Sample records for global environment monitoring

  1. Global Environment Monitoring System (GEMS): The World of Water Quality

    NSDL National Science Digital Library

    The United Nations Global Environment Monitoring System (GEMS) Program "provides scientifically-sound data and information on the state and trends of global inland water quality required as a basis for the sustainable management of the world's freshwater to support global environmental assessments and decision- making processes." The website offers newsletters about water quality, downloads of annual reports, links to research projects that utilize the GEMS' data, and information on education and training. Researchers can search global water quality data by location at the GEM Stat link.

  2. Applying .NET Framework to Condition Monitoring in Globally Distributed Environment

    Microsoft Academic Search

    Mikko Salmenperä; Jari Seppälä; Hannu Koivisto

    This paper presents result obtained from study of how Microsoft emerging .NET framework bends into the needs of remote condition monitoring environment. It gives an overview of .NET framework, the basic technologies it relies on and the security features the framework offers. Messaging techniques are a crucial part of any distributed system. Therefore the concepts and the tools provided by

  3. Possible contributions of ESA Global Monitoring for Environment and Security initiative for the WFD implementation

    Microsoft Academic Search

    Thomas Dworak; Cornelius Laaser; Steffen Kuntz; Frank Martin Seifert

    2005-01-01

    Policy makers are increasingly in need of accurate and timely information in order to meet reporting requirements linked to environmental legislation. This paper explores the extent to which Earth Observation (EO) based services addressed by the joint initiative “Global Monitoring for Environment and Security (GMES)” of ESA and the EC can contribute meet the special reporting requirements of the major

  4. A smart thermal environment monitor based on IEEE 1451.2 standard for global networking

    Microsoft Academic Search

    Yanfeng Wang; Makoto Nishikawa; Ryuichi Maeda; Masaichi Fukunaga; Kenzo Watanabe

    2005-01-01

    A temperature and relative humidity (RH) monitor using a thermistor and a polyimide-film RH sensor is developed for global assessment of thermal environments. The smart transducer interface module includes the relaxation oscillators for signal conditioning and a one-chip 16-bit microcomputer for networking. The microcomputer accommodates the calibration tables as well as the mandatory transducer electronic data sheets specified by the

  5. The Analysis of Moonborne Cross Track Synthetic Aperture Radar Interferometry for Global Environment Change Monitoring

    NASA Astrophysics Data System (ADS)

    Yixing, Ding; Huadong, Guo; Guang, Liu; Daowei, Zhang

    2014-03-01

    Faced to the earth observation requirement of large scale global environment change, a SAR (Synthetic Aperture Radar) antenna system is proposed to set on Moon's surface for interferometry in this paper. With several advantages superior to low earth obit SAR, such as high space resolution, large range swath and short revisit interval, the moonborne SAR could be a potential data resource of global changes monitoring and environment change research. Due to the high stability and ease of maintenance, the novel system is competent for offering a long and continuous time series of remote sensing imagery. The Moonborne SAR system performance is discussed at the beginning. Then, the peculiarity of interferometry is analyzed in both repeat pass and single pass cases. The chief distinguishing feature which is worth to research the potentiality of repeat pass interferometry is that the revisit interval is reduced to one day in most cases, and in worst case one month. Decorrelation deriving from geometry variety is discussed in detail. It turns out that the feasibility of moonborne SAR repeat pass interferometry depends on the declination of Moon. The severity of shift effects in radar echoes increased as Moon approaches to the equatorial plane. Moreover, referring to the single pass interferometry, two antennas are assumed to set on different latitude of Moon. There is enough space on Moon to form a long baseline, which is highly related to the interferogram precision.

  6. Environment Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.

  7. Stimulating innovation for global monitoring of agriculture and its impact on the environment in support of GEOGLAM

    NASA Astrophysics Data System (ADS)

    Bydekerke, Lieven; Gilliams, Sven; Gobin, Anne

    2015-04-01

    There is an urgent need to ensure food supply for a growing global population. To enable a sustainable growth of agricultural production, effective and timely information is required to support decision making and to improve management of agricultural resources. This requires innovative ways and monitoring methods that will not only improve short-term crop production forecasts, but also allow to assess changes in cultivation practices, agricultural areas, agriculture in general and, its impact on the environment. The G20 launched in June 2011 the "GEO Global Agricultural Monitoring initiative (GEOGLAM), requesting the GEO (Group on Earth Observations) Agricultural Community of Practice to implement GEOGLAM with the main objective to improve crop yield forecasts as an input to the Agricultural Market Information System (AMIS), in order to foster stabilisation of markets and increase transparency on agricultural production. In response to this need, the European Commission decided in 2013 to fund an international partnership to contribute to GEOGLAM and its research agenda. The resulting SIGMA project (Stimulating Innovation for Global Monitoring of Agriculture), a partnership of 23 globally distributed expert organisations, focusses on developing datasets and innovative techniques in support of agricultural monitoring and its impact on the environment in support of GEOGLAM. SIGMA has 3 generic objectives which are: (i) develop and test methods to characterise cropland and assess its changes at various scales; (ii) develop and test methods to assess changes in agricultural production levels; and; (iii) study environmental impacts of agriculture. Firstly, multi-scale remote sensing data sets, in combination with field and other ancillary data, will be used to generate an improved (global) agro-ecological zoning map and crop mask. Secondly, a combination of agro-meteorological models, satellite-based information and long-term time series will be explored to assess crop yield gaps and shifts in cultivation. The third research topic entails the development of best practices for assessing the impact of crop land and cropping system change on the environment. In support of the GEO JECAM (Joint Experiment for Crop Assessment and Monitoring) initiative, SIGMA has selected case studies in Ukraine, Russia, Europe, Africa, Latin America and China, coinciding with the JECAM sites in these area, to explore possible methodological synergies and particularities according to different cropping systems. In combination with research conducted at regional and global scale, it is one of the goals to improve the understanding of dynamics, interactions and validity of the developed methods at the various scales. In addition, specific activities will be dedicated to raising awareness and strengthening capacity for what concerns agro-environmental monitoring, data accessibility and interoperability in line with the GEOSS Data-core principles. The SIGMA project will also anticipate on the availability of the SENTINEL satellites for agricultural applications as open-data in the near future. References http://proba-v.vgt.vito.be/ http://www.geoglam-sigma.info/

  8. Monitoring global vegetation

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Houston, A. G.; Heydorn, R. P.; Botkin, D. B.; Estes, J. E.; Strahler, A. H.

    1981-01-01

    An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth.

  9. Global Fire Monitoring

    NSDL National Science Digital Library

    Forest fires, brush fires, and slash and burn agriculture are a significant force for environmental change. Remote sensing of fires, smoke and burn scars allows for improved detection of fire characteristics as well as their short- and long-term effects on ecosystems. This site from NASA's Earth Observatory discusses the importance of fires, trace gases emissions, aerosol emissions, and NASA and NOAA missions for monitoring global fires. Case studies and data sets are also available.

  10. Monitoring the Global Environment

    NSDL National Science Digital Library

    In this online, interactive module, students learn how enhanced Earth remote-sensing capabilities are used by dozens of satellites that are continuously collecting data from multiple vantage points. This allows scientists from different countries to transcend political and geographical boundaries by sharing data and ideas towards the common mission of caring for planet Earth. The module is part of an online course for grades 7-12 in satellite meteorology, which includes 10 interactive modules. The site also includes lesson plans developed by teachers and links to related resources. Each module is designed to serve as a stand-alone lesson, however, a sequential approach is recommended. Designed to challenge students through the end of 12th grade, middle school teachers and students may choose to skim or skip a few sections.

  11. (Managing the global environment)

    SciTech Connect

    Rayner, S.F.

    1989-10-03

    The conference was stimulated by concern that policy makers increasingly have to make environmental management decisions in the absence of solidly established scientific consensus about ecological processes and the consequences of human actions. Often, as in the case of climate change, some decisions may have to be made in the absence of information that is desirable but may not be available for years to come, if ever. Six topics were identified as running throughout the Congress. These were: the epistemology and history of the sciences or disciplines concerned with the environment, including the scientific basis of rationality and modes of dealing with uncertainty and complexity; the social, economic, and institutional conditions for the production of knowledge bearing on the environment, including the politics of research and the improvement of scientific data; the structuring and institutionalization of expert assessments on national and international levels, including the global distribution of expertise; the means of establishing scientific information, the role of the media in transmitting and processing knowledge about the environment, and the organization of public environmental debate; and decision making and management under conditions of uncertainty; and, finally the relationship between science and ethics. 13 refs.

  12. Requirements monitoring in dynamic environments

    Microsoft Academic Search

    Stephen Fickas; Martin S. Feather

    1995-01-01

    We propose requirements monitoring to aid in the maintenance of systems that reside in dynamic environments. By requirements monitoring we mean the insertion of code into a running system to gather information from which it can he determined whether, and to what degree, that running system is meeting its requirements. Monitoring is a commonly applied technique in support of performance

  13. Global Environment Facility

    NSDL National Science Digital Library

    Helps developing countries fund projects and programs that protect the environment; active in the areas of biodivesity, climate change, international waters, land degradation, ozone protection, persistent organic pollutants and renewable energy. Works closely with various agencies of the United Nations.

  14. Environment surveys. [monitoring and protection of environment

    NASA Technical Reports Server (NTRS)

    Greenwood, L. R.

    1974-01-01

    Environment applications are concerned with the quality, protection, and improvement of water, land, and air resources and, in particular, with the pollution of these resources caused by man and his works, as well as changes to the resources due to natural phenomena (for example, drought and floods). The broad NASA objectives related to the environment are directed toward the development and demonstration of the capability to monitor remotely and assess environmental conditions related to water quality, land and vegetation quality, wildlife resources, and general environment. The contributions of ERTS-1 to these subdiscipline areas are broadly summarized.

  15. Global ocean data for global weather and climate monitoring

    E-print Network

    Stoffelen, Ad

    Jason-2 Global ocean data for global weather and climate monitoring #12;Global ocean data to meet réchauffement global stérilise les océans" (Sciences et Avenir) 19/2/2008 - "Schmelzendes Grönlandeis lässt understanding of global climatic factors that cause such phenomena as for example El Niño and La Niña

  16. Monitoring the availability of healthy and unhealthy foods and non-alcoholic beverages in community and consumer retail food environments globally.

    PubMed

    Ni Mhurchu, C; Vandevijvere, S; Waterlander, W; Thornton, L E; Kelly, B; Cameron, A J; Snowdon, W; Swinburn, B

    2013-10-01

    Retail food environments are increasingly considered influential in determining dietary behaviours and health outcomes. We reviewed the available evidence on associations between community (type, availability and accessibility of food outlets) and consumer (product availability, prices, promotions and nutritional quality within stores) food environments and dietary outcomes in order to develop an evidence-based framework for monitoring the availability of healthy and unhealthy foods and non-alcoholic beverages in retail food environments. Current evidence is suggestive of an association between community and consumer food environments and dietary outcomes; however, substantial heterogeneity in study designs, methods and measurement tools makes it difficult to draw firm conclusions. The use of standardized tools to monitor local food environments within and across countries may help to validate this relationship. We propose a step-wise framework to monitor and benchmark community and consumer retail food environments that can be used to assess density of healthy and unhealthy food outlets; measure proximity of healthy and unhealthy food outlets to homes/schools; evaluate availability of healthy and unhealthy foods in-store; compare food environments over time and between regions and countries; evaluate compliance with local policies, guidelines or voluntary codes of practice; and determine the impact of changes to retail food environments on health outcomes, such as obesity. PMID:24074215

  17. GNET: Global Environment and Technology

    NSDL National Science Digital Library

    Built on the controversial belief that "environmental technologies offer the fastest and most effective means to address our planet's urgent environmental needs," the non-profit Global Environment and Technology Foundation (GETF) "promot[es] the development and use of innovative technology to achieve sustainable development." GNET, the organization's information news source, provides current news stories related to GTEF's mission. Whether one agrees or disagrees with GETF's ideals, this is a useful place to keep tabs on some enviro-technology news.

  18. Towards the global monitoring of biodiversity change

    E-print Network

    Pereira, Henrique Miguel

    Towards the global monitoring of biodiversity change Henrique M. Pereira1,2,* and H. David Cooper3, Canada, H2Y1N9 Governments have set the ambitious target of reducing biodiversity loss by the year 2010. Here, we review current monitoring efforts and propose a global biodiversity monitoring network

  19. Monitoring Seasons Through Global Learning Communities

    Microsoft Academic Search

    E. B. Sparrow; J. H. Robin; M. O. Jeffries; L. S. Gordon; D. L. Verbyla; E. R. Levine

    2006-01-01

    Monitoring Seasons through Global Learning Communities (MSTGLC) is an inquiry- and project-based project that monitors seasons, specifically their interannual variability, in order to increase K-12 students' understanding of the Earth system by providing teacher professional development in Earth system science and inquiry, and engaging K-12 students in Earth system science research relevant to their local communities that connect globally. MSTGLC

  20. MEMOS - Mars Environment Monitoring Satellite

    NASA Astrophysics Data System (ADS)

    Ott, T.; Barabash, S.; von Schéele, F.; Clacey, E.; Pokrupa, N.

    2007-08-01

    The Swedish Institute of Space Physics (IRF) in cooperation with the Swedish Space Corporation (SSC) has conducted first studies on a Mars Environment Monitoring Satellite (MEMOS). The MEMOS microsatellite (mass < 20 kg) will accommodate four scientific instruments: solar EUV/UV monitor (SEM), solar wind monitor (SWIM), magnetometer (MAG) and radiation environment monitor (REM). The payload monitors the solar conditions at Mars and characterizes the Mars environment to support other missions and science investigations. Monitoring of the solar wind parameters (velocity, density, and field) is the key for any aeronomy and solar wind interaction mission at Mars. The solar EUV / UV (HeII 30.4 nm and HII 121.6 nm) flux monitoring is required for upper atmosphere / ionosphere studies. The radiation environment monitoring is needed to study space weather effects on the near-Mars environment as well as for the preparations for man-flights. MEMOS follows the design philosophy of a detached and autonomously flying instrument for achieving the mentioned objectives. It is intended to be carried "piggy-back" to Mars on a suitable mission. Potential missions are: ESA Mars orbiters within the NEXT or Cosmic Vision programs, NASA Mars orbiters, national / bilateral Mars missions. At Mars MEMOS is separated from its carrier (parent satellite) via the release mechanism implemented in the dual formation flight mission PRISMA. The separation will take place during the orbit insertion scenario of the parent satellite at Mars thus placing MEMOS in a highly elliptical orbit guarantying sufficient observation time in the solar wind. In orbit MEMOS will autonomously detumble and spin-up to ~1 rpm for reasons of stabilization and to fulfill instrument requirements. Such a low spin-rate is sufficient for a required inertial pointing accuracy of 2.5° because of the small external disturbance torques (< 10-7 Nm) predominant at Mars responsible for nutation and precession of the spin-axis. The advances in micropropulsion systems providing ?NmN adjustable thrust levels and reducing the dry mass to ~2 kg respectively are key factors in keeping the microsatellite stabilized and sun-pointed without stressing the mass budget. The low thrust level enables precise and active nutation damping. Moreover the system offers the possibility of implementing active orbit control or formation flight demonstrations at Mars. Attitude will be determined on-board with an accuracy < 1.0° using miniaturized Horizon Crossing Indicators, a two-axis sun sensor and in support accelerometers and gyroscopes based on MEMS-technology. TM/TC will be relayed via the parent satellite in the UHF frequency range. Therefore the Electra Lite (ELT) Proximity-1 transceiver will autonomously communicate with the parent satellite at inter-satellite ranges < 10 000 km featuring adaptive bit rates > 2 kbit/s. The transceiver also implements a coherent transponding mode for orbit determination through two-way Doppler ranging between the parent satellite and MEMOS. In addition ELT is compatible with a future Martian communication and navigation network pursued by NASA, which could be taken advantage of in the future for relaying data or performing ranging via other satellites part of the network. A system design driver for inter-satellite communication at Mars is the high demand of power. This leads to a disk-shape and thus easy to accommodate spacecraft configuration of MEMOS comprising a single sun-pointing solar array favourable in terms of power and spin stability. Multi-junction solar cells, which currently have an efficiency of ~29% under laboratory conditions are a key factor to keep MEMOS solar array area of ~1.15 m2 small compared to the worst case system power requirements of ~105 W. During eclipse periods high-efficient Li-ion batteries (6 x 20 Wh) will ensure power supply. The spacecraft and payload design will incorporate new technology developments such as autonomous navigation, MicroElectroMechanical Systems MEMS, Micro- Opto-ElectroMechanical Sys

  1. Dynamics of Systems for Monitoring of Environment

    NASA Astrophysics Data System (ADS)

    Nawrocki, Waldemar

    The paper describes system for monitoring important physical quantities of the environment, including meteorological information as well. Natural environment and technical infrastructure (artificial environment) can be consider like a metastable physical system. Monitoring system for environment consists of: sensors and optical cameras, communication interface and system controller with data acquisition, data processing, storage and presentation. Monitoring systems are always distributed systems. Communication channels (electrical and optical cables and wireless channels) play important role in dynamics and reliability of a monitoring system. For users it is necessary to know the dynamics of the whole monitoring system. Monitoring of infrastructure (road, power and communications networks, sewage systems) is as important as natural environment monitoring for population security.

  2. Autonomous Environment-Monitoring Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2004-01-01

    Autonomous environment-monitoring networks (AEMNs) are artificial neural networks that are specialized for recognizing familiarity and, conversely, novelty. Like a biological neural network, an AEMN receives a constant stream of inputs. For purposes of computational implementation, the inputs are vector representations of the information of interest. As long as the most recent input vector is similar to the previous input vectors, no action is taken. Action is taken only when a novel vector is encountered. Whether a given input vector is regarded as novel depends on the previous vectors; hence, the same input vector could be regarded as familiar or novel, depending on the context of previous input vectors. AEMNs have been proposed as means to enable exploratory robots on remote planets to recognize novel features that could merit closer scientific attention. AEMNs could also be useful for processing data from medical instrumentation for automated monitoring or diagnosis. The primary substructure of an AEMN is called a spindle. In its simplest form, a spindle consists of a central vector (C), a scalar (r), and algorithms for changing C and r. The vector C is constructed from all the vectors in a given continuous stream of inputs, such that it is minimally distant from those vectors. The scalar r is the distance between C and the most remote vector in the same set. The construction of a spindle involves four vital parameters: setup size, spindle-population size, and the radii of two novelty boundaries. The setup size is the number of vectors that are taken into account before computing C. The spindle-population size is the total number of input vectors used in constructing the spindle counting both those that arrive before and those that arrive after the computation of C. The novelty-boundary radii are distances from C that partition the neighborhood around C into three concentric regions (see Figure 1). During construction of the spindle, the changing spindle radius is denoted by h. It is the final value of h, reached before beginning construction on the next spindle, that is denoted by r. During construction of a spindle, if a new vector falls between C and the inner boundary, the vector is regarded as completely familiar and no action is taken. If the new vector falls into the region between the inner and outer boundaries, it is considered unusual enough to warrant the adjustment of C and r by use of the aforementioned algorithms, but not unusual enough to be considered novel. If a vector falls outside the outer boundary, it is considered novel, in which case one of several appropriate responses could be initiation of construction of a new spindle.

  3. Global temperature monitoring from space

    NASA Technical Reports Server (NTRS)

    Spencer, R. W.

    1994-01-01

    Global and regional temperature variations in the lower troposphere and lower stratosphere are examined for the period 1979-92 from Microwave Sounder Unit (MSU) data obtained by the Television Infrared Observation Satellite (TIROS)-N series of National Oceanic and Atmospheric Administration (NOAA) operational satellites. In the lower troposphere, globally-averaged temperature variations appear to be dominated by tropical El Nino (warm) and La Nina (cool) events and volcanic eruptions. The Pinatubo volcanic eruption in June 1991 appears to have initiated a cooling trend which persisted through the most recent data analyzed (July, 1992), and largely overwhelmed the warming from the 1991-92 El Nino. The cooling has been stronger in the Northern Hemisphere than in the Southern Hemisphere. The temperature trend over the 13.5 year satellite record is small (+0.03 C) compared to the year-to-year variability (0.2-0.4 C), making detection of any global warming signal fruitless to date. However, the future global warming trend, currently predicted to be around 0.3 C/decade, will be much easier to discern should it develop. The lower stratospheric temperature record is dominated by warm episodes from the Pinatubo eruption and the March 1982 eruption of El Chichon volcano.

  4. People and Environment: Understanding Global Relationships.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Discusses impacts of global resources and environment, focusing on food, fisheries, forests, energy, water, and air. Includes graphs, charts, maps, and tables of the current environmental situation; they are suitable for classroom use. Also includes suggested guidelines for implementing a global studies program and an annotated list of resource…

  5. Global environment after nuclear war

    SciTech Connect

    Crutzen, P.J.

    1985-10-01

    In 1982, the Scientific Committee on Problems of the Environment (SCOPE), concluded that the risks of nuclear war overshadowed all other hazards to humanity and its habitat. They initiated a study on the environmental consequences of nuclear (ENEWAR) which stressed the meteorological, climatic, and environmental changes that would be an indirect product of a nuclear exchange. This paper closely examines the SCOPE report. 17 references, 1 figure.

  6. Copyright 2012 Global Development and Environment Institute, Tufts University GLOBAL DEVELOPMENT AND ENVIRONMENT INSTITUTE

    E-print Network

    Dennett, Daniel

    self- interest and predictable "laws" and "mechanisms" has contributed in a major way to economic© Copyright 2012 Global Development and Environment Institute, Tufts University GLOBAL DEVELOPMENT AND ENVIRONMENT INSTITUTE WORKING PAPER NO. 12-07 Poisoning the Well, or How Economic Theory Damages Moral

  7. Volcano monitoring using the Global Positioning System: Filtering strategies

    E-print Network

    Larson, Kristine

    Volcano monitoring using the Global Positioning System: Filtering strategies Kristine M. Larson,1 Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring an effective tool for hazard mitigation. The Global Positioning System (GPS) is well-suited for monitoring

  8. 8 JMBA Global Marine Environment Mermaid's Glove

    E-print Network

    Watson, Andrew

    8 JMBA Global Marine Environment Mermaid's Glove Nowadays Faroe islanders live a very post the nineteenth century. The njararvøttur was then used as a kind of tinder when lighting fires. Mermaid's glove by Börge Pettersson. Also Published in JMBA Svanberg, I. Human usage of mermaid's glove sponge (Isodictya

  9. Trade, Global Policy, and the Environment

    NSDL National Science Digital Library

    To encourage the exchange of ideas among academics and government policy makers concerning the effects of trade liberalization on the environment, the World Bank Environment Department (discussed in the September 25, 1997 Scout Report for Business & Economics) has made fifteen working papers available from the "Trade, Global Policy, and the Environment" conference held April 21-22, 1998, in Washington, DC. Contributors from the World Bank, the Organization for Economic Cooperation and Development, the International Monetary Fund, Johns Hopkins University, and Columbia University, among others, address topics ranging from trade liberalization and pollution to policy options for global environmental problems. Papers are listed as they occurred in the original program, and thereby retain the interlocutory nature of this event. Now part of of the World Bank Discussion Papers series.

  10. Global integrated drought monitoring and prediction system.

    PubMed

    Hao, Zengchao; AghaKouchak, Amir; Nakhjiri, Navid; Farahmand, Alireza

    2014-01-01

    Drought is by far the most costly natural disaster that can lead to widespread impacts, including water and food crises. Here we present data sets available from the Global Integrated Drought Monitoring and Prediction System (GIDMaPS), which provides drought information based on multiple drought indicators. The system provides meteorological and agricultural drought information based on multiple satellite-, and model-based precipitation and soil moisture data sets. GIDMaPS includes a near real-time monitoring component and a seasonal probabilistic prediction module. The data sets include historical drought severity data from the monitoring component, and probabilistic seasonal forecasts from the prediction module. The probabilistic forecasts provide essential information for early warning, taking preventive measures, and planning mitigation strategies. GIDMaPS data sets are a significant extension to current capabilities and data sets for global drought assessment and early warning. The presented data sets would be instrumental in reducing drought impacts especially in developing countries. Our results indicate that GIDMaPS data sets reliably captured several major droughts from across the globe. PMID:25977759

  11. Instrumentation for continuous monitoring in marine environments

    Microsoft Academic Search

    Pompeo Moscetta; Luca Sanfilippo; Enrico Savino; R. Allabashi; A. Gunatilaka

    2009-01-01

    Continuous monitoring data are a useful source of information for the understanding of seasonal chemical and biological changes in marine environments. They are useful to estimate nutrient dynamics, primary and secondary production as well as to assess C, N, P fluxes associated with biogeochemical cycling. More and better water quality data is needed to calculate Maximum Permissible Loading of coastal

  12. Monitoring the Norwegian Coastal Zone Environment (MONCOZE)

    Microsoft Academic Search

    J. A. Johannessen; B. Hackett; E. Svendsen; H. Søiland; G. Evensen; L. P. Røed; N. Winther; J. Albretsen; M. Skogen; L. Pettersson; D. Durand; D. Obaton

    2003-01-01

    The need for better monitoring and managing of the coastal zone environment has been recognized and agreed in many international declarations and legislations such as MARPOL, HELCOM, OSPARCOM, BARCELONE etc. Moreover, the Water Framework Directive (WFD) requires increased attention to the near shore (1km) environmental zone and how it is influenced by the terrestrial hinterland. The MONCOZE project is therefore

  13. AVHRR for monitoring global tropical deforestation

    NASA Technical Reports Server (NTRS)

    Malingreau, J. P.; Laporte, N.; Tucker, C. J.

