrated technologies. Such an approach will lead to the systematic monitoring of all three domains of the Environment (Air, Land, Water). Five partners have united to upgrade the existing ERC into a CoE, with the common vision to become a world-class innovation, research and education centre, actively contributing to the European Research Area (ERA). More specifically, the Teaming project is a team effort between the Cyprus University of Technology (CUT, acting as the coordinator), the German Aerospace Centre (DLR), the

  20. Quality of institution and the FEG (forest, energy intensity, and globalization) -environment relationships in sub-Saharan Africa.

    PubMed

    Amuakwa-Mensah, Franklin; Adom, Philip Kofi

    2017-07-01

    The current share of sub-Saharan Africa in global carbon dioxide emissions is negligible compared to major contributors like Asia, Americas, and Europe. This trend is, however, likely to change given that both economic growth and rate of urbanization in the region are projected to be robust in the future. The current study contributes to the literature by examining both the direct and the indirect impacts of quality of institution on the environment. Specifically, we investigate whether the institutional setting in the region provides some sort of a complementary role in the environment-FEG relationships. We use the panel two-step system generalized method of moments (GMM) technique to deal with the simultaneity problem. Data consists of 43 sub-Saharan African countries. The result shows that energy inefficiency compromises environmental standards. However, the quality of the institutional setting helps moderate this negative consequences; countries with good institutions show greater prospects than countries with poor institutions. On the other hand, globalization of the region and increased forest size generate positive environmental outcomes in the region. Their impacts are, however, independent of the quality of institution. Afforestation programs, promotion of other clean energy types, and investment in energy efficiency, basic city infrastructure, and regulatory and institutional structures, are desirable policies to pursue to safeguard the environment.

  1. An artificial reality environment for remote factory control and monitoring

    NASA Technical Reports Server (NTRS)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    Work has begun on the merger of two well known systems, VEOS (HITLab) and CLIPS (NASA). In the recent past, the University of Massachusetts Lowell developed a parallel version of NASA CLIPS, called P-CLIPS. This modification allows users to create smaller expert systems which are able to communicate with each other to jointly solve problems. With the merger of a VEOS message system, PCLIPS-V can now act as a group of entities working within VEOS. To display the 3D virtual world we have been using a graphics package called HOOPS, from Ithaca Software. The artificial reality environment we have set up contains actors and objects as found in our Lincoln Logs Factory of the Future project. The environment allows us to view and control the objects within the virtual world. All communication between the separate CLIPS expert systems is done through VEOS. A graphical renderer generates camera views on X-Windows devices; Head Mounted Devices are not required. This allows more people to make use of this technology. We are experimenting with different types of virtual vehicles to give the user a sense that he or she is actually moving around inside the factory looking ahead through windows and virtual monitors.

  2. Implementation and Validation of a Real-Time Wireless Non-Invasive Physiological Monitoring System in a High-G Environment

    DTIC Science & Technology

    2003-03-01

    51 Figure 30. SpO2 vs G Profile...and physiological monitoring. The system will be composed of a shirt having non- invasive physiological sensors , Global Positioning System (GPS...Positioning System (GPS)), and other sensor technology. It is now possible to transmit large amounts of data at a high rate in real-time. These

  3. A monitor for the laboratory evaluation of control integrity in digital control systems operating in harsh electromagnetic environments

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1992-01-01

    This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.

  4. Geological hazard monitoring system in Georgia

    NASA Astrophysics Data System (ADS)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  5. The Use of Proba-V data for Global Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Gilliams, S. J. B.; Bydekerke, L.; Smets, B.; De Ronde, B.

    2014-12-01

    Land conversion, forest cutting, urban growth, agricultural expansion, take place at scales which are unprecedented in history and at such a pace that they are not only subject of scientific studies but also have a strong economic impact. Understanding and measuring dynamics becomes a prerequisite for companies, governments, agencies, NGO's, research institutes and society in general. In many of these cases the temporal frequency of the information is a clear requirement to detect phenomena that can occur within a few days (related to crops, forests and other ecosystems) and at a certain geographic scale. For example frequent updates on crop condition and production is needed to stabilize agricultural markets. This is already being picked up by large initiatives like the GEOGLAM AMIS system. Observations over large areas are available through satellites, however challenges remain; on the one hand side obtaining frequent and consistent observations at sufficient level of detail to identify spatial phenomena. At present, no single mission is capable of providing near daily information of any place in the world at scales in which changes in land cover/use can be identified in a consistent manner. On the other hand side the need for a historical reference. For agricultural monitoring and early warning purposes the comparison of the actual data with the historical reference is of the utmost importance. The Proba-V mission is a first attempt to overcome these challenges. From its design and within the GIO-Global Land component a lot of work has been done to ensure the integration of the Proba-V data with the 15 years historical archive of SPOT-VEGETATION. In this respect Proba-V observation will be intercomparable with the SPOT-VGT historical baseline which will ensure the continuation of the standard agricultural monitoring products. Next to this integration with the historical archive, Proba-V also ensures an increase in spatial resolution of the data sets, from 1km to

  6. Multi-satellite Mission in China for Monitoring Natural Hazards (Invited)

    NASA Astrophysics Data System (ADS)

    Guo, H.

    2013-12-01

    The impacts of natural hazards are continuing to increase around the world, and mitigation of the damages caused by natural hazards like floods, droughts, earthquakes, and cyclones has been a global challenge. Current evidence demonstrates there are many kinds of technologies for natural hazard management, but space technology is recognized as one of the most effective means. After 30 years of development, China has become an important member of the global remote sensing community. China has successfully developed an Earth observation system consisting of meteorological satellites, resources satellites, ocean satellites, environment and disaster monitoring satellites, micro-satellites, navigation satellites, and manned spacecraft. In this presentation, a short overview of China's Earth observation satellite missions will be presented. Specifically, the Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting (SSCEDMF) will be introduced and discussed. SSCEDMF is a follow-up '4+4' satellite constellation including four optical satellites and four radar satellites, meant to improve disaster management capability in China. At the current stage, two optical satellites and an s-band synthetic aperture radar satellite have successfully launched. Disasters are a global issue that no country can address individually, requiring sharing and collaboration. China has benefited greatly from international collaboration in disaster mitigation, and has actively worked with international partners. To share our experience in dealing with the risk of disasters, some achievements and progress in space technology applications for disaster management will be introduced. In addition, collaborative activities with IRDR, the UN-SPIDER Beijing Office, and the CAS-TWAS Centre of Excellence on Space Technology for Disaster Mitigation (STDM) will be described.

  7. Classification of Global Urban Centers Using ASTER Data: Preliminary Results From the Urban Environmental Monitoring Program

    NASA Astrophysics Data System (ADS)

    Stefanov, W. L.; Stefanov, W. L.; Christensen, P. R.

    2001-05-01

    Land cover and land use changes associated with urbanization are important drivers of global ecologic and climatic change. Quantification and monitoring of these changes are part of the primary mission of the ASTER instrument, and comprise the fundamental research objective of the Urban Environmental Monitoring (UEM) Program. The UEM program will acquire day/night, visible through thermal infrared ASTER data twice per year for 100 global urban centers over the duration of the mission (6 years). Data are currently available for a number of these urban centers and allow for initial comparison of global city structure using spatial variance texture analysis of the 15 m/pixel visible to near infrared ASTER bands. Variance texture analysis highlights changes in pixel edge density as recorded by sharp transitions from bright to dark pixels. In human-dominated landscapes these brightness variations correlate well with urbanized vs. natural land cover and are useful for characterizing the geographic extent and internal structure of cities. Variance texture analysis was performed on twelve urban centers (Albuquerque, Baghdad, Baltimore, Chongqing, Istanbul, Johannesburg, Lisbon, Madrid, Phoenix, Puebla, Riyadh, Vancouver) for which cloud-free daytime ASTER data are available. Image transects through each urban center produce texture profiles that correspond to urban density. These profiles can be used to classify cities into centralized (ex. Baltimore), decentralized (ex. Phoenix), or intermediate (ex. Madrid) structural types. Image texture is one of the primary data inputs (with vegetation indices and visible to thermal infrared image spectra) to a knowledge-based land cover classifier currently under development for application to ASTER UEM data as it is acquired. Collaboration with local investigators is sought to both verify the accuracy of the knowledge-based system and to develop more sophisticated classification models.

  8. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators.

    PubMed

    Singer, Andrew C; Shaw, Helen; Rhodes, Vicki; Hart, Alwyn

    2016-01-01

    The environment is increasingly being recognized for the role it might play in the global spread of clinically relevant antibiotic resistance. Environmental regulators monitor and control many of the pathways responsible for the release of resistance-driving chemicals into the environment (e.g., antimicrobials, metals, and biocides). Hence, environmental regulators should be contributing significantly to the development of global and national antimicrobial resistance (AMR) action plans. It is argued that the lack of environment-facing mitigation actions included in existing AMR action plans is likely a function of our poor fundamental understanding of many of the key issues. Here, we aim to present the problem with AMR in the environment through the lens of an environmental regulator, using the Environment Agency (England's regulator) as an example from which parallels can be drawn globally. The issues that are pertinent to environmental regulators are drawn out to answer: What are the drivers and pathways of AMR? How do these relate to the normal work, powers and duties of environmental regulators? What are the knowledge gaps that hinder the delivery of environmental protection from AMR? We offer several thought experiments for how different mitigation strategies might proceed. We conclude that: (1) AMR Action Plans do not tackle all the potentially relevant pathways and drivers of AMR in the environment; and (2) AMR Action Plans are deficient partly because the science to inform policy is lacking and this needs to be addressed.

  9. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators

    PubMed Central

    Singer, Andrew C.; Shaw, Helen; Rhodes, Vicki; Hart, Alwyn

    2016-01-01

    The environment is increasingly being recognized for the role it might play in the global spread of clinically relevant antibiotic resistance. Environmental regulators monitor and control many of the pathways responsible for the release of resistance-driving chemicals into the environment (e.g., antimicrobials, metals, and biocides). Hence, environmental regulators should be contributing significantly to the development of global and national antimicrobial resistance (AMR) action plans. It is argued that the lack of environment-facing mitigation actions included in existing AMR action plans is likely a function of our poor fundamental understanding of many of the key issues. Here, we aim to present the problem with AMR in the environment through the lens of an environmental regulator, using the Environment Agency (England’s regulator) as an example from which parallels can be drawn globally. The issues that are pertinent to environmental regulators are drawn out to answer: What are the drivers and pathways of AMR? How do these relate to the normal work, powers and duties of environmental regulators? What are the knowledge gaps that hinder the delivery of environmental protection from AMR? We offer several thought experiments for how different mitigation strategies might proceed. We conclude that: (1) AMR Action Plans do not tackle all the potentially relevant pathways and drivers of AMR in the environment; and (2) AMR Action Plans are deficient partly because the science to inform policy is lacking and this needs to be addressed. PMID:27847505

  10. Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS, IMU and speedometer

    NASA Astrophysics Data System (ADS)

    El-Mowafy, Ahmed; Kubo, Nobuaki

    2017-05-01

    Continuous and trustworthy positioning is a critical capability for advanced driver assistance systems (ADAS). To achieve continuous positioning, methods such as global navigation satellite systems real-time kinematic (RTK), Doppler-based positioning, and positioning using low-cost inertial measurement unit (IMU) with car speedometer data are combined in this study. To ensure reliable positioning, the system should have integrity monitoring above a certain level, such as 99%. Achieving this level when combining different types of measurements that have different characteristics and different types of errors is a challenge. In this study, a novel integrity monitoring approach is presented for the proposed integrated system. A threat model of the measurements of the system components is discussed, which includes both the nominal performance and possible fault modes. A new protection level is presented to bound the maximum directional position error. The proposed approach was evaluated through a kinematic test in an urban area in Japan with a focus on horizontal positioning. Test results show that by integrating RTK, Doppler with IMU/speedometer, 100% positioning availability was achieved. The integrity monitoring availability was assessed and found to meet the target value where the position errors were bounded by the protection level, which was also less than an alert level, indicating the effectiveness of the proposed approach.

  11. Global Health Observatory (GHO)

    MedlinePlus

    ... monitoring partnerships, including the Countdown to 2030 and academic institutions. – Access the portal Global Observatory on Health ... global situation and trends highlights, using core indicators, database views, major publications and links to relevant web ...

  12. A proposed approach to monitor private-sector policies and practices related to food environments, obesity and non-communicable disease prevention.

    PubMed

    Sacks, G; Swinburn, B; Kraak, V; Downs, S; Walker, C; Barquera, S; Friel, S; Hawkes, C; Kelly, B; Kumanyika, S; L'Abbé, M; Lee, A; Lobstein, T; Ma, J; Macmullan, J; Mohan, S; Monteiro, C; Neal, B; Rayner, M; Sanders, D; Snowdon, W; Vandevijvere, S

    2013-10-01

    Private-sector organizations play a critical role in shaping the food environments of individuals and populations. However, there is currently very limited independent monitoring of private-sector actions related to food environments. This paper reviews previous efforts to monitor the private sector in this area, and outlines a proposed approach to monitor private-sector policies and practices related to food environments, and their influence on obesity and non-communicable disease (NCD) prevention. A step-wise approach to data collection is recommended, in which the first ('minimal') step is the collation of publicly available food and nutrition-related policies of selected private-sector organizations. The second ('expanded') step assesses the nutritional composition of each organization's products, their promotions to children, their labelling practices, and the accessibility, availability and affordability of their products. The third ('optimal') step includes data on other commercial activities that may influence food environments, such as political lobbying and corporate philanthropy. The proposed approach will be further developed and piloted in countries of varying size and income levels. There is potential for this approach to enable national and international benchmarking of private-sector policies and practices, and to inform efforts to hold the private sector to account for their role in obesity and NCD prevention. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  13. Enhancing Global Competitiveness: Benchmarking Airline Operational Performance in Highly Regulated Environments

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.; Kane, Karisa D.

    1998-01-01

    Enhancing competitiveness in the global airline industry is at the forefront of attention with airlines, government, and the flying public. The seemingly unchecked growth of major airline alliances is heralded as an enhancement to global competition. However, like many mega-conglomerates, mega-airlines will face complications driven by size regardless of the many recitations of enhanced efficiency. Outlined herein is a conceptual model to serve as a decision tool for policy-makers, managers, and consumers of airline services. This model is developed using public data for the United States (U.S.) major airline industry available from the U/S. Department of Transportation, Federal Aviation Administration, the National Aeronautics and Space Administration, the National Transportation Safety Board, and other public and private sector sources. Data points include number of accidents, pilot deviations, operational performance indicators, flight problems, and other factors. Data from these sources provide opportunity to develop a model based on a complex dot product equation of two vectors. A row vector is weighted for importance by a key informant panel of government, industry, and consumer experts, while a column vector is established with the factor value. The resulting equation, known as the national Airline Quality Rating (AQR), where Q is quality, C is weight, and V is the value of the variables, is stated Q=C[i1-19] x V[i1-19]. Looking at historical patterns of AQR results provides the basis for establishment of an industry benchmark for the purpose of enhancing airline operational performance. A 7 year average of overall operational performance provides the resulting benchmark indicator. Applications from this example can be applied to the many competitive environments of the global industry and assist policy-makers faced with rapidly changing regulatory challenges.