    1989-01-01

    Advanced Very High Resolution Radiometer (AVHRR) data have been used to assess the dynamics of forest trnsformations in three parts of the tropical belt. A large portion of the Amazon Basin has been systematically covered by Local Area Coverage (LAC) data in the 1985-1987 period. The analysis of the vegetation index and thermal data led to the identification and measurement of large areas of active deforestation. The Kalimantan/Borneo forest fires were monitored and their impact was evaluated using the Global Area Coverage (GAC) 4 km resolution data. Finally, High Resolution Picture Transmission (HRPT) data have provided preliminary information on current activities taking place at the boundary between the savanna and the forest in the Southern part of West Africa. The AVHRR approach is found to be a highly valuable means for carrying out deforestation assessments in regional and global perspectives.

  14. A global approach to resistance monitoring.

    PubMed

    Sivasupramaniam, Sakuntala; Head, Graham P; English, Leigh; Li, Yue Jin; Vaughn, Ty T

    2007-07-01

    Transgenic crops producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) have been grown in many parts of the world since 1996. In the United States, the Environmental Protection Agency (EPA) has required that industry submit insect resistance management (IRM) plans for each Bt corn and cotton product commercialized. A coalition of stakeholders including the EPA, USDA, academic scientists, industry, and grower organizations have cooperated in developing specific IRM strategies. Resistance monitoring (requiring submission of annual reports to the EPA), and a remedial action plan addressing any contingency if resistance should occur, are important elements of these strategies. At a global level, Monsanto conducts baseline susceptibility studies (prior to commercialization), followed by monitoring studies on target pest populations, for all of its commercialized Bt crop products. To date, Monsanto has conducted baseline/monitoring studies in Argentina, Australia, Brazil, Canada, China, Colombia, India, Mexico, the Philippines, South Africa, Spain, and the United States. Examples of pests on which resistance monitoring has been conducted include cotton bollworm, Helicoverpa zea, European corn borer, Ostrinia nubilalis, pink bollworm, Pectinophora gossypiella, Southwestern corn borer, Diatraea grandiosella, tobacco budworm, Heliothis virescens, and western corn rootworm, Diabrotica virgifera virgifera, in the United States, cotton bollworm, Helicoverpa armigera, in China, India and Australia, and H. virescens and H. zea in Mexico. No field-selected resistance to Bt crops has been documented. PMID:17467005

  15. Design of Power Grid Environment Monitoring System Based on WLAN

    Microsoft Academic Search

    Jie Cao; Guang Tu; Lei Liang; Mei Jiang

    2010-01-01

    In order to solve the real-time monitor problem and large-scale network monitor problem in wireless network communication of power grid environment monitoring system, a power grid environment monitoring system based on WLAN is designed. The ARM+Linux embedded operating system and WLAN are used at the system monitoring terminal to gather, process and convey the power grid environment monitoring data. Besides,

  16. Development and testing of crop monitoring methods to improve global agricultural monitoring in support of GEOGLAM

    NASA Astrophysics Data System (ADS)

    Gilliams, S. J. B.; Bydekerke, L.

    2014-12-01

    The SIGMA project (Stimulating Innovation for Global Monitoring of Agriculture) is funded through the EC FPY7 Research programme with the particular aim to contribute to the GEOGLAM Research Agenda. It is a partnership of globally distributed expert organizations, focusses on developing innovative techniques and datasets in support of agricultural monitoring and its impact on the environment in support of GEOGLAM. SIGMA has 3 generic objectives which are: (i) develop and test methods to characterize cropland and assess its changes at various scales; (ii) develop and test methods to assess changes in agricultural production levels; and; (iii) study environmental impacts of agriculture. Firstly, multi-scale remote sensing data sets, in combination with field and other ancillary data, are used to generate an improved (global) agro-ecological zoning map and crop mask. Secondly, a combination of agro-meteorological models, satellite-based information and long-term time series are be explored to better assess crop yield gaps and shifts in cultivation. The third research topic entails the development of best practices for assessing the impact of crop land and cropping system change on the environment. In support of the GEO JECAM (Joint Experiment for Crop Assessment and Monitoring) initiative, case studies in Ukraine, Russia, Europe, Africa, Latin America and China are carried out in order to explore possible methodological synergies and particularities according to different cropping systems. This presentation will report on the progress made with respect to the three topics above.

  17. Passive Global, Real-Time TEC Monitoring

    NASA Astrophysics Data System (ADS)

    Pongratz, M. B.

    2002-12-01

    Sensors are being developed to provide a satellite-based VHF global lightning monitor (e.g. Suszcynsky, et al., "VHF Global Lightning and Severe Storm Monitoring from Space: Storm-level Characterization of VHF Lightning Emissions," EOS Trans. AGU 2001 Fall Mt. Prog. And Abstr. 82, No. 47, F143, 2001). Dispersive effects of propagation of the lightning electromagnetic wave through the ionospheric and plasmaspheric plasmas cause the higher frequency components to arrive at the satellite before lower frequency components. From the time-of-arrival at several frequencies we can derive the TEC between the satellite and the lightning. Using multi-satellite techniques we can geolocate the lightning and the ionospheric penetration point quite accurately. A single ground station could provide essentially real-time regional TEC coverage. Four ground stations could provide global, real-time TEC measurements to supplement existing ground-based systems, especially over broad ocean areas. We expect several lightning detections per satellite per minute. Temporal resolution will be limited only by ground segment processing. Spatial coverage and resolution will be limited by lightning occurrence, but many commercial sector TEC requirements are also correlated to lightning occurrence. With our FORTE (Fast On-orbit Recording of Transient Events) satellite we sense lightning over most of the globe including the oceans. We expect to determine TEC spatial gradients with tens of km resolution. This capability should be especially useful in severe convective weather to aircraft using GPS-based navigation, e.g. the FAA's Wide Area Augmentation System (WAAS).

  18. Dynamic Load Balancing Based on Applications Global States Monitoring

    E-print Network

    Paris-Sud XI, Université de

    Dynamic Load Balancing Based on Applications Global States Monitoring Eryk Laskowski, Marek Tudruj global control mechanisms to assure processor load balancing during execution of application programs processor load balancing control based on a system of program and system properties metrics

  19. Global Seismic Monitoring: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Zoback, M.; Benz, H.; Oppenheimer, D.

    2007-12-01

    Global seismological observations began in April 1889 when an earthquake in Tokyo, Japan was accurately recorded in Germany on two different horizontal pendulum instruments. However, modern global observational seismology really began 46 years ago when the 120-station World Wide Standard Seismograph Network was installed by the US to monitor underground nuclear tests and earthquakes using well-calibrated short- and long- period stations. At the same time rapid advances in computing technology enabled researchers to begin sophisticated analysis of the increasing amount of seismic data, which led to better understanding of earthquake source properties and their use in establishing plate tectonics. Today, global seismic networks are operated by German (Geophon), France (Geoscope), the United States (Global Seismograph Network) and the International Monitoring System. Presently, the Federation of Digital Seismograph Networks registers more than 1,000 broadband stations world-wide, a small percentage of the total number of digital seismic stations around the world. Following the devastating Kobe, Japan and Northridge, California earthquakes, Japan and the US have led the world in the integration of existing seismic sensor systems (weak and strong motion) into development of near-real-time, post-earthquake response products like ShakeMap, detailing the spatial distribution of strong shaking. Future challenges include expanding real-time integration of both seismic and geodetic sensor systems to produce early warning of strong shaking, rapid source determination, as well as near-realtime post- earthquake damage assessment. Seismic network data, hydro-acoustic arrays, deep water tide gauges, and satellite imagery of wave propagation should be integrated in real-time to provide input for hydrodynamic modeling yielding the distribution, timing and size of tsunamis runup--which would then be available instantly on the web, e.g. in a Google Earth format. Dense arrays of strong motion sensors together with deployment of MEMS-type accelerometers in buildings and equipment routinely connected to the Web could potentially provide thousands of measurements of damaging strong ground motion. This technology could ultimately become part of smart building design enabling critical facilities to change their structural response to imminent strong shaking. Looking further forward, it is likely that a continuously observing spaceborne system could image the occurrence of "silent" or "slow" earthquakes as well as the propagation of ground displacement by surface waves at scales of continents.

  20. Science Series Aquatic Environment Monitoring Report No. 50

    E-print Network

    LiTT)............................................................................ 13 4. Review of monitoring at sewage-sludge disposal sites during 1993 and 1994 .................. 13-ordinating Sea Disposal Monitoring Marine Pollution Monitoring Management Group #12;#12;3 CENTRE FOR ENVIRONMENT Monitoring Management Group Seventh Report of the Group Co-ordinating Sea Disposal Monitoring LOWESTOFT 1997

  1. Microbial monitoring of spacecraft and associated environments.

    PubMed

    La Duc, M T; Kern, R; Venkateswaran, K

    2004-02-01

    Rapid microbial monitoring technologies are invaluable in assessing contamination of spacecraft and associated environments. Universal and widespread elements of microbial structure and chemistry are logical targets for assessing microbial burden. Several biomarkers such as ATP, LPS, and DNA (ribosomal or spore-specific), were targeted to quantify either total bioburden or specific types of microbial contamination. The findings of these assays were compared with conventional, culture-dependent methods. This review evaluates the applicability and efficacy of some of these methods in monitoring the microbial burden of spacecraft and associated environments. Samples were collected from the surfaces of spacecraft, from surfaces of assembly facilities, and from drinking water reservoirs aboard the International Space Station (ISS). Culture-dependent techniques found species of Bacillus to be dominant on these surfaces. In contrast, rapid, culture-independent techniques revealed the presence of many Gram-positive and Gram-negative microorganisms, as well as actinomycetes and fungi. These included both cultivable and noncultivable microbes, findings further confirmed by DNA-based microbial detection techniques. Although the ISS drinking water was devoid of cultivable microbes, molecular-based techniques retrieved DNA sequences of numerous opportunistic pathogens. Each of the methods tested in this study has its advantages, and by coupling two or more of these techniques even more reliable information as to microbial burden is rapidly obtained. PMID:14749906

  2. Monitoring product safety in the postmarketing environment

    PubMed Central

    Dieck, Gretchen S

    2013-01-01

    The safety profile of a medicinal product may change in the postmarketing environment. Safety issues not identified in clinical development may be seen and need to be evaluated. Methods of evaluating spontaneous adverse experience reports and identifying new safety risks include a review of individual reports, a review of a frequency distribution of a list of the adverse experiences, the development and analysis of a case series, and various ways of examining the database for signals of disproportionality, which may suggest a possible association. Regulatory agencies monitor product safety through a variety of mechanisms including signal detection of the adverse experience safety reports in databases and by requiring and monitoring risk management plans, periodic safety update reports and postauthorization safety studies. The United States Food and Drug Administration is working with public, academic and private entities to develop methods for using large electronic databases to actively monitor product safety. Important identified risks will have to be evaluated through observational studies and registries. PMID:25114782

  3. Coastal environment: historical and continuous monitoring

    NASA Astrophysics Data System (ADS)

    Ivaldi, Roberta; Surace, Luciano

    2010-05-01

    The monitoring is a tool providing essential data to study the process dynamic. The formation and transformation of coastal environment involve physical, chemical, geological and biological processes. The knowledge of the littoral systems and marine seafloor therefore requires a multidisciplinary approach. Since the phenomena observation occurs in a short period of time it requires the use of high quality data acquired with high accuracy and suitable processing procedures. This knowledge considerable increased during the past 50 years closely following significant progress in the methods of investigation at sea and laboratory. In addition seafloor exploration is deeply rooted in History. A sector actually subject to control results the coastal zone for its position as transition component between continental and marine environments with closely connected natural and human actions. Certainly these activities are important in the time to develop the technologies suited for the knowledge and to increase different protection, prevention, intervention and management tools. In this context the Istituto Idrografico della Marina (Hydrographic Institute of Italian Navy - I.I.M.) is a precursor because since its foundation (in 1872) it contributed to the monitoring activities related to charting and navigation, including hydrologic surveying, seafloor measurements and in consequence the landward limit, the shoreline. The coastal area is certainly the most changeable sector either natural or socio-economic causes. This is the most dynamic environment, subject both to marine (waves and currents) and continental (river and ice) actions, and continuously changing the intended use for the increase of industrial, commercial, recreation and the need for new structures to support. The coast has more recently taken on a growing value determined by some processes, including erosion and retreat are evidence of a transformation of which, however, undermine the system and impoverishing the existing one. The constant monitoring activities of I.I.M. are the production of nautical paper charts and electronic navigational charts (ENC) together other specialised nautical charts and publications to aid safe navigation, the processing of the oldest data from analogical to digital and the care preservation in the archives of all hydrographic survey information. This process is occurred according to an international recognized standard, such as to allow a continuous improvement of all acquired data, even if with more advanced tools and technologies for the development of cartography in constant update both in content and in restitution. In this research the archives infrastructure is used to conduct hydrographic data collection and processing to follow the secular variation and its evolution of the shoreline and coastal seafloor. A key element in monitoring these changes, both of the sub-aerial and submarine beach, is the determination of the shoreline and restitution as the coastline, which already includes the definition of its complexity, in a time period that must be long enough. We present some examples of the Italian littoral evolution with evident changes of coastal morphology in support of present monitoring.

  4. Toward global baselines and monitoring of forest cover for REDD: the Global Forest Cover Change project

    Microsoft Academic Search

    J. O. Sexton; C. Huang; J. G. Masek; M. Feng; R. Narasimhan; E. F. Vermote; M. C. Hansen; R. E. Wolfe; S. Channan; J. R. Townshend

    2010-01-01

    Monitoring, Reporting, and Verification (MRV) procedures in support of Reducing Emissions from Deforestation and forest Degradation (REDD) require the establishment of historical baselines of forest cover and changes, as well as consistent monitoring of subsequent forest gains and losses over time. Under the NASA MEaSUREs program, the Global Forest Cover Change project is using the USGS Global Land Survey (GLS)

  5. Early Action on the Global Environmental Monitoring System. A Report of the International Environmental Programs Committee.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Environmental Studies Board.

    The Global Environmental Monitoring System (GEMS) is one of four components of Earthwatch, a part of the United Nations Environment Program (UNEP). The purpose of GEMS is to provide early warning of impending natural or man-induced environmental changes or trends that threaten direct or indirect harm to human health or well-being. In 1975, the…

  6. Application of the Java Message Service in Mobile Monitoring Environments

    E-print Network

    Kansas, University of

    Application of the Java Message Service in Mobile Monitoring Environments Martin Kuehnhausen............................................................................................. 2 B. Message Security and Integrity............................................................................................................ 3 B. Transportation Security Sensor

  7. TECHNIQUES FOR MONITORING PLUTONIUM IN THE ENVIRONMENT

    E-print Network

    Nero Jr., A.V.

    2011-01-01

    Submitted to Nuclear Safety LBL-6873 Preprint TECHNIQUES FORTechniques for Monitoring Plutonium and Uranium Particulates Released from Nucleartechniques for monitoring plutonium may also be used for monitoring other nuclear

  8. Persistent Robotic Tasks: Monitoring and Sweeping in Changing Environments

    E-print Network

    Smith, Stephen L.

    In this paper, we present controllers that enable mobile robots to persistently monitor or sweep a changing environment. The environment is modeled as a field that is defined over a finite set of locations. The field grows ...

  9. The impact of global climatic changes on the aquatic environment

    Microsoft Academic Search

    Alaa E. Eissa; Manal M. Zaki

    2011-01-01

    Global climatic change, as defined by the U.S. Global Change Research Act of 1990 (GCRA), “means changes in the global environment (including alterations in climate, land productivity, oceans or other water resources, atmospheric chemistry, and ecological systems) that may alter the capacity of the Earth to sustain life”. Climatic changes are the most drastic variables interacting with all live aspects

  10. Adaptive and robust monitoring approach for WSAN environments

    Microsoft Academic Search

    L. Brito Palma; P. Sousa Gil

    2011-01-01

    In this paper, an adaptive and robust monitoring approach for Wireless Sensor\\/Actuator Network (WSAN) environments is proposed. The main problem under investigation is the monitoring of the status of WSAN devices in an environment where the clocks of the devices are not well synchronized (asynchronous communication). The main contribution is the proposed adaptive virtual timer, for the server node, to

  11. Long-Term Monitoring of Global Climate Forcings and Feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, J. (editor); Rossow, W. (editor); Fung, I. (editor)

    1993-01-01

    A workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks was held February 3-4, 1992, at NASA's Goddard Institute for Space Studies to discuss the measurements required to interpret long-term global temperature changes, to critique the proposed contributions of a series of small satellites (Climsat), and to identify needed complementary monitoring. The workshop concluded that long-term (several decades) of continuous monitoring of the major climate forcings and feedbacks is essential for understanding long-term climate change.

  12. Applications of the EOS SAR to monitoring global change

    NASA Technical Reports Server (NTRS)

    Schier, Marguerite; Way, Jobea; Holt, Benjamin

    1991-01-01

    The SAR employed by NASA's Earth Observing System (EOS) is a multifrequency multipolarization radar which can conduct global monitoring of geophysical and biophysical parameters. The present discussion of the EOS SAR's role in global monitoring emphasizes geophysical product variables applicable to global hydrologic, biogeochemical, and energy cycle models. EOS SAR products encompass biomass, wetland areas, and phenologic and environmental states, in the field of ecosystem dynamics; soil moisture, snow moisture and extent, and glacier and ice sheet extent and velocity, in hydrologic cycle studies; surface-wave fields and sea ice properties, in ocean/atmosphere circulation; and the topography, erosion, and land forms of the solid earth.

  13. Integration of Wireless Sensor Networks into Cyberinfrastructure for Monitoring Hawaiian “Mountain-to-Sea” Environments

    Microsoft Academic Search

    Michael H. Kido; Carsten W. Mundt; Kevin N. Montgomery; Adam Asquith; David W. Goodale; Kenneth Y. Kaneshiro

    2008-01-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is\\u000a essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds.\\u000a However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments\\u000a on extended spatial scales has been slow to develop. For

  14. Integration of Wireless Sensor Networks into Cyberinfrastructure for Monitoring Hawaiian ``Mountain-to-Sea'' Environments

    Microsoft Academic Search

    Michael H. Kido; Carsten W. Mundt; Kevin N. Montgomery; Adam Asquith; David W. Goodale; Kenneth Y. Kaneshiro

    2008-01-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For

  15. Remote monitoring: A global partnership for safeguards

    SciTech Connect

    Bardsley, J. [Australian Safeguards Office, Canberra, ACT (Australia)

    1996-08-01

    With increased awareness of the significant changes of the past several years and their effect on the expectations to international safeguards, it is necessary to reflect on the direction for development of nuclear safeguards in a new era and the resulting implications. The time proven monitoring techniques, based on quantitative factors and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent, and open implementation regime. With the establishment of such a regime, it is highly likely that remote monitoring will play a significant role. Several states have seen value in cooperating with each other to address the many problems associated with the remote interrogation of integrated monitoring systems. As a consequence the International Remote Monitoring Project was organized to examine the future of remote monitoring in International Safeguards. This paper provides an update on the technical issues, the future plans, and the safeguards implications of cooperative programs relating to remote monitoring. Without providing answers to the policy questions involved, it suggests that it is timely to begin addressing these issues.

  16. The Environment to Come: A Global Summary.

    ERIC Educational Resources Information Center

    Murphy, Elaine M.

    Six major reports have recently assessed the state of the world in terms of energy, food, population, natural resources, pollution, and economic development. These reports include: (1) "The Global 2000 Report to the President: Entering the Twenty-First Century"; (2) "Global Future: Time to Act"; (3) "World Conservation Strategy: Living Resource…

  17. Operational satellites and the global monitoring of snow and ice

    NASA Technical Reports Server (NTRS)

    Walsh, John E.

    1991-01-01

    The altitudinal dependence of the global warming projected by global climate models is at least partially attributable to the albedo-temperature feedback involving snow and ice, which must be regarded as key variables in the monitoring for global change. Statistical analyses of data from IR and microwave sensors monitoring the areal coverage and extent of sea ice have led to mixed conclusions about recent trends of hemisphere sea ice coverage. Seasonal snow cover has been mapped for over 20 years by NOAA/NESDIS on the basis of imagery from a variety of satellite sensors. Multichannel passive microwave data show some promise for the routine monitoring of snow depth over unforested land areas.

  18. One earth, one future. Our changing global environment

    SciTech Connect

    Silver, C.S.; Defries, R.S.

    1990-12-31

    This book reports on deforestation, ozone depletion, global warming, and other matters concerning the global environment. From the perspective that humankind is an increasingly powerful agent changing the planet, the volume describes the Earth as a unified system - exploring the interactions between the atmosphere, land, and water and the snowballing impact that human activity is having on the system - and points out the seemingly paradoxical need for economic growth to alleviate such global environmental problems.

  19. The Global Geodetic Infrastructure for Accurate Monitoring of Earth Systems

    NASA Astrophysics Data System (ADS)

    Weston, Neil; Blackwell, Juliana; Wang, Yan; Willis, Zdenka

    2014-05-01

    The National Geodetic Survey (NGS) and the Integrated Ocean Observing System (IOOS), two Program Offices within the National Ocean Service, NOAA, routinely collect, analyze and disseminate observations and products from several of the 17 critical systems identified by the U.S. Group on Earth Observations. Gravity, sea level monitoring, coastal zone and ecosystem management, geo-hazards and deformation monitoring and ocean surface vector winds are the primary Earth systems that have active research and operational programs in NGS and IOOS. These Earth systems collect terrestrial data but most rely heavily on satellite-based sensors for analyzing impacts and monitoring global change. One fundamental component necessary for monitoring via satellites is having a stable, global geodetic infrastructure where an accurate reference frame is essential for consistent data collection and geo-referencing. This contribution will focus primarily on system monitoring, coastal zone management and global reference frames and how the scientific contributions from NGS and IOOS continue to advance our understanding of the Earth and the Global Geodetic Observing System.

  20. Volcano monitoring using the Global Positioning System: Filtering strategies

    Microsoft Academic Search

    Kristine M. Larson; Peter Cervelli; Michael Lisowski; Asta Miklius; Paul Segall; Susan Owen

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates

  1. Global routing in a rectilinear macrocell environment

    SciTech Connect

    Wisniewski, J.A.; Peters, R.C.

    1984-01-01

    A global (topological) router has been developed which operates upon the channel topologies created by rectilinear macrocells. It is based on a graph theoretical model and incorporates both wire length and area figures of merit. Subproblems encompassed by this general purpose model and algorithm include polycell, rectangular macrocell, and gate array layout problems.

  2. International Trade in a Global Environment.

    ERIC Educational Resources Information Center

    Welch, Mary A., Ed.

    1990-01-01

    Analysis of the world market and trade deficits and surpluses are used to examine global economics. The GATT (General Agreement on Tariffs and Trade) is discussed and presented with the various perspectives on the agreement. A forecast for economics of the '90s and a quiz are included. (EH)

  3. Better Group Behaviors in Complex Environments using Global Roadmaps

    Microsoft Academic Search

    O. Burchan Bayazit; Jyh-Ming Lien; Nancy M. Amato

    2002-01-01

    While many methods to simulate o cking behaviors have been proposed, these techniques usually only pro- vide simplistic navigation and planning capabilities be- cause each o ck member's behavior depends only on its local environment. In this work, we investigate how the addition of global information in the form of a roadmap of the environment enables more sophisticated o cking

  4. SPECTRAL MONITORING OF FUGITIVE CONTAMINANTS IN THE ENVIRONMENT

    EPA Science Inventory

    The accidental or intentional release of hazardous chemical substances into the environment is an inevitable consequence of anthropogenic activity. The detection, monitoring and remediation of fugitive contaminants is a major risk factor for human and ecological health and i...

  5. Monitoring of Sedimentary Fluxes in Cold Environments: The SEDIBUD (Sediment Budgets in Cold Environments) Programme

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2014-05-01

    Projected climate change in cold regions is expected to alter melt season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active layer depths. These effects will undoubtedly change surface environments in cold regions and alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated geomorphic process monitoring and analysis to understand the sensitivity of the Earth surface environment is acute in cold climate environments. The International Association of Geomorphologists` (I.A.G. / A.I.G.) SEDIBUD (Sediment Budgets in Cold Environments) Program (2005 - 2017) is addressing this existing key knowledge gap. The central research question of this global group of scientists is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Research carried out at each of the ca. 50 defined SEDIBUD key test sites varies by program, logistics and available resources, but typically represent interdisciplinary collaborations of geomorphologists, hydrologists, ecologists, permafrost scientists and glaciologists. SEDIBUD has developed manuals and protocols (SEDIFLUX Manual) with a key set of primary surface process monitoring and research data requirements to incorporate results from these diverse projects and allow coordinated quantitative analysis across the program. Defined SEDIBUD key tasks for the coming years include (i) The continued generation and compilation of comparable longer-term datasets on contemporary sedimentary fluxes and sediment yields from SEDIBUD key test sites worldwide, (ii) The continued extension of the SEDIBUD metadata database with these datasets, (iii) The testing of defined SEDIBUD hypotheses (available online, see below) by using datasets continuously compiled in the SEDIBUD metadata database, (iv) The publication of a SEDIBUD book (synthesis book). The title of the currently prepared SEDIBUD book is Source-to-sink fluxes in undisturbed cold environments. The synthesis book will compile results from longer-term studies conducted at undisturbed Arctic, Antarctic and Alpine SEDIBUD key test sites. A synthesis chapter will integrate field data from the different study sites and shall provide a better understanding of (i) The key environmental drivers and rates of contemporary solute and sedimentary fluxes in largely undisturbed cold climate environments and (ii) Possible effects of projected climate change on solute and sedimentary fluxes in cold climate environments. Detailed information on the SEDIBUD Program, SEDIBUD meetings, publications and online documents and databases is available at the SEDIBUD website under http://www.geomorph.org/wg/wgsb.html.