  14. Integrated global background monitoring network. Preliminary results from Torres del Paine and Olympic National Parks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, G.B.; Kohler, A.; Boelcke, C.

    1985-10-01

    During 1984, a pilot project was initiated for monitoring pollution at Torres del Paine National Park in southern Chile and Olympic National Park in the United States. These are two of three initial sites that are to be established as part of an integrated global backgound monitoring network. Eventually, the plan is to establish a world-wide system of such sites. We collected and analyzed samples of the soil, water, air, and two species of plants (moss and lichen). We also collected and analyzed samples of the forest litter. We compared the samples of soil and vegetation against reference samples. Wemore » also compared samples of soil, vegetation, and of organic material from Torres del Paine against similar samples from Olympic and Sequoia-Kings Canyon National Parks in the United States. Although the data is preliminary, it is in agreement with out initial hypothesis that Torres del Paine and Olympic National Parks are not a polluted sites.« less

  15. Modulators of mercury risk to wildlife and humans in the context of rapid global change

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Silbergeld, Ellen K.; Basu, Niladri; Bustamante, Paco; Diaz-Barriga, Fernando; Hopkins, William A.; Kidd, Karen A.; Nyland, Jennifer F.

    2018-01-01

    Environmental mercury (Hg) contamination is an urgent global health threat. The complexity of Hg in the environment can hinder accurate determination of ecological and human health risks, particularly within the context of the rapid global changes that are altering many ecological processes, socioeconomic patterns, and other factors like infectious disease incidence, which can affect Hg exposures and health outcomes. However, the success of global Hg-reduction efforts depends on accurate assessments of their effectiveness in reducing health risks. In this paper, we examine the role that key extrinsic and intrinsic drivers play on several aspects of Hg risk to humans and organisms in the environment. We do so within three key domains of ecological and human health risk. First, we examine how extrinsic global change drivers influence pathways of Hg bioaccumulation and biomagnification through food webs. Next, we describe how extrinsic socioeconomic drivers at a global scale, and intrinsic individual-level drivers, influence human Hg exposure. Finally, we address how the adverse health effects of Hg in humans and wildlife are modulated by a range of extrinsic and intrinsic drivers within the context of rapid global change. Incorporating components of these three domains into research and monitoring will facilitate a more holistic understanding of how ecological and societal drivers interact to influence Hg health risks.

  16. Early warning by near-real time disturbance monitoring (Invited)

    NASA Astrophysics Data System (ADS)

    Verbesselt, J.; Zeileis, A.; Herold, M.

    2013-12-01

    Near real-time monitoring of ecosystem disturbances is critical for rapidly assessing and addressing impacts on carbon dynamics, biodiversity, and socio-ecological processes. Satellite remote sensing enables cost-effective and accurate monitoring at frequent time steps over large areas. Yet, generic methods to detect disturbances within newly captured satellite images are lacking. We propose a multi-purpose time-series-based disturbance detection approach that identifies and models stable historical variation to enable change detection within newly acquired data. Satellite image time series of vegetation greenness provide a global record of terrestrial vegetation productivity over the past decades. Here, we assess and demonstrate the method by applying it to (1) real-world satellite greenness image time series between February 2000 and July 2011 covering Somalia to detect drought-related vegetation disturbances (2) landsat image time series to detect forest disturbances. First, results illustrate that disturbances are successfully detected in near real-time while being robust to seasonality and noise. Second, major drought-related disturbance corresponding with most drought-stressed regions in Somalia are detected from mid-2010 onwards. Third, the method can be applied to landsat image time series having a lower temporal data density. Furthermore the method can analyze in-situ or satellite data time series of biophysical indicators from local to global scale since it is fast, does not depend on thresholds and does not require time series gap filling. While the data and methods used are appropriate for proof-of-concept development of global scale disturbance monitoring, specific applications (e.g., drought or deforestation monitoring) mandates integration within an operational monitoring framework. Furthermore, the real-time monitoring method is implemented in open-source environment and is freely available in the BFAST package for R software. Information

  17. Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention.

    PubMed

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop's surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control.

  18. Public health applications of remote sensing of the environment, an evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The available techniques were examined in the field of remote sensing (including aerial photography, infrared detection, radar, etc.) and applications to a number of problems in the wide field of public health determined. The specific areas of public health examined included: air pollution, water pollution, communicable disease, and the combined problems of urban growth and the effect of disasters on human communities. The assessment of the possible applications of remote sensing to these problems was made primarily by examination of the available literature in each field, and by interviews with health authorities, physicists, biologists, and other interested workers. Three types of programs employing remote sensors were outlined in the air pollution field: (1) proving ability of sensors to monitor pollutants at three levels of interest - point source, ambient levels in cities, and global patterns; (2) detection of effects of pollutants on the environment at local and global levels; and (3) routine monitoring.

  19. The Effect of a Global, Subject, and Device-Specific Model on a Noninvasive Glucose Monitoring Multisensor System.

    PubMed

    Caduff, Andreas; Zanon, Mattia; Mueller, Martin; Zakharov, Pavel; Feldman, Yuri; De Feo, Oscar; Donath, Marc; Stahel, Werner A; Talary, Mark S

    2015-07-01

    We study here the influence of different patients and the influence of different devices with the same patients on the signals and modeling of data from measurements from a noninvasive Multisensor glucose monitoring system in patients with type 1 diabetes. The Multisensor includes several sensors for biophysical monitoring of skin and underlying tissue integrated on a single substrate. Two Multisensors were worn simultaneously, 1 on the upper left and 1 on the upper right arm by 4 patients during 16 study visits. Glucose was administered orally to induce 2 consecutive hyperglycemic excursions. For the analysis, global (valid for a population of patients), personal (tailored to a specific patient), and device-specific multiple linear regression models were derived. We find that adjustments of the model to the patients improves the performance of the glucose estimation with an MARD of 17.8% for personalized model versus a MARD of 21.1% for the global model. At the same time the effect of the measurement side is negligible. The device can equally well measure on the left or right arm. We also see that devices are equal in the linear modeling. Thus hardware calibration of the sensors is seen to be sufficient to eliminate interdevice differences in the measured signals. We demonstrate that the hardware of the 2 devices worn on the left and right arms are consistent yielding similar measured signals and thus glucose estimation results with a global model. The 2 devices also return similar values of glucose errors. These errors are mainly due to nonstationarities in the measured signals that are not solved by the linear model, thus suggesting for more sophisticated modeling approaches. © 2015 Diabetes Technology Society.

  20. Holistic model-based monitoring of the human health status in an urban environment system: pilot study in Verona city, Italy.

    PubMed

    Tarocco, S; Amoruso, I; Caravello, G

    2011-06-01

    In recent decades the global health paradigm gained an increasing systemic characterization. The ecosystem health theory states that a healthy ecosystem, whether natural or artificial, significantly contributes to the good health status of the human population. The present study describes an interdisciplinary monitoring model that retrospectively analyzes the intersection between the urban environment and citizens. The model analyzes both the biophysical and the anthropic subsystems through the application of landscape ecology and environmental quality indexes along with human health indicators. Particularly, ecological quality of landscape pattern, atmospheric pollution, outdoor noise levels and local health indicators were assessed. Verona municipality was chosen as study area to test the preliminary efficiency of the model. Territory was split into two superimposed layers of land units, which were further geo-referentiated with Geographical Information System (GIS) technology. Interdependence of any of the analyzed traits was further investigated with Fisher exact test. Landscape composition was assessed and an Average Ecological Quality (AEQ) score assigned to each land unit. A direct proportionality emerged for concentrations of considered air pollutants and traffic levels: a spatial model for the atmospheric pollution was drawn. A map depicting the distribution of traffic-related noise levels was also drawn. From chosen indicators, a quality class score was assigned to every minor and major land unit. Age-standardised rates about hospitalizations for the municipal population and specific rates for the over-65s/1000 inhabitants were calculated. Quality class assignement for each health indicator was graphically rendered. After direct standardisation of rates for the population sample, data were compared with two reference populations, the Regional population and the Local Socio-sanitary Unit (ULSS20) population. Standardised hospitalization rates for the whole

  1. Taimyr Reindeer and Environmental Change: Monitoring Wild Reindeer Migration in Changing Natural and Social Environments

    NASA Astrophysics Data System (ADS)

    Petrov, A. N.

    2016-12-01

    The Taimyr Reindeer Herd (TRH) is both the largest and the longest monitored wild reindeer herd in Eurasia. An important part of Arctic ecosystems and Indigenous livelihood, wild reindeer have been continuously monitored for almost 50 years. During this time, herds have exhibited large changes in size and these changes have been recorded in almost all herds across the animal's range. An increasing number of wild reindeer in the Soviet times was followed by a significant population loss in the last decade. In addition, recent monitoring revealed substantial shifts in the distribution of wild populations. The decline in wild reindeer is likely related to natural cycles and changes in the Arctic environment caused by climate variability and anthropogenic activity. This study investigates patterns and possible drives of reindeer population dynamics in space and time. We identify key climatic factors, possible relationships with biomass dynamics, as well as with hunting practices and other human impacts.

  2. Use of semipermeable membrane devices for in situ monitoring of polycyclic aromatic hydrocarbons in aquatic environments

    USGS Publications Warehouse

    Lebo, Jon A.; Zajicek, James L.; Huckins, James N.; Petty, Jimmie D.; Peterman, Paul H.

    1992-01-01

    A method is given for the recovery, cleanup, and analysis of polycyclic aromatic hydrocarbons (PAHs) that have been sequestered in SPMDs (semipermeable membrane devices). SPMDs are polymeric membranes enclosing lipids, and mimic the bioconcentration process of aquatic animals. SPMDs are used as passive, in situ monitors of contamination by organic pollutants of aquatic environments. The method reported here includes dialytic recovery of the PAHs, cleanup of the dialysates using size exclusion, adsorption, and argentation chromatographic modules in tandem, then analysis by gas chromatography with photoionization or mass spectrometric detection. The method is demonstrated to overcome the presence of a variety of environmental co-contaminants and other potential interferents in the dialysates. A field application is also demonstrated in which SPMDs are used to monitor PAH contamination in an urban creek. Approaches to the use of SPMD data to calculate aqueous concentrations of PAHs are discussed. The use of SPMDs in combination with the complementary, PAH-specific cleanup procedure provides a unique approach to the analysis of PAH residues in the aquatic environment.

  3. Global Data Toolset (GDT)

    USGS Publications Warehouse

    Cress, Jill J.; Riegle, Jodi L.

    2007-01-01

    According to the United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) approximately 60 percent of the data contained in the World Database on Protected Areas (WDPA) has missing or incomplete boundary information. As a result, global analyses based on the WDPA can be inaccurate, and professionals responsible for natural resource planning and priority setting must rely on incomplete geospatial data sets. To begin to address this problem the World Data Center for Biodiversity and Ecology, in cooperation with the U. S. Geological Survey (USGS) Rocky Mountain Geographic Science Center (RMGSC), the National Biological Information Infrastructure (NBII), the Global Earth Observation System, and the Inter-American Biodiversity Information Network (IABIN) sponsored a Protected Area (PA) workshop in Asuncion, Paraguay, in November 2007. The primary goal of this workshop was to train representatives from eight South American countries on the use of the Global Data Toolset (GDT) for reviewing and editing PA data. Use of the GDT will allow PA experts to compare their national data to other data sets, including non-governmental organization (NGO) and WCMC data, in order to highlight inaccuracies or gaps in the data, and then to apply any needed edits, especially in the delineation of the PA boundaries. In addition, familiarizing the participants with the web-enabled GDT will allow them to maintain and improve their data after the workshop. Once data edits have been completed the GDT will also allow the country authorities to perform any required review and validation processing. Once validated, the data can be used to update the global WDPA and IABIN databases, which will enhance analysis on global and regional levels.

  4. Remote Monitoring of Post-eruption Volcano Environment Based-On Wireless Sensor Network (WSN): The Mount Sinabung Case

    NASA Astrophysics Data System (ADS)

    Soeharwinto; Sinulingga, Emerson; Siregar, Baihaqi

    2017-01-01

    An accurate information can be useful for authorities to make good policies for preventive and mitigation after volcano eruption disaster. Monitoring of environmental parameters of post-eruption volcano provides an important information for authorities. Such monitoring system can be develop using the Wireless Network Sensor technology. Many application has been developed using the Wireless Sensor Network technology, such as floods early warning system, sun radiation mapping, and watershed monitoring. This paper describes the implementation of a remote environment monitoring system of mount Sinabung post-eruption. The system monitor three environmental parameters: soil condition, water quality and air quality (outdoor). Motes equipped with proper sensors, as components of the monitoring system placed in sample locations. The measured value from the sensors periodically sends to data server using 3G/GPRS communication module. The data can be downloaded by the user for further analysis.The measurement and data analysis results generally indicate that the environmental parameters in the range of normal/standard condition. The sample locations are safe for living and suitable for cultivation, but awareness is strictly required due to the uncertainty of Sinabung status.

  5. Using a gradient boosting model to improve the performance of low-cost aerosol monitors in a dense, heterogeneous urban environment

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas E.; Bonczak, Bartosz; Kontokosta, Constantine E.

    2018-07-01

    The increased availability and improved quality of new sensing technologies have catalyzed a growing body of research to evaluate and leverage these tools in order to quantify and describe urban environments. Air quality, in particular, has received greater attention because of the well-established links to serious respiratory illnesses and the unprecedented levels of air pollution in developed and developing countries and cities around the world. Though numerous laboratory and field evaluation studies have begun to explore the use and potential of low-cost air quality monitoring devices, the performance and stability of these tools has not been adequately evaluated in complex urban environments, and further research is needed. In this study, we present the design of a low-cost air quality monitoring platform based on the Shinyei PPD42 aerosol monitor and examine the suitability of the sensor for deployment in a dense heterogeneous urban environment. We assess the sensor's performance during a field calibration campaign from February 7th to March 25th 2017 with a reference instrument in New York City, and present a novel calibration approach using a machine learning method that incorporates publicly available meteorological data in order to improve overall sensor performance. We find that while the PPD42 performs well in relation to the reference instrument using linear regression (R2 = 0.36-0.51), a gradient boosting regression tree model can significantly improve device calibration (R2 = 0.68-0.76). We discuss the sensor's performance and reliability when deployed in a dense, heterogeneous urban environment during a period of significant variation in weather conditions, and important considerations when using machine learning techniques to improve the performance of low-cost air quality monitors.

  6. ISFET-based sensor signal processor chip design for environment monitoring applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Wang, Ming-Ga

    2004-12-01

    In recent years Ion-Sensitive Field Effect Transistor (ISFET) based transducers create valuable applications in physiological data acquisition and environment monitoring. This paper presents a mixed-mode ASIC design for potentiometric ISFET-based bio-chemical sensor applications including H+ sensing and hand-held pH meter. For battery power consideration, the proposed system consists of low voltage (3V) analog front-end readout circuits and digital processor has been developed and fabricated in a 0.5mm double-poly double-metal CMOS technology. To assure that the correct pH value can be measured, the two-point calibration circuitry based on the response of standard pH4 and pH7 buffer solution has been implemented by using algorithmic state machine hardware algorithms. The measurement accuracy of the chip is 10 bits and the measured range between pH 2 to pH 12 compared to ideal values is within the accuracy of 0.1pH. For homeland environmental applications, the system provide rapid, easy to use, and cost-effective on-site testing on the quality of water, such as drinking water, ground water and river water. The processor has a potential usage in battery-operated and portable devices in environmental monitoring applications compared to commercial hand-held pH meter.

  7. Monitoring the Earth's Atmosphere with the Global IMS Infrasound Network

    NASA Astrophysics Data System (ADS)

    Brachet, Nicolas; Brown, David; Mialle, Pierrick; Le Bras, Ronan; Coyne, John; Given, Jeffrey

    2010-05-01

    The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is tasked with monitoring compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) which bans nuclear weapon explosions underground, in the oceans, and in the atmosphere. The verification regime includes a globally distributed network of seismic, hydroacoustic, infrasound and radionuclide stations which collect and transmit data to the International Data Centre (IDC) in Vienna, Austria shortly after the data are recorded at each station. The infrasound network defined in the Protocol of the CTBT comprises 60 infrasound array stations. Each array is built according to the same technical specifications, it is typically composed of 4 to 9 sensors, with 1 to 3 km aperture geometry. At the end of 2000 only one infrasound station was transmitting data to the IDC. Since then, 41 additional stations have been installed and 70% of the infrasound network is currently certified and contributing data to the IDC. This constitutes the first global infrasound network ever built with such a large and uniform distribution of stations. Infrasound data at the IDC are processed at the station level using the Progressive Multi-Channel Correlation (PMCC) method for the detection and measurement of infrasound signals. The algorithm calculates the signal correlation between sensors at an infrasound array. If the signal is sufficiently correlated and consistent over an extended period of time and frequency range a detection is created. Groups of detections are then categorized according to their propagation and waveform features, and a phase name is assigned for infrasound, seismic or noise detections. The categorization complements the PMCC algorithm to avoid overwhelming the IDC automatic association algorithm with false alarm infrasound events. Currently, 80 to 90% of the detections are identified as noise by the system. Although the noise detections are not used to build events in the context of CTBT monitoring

  8. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment

    PubMed Central

    Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran

    2013-01-01

    Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation’s electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments. PMID:25685516

  9. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment.

    PubMed

    Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran

    2014-07-01

    Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation's electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments.

  10. Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System for Dew Condensation Prevention

    PubMed Central

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop’s surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control. PMID:22163813

  11. Near-Real Time Monitoring of TEC Over Japan at NICT (RWC Tokyo OF ISES)

    NASA Astrophysics Data System (ADS)

    Miyake, W.; Jin, H.

    2010-05-01

    The world wide use of global navigation satellite systems such as GPS offers unique opportunities for a permanent monitoring of the total electron content (TEC) of the ionosphere. We have developed a system of the rapid derivation of TEC from GEONET (a dense GPS receiver network in Japan). In addition to a previous plot of TEC temporal variation over Japan, we have recently developed a near-real-time two-dimensional TEC map and have used it for the daily operation of Space Weather Forecast Center at NICT (Regional Warning Center Tokyo of International Space Environment Service). The TEC map can be used to continuously monitor the ionospheric disturbances over Japan, including spatial and temporal development of ionospheric storms, large-amplitude traveling ionospheric disturbances, and plasma bubbles intruding over Japan, with high time resolution. The development of the real-time monitoring system of TEC enables us to monitor large ionospheric disturbances, ranging from global- to small-scale disturbances, expected in the next solar maximum. The plot and maps are open to the public and are available on http://wdc.nict.go.jp/IONO/index_E.html.

  12. NASA's Earth Observations of the Global Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. Fly in from outer space to Africa and Cape Town. See the latest spectacular images from NASA & NOAA remote sensing missions like Meteosat, TRMM, Landsat 7, and Terra, which will be visualized and explained in the context of global change. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning in the Middle East and Africa, and retreat of the glaciers on Mt. Kilimanjaro. See the dynamics of vegetation growth and decay over Africa over 17 years. New visualization tools allow us to roam & zoom through massive global mosaic images including Landsat and Terra tours of Africa and South America, showing land use and land cover change from Bolivian highlands. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, pant whales and fisher- man. See how the ocean blooms in response to these currents and El Nino/La Nifia. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  13. The Global Communication Infrastructure of the International Monitoring System

    NASA Astrophysics Data System (ADS)

    Lastowka, L.; Gray, A.; Anichenko, A.

    2007-05-01

    The Global Communications Infrastructure (GCI) employs 6 satellites in various frequency bands distributed around the globe. Communications with the PTS (Provisional Technical Secretariat) in Vienna, Austria are achieved through VSAT technologies, international leased data circuits and Virtual Private Network (VPN) connections over the Internet. To date, 210 independent VSAT circuits have been connected to Vienna as well as special circuits connecting to the Antarctic and to independent sub-networks. Data volumes from all technologies currently reach 8 Gigabytes per day. The first level of support and a 24/7 help desk remains with the GCI contractor, but performance is monitored actively by the PTS/GCI operations team. GCI operations are being progressively introduced into the PTS operations centre. An Operations centre fully integrated with the GCI segment of the IMS network will ensure a more focused response to incidents and will maximize the availability of the IMS network. Existing trouble tickets systems are being merged to ensure the commission manages GCI incidents in the context of the IMS as a whole. A focus on a single source of data for GCI network performance has enabled reporting systems to be developed which allow for improved and automated reports. The contracted availability for each individual virtual circuit is 99.5% and this performance is regularly reviewed on a monthly basis

  14. A Proposal for Geologic Radioactive Waste Disposal Environmental Zero-State and Subsequent Monitoring Definition - First Lessons Learned from the French Environment Observatory - 13188

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landais, Patrick; Leclerc, Elisabeth; Mariotti, Andre

    Obtaining a reference state of the environment before the beginning of construction work for a geological repository is essential as it will be useful for further monitoring during operations and beyond, thus keeping a memory of the original environmental state. The area and the compartments of the biosphere to be observed and monitored as well as the choice of the markers (e.g. bio-markers, biodiversity, quality of the environment, etc.) to be followed must be carefully selected. In parallel, the choice and selection of the environmental monitoring systems (i.e. scientific and technical criteria, social requirements) will be of paramount importance formore » the evaluation of the perturbations that could be induced during the operational phase of the repository exploitation. This paper presents learning points of the French environment observatory located in the Meuse/Haute-Marne that has been selected for studying the feasibility of the underground disposal of high level wastes in France. (authors)« less

  15. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment.

    PubMed

    Booij, Kees; Robinson, Craig D; Burgess, Robert M; Mayer, Philipp; Roberts, Cindy A; Ahrens, Lutz; Allan, Ian J; Brant, Jan; Jones, Lisa; Kraus, Uta R; Larsen, Martin M; Lepom, Peter; Petersen, Jördis; Pröfrock, Daniel; Roose, Patrick; Schäfer, Sabine; Smedes, Foppe; Tixier, Céline; Vorkamp, Katrin; Whitehouse, Paul

    2016-01-05

    We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations in water, but this definition has little scientific basis. Insufficient quality control is a present weakness of passive sampling in water. Laboratory performance studies and the development of standardized methods are needed to improve data quality and to encourage the use of passive sampling by commercial laboratories and monitoring agencies. Successful prediction of bioaccumulation based on passive sampling is well documented for organisms at the lower trophic levels, but requires more research for higher levels. Despite the existence of several knowledge gaps, passive sampling presently is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined.

  16. Developing a Global Mindset: Learning of Global Leaders

    ERIC Educational Resources Information Center

    Cseh, Maria; Davis, Elizabeth B.; Khilji, Shaista E.

    2013-01-01

    Purpose: The purpose of this qualitative research study was to explore the requirements of leading in a global environment as perceived by the leaders participating in this study as well as the way these leaders learn and develop their global mindset. Design/methodology/approach: The research methodology informed by social constructivism included…

  17. Participatory Patterns in an International Air Quality Monitoring Initiative

    PubMed Central

    Sîrbu, Alina; Becker, Martin; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D. P.; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Van den Bossche, Joris

    2015-01-01

    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution. PMID:26313263

  18. Participatory Patterns in an International Air Quality Monitoring Initiative.

    PubMed

    Sîrbu, Alina; Becker, Martin; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D P; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Van den Bossche, Joris

    2015-01-01

    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.

  19. Sentinel-4: the geostationary component of the GMES atmosphere monitoring missions

    NASA Astrophysics Data System (ADS)

    Bazalgette Courrèges-Lacoste, G.; Arcioni, M.; Meijer, Y.; Bézy, J.-L.; Bensi, P.; Langen, J.

    2017-11-01

    The implementation of operational atmospheric composition monitoring missions is foreseen in the context of the Global Monitoring for Environment and Security (GMES) initiative. Sentinel-4 will address the geostationary observations and Sentinel-5 the low Earth orbit ones. The two missions are planned to be launched on-board Eumetsat's Meteosat Third Generation (MTG) and Post-EPS satellites, respectively. This paper presents an overview of the GMES Sentinel- 4 mission, which has been assessed at Phase-0 level. It describes the key requirements and outlines the main aspects of the candidate implementation concepts available at completion of Phase-0. The paper will particularly focus on the observation mode, the estimated performance and the related technology developments.

  20. Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios.

    PubMed

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2016-03-01

    The first part of this review ("Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios") describes the current knowledge on the major biological particles present in the air regarding their global distribution, concentrations, ratios and influence of meteorological factors in an attempt to provide a framework for monitoring their biodiversity and variability in such a singular environment as the atmosphere. Viruses, bacteria, fungi, pollen and fragments thereof are the most abundant microscopic biological particles in the air outdoors. Some of them can cause allergy and severe diseases in humans, other animals and plants, with the subsequent economic impact. Despite the harsh conditions, they can be found from land and sea surfaces to beyond the troposphere and have been proposed to play a role also in weather conditions and climate change by acting as nucleation particles and inducing water vapour condensation. In regards to their global distribution, marine environments act mostly as a source for bacteria while continents additionally provide fungal and pollen elements. Within terrestrial environments, their abundances and diversity seem to be influenced by the land-use type (rural, urban, coastal) and their particularities. Temporal variability has been observed for all these organisms, mostly triggered by global changes in temperature, relative humidity, et cetera. Local fluctuations in meteorological factors may also result in pronounced changes in the airbiota. Although biological particles can be transported several hundreds of meters from the original source, and even intercontinentally, the time and final distance travelled are strongly influenced by factors such as wind speed and direction. [Int Microbiol 2016; 19(1):1-1 3]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  1. Global, Frequent Landsat-class Mosaics for Real Time Crop Monitoring and Analysis

    NASA Astrophysics Data System (ADS)

    Varlyguin, D.; Crutchfield, J.; Hulina, S.; Reynolds, C. A.; Frantz, R.; Tetrault, R. L.

    2016-12-01

    The presentation will discuss the current status of GDA technology for operational, automated generation of near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A and ASTER imagery are to be added shortly. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world for the last 18 months with a 16 day frequency. The mosaics are updated in real-time, as soon as GDA downloads the imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). Best pixel value from available opportunities is selected during the mosaic update. The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics are used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform and for off line in-season crop mapping. USDA FAS uses this product for persistent monitoring of selected countries and their croplands and for in-season crop analysis. The presentation will overview Landsat-class mosaics and their use in support of USDA FAS efforts.

  2. Physical activity patterns of ethnic children from low socio-economic environments within the UK.

    PubMed

    Eyre, Emma Lisa Jane; Duncan, Michael Joseph; Birch, Samantha Louise; Cox, Valerie; Blackett, Matthew

    2015-01-01

    Many children fail to meet physical activity (PA) guidelines for health benefits. PA behaviours are complex and depend on numerous interrelated factors. The study aims to develop current understanding of how children from low Socio-economic environments within the UK use their surrounding built environments for PA by using advanced technology. The environment was assessed in 96 school children (7-9 years) using global positioning system (GPS) monitoring (Garmin Forerunner, 305). In a subsample of 46 children, the environment and PA were assessed using an integrated GPS and heart rate monitor. The percentage of time spent indoor, outdoor, in green and non-green environments along with time spent in moderate-to-vigorous PA (MVPA) in indoor and outdoor environments were assessed. A 2-by-2 repeated measures analysis of covariance, controlling for body mass index, BF%, assessed the environmental differences. The findings show that 42% of children from deprived wards of Coventry fail to meet PA guidelines, of which 43% was accumulated during school. Children engaged in more MVPA outdoor than indoor environments (P < 0.01) and a greater amount of time was spent in non-green environments (P < 0.01). Increased time outdoors was negatively associated with BF%. In conclusion, outdoor environments are important for health-enhancing PA and reducing fatness in deprived and ethnic children.

  3. Quantification of differences between occupancy and total monitoring periods for better assessment of exposure to particles in indoor environments

    NASA Astrophysics Data System (ADS)

    Wierzbicka, A.; Bohgard, M.; Pagels, J. H.; Dahl, A.; Löndahl, J.; Hussein, T.; Swietlicki, E.; Gudmundsson, A.