  6. Advanced Sensors for Monitoring Our Environment

    Microsoft Academic Search

    Steven D. Glaser

    Let us define the environment as the world that surrounds us, whether at work or at home. This paper addresses the measuring of many of the features of our surrounding environment, emphasizing new approaches and technologies that allow us to make measurements less costly, better, and faster. In particular we will look at arising paradigms in information technologies that not

  7. Near-Earth space as an object of global monitoring

    NASA Astrophysics Data System (ADS)

    Barmin, I. V.; Kulagin, V. P.; Savinykh, V. P.; Tsvetkov, V. Ya.

    2014-12-01

    Near-Earth space is analyzed as a specific object for global monitoring. The structure and specific features of near-Earth space are considered. It is shown that this zone includes almost all the terrestrial fields and the regions where space is actively explored by man.

  8. Vegetation index based technique for global agricultural drought monitoring

    Microsoft Academic Search

    Ali Levent Yagci; Liping Di; Meixia Deng; Weiguo Han; Chunming Peng

    2011-01-01

    Droughts occurring every year all over the world have great impacts on human society, nature, and the global economy for example in declining crop yields, reduction of water supplies, and distressed vegetation. Satellite data have been widely used in drought monitoring. Vegetation condition is an excellent indicator of agricultural drought and can be quantified by the Normalized Difference Vegetation Index

  9. MODVOLC: near-real-time thermal monitoring of global volcanism

    E-print Network

    Wright, Robert

    MODVOLC: near-real-time thermal monitoring of global volcanism Robert Wright*, Luke P. Flynn, with partic- ular attention paid to the thermal analysis of active lava flows (e.g. Oppenheimer, 1991; Flynn.jvolgeores.2003.12.008 * Corresponding author. E-mail address: wright@higp.hawaii.edu (R. Wright). www

  10. Global Infrasonic Monitoring of Large Bolides.

    SciTech Connect

    ReVelle, D. O. (Douglas O.)

    2001-01-01

    Using recent infrasonic data (1995-2001) and older infrasonic data recorded by AFTAC (1960-1974), we have refined our estimates of the global influx rate (cumulative influx) of large bolides with sufficient strength to deeply penetrate the atmosphere (below {approx} 50 km). The number of bolides arriving as a function of their initial source energy has been estimated from a least-squares curve-fit of our database of 19 bolides (for a source energy > 0.053 kt) with the resulting values and an estimate of the associated statistical counting errors: 30.3{+-} 6 bolides at {ge}0.1 kt, 5.8{+-} 2 at {ge}1 kt and 0.84{+-} 0.25 at {ge}15 kt. In this work we also used these estimates to infer the recurrence interval for energy levels slightly outside the original source energy range, The Tunguska bolide of 1908 ({approx}10 Mt) is a prime example of a previously observed body of great interest. Almost regardless of how we analyze the recent data, the conclusion is that bolides with Tunguska type energy levels should reoccur on the average every 120{+-}10 years.

  11. Diagnostics for Dust Monitoring in Tokamak Environment

    SciTech Connect

    Rosanvallon, S.; Grisolia, C.; Hong, S. H. [Association Euratom/CEA, DRFC/SIPP, 13108 St Paul lez Durance (France); Onofri, F. [IUSTI-CNRS, University of Provence, Technopole de Chateau Gomberi, 13453 Marseille (France); Worms, J. [Association Euratom/CEA, DRFC/SIPP, 13108 St Paul lez Durance (France); IUSTI-CNRS, University of Provence, Technopole de Chateau Gomberi, 13453 Marseille (France)

    2008-03-12

    During ITER lifetime, dusts and flakes will be produced due to the interaction of plasmas with the in-vessel materials or due to maintenance. They will be made of carbon, beryllium and tungsten and will be activated, tritiated and chemically reactive and toxic. Safety limits have been set in order to reduce dust hazards. Thus dust diagnostics and removal methods need to be developed for ITER within the constraints linked to magnetic field, radiation, vacuum and temperature. This paper reviews potential diagnostics to monitor the dust content using techniques already used for erosion or deposition monitoring or techniques specially developed for measuring dust in suspension.

  12. ROPE: A Reactive, Opportunistic Protocol for Environment Monitoring Sensor Networks

    Microsoft Academic Search

    Rachel Cardell-Oliver

    2005-01-01

    The goal of sensor networks that monitor the environ- ment is to detect and report the temporal and spatial dy- namics of that environment and to run unattended for sev- eral months. Meeting all three of these requirements in real applications has proved to be a challenging task. This pa- per presents a novel protocol for data gathering that adapts

  13. Predicitve Monitoring Environment for CNC Machining

    Microsoft Academic Search

    M. Martins-Barbara; J. M. Ribeiro-Fonseca; A. Steiger-Garcao

    1990-01-01

    This paper presents and discusses a proposal for an open architecture for CNC program generation, esecution and predictive monitoring, incorporating also the information system concept as a support and interface to the FMS as a whole. A reference model is presented, associated with specific discussion of an already implemented transputer supported solution. A knowledge based approach aimed to support modelling

  14. Monitoring equipment temperature environments for license renewal

    SciTech Connect

    McCoy, R.R.; McCumber, J.T. [Yankee Atomic Electric Co., Bolton, MA (United States); Rainey, P.A. [P.A. Rainey Engineering Co., Medfield, MA (United States)

    1991-06-01

    Yankee Atomic Electric Company instituted an Environmental Monitoring Program as part of its license renewal project for Yankee Nuclear Power Station (YNPS). Since ambient environmental conditions can effect the operating life and reliability of electrical equipment, knowledge of the actual environmental conditions can provide additional assurance of equipment reliability and longevity. This information can then be used to form a basis for plant license renewal since it can provide a margin for demonstrating that essential components retain their capability to perform their intended safety functions. Temperature and radiation are the environmental conditions of prime concern for the reliability and longevity of most nuclear power plant electrical equipment. For Yankee Nuclear Power Station, several sources of environmental monitoring already existed, including radiation data from Health Physics surveys of all areas of concern. The focus of this paper, therefore, is on the collection of temperature data and on a one time infrared survey to identify localized hot spots. Yankee based its analysis on existing temperature data for inside the containment and temperature data for outside the containment collected by monitoring base line area temperatures using chart recorders for several months. The results showed that the majority of electrical equipment was subjected to temperatures much less than rated and that there were no areas identified with localized hot spots that would affect equipment life.

  15. Environment monitoring using LabVIEW

    SciTech Connect

    Hawtree, J.

    1995-01-01

    A system has been developed for electronically recording and monitoring temperature, humidity, and other environmental variables at the Silicon Detector Facility located in Lab D. The data is collected by LabVIEW software, which runs in the background on an Apple Macintosh. The software is completely portable between Macintosh, MS Windows, and Sun platforms. The hardware includes a Macintosh with 8 MB of RAM; an external ADC-1 analog-to-digital converter that uses a serial port; LabVIEW software; temperature sensors; humidity sensors; and other voltage/current sensing devices. ADC values are converted to ASCII strings and entered into files which are read over Ethernet. Advantages include automatic logging, automatic recovery after power interruptions, and the availability of stand-alone applications for other locations with inexpensive software and hardware.

  16. Design of remote home environment monitoring and health care monitoring system based on data confusion

    Microsoft Academic Search

    Yi Zhang; Peng Xiong; Yuan Luo; Lin Li

    2011-01-01

    Base on the ZigBee technology, a wireless sensor networks for remote home environment monitoring and health care monitoring was built in this paper, and the applications of data fusion algorithms in system of front & back end data processing were deeply discussed. The experiment is proved that the applications of data fusion algorithm, which is a combination of Bayesian estimation

  17. Mercator Ocean Global to Regional Ocean Monitoring and Forecasting

    Microsoft Academic Search

    Pierre Bahurel

    The MERCATOR OCEAN monitoring and forecasting system has been routinely operated in Toulouse in near-real-time since early\\u000a 2001. MERCATOR OCEAN service is aiming at providing estimates of the ocean circulation and thermodynamics at high resolution\\u000a at the global scale. Products are already used by more than 150 referenced users from various communities: public bodies such\\u000a as met services and agencies

  18. WSNs in the Highway Long Distance Tunnel Environment Monitoring

    Microsoft Academic Search

    Yan-Xiao Li; Xin-Xi Feng; Hua Guan

    2011-01-01

    \\u000a Wireless sensor networks have been widely used in the monitoring application. In this paper we shed some lights on several\\u000a issues in building a complete system for using wireless sensor networks for practical highway long distance tunnel environment\\u000a monitoring application. From the engineering perspective it is necessary to consider the nodes deployment and from the application\\u000a perspective it is necessary

  19. CEO Perspectives on Scanning the Global Hotel Business Environment

    Microsoft Academic Search

    Michael D. Olsen; Bvsan Murthy; Richard Teare

    1994-01-01

    Reports on the first survey of chief executive officers of multinational hotel chains, sponsored by the International Hotel Association. The purpose of the survey was to assess the environmental scanning practices in those hotel firms and to learn how their executives view the uncertainty of the global business environment.

  20. A Seamless Framework for Global Water Cycle Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions, flood potential and the state of drought. Seasonal climate model forecasts are downscaled and bias-corrected to drive the land surface model to provide hydrological forecasts and drought products out 6-9 months. The system relies on historic reconstructions of water variability over the 20th century, which forms the background climatology to which current conditions can be assessed. Future changes in water availability and drought risk are quantified based on bias-corrected and downscaled climate model projections that are used to drive the land surface models. For regions with lack of on-the-ground data we are field-testing low-cost environmental sensors and along with new satellite products for terrestrial hydrology and vegetation, integrating these into the system for improved monitoring and prediction. We provide an overview of the system and some examples of real-world applications to flood and drought events, with a focus on Africa.

  1. Underground power cable environment on-line monitoring and analysis

    Microsoft Academic Search

    J. S. Lyall; G. Nourbakhsh; H. C. Zhao

    2000-01-01

    Knowledge of cable parameters has been well established but a better knowledge of the environment in which the cables are buried lags behind. Research in Queensland University of Technology has been aimed at obtaining and analysing actual daily field values of thermal resistivity and diffusivity of the soil around power cables. On-line monitoring systems have been developed and installed with

  2. WESTERN ENERGY/ENVIRONMENT MONITORING STUDY: PLANNING AND COORDINATION SUMMARY

    EPA Science Inventory

    This report is a summary of the planning, coordination and implementation mechanisms which provide the framework for the Western Energy/Environment Monitoring Study. This Study involves participation by elements of EPA, NASA, NOAA, and USGS and is a segment of the Interagency Ene...

  3. Global Scale Remote Sensing Monitoring of Endorheic Lake Systems

    NASA Astrophysics Data System (ADS)

    Scuderi, L. A.

    2010-12-01

    Semi-arid regions of the world contain thousands of endorheic lakes in large shallow basins. Due to their generally remote locations few are continuously monitored. Documentation of recent variability is essential to assessing how endorheic lakes respond to short-term meteorological conditions and longer-term decadal-scale climatic variability and is critical in determining future disturbance of hydrological regimes with respect to predicted warming and drying in the mid-latitudes. Short- and long-term departures from climatic averages, rapid environmental shifts and increased population pressures may result in significant fluctuations in the hydrologic budgets of these lakes and adversely impact endorheic lake/basin ecosystems. Information on flooding variability is also critical in estimating changes in P/E balances and on the production of exposed and easily deflated surfaces that may impact dust loading locally and regionally. In order to provide information on how these lakes respond we need to understand how entire systems respond hydrologically to different climatic inputs. This requires monitoring and analysis of regional to continental-scale systems. To date, this level of monitoring has not been achieved in an operational system. In order to assess the possibility of creating a global-scale lake inundation database we analyzed two contrasting lake systems in western North America (Mexico and New Mexico, USA) and China (Inner Mongolia). We asked two major questions: 1) is it possible to quickly and accurately quantify current lake inundation events in near real time using remote sensing? and, 2) is it possible to differentiate variable meteorological sources and resultant lake inundation responses using this type of database? With respect to these results we outline an automated lake monitoring approach using MODIS data and real-time processing systems that may provide future global monitoring capabilities.

  4. Integration of wireless sensor networks into cyberinfrastructure for monitoring Hawaiian "mountain-to-sea" environments.

    PubMed

    Kido, Michael H; Mundt, Carsten W; Montgomery, Kevin N; Asquith, Adam; Goodale, David W; Kaneshiro, Kenneth Y

    2008-10-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding. PMID:18618172

  5. Integration of Wireless Sensor Networks into Cyberinfrastructure for Monitoring Hawaiian ``Mountain-to-Sea'' Environments

    NASA Astrophysics Data System (ADS)

    Kido, Michael H.; Mundt, Carsten W.; Montgomery, Kevin N.; Asquith, Adam; Goodale, David W.; Kaneshiro, Kenneth Y.

    2008-10-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.

  6. Ozone Profiles and Tropospheric Ozone from Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Liu, X.; Chance, K.; Sioris, C. E.; Sparr, R. J. D.; Kuregm, T. P.; Martin, R. V.; Newchurch, M. J.; Bhartia, P. K.

    2003-01-01

    Ozone profiles are derived from backscattered radiances in the ultraviolet spectra (290-340 nm) measured by the nadir-viewing Global Ozone Monitoring Experiment using optimal estimation. Tropospheric O3 is directly retrieved with the tropopause as one of the retrieval levels. To optimize the retrieval and improve the fitting precision needed for tropospheric O3, we perform extensive wavelength and radiometric calibrations and improve forward model inputs. Retrieved O3 profiles and tropospheric O3 agree well with coincident ozonesonde measurements, and the integrated total O3 agrees very well with Earth Probe TOMS and Dobson/Brewer total O3. The global distribution of tropospheric O3 clearly shows the influences of biomass burning, convection, and air pollution, and is generally consistent with our current understanding.

  7. A quasi-global precipitation time series for drought monitoring

    USGS Publications Warehouse

    Funk, Chris C.; Peterson, Pete J.; Landsfeld, Martin F.; Pedreros, Diego H.; Verdin, James P.; Rowland, James D.; Romero, Bo E.; Husak, Gregory J.; Michaelsen, Joel C.; Verdin, Andrew P.

    2014-01-01

    Estimating precipitation variations in space and time is an important aspect of drought early warning and environmental monitoring. An evolving drier-than-normal season must be placed in historical context so that the severity of rainfall deficits may quickly be evaluated. To this end, scientists at the U.S. Geological Survey Earth Resources Observation and Science Center, working closely with collaborators at the University of California, Santa Barbara Climate Hazards Group, have developed a quasi-global (50°S–50°N, 180°E–180°W), 0.05° resolution, 1981 to near-present gridded precipitation time series: the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) data archive.

  8. Preserving the global environment: The challenge of shared leadership

    SciTech Connect

    Matthews, J.T. (ed.)

    1993-01-01

    This book brings together essays commissioned as background reading for an April 1990 conference on the global environment co-sponsored by the American Assembly and the World Resources Institute. Among the topic areas covered are the following: technical aspects of energy policy and climatic change; harnessing the power of the marketplace; international cooperation; international regulatory regimes; world economic climate; deforestation and species loss; human population growth.

  9. TEMPERATURE GRADIENT CHAMBERS FOR RESEARCH ON GLOBAL ENVIRONMENT CHANGE. I. THERMAL ENVIRONMENT IN A LARGE CHAMBER

    Microsoft Academic Search

    M. OKADA; T. HAMASAKI; T. HAYASHI

    OKADA M. HAMASAKI T. and HAYASH! T. Temperature gradient chambers for research on global environment change. I. Thermal environment in a large chamber. BIOTRONICS 24, 85-97, 1995. Simple and low-cost temperature gradient chambers (TGC) have been developed to study the effects of temperature on field crops. Providing a continuous one-way air flow along the long axis of the TGC, the

  10. Developing Earth Observations Requirements for Global Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Whitcraft, A. K.; Becker-Reshef, I.; Vermote, E.; Justice, C. O.

    2013-12-01

    Recognizing the dynamic nature of agricultural cultivation both within and between years and across the globe, the Group on Earth Observations (GEO) is developing an agricultural monitoring (GEO-GLAM) system with the goal of enhancing the availability and use of satellite and in situ Earth observations (EO) for the generation of timely and accurate information on national, regional, and global food supply. One of the key components of the GEO-GLAM system is the coordination of satellite observations so as to ensure sufficient and appropriate data volume and quality for agricultural monitoring. Therefore, it is essential that we develop EO requirements which articulate in a spatially explicit way where, when, how frequently, and at what spatial resolution satellite imagery must be acquired to meet the needs of a variety of agricultural monitoring applications. Accordingly, best-available cropland location information ('where?') in conjunction with ten years of MODIS surface reflectance data have been used to characterize the timing and duration of the agricultural growing season ('when?') in the form of agricultural growing season calendars (GSCs) for all major agricultural areas of the Earth. With respect to temporal resolution, we must first identify the frequency with which we require imagery inputs for monitoring applications such as crop condition, crop type, crop yield estimation, and planted and harvested area estimation. Members of the GEO Agriculture Monitoring Community of Practice - a group of international scientists - have combined their knowledge and expertise to articulate these general requirements. Second, we must determine how cloud cover impacts the ability of optical sensing systems to meet these established temporal resolution requirements. To this end, MODIS Terra (morning; 2000-2011) and Aqua (afternoon; 2002-2011) observations have been analyzed to derive probabilities of a cloud free clear view at different times of day throughout the agricultural growing season. In conjunction with information on field size distribution - which helps inform where finer resolution imagery are required - this information is being synthesized to generate a set of spatially explicit Earth observation requirements that are scalable to different satellite mission-specific swath widths, and provide concrete evidence for a multi-sensor imaging constellation approach to global agricultural monitoring.

  11. Global Communications Infrastructure: CTBT Treaty monitoring using space communications

    NASA Astrophysics Data System (ADS)

    Kebeasy, R.; Abaya, E.; Ricker, R.; Demeules, G.

    Article 1 on Basic Obligations of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) states that: "Each State Party undertakes not to carry out any nuclear weapon test explosion or any other nuclear explosion, and to prohibit and prevent any such nuclear explosion at any place under its jurisdiction or control. Each State Party undertakes, furthermore, to refrain from causing, encouraging, or in any way participating in the carrying out of any nuclear weapon test explosion or any other nuclear explosion." To monitor States Parties compliance with these Treaty provisions, an International Monitoring System (IMS) consisting of 321 monitoring stations and 16 laboratories in some 91 countries is being implemented to cover the whole globe, including its oceans and polar regions. The IMS employs four technologies--seismic, hydroacoustic, infrasound and radionuclide--to detect,locate and identify any seismic event of Richter magnitude 4 and above (equivalent to one kiloton of TNT) that may be associated with a nuclear test explosion. About one-half of this monitoring system is now operational in 67 countries. Monitoring stations send data in near real-time to an International Data Centre (IDC) in Vienna over a Global Communications Infrastructure (GCI) incorporating 10 geostationary satellites plus three satellites in inclined orbits. The satellites relay the data to commercial earth stations, from where they are transferred by terrestrial circuits to the IDC. The IDC automatically processes and interactively analyzes the monitoring data, and distributes the raw data and reports relevant to Treaty verification to National Data Centers in Member States over the same communications network. The GCI will eventually support about 250 thin route VSAT links to the monitoring stations, many of them at remote or harsh locations on the earth, plus additional links to national data centres in various countries. Off-the-shelf VSAT and networking hardware are deployed. This is the first global integrated satellite communications network based on VSAT technology. Space segment has been leased to carry more than 9 gigabytes/day of data to the IDC with a designed annual availability of 99.5%. This paper explains the topology of this satellite-based network, and practical limitations encountered in organizing a single network with 250 links that span the majority of countries in the world, plus the Antarctic regions and the earth's oceans. Having now installed about half of the satellite links in 67 countries, CTBTO has had to hurdle regulatory challenges to install VSAT equipment, and operational challenges to keep the earth stations running in unmanned remote locations. Despite the challenges, the GCI has proven its worth in reliably collecting monitoring data and making such available to authorized users. It has also been useful to give scientists real-time access for controlling their remote monitoring stations.

  12. Global Research Initiative in Alpine Environments: A New GLORIA Site in Southwestern Montana

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Pullman, T. Y.; Mitman, G. G.

    2007-12-01

    Global climate change is expected to have pronounced effects on the alpine environments and thus the alpine plants of western North America. Predicted responses include an upward migration of treelines, altered species compositions, changes in the percentage of land covered by vegetation, and a change in the phenology of alpine plants. To determine the effects of climate change on the alpine flora of southwestern Montana, we are installing a GLORIA (Global Research Initiative in Alpine Environments) site in order to monitor temperature, species composition, and percent cover of vascular plants, lichens, and mosses along an ascending altitudinal gradient. We are including lichens and mosses because of their importance as ecological indicator species. The abundance and spatial distribution of lichens and mosses provides essential baseline data for long-term monitoring of local and global impacts on the environment. Mt. Fleecer (9250 ft.), which is west of the continental divide and semi-isolated from other peaks in the Anaconda-Pintlar Range, is currently the most likely location for the southwestern Montana GLORIA site. Mt. Fleecer is accessible because it does not have the steep and hazardous glaciated talus cirques that characterize many of the neighboring, higher peaks. However, if an accessible and suitable higher summit is found, then it will be included as the highest summit in the GLORIA site. Interesting species at Mt. Fleecer include the whitebark pine, Pinus albicaulis, which is a keystone species in high mountain ecosystems of the western United States and Canada, the green gentian, Frasera speciosa, and the shooting star, Dodecatheon pulchellum. Data from this site will become part of a global network of GLORIA sites with which we will assess changes in alpine flora. Information gained from this GLORIA site can also be used as a link between studies of alpine climate change and related investigations on the timing of snowmelt and its influence on riparian ecosystems in western Montana.

  13. Female degus ( Octodon degus ) monitor their environment while foraging socially

    Microsoft Academic Search

    Verónica Quirici; Rodrigo A. Castro; Javiera Oyarzún; Luis A. Ebensperger

    2008-01-01

    Vigilance or scanning involves interruptions in foraging behavior when individuals lift their heads and conduct visual monitoring\\u000a of the environment. Theoretical considerations assume that foraging with the “head down”, and scanning (“head up”) are mutually\\u000a exclusive activities, such that foraging precludes vigilance. We tested this generalization in a socially foraging, small\\u000a mammal model, the diurnal Chilean degu (Octodon degus). We

  14. Metagenomic Frameworks for Monitoring Antibiotic Resistance in Aquatic Environments

    PubMed Central

    Port, Jesse A.; Cullen, Alison C.; Wallace, James C.; Smith, Marissa N.

    2013-01-01

    Background: High-throughput genomic technologies offer new approaches for environmental health monitoring, including metagenomic surveillance of antibiotic resistance determinants (ARDs). Although natural environments serve as reservoirs for antibiotic resistance genes that can be transferred to pathogenic and human commensal bacteria, monitoring of these determinants has been infrequent and incomplete. Furthermore, surveillance efforts have not been integrated into public health decision making. Objectives: We used a metagenomic epidemiology–based approach to develop an ARD index that quantifies antibiotic resistance potential, and we analyzed this index for common modal patterns across environmental samples. We also explored how metagenomic data such as this index could be conceptually framed within an early risk management context. Methods: We analyzed 25 published data sets from shotgun pyrosequencing projects. The samples consisted of microbial community DNA collected from marine and freshwater environments across a gradient of human impact. We used principal component analysis to identify index patterns across samples. Results: We observed significant differences in the overall index and index subcategory levels when comparing ecosystems more proximal versus distal to human impact. The selection of different sequence similarity thresholds strongly influenced the index measurements. Unique index subcategory modes distinguished the different metagenomes. Conclusions: Broad-scale screening of ARD potential using this index revealed utility for framing environmental health monitoring and surveillance. This approach holds promise as a screening tool for establishing baseline ARD levels that can be used to inform and prioritize decision making regarding management of ARD sources and human exposure routes. Citation: Port JA, Cullen AC, Wallace JC, Smith MN, Faustman EM. 2014. Metagenomic frameworks for monitoring antibiotic resistance in aquatic environments. Environ Health Perspect 122:222–228;?http://dx.doi.org/10.1289/ehp.1307009 PMID:24334622

  15. Monitoring the Global Soil Moisture Climatology Using GLDAS/LIS

    NASA Astrophysics Data System (ADS)

    Meng, J.; Mitchell, K.; Wei, H.; Gottschalck, J.