    2015-04-01

    For the assessment of personal exposure, information about the concentration of pollutants when people are in given indoor environments (occupancy time) are of prime importance. However this kind of data frequently is not reported. The aim of this study was to assess differences in particle characteristics between occupancy time and the total monitoring period, with the latter being the most frequently used averaging time in the published data. Seven indoor environments were selected in Sweden and Finland: an apartment, two houses, two schools, a supermarket, and a restaurant. They were assessed for particle number and mass concentrations and number size distributions. The measurements using a Scanning Mobility Particle Sizer and two photometers were conducted for seven consecutive days during winter in each location. Particle concentrations in residences and schools were, as expected, the highest during occupancy time. In the apartment average and median PM2.5 mass concentrations during the occupancy time were 29% and 17% higher, respectively compared to total monitoring period. In both schools, the average and medium values of the PM2.5 mass concentrations were on average higher during teaching hours compared to the total monitoring period by 16% and 32%, respectively. When it comes to particle number concentrations (PNC), in the apartment during occupancy, the average and median values were 33% and 58% higher, respectively than during the total monitoring period. In both houses and schools the average and median PNC were similar for the occupancy and total monitoring periods. General conclusions on the basis of measurements in the limited number of indoor environments cannot be drawn. However the results confirm a strong dependence on type and frequency of indoor activities that generate particles and site specificity. The results also indicate that the exclusion of data series during non-occupancy periods can improve the estimates of particle concentrations and

  4. Effect-directed analysis supporting monitoring of aquatic environments--An in-depth overview.

    PubMed

    Brack, Werner; Ait-Aissa, Selim; Burgess, Robert M; Busch, Wibke; Creusot, Nicolas; Di Paolo, Carolina; Escher, Beate I; Mark Hewitt, L; Hilscherova, Klara; Hollender, Juliane; Hollert, Henner; Jonker, Willem; Kool, Jeroen; Lamoree, Marja; Muschket, Matthias; Neumann, Steffen; Rostkowski, Pawel; Ruttkies, Christoph; Schollee, Jennifer; Schymanski, Emma L; Schulze, Tobias; Seiler, Thomas-Benjamin; Tindall, Andrew J; De Aragão Umbuzeiro, Gisela; Vrana, Branislav; Krauss, Martin

    2016-02-15

    Aquatic environments are often contaminated with complex mixtures of chemicals that may pose a risk to ecosystems and human health. This contamination cannot be addressed with target analysis alone but tools are required to reduce this complexity and identify those chemicals that might cause adverse effects. Effect-directed analysis (EDA) is designed to meet this challenge and faces increasing interest in water and sediment quality monitoring. Thus, the present paper summarizes current experience with the EDA approach and the tools required, and provides practical advice on their application. The paper highlights the need for proper problem formulation and gives general advice for study design. As the EDA approach is directed by toxicity, basic principles for the selection of bioassays are given as well as a comprehensive compilation of appropriate assays, including their strengths and weaknesses. A specific focus is given to strategies for sampling, extraction and bioassay dosing since they strongly impact prioritization of toxicants in EDA. Reduction of sample complexity mainly relies on fractionation procedures, which are discussed in this paper, including quality assurance and quality control. Automated combinations of fractionation, biotesting and chemical analysis using so-called hyphenated tools can enhance the throughput and might reduce the risk of artifacts in laboratory work. The key to determining the chemical structures causing effects is analytical toxicant identification. The latest approaches, tools, software and databases for target-, suspect and non-target screening as well as unknown identification are discussed together with analytical and toxicological confirmation approaches. A better understanding of optimal use and combination of EDA tools will help to design efficient and successful toxicant identification studies in the context of quality monitoring in multiply stressed environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Characteristics and trends on global environmental monitoring research: a bibliometric analysis based on Science Citation Index Expanded.

    PubMed

    Zhang, Di; Fu, Hui-Zhen; Ho, Yuh-Shan

    2017-11-01

    A bibliometric analysis based on the Science Citation Index Expanded from Web of Science was carried out to provide insights into research activities and trends of the environmental monitoring from 1993 to 2012. Study emphases covered publication outputs, language, categories, journals, countries/territories, institutions, words, and hot issues. The results indicated that the annual output of environmental monitoring publications increased steadily. The environmental sciences and analytical chemistry were the two most common categories. Environmental Monitoring and Assessment published the most articles. The USA and the UK ranked in the top two in terms of all five indicators. The U.S. Environmental Protection Agency took the leading position of the institutions in terms of publication output. The synthesized analysis by words in title, author keywords, and KeyWords Plus provided important clues for hot issues. Researchers paid more attention on water environment monitoring than other environmental factors. The contaminants including organic contaminants, heavy metal, and radiation were most common research focuses, and the organic contaminants and heavy metal of the degree of concern were gradually rising. Sensor and biosensor played an important role in the field of environmental monitoring devices. In addition to conventional device detection method, the remote sensing, GIS, and wireless sensor networks were the mainstream environmental monitoring methods. The international organization, social awareness, and the countries' positive and effective political and policies promoted the published articles.

  6. A Low-Cost Optical Remote Sensing Application for Glacier Deformation Monitoring in an Alpine Environment

    PubMed Central

    Giordan, Daniele; Allasia, Paolo; Dematteis, Niccolò; Dell’Anese, Federico; Vagliasindi, Marco; Motta, Elena

    2016-01-01

    In this work, we present the results of a low-cost optical monitoring station designed for monitoring the kinematics of glaciers in an Alpine environment. We developed a complete hardware/software data acquisition and processing chain that automatically acquires, stores and co-registers images. The system was installed in September 2013 to monitor the evolution of the Planpincieux glacier, within the open-air laboratory of the Grandes Jorasses, Mont Blanc massif (NW Italy), and collected data with an hourly frequency. The acquisition equipment consists of a high-resolution DSLR camera operating in the visible band. The data are processed with a Pixel Offset algorithm based on normalized cross-correlation, to estimate the deformation of the observed glacier. We propose a method for the pixel-to-metric conversion and present the results of the projection on the mean slope of the glacier. The method performances are compared with measurements obtained by GB-SAR, and exhibit good agreement. The system provides good support for the analysis of the glacier evolution and allows the creation of daily displacement maps. PMID:27775652

  7. A Low-Cost Optical Remote Sensing Application for Glacier Deformation Monitoring in an Alpine Environment.

    PubMed

    Giordan, Daniele; Allasia, Paolo; Dematteis, Niccolò; Dell'Anese, Federico; Vagliasindi, Marco; Motta, Elena

    2016-10-21

    In this work, we present the results of a low-cost optical monitoring station designed for monitoring the kinematics of glaciers in an Alpine environment. We developed a complete hardware/software data acquisition and processing chain that automatically acquires, stores and co-registers images. The system was installed in September 2013 to monitor the evolution of the Planpincieux glacier, within the open-air laboratory of the Grandes Jorasses, Mont Blanc massif (NW Italy), and collected data with an hourly frequency. The acquisition equipment consists of a high-resolution DSLR camera operating in the visible band. The data are processed with a Pixel Offset algorithm based on normalized cross-correlation, to estimate the deformation of the observed glacier. We propose a method for the pixel-to-metric conversion and present the results of the projection on the mean slope of the glacier. The method performances are compared with measurements obtained by GB-SAR, and exhibit good agreement. The system provides good support for the analysis of the glacier evolution and allows the creation of daily displacement maps.

  8. A pragmatic approach to monitor and evaluate implementation and impact of differentiated ART delivery for global and national stakeholders.

    PubMed

    Ehrenkranz, Peter D; Calleja, Jesus Mg; El-Sadr, Wafaa; Fakoya, Ade O; Ford, Nathan; Grimsrud, Anna; Harris, Kate L; Jed, Suzanne L; Low-Beer, Daniel; Patel, Sadhna V; Rabkin, Miriam; Reidy, William John; Reinisch, Annette; Siberry, George K; Tally, Leigh A; Zulu, Isaac; Zaidi, Irum

    2018-03-01

    The World Health Organization's (WHO) recommendation of "Treat All" has accelerated the call for differentiated antiretroviral therapy (ART) delivery, a method of care that efficiently uses limited resources to increase access to HIV treatment. WHO has further recommended that stable individuals on ART receive refills every 3 to 6 months and attend clinical visits every 3 to 6 months. However, there is not yet consensus on how to ensure that the quality of services is maintained as countries strive to meet these standards. This commentary responds to this gap by defining a pragmatic approach to the monitoring and evaluation (M&E) of the scale up of differentiated ART delivery for global and national stakeholders. Programme managers need to demonstrate that the scale up of differentiated ART delivery is achieving the desired effectiveness and efficiency outcomes to justify continued support by national and global stakeholders. To achieve this goal, the two existing global WHO HIV treatment indicators of ART retention and viral suppression should be augmented with two broad aggregate measures. The addition of indicators measuring the frequency of (1) clinical and (2) refill visits by PLHIV per year will allow evaluation of the pace of scale up while monitoring its overall effect on the quality and efficiency of services. The combination of these four routinely collected aggregate indicators will also facilitate the comparison of outcomes among facilities, regions or countries implementing different models of ART delivery. Enhanced monitoring or additional assessments will be required to answer other critical questions on the process of implementation, acceptability, effectiveness and efficiency. These proposed outcomes are useful markers for the effectiveness and efficiency of the health system's attempts to deliver quality treatment to those who need it-and still reserve as much of the available resource pool as possible for other key elements of the HIV response

  9. Environmental monitoring network for India

    Treesearch

    P.V. Sundareshwar; R. Murtugudde; G. Srinivasan; S. Singh; K.J. Ramesh; R. Ramesh; S.B. Verma; D. Agarwal; D. Baldocchi; C.K. Baru; K.K. Baruah; G.R. Chowdhury; V.K. Dadhwal; C.B.S. Dutt; J. Fuentes; Prabhat Gupta; W.W. Hardgrove; M. Howard; C.S. Jha; S. Lal; W.K. Michener; A.P. Mitra; J.T. Morris; R.R. Myneni; M. Naja; R. Nemani; R. Purvaja; S. Raha; S.K. Santhana Vanan; M. Sharma; A. Subramaniam; R. Sukumar; R.R. Twilley; P.R. Zimmerman

    2007-01-01

    Understanding the consequences of global environmental change and its mitigation will require an integrated global effort of comprehensive long-term data collection, synthesis, and action (1). The last decade has seen a dramatic global increase in the number of networked monitoring sites. For example, FLUXNET is a global collection of >300 micrometeorological...

  10. Monitoring issues from a modeling perspective

    NASA Technical Reports Server (NTRS)

    Mahlman, Jerry D.

    1993-01-01

    Recognition that earth's climate and biogeophysical conditions are likely changing due to human activities has led to a heightened awareness of the need for improved long-term global monitoring. The present long-term measurement efforts tend to be spotty in space, inadequately calibrated in time, and internally inconsistent with respect to other instruments and measured quantities. In some cases, such as most of the biosphere, most chemicals, and much of the ocean, even a minimal monitoring program is not available. Recently, it has become painfully evident that emerging global change issues demand information and insights that the present global monitoring system simply cannot supply. This is because a monitoring system must provide much more than a statement of change at a given level of statistical confidence. It must describe changes in diverse parts of the entire earth system on regional to global scales. It must be able to provide enough input to allow an integrated physical characterization of the changes that have occurred. Finally, it must allow a separation of the observed changes into their natural and anthropogenic parts. The enormous policy significance of global change virtually guarantees an unprecedented level of scrutiny of the changes in the earth system and why they are happening. These pressures create a number of emerging challenges and opportunities. For example, they will require a growing partnership between the observational programs and the theory/modeling community. Without this partnership, the scientific community will likely fall short in the monitoring effort. The monitoring challenge before us is not to solve the problem now, but rather to set appropriate actions in motion so as to create the required framework for solution. Each individual piece needs to establish its role in the large problem and how the required interactions are to take place. Below, we emphasize some of the needs and opportunities that could and should be

  11. GLOBEC: Global Ocean Ecosystems Dynamics: A component of the US Global Change Research Program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    GLOBEC (GLOBal ocean ECosystems dynamics) is a research initiative proposed by the oceanographic and fisheries communities to address the question of how changes in global environment are expected to affect the abundance and production of animals in the sea. The approach to this problem is to develop a fundamental understanding of the mechanisms that determine both the abundance of key marine animal populations and their variances in space and time. The assumption is that the physical environment is a major contributor to patterns of abundance and production of marine animals, in large part because the planktonic life stages typical of most marine animals are intrinsically at the mercy of the fluid motions of the medium in which they live. Consequently, the authors reason that a logical approach to predicting the potential impact of a globally changing environment is to understand how the physical environment, both directly and indirectly, contributes to animal abundance and its variability in marine ecosystems. The plans for this coordinated study of of the potential impact of global change on ocean ecosystems dynamics are discussed.

  12. When the Fog Clears: Long-Term Monitoring of Fog and Fog-Dependent Biota in the Namib Desert

    NASA Astrophysics Data System (ADS)

    Logan, J. R. V.

    2014-12-01

    The Gobabeb Research and Training Centre in western Namibia is currently undertaking several efforts to enhance long-term atmospheric and fog monitoring in the central Namib Desert and to measure how fog-dependent biota are responding to global change. In an environment that receives regular sea fog and a mean annual rainfall of only 25 mm, Gobabeb is ideally situated to study the drivers and ecological role of fog in arid environments. Currently more than ten meteorological projects perform measurements at or close to Gobabeb. These projects include continuous trace gas measurements, fog isotope sampling, in situ surface radiation measurements, land surface temperature and other satellite validation studies, and multiple aerosol/dust monitoring projects; most of these projects are also components in other global monitoring networks. To these projects, Gobabeb has recently added a network of nine autonomous weather stations spanning the central Namib that will continuously collect basic meteorological data over an area of approximately 70x70 km. Using this data in conjunction with modeling efforts will expand our understanding of fog formation and the linkages between fog and the Benguela Current off Namibia's coast. Historical weather data from previous meteorological stations and satellite observations will also enable development of a fog time series for the last 50 years to determine climate variability driven by possible changes in the Benguela Current system. To complement these efforts, Gobabeb is also expanding its decades-old ecological research programs to explore the impacts of the fog on the region's biota at various time and spatial scales. Gobabeb's long-term, multidisciplinary projects can serve as a prototype for monitoring in other fog-affected systems, together increasing our understanding of coastal fog dynamics, land-atmosphere-ocean connections, and the impacts of fog-related global change.

  13. Improved data for integrated modeling of global environmental change

    NASA Astrophysics Data System (ADS)

    Lotze-Campen, Hermann

    2011-12-01

    Ethiopia. Together with data from household studies, the new dataset could provide the basis for improved assessments of targeted infrastructure investment, which could help to reduce environmental degradation, promote economic development and alleviate poverty. References Alcamo J et al 1996 Baseline scenarios of global environmental change Glob. Environ. Change—Human Policy Dimens. 6 261-303 CIESIN, IFPRI and WRI 2000 Gridded Population of the World (GPW), Version 2 (available at http://sedac.ciesin.columbia.edu/plue/gpw, accessed March 2004) Erb K-H et al 2007 A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data J. Land Use Sci. 2 191-224 Heistermann M, Müller C and Ronneberger K 2006 Land in sight? Achievements, deficits and potentials of global land-use modeling Agric. Ecosyst. Environ. 114 141-58 Lambin E F and Meyfroidt P 2011 Global land use change, economic globalization, and the looming land scarcity Proc. Natl Acad. Sci. USA 108 3465-72 Leemans R et al 1996 The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source Glob. Environ. Change 6 335-57 Lotze-Campen H, Reusswig F and Stoll-Kleemann S 2008 Socio-ecological monitoring of biodiversity change: building upon the world network of biosphere reserves GAIA—Ecological Perspectives for Science and Society 17 (Suppl. 1) 107-15 Nelson A 2008 Estimated travel time to the nearest city of 50,000 or more people in year 2000 (Ispra: Global Environment Monitoring Unit, Joint Research Centre of the European Commission) (available at http://bioval.jrc.ec.europa.eu/products/gam/download.htm, accessed August 2011) Nordhaus W D 2006 Geography and macroeconomics: new data and new findings Proc. Natl Acad. Sci. USA 103 3510-7 Popp A et al 2011 The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system Environ. Res. Lett. 6 034017 Schneider U A et al

  14. Using animation quality metric to improve efficiency of global illumination computation for dynamic environments

    NASA Astrophysics Data System (ADS)

    Myszkowski, Karol; Tawara, Takehiro; Seidel, Hans-Peter

    2002-06-01

    In this paper, we consider applications of perception-based video quality metrics to improve the performance of global lighting computations for dynamic environments. For this purpose we extend the Visible Difference Predictor (VDP) developed by Daly to handle computer animations. We incorporate into the VDP the spatio-velocity CSF model developed by Kelly. The CSF model requires data on the velocity of moving patterns across the image plane. We use the 3D image warping technique to compensate for the camera motion, and we conservatively assume that the motion of animated objects (usually strong attractors of the visual attention) is fully compensated by the smooth pursuit eye motion. Our global illumination solution is based on stochastic photon tracing and takes advantage of temporal coherence of lighting distribution, by processing photons both in the spatial and temporal domains. The VDP is used to keep noise inherent in stochastic methods below the sensitivity level of the human observer. As a result a perceptually-consistent quality across all animation frames is obtained.

  15. Combining remote sensing and on-site monitoring methods to investigate footpath erosion within a popular recreational heathland environment.

    PubMed

    Rodway-Dyer, Sue; Ellis, Nicola

    2018-06-01

    Footpaths are a prominent consequence of natural area tourism and reflect damage caused to valuable, sensitive habitats by people pressure. Degradation impacts on vegetation, wildlife, on and off-site soil movement and loss, creation of additional informal off-path footpaths (desire lines), and visual destruction of landscapes. Impacts need to be measured and monitored on a large temporal and spatial scale to aid in land management to maintain access and preserve natural environments. This study combined remote sensing (Light Detection and Ranging [LiDAR] and aerial photography) with on-site measurement of footpaths within a sensitive heathland habitat (Land's End, Cornwall, UK). Soil loss, slope angle change, vegetation damage and a hydrology model were combined to comprehensively study the site. Results showed 0.09 m mean soil loss over five years, footpath widening, increasing grass cover into heathland, and water channelling on the footpaths exacerbating erosion. The environments surrounding the footpaths were affected with visitors walking off path, requiring further management and monitoring. Multiple remote sensing techniques were highly successful in comprehensively assessing the area, particularly the hydrology model, demonstrating the potential of providing a valuable objective and quantitative monitoring and management tool. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Cross-Cultural Collisions in Cyberspace: Case Studies of International Legal Issues for Educators Working in Globally Networked Learning Environments

    ERIC Educational Resources Information Center

    Rife, Martine Courant

    2010-01-01

    This article explores some of the legal and law-related challenges educators face in designing, implementing, and sustaining globally networked learning environments (GNLEs) in the context of conflicting international laws on intellectual property and censorship/free speech. By discussing cases and areas involving such legal issues, the article…

  17. Vegetation Monitoring by Remote Sensing Technology for Uninhabited Islands of the Xisha Islands

    NASA Astrophysics Data System (ADS)

    Li, L.; Guo, Y.; Wu, X.

    2018-04-01

    The Xisha islands are tropical coral islands in the south sea of China, with special ecological environment. As far away from the inland, they are more sensitive to climate change than inland, and are looked as the window to reflect global environment changes. Since Sansha city established, some of islands were developed. The uninhabited islands are decreasing. To discover the changes of uninhabited islands become more impending. In order to find out the natural status of uninhabited islands, monitoring four years vegetation change of 2002, 2010, 2013 and 2016. In addition, monitoring the typical uninhabited island and sandbar vegetation by making the most of existed high resolution remote sensing data, nine years from 2002 to 2013 and six months in 2012. The results show that the sandbars are in stable growth stage, especially after 2010, the vegetation start appeared. Meanwhile, analysis the vegetation variation of the uninhabited islands and sandbars.

  18. A proactive system for maritime environment monitoring.

    PubMed

    Moroni, Davide; Pieri, Gabriele; Tampucci, Marco; Salvetti, Ovidio

    2016-01-30

    The ability to remotely detect and monitor oil spills is becoming increasingly important due to the high demand of oil-based products. Indeed, shipping routes are becoming very crowded and the likelihood of oil slick occurrence is increasing. In this frame, a fully integrated remote sensing system can be a valuable monitoring tool. We propose an integrated and interoperable system able to monitor ship traffic and marine operators, using sensing capabilities from a variety of electronic sensors, along with geo-positioning tools, and through a communication infrastructure. Our system is capable of transferring heterogeneous data, freely and seamlessly, between different elements of the information system (and their users) in a consistent and usable form. The system also integrates a collection of decision support services providing proactive functionalities. Such services demonstrate the potentiality of the system in facilitating dynamic links among different data, models and actors, as indicated by the performed field tests. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Designing Training for Global Environments: Knowing What Questions To Ask.

    ERIC Educational Resources Information Center

    Gayeski, Diane M.; Sanchirico, Christine; Anderson, Janet

    2002-01-01

    Presents a framework for identifying important issues for instructional design and delivery in global settings. Highlights include cultural factors in global training; an instructional design model; corporate globalization strategy; communication and training norms; language barriers; implicit value differences; and technical and legal…

  20. Global rainfall monitoring by SSM/I

    NASA Technical Reports Server (NTRS)

    Barrett, Eric C.; Kidd, C.; Kniveton, D.

    1993-01-01

    Significant accomplishments in the last year of research are presented. During 1991, three main activities were undertaken: (1) development and testing of a preliminary global rainfall algorithm; (2) researching areas of strong surface scattering; and (3) formulation of a program of work for the WetNet PrecipWG. Focus of present research and plans for next year are briefly dismissed.

  1. Monitoring minimization of grade B environments based on risk assessment using three-dimensional airflow measurements and computer simulation.

    PubMed

    Katayama, Hirohito; Higo, Takashi; Tokunaga, Yuji; Katoh, Shigeo; Hiyama, Yukio; Morikawa, Kaoru

    2008-01-01

    A practical, risk-based monitoring approach using the combined data collected from actual experiments and computer simulations was developed for the qualification of an EU GMP Annex 1 Grade B, ISO Class 7 area. This approach can locate and minimize the representative number of sampling points used for microbial contamination risk assessment. We conducted a case study on an aseptic clean room, newly constructed and specifically designed for the use of a restricted access barrier system (RABS). Hotspots were located using three-dimensional airflow analysis based on a previously published empirical measurement method, the three-dimensional airflow analysis. Local mean age of air (LMAA) values were calculated based on computer simulations. Comparable results were found using actual measurements and simulations, demonstrating the potential usefulness of such tools in estimating contamination risks based on the airflow characteristics of a clean room. Intensive microbial monitoring and particle monitoring at the Grade B environmental qualification stage, as well as three-dimensional airflow analysis, were also conducted to reveal contamination hotspots. We found representative hotspots were located at perforated panels covering the air exhausts where the major piston airflows collect in the Grade B room, as well as at any locations within the room that were identified as having stagnant air. However, we also found that the floor surface air around the exit airway of the RABS EU GMP Annex 1 Grade A, ISO Class 5 area was always remarkably clean, possibly due to the immediate sweep of the piston airflow, which prevents dispersed human microbes from falling in a Stokes-type manner on settling plates placed on the floor around the Grade A exit airway. In addition, this airflow is expected to be clean with a significantly low LMAA. Based on these observed results, we propose a simplified daily monitoring program to monitor microbial contamination in Grade B environments. To

  2. MITK global tractography

    NASA Astrophysics Data System (ADS)

    Neher, Peter F.; Stieltjes, Bram; Reisert, Marco; Reicht, Ignaz; Meinzer, Hans-Peter; Fritzsche, Klaus H.

    2012-02-01

    Fiber tracking algorithms yield valuable information for neurosurgery as well as automated diagnostic approaches. However, they have not yet arrived in the daily clinical practice. In this paper we present an open source integration of the global tractography algorithm proposed by Reisert et.al.1 into the open source Medical Imaging Interaction Toolkit (MITK) developed and maintained by the Division of Medical and Biological Informatics at the German Cancer Research Center (DKFZ). The integration of this algorithm into a standardized and open development environment like MITK enriches accessibility of tractography algorithms for the science community and is an important step towards bringing neuronal tractography closer to a clinical application. The MITK diffusion imaging application, downloadable from www.mitk.org, combines all the steps necessary for a successful tractography: preprocessing, reconstruction of the images, the actual tracking, live monitoring of intermediate results, postprocessing and visualization of the final tracking results. This paper presents typical tracking results and demonstrates the steps for pre- and post-processing of the images.

  3. Monitoring and telemedicine support in remote environments and in human space flight.

    PubMed

    Cermack, M

    2006-07-01

    The common features of remote environments are geographical separation, logistic problems with health care delivery and with patient retrieval, extreme natural conditions, artificial environment, or combination of all. The exposure can have adverse effects on patients' physiology, on care providers' performance and on hardware functionality. The time to definite treatment may vary between hours as in orbital space flight, days for remote exploratory camp, weeks for polar bases and months to years for interplanetary exploration. The generic system architecture, used in any telematic support, consists of data acquisition, data-processing and storage, telecommunications links, decision-making facilities and the means of command execution. At the present level of technology, a simple data transfer and two-way voice communication could be established from any place on the earth, but the current use of mobile communication technologies for telemedicine applications is still low, either for logistic, economic and political reasons, or because of limited knowledge about the available technology and procedures. Criteria for selection of portable telemedicine terminals in remote terrestrial places, characteristics of currently available mobile telecommunication systems, and the concept of integrated monitoring of physiological and environmental parameters are mentioned in the first section of this paper. The second part describes some aspects of emergency medical support in human orbital spaceflight, the limits of telemedicine support in near-Earth space environment and mentions some open issues related to long-term exploratory missions beyond the low Earth orbit.

  4. New family of biosensors for monitoring BTX in aquatic and edaphic environments.

    PubMed

    Hernández-Sánchez, Verónica; Molina, Lázaro; Ramos, Juan Luis; Segura, Ana

    2016-11-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) contamination is a serious threat to public health and the environment, and therefore, there is an urgent need to detect its presence in nature. The use of whole-cell reporters is an efficient, easy-to-use and low-cost approach to detect and follow contaminants outside specialized laboratories; this is especially important in oil spills that are frequent in marine environments. The aim of this study is the construction of a bioreporter system and its comparison and validation for the specific detection of monocyclic aromatic hydrocarbons in different host bacteria and environmental samples. Our bioreporter system is based on the two component regulatory system TodS-TodT of P. putida DOT-T1E, and the P todX promoter fused to the GFP protein as the reporter protein. For the construction of different biosensors, this bioreporter was transferred into three different bacterial strains isolated from three different environments, and their performance was measured. Validation of the biosensors on water samples spiked with petrol, diesel and crude oil on contaminated waters from oil spills and on contaminated soils demonstrated that they can be used in mapping and monitoring some BTEX compounds (specifically benzene, toluene and two xylene isomers). Validation of biosensors is an important issue for the integration of these devices into pollution-control programmes. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Designing a global monitoring system for pilot introduction of a new contraceptive technology, subcutaneous DMPA (DMPA-SC).

    PubMed

    Stout, Anna; Wood, Siri; Namagembe, Allen; Kaboré, Alain; Siddo, Daouda; Ndione, Ida

    2018-06-01

    In collaboration with ministries of health, PATH and key partners launched the first pilot introductions of subcutaneous depot medroxyprogesterone acetate (DMPA-SC, brand name Sayana ® Press) in Burkina Faso, Niger, Senegal, and Uganda from July 2014 through June 2016. While each country implemented a unique introduction strategy, all agreed to track a set of uniform indicators to chart the effect of introducing this new method across settings. Existing national health information systems (HIS) were unable to track new methods or delivery channels introduced for a pilot, thus were not a feasible source for project data. We successfully monitored the four-country pilot introductions by implementing a four-phase approach: 1) developing and defining global indicators, 2) integrating indicators into existing country data collection tools, 3) facilitating consistent reporting and data management, and 4) analyzing and interpreting data and sharing results. Project partners leveraged existing family planning registers to the extent possible, and introduced new or modified data collection and reporting tools to generate project-specific data where necessary. We routinely shared monitoring results with global and national stakeholders, informing decisions about future investments in the product and scale up of DMPA-SC nationwide. Our process and lessons learned may provide insights for countries planning to introduce DMPA-SC or other new contraceptive methods in settings where stakeholder expectations for measureable results for decision-making are high. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. In Brief: Monitoring ozone in Qatar

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    Qatar is establishing an ozone and pollution monitoring ground station in West Asia, following discussions between the government, the Qatar Foundation, and the United Nations Environment Programme, according to a 19 November announcement. The station will assist in understanding whether the ozone layer is actually recovering after being damaged by ozone-depleting chemicals. Qatar also announced plans to establish a global center of excellence for research and development of ozone and climate-friendly technology, equipment, and appliances. UNEP executive director Achim Steiner said the announcements by Qatar ``will help plug key data gaps relating to information gathering in West Asia and the Gulf to the benefit of the region and the world.''