    2006-05-01

    Soil moisture plays a crucial role in the terrestrial water cycle through governing the process of partitioning precipitation among infiltration, runoff and evaporation. Accurate assessment of soil moisture and other land states, namely, soil temperature, snowpack, and vegetation, is critical in numerical environmental prediction systems because of their regulation of surface water and energy fluxes between the surface and atmosphere over a variety of spatial and temporal scales. The Global Land Data Assimilation System (GLDAS) is developed, jointly by NASA Goddard Space Flight Center (GSFC) and NOAA National Centers for Environmental Prediction (NCEP), to perform high-quality global land surface simulation using state-of-art land surface models and further minimizing the errors of simulation by constraining the models with observation- based precipitation, and satellite land data assimilation techniques. The GLDAS-based Land Information System (LIS) infrastructure has been installed on the NCEP supercomputer that serves the operational weather and climate prediction systems. In this experiment, the Noah land surface model is offline executed within the GLDAS/LIS infrastructure, driven by the NCEP Global Reanalysis-2 (GR2) and the CPC Merged Analysis of Precipitation (CMAP). We use the same Noah code that is coupled to the operational NCEP Global Forecast System (GFS) for weather prediction and test bed versions of the NCEP Climate Forecast System (CFS) for seasonal prediction. For assessment, it is crucial that this uncoupled GLDAS/Noah uses exactly the same Noah code (and soil and vegetation parameters therein), and executes with the same horizontal grid, landmask, terrain field, soil and vegetation types, seasonal cycle of green vegetation fraction and surface albedo as in the coupled GFS/Noah and CFS/Noah. This execution is for the 25-year period of 1980-2005, starting with a pre-execution 10-year spin-up. This 25-year GLDAS/Noah global land climatology will be used for both climate variability assessment and as a source of land initial conditions for ensemble CFS/Noah seasonal hindcast experiments. Finally, this GLDAS/Noah climatology will serve as the foundation for a global drought/flood monitoring system that includes near realtime daily updates of the global land states.

  16. Global monitoring of atmospheric properties by the EOS MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1993-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) being developed for the Earth Observing System (EOS) is well suited to the global monitoring of atmospheric properties from space. Among the atmospheric properties to be examined using MODIS observations, clouds are especially important, since they are a strong modulator of the shortwave and longwave components of the earth's radiation budget. A knowledge of cloud properties (such as optical thickness and effective radius) and their variation in space and time, which are our task objectives, is also crucial to studies of global climate change. In addition, with the use of related airborne instrumentation, such as the Cloud Absorption Radiometer (CAR) and MODIS Airborne Simulator (MAS) in intensive field experiments (both national and international campaigns, see below), various types of surface and cloud properties can be derived from the measured bidirectional reflectances. These missions have provided valuable experimental data to determine the capability of narrow bandpass channels in examining the Earth's atmosphere and to aid in defining algorithms and building an understanding of the ability of MODIS to remotely sense atmospheric conditions for assessing global change. Therefore, the primary task objective is to extend and expand our algorithm for retrieving the optical thickness and effective radius of clouds from radiation measurements to be obtained from MODIS. The secondary objective is to obtain an enhanced knowledge of surface angular and spectral properties that can be inferred from airborne directional radiance measurements.

  17. Monitoring the impacts of trade agreements on food environments.

    PubMed

    Friel, S; Hattersley, L; Snowdon, W; Thow, A-M; Lobstein, T; Sanders, D; Barquera, S; Mohan, S; Hawkes, C; Kelly, B; Kumanyika, S; L'Abbe, M; Lee, A; Ma, J; Macmullan, J; Monteiro, C; Neal, B; Rayner, M; Sacks, G; Swinburn, B; Vandevijvere, S; Walker, C

    2013-10-01

    The liberalization of international trade and foreign direct investment through multilateral, regional and bilateral agreements has had profound implications for the structure and nature of food systems, and therefore, for the availability, nutritional quality, accessibility, price and promotion of foods in different locations. Public health attention has only relatively recently turned to the links between trade and investment agreements, diets and health, and there is currently no systematic monitoring of this area. This paper reviews the available evidence on the links between trade agreements, food environments and diets from an obesity and non-communicable disease (NCD) perspective. Based on the key issues identified through the review, the paper outlines an approach for monitoring the potential impact of trade agreements on food environments and obesity/NCD risks. The proposed monitoring approach encompasses a set of guiding principles, recommended procedures for data collection and analysis, and quantifiable 'minimal', 'expanded' and 'optimal' measurement indicators to be tailored to national priorities, capacity and resources. Formal risk assessment processes of existing and evolving trade and investment agreements, which focus on their impacts on food environments will help inform the development of healthy trade policy, strengthen domestic nutrition and health policy space and ultimately protect population nutrition. PMID:24074216

  18. Exploiting coalbed methane and protecting the global environment

    SciTech Connect

    Yuheng, Gao

    1996-12-31

    The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

  19. Global Learning and Observations to Benefit the Environment (GLOBE)

    NSDL National Science Digital Library

    Global Learning and Observations to Benefit the Environment (GLOBE) is a hands-on international environmental science and education program. GLOBE links students, teachers, and the scientific research community in an effort to learn more about our environment through student data collection and observation. The website allows students to submit and peruse data in the fields of atmosphere, hydrology, soils, and land cover/phenology. It includes a mapping/graphing area, a teacher's guide, and an educator's forum. GLOBE is a cooperative effort of schools, led in the United States by a Federal interagency program sponsored by NOAA, NASA, NSF, and EPA, in partnership with over 140 colleges and universities, state and local school systems, and non-government organizations.

  20. Global Learning and Observations to Benefit the Environment (GLOBE)

    NSDL National Science Digital Library

    2007-12-12

    Global Learning and Observations to Benefit the Environment (GLOBE) is a hands-on international environmental science and education program. GLOBE links students, teachers, and the scientific research community in an effort to learn more about our environment through student data collection and observation. The website allows students to submit and peruse data in the fields of atmosphere, hydrology, soils, and land cover/phenology. It includes a mapping/graphing area, a teacher's guide, and an educator's forum. GLOBE is a cooperative effort of schools, led in the United States by a Federal interagency program sponsored by NOAA, NASA, NSF, and EPA, in partnership with over 140 colleges and universities, state and local school systems, and non-government organizations.

  1. A Remote Sensing-based Global Agricultural Drought Monitoring and Forecasting System for Supporting GEOSS (Invited)

    NASA Astrophysics Data System (ADS)

    di, L.; Yu, G.; Han, W.; Deng, M.

    2010-12-01

    Group on Earth Observations (GEO) is a voluntary partnership of governments and international organizations. GEO is coordinating the implementation of the Global Earth Observation System of Systems (GEOSS), a worldwide effort to make Earth observation resources more useful to the society. As one of the important technical contributors to GEOSS, the Center for Spatial Information Science and Systems (CSISS), George Mason University, is implementing a remote sensing-based global agricultural drought monitoring and forecasting system (GADMFS) as a GEOSS societal benefit areas (agriculture and water) prototype. The goals of the project are 1) to establish a system as a component of GEOSS for providing global on-demand and systematic agriculture drought information to users worldwide, and 2) to support decision-making with improved monitoring, forecasting, and analyses of agriculture drought. GADMFS has adopted the service-oriented architecture and is based on standard-compliant interoperable geospatial Web services to provide online on-demand drought conditions and forecasting at ~1 km spatial and daily and weekly temporal resolutions for any part of the world to world-wide users through the Internet. Applicable GEOSS recommended open standards are followed in the system implementation. The system’s drought monitoring relies on drought-related parameters, such as surface and root-zone soil moisture and NDVI time series derived from remote sensing data, to provide the current conditions of agricultural drought. The system links to near real-time satellite remote sensing data sources from NASA and NOAA for the monitoring purpose. For drought forecasting, the system utilizes a neural-network based modeling algorithm. The algorithm is trained with inputs of current and historic vegetation-based and climate-based drought index data, biophysical characteristics of the environment, and time-series weather data. The trained algorithm will establish per-pixel model for drought forecasting. The model will produce on-demand drought prediction in ~1km or higher spatial resolution, covering whole world by using weather forecasting data as the input. The system will be implemented in multiple phases. Phase I is concentrated only on NDVI-based drought monitoring to demonstrate the concept and feasibility. In phase I, 30-year calibrated global weekly NDVI composites from AVHRR and MODIS are used to establish the baseline and dynamics of vegetation conditions for each co-registered pixel. Multiple NDVI based agricultural drought indices will be computed (e.g., normalized agricultural drought index (NADI), SVI, VegDRI) from the baseline and dynamics for drought monitoring. Phase I prototype will be demonstrated in December 2010.

  2. Ecotones in a changing environment: Workshop on ecotones and global change

    SciTech Connect

    Risser, P.G.

    1990-02-01

    The Scientific Committee on Problems of the Environment (SCOPE) has organized an international project to synthesize and advance current theory on the influence of ecotones, or transition zones between ecosystems, on biodiversity and flows of energy, nutrients, water, and project is other materials between ecosystems. In particular, the entire project is designed to evaluate the influence of global climate change and land-use practices on biodiversity and ecological flows associated with ecotones, and will assess the feasibility of monitoring ecotones as early indicators of global change. The later stages of the project will recommend landscape management strategies for ecotones that produce desirable patterns of biodiversity and ecological flows. The result of the project--a comprehensive body of information on the theory and management of biodiversity and ecological flows associated with ecotones--will be part of the planning for research to be carried out under the International Geosphere-Biosphere Program.

  3. Volcano monitoring using the Global Positioning System: Filtering strategies

    USGS Publications Warehouse

    Larson, K.M.; Cervelli, Peter; Lisowski, M.; Miklius, Asta; Segall, P.; Owen, S.

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/???h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours. Copyright 2001 by the American Geophysical Union.

  4. Global lightning and severe storm monitoring from GPS orbit

    SciTech Connect

    Suszcynsky, D. M. (David M.); Jacobson, A. R.; Linford, J (Justin); Pongratz, M. B. (Morris B.); Light, T. (Tracy E.); Shao, X. (Xuan-Min)

    2004-01-01

    Over the last few decades, there has been a growing interest to develop and deploy an automated and continuously operating satellite-based global lightning mapper [e.g. Christian et al., 1989; Weber et al., 1998; Suszcynsky et al., 2000]. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. Satellite-based lightning mappers are designed to exploit this relationship by using lightning detection as a proxy for remotely identifying, locating and characterizing strong convective activity on a global basis. Global lightning and convection mapping promises to provide users with (1) an enhanced global severe weather monitoring and early warning capability [e.g. Weber et al., 1998] (2) improved ability to optimize aviation flight paths around convective cells, particularly over oceanic and remote regions that are not sufficiently serviced by existing weather radar [e.g. Weber et al., 1998], and (3) access to regional and global proxy data sets that can be used for scientific studies and as input into meteorological forecast and global climatology models. The physical foundation for satellite-based remote sensing of convection by way of lightning detection is provided by the basic interplay between the electrical and convective states of a thundercloud. It is widely believed that convection is a driving mechanism behind the hydrometeor charging and transport that produces charge separation and lightning discharges within thunderclouds [e.g. see chapter 3 in MacGorman and Rust, 1998]. Although cloud electrification and discharge processes are a complex function of the convective dynamics and microphysics of the cloud, the fundamental relationship between convection and electrification is easy to observe. For example, studies have shown that the strength of the convective process within a thundercell can be loosely parameterized (with large variance) by the intensity of the electrical activity within that cell as measured by the lightning flash rate. Williams [2001] has provided a review of experimental work that shows correlations between the total lightning flash rate and the fifth power of the radar cloud-top height (i.e. convective strength) of individual thunder cells. More recently, Ushio et al., [2001] used a large statistical sampling of optical data from the Lightning Imaging Sensor (LIS) in conjunction with data provided by the Precipitation Radar (PR) aboard the Tropical Rainfall Monitoring Mission (TRMM) satellite to conclude that the total lightning flash rate increases exponentially with storm height. Lightning activity levels have also been correlated to cloud ice content, a basic product of the convective process. For example, Blyth et al. [2001] used the Thermal Microwave Imager (TMI) aboard the TRMM satellite to observe a decrease in the 37 and 85 GHz brightness temperatures of upwelling terrestrial radiation during increased lightning activity. This reduction in brightness temperature is believed to be the result of increased ice scattering in the mixed phase region of the cloud. Toracinta and Zipser [2001] have found similar relationships using the Optical Transient Detector (OTD) satellite instrument and the Special Sensor Microwave Imager (SSM/I) aboard the DMSP satellites.

  5. The Node Monitoring Component of a Scalable Systems Software Environment

    SciTech Connect

    Samuel James Miller

    2006-08-09

    This research describes Fountain, a suite of programs used to monitor the resources of a cluster. A cluster is a collection of individual computers that are connected via a high speed communication network. They are traditionally used by users who desire more resources, such as processing power and memory, than any single computer can provide. A common drawback to effectively utilizing such a large-scale system is the management infrastructure, which often does not often scale well as the system grows. Large-scale parallel systems provide new research challenges in the area of systems software, the programs or tools that manage the system from boot-up to running a parallel job. The approach presented in this thesis utilizes a collection of separate components that communicate with each other to achieve a common goal. While systems software comprises a broad array of components, this thesis focuses on the design choices for a node monitoring component. We will describe Fountain, an implementation of the Scalable Systems Software (SSS) node monitor specification. It is targeted at aggregate node monitoring for clusters, focusing on both scalability and fault tolerance as its design goals. It leverages widely used technologies such as XML and HTTP to present an interface to other components in the SSS environment.

  6. PROBA-V, the small saellite for global vegetation monitoring

    NASA Astrophysics Data System (ADS)

    Deronde, Bart; Benhadj, Iskander; Clarijs, Dennis; Dierckx, Wouter; Dries, Jan; Sterckx, Sindy; van Roey, Tom; Wolters, erwin

    2015-04-01

    PROBA-V, the small satellite for global vegetation monitoring Bart Deronde, Iskander Benhadj, Dennis Clarijs, Wouter Dierckx, Jan Dries, Sindy Sterck, Tom Van Roey, Erwin Wolters (VITO NV) Exactly one year ago, in December 2013, VITO (Flemish Institute for Technological Research) started up the real time operations of PROBA-V. This miniaturised ESA (European Space Agency) satellite was launched by ESA's Vega rocket from Kourou, French-Guyana on May 7th, 2013. After six months of commissioning the mission was taken into operations. Since mid-December 2013 PROBA-V products are processed on an operational basis and distributed to a worldwide user community. PROVA-V is tasked with a full-scale mission: to map land cover and vegetation growth across the entire planet every two days. It is flying a lighter but fully functional redesign of the 'VEGETATION' imaging instruments previously flown on France's full-sized SPOT-4 and SPOT-5 satellites, which have been observing Earth since 1998. PROBA-V, entirely built by a Belgian consortium, continues this valuable and uninterrupted time series with daily products at 300 m and 1 km resolution. Even 100 m products will become available early 2015, delivering a global coverage every 5 days. The blue, red, near-infrared and mid-infrared wavebands allow PROBA-V to distinguish between different types of land cover/use and plant species, including crops. Vital uses of these data include day-by-day tracking of vegetation development, alerting authorities to crop failures, monitoring inland water resources and tracing the steady spread of deserts and deforestation. As such the data is also highly valuable to study climate change and the global carbon cycle. In this presentation we will discuss the in-flight results, one year after launch, from the User Segment (i.e. the processing facility) point of view. The focus will be on geometric and radiometric accuracy and stability. Furthermore, we will elaborate on the lessons learnt from the operational day-to-day activities. Data acquisition, input data quality, instrument programming, image processing and data distribution are some of the topics that will be highlighted. Finally, the synergy with other European missions like the Copernicus Sentinel 3 satellite will be handled.

  7. Development of Data Video Base Station in Water Environment Monitoring Oriented Wireless Sensor Networks

    Microsoft Academic Search

    Kong Yifan; Jiang Peng

    2008-01-01

    Water environment monitoring system based on wireless sensor networks (WSNs) consists of three parts: data monitoring nodes, date video base station and remote monitoring center. For the sake of realizing to monitor large range waters such as reservoir, wetland, lake, river and ocean etc, the monitoring system has the function of perception, acquisition, processing and transmission for video-information in key

  8. Accumulation and fragmentation of plastic debris in global environments

    PubMed Central

    Barnes, David K. A.; Galgani, Francois; Thompson, Richard C.; Barlaz, Morton

    2009-01-01

    One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly understood. PMID:19528051

  9. An Environment Monitoring Package for the International Space Station

    NASA Technical Reports Server (NTRS)

    Carruth, M. Ralph; Clifton, Kenneth S.

    1998-01-01

    The first elements of the International Space Station (ISS) will soon be launched into space and over the next few years ISS will be assembled on orbit into its final configuration. Experiments will be performed on a continuous basis both inside and outside the station. External experiments will be mounted on attached payload locations specifically designed to accommodate experiments, provide data and supply power from ISS. From the beginning of the space station program it has been recognized that experiments will require knowledge of the external local environment which can affect the science being performed and may impact lifetime and operations of the experiment hardware. Recently an effort was initiated to design and develop an Environment Monitoring Package (EMP). This paper describes the derivation of the requirements for the EMP package, the type of measurements that the EMP will make and types of instruments which will be employed to make these measurements.

  10. Secure collaboration in global design and supply chain environment: Problem analysis and literature review

    E-print Network

    Wang, Lingyu

    Secure collaboration in global design and supply chain environment: Problem analysis and literature of secure collaboration in the global design and supply chain environment. In order to organize a grand picture of the broad area of secure collaboration in the global design and supply chain

  11. Monitoring Global Forest Cover Using Data Mining VARUN MITHAL, ASHISH GARG, SHYAM BORIAH, MICHAEL STEINBACH,

    E-print Network

    Minnesota, University of

    36 Monitoring Global Forest Cover Using Data Mining VARUN MITHAL, ASHISH GARG, SHYAM BORIAH., Kumar, V., Potter, C., Klooster, S., and Castilla-Rubio, J. C. 2011. Monitoring global forest cover over recent decades as a result of logging, conversion to crop, plantation, and pasture land

  12. The Design and Implementation of Real-Time Environment Monitoring Systems Based on Wireless Sensor Networks

    Microsoft Academic Search

    Kyung-hoon Jung; Seok-cheol Lee; Hyun-suk Hwang; Chang-Soo Kim

    2006-01-01

    \\u000a This research focuses on the implementation of a real-time environment monitoring system for environment detection using wireless\\u000a sensor networks. The purpose of our research is to construct the system on the real-time environment with the technology of\\u000a environment monitoring systems and ubiquitous computing systems. Also, we present the monitoring system to provide a faster\\u000a solution to prevent disasters through automatic

  13. Novel method for monitoring genetically engineered microorganisms in the environment.

    PubMed

    Chaudhry, G R; Toranzos, G A; Bhatti, A R

    1989-05-01

    A method has been devised for directly detecting and monitoring genetically engineered microorganisms (GEMs) by using in vitro amplification of the target DNAs by a polymerase chain reaction and then hybridizing the DNAs with a specific oligonucleotide or DNA probe. A cloned 0.3-kilobase napier grass (Pennisetum purpureum) genomic DNA that did not hybridize to DNAs isolated from various microorganisms, soil sediments, and aquatic environments was inserted into a derivative of a 2,4-dichlorophenoxyacetic acid-degradative plasmid, pRC10, and transferred into Escherichia coli. This genetically altered microorganism, seeded into filter-sterilized lake and sewage water samples (10(4)/ml), was detected by a plate count method in decreasing numbers for 6 and 10 days of sample incubation, respectively. The new method detected the amplified unique marker (0.3-kilobase DNA) of the GEM even after 10 to 14 days of incubation. This method is highly sensitive (it requires only picogram amounts of DNA) and has an advantage over the plate count technique, which can detect only culturable microorganisms. The method may be useful for monitoring GEMs in complex environments, where discrimination between GEMs and indigenous microorganisms is either difficult or requires time-consuming tests. PMID:2667463

  14. Architecture of wireless sensor network for monitoring aquatic environment of marine shellfish

    Microsoft Academic Search

    Haiqing Yang; Hongxi Wu; Yong He

    2009-01-01

    Aquatic environment monitoring plays an important role in the artificial breeding of marine shellfish. Wireless sensor network (WSN) is an efficient approach for monitoring large-scale coastal beach with densely distributed smart nodes. Combined with a project of aquatic environment monitoring and assessment of marine shellfish in Zhejiang province, China, a new structure of WSN combining network clustering and route enhancing

  15. Global Environment Outlook-1: United Nations Environment Programme (UNEP): Global State of the Environment Report 1997: The Web Version

    NSDL National Science Digital Library

    1997-01-01

    The United Nations Environment Programme has recently released this report, "a snap-shot of an ongoing worldwide environmental assessment process." It "describes the environmental status and trends in seven regions...summarizes developments over time in regional policy responses...[and] concludes with an exploration, based on model analysis, of what we might expect in the future for a selected number of environmental issues if no major policy reforms are initiated." An executive summary for each chapter is first presented, followed by the full report, which contains over seventy figures and thirty tables. The power of the report lies in its regional analysis. A second GEO report is due to be released in 1999.

  16. Monitoring the Earth's Atmosphere with the Global IMS Infrasound Network

    NASA Astrophysics Data System (ADS)

    Brachet, Nicolas; Brown, David; Mialle, Pierrick; Le Bras, Ronan; Coyne, John; Given, Jeffrey

    2010-05-01

    The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is tasked with monitoring compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) which bans nuclear weapon explosions underground, in the oceans, and in the atmosphere. The verification regime includes a globally distributed network of seismic, hydroacoustic, infrasound and radionuclide stations which collect and transmit data to the International Data Centre (IDC) in Vienna, Austria shortly after the data are recorded at each station. The infrasound network defined in the Protocol of the CTBT comprises 60 infrasound array stations. Each array is built according to the same technical specifications, it is typically composed of 4 to 9 sensors, with 1 to 3 km aperture geometry. At the end of 2000 only one infrasound station was transmitting data to the IDC. Since then, 41 additional stations have been installed and 70% of the infrasound network is currently certified and contributing data to the IDC. This constitutes the first global infrasound network ever built with such a large and uniform distribution of stations. Infrasound data at the IDC are processed at the station level using the Progressive Multi-Channel Correlation (PMCC) method for the detection and measurement of infrasound signals. The algorithm calculates the signal correlation between sensors at an infrasound array. If the signal is sufficiently correlated and consistent over an extended period of time and frequency range a detection is created. Groups of detections are then categorized according to their propagation and waveform features, and a phase name is assigned for infrasound, seismic or noise detections. The categorization complements the PMCC algorithm to avoid overwhelming the IDC automatic association algorithm with false alarm infrasound events. Currently, 80 to 90% of the detections are identified as noise by the system. Although the noise detections are not used to build events in the context of CTBT monitoring, they represent valuable data for other civil applications like monitoring of natural hazards (volcanic activity, storm tracking) and climate change. Non-noise detections are used in network processing at the IDC along with seismic and hydroacoustic technologies. The arrival phases detected on the three waveform technologies may be combined and used for locating events in an automatically generated bulletin of events. This automatic event bulletin is routinely reviewed by analysts during the interactive review process. However, the fusion of infrasound data with the other waveform technologies has only recently (in early 2010) become part of the IDC operational system, after a software development and testing period that began in 2004. The build-up of the IMS infrasound network, the recent developments of the IDC infrasound software, and the progress accomplished during the last decade in the domain of real-time atmospheric modelling have allowed better understanding of infrasound signals and identification of a growing data set of ground-truth sources. These infragenic sources originate from natural or man-made sources. Some of the detected signals are emitted by local or regional phenomena recorded by a single IMS infrasound station: man-made cultural activity, wind farms, aircraft, artillery exercises, ocean surf, thunderstorms, rumbling volcanoes, iceberg calving, aurora, avalanches. Other signals may be recorded by several IMS infrasound stations at larger distances: ocean swell, sonic booms, and mountain associated waves. Only a small fraction of events meet the event definition criteria considering the Treaty verification mission of the Organization. Candidate event types for the IDC Reviewed Event Bulletin include atmospheric or surface explosions, meteor explosions, rocket launches, signals from large earthquakes and explosive volcanic eruptions.

  17. Earth Observing System: Global Observations to Study the Earth's Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2003-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During the last couple of years, four EOS science missions were launched, representing observations of (i) total solar irradiance, (ii) Earth radiation budget, (iii) land cover & land use change, (iv) ocean processes (vector wind, sea surface temperature, and ocean color), (v) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (vi) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using NASA's Earth science data to examine land use and natural hazards, environmental air quality, including: dust storms over the worlds deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean, with a special emphasis on satellite observations available for studying the southern African environment.

  18. The science of global change: The impact of human activities on the environment

    SciTech Connect

    Dunnette, D.A.; O'Brien, R.J. (eds.)

    1992-01-01

    This 1989 Symposium from the Division of Environmental Chemistry of the American Chemical Society brings together a series of papers that focus on how the human population has affected all aspects of the global environment. The five major topic areas include the following: the global environment; the atmospheric component; the aquatic component; the terrestrial component; global carbon cycle and climate change; and global environmental chemistry education.

  19. New tools in monitoring East and Southeast Asian environments

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas W.; Shuchman, Robert A.

    1997-01-01

    By all economic measures East and Southeast Asia are major success stories and emerging powerhouses in the global economy. This region continues to outperform, by a wide margin, other regions of the developing world and the industrial countries as well. However, this economic growth has been at a cost to the environment that is increasingly evident and may threaten future growth. Losses of tropical forests, unsustainable agriculture, unsound energy production and use, urban and industrial pollution, and the depletion of coastal and marine resources all impact current and future growth. However, information obtained from Mission-To-Planet-Earth sensors and other remote sensing devices may provide a basis for policies that help reduce environmental damage and promote resource sustainability. Three examples using Landsat, AVHRR, and interferometric RADAR data illustrate remote sensing applications to Asian development and environmental sustainability.

  20. THE IMPORTANCE OF CONCURRENT MONITORING AND MODELING FOR UNDERSTANDING MERCURY EXPOSURE IN THE ENVIRONMENT

    EPA Science Inventory

    Understanding the cycling processes governing mercury exposure in the environment requires sufficient process-based modeling and monitoring data. Monitoring provides ambient concentration data for specific sample times and locations. Modeling provides a tool for investigating the...

  1. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments

    EPA Science Inventory

    Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to significantly alleviate difficulties associated with traditional monitoring approac...

  2. Ancestral populations perform better in a novel environment: domestication of medfly populations from five global regions.

    PubMed

    Diamantidis, Alexandros D; Carey, James R; Nakas, Christos T; Papadopoulos, Nikos T

    2011-02-01

    Geographically isolated populations of a species may differ in several aspects of life-history, morphology, behavior, and genetic structure as a result of adaptation in ecologically diverse habitats. We used a global invasive species, the Mediterranean fruit fly to investigate, whether adaptation to a novel environment differs among geographically isolated populations that vary in major life history components such as life span and reproduction. We used wild populations from five global regions (Kenya, Hawaii, Guatemala, Portugal, and Greece). Adult demographic traits were monitored in F(2), F(5), F(7) and F(9) generations in captivity. Although domestication in constant laboratory conditions had a different effect on the mortality and reproductive rates of the different populations, a general trend of decreasing life span and age of first reproduction was observed for most medfly populations tested. However, taking into account longevity of both sexes, age-specific reproductive schedules, and average reproductive rates we found that the ancestral Kenyan population kept the above life history traits stable during domestication compared to the other populations tested. These findings provide important insights in the life-history evolution of this model species, and suggest that ancestral medfly populations perform better than the derived - invasive ones in a novel environment. PMID:21278856

  3. Monitoring of particulate contamination and background brightness from IECM based instrumentation. [Induced Environment Contamination Monitor

    NASA Technical Reports Server (NTRS)

    Clifton, K. S.; Owens, J. K.

    1978-01-01

    Of particular concern to the astronomical community is the effect of Shuttle Transportation System induced contamination in the form of individual particles and general background on astronomical experiments. In an effort to investigate this problem, two camera/photometers in the Induced Environment Contamination Monitor (IECM) will be used to determine the size and velocity distribution of contaminant particles, their origin, and the extent of sunlit background brightness resulting from spacecraft contamination. The cameras will operate synchronously as a stereo pair to make continuous photographic measurements throughout the missions.

  4. Enriched environment delays the onset of hippocampal damage after global cerebral ischemia in rats

    Microsoft Academic Search

    Andrey Belayev; Isabel Saul; Yitao Liu; Weizhao Zhao; Myron D. Ginsberg; Manuel A. Valdes; Raul Busto; Ludmila Belayev

    2003-01-01

    An enriched environment has been shown to improve cognitive, behavioral and histopathological outcome after focal cerebral ischemia and head trauma. The purpose of this study was to determine the effect of an enriched environment on histopathology following global cerebral ischemia. Wistar rats (21 weeks of age) were placed in different environments [standard cages (SC) or enriched environment (EE) cages] for

  5. Global Navigation Satellite Systems (GNSSs) for Monitoring Long Suspension Bridges

    E-print Network

    Santerre, Rock

    , Nanjing, China 1 A Brief Introduction to the Global Positioning System 1 2 GPS for Structural Health 16 1 A BRIEF INTRODUCTION TO THE GLOBAL POSITIONING SYSTEM 1.1 GPS constellation The full term of the well-known acronym GPS is NAVSTAR global positioning system, where NAVSTAR stands for NAVigation System

  6. Camera Monitoring of Coastal Dune Erosion in a Macrotidal Environment

    NASA Astrophysics Data System (ADS)

    Kim, Taerim; Kim, Dongsoo

    2015-04-01

    The recent dune erosion in the west coast of Korea is serious in terms of its speed and harmful influence on the adjacent coastal waters as well as dune forest. The west coast of Korea is in the macro-intertidal environment and aeolian sediment transport on the intertidal flat is very active during an ebb tide, especially in winter. There is strong interaction between sand beach and dune by supplying or depositing sand. Coastal dune, as one part of beach system, contributes for beach recovery as well as preventing beach erosion by exchanging sands between beach and dune. Due to high tidal range, the boundary of sand dunes is outside the high water line during spring tide and it makes people think coastal dune is safe from wave forces causing beach erosion. However it seems that high waves during spring high tide cause serious erosion in a relatively short period. This paper investigates the erosion status of the dunes located in the JangHang beach in the southwest coast of Korean Peninsula, by analyzing images from camera monitoring system, and tide and wave data observed adjacent to the study site during the passage of 4 typhoons in 2012. It shows the importance of the timing of wave and tide condition in coastal dune erosion in macrotidal environment.

  7. An artificial reality environment for remote factory control and monitoring

    NASA Technical Reports Server (NTRS)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    Work has begun on the merger of two well known systems, VEOS (HITLab) and CLIPS (NASA). In the recent past, the University of Massachusetts Lowell developed a parallel version of NASA CLIPS, called P-CLIPS. This modification allows users to create smaller expert systems which are able to communicate with each other to jointly solve problems. With the merger of a VEOS message system, PCLIPS-V can now act as a group of entities working within VEOS. To display the 3D virtual world we have been using a graphics package called HOOPS, from Ithaca Software. The artificial reality environment we have set up contains actors and objects as found in our Lincoln Logs Factory of the Future project. The environment allows us to view and control the objects within the virtual world. All communication between the separate CLIPS expert systems is done through VEOS. A graphical renderer generates camera views on X-Windows devices; Head Mounted Devices are not required. This allows more people to make use of this technology. We are experimenting with different types of virtual vehicles to give the user a sense that he or she is actually moving around inside the factory looking ahead through windows and virtual monitors.

  8. Earth Observing System: Global Observations to Study the Earth's Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2001-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During the last couple of years, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover & land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using NASA's Earth science data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  9. Lidar Remote Sensing for Industry and Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space Station. 13. Space lidar II: Using coherent Doppler lidar to estimate river discharge. 14. Poster session: Lidar technology, optics for lidar. Laser for lidar. Middle atmosphere observations. Tropospheric observations (aerosols, clouds). Boundary layer, urban pollution. Differential absorption lidar. Doppler lidar. and Space lidar.

  10. Cycling of DDT in the global environment 1950–2002: World ocean returns the pollutant

    Microsoft Academic Search

    Irene Stemmler; Gerhard Lammel

    2009-01-01

    The global distribution and fate of the insecticide DDT was modeled for the first time using a spatially resolved global multicompartment chemistry-transport model comprising a 3D coupled atmosphere and ocean GCM, coupled to 2D vegetation surfaces and top soils. DDT enters the model environment as a pesticide in agriculture only. Final sinks of DDT in the total environment are degradation

  11. Cycling of DDT in the global environment 1950-2002: World ocean returns the pollutant

    Microsoft Academic Search

    Irene Stemmler; Gerhard Lammel

    2009-01-01

    The global distribution and fate of the insecticide DDT was modeled for the first time using a spatially resolved global multicompartment chemistry-transport model comprising a 3D coupled atmosphere and ocean GCM, coupled to 2D vegetation surfaces and top soils. DDT enters the model environment as a pesticide in agriculture only. Final sinks of DDT in the total environment are degradation

  12. A New GLORIA (Global Research Initiative in Alpine Environments Site in Southwestern Montana

    Microsoft Academic Search

    M. E. Apple; J. E. Warden; C. J. Apple; T. Y. Pullman; J. H. Gallagher

    2008-01-01

    Global climate change is predicted to have a major impact on the alpine environments and plants of western North America. Alpine plant species and treelines may migrate upwards due to warmer temperatures. Species composition, vegetation cover, and the phenology of photosynthesis, flowering, pollination, and seed dispersal may change. The Global Research Initiative in Alpine Environments (GLORIA) is a network of

  13. Health and the environment: a global challenge. WHO Commission on Health and Environment.

    PubMed Central

    1992-01-01

    A healthy environment is not only a need, it is also a right; the right to live and work in an environment conducive to physical and mental health is enshrined in the Universal Declaration of Human Rights. Everyone shares the responsibility for ensuring that this right is duly acknowledged. The responsibility for action lies with individuals and with business. Governments have the responsibility of setting up the strategic and institutional framework within which action is taken. There are three main global objectives: achieving a sustainable basis for health for all--by slowing down population growth as soon as possible, and promoting life-styles and patterns of consumption among affluent groups and countries that are consistent with ecological sustainability; providing an environment that promotes health--by reducing the risk of physical, chemical and biological hazards and ensuring that everyone has the means to acquire the resources on which health depends; making all individuals and organizations aware of their responsibilities for health and its environmental basis. PMID:1394773

  14. A New GLORIA (Global Research Initiative in Alpine Environments Site in Southwestern Montana

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Warden, J. E.; Apple, C. J.; Pullman, T. Y.; Gallagher, J. H.

    2008-12-01

    Global climate change is predicted to have a major impact on the alpine environments and plants of western North America. Alpine plant species and treelines may migrate upwards due to warmer temperatures. Species composition, vegetation cover, and the phenology of photosynthesis, flowering, pollination, and seed dispersal may change. The Global Research Initiative in Alpine Environments (GLORIA) is a network of alpine sites established with the goal of understanding the interactions between climate change and alpine plants. The Continental Divide traverses Southwestern Montana, where the flora contains representative species from both sides of the divide. In the summer of 2008, we established a GLORIA site in southwestern Montana east of the Continental Divide with the objective of determining whether the temperature changes at the site, and if so, how temperature changes influence alpine plants. We are monitoring soil temperature along with species composition and percent cover of alpine plants at four sub-summits along an ascending altitudinal gradient. We placed the treeline, lower alpine, and upper alpine sites on Mt. Fleecer (45°49'36.06"N, 112°48'08.18"W, 2886.2 m (9469 ft)) and the highest sub-summit on Keokirk Mountain, (45°35'37.94"N, 112°57'03.89"W, 2987.3 m (9801 ft)) in the Pioneer Range. Interesting species on these mountains include Lewisia pygmaea, the Pygmy Bitterroot, Silene acaulis, the Moss Campion, Eritrichium nanum, the Alpine Forget-Me-Not, Lloydia serotina, the Alpine Lily, and Pinus albicaulis, the Whitebark Pine. This new site will remain in place indefinitely. Baseline and subsequent data from this site will be linked with the global network of GLORIA sites with which we will assess changes in alpine flora.

  15. University Leaders' Strategies in the Global Environment: A Comparative Study of Universitas Indonesia and the Australian National University

    ERIC Educational Resources Information Center

    Marginson, Simon; Sawir, Erlenawati

    2006-01-01

    In a global environment in which global, national and local nodes relate freely within common networks, all research universities must pursue strategies for building global capacity and facilitating cross-border staff and student movement and research collaboration. The study compares readings of the global environment, global and international…

  16. A Collaborative Decision Environment to Support UAV Wildfire Monitoring Missions

    NASA Astrophysics Data System (ADS)

    Frost, C. R.; Enomoto, F. Y.; D'Ortenzio, M. V.; Nguyen, Q. B.

    2006-12-01

    NASA developed the Collaborative Decision Environment (CDE), the ground-based component of its Intelligent Mission Management (IMM) technology for science missions employing long endurance unmanned aerial vehicles (UAVs). The CDE was used to support science mission planning and decision-making for a NASA- and U.S. Forest Service-sponsored mission to monitor wildfires in the western United States using a multi- spectral imager flown onboard the General Atomics Altair UAV in summer of 2006. The CDE is a ground-based system that provides the mission/science team with situational awareness, collaboration, and decision tools. The CDE is used for pre-flight planning, mission monitoring, and visualization of acquired data. It integrates external data products used for planning and executing a mission, such as weather, large wildfire locations, satellite-derived fire detection data, temporarily restricted airspace, and satellite imagery. While a prototype CDE was developed as a Java-based client/server application in 2004-2005, the team investigated the use of Google Earth to take advantage of its 3-D visualization capabilities, friendly user interface, and enhanced graphics performance. External data is acquired via the Internet by leveraging established and emerging Open Geospatial Consortium (OGC) standards and is re-formatted into the Keyhole Markup Language (KML) specification used by Google Earth. Aircraft flight position and sensor data products are relayed from the instrument ground station to CDE servers where they are made available to users. An instant messaging chat server is used to facilitate real-time communication between remote users. This paper will present an overview of the CDE system architecture, and discuss how science user input was crucial to shaping and developing the system. Examples from the UAV mission will be used to illustrate the presentation. Plans for future development work to improve mission operations, such as integration with autonomous planning tools, will be described.

  17. Designing Training for Global Environments: Knowing What Questions To Ask.

    ERIC Educational Resources Information Center

    Gayeski, Diane M.; Sanchirico, Christine; Anderson, Janet

    2002-01-01

    Presents a framework for identifying important issues for instructional design and delivery in global settings. Highlights include cultural factors in global training; an instructional design model; corporate globalization strategy; communication and training norms; language barriers; implicit value differences; and technical and legal…

  18. Big Data Solution for CTBT Monitoring Using Global Cross Correlation

    NASA Astrophysics Data System (ADS)

    Gaillard, P.; Bobrov, D.; Dupont, A.; Grenouille, A.; Kitov, I. O.; Rozhkov, M.

    2014-12-01

    Due to the mismatch between data volume and the performance of the Information Technology infrastructure used in seismic data centers, it becomes more and more difficult to process all the data with traditional applications in a reasonable elapsed time. To fulfill their missions, the International Data Centre of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO/IDC) and the Département Analyse Surveillance Environnement of Commissariat à l'Energie atomique et aux énergies alternatives (CEA/DASE) collect, process and produce complex data sets whose volume is growing exponentially. In the medium term, computer architectures, data management systems and application algorithms will require fundamental changes to meet the needs. This problem is well known and identified as a "Big Data" challenge. To tackle this major task, the CEA/DASE takes part during two years to the "DataScale" project. Started in September 2013, DataScale gathers a large set of partners (research laboratories, SMEs and big companies). The common objective is to design efficient solutions using the synergy between Big Data solutions and the High Performance Computing (HPC). The project will evaluate the relevance of these technological solutions by implementing a demonstrator for seismic event detections thanks to massive waveform correlations. The IDC has developed an expertise on such techniques leading to an algorithm called "Master Event" and provides a high-quality dataset for an extensive cross correlation study. The objective of the project is to enhance the Master Event algorithm and to reanalyze 10 years of waveform data from the International Monitoring System (IMS) network thanks to a dedicated HPC infrastructure operated by the "Centre de Calcul Recherche et Technologie" at the CEA of Bruyères-le-Châtel. The dataset used for the demonstrator includes more than 300,000 seismic events, tens of millions of raw detections and more than 30 terabytes of continuous seismic data from the primary IMS stations. In this talk, we will present the Master Event algorithm and the associated workflow, we will give an overview of the designed technical solutions (from the building blocks to the global infrastructure), and we will show the preliminary results at a regional scale.

  19. Leverage points for improving global food security and the environment.

    PubMed

    West, Paul C; Gerber, James S; Engstrom, Peder M; Mueller, Nathaniel D; Brauman, Kate A; Carlson, Kimberly M; Cassidy, Emily S; Johnston, Matt; MacDonald, Graham K; Ray, Deepak K; Siebert, Stefan

    2014-07-18

    Achieving sustainable global food security is one of humanity's contemporary challenges. Here we present an analysis identifying key "global leverage points" that offer the best opportunities to improve both global food security and environmental sustainability. We find that a relatively small set of places and actions could provide enough new calories to meet the basic needs for more than 3 billion people, address many environmental impacts with global consequences, and focus food waste reduction on the commodities with the greatest impact on food security. These leverage points in the global food system can help guide how nongovernmental organizations, foundations, governments, citizens' groups, and businesses prioritize actions. PMID:25035492

  20. SAGE: A Logical Agent-Based Environment Monitoring and Control System

    E-print Network

    Clark, Keith L.

    SAGE: A Logical Agent-Based Environment Monitoring and Control System Krysia Broda1 , Keith Clark1 London www.ucl.ac.uk/infostudies/rob-miller/ rsm@ucl.ac.uk Abstract. We propose SAGE, an agent-based environment monitor- ing and control system based on computation logic. SAGE uses forward chaining deductive

  1. A novel design of water environment monitoring system based on WSN

    Microsoft Academic Search

    Ning Jin; Renzhi Ma; Yunfeng Lv; Xizhong Lou; Qingjian Wei

    2010-01-01

    The importance of maintaining good water environment highlights the increasing need for advanced technologies. This paper proposes a novel design of water environment monitoring system based on wireless sensor networks (WSN). The system consists of three parts: sensor nodes; sink nodes and data monitoring center. The sensor nodes can be constructed with arbitrary parameter or multi-parameter sensor modules such as

  2. The use of differentially corrected global positioning system to monitor activities of cattle at pasture

    Microsoft Academic Search

    Eva Schlecht; Christian Hülsebusch; Friedrich Mahler; Klaus Becker

    2004-01-01

    Global positioning system (GPS) technology is increasingly applied in livestock science to monitor pasture use and tracking routes, and is often combined with equipment for monitoring animal activity. As GPS data are referenced in time and space, it is hypothesised that parameters derived there from, such as distance travelled and aerial distance between the first and last point of a

  3. Monitoring global change with phenology: The case of the spring green wave

    Microsoft Academic Search

    Mark D. Schwartz

    1994-01-01

    The centuries-old practice of recording plant and animal events that take place at specific times each year (phenology) should play an important role in monitoring mid-latitude global changes. At least three problems related to the detection of biosphere changes could be investigated using this information. Firstly, the technique can be generalized from the local to global scale. Secondly, an integrated

  4. LOW-COST LONG-TERM MONITORING OF GLOBAL CLIMATE FORCINGS AND FEEDBACKS

    E-print Network

    Fridlind, Ann

    LOW-COST LONG-TERM MONITORING OF GLOBAL CLIMATE FORCINGS AND FEEDBACKS J. HANSEN, W. ROSSOW, B-term global temperature change. Our discussion is based on a more detailed study and workshop report (Hansen, and there are many aspects of climate change with practical importance. Without prejudice to other issues, this paper

  5. Genotoxicity monitoring of freshwater environments using caged crayfish (Astacus leptodactylus).

    PubMed

    Klobu?ar, Göran I V; Malev, Olga; Šrut, Maja; Štambuk, Anamaria; Lorenzon, Simonetta; Cvetkovi?, Želimira; Ferrero, Enrico A; Maguire, Ivana

    2012-03-01

    Genotoxicity of freshwater pollution was assessed by measuring DNA damage in haemocytes of caged freshwater crayfish Astacus leptodactylus by the means of Comet assay and micronucleus test, integrated with the measurements of physiological (total protein concentration) and immunological (total haemocyte count) haemolymph parameters as biomarkers of undergone stress. Crayfish were collected at the reference site (River Mrežnica) and exposed in cages for 1 week at three polluted sites along the Sava River (Zagreb, Sisak, Krapje). The long term pollution status of these locations was confirmed by chemical analyses of sediments. Statistically significant increase in DNA damage measured by the Comet assay was observed at all three polluted sites comparing to the crayfish from reference site. In addition, native crayfish from the mildly polluted site (Krapje) cage-exposed on another polluted site (Zagreb) showed lower DNA damage than crayfish from the reference site exposed at the same location indicating adaptation and acclimatisation of crayfish to lower levels of pollution. Micronuclei induction showed similar gradient of DNA damage as Comet assay, but did not reach the statistical significance. Observed increase in total haemocyte count and total protein content in crayfish from polluted environments in the Sava River also confirmed stress caused by exposure to pollution. The results of this study have proved the applicability of caging exposure of freshwater crayfish A. leptodactylus in environmental genotoxicity monitoring using Comet assay and micronucleus test. PMID:22178377

  6. MONITORING ECOSYSTEMS FROM SPACE: THE GLOBAL FIDUCIALS PROGRAM

    EPA Science Inventory

    Images from satellites provide valuable insights to changes in land-cover and ecosystems. Long- term monitoring of ecosystem change using historical satellite imagery can provide quantitative measures of ecological processes and allows for estimation of future ecosystem condition...

  7. Global nuclear material monitoring with NDA and C/S data through integrated facility monitoring

    SciTech Connect

    Howell, J.A.; Menlove, H.O.; Argo, P.; Goulding, C.; Klosterbuer, S.; Halbig, J.

    1996-09-01

    This paper focuses on a flexible, integrated demonstration of a monitoring approach for nuclear material monitoring. This includes aspects of item signature identification, perimeter portal monitoring, advanced data analysis, and communication as a part of an unattended continuous monitoring system in an operating nuclear facility. Advanced analysis is applied to the integrated nondestructive assay and containment and surveillance data that are synchronized in time. End result will be the foundation for a cost-effective monitoring system that could provide the necessary transparency even in areas that are denied to foreign nationals of both US and Russia should these processes and materials come under full-scope safeguards or bilateral agreements. Monitoring systems of this kind have the potential to provide additional benefits including improved nuclear facility security and safeguards and lower personnel radiation exposures. Demonstration facilities in this paper include VTRAP-prototype, Los Alamos Critical Assemblies Facility, Kazakhstan BM-350 Reactor monitor, DUPIC radiation monitoring, and JOYO and MONJU radiation monitoring.

  8. Characterizing noise in the global nuclear weapon monitoring system

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-03-01

    Under the auspices of the Comprehensive Nuclear-Test-Ban Treaty Organization, a worldwide monitoring system designed to detect the illegal testing of nuclear weaponry has been under construction since 1999. The International Monitoring System is composed of a range of sensors, including detectors for hydroacoustic and seismic signals, and when completed, will include 60 infrasound measurement arrays set to detect low-frequency sound waves produced by an atmospheric nuclear detonation.

  9. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    PubMed Central

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  10. Applications of wireless sensor networks in marine environment monitoring: a survey.

    PubMed

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  11. Geostationary Environment Monitoring Spectrometer (gems) Over the Korea Peninsula and Asia-Pacific Region

    NASA Astrophysics Data System (ADS)

    Lasnik, J.; Stephens, M.; Baker, B.; Randall, C.; Ko, D. H.; Kim, S.; Kim, Y.; Lee, E. S.; Chang, S.; Park, J. M.; SEO, S. B.; Youk, Y.; Kong, J. P.; Lee, D.; Lee, S. H.; Kim, J.

    2014-12-01

    Introduction: The Geostationary Environment Monitoring Spectrometer (GEMS) is one of two instruments manifested aboard the South Korean Geostationary Earth Orbit KOrea Multi-Purpose SATellite-2B (GEO-KOMPSAT-2B or GK2B), which is scheduled to launch in 2018. Jointly developed/built by KARI and Ball Aerospace, GEMS is a geostationary UV-Vis hyperspectral imager designed to monitor trans-boundary tropospheric pollution events over the Korean peninsula and Asia-Pacific region. The spectrometer provides high temporal and spatial resolution (3.5 km N/S by 7.2 km E/W) measurements of ozone, its precursors, and aerosols. Over the short-term, hourly measurements by GEMS will improve early warnings for potentially dangerous pollution events and monitor population exposure. Over the 10-year mission-life, GEMS will serve to enhance our understanding of long-term climate change and broader air quality issues on both a regional and global scale. The GEMS sensor design and performance are discussed, which includes an overview of measurement capabilities and the on-orbit concept of operations. GEMS Sensor Overview: The GEMS hyperspectral imaging system consists of a telescope and Offner grating spectrometer that feeds a single CCD detector array. A spectral range of 300-500 nm and sampling of 0.2 nm enables NO2, SO2, HCHO, O3, and aerosol retrieval. The GEMS field of regard (FOR), which extends from 5°S to 45°N in latitude and 75°E to 145°E in longitude, is operationally achieved using an onboard two-axis scan mirror. On-orbit, the radiometric calibration is maintained using solar measurements, which are performed using two onboard diffusers: a working diffuser that is deployed routinely for the purpose of solar calibration, and a reference diffuser that is deployed sparingly for the purpose of monitoring working diffuser performance degradation.

  12. Ocean Acidification: The Newest Threat to the Global Environment

    Microsoft Academic Search

    Tasneem Abbasi; S. A. Abbasi

    2011-01-01

    Ocean acidification is the newest global environmental threat confronting the earth. It is the consequence of the same anthropogenic excess that is responsible for global warming—release of much more CO2 at much faster rates, minute after minute, than the earth's capability to assimilate. Considering that oceans cover almost 70% of the earth's surface, any upset in the balance of forces

  13. Global collaborative engineering environment for integrated product development

    Microsoft Academic Search

    Arturo Molina; Joaquín Aca; Paul K. Wright

    2005-01-01

    Globalization has created a situation of increased international competition, which has put companies under enormous pressure in order to sustain and improve their value added to customers based on mass customization and time-to-market opportunities. This has lead to more international collaboration within companies and their different facilities worldwide, or among different companies in global supply chains. In this scenario the

  14. Global Environmental Micro Sensors Test Operations in the Natural Environment

    NASA Technical Reports Server (NTRS)

    Adams, Mark L.; Buza, Matthew; Manobianco, John; Merceret, Francis J.