  7. Global scanning of antihistamines in the environment: Analysis of occurrence and hazards in aquatic systems.

    PubMed

    Kristofco, Lauren A; Brooks, Bryan W

    2017-08-15

    Concentration of the global population is increasingly occurring in megacities and other developing regions, where access to medicines is increasing more rapidly than waste management systems are implemented. Because freshwater and coastal systems are influenced by wastewater effluent discharges of differential quality, exposures in aquatic systems must be considered. Here, we performed a global scanning assessment of antihistamines (AHs), a common class of medicines, in surface waters and effluents. Antihistamines were identified, literature occurrence and ecotoxicology data on AHs collated, therapeutic hazard values (THVs) calculated, and environmental exposure distributions (EEDs) of AHs compared to ecotoxicity thresholds and drug specific THVs to estimate hazards in surface waters and effluents. Literature searches of 62 different AHs in environmental matrices identified 111 unique occurrence publications of 24 specific AHs, largely from Asia-Pacific, Europe, and North America. However, the majority of surface water (63%) and effluent (85%) observations were from Europe and North America, which highlights relatively limited information from many regions, including developing countries and rapidly urbanizing areas in Africa, Latin America and Asia. Less than 10% of all observations were for estuarine or marine systems, though the majority of human populations reside close to coastal habitats. EED 5 th and 95 th centiles for all AHs were 2 and 212ng/L in surface water, 5 and 1308ng/L in effluent and 6 and 4287ng/L in influent, respectively. Unfortunately, global hazards and risks of AHs to non-target species remain poorly understood. However, loratadine observations in surface waters exceeded a THV without an uncertainty factor 40% of the time, indicating future research is needed to understand aquatic toxicology, hazards and risks associated with this AH. This unique global scanning study further illustrates the utility of global assessments of pharmaceuticals

  8. Infectious diseases and global warming: Tracking disease incidence rates globally

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, N.C.

    1995-09-01

    Given the increasing importance of impact of global warming on public health, there is no global database system to monitor infectious disease and disease in general, and to which global data of climate change and environmental factors, such as temperature, greenhouse gases, and human activities, e.g., coastal development, deforestation, can be calibrated, investigated and correlated. The author proposes the diseases incidence rates be adopted as the basic global measure of morbidity of infectious diseases. The importance of a correctly chosen measure of morbidity of disease is presented. The importance of choosing disease incidence rates as the measure of morbidity andmore » the mathematical foundation of which are discussed. The author further proposes the establishment of a global database system to track the incidence rates of infectious diseases. Only such a global system can be used to calibrate and correlate other globally tracked climatic, greenhouse gases and environmental data. The infrastructure and data sources for building such a global database is discussed.« less

  9. Wireless remote monitoring of critical facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hanchung; Anderson, John T.; Liu, Yung Y.

    A method, apparatus, and system are provided for monitoring environment parameters of critical facilities. A Remote Area Modular Monitoring (RAMM) apparatus is provided for monitoring environment parameters of critical facilities. The RAMM apparatus includes a battery power supply and a central processor. The RAMM apparatus includes a plurality of sensors monitoring the associated environment parameters and at least one communication module for transmitting one or more monitored environment parameters. The RAMM apparatus is powered by the battery power supply, controlled by the central processor operating a wireless sensor network (WSN) platform when the facility condition is disrupted. The RAMM apparatusmore » includes a housing prepositioned at a strategic location, for example, where a dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance.« less

  10. Developing Global Leaders: Building Effective Global- Intercultural Collaborative Online Learning Environments

    ERIC Educational Resources Information Center

    Ivy, Karen Lynne-Daniels

    2017-01-01

    This paper shares the findings of a study conducted on a virtual inter-cultural global leadership development learning project. Mixed Methods analysis techniques were used to examine the interviews of U.S. and Uganda youth project participants. The study, based on cultural and social constructivist learning theories, investigated the effects of…

  11. Sensor Web for Spatio-Temporal Monitoring of a Hydrological Environment

    NASA Technical Reports Server (NTRS)

    Delin, K. A.; Jackson, S. P.; Johnson, D. W.; Burleigh, S. C.; Woodrow, R. R.; McAuley, M.; Britton, J. T.; Dohm, J. M.; Ferre, T. P. A.; Ip, Felipe

    2004-01-01

    The Sensor Web is a macroinstrument concept that allows for the spatio-temporal understanding of an environment through coordinated efforts between multiple numbers and types of sensing platforms, including, in its most general form, both orbital and terrestrial and both fixed and mobile. Each of these platforms, or pods, communicates within its local neighborhood and thus distributes information to the instrument as a whole. The result of sharing and continual processing of this information among all the Sensor Web elements will result in an information flow and a global perception of and reactive capability to the environment. As illustrated, the Sensor Web concept also allows for the recursive notion of a web of webs with individual distributed instruments possibly playing the role of a single node point on a larger Sensor Web instrument. In particular, the fusion of inexpensive, yet sophisticated, commercial technology from both the computation and telecommunication revolutions has enabled the development of practical, fielded, and embedded in situ systems that have been the focus of the NASA/JPL Sensor Webs Project (http://sensorwebs.jpl.nasa.gov/). These Sensor Webs are complete systems consisting of not only the pod elements that wirelessly communicate among themselves, but also interfacing and archiving software that allows for easy use by the end-user. Previous successful deployments have included environments as diverse as coastal regions, Antarctica, and desert areas. The Sensor Web has broad implications for Earth and planetary science and will revolutionize the way experiments and missions are conceived and performed. As part of our current efforts to develop a macrointelligence within the system, we have deployed a Sensor Web at the Central Avra Valley Storage and Recovery Project (CAVSARP) facility located west of Tucson, AZ. This particular site was selected because it is ideal for studying spatio-temporal phenomena and for providing a test site for

  12. Teaching about the Global Environment at a Jesuit Liberal Arts University

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.

    2012-12-01

    Teaching about global environmental issues is often reserved to courses in environmental and/or geoscience departments. Universities that do not have departments that fall into these categories may be missing out on educating both science and non-science students about these important and timely issues. Loyola University Maryland is a private Jesuit liberal arts University with no environmental or geoscience department and prior to 2008 had no courses that focused on the science of global environmental issues. Global Environment in a course offered by the Chemistry Department that fills this niche. The course is designed for a general non-science audience, though the course content is also appropriate for science students. The primary goal of the course is for students to learn the basics about how the Earth system works and how our changing climate is related to biodiversity, pollution, water availability and society. The course is designated a diversity course which is a course that fulfills the University's call "to prepare students … to pursue justice by making an action-oriented response to the needs of the world." All students at Loyola University Maryland are required to take one diversity course. For this class, the diversity focus is environmental justice which is brought into the course through lectures, discussions and student projects. By bringing societal impacts into a science course the students can better understand why the environment is important and our actions affect both ourselves and others. The course has also evolved over four iterations into a course that maximizes student involvement while minimizing student angst. One way that this is accomplished is by eliminating tests and substituting daily quizzes using a student response system (clickers). Clickers are also used to poll students and to review what information the students are retaining. Students are able to self-guide their own learning in the course by creating a portfolio

  13. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  14. Global Space Weather Observational Network: Challenges and China's Contribution

    NASA Astrophysics Data System (ADS)

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  15. Globalization and American Education

    ERIC Educational Resources Information Center

    Merriman, William; Nicoletti, Augustine

    2008-01-01

    Globalization is a potent force in today's world. The welfare of the United States is tied to the welfare of other countries by economics, the environment, politics, culture, information, and technology. This paper identifies the implications of globalization for education, presents applications of important aspects of globalization that teachers…

  16. An Environment for Guideline-based Decision Support Systems for Outpatients Monitoring.

    PubMed

    Zini, Elisa M; Lanzola, Giordano; Bossi, Paolo; Quaglini, Silvana

    2017-08-11

    We propose an architecture for monitoring outpatients that relies on mobile technologies for acquiring data. The goal is to better control the onset of possible side effects between the scheduled visits at the clinic. We analyze the architectural components required to ensure a high level of abstraction from data. Clinical practice guidelines were formalized with Alium, an authoring tool based on the PROforma language, using SNOMED-CT as a terminology standard. The Alium engine is accessible through a set of APIs that may be leveraged for implementing an application based on standard web technologies to be used by doctors at the clinic. Data sent by patients using mobile devices need to be complemented with those already available in the Electronic Health Record to generate personalized recommendations. Thus a middleware pursuing data abstraction is required. To comply with current standards, we adopted the HL7 Virtual Medical Record for Clinical Decision Support Logical Model, Release 2. The developed architecture for monitoring outpatients includes: (1) a guideline-based Decision Support System accessible through a web application that helps the doctors with prevention, diagnosis and treatment of therapy side effects; (2) an application for mobile devices, which allows patients to regularly send data to the clinic. In order to tailor the monitoring procedures to the specific patient, the Decision Support System also helps physicians with the configuration of the mobile application, suggesting the data to be collected and the associated collection frequency that may change over time, according to the individual patient's conditions. A proof of concept has been developed with a system for monitoring the side effects of chemo-radiotherapy in head and neck cancer patients. Our environment introduces two main innovation elements with respect to similar works available in the literature. First, in order to meet the specific patients' needs, in our work the Decision

  17. Automatic identification approach for high-performance liquid chromatography-multiple reaction monitoring fatty acid global profiling.

    PubMed

    Tie, Cai; Hu, Ting; Jia, Zhi-Xin; Zhang, Jin-Lan

    2015-08-18

    Fatty acids (FAs) are a group of lipid molecules that are essential to organisms. As potential biomarkers for different diseases, FAs have attracted increasing attention from both biological researchers and the pharmaceutical industry. A sensitive and accurate method for globally profiling and identifying FAs is required for biomarker discovery. The high selectivity and sensitivity of high-performance liquid chromatography-multiple reaction monitoring (HPLC-MRM) gives it great potential to fulfill the need to identify FAs from complicated matrices. This paper developed a new approach for global FA profiling and identification for HPLC-MRM FA data mining. Mathematical models for identifying FAs were simulated using the isotope-induced retention time (RT) shift (IRS) and peak area ratios between parallel isotope peaks for a series of FA standards. The FA structures were predicated using another model based on the RT and molecular weight. Fully automated FA identification software was coded using the Qt platform based on these mathematical models. Different samples were used to verify the software. A high identification efficiency (greater than 75%) was observed when 96 FA species were identified in plasma. This FAs identification strategy promises to accelerate FA research and applications.

  18. A model of global citizenship: antecedents and outcomes.

    PubMed

    Reysen, Stephen; Katzarska-Miller, Iva

    2013-01-01

    As the world becomes increasingly interconnected, exposure to global cultures affords individuals opportunities to develop global identities. In two studies, we examine the antecedents and outcomes of identifying with a superordinate identity--global citizen. Global citizenship is defined as awareness, caring, and embracing cultural diversity while promoting social justice and sustainability, coupled with a sense of responsibility to act. Prior theory and research suggest that being aware of one's connection with others in the world (global awareness) and embedded in settings that value global citizenship (normative environment) lead to greater identification with global citizens. Furthermore, theory and research suggest that when global citizen identity is salient, greater identification is related to adherence to the group's content (i.e., prosocial values and behaviors). Results of the present set of studies showed that global awareness (knowledge and interconnectedness with others) and one's normative environment (friends and family support global citizenship) predicted identification with global citizens, and global citizenship predicted prosocial values of intergroup empathy, valuing diversity, social justice, environmental sustainability, intergroup helping, and a felt responsibility to act for the betterment of the world. The relationship between antecedents (normative environment and global awareness) and outcomes (prosocial values) was mediated by identification with global citizens. We discuss the relationship between the present results and other research findings in psychology, the implications of global citizenship for other academic domains, and future avenues of research. Global citizenship highlights the unique effect of taking a global perspective on a multitude of topics relevant to the psychology of everyday actions, environments, and identity.

  19. Monitoring and Validation of the Global Replacement of tOPV with bOPV, April–May 2016

    PubMed Central

    Hampton, Lee M.; Shendale, Stephanie; Menning, Lisa; Gonzalez, Alejandro Ramirez; Garon, Julie; Dolan, Samantha B.; du Châtellier, Gaël Maufras; Wanyoike, Sarah; Chang Blanc, Diana; Patel, Manish M.

    2017-01-01

    Abstract The phased withdrawal of oral polio vaccine (OPV) associated with the Polio Eradication and Endgame Strategic Plan 2013-2018 began with the synchronized global replacement of trivalent OPV (tOPV) with bivalent OPV (bOPV) during April - May 2016, a transition referred to as the “switch.” The World Health Organization’s (WHO) Strategic Advisory Group of Experts (SAGE) on Immunization recommended conducting this synchronized switch in all 155 OPV-using countries and territories (which collectively administered several hundred million doses of tOPV each year via several hundred thousand facilities) to reduce risks of re-emergence of vaccine-derived polioviruses. Safe execution of this switch required implementation of an associated independent monitoring strategy, the primary objective of which was verification that tOPV was no longer available for administration post-switch. This strategy had to be both practical and rigorous such that tOPV withdrawal could be reasonably employed and confirmed in all countries and territories within a discreet timeframe. Following these principles, WHO recommended that designated monitors in each of the 155 countries and territories visit all vaccine stores as well as a 10% sample of highest-risk health facilities within two weeks of the national switch date, removing any tOPV vials found. National governments were required to provide the WHO with formal validation of execution and monitoring of the switch. In practice, all countries reported cessation of tOPV by 12 May 2016 and 95% of countries and territories submitted detailed monitoring data to WHO. According to these data, 272 out of 276 (99%) national stores, 3,741 out of 3.968 (94%) regional stores, 16,144 out of 22,372 (72%) district level stores, and 143,050 out of 595,401 (24%) of health facilities were monitored. These data, along with field reports suggest that monitoring and validation of the switch was efficient and effective, and that the strategies used

  20. Global risk of pharmaceutical contamination from highly populated developing countries.

    PubMed

    Rehman, Muhammad Saif Ur; Rashid, Naim; Ashfaq, Muhammad; Saif, Ameena; Ahmad, Nasir; Han, Jong-In

    2015-11-01

    Global pharmaceutical industry has relocated from the west to Asian countries to ensure competitive advantage. This industrial relocation has posed serious threats to the environment. The present study was carried out to assess the possible pharmaceutical contamination in the environment of emerging pharmaceutical manufacturing countries (Bangladesh, China, India and Pakistan). Although these countries have made tremendous progress in the pharmaceutical sector but most of their industrial units discharge wastewater into domestic sewage network without any treatment. The application of untreated wastewater (industrial and domestic) and biosolids (sewage sludge and manure) in agriculture causes the contamination of surface water, soil, groundwater, and the entire food web with pharmaceutical compounds (PCs), their metabolites and transformed products (TPs), and multidrug resistant microbes. This pharmaceutical contamination in Asian countries poses global risks via product export and international traveling. Several prospective research hypotheses including the development of new analytical methods to monitor these PCs/TPs and their metabolites, highly resistant microbial strains, and mixture toxicity as a consequence of pharmaceutical contamination in these emerging pharmaceutical exporters have also been proposed based on the available literature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Global Monitoring of Martian Surface Albedo Changes from Orbital Observations

    NASA Astrophysics Data System (ADS)

    Geissler, P.; Enga, M.; Mukherjee, P.