    2007-01-01

    ENSCO, Inc. is developing an innovative atmospheric observing system known as Global Environmental Micro Sensors (GEMS). The GEMS concept features an integrated system of miniaturized in situ, airborne probes measuring temperature, relative humidity, pressure, and vector wind velocity. In order for the probes to remain airborne for long periods of time, their design is based on a helium-filled super-pressure balloon. The GEMS probes are neutrally buoyant and carried passively by the wind at predetermined levels. Each probe contains onboard satellite communication, power generation, processing, and geolocation capabilities. ENSCO has partnered with the National Aeronautics and Space Administration's Kennedy Space Center (KSC) for a project called GEMS Test Operations in the Natural Environment (GEMSTONE) that will culminate with limited prototype flights of the system in spring 2007. By leveraging current advances in micro and nanotechnology, the probe mass, size, cost, and complexity can be reduced substantially so that large numbers of probes could be deployed routinely to support ground, launch, and landing operations at KSC and other locations. A full-scale system will improve the data density for the local initialization of high-resolution numerical weather prediction systems by at least an order of magnitude and provide a significantly expanded in situ data base to evaluate launch commit criteria and flight rules. When applied to launch or landing sites, this capability will reduce both weather hazards and weather-related scrubs, thus enhancing both safety and cost-avoidance for vehicles processed by the Shuttle, Launch Services Program, and Constellation Directorates. The GEMSTONE project will conclude with a field experiment in which 10 to 15 probes are released over KSC in east central Florida. The probes will be neutrally buoyant at different altitudes from 500 to 3000 meters and will report their position, speed, heading, temperature, humidity, and pressure via satellite. The GEMS data will be validated against reference observations provided by current weather instrumentation located at KSC. This paper will report on the results of the GEMSTONE project and discuss the challenges encountered in developing an airborne sensor system.

  15. Using Global Positioning System techniques in landslide monitoring

    Microsoft Academic Search

    Josep A. Gili; Jordi Corominas; Joan Rius

    2000-01-01

    The precise determination of point coordinates with conventional Global Positioning System (GPS) techniques often required observation times of one to several hours. In the last few years, new GPS methods have been developed (among them, the fast-static and real time kinematic), with higher productivity and good theoretical precision. The main objective of this paper is to ascertain the performance of

  16. Spot4 vegetation instrument: Vegetation monitoring on a global scale

    Microsoft Academic Search

    J.-P. Durpaire; T. Gentet; T. Phulpin; M. Arnaud

    1995-01-01

    Vegetation plays a major role in global climatic change. It is a major contributor to the hydrological cycle and carbon exchanges between the Earth's surface and the atmosphere. A new space-based system dedicated to vegetation would be a boom to climatic and environmental studies. The additional possibilities of evaluating agricultural, pasture and forest production would be major contributions to improved

  17. Global Hawk monitors hurricane eye wall development - Duration: 41 seconds.

    NASA Video Gallery

    The Global Hawk UAV flies over Hurricane Karl to reveal a hot tower. Red shows reflectivity that is 12 km from the surface, orange is 10 km, yellow is 7.5 km, green is 6 km, and blue is under 6 km....

  18. Application of the Open Software Foundation (OSF)distributed computing environment to global PACS

    NASA Astrophysics Data System (ADS)

    Martinez, Ralph; Alsafadi, Yasser H.; Kim, Jinman

    1994-05-01

    In this paper, we present our approach to developing Global Picture Archiving and Communication System (GPACS) applications using the Open Software Foundation (OSF) Distributed Computing Environment (DCE) services and toolkits. The OSF DCE services include remote procedure calls, naming service, threads service, time service, file management services, and security service. Several OSF DCE toolkits are currently available from computer and software vendors. Designing distributed Global PACS applications using the OSF DCE approach will feature an open architecture, heterogeneity, and technology independence for GPACS remote consultation and diagnosis applications, including synchronized image annotation, and system privacy and security. The applications can communicate through various transport services and communications networks in a Global PACS environment. The use of OSF DCE services for Global PACS will enable us to develop a robust distributed structure and new user services which feature reliability and scalability for Global PACS environments.

  19. Flood monitoring for ungauged rivers: the power of combining space-based monitoring and global forecasting models

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Netgeka, Victor; Raynaud, Damien; Thielen, Jutta

    2013-04-01

    Flood warning systems typically rely on forecasts from national meteorological services and in-situ observations from hydrological gauging stations. This capacity is not equally developed in flood-prone developing countries. Low-cost satellite monitoring systems and global flood forecasting systems can be an alternative source of information for national flood authorities. The Global Flood Awareness System (GloFAS) has been develop jointly with the European Centre for Medium-Range Weather Forecast (ECMWF) and the Joint Research Centre, and it is running quasi operational now since June 2011. The system couples state-of-the art weather forecasts with a hydrological model driven at a continental scale. The system provides downstream countries with information on upstream river conditions as well as continental and global overviews. In its test phase, this global forecast system provides probabilities for large transnational river flooding at the global scale up to 30 days in advance. It has shown its real-life potential for the first time during the flood in Southeast Asia in 2011, and more recently during the floods in Australia in March 2012, India (Assam, September-October 2012) and Chad Floods (August-October 2012).The Joint Research Centre is working on further research and development, rigorous testing and adaptations of the system to create an operational tool for decision makers, including national and regional water authorities, water resource managers, hydropower companies, civil protection and first line responders, and international humanitarian aid organizations. Currently efforts are being made to link GloFAS to the Global Flood Detection System (GFDS). GFDS is a Space-based river gauging and flood monitoring system using passive microwave remote sensing which was developed by a collaboration between the JRC and Dartmouth Flood Observatory. GFDS provides flood alerts based on daily water surface change measurements from space. Alerts are shown on a world map, with detailed reports for individual gauging sites. A comparison of discharge estimates from the Global Flood Detection System (GFDS) and the Global Flood Awareness System (GloFAS) with observations for representative climatic zones is presented. Both systems have demonstrated strong potential in forecasting and detecting recent catastrophic floods. The usefulness of their combined information on global scale for decision makers at different levels is discussed. Combining space-based monitoring and global forecasting models is an innovative approach and has significant benefits for international river commissions as well as international aid organisations. This is in line with the objectives of the Hyogo and the Post-2015 Framework that aim at the development of systems which involve trans-boundary collaboration, space-based earth observation, flood forecasting and early warning.

  20. Monitoring and predicting natural hazards in the environment

    Microsoft Academic Search

    Robert Bogue

    2012-01-01

    Purpose – This paper aims to provide a technical insight into the sensors and systems used to monitor and forecast certain natural hazards. Design\\/methodology\\/approach – Following a short introduction, this paper describes the systems used to monitor and forecast earthquakes, tsunamis, hurricanes and tornadoes. The sensors used in these systems are considered in detail and some experimental techniques are also

  1. The Application of the DMC Strategy and Experience to Provide Additional Support to a European Global Monitoring System Programme

    NASA Astrophysics Data System (ADS)

    Cutter, M. A.; Giwa, S. C.; Graham, K. L.; Hodgson, D. J.; Mackin, S.; Sweeting, M. N.; Vanotti, M.; Regan, A.

    2008-08-01

    Surrey Satellite Technology Ltd has reviewed the ability of small satellites to provide additional capability to the presently defined Global Monitoring for Environment and Security (GMES) space segment, allowing the broadest set of user requirements to be met. User- focused services have been compared with the instruments defined for the currently proposed Sentinels. SSTL has developed the Disaster Monitoring Constellation (DMC) of small satellites at a very low cost, which provide land-focused data products in the visible wavebands with daily access capability. The study undertaken by SSTL for the European Space Agency analysed the DMC operational concept in a GMES context, reviewing a range of possible services with different payload configurations on small satellite platforms. One concept was selected and an appropriate payload definition derived. The chosen mission concept was based on the provision of near time operational oceanography information using a constellation of small satellites. The aim is to provide sea surface height, significant wave height and wind speed.

  2. Global inland water monitoring from multi-mission altimetry

    Microsoft Academic Search

    P. A. M. Berry; J. D. Garlick; J. A. Freeman; E. L. Mathers

    2005-01-01

    By “illuminating” the Earth's inland water surfaces with radar altimeter data from the ERS-1 Geodetic Mission, a global waveform analysis has shown that over 50% of echoes from even the largest lake targets are non-ocean-like in character. This paper shows that by retracking multi-mission altimeter data, height data can be obtained from the vast majority of lakes with surface area

  3. Executive Perceptions on International Education in a Globalized Environment: The Travel Industry's Point of View

    ERIC Educational Resources Information Center

    Munoz, J. Mark; Katsioloudes, Marios I.

    2004-01-01

    Research on globalization has determined travel executives' perceptions of the psychological implications brought about by an interconnected global environment and the implications on international education. With the concepts of Clyne and Rizvi (1998) and Pittaway, Ferguson, and Breen (1998) on the value of cross-cultural interaction as a…

  4. Sustaining Breakthrough Research in a Changing Global Environment

    NASA Astrophysics Data System (ADS)

    Feist, Thomas

    2006-03-01

    As companies face ever-increasing economic and competitive pressures, the imperative to deliver real, sustained growth through innovation is clear. Corporations need to develop and maintain a research and development portfolio that recognizes this reality. This talk examines how General Electric's Global Research Center is implementing a technology portfolio that balances long- and shorter-term R&D across four global facilities. Examples from medical imaging and energy business segments will be used to illustrate strategies for delivering growth through sustained investment in technology.

  5. Acting Globally While Thinking Locally: Is the Global Environment Protected by Transport Emission Control Programs?

    Microsoft Academic Search

    Gunnar S. Eskeland; Jian Xie

    1998-01-01

    September 1998Locally motivated air quality programs have only minor collateral benefits for the global climate. If agencies with global and local agendas did business together, then individuals and firms-and even cities-would act globally when thinking locally, and one would see greater synergy.Eskeland and Xie find that locally motivated air quality programs for urban transport have limited collateral benefits in terms

  6. Global Understanding Environment: Applying Semantic Web to Industrial Automation

    Microsoft Academic Search

    Vagan Terziyan; Artem Katasonov

    Industry pushes a new type of Internet characterized as the Internet of Things, which represents a fusion of the physical and digital worlds. The technology of Internet of Things opens new horizons for industrial automation, i. e. automated monitoring, control, maintenance planning, etc, of industrial resources and processes. Internet of Things definitely needs explicit semantics, even more than traditional Web-for

  7. Veterinary medicine, food security and the global environment

    Microsoft Academic Search

    A. M. Kelly; R. R. Marshak

    Summary The authors focus on the role of veterinary medicine in feeding the nine billion people projected to inhabit the planet by 2050, despite the problems of global warming, political constraints and environmental destruction. Population growth, predominantly urban, will occur mainly in developing countries, at a magnitude comparable to creating a city the size of Los Angeles, the second largest

  8. Introduction With alterations in local environments associated with global

    E-print Network

    Harvell, Catherine Drew

    corals on a global scale: bleaching and disease. Coral bleaching is characterized by the loss of most of the coral's algal symbionts and/or their associated pigments (Brown, 1997). Bleaching can take place during may enhance their survival (Peck, 2008). Corals are extremely sensitive to environmental factors

  9. Globally Consistent Range Scan Alignment for Environment Mapping

    Microsoft Academic Search

    Feng Lu; Evangelos E. Milios

    1997-01-01

    A robot exploring an unknown environmentmay need to build a world model from sensormeasurements. In order to integrate all the frames of sensor data, it is essential to align thedata properly. An incremental approach has been typically used in the past, in which eachlocal frame of data is aligned to a cumulative global model, and then merged to the model.Because

  10. A Global Overview: Trends in Environment and Development.

    ERIC Educational Resources Information Center

    Paden, Mary E.

    1991-01-01

    The conditions and trends for four clusters of global issues--the air and the sky, the fishes and the sea, the creatures and the land, and people and poverty--are presented. The topics of climate change, the ozone hole, air pollution, biological diversity, deforestation, and desertification are discussed. (KR)

  11. Approach on Global Environment Preservation by Wastewater Treatment

    Microsoft Academic Search

    Hiroki Nakamura; Makoto Onishi; Kiyokazu Takemura; Mitsuo Kunii

    OVERVIEW: The Hitachi Group is developing three key wastewater- treatment technologies, which contribute to global environmental protection, and promoting their deployment around the world. As for the first technology, a nitrogen-removal system using entrapped immobilized microorganisms, making use of its excellent nitrification performance, its application to treatment of household sewage and industrial effluent in China is targeted. In regard to

  12. Applications of Global Earth Observations for Natural Hazards (Flood and Landslide) Monitoring and Prediction (Invited)

    Microsoft Academic Search

    Y. Hong; J. Wang; R. F. Adler; D. B. Kirschbaum; F. S. Policelli; S. Habib; D. Irwin

    2009-01-01

    Floods and associated storm-triggered landslides affect more people than many other types of natural disasters around the world. This talk will review NASA Global Hazard System (GHS) that continuously assimilates near real-time multi-satellite observations to monitor and forecast floods and landslides on a global basis. This talk will also present regional applications of a high-definition GHS version for decision-making support

  13. A Review of Global Learning & Observations to Benefit the Environment (GLOBE)

    ERIC Educational Resources Information Center

    Executive Office of the President, 2010

    2010-01-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide, hands-on, primary and secondary school-based science and education program. GLOBE supports students, teachers, and scientists in collaborations using inquiry-based investigations of the environment and the earth system. GLOBE currently works in close…

  14. School Projects for Monitoring the State of the Marine Environment.

    ERIC Educational Resources Information Center

    Benkendorff, Kirsten

    Australia's marine environment hosts a high level of diverse endemic species along with some of the highest biodiversity in the world. Two-thirds of the population of Australia are living in coastal areas and can be considered a threat to marine life which is very vulnerable to human impacts. Although marine environments conserve high economic…

  15. The Monitoring of the Network Traffic Based On Queuing Theory and Simulation in Heterogeneous Network Environment

    Microsoft Academic Search

    Seyed Hossein Kamali; Maysam Hedayati; Abdol Said Izadi; Hamid Reza Hoseiny

    2009-01-01

    This paper evaluate and estimate the monitoring of the network traffic based on queuing theory in heterogeneous environment the monitoring of network traffic is necessary for evaluating of efficiency and confidence from constant operations of network which we discuss the performance and prediction of network traffic management and will give a suggestion for control the performance of work traffic based

  16. Problems of monitoring the environment of the shallow nearshore zone of the Volga mouth

    SciTech Connect

    Krasnozhon, G.F.; Konyushko, V.S.

    1987-11-01

    This article describes problems involved in monitoring the environment of the Volga River delta from the standpoints of drainage and flooding behavior, pollutant concentration and transport, eutrophication, water quality, water current regimes, and bioproductivity. It also discusses monitoring strategies ranging from chemical methods to satellite surveys and calls for a comprehensive water management and planning program for the area.

  17. Project Title: Air Quality Monitoring in the Coastal Environment of Miami Professor's name: Xinrong Ren________________________________________ ______ _

    E-print Network

    Miami, University of

    Project Title: Air Quality Monitoring in the Coastal Environment of Miami Professor's name: Xinrong Key), 4600 Rickenbaker Causeway, Miami, FL 33149_______ Phone: 305-421-4786 Email: xren@rsmas.miami.edu _____________________ _ Description of project: In this project, the air quality in Miami has been monitored continuously

  18. Monitoring of breath sound under daily environment by ceiling dome microphone

    Microsoft Academic Search

    Yoshifumi NISHIDA; Toshio HORI; Takashi SUEHIRO; Shigeoki HIRAI

    2000-01-01

    This paper proposes a new method for monitoring normal breath sounds in a daily environment where many kinds of noises exist. In a typical conventional breath monitor, a thermistor, an accelerometer, or a contact-type microphone must be attached directly to a person's body such as a part around the nose and the mouth, or a part over the chest wall

  19. Monitoring the abundance of plastic debris in the marine environment

    PubMed Central

    Ryan, Peter G.; Moore, Charles J.; van Franeker, Jan A.; Moloney, Coleen L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally. PMID:19528052

  20. Design and Implementation of Production Environment Monitoring System Based on GPRS-Internet

    Microsoft Academic Search

    Lei Wu; Jie Hu

    2010-01-01

    In this paper, A production environment monitoring system based on GPRS-Internet was designed and implemented. The system uses ARM9 embedded CPU as its host and realizes monitoring function and man-machine interface by using cross-platform C++ graphic interface library Qt in Linux OS. It sends collected data to remote server by GPRS model and clients realize real-time and long distance monitoring

  1. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    PubMed Central

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  2. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    PubMed

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  3. Food Systems Change and the Environment: Local and Global Connections

    Microsoft Academic Search

    Darcy A. FreedmanKimberly; Kimberly D. Bess

    2011-01-01

    Making changes to the way food is produced, distributed, and processed is one strategy for addressing global climate change.\\u000a In this case study, we examine the “forming” stage of an emergent and locally-based coalition that is both participatory and\\u000a focused on promoting food security by creating food systems change. Social network analysis is used to compare network density,\\u000a centrality, and

  4. Precise monitoring of global temperature trends from satellites

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Christy, John R.

    1990-01-01

    Passive microwave radiometry from satellites provides more precise atmospheric temperature information than that obtained from the relatively sparse distribution of thermometers over the earth's surface. Accurate global atmospheric temperature estimates are needed for detection of possible greenhouse warming, evaluation of computer models of climate change, and for understanding important factors in the climate system. Analysis of the first 10 years (1979 to 1988) of satellite measurements of lower atmospheric temperature changes reveals a monthly precision of 0.01 C, large temperature variability on time scales from weeks to several years, but no obvious trend for the 10-year period. The warmest years, in descending order, were 1987, 1988, 1983, and 1980. The years 1984, 1985, and 1986 were the coolest.

  5. Glacial and periglacial environment monitoring in Aosta Valley - Northwestern Italian Alps

    NASA Astrophysics Data System (ADS)

    Motta, Elena; Cremonese, Edoardo; Morra di Cella, Umberto; Pogliotti, Paolo; Vagliasindi, Marco

    2010-05-01

    Aosta Valley is a small alpine region of about 3.300 km2 located in the NW Italy, on the southern side of the Alps and surrounded by the highest Alpine peaks such as Mont Blanc (4810m), Mont Rose (4634m) and Cervino (4478m), More than 50% of the territory has an elevation above 2000 metres asl. High mountain, glacial and periglacial environments cover a significant part of the territory. As the cryosphere is strongly sensitive to climate change, global warming effects are particularly evident in this alpine region, and they often affect environment and social and economic life, thus representing a key issue for politicians and people working and living in the valley. Among these effects, some of the most important are the decrease of water storage due to glaciers retreat and the increasing natural hazards as a consequence of rapid environmental dynamics. Hence the importance of monitoring glacial and periglacial environment, in order to quantify effects of climate change, to detect new dynamics and to manage consequences on the environment and the social life. In Aosta Valley the understanding of these phenomena is carried out by means of several actions, both at a regional scale and on specific representative sites. A multi-temporal analysis of aerial photographs, orthophotos and satellite imagery allows to detect glaciers evolution trend at a regional scale. All this information is collected in a Regional Glacier inventory, according to the World Glaciers Inventory standard and recommendations. Analysis of the information collected in the Inventory show that the total area presently covered by glaciers is about 135 km2; area changes occurred in the past has been about -44.3 km2, and -17 km2. between 1975 and 2005. Glacier inventory also gathers - for each of the about 200 glaciers - morphological data, information about events and photos both historical and present. Glacier mass balance (the difference resulting from the mass gained by the glacier through the winter/spring precipitations and the mass lost during the summer by snow and ice melting) strictly depends on climatic condition, so its long-term monitoring is a very reliable indicator. In Aosta Valley, yearly mass balance of some important glaciers that have lost significant mass since 2000 is measured. Timorion Glacier 0,5 Km² , 3.100 - 3.450 m, north face, Gran Paradiso Massif) is monitored since 2001; Rutor Glacier (8 Km², 2.700 - 3.400 m, north face) since 2004. Two more glaciers, in the Mont Rose and Mont Blanc Massif respectively, have been recently added to this measurement. The traditional method (with ablation stakes and snow pits) is applied. Glacier is a fundamental water reservoir and climate change can negatively affect water availability. The temporal evolution dynamics is an issue of increasing importance. For this reasons from 2006, ARPA VdA has developed modelling activities to monitor Snow Water Equivalent (SWE) distribution and glacier evolution at the medium basin scale (120 Km²) for hydro-power production optimization.

  6. Monitoring anthropogenic radioactivity in salt marsh environments through in situ gamma-ray spectrometry

    Microsoft Academic Search

    Andrew N. Tyler

    1999-01-01

    Radionuclide bearing effluents discharged into the Irish Sea have resulted in the accumulation of radionuclides in salt marsh environments which can contribute to critical group exposures. Recent developments in in situ gamma-ray spectrometry provide a novel and effective method for monitoring anthropogenic radionuclide concentrations and distributions within these coastal environments. This paper presents the results from an in situ survey

  7. An automatic meteorological data collection system that is installed at Global Positioning System monitoring stations

    Microsoft Academic Search

    E. D. Michelena; S. I. Gutman

    2002-01-01

    The Demonstration Division of NOAA's Forecast Systems Laboratory is conducting a long-term experiment to test the effectiveness of using the precise geodetic position measurements made by a network of Global Positioning System monitoring stations to determine the total amount of water vapor contained in the sectional volume of the atmosphere above each station. By knowing the exact position of the

  8. Determinants and Effects of New Business Creation Using Global Entrepreneurship Monitor Data

    Microsoft Academic Search

    Rolf Sternberg; Sander Wennekers

    2005-01-01

    This paper is an introduction to the present special issue dedicated to scientific research using data collected as part of the Global Entrepreneurship Monitor (GEM) and considering new venture creation as the hallmark of entrepreneurship. After a short description of GEM’s theoretical and methodological background, this introduction highlights the main results of seven papers which were presented at the First

  9. Pluto and Charon with HST I: Monitoring Global Change and Improved Surface Properties from Lightcurves

    E-print Network

    Young, Leslie A.

    Pluto and Charon with HST I: Monitoring Global Change and Improved Surface Properties from to Astronomical Journal #12;­ 2 ­ ABSTRACT We present new lightcurve measurements of Pluto and Charon taken of Pluto show that the lightcurve amplitude has decreased since the mutual event season in the late 1980's

  10. Early drought detection, monitoring, and assessment of crop losses from space: global approach

    Microsoft Academic Search

    Felix Kogan

    2006-01-01

    With nearly 30 years of the accumulated AVHRR data which were collected from NOAA operational polar-orbiting environmental satellites, the area of their applications expanded in the direction of agricultural production modeling, understanding of climate and global change, resource management, and early and more efficient monitoring of the environmental impacts (especially droughts) on economy and society. This becomes possible due to

  11. Global Drought Monitoring and Forecasting based on Satellite Data and Land Surface Modeling

    Microsoft Academic Search

    J. Sheffield; D. B. Lobell; E. F. Wood

    2010-01-01

    Monitoring drought globally is challenging because of the lack of dense in-situ hydrologic data in many regions. In particular, soil moisture measurements are absent in many regions and in real time. This is especially problematic for developing regions such as Africa where water information is arguably most needed, but virtually non-existent on the ground. With the emergence of remote sensing

  12. Evaluation of Global Ozone Monitoring Experiment (GOME) ozone profiles from nine different algorithms

    Microsoft Academic Search

    Y. J. Meijer; D. P. J. Swart; F. Baier; P. K. Bhartia; G. E. Bodeker; S. Casadio; K. Chance; F. Del Frate; T. Erbertseder; M. D. Felder; L. E. Flynn; S. Godin-Beekmann; G. Hansen; O. P. Hasekamp; A. Kaifel; H. M. Kelder; B. J. Kerridge; J.-C. Lambert; J. Landgraf; B. Latter; X. Liu; I. S. McDermid; Y. Pachepsky; V. Rozanov; R. Siddans; S. Tellmann; R. J. van der A; R. F. van Oss; M. Weber; C. Zehner

    2006-01-01

    An evaluation is made of ozone profiles retrieved from measurements of the nadir-viewing Global Ozone Monitoring Experiment (GOME) instrument. Currently, four different approaches are used to retrieve ozone profile information from GOME measurements, which differ in the use of external information and a priori constraints. In total nine different algorithms will be evaluated exploiting the optimal estimation (Royal Netherlands Meteorological

  13. Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME)

    E-print Network

    Chance, Kelly

    Experiment (GOME) observations of HCHO columns Michael P. Barkley,1 Paul I. Palmer,1 Uwe Kuhn,2,3 Juergen of formaldehyde (HCHO) from the Global Ozone Monitoring Experiment (GOME) satellite instrument, the GEOS concentration profiles of isoprene and HCHO, and GOME HCHO column data (r = 0.41; bias = +35%), but has less

  14. Gene-environment interaction and biological monitoring of occupational exposures

    SciTech Connect

    Hirvonen, Ari [Finnish Institute of Occupational Health, Topeliuksenkatu 41 a A, 00250 Helsinki (Finland)]. E-mail: Ari.Hirvonen@ttl.fi

    2005-09-01

    Biological monitoring methods and biological limit values applied in occupational and environmental medicine have been traditionally developed on the assumption that individuals do not differ significantly in their biotransformation capacities. It has become clear, however, that this is not the case, but wide inter-individual differences exist in the metabolism of chemicals. Integration of the data on individual metabolic capacity in biological monitoring studies is therefore anticipated to represent a significant refinement of the currently used methods. We have recently conducted several biological monitoring studies on occupationally exposed subjects, which have included the determination of the workers' genotypes for the metabolic genes of potential importance for a given chemical exposure. The exposure levels have been measured by urine metabolites, adducts in blood macromolecules, and cytogenetic alterations in lymphocytes. Our studies indicate that genetic polymorphisms in metabolic genes may indeed be important modifiers of individual biological monitoring results of, e.g., carbon disulphide and styrene. The information is anticipated to be useful in insuring that the workplace is safe for everyone, including the most sensitive individuals. This knowledge could also be useful to occupational physicians, industrial hygienists, and regulatory bodies in charge of defining acceptable exposure limits for environmental and/or occupational pollutants.