    2013-12-01

    Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place

  2. Infrasound Monitoring of Local, Regional and Global Events

    DTIC Science & Technology

    2007-09-01

    detect and associate signals from the March 9th 2005 eruption at Mount Saint Helens, and locate the event to be within 5 km of the caldera . The...are located within 5 km of the center of the caldera at Mount Saint Helens. Figure 4. Locations of grid nodes that were automatically associated...photograph, and are located within 5 km of the center of the caldera . 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

  3. Global Ionospheric Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Mannucci, A. T.; Lindqwister, U. J.; Pi, X. Q.

    1996-01-01

    Based on the delays of these (Global Positioning System-GPS)signals, we have generated high resolution global ionospheric TEC (Total Electronic Changes) maps at 15-minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that the ionopshere during this time storm has increased significantly (the percentage change relative to quiet times is greater than 150 percent) ...These preliminary results (those mentioned above plus other in the paper)indicate that the differential maping method, which is based on GPS network measurements appears to be a useful tool for studying the global pattern and evolution process of the entire ionospheric perturbation.

  4. An Overview of Recent Geostationary Fire Monitoring Activities and Applications in the Western Hemisphere

    NASA Astrophysics Data System (ADS)

    McRae, D. J.; Conard, S. G.; Ivanova, G. A.; Sukhinin, A. I.; Hao, W. M.; Koutzenogii, K. P.; Prins, E. M.; Schmidt, C. C.; Feltz, J. M.

    2002-05-01

    Over the past twenty years the international scientific research and environmental monitoring communities have recognized the vital role environmental satellites can play in detecting and monitoring active fires both regionally and around the globe for hazards applications and to better understand the extent and impact of biomass burning on the global environment. Both groups have stressed the importance of utilizing operational satellites to produce routine fire products and to ensure long-term stable records of fire activity for applications such as land-use/land cover change analyses and global climate change research. The current NOAA GOES system provides the unique opportunity to detect fires throughout the Western Hemisphere every half-hour from a series of nearly identical satellites for a period of 15+ years. This presentation will provide an overview of the GOES biomass burning monitoring program at UW-Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS) with an emphasis on recent applications of the new GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA). For the past 8 years, CIMSS has utilized the GOES-8 imager to monitor biomass burning trends in South America. Since September 2000, CIMSS has been producing half-hourly fire products in real-time for most of the Western Hemisphere. The WF_ABBA half-hourly fire product is providing new insights into diurnal, spatial, seasonal and interannual fire dynamics in North, Central, and South America. In North America these products are utilized to detect and monitor wildfires in northerly and remote locations. In South America the diurnal GOES fire product is being used as an indicator of land-use and land-cover change and carbon dynamics along the borders between Brazil, Peru, and Bolivia. The Navy is assimilating the Wildfire ABBA fire product into the Navy Aerosol Analysis and Prediction System (NAAPS) to analyze and predict aerosol loading and transport as part of the NASA

  5. Monitoring the ecology and environment using remote sensing in the Jinta area/Middle Reaches of Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Lu, Anxin; Wang, Lihong; Chen, Xianzhang

    2003-07-01

    A major monitoring area, a part of the middle reaches of Heihe basin, was selected. The Landsat TM data in summer of 1990 and 2000 were used with interpretation on the computer screen, classification and setting up environmental investigation database (1:100000) combined with DEM, land cover/land use, land type data and etc., according to the environmental classification system. Then towards to the main problems of environment, the spatial statistical analysis and dynamic comparisons were carried out using the database. The dynamic monitoring results of 1999 and 2000 show that the changing percentage with the area of 6 ground objects are as follows: land use and agriculture land use increased by 34.17% and 19.47% respectively, wet land and water-body also increased by 6.29% and 8.03% respectively; unused land increased by 1.73% and the biggest change is natural/semi-natural vegetation area, decreased by 42.78%, the main results above meat with the requirements of precise and practical conditions by the precise exam and spot check. With the combinations of using TM remote sensing data and rich un-remote sensing data, the investigations of ecology and environment and the dynamic monitoring would be carried out efficiently in the arid area. It is a dangerous signal of large area desertification if the area of natural/semi-natural vegetation is reduced continuously and obviously.

  6. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock-walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-06-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock-walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a Wireless Sensor Network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock-wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock-wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock-wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock-fall hazard surveillance or structural monitoring of concrete structures.

  7. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-11-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a wireless sensor network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.

  8. Smart telemedicine support for continuous glucose monitoring: the embryo of a future global agent for diabetes care.

    PubMed

    Rigla, Mercedes

    2011-01-01

    Although current systems for continuous glucose monitoring (CGM) are the result of progressive technological improvement, and although a beneficial effect on glucose control has been demonstrated, few patients are using them. Something similar has happened to telemedicine (TM); in spite of the long-term experience, which began in the early 1980s, no TM system has been widely adopted, and presential visits are still almost the only way diabetologists and patients communicate. The hypothesis developed in this article is that neither CGM nor TM will ever be routinely implemented separately, and their consideration as essential elements for standard diabetes care will one day come from their integration as parts of a telemedical monitoring platform. This platform, which should include artificial intelligence for giving decision support to patients and physicians, will represent the core of a more complex global agent for diabetes care, which will provide control algorithms and risk analysis among other essential functions. © 2010 Diabetes Technology Society.

  9. Expansion of plants with Crassulacean Acid Metabolism under global environment change

    NASA Astrophysics Data System (ADS)

    Yu, K.; D'Odorico, P.; Collins, S. L.; Carr, D.

    2016-12-01

    contrast to the case of the strong competitive effect from B. mollis. Overall, these research improves understanding of mechanisms underlying the expansion of CAM plants with important implications on shifts in dryland vegetation composition, bioenergy production, food security, and adaptation to global environment change.

  10. BETR Global - A geographically explicit global-scale multimedia contaminant fate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macleod, M.; Waldow, H. von; Tay, P.

    2011-04-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15{sup o} x 15{sup o} grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5).

  11. Biodiversity Monitoring Using NGS Approaches on Unusual Substrates (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    ScienceCinema

    Gilbert, Tom

    2018-02-06

    Tom Gilbert of the Natural History Museum of Denmark on "Biodiversity monitoring using NGS approaches on unusual substrates" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  12. Biodiversity Monitoring Using NGS Approaches on Unusual Substrates (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Tom

    Tom Gilbert of the Natural History Museum of Denmark on "Biodiversity monitoring using NGS approaches on unusual substrates" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  13. Global Ionosphere Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Manucci, A. T.; Lindqwister, U. J.; Pi, X.

    1996-01-01

    For the first time, measurements from the Global Positioning System (GPS) worldwide network are employed to study the global ionospheric total electron content(TEC) changes during a magnetic storm (November 26, 1994). These measurements are obtained from more than 60 world-wide GPS stations which continuously receive dual-frequency signals. Based on the delays of the signals, we have generated high resolution global ionospheric maps (GIM) of TEC at 15 minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that significant TEC increases (the positive effect ) are the major feature in the winter hemisphere during this storm (the maximum percent change relative to quiet times is about 150 percent).

  14. USGS global change research

    USGS Publications Warehouse

    ,

    1995-01-01

    The Earth's global environment--its interrelated climate, land, oceans, fresh water, atmospheric and ecological systems-has changed continually throughout Earth history. Human activities are having ever-increasing effects on these systems. Sustaining our environment as population and demands for resources increase requires a sound understanding of the causes and cycles of natural change and the effects of human activities on the Earth's environmental systems. The U.S. Global Change Research Program was authorized by Congress in 1989 to provide the scientific understanding necessary to develop national and international policies concerning global environmental issues, particularly global climate change. The program addresses questions such as: what factors determine global climate; have humans already begun to change the global climate; will the climate of the future be very different; what will be the effects of climate change; and how much confidence do we have in our predictions? Through understanding, we can improve our capability to predict change, reduce the adverse effects of human activities, and plan strategies for adapting to natural and human-induced environmental change.

  15. A seamless global hydrological monitoring and forecasting system for water resources assessment and hydrological hazard early warning

    NASA Astrophysics Data System (ADS)

    Sheffield, Justin; He, Xiaogang; Wood, Eric; Pan, Ming; Wanders, Niko; Zhan, Wang; Peng, Liqing

    2017-04-01

    Sustainable management of water resources and mitigation of the impacts of hydrological hazards are becoming ever more important at large scales because of inter-basin, inter-country and inter-continental connections in water dependent sectors. These include water resources management, food production, and energy production, whose needs must be weighed against the water needs of ecosystems and preservation of water resources for future generations. The strains on these connections are likely to increase with climate change and increasing demand from burgeoning populations and rapid development, with potential for conflict over water. At the same time, network connections may provide opportunities to alleviate pressures on water availability through more efficient use of resources such as trade in water dependent goods. A key constraint on understanding, monitoring and identifying solutions to increasing competition for water resources and hazard risk is the availability of hydrological data for monitoring and forecasting water resources and hazards. We present a global online system that provides continuous and consistent water products across time scales, from the historic instrumental period, to real-time monitoring, short-term and seasonal forecasts, and climate change projections. The system is intended to provide data and tools for analysis of historic hydrological variability and trends, water resources assessment, monitoring of evolving hazards and forecasts for early warning, and climate change scale projections of changes in water availability and extreme events. The system is particular useful for scientists and stakeholders interested in regions with less available in-situ data, and where forecasts have the potential to help decision making. The system is built on a database of high-resolution climate data from 1950 to present that merges available observational records with bias-corrected reanalysis and satellite data, which then drives a coupled land

  16. TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsenti, Eric

    2013-03-01

    Eric Karsenti of EMBL delivers the closing keynote on "TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, California.

  17. TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    ScienceCinema

    Karsenti, Eric [European Molecular Biology Lab. (EMBL), Heidelberg (Germany)

    2018-05-23

    Eric Karsenti of EMBL delivers the closing keynote on "TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, California.

  18. How to Quantify Human-environment Interactions in the Past: A Global Historical Land Use Data Set for the Holocene

    NASA Astrophysics Data System (ADS)

    Klein Goldewijk, K.

    2015-12-01

    Land use plays an important role in the climate system. Many ecosystem processes are directly or indirectly climate driven, and together with human driven land use changes, they determine how the land surface will evolve through time. To assess the effects of land cover changes on the climate system, models are required which are capable of simulating interactions between the involved components of the Earth system. Since driving forces for global environmental change differ among regions, a geographically (spatially) explicit modeling approach is called for, so that it can be incorporated in global and regional (climate and/or biophysical) change models in order to enhance our understanding of the underlying processes and thus improving future projections.Some researchers suggest that mankind has shifted from living in the Holocene (~emergence of agriculture) into the Anthropocene (~humans capable of changing the Earth' atmosphere) since the start of the Industrial Revolution. But in the light of the sheer size and magnitude of some historical land use changes (e.g. the Black Plague in the 14th century and the aftermath of the Colombian Exchange in the 16th century), some believe that this point might have occurred earlier in time. There are still many uncertainties and gaps in our knowledge about the importance of land use (change) in the global biogeochemical cycle, and it is crucial that researchers from other disciplines are involved in decreasing the uncertainties.Thus, integrated records of the co-evolving human-environment system over millennia are needed to provide a basis for a deeper understanding of the present and for forecasting the future. This requires the major task of assembling and integrating regional and global historical, archaeological, and paleo-environmental records. Humans cannot predict the future. Here I present a tool for such long term global change studies; it is the latest update (v 3.2) of the History Database of the Global

  19. Research on a Denial of Service (DoS) Detection System Based on Global Interdependent Behaviors in a Sensor Network Environment

    PubMed Central

    Song, Jae-gu; Jung, Sungmo; Kim, Jong Hyun; Seo, Dong Il; Kim, Seoksoo

    2010-01-01

    This research suggests a Denial of Service (DoS) detection method based on the collection of interdependent behavior data in a sensor network environment. In order to collect the interdependent behavior data, we use a base station to analyze traffic and behaviors among nodes and introduce methods of detecting changes in the environment with precursor symptoms. The study presents a DoS Detection System based on Global Interdependent Behaviors and shows the result of detecting a sensor carrying out DoS attacks through the test-bed. PMID:22163475

  20. EMon: Embodied Monitorization

    NASA Astrophysics Data System (ADS)

    Carneiro, Davide; Novais, Paulo; Costa, Ricardo; Gomes, Pedro; Neves, José

    The amount of seniors in need of constant care is rapidly rising: an evident consequence of population ageing. There are already some monitorization environments which aim to monitor these persons while they remain at home. This, however, although better than delocalizing the elder to some kind of institution, may not still be the ideal solution, as it forces them to stay inside the home more than they wished, as going out means lack of accompaniment and a consequent sensation of fear. In this paper we propose EMon: a monitorization device small enough to be worn by its users, although powerful enough to provide the higher level monitorization systems with vital information about the user and the environment around him. We hope to allow the representation of an intelligent environment to move with its users, instead of being static, mandatorily associated to a single physical location. The first prototype of EMon, as presented in this paper, provides environmental data as well as GPS coordinates and pictures that are useful to describe the context of its user.

  1. Monitoring the ionosphere during the earthquake on GPS data

    NASA Astrophysics Data System (ADS)

    Smirnov, V. M.; Smirnova, E. V.

    The problem of stability estimation of physical state of an atmosphere attracts a rapt attention of the world community but it is still far from being solved A lot of global atmospheric processes which have direct influence upon all forms of the earth life have been detected The comprehension of cause effect relations stipulating their origin and development is possible only on the basis of long-term sequences of observations data of time-space variations of the atmosphere characteristics which should be received on a global scale and in the interval of altitudes as brand as possible Such data can be obtained only with application satellite systems The latest researches have shown that the satellite systems can be successfully used for global and continuous monitoring ionosphere of the Earth In turn the ionosphere can serve a reliable indicator of different kinds of effects on an environment both of natural and anthropogenic origin Nowadays the problem of the short-term forecast of earthquakes has achieved a new level of understanding There have been revealed indisputable factors which show that the ionosphere anomalies observed during the preparation of seismic events contain the information allowing to detect and to interpret them as earthquake precursors The partial decision of the forecast problem of earthquakes on ionospheric variations requires the processing data received simultaneously from extensive territories Such requirements can be met only on the basis of ground-space system of ionosphere monitoring The navigating systems

  2. Global environment facility: Independent evaluation of the pilot phase; Fonds pour l`environnement mondial: evaluation independante de la phase pilote

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This study responds to a request by participants in the Global Environment Facility (GEF) for an independent evaluation of the pilot phase. It profiles the GEF, discusses its policy framework, and reviews project development procedures and the strategies and projects in each of the GEF`s four focal areas. The study concludes that fundamental changes must occur and recommends specific reforms, such as articulating more clearly the GEF`s mandate, objectives, and strategies; addressing deficiencies in meeting its global focus; improving capacities and procedures within implementing agencies for managing the portfolio; and increasing non-government organization (NGO), country and community-level participation.