  15. Monitoring of the quality of the marine environment,

    E-print Network

    interactions 1. Developing a strategy for seabed mapping at different spatial scales 13 1.1 Introduction 13 1 and discussion 47 5.3 Conclusions 51 Resource management 6. Seabed habitat mapping: a useful tool for monitoring and discussion 67 10. Distribution of seabed litter at coastal and offshore sites around England and Wales 68 10

  16. Mobile monitoring and embedded control system for factory environment.

    PubMed

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-01-01

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642

  17. Mobile Monitoring and Embedded Control System for Factory Environment

    PubMed Central

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-01-01

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642

  18. Countermeasures for mitigating the effects of global environment changes

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1991-01-01

    Environmental countermeasures for preventing the negative effects of global climate change and ozone depletion are discussed with special emphasis on the possibilities of space-based actions. Among the programs addressed are the Mission to Planet Earth, the Solar Power Satellite (and linkage to the Space Exploration Initiative), and proposed projects such as a lunar-based power generator that utilizes He-3 as a fusion fuel when combined with deuterium. The concept of regional working groups is proposed for initiating the programs for effective countermeasures.

  19. Oversight role of the Independent Monitoring Board of the Global Polio Eradication Initiative.

    PubMed

    Rutter, Paul D; Donaldson, Liam J

    2014-11-01

    The Global Polio Eradication Initiative (GPEI) established its Independent Monitoring Board (IMB) in 2010 to monitor and guide its progress toward stopping polio transmission globally. The concept of an IMB is innovative, with no clear analogue in the history of the GPEI or in any other global health program. The IMB meets with senior program officials every 3-6 months. Its reports provide analysis and recommendations about individual polio-affected countries. The IMB also examines issues affecting the global program as a whole. Its areas of focus have included escalating the level of priority afforded to polio eradication (particularly by recommending a World Health Assembly resolution to declare polio eradication a programmatic emergency, which was enacted in May 2012), placing greater emphasis on people factors in the delivery of the program, encouraging innovation, strengthening focus on the small number of so-called sanctuaries where polio persists, and continuous quality improvement to reach every missed child with vaccination. The IMB's true independence from the agencies and countries delivering the program has enabled it to raise difficult issues that others cannot. Other global health programs might benefit from establishing similar independent monitoring mechanisms. PMID:25316831

  20. Monitoring the Environment in a Lava Tube with a Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Li, Y.; Jorgensen, A. M.; Wilson, J. L.; Rendon, N. M.

    2010-12-01

    Monitoring cave environments is important for several reasons. For instance, through the studies of cave environments, we can better protect cave ecology. Past experiments have monitored cave environments, although most of those were based on individual sensor nodes such as data loggers. In this paper we introduce and discuss a ZigBee wireless sensor network-based platform used for cave environment monitoring. The platform is based on a Freescale ZigBee evaluation kit. We carried out a proof-of-concept experiment in Junction Cave, a lava tube, at El Malpais National Monument in New Mexico. That experiment monitored temperature, humidity, and air turbulence inside the cave. The instrumentation consisted of a turbulence tower with five thermocouple-based sensors, reaching from the floor to the ceiling of the cave, temperature/humidity sensors distributed throughout the cave, and a low-power embedded Linux computer for data collection and storage. The experiment measured interesting air turbulence variations at different heights, which we related to to weather changes outside the cave and human activities inside the cave. The experiment also observed variations of air temperature at different locations inside the cave. In this presentation we will discuss the instrumentation as well as interpretations of the observations. The experiment demonstrated that a ZigBee wireless sensor network-based monitoring system is a potentially feasible platform for a cave environment monitoring system. We also found that network reliability, node cost, and power consumption need to be improved for future systems.

  1. MODVOLC: near-real-time thermal monitoring of global volcanism

    NASA Astrophysics Data System (ADS)

    Wright, Robert; Flynn, Luke P.; Garbeil, Harold; Harris, Andrew J. L.; Pilger, Eric

    2004-07-01

    MODVOLC is a non-interactive algorithm developed at the Hawaii Institute of Geophysics and Planetology (HIGP) that uses low spatial resolution (1-km pixel-size) infrared satellite data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) to map the global distribution of volcanic thermal anomalies in near-real-time. MODVOLC scans the Level-1B MODIS data stream, on a pixel-by-pixel basis, for evidence of pixel and sub-pixel-sized high-temperature radiators. Once a hot spot has been identified its details (location, emitted spectral radiance, time, satellite observation geometry) are written to ASCII text files and transferred via FTP to HIGP, from where the results are disseminated via the internet http://modis.higp.hawaii.edu). In this paper, we review the underlying principles upon which the algorithm is based before presenting some of the results and data that have been obtained since its inception. We show how MODVOLC reliably detects thermal anomalies at a large number of persistently and sporadically active volcanoes that encompass the full range of common eruptive styles including Erebus (Antarctica), Colima (México), Karymsky (Kamchatka), Popocatépetl (México), Etna (Italy), and Nyiragongo (Democratic Republic of Congo), amongst others. We also present a few cautionary notes regarding the limitations of the algorithm and interpretation of the data it provides.

  2. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    PubMed Central

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  3. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming.

    PubMed

    Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  4. Monitoring ocean heat content from the current generation of global ocean observing systems

    NASA Astrophysics Data System (ADS)

    von Schuckmann, K.; Sallée, J.-B.; Chambers, D.; Le Traon, P.-Y.; Cabanes, C.; Gaillard, F.; Speich, S.; Hamon, M.

    2013-06-01

    Variations in the world's ocean heat storage and its associated volume changes are a key factor to gauge global warming and to assess the Earth's energy budget. It is also directly link to sea level change, which has a direct impact on coastal populations. Understanding and monitoring heat and sea level change is therefore one of the major legacies of current global ocean observing systems. In this study, we present an inter-comparison of the three of these global ocean observing systems: the ocean temperature/salinity network Argo, the gravimeter GRACE and the satellite altimeters. Their consistency is investigated at global and regional scale during the period 2005-2010 of overlapping time window of re-qualified data. These three datasets allow closing the recent global ocean sea level budget within uncertainties. However, sampling inconsistencies need to be corrected for an accurate budget at global scale. The Argo network allows estimating global ocean heat content and global sea level and reveals a positive change of 0.5 ± 0.1W m-2 and 0.5 ± 0.1 mm yr-1 over the last 8 yr (2005-2012). Regional inter-comparison of the global observing systems highlights the importance of specific ocean basins for the global estimates. Specifically, the Indonesian Archipelago appears as a key region for the global ocean variability. Both the large regional variability and the uncertainties in the current observing systems, prevent us to shed light, from the global sea level perspective, on the climatically important deep ocean changes. This emphasises, once more, the importance of continuing sustained effort in measuring the deep ocean from ship platforms and by setting up a much needed automated deep-Argo network.

  5. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffe, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivpalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  6. STS-2, -3, -4 Induced Environment Contamination Monitor (ICEM)

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (editor)

    1983-01-01

    The second, third, and fourth space transportation system missions are described including the location of the IECM in the payload bay and the shuttle coordinate systems used. Measurement results from the three flights are given for each instrument with comparisons to original goals for preflight environment and induced environment contamination. These results include very low levels of molecular mass accumulation rates, absence of molecular films on optical samples, outgassing species above 50 amu undetectable generally low levels of on-orbit particulates, and decay rates for early mission water dump particulates. Results of exposure of several optical materials and coatings to atomic oxygen are also presented. From these results, it is concluded that the space shuttle met the established induced environment contamination goals.

  7. Electroencephalographic and evoked potential monitoring in the hyperbaric environment

    Microsoft Academic Search

    Gerhard Litscher; Gerhard Friehs; Helfrid Maresch; Gert Pfurtscheller

    1990-01-01

    The purpose of this study was to investigate brain bioelectrical activity during hyperbaric oxygenation by continuous and\\u000a simultaneous monitoring of electroenccphalographic and bimodal (auditory, somatosensory) evoked potentials. Multivariable\\u000a recordings (electroencephalogram, brainstem auditory evoked potentials, early somatosensory evoked potentials, heart rate,\\u000a heart rate variability, and transcutaneous partial pressure of oxygen) were measured with a new technique in 12 healthy male\\u000a volunteers

  8. Cellular biomarkers for monitoring estuarine environments: Transplanted versus native mussels

    Microsoft Academic Search

    M. Nigro; A. Falleni; I. Del Barga; V. Scarcelli; P. Lucchesi; F. Regoli; G. Frenzilli

    2006-01-01

    In developed countries, estuarine environments are often subjected to chemical pollution, whose biological impact is profitably evaluated by the use of multi-biomarker approaches on sentinel species. In this paper, we investigate genotoxicity and lysosomal alterations in the Mediterranean mussel (Mytilus galloprovincialis), from the estuary of the River Cecina (Tuscany, Italy), selected as “pilot basin” within the Water Frame Directive (2000\\/60

  9. A Mobile Sensor Network System for Monitoring of Unfriendly Environments

    PubMed Central

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-01-01

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  10. Effects of Wildland Fire on Regional and Global Carbon Stocks in a Changing Environment

    Microsoft Academic Search

    Susan G. Conard; Allen M. Solomon

    Every year tens of millions of hectares of forests, woodlands, and grasslands burn globally. Some are burned intentionally for land conversion, pasture renewal or hazard reduction, or wildlife habitat improvement, but most are burned by uncontrolled wildfire. Estimates of burned area available in the literature vary widely, but satellite-based remote sensing data are increasing the accuracy of monitoring active fire

  11. Aircraft takeoff performance monitoring in far-northern regions: An application of the global positioning system

    NASA Astrophysics Data System (ADS)

    Pinder, Shane Donald

    A design approach for an aircraft takeoff performance monitoring system (TOPMS) is described. In this approach, it is proposed that the Global Positioning System (GPS) in conjunction with a discrete Kalman Filter be used to determine aircraft acceleration, ground speed, and position relative to the end of the runway. A practical evaluation of the feasibility of this proposal showed clear superiority of a GPS-derived acceleration over a more traditional method employing accelerometers. This study found that, when compared to observations from carefully mounted accelerometers, the GPS-derived observation agreed to within 0.10 metres per second squared ninety percent of the time. Advantages of the GPS-derived observation included a modest noise level, insusceptibility to gravity and temperature-influenced variations, and far simplified mounting criteria. A theoretical dynamic model of an aircraft in contact with the ground was developed in consideration of factors pertaining to runways at far-northern Canadian airports. In the model, factors such as runway slope, wind velocity, wheel friction coefficient, and aircraft control settings were considered constant. While variability in any parameter considered constant by the model could influence the performance of a TOPMS, such variability was deemed beyond the scope of this preliminary investigation of a TOPMS designed specifically for the far-northern environment. A device containing a GPS receiver and data acquisition system was designed and certified, then installed in an aircraft operated by an airline servicing far-northern Canadian airports. The data collected in this manner were used to validate the theoretical model. It was concluded that a projection of displacement can be determined to within an uncertainty of fifteen metres in sufficient time to alert the pilot of an unsafe situation.

  12. Global Future: Time to Act. Report to the President on Global Resources, Environment and Population.

    ERIC Educational Resources Information Center

    Gillman, Katherine, Ed.; And Others

    This report presents recommendations and ideas for actions the United States could take, in concert with other nations, for a vigorous response to urgent global problems. The goal of the report is to further public discussion of these important issues and to offer ideas to government leaders who will be developing U.S. policy in the years ahead. A…

  13. Environment Environment

    E-print Network

    Delivery Economy Community Environment Economy Community Environment Economy Community Environment Environment Climate change programme EconomyCommunity #12;Climate change programme | 2 Climate change is one are described. Finally, the programme explains how the commitments will be delivered and monitored. Environment

  14. Optimal Global Path Planning in Time Varying Environments Based on a Cost Evaluation Function

    Microsoft Academic Search

    Om K. Gupta; Ray A. Jarvis

    2008-01-01

    This paper describes a unique and optimal method for real-time global path planning and collision avoidance for navigation\\u000a of a mobile robot in complex time varying environments. Occupancy based 3D grid map and Gaussian distribution model based\\u000a obstacle prediction are employed to represent the dynamic environment. Path planning and obstacle avoidance are performed\\u000a by applying a cost-evaluation function on time-space

  15. Systematic monitoring of needs for care and global outcomes in patients with severe mental illness

    PubMed Central

    2010-01-01

    Background It was hypothesised that the introduction of tools that allow clinicians to assess patients' needs and to negotiate treatment (Cumulative Needs for Care Monitor; CNCM), would be associated with global outcome improvements in patients diagnosed with severe mental illness. Methods The CNCM was introduced in one region in South Limburg (the Netherlands) in 1998 (REGION-1998) and in the rest of South Limburg in 2004 (REGION-2004). By comparing these two regions, changes after the introduction of the CNCM could be assessed (between-region comparison). In addition, a pre-post within-patient comparison was conducted in both regions. Results The within-patient comparison revealed that global outcomes of psychopathology and impairment improved in the first 3-5 years after the introduction of the CNCM. The between-region comparison revealed an improvement in global psychopathology but not in global impairment in REGION-2004 after 2004, while there was no such improvement in REGION-1998. Conclusion Systematic clinical monitoring of individual severe mental illness patients, in combination with provision of feedback, is associated with global improvement in psychopathology. More research is needed to determine the degree to which this association reflects a causal effect. PMID:20500826

  16. Automated video screening for unattended background monitoring in dynamic environments.

    SciTech Connect

    Carlson, Jeffrey J.

    2004-03-01

    This report addresses the development of automated video-screening technology to assist security forces in protecting our homeland against terrorist threats. A threat of specific interest to this project is the covert placement and subsequent remote detonation of bombs (e.g., briefcase bombs) inside crowded public facilities. Different from existing video motion detection systems, the video-screening technology described in this report is capable of detecting changes in the static background of an otherwise, dynamic environment - environments where motion and human activities are persistent. Our goal was to quickly detect changes in the background - even under conditions when the background is visible to the camera less than 5% of the time. Instead of subtracting the background to detect movement or changes in a scene, we subtracted the dynamic scene variations to produce an estimate of the static background. Subsequent comparisons of static background estimates are used to detect changes in the background. Detected changes can be used to alert security forces of the presence and location of potential threats. The results of this research are summarized in two MS Power-point presentations included with this report.

  17. Volunteer Environmental Monitoring and the Role of the Universities: The Case of Citizens' Environment Watch

    Microsoft Academic Search

    BETH SAVAN; ALEXIS J. MORGAN; CHRISTOPHER GORE

    2003-01-01

    Universities can provide a stable home for launching collaborative community research projects. Citizens' Environment Watch\\u000a (CEW), an environmental monitoring initiative based at the University of Toronto, has made significant contributions to environmental\\u000a education and stewardship in Ontario, Canada. Following dramatic cuts in provincial monitoring programs, citizens and youth\\u000a have used chemical parameters and biological indicators to gauge water and air

  18. An Intelligent System for Monitoring the Microgravity Environment Quality On-Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Lin, Paul P.; Jules, Kenol

    2002-01-01

    An intelligent system for monitoring the microgravity environment quality on-board the International Space Station is presented. The monitoring system uses a new approach combining Kohonen's self-organizing feature map, learning vector quantization, and back propagation neural network to recognize and classify the known and unknown patterns. Finally, fuzzy logic is used to assess the level of confidence associated with each vibrating source activation detected by the system.

  19. Monitoring Global Food Security with New Remote Sensing Products and Tools

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Husak, G. J.; Magadzire, T.; Verdin, J. P.

    2012-12-01

    Global agriculture monitoring is a crucial aspect of monitoring food security in the developing world. The Famine Early Warning Systems Network (FEWS NET) has a long history of using remote sensing and crop modeling to address food security threats in the form of drought, floods, pests, and climate change. In recent years, it has become apparent that FEWS NET requires the ability to apply monitoring and modeling frameworks at a global scale to assess potential impacts of foreign production and markets on food security at regional, national, and local levels. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara (UCSB) Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of the increased mandate for remote monitoring. We present our monitoring products for measuring actual evapotranspiration (ETa), normalized difference vegetation index (NDVI) in a near-real-time mode, and satellite-based rainfall estimates and derivatives. USGS FEWS NET has implemented a Simplified Surface Energy Balance (SSEB) model to produce operational ETa anomalies for Africa and Central Asia. During the growing season, ETa anomalies express surplus or deficit crop water use, which is directly related to crop condition and biomass. We present current operational products and provide supporting validation of the SSEB model. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with an improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a relatively high spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. We provide an overview of these data and cite specific applications for crop monitoring. FEWS NET uses satellite rainfall estimates as inputs for monitoring agricultural food production and driving crop water balance models. We present a series of derived rainfall products and provide an update on efforts to improve satellite-based estimates. We also present advancements in monitoring tools, namely, the Early Warning eXplorer (EWX) and interactive rainfall and NDVI time series viewers. The EWX is a data analysis and visualization tool that allows users to rapidly visualize multiple remote sensing datasets and compare standardized anomaly maps and time series. The interactive time series viewers allow users to analyze rainfall and NDVI time series over multiple spatial domains. New and improved data products and more targeted analysis tools are a necessity as food security monitoring requirements expand and resources become limited.

  20. Global Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change

    Microsoft Academic Search

    Keiji Imaoka; Misako Kachi; Hideyuki Fujii; Hiroshi Murakami; Masahiro Hori; Akiko Ono; Tamotsu Igarashi; Keizo Nakagawa; Taikan Oki; Yoshiaki Honda; Haruhisa Shimoda

    2010-01-01

    The Japan Aerospace Exploration Agency (JAXA) is pursuing the Global Change Observation Mission (GCOM) that will inherit the Advanced Earth Observing Satellite-II (ADEOS-II) mission and develop into long-term monitoring. GCOM is not the name of a single satellite, but of a mission that consists of two series of medium-size satellites, GCOM-W (Water) and GCOM-C (Climate), and three generations of each

  1. Operations Challenges from the FORMOSAT-3\\/COSMIC Constellation for Global Earth Weather Monitoring

    Microsoft Academic Search

    Chen-Joe Fong; Nick Yen; Vicky Chu; Shao-Shing Chen; Sien Chi

    2007-01-01

    The joint Taiwan-U.S. FORMOSAT-3\\/COSMIC spacecraft constellation, consisting of six LEO satellites, is the world's first operational GPS radio occultation mission for global Earth weather forecast, climate monitoring, atmospheric, ionospheric and geodesy researches. The FORMOSAT-3\\/COSMIC satellites were launched successfully from Vandenberg on April 15, 2006 into the same orbit plane of the designated 516 km circular parking orbit altitude. After the

  2. New Challenges Facing Universities in the Internet-Driven Global Environment

    ERIC Educational Resources Information Center

    Rajasingham, Lalita

    2011-01-01

    This paper explores some new challenges facing universities in a global multimediated Internet-based environment, as they seek alternative paradigms and options to remain true to their core business. At a time of rapid technological change, and contested, complex concepts associated with globalisation, knowledge is becoming a primary factor of…

  3. Business Efficiency - Ranking the Republic of Croatia as a Destination in Regional, European and Global Environment

    Microsoft Academic Search

    Mladen Verdris; Ruzica Simic

    2008-01-01

    Since the beginning of this decade, which corresponds to the processes of an accelerated political, social and economic opening to the European and global environment, the Republic of Croatia has become aware of the need for deep reforms to enable the creation of permanently sustained success of its national economy. In this context, the creation of conditions for efficiency in

  4. GLOBAL DEVELOPMENT AND ENVIRONMENT INSTITUTE WORKING PAPER NO. 10-02

    E-print Network

    Tufts University

    , market-oriented, competitive economic life obeys its own impersonal and mechanical rules. Many peopleGLOBAL DEVELOPMENT AND ENVIRONMENT INSTITUTE WORKING PAPER NO. 10-02 Care Ethics and Markets: A View from Feminist Economics Julie A. Nelson May 2010 Under review for inclusion in Applying Care

  5. Man in the Living Environment. A Report on Global Ecological Problems.

    ERIC Educational Resources Information Center

    Inger, Robert F.; And Others

    The findings of four groups of ecologists are synthesized in chapter I of this report on global ecological problems prepared as a data base for the United Nations Conference on the Human Environment. The other chapters contain the reports of each group. In "Cycles of Elements" the biologically important elements, phosphorus, sulfur, and nitrogen,…

  6. Global Research Initiative in Alpine Environments: A New GLORIA Site in Southwestern Montana

    Microsoft Academic Search

    M. E. Apple; T. Y. Pullman; G. G. Mitman

    2007-01-01

    Global climate change is expected to have pronounced effects on the alpine environments and thus the alpine plants of western North America. Predicted responses include an upward migration of treelines, altered species compositions, changes in the percentage of land covered by vegetation, and a change in the phenology of alpine plants. To determine the effects of climate change on the

  7. MANAGEMENT ACCOUNTING IN THE GLOBAL ENVIRONMENT Instructor: Scott B. Jackson, Ph.D., CPA

    E-print Network

    Almor, Amit

    information for decision-making, and (iii) management control systems. In addition, students are expected exam 40% Cases 15% Articles quizzes and discussions 15% Letter grades will be determined from yourDMSB 717 MANAGEMENT ACCOUNTING IN THE GLOBAL ENVIRONMENT FALL 2007 Instructor: Scott B. Jackson, Ph

  8. Setting up regional radiation-environment monitoring system for areas around nuclear plants

    SciTech Connect

    Eremeev, I.S.; Eremenko, V.A.; Klimenko, I.A.; Matveev, V.V.; Zhernov, V.S.

    1986-07-01

    The authors study the problems of: the optimum relationship between the proportions of measurement facilities and simulation (forecasting) ones; reliability in estimating (observing) the state of a region, and thus the optimality for the monitoring point location; and monitoring soil, water, and the atmosphere and the relationship between these major environmental components. A figure shows the conceptual model for a regional computerized radiation-environment monitoring system in a zone near a group of nuclear power plants. Intelligent terminal suites are described which collect information on reactor working conditions and engineering monitoring data, as well as data on the flow rates, temperatures, activities, and spectral compositions of gas-aerosol discharges. They also collect metereological data from sensors within the power station area and information on the external dosimetry. The new system will provide improved environmental monitoring and provide an economic effect by substantially reducing manual operations in collecting, storing, and displaying the data.

  9. New indicators for global crop monitoring in CropWatch -case study in North China Plain

    NASA Astrophysics Data System (ADS)

    Bingfang, Wu; Miao, Zhang; Hongwei, Zeng; Guoshui, Liu; Sheng, Chang; Gommes, René

    2014-03-01

    CropWatch is a monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information. Now in its 15th year of operation, CropWatch was modified several times to be a timely, comprehensive and independent global agricultural monitoring system using advanced remote sensing technology. Currently CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite (FY-3A) and cloud classification products of FY-2. With new satellite data, CropWatch will generate new indicators such as fallow land ratio (FLR), crop condition for irrigated (CCI) and non-irrigated (CCNI) areas separately, photosynthetically active radiation (PAR), radiation use efficiency for the photosynthetically active radiation (RUEPAR) and cropping index (CI) with crop rotation information (CRI). In this paper, the methods for monitoring the new indicators are applied to the North China Plain which is one of the major grain producing areas in China. This paper shows the preliminary results of the new indicators and methods; they still need to be thoroughly validated before being incorporated into the operational CropWatch system. In the future, the new and improved indicators will help us to better understand the global situation of food security.

  10. Monitoring progress towards universal health coverage at country and global levels.

    PubMed

    Boerma, Ties; Eozenou, Patrick; Evans, David; Evans, Tim; Kieny, Marie-Paule; Wagstaff, Adam

    2014-09-01

    Universal health coverage (UHC) has been defined as the desired outcome of health system performance whereby all people who need health services (promotion, prevention, treatment, rehabilitation, and palliation) receive them, without undue financial hardship. UHC has two interrelated components: the full spectrum of good-quality, essential health services according to need, and protection from financial hardship, including possible impoverishment, due to out-of-pocket payments for health services. Both components should benefit the entire population. This paper summarizes the findings from 13 country case studies and five technical reviews, which were conducted as part of the development of a global framework for monitoring progress towards UHC. The case studies show the relevance and feasibility of focusing UHC monitoring on two discrete components of health system performance: levels of coverage with health services and financial protection, with a focus on equity. These components link directly to the definition of UHC and measure the direct results of strategies and policies for UHC. The studies also show how UHC monitoring can be fully embedded in often existing, regular overall monitoring of health sector progress and performance. Several methodological and practical issues related to the monitoring of coverage of essential health services, financial protection, and equity, are highlighted. Addressing the gaps in the availability and quality of data required for monitoring progress towards UHC is critical in most countries. PMID:25243899

  11. VRLA battery conductance monitoring. V. Strategies for VRLA battery testing and monitoring in telecom operating environments

    Microsoft Academic Search

    Mark J. Hlavac; David Feder

    1996-01-01

    Using actual VLRA battery field data from a telecom transmission office, this paper examines the accuracy and cost effectiveness of midpoint voltage (MPV) monitoring techniques vs. conductance measuring techniques based on both single and multicell units. Results indicate the inability of several midpoint voltage techniques to identify low capacity cells, contrasted with the high accuracy of the several conductance techniques,

  12. Towards global benchmarking of food environments and policies to reduce obesity and diet-related non-communicable diseases: design and methods for nation-wide surveys

    PubMed Central

    Vandevijvere, Stefanie; Swinburn, Boyd

    2014-01-01

    Introduction Unhealthy diets are heavily driven by unhealthy food environments. The International Network for Food and Obesity/non-communicable diseases (NCDs) Research, Monitoring and Action Support (INFORMAS) has been established to reduce obesity, NCDs and their related inequalities globally. This paper describes the design and methods of the first-ever, comprehensive national survey on the healthiness of food environments and the public and private sector policies influencing them, as a first step towards global monitoring of food environments and policies. Methods and analysis A package of 11 substudies has been identified: (1) food composition, labelling and promotion on food packages; (2) food prices, shelf space and placement of foods in different outlets (mainly supermarkets); (3) food provision in schools/early childhood education (ECE) services and outdoor food promotion around schools/ECE services; (4) density of and proximity to food outlets in communities; food promotion to children via (5) television, (6) magazines, (7) sport club sponsorships, and (8) internet and social media; (9) analysis of the impact of trade and investment agreements on food environments; (10) government policies and actions; and (11) private sector actions and practices. For the substudies on food prices, provision, promotion and retail, ‘environmental equity’ indicators have been developed to check progress towards reducing diet-related health inequalities. Indicators for these modules will be assessed by tertiles of area deprivation index or school deciles. International ‘best practice benchmarks’ will be identified, against which to compare progress of countries on improving the healthiness of their food environments and policies. Dissemination This research is highly original due to the very ‘upstream’ approach being taken and its direct policy relevance. The detailed protocols will be offered to and adapted for countries of varying size and income in order to establish INFORMAS globally as a new monitoring initiative to reduce obesity and diet-related NCDs. PMID:24833697

  13. Volcanic Environments Monitoring by Drones Mud Volcano Case Study

    NASA Astrophysics Data System (ADS)

    Amici, S.; Turci, M.; Giulietti, F.; Giammanco, S.; Buongiorno, M. F.; La Spina, A.; Spampinato, L.

    2013-08-01

    Volcanic activity has often affected human life both at large and at small scale. For example, the 2010 Eyjafjallajokull eruption caused severe economic damage at continental scale due to its strong effect on air traffic. At a local scale, ash fall and lava flow emission can cause harm and disruption. Understanding precursory signals to volcanic eruptions is still an open and tricky challenge: seismic tremor and gas emissions, for example, are related to upcoming eruptive activity but the mechanisms are not yet completely understood. Furthermore, information related to gases emission mostly comes from the summit crater area of a volcano, which is usually hard to investigate with required accuracy. Although many regulation problems are still on the discussion table, an increasing interest in the application of cutting-edge technology like unmanned flying systems is growing up. In this sense, INGV (Istituto Nazionale di Geofisica e Vulcanologia) started to investigate the possibility to use unmanned air vehicles for volcanic environment application already in 2004. A flight both in visual- and radio-controlled mode was carried out on Stromboli volcano as feasibility test. In this work we present the preliminary results of a test performed by INGV in collaboration with the University of Bologna (aerospace division) by using a multi-rotor aircraft in a hexacopter configuration. Thermal camera observations and flying tests have been realised over a mud volcano located on its SW flank of Mt. Etna and whose activity proved to be related to early stages of magma accumulation within the volcano.

  14. Land-atmosphere coupling metrics from satellite remote sensing as a global drought-monitoring tool

    NASA Astrophysics Data System (ADS)

    Roundy, Joshua K.; Santanello, Joseph A.

    2015-04-01

    Drought causes significant economic impact to society that can be reduced through preparations made possible by monitoring and prediction. Most drought monitoring systems utilize a variety of metrics to assess and understand drought. Feedbacks induced through land-atmosphere interactions are an important mechanism of drought intensification and persistence that is often not considered in current drought monitors due to a lack of spatially consistent observations. Recent work has developed a new classification of land-atmosphere interactions that summarizes the net impact of these interactions on drought intensification and recovery through the Coupling Drought Index (CDI). One thing that makes the CDI unique is that it can be calculated based on estimates from satellite remote sensing, which makes it particularly useful for global drought monitoring. Furthermore, the persistent nature of these coupling regimes provides a means of prediction through a Markov Chain Coupling Statistical Model (CSM). Previous work has shown that the CDI based on satellite remote sensing compares well with the U.S. Drought monitor in terms of drought intensification and recovery. On the other hand, the skill of the CSM forecasts over the U.S. is limited and still needs improvement. In this work the extent to which the CDI and CSM can be extended to other areas of the globe are explored. In particular, the ability of the satellite remote sensing based CDI to capture drought intensification and recovery over Africa and Europe are assessed. The benefits and limitations of using a metric of land-atmosphere interactions for global drought monitoring are also discussed.

  15. An Experimental Global Monitoring System for Rainfall-triggered Landslides using Satellite Remote Sensing Information

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2006-01-01

    Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration thresholds and information related to land surface susceptibility. However, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides due to the lack of extensive ground-based observing network in many parts of the world. Recent advances in satellite remote sensing technology and increasing availability of high-resolution geospatial products around the globe have provided an unprecedented opportunity for such a study. In this paper, a framework for developing an experimental real-time monitoring system to detect rainfall-triggered landslides is proposed by combining two necessary components: surface landslide susceptibility and a real-time space-based rainfall analysis system (http://trmm.gsfc.nasa.aov). First, a global landslide susceptibility map is derived from a combination of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a GIs weighted linear combination approach. Second, an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess landslide risks at areas with high susceptibility. A major outcome of this work is the availability of a first-time global assessment of landslide risk, which is only possible because of the utilization of global satellite remote sensing products. This experimental system can be updated continuously due to the availability of new satellite remote sensing products. This proposed system, if pursued through wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide hazard analyses into a global decision-making support system for landslide disaster preparedness and risk mitigation activities across the world.

  16. A 3-year hygiene and safety monitoring of a meat processing plant which uses raw materials of global origin.

    PubMed

    Manios, Stavros G; Grivokostopoulos, Nikolaos C; Bikouli, Vasiliki C; Doultsos, Dimitrios A; Zilelidou, Evangelia A; Gialitaki, Maria A; Skandamis, Panagiotis N

    2015-09-16

    A systematic approach in monitoring the hygiene of a meat processing plant using classical microbiological analyses combined with molecular characterization tools may assist in the safety of the final products. This study aimed: (i) to evaluate the total hygiene level and, (ii) to monitor and characterize the occurrence and spread of Salmonella spp. and Listeria monocytogenes in the environment and the final products of a meat industry that processes meat of global origin. In total, 2541 samples from the processing environment, the raw materials, and the final products were collected from a Greek meat industry in the period 2011-2013. All samples were subjected to enumeration of total viable counts (TVC), Escherichia coli (EC) and total coliforms (TCC) and the detection of Salmonella spp., while 709 of these samples were also analyzed for the presence L. monocytogenes. Pathogen isolates were serotyped and further characterized for their antibiotic resistance and subtyped by PFGE. Raw materials were identified as the primary source of contamination, while improper handling might have also favored the proliferation of the initial microbial load. The occurrence of Salmonella spp. and L. monocytogenes reached 5.5% and 26.9%, respectively. Various (apparent) cross-contamination or persistence trends were deduced based on PFGE analysis results. Salmonella isolates showed wide variation in their innate antibiotic resistance, contrary to L. monocytogenes ones, which were found susceptible to all antibiotics except for cefotaxime. The results emphasize the biodiversity of foodborne pathogens in a meat industry and may be used by meat processors to understand the spread of pathogens in the processing environment, as well as to assist the Food Business Operator (FBO) in establishing effective criteria for selection of raw materials and in improving meat safety and quality. This approach can limit the increase of microbial contamination during the processing steps observed in our study as well as the cross contamination of meat products. PMID:25600954

  17. VEN?S (vegetation and environment monitoring on a new micro satellite) image quality

    NASA Astrophysics Data System (ADS)

    Meygret, Aimé; Hagolle, Olivier; Hillairet, Emmanuel; Dedieu, Gérard; Crebassol, Philippe; Ferrier, P.

    2007-09-01

    VENµS is a demonstration mission developed in cooperation between Isra"l (ISA) and France (CNES). VENµS scientific mission unique feature is to acquire high resolution (5.3m) multi-spectral images (12 bands in the visible and NIR spectrum) continuously every second day with constant viewing angles. At least 50 sites of interest all around the world will be viewed. It aims at demonstrating the relevance of such observation capabilities in the framework of the European Global Monitoring for Environment and Security Program (GMES). The satellite also flies a technological mission that aims at qualifying an Israeli electric propulsion technology (IHET) and demonstrating its mission enhancement capabilities. The satellite will be launched in January 2010. The imaging scientific mission will last 2.5 years with the satellite at 720 km. Next, the technological mission will bring the satellite at 410 km. The scientific mission will then go on for one year with an improved resolution (3m). This paper presents the main geometric and radiometric image quality requirements for the scientific mission. The strong multi-spectral (2m) and multi-temporal (3m) registration requirements constrain the stability of the platform and the ground processing which will refine the geometric physical model using an image matching method based on correlation. The location of the images will take benefits from the capacity of the system to produce Digital Elevation Models at a low 'Base to Elevation' ratio (0.026). These processings are detailed through the description of the level 1 production which will provide users with ortho-images of Top of Atmosphere reflectances. Finally we propose different radiometric (relative and absolute camera sensitivity,...) and geometric (line of sight, focal plane cartography,...) in-flight calibration methods to answer the severe mission requirements.

  18. Heisenberg versus standard scaling in quantum metrology with Markov generated states and monitored environment

    E-print Network

    Catalin Catana; Madalin Guta

    2014-07-04

    Finding optimal and noise robust probe states is a key problem in quantum metrology. In this paper we propose Markov dynamics as a possible mechanism for generating such states, and show how the Heisenberg scaling emerges for systems with multiple `dynamical phases' (stationary states), and noiseless channels. We model noisy channels by coupling the Markov output to `environment' ancillas, and consider the scenario where the environment is monitored to increase the quantum Fisher information of the output. In this setup we find that the survival of the Heisenberg limit depends on whether the environment receives `which phase' information about the memory system.

  19. Fiber optic spectrophotometry for monitoring dissolved oxygen in a tropical ornamental fish tank environment

    Microsoft Academic Search

    Anand K. Asundi; Jun Wei Chen; Duo Min He

    1999-01-01

    Using Fiber Optic Spectro-Photometry (FOSP) methodology, a set of high sensitivity fiber optic oxygen monitoring system performing NDT is developed for fish farming environment. The working principle of the sensor is based on the detection signal at a particular wavelength due to the fluorescence and quenching of coated dye (ruthenium complex) in response to oxygen concentration at the tip of

  20. P&P: a Combined Push-Pull Model for Resource Monitoring in Cloud Computing Environment

    E-print Network

    Wang, Liqiang

    P&P: a Combined Push-Pull Model for Resource Monitoring in Cloud Computing Environment He Huang Cloud computing paradigm contains many shared re- sources, such as infrastructures, data storage Cloud computing operations. In this paper, we extend the prevailing moni- toring methods in Grid

  1. Monitoring the resin infusion manufacturing process under industrial environment using distributed sensors

    E-print Network

    Boyer, Edmond

    by a vacuum at the vent of the system which leads to the resin impregnation in the compressible perform1 Monitoring the resin infusion manufacturing process under industrial environment using, Fax. (+33) 477 420 249 Abstract: A novel direct approach to detect the resin flow front during

  2. STS-2 Induced Environment Contamination Monitor (IECM): Quick-Look Report

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (editor)

    1982-01-01

    The STS-2/induced environment contamination monitor (IECM) mission is described. The IECM system performance is discussed, and IECM mission time events are briefly described. Quick look analyses are presented for each of the 10 instruments comprising the IECM on the flight of STS-2. A short summary is presented.

  3. Monitoring of Exposure to and Potential Effects of Contaminants in the Environment

    Microsoft Academic Search

    John P. Giesy; John L. Newsted

    2007-01-01

    In our lifetimes, much of what was once considered science fiction: space ships, monitor- ing the environment from space, satellite phones and biomedical advances in the diagnosis and treatment of disease at the molecular level have now become realities. These advances in technology have changed our perceptions and how we interact with the world around us. Also during this time,

  4. Nonthreshold-based event detection for 3d environment monitoring in sensor networks

    SciTech Connect

    Li, M.; Liu, Y.H.; Chen, L. [Hong Kong University of Science & Technology, Kowloon (China)

    2008-12-15

    Event detection is a crucial task for wireless sensor network applications, especially environment monitoring. Existing approaches for event detection are mainly based on some predefined threshold values and, thus, are often inaccurate and incapable of capturing complex events. For example, in coal mine monitoring scenarios, gas leakage or water osmosis can hardly be described by the overrun of specified attribute thresholds but some complex pattern in the full-scale view of the environmental data. To address this issue, we propose a nonthreshold-based approach for the real 3D sensor monitoring environment. We employ energy-efficient methods to collect a time series of data maps from the sensor network and detect complex events through matching the gathered data to spatiotemporal data patterns. Finally, we conduct trace-driven simulations to prove the efficacy and efficiency of this approach on detecting events of complex phenomena from real-life records.

  5. Financing tuberculosis control: the role of a global financial monitoring system

    PubMed Central

    Pantoja, Andrea; Dye, Christopher

    2007-01-01

    Abstract Control of tuberculosis (TB), like health care in general, costs money. To sustain TB control at current levels, and to make further progress so that global targets can be achieved, information about funding needs, sources of funding, funding gaps and expenditures is important at global, regional, national and sub-national levels. Such data can be used for resource mobilization efforts; to document how funding requirements and gaps are changing over time; to assess whether increases in funding can be translated into increased expenditures and whether increases in expenditure are producing improvements in programme performance; and to identify which countries or regions have the greatest needs and funding gaps. In this paper, we discuss a global system for financial monitoring of TB control that was established in WHO in 2002. By early 2007, this system had accounted for actual or planned expenditures of more than US$ 7 billion and was systematically reporting financial data for countries that carry more than 90% of the global burden of TB. We illustrate the value of this system by presenting major findings that have been produced for the period 2002–2007, including results that are relevant to the achievement of global targets for TB control set for 2005 and 2015. We also analyse the strengths and limitations of the system and its relevance to other health-care programmes. PMID:17639216

  6. Tropical Rainfall Measuring Mission: Monitoring the Global Tropics for 3 Years and Beyond. 1.1

    NASA Technical Reports Server (NTRS)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 as a joint U.S.-Japanese mission to advance understanding of the global energy and water cycle by providing distributions of rainfall and latent heating over the global tropics. As a part of NASA's Earth System Enterprise, TRMM seeks to understand the mechanisms through which changes in tropical rainfall influence global circulation. Additionally, a goal is to improve the ability to model these processes in order to predict global circulations and rainfall variability at monthly and longer time scales. Such understanding has implications for assessing climate processes related to El Nino/La Nina and Global Warming. TRMM has also provided unexpected and exciting new knowledge and applications in areas related to hurricane monitoring, lightning, pollution, hydrology, and other areas. This CD-ROM includes a self-contained PowerPoint presentation that provides an overview of TRMM and significant science results; a set of data movies or animation; and listings of current TRMM-related publications in the literature.

  7. The debate on population and the environment: Australia in the global context.

    PubMed

    Harding, R

    1995-11-01

    The debate on population and the environment is reviewed, with focus upon the debate in Australia. The population-environment debate is longstanding and controversial, and consists largely of arguments about the capacity to support people at the global, national, and regional levels. The debate continues to rage because it has failed to properly recognize inherent uncertainties in the existing body of knowledge, the paradigms which influence judgements of important parameters, and the political ideology which has permeated the debate ever since Malthus. Recent efforts to place the debate upon a more analytical base are considered. It is essential to have a framework which recognizes the inherent uncertainty in the knowledge of population-environment linkages, while decisions should be guided by the precautionary principle. Australia should create and implement a population policy which strongly recognizes and respects the population-environment linkage, and engages the general population in debate about desirable futures at the national, regional, and local levels. PMID:12321980

  8. Nighttime ozone profiles in the stratosphere and mesosphere by the Global Ozone Monitoring by Occultation of Stars on Envisat

    Microsoft Academic Search

    E. Kyrölä; J. Tamminen; G. W. Leppelmeier; V. Sofieva; S. Hassinen; A. Seppälä; P. T. Verronen; J. L. Bertaux; A. Hauchecorne; F. Dalaudier; D. Fussen; F. Vanhellemont; O. Fanton d'Andon; G. Barrot; A. Mangin; B. Theodore; M. Guirlet; R. Koopman; L. Saavedra de Miguel; P. Snoeij; T. Fehr; Y. Meijer; R. Fraisse

    2006-01-01

    The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on board the European Space Agency's Envisat satellite measures ozone and a few other trace gases using the stellar occultation method. Global coverage, good vertical resolution and the self-calibrating measurement method make GOMOS observations a promising data set for building various climatologies. In this paper we present the nighttime stratospheric

  9. Low-Cost Autonomous 3-D Monitoring Systems for Hydraulic Engineering Environments and Applications With Limited Accuracy Requirements

    Microsoft Academic Search

    Nihal Kularatna; J. McDowall; Bruce Melville; Dulsha Kularatna-Abeywardana; Aiguo Patrick Hu; Ambuj Dwivedi

    2010-01-01

    The details of developing autonomous 3-D motion monitoring systems based on commercial off-the-shelf (COTS) motion sensors for hydraulic environments are discussed. Possible areas of application, are river bed sediment transport monitoring and monitoring the agitation and other physical parameters inside milk vats with a mechanized agitator. Simplified calculations of inertial navigation systems (INSs) such as Euler angle method, MATLAB programs

  10. Beyond indicators: advances in global HIV monitoring and evaluation during the PEPFAR era.

    PubMed

    Porter, Laura E; Bouey, Paul D; Curtis, Sian; Hochgesang, Mindy; Idele, Priscilla; Jefferson, Bobby; Lemma, Wuleta; Myrick, Roger; Nuwagaba-Biribonwoha, Harriet; Prybylski, Dimitri; Souteyrand, Yves; Tulli, Tuhuma

    2012-08-15

    Monitoring and evaluation (M&E) is fundamental to global HIV program implementation and has been a cornerstone of the President's Emergency Plan for AIDS Relief (PEPFAR). Rapid results were crucial to demonstrating feasibility and scalability of HIV care and treatment services early in PEPFAR. When national HIV M&E systems were nascent, the rapid influx of funds and the emergency expansion of HIV services contributed to the development of uncoordinated "parallel" information systems to serve donor demands for information. Close collaboration of PEPFAR with multilateral and national partners improved harmonization of indicators, standards, methods, tools, and reports. Concurrent PEPFAR investments in surveillance, surveys, program monitoring, health information systems, and human capacity development began to show signs of progress toward sustainable country-owned systems. Awareness of the need for and usefulness of data increased, far beyond discussions of indicators and reporting. Emphasis has turned toward ensuring the quality of data and using available data to improve the quality of care. Assessing progress toward an AIDS-free generation requires that the global community can measure the reduction of new HIV infections in children and adults and monitor the coverage, quality, and outcomes of highly efficacious interventions in combination. Building national M&E systems requires sustained efforts over long periods of time with effective leadership and coordination. PEPFAR, in close collaboration with its global and national partners, is well positioned to transform the successes and challenges associated with early rapid scale-up into future opportunities for sustainable, cost-effective, country-owned programs and systems. PMID:22797733

  11. Applications of Global Earth Observations for Natural Hazards (Flood and Landslide) Monitoring and Prediction (Invited)

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Wang, J.; Adler, R. F.; Kirschbaum, D. B.; Policelli, F. S.; Habib, S.; Irwin, D.

    2009-12-01

    Floods and associated storm-triggered landslides affect more people than many other types of natural disasters around the world. This talk will review NASA Global Hazard System (GHS) that continuously assimilates near real-time multi-satellite observations to monitor and forecast floods and landslides on a global basis. This talk will also present regional applications of a high-definition GHS version for decision-making support and capacity building in East Africa: SERVIR-Africa (www.servir.net). The ultimate goal is to build and transfer the multi-disaster modeling capacity to developing countries for supporting their disaster response and mitigation activities. The GHS and SERVIR-Africa projects directly address the first objective of GEOSS: Enabling the use of Earth observations and predictive models for timely disaster decision making to benefit society.

  12. Strengthening of accountability systems to create healthy food environments and reduce global obesity.

    PubMed

    Swinburn, Boyd; Kraak, Vivica; Rutter, Harry; Vandevijvere, Stefanie; Lobstein, Tim; Sacks, Gary; Gomes, Fabio; Marsh, Tim; Magnusson, Roger

    2015-06-20

    To achieve WHO's target to halt the rise in obesity and diabetes, dramatic actions are needed to improve the healthiness of food environments. Substantial debate surrounds who is responsible for delivering effective actions and what, specifically, these actions should entail. Arguments are often reduced to a debate between individual and collective responsibilities, and between hard regulatory or fiscal interventions and soft voluntary, education-based approaches. Genuine progress lies beyond the impasse of these entrenched dichotomies. We argue for a strengthening of accountability systems across all actors to substantially improve performance on obesity reduction. In view of the industry opposition and government reluctance to regulate for healthier food environments, quasiregulatory approaches might achieve progress. A four step accountability framework (take the account, share the account, hold to account, and respond to the account) is proposed. The framework identifies multiple levers for change, including quasiregulatory and other approaches that involve government-specified and government-monitored progress of private sector performance, government procurement mechanisms, improved transparency, monitoring of actions, and management of conflicts of interest. Strengthened accountability systems would support government leadership and stewardship, constrain the influence of private sector actors with major conflicts of interest on public policy development, and reinforce the engagement of civil society in creating demand for healthy food environments and in monitoring progress towards obesity action objectives. PMID:25703108

  13. Fiber-optic sensing in cryogenic environments. [for rocket propellant tank monitoring

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Brooks, R. E.

    1980-01-01

    Passive optical sensors using fiber-optic signal transmission to a remote monitoring station are explored as an alternative to electrical sensors used to monitor the status of explosive propellants. The designs of passive optical sensors measuring liquid level, pressure, and temperature in cryogenic propellant tanks are discussed. Test results for an experimental system incorporating these sensors and operating in liquid nitrogen demonstrate the feasibility of passive sensor techniques and indicate that they can serve as non-hazardous replacements for more conventional measuring equipment in explosive environments.

  14. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    SciTech Connect

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  15. Environment, Systems and Decisions PPMS GeoDB: a standardized geo-database for risk monitoring of Potentially Polluting

    E-print Network

    New Hampshire, University of

    of the specific type, a PPMS represents a potential source of pollution for the marine environment. Although. Independently of the specific type, a PPMS represents a potential source of pollution for the marine environmentEnvironment, Systems and Decisions PPMS GeoDB: a standardized geo-database for risk monitoring

  16. A novel technique for acoustic emission monitoring in civil structures with global fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Verstrynge, E.; Pfeiffer, H.; Wevers, M.

    2014-06-01

    The application of acoustic emission (AE)-based damage detection is gaining interest in the field of civil structural health monitoring. Damage progress can be detected and located in real time and the recorded AEs hold information on the fracture process which produced them. One of the drawbacks for on-site application in large-scale concrete and masonry structures is the relatively high attenuation of the ultrasonic signal, which limits the detection range of the AE sensors. Consequently, a large number of point sensors are required to cover a certain area. To tackle this issue, a global damage detection system, based on AE detection with a polarization-modulated, single mode fiber optic sensor (FOS), has been developed. The sensing principle, data acquisition and analysis in time and frequency domain are presented. During experimental investigations, this AE-FOS is applied for the first time as a global sensor for the detection of crack-induced AEs in a full-scale concrete beam. Damage progress is monitored during a cyclic four-point bending test and the AE activity, detected with the FOS, is related to the subsequent stages of damage progress in the concrete element. The results obtained with the AE-FOS are successfully linked to the mechanical behavior of the concrete beam and a qualitative correspondence is found with AE data obtained by a commercial system.

  17. The ESA Topical Team 'Biomonitors': Monitoring for the protection of environments from human activities

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Esa Tt Biomonitors

    The overall aim of the ESA Topical Team Biomonitors was to identify and summarize ongoing and planned ground based biotechnological research activities on environmental monitoring that will also become important in space research within the ESA Microgravity Applications Promotion Program Monitoring the environment for compounds and factors of concern plays an important role in defining and managing the risks to environments and artificial ecosystems on other planets resulting from chemical and biological contaminations but also gains increasing attention for a variety of terrestrial applications Especially the development of biosensors and the identification of biomarkers for the qualitative and or quantitative registration of deleterious effects is a promising approach for new tools complementary to currently available physical and chemical monitoring techniques Another very important field of concern was the fast