  3. Microwave sounding units and global warming

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L.; Keihm, Stephen J.

    1991-01-01

    A recent work of Spencer and Christy (1990) on precise monitoring of global temperature trends from satellites is critically examined. It is tentatively concluded in the present comment that remote sensing using satellite microwave radiometers can in fact provide a means for the monitoring of troposphere-averaged air temperature. However, for this to be successful more than one decade of data will be required to overcome the apparent inherent variability of global average air temperature. It is argued that the data set reported by Spencer and Christy should be subjected to careful review before it is interpreted as evidence of the presence or absence of global warming. In a reply, Christy provides specific responses to the commenters' objections.

  4. Improved Marine Waters Monitoring

    NASA Astrophysics Data System (ADS)

    Palazov, Atanas; Yakushev, Evgeniy; Milkova, Tanya; Slabakova, Violeta; Hristova, Ognyana

    2017-04-01

    IMAMO - Improved Marine Waters Monitoring is a project under the Programme BG02: Improved monitoring of marine waters, managed by Bulgarian Ministry of environment and waters and co-financed by the Financial Mechanism of the European Economic Area (EEA FM) 2009 - 2014. Project Beneficiary is the Institute of oceanology - Bulgarian Academy of Sciences with two partners: Norwegian Institute for Water Research and Bulgarian Black Sea Basin Directorate. The Project aims to improve the monitoring capacity and expertise of the organizations responsible for marine waters monitoring in Bulgaria to meet the requirements of EU and national legislation. The main outcomes are to fill the gaps in information from the Initial assessment of the marine environment and to collect data to assess the current ecological status of marine waters including information as a base for revision of ecological targets established by the monitoring programme prepared in 2014 under Art. 11 of MSFD. Project activities are targeted to ensure data for Descriptors 5, 8 and 9. IMAMO aims to increase the institutional capacity of the Bulgarian partners related to the monitoring and assessment of the Black Sea environment. The main outputs are: establishment of real time monitoring and set up of accredited laboratory facilities for marine waters and sediments chemical analysis to ensure the ability of Bulgarian partners to monitor progress of subsequent measures undertaken.

  5. [Dynamic monitoring and analysis of ecological environment in Weinan City, Northwest China based on RSEI model].

    PubMed

    Song, Hui Min; Xue, Liang

    2016-12-01

    Based on the data of remote sensing images from Landsat in 1995 and 2015, this paper used the principal component analysis (PCA) method to determine the weights of four ecological indexes (greenness, dryness, wetness and heat), and then selected a evaluation model of remote sensing based ecological index (RSEI) to monitor and analyze the ecological environment quality of Weinan City from 1995 to 2015. The results showed that the mean values of RSEI in Weinan City increased from 0.489 to 0.556 during 1995-2015, which indicated the ecological environment qua-lity had been improved. The improved area of ecological quality was mainly distributed in the central area of Weinan City and its proportion was 49.6%. While the proportion of ecological environment degradation was 15.4%, and such areas were mainly distributed in some mine areas of Hancheng City and the southern Weinan (Weinan Section in North Qinling Mountains). The quality of ecolo-gical environment was greatly influenced by the urban planning and construction in the study area. Generally, the ecological condition of Weinan City had been improved, which benefited from the attention and investment of government.

  6. The long-term Global LAnd Surface Satellite (GLASS) product suite and applications

    NASA Astrophysics Data System (ADS)

    Liang, S.

    2015-12-01

    Our Earth's environment is experiencing rapid changes due to natural variability and human activities. To monitor, understand and predict environment changes to meet the economic, social and environmental needs, use of long-term high-quality satellite data products is critical. The Global LAnd Surface Satellite (GLASS) product suite, generated at Beijing Normal University, currently includes 12 products, including leaf area index (LAI), broadband shortwave albedo, broadband longwave emissivity, downwelling shortwave radiation and photosynthetically active radiation, land surface skin temperature, longwave net radiation, daytime all-wave net radiation, fraction of absorbed photosynetically active radiation absorbed by green vegetation (FAPAR), fraction of green vegetation coverage, gross primary productivity (GPP), and evapotranspiration (ET). Most products span from 1981-2014. The algorithms for producing these products have been published in the top remote sensing related journals and books. More and more applications have being reported in the scientific literature. The GLASS products are freely available at the Center for Global Change Data Processing and Analysis of Beijing Normal University (http://www.bnu-datacenter.com/), and the University of Maryland Global Land Cover Facility (http://glcf.umd.edu). After briefly introducing the basic characteristics of GLASS products, we will present some applications on the long-term environmental changes detected from GLASS products at both global and local scales. Detailed analysis of regional hotspots, such as Greenland, Tibetan plateau, and northern China, will be emphasized, where environmental changes have been mainly associated with climate warming, drought, land-atmosphere interactions, and human activities.

  7. 40 CFR 58.61 - Monitoring other pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Monitoring other pollutants. 58.61 Section 58.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Federal Monitoring § 58.61 Monitoring other pollutants. The...

  8. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...

  9. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...

  10. 40 CFR 58.13 - Monitoring network completion.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...

  11. Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction.

    PubMed

    Dalaudier, F; Kan, V; Gurvich, A S

    2001-02-20

    We describe refractive and chromatic effects, both regular and random, that occur during star occultations by the Earth's atmosphere. The scintillation that results from random density fluctuations, as well as the consequences of regular chromatic refraction, is qualitatively described. The resultant chromatic scintillation will produce random features on the Global Ozone Monitoring by Occultation of Stars (GOMOS) spectrometer, with an amplitude comparable with that of some of the real absorbing features that result from atmospheric constituents. A correction method that is based on the use of fast photometer signals is described, and its efficiency is discussed. We give a qualitative (although accurate) description of the phenomena, including numerical values when needed. Geometrical optics and the phase-screen approximation are used to keep the description simple.

  12. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NASA Astrophysics Data System (ADS)

    Trichias, Konstantinos; Pijpers, Richard; Meeuwissen, Erik

    2014-03-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure's life and required maintenance in a cost-efficient way. Typically, inspection data gives insight in the structural health. The global structural behavior, and predominantly the structural loading, is generally measured with vibration and strain sensors. Acoustic emission sensors are more and more used for measuring global crack activity near critical locations. In this paper, we present a procedure for local structural health monitoring by applying Anomaly Detection (AD) on strain sensor data for sensors that are applied in expected crack path. Sensor data is analyzed by automatic anomaly detection in order to find crack activity at an early stage. This approach targets the monitoring of critical structural locations, such as welds, near which strain sensors can be applied during construction and/or locations with limited inspection possibilities during structural operation. We investigate several anomaly detection techniques to detect changes in statistical properties, indicating structural degradation. The most effective one is a novel polynomial fitting technique, which tracks slow changes in sensor data. Our approach has been tested on a representative test structure (bridge deck) in a lab environment, under constant and variable amplitude fatigue loading. In both cases, the evolving cracks at the monitored locations were successfully detected, autonomously, by our AD monitoring tool.

  13. [Morphophysiological monitoring of winter wheat at spring in connection with problem of global climate change].

    PubMed

    Klimov, S V; Burakhanova, E A; Dubinina, I M; Alieva, G P; Sal'nikova, E B; Trunova, T I

    2006-01-01

    Data on morphophysiological monitoring of winter wheat (Triticum aestivum L.) cultivar Mironovskaya 808 grown in Hoagland and Arnon solution in a greenhouse and transferred to natural conditions in March-April 2004 with the mean daily temperature of 0.6 +/- 0.7 degrees C within the exposure period of 42 days are presented. Water content, dry weight of plants and their organs, frost hardiness of plants, degree of tissue damage by frost, CO2 metabolism (photosynthesis and respiration), concentrations of sugars in tissues and proportions between different sugar forms, and activities of soluble and insoluble acid and alkaline phosphatases were monitored. Monitoring was carried out for three experimental variants simulating different microclimatic conditions in spring: after snow melting (experiment I), under ice crust (experiment II), and under snow cover (experiment III). Plants in experiments III and II demonstrated a higher water content in tissues, lower frost hardiness, higher rates of biomass loss, lower concentration of sugars and lower di- to monosaccharide ratio in tissues, and higher total invertase activity, particularly, cell wall-associated acid invertase activity. The dark respiration rates at 0 degrees C did not significantly differ between experimental variants. The photosynthetic capacity at this measurement temperature was maintained in all experimental variants being most pronounced in experiment II with the most intense photoinhibition under natural conditions. Comparison of experiments III and II with experiment I is used to discuss the negative effect of changes in certain microclimatic variables associated with global warming and leading to plant extortion and death from frost in spring.

  14. Technology and Global Change

    NASA Astrophysics Data System (ADS)

    Grübler, Arnulf

    2003-10-01

    Technology and Global Change describes how technology has shaped society and the environment over the last 200 years. Technology has led us from the farm to the factory to the internet, and its impacts are now global. Technology has eliminated many problems, but has added many others (ranging from urban smog to the ozone hole to global warming). This book is the first to give a comprehensive description of the causes and impacts of technological change and how they relate to global environmental change. Written for specialists and nonspecialists alike, it will be useful for researchers and professors, as a textbook for graduate students, for people engaged in long-term policy planning in industry (strategic planning departments) and government (R & D and technology ministries, environment ministries), for environmental activists (NGOs), and for the wider public interested in history, technology, or environmental issues.

  15. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise

    USGS Publications Warehouse

    Webb, Edward L.; Friess, Daniel A.; Krauss, Ken W.; Cahoon, Donald R.; Guntenspergen, Glenn R.; Phelps, Jacob

    2013-01-01

    Sea-level rise threatens coastal salt-marshes and mangrove forests around the world, and a key determinant of coastal wetland vulnerability is whether its surface elevation can keep pace with rising sea level. Globally, a large data gap exists because wetland surface and shallow subsurface processes remain unaccounted for by traditional vulnerability assessments using tide gauges. Moreover, those processes vary substantially across wetlands, so modelling platforms require relevant local data. The low-cost, simple, high-precision rod surface-elevation table–marker horizon (RSET-MH) method fills this critical data gap, can be paired with spatial data sets and modelling and is financially and technically accessible to every country with coastal wetlands. Yet, RSET deployment has been limited to a few regions and purposes. A coordinated expansion of monitoring efforts, including development of regional networks that could support data sharing and collaboration, is crucial to adequately inform coastal climate change adaptation policy at several scales.

  16. Teaching Global Perspectives in a Rural Environment.

    ERIC Educational Resources Information Center

    Lind, Mary Ann

    1980-01-01

    Rural students can understand global perspectives by developing pride as food providers who share "kinship of the soil" with the developing world. Important lessons include man's dependence on the land; philosophy of environmental protection; agricultural technology; political influence over soil use; and five factors controlling crop production.…

  17. Virtual groups for patient WBAN monitoring in medical environments.

    PubMed

    Ivanov, Stepan; Foley, Christopher; Balasubramaniam, Sasitharan; Botvich, Dmitri

    2012-11-01

    Wireless body area networks (WBAN) provide a tremendous opportunity for remote health monitoring. However, engineering WBAN health monitoring systems encounters a number of challenges including efficient WBAN monitoring information extraction, dynamically fine tuning the monitoring process to suit the quality of data, and to allow the translation of high-level requirements of medical officers to low-level sensor reconfiguration. This paper addresses these challenges, by proposing an architecture that allows virtual groups to be formed between devices of patients, nurses, and doctors in order to enable remote analysis of WBAN data. Group formation and modification is performed with respect to patients' conditions and medical officers' requirements, which could be easily adjusted through high-level policies. We also propose, a new metric called the Quality of Health Monitoring, which allows medical officers to provide feedback on the quality of WBAN data received. The WBAN data gathered are transmitted to the virtual group members through an underlying environmental sensor network. The proposed approach is evaluated through a series of simulation.

  18. Measuring financial protection against catastrophic health expenditures: methodological challenges for global monitoring.

    PubMed

    Hsu, Justine; Flores, Gabriela; Evans, David; Mills, Anne; Hanson, Kara

    2018-05-31

    Monitoring financial protection against catastrophic health expenditures is important to understand how health financing arrangements in a country protect its population against high costs associated with accessing health services. While catastrophic health expenditures are generally defined to be when household expenditures for health exceed a given threshold of household resources, there is no gold standard with several methods applied to define the threshold and household resources. These different approaches to constructing the indicator might give different pictures of a country's progress towards financial protection. In order for monitoring to effectively provide policy insight, it is critical to understand the sensitivity of measurement to these choices. This paper examines the impact of varying two methodological choices by analysing household expenditure data from a sample of 47 countries. We assess sensitivity of cross-country comparisons to a range of thresholds by testing for restricted dominance. We further assess sensitivity of comparisons to different methods for defining household resources (i.e. total expenditure, non-food expenditure and non-subsistence expenditure) by conducting correlation tests of country rankings. We found country rankings are robust to the choice of threshold in a tenth to a quarter of comparisons within the 5-85% threshold range and this increases to half of comparisons if the threshold is restricted to 5-40%, following those commonly used in the literature. Furthermore, correlations of country rankings using different methods to define household resources were moderate to high; thus, this choice makes less difference from a measurement perspective than from an ethical perspective as different definitions of available household resources reflect varying concerns for equity. Interpreting comparisons from global monitoring based on a single threshold should be done with caution as these may not provide reliable insight into

  19. 40 CFR 64.3 - Monitoring design criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Monitoring design criteria. 64.3 Section 64.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) COMPLIANCE ASSURANCE MONITORING § 64.3 Monitoring design criteria. (a) General criteria. To provide a...

  20. 40 CFR 64.3 - Monitoring design criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Monitoring design criteria. 64.3 Section 64.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) COMPLIANCE ASSURANCE MONITORING § 64.3 Monitoring design criteria. (a) General criteria. To provide a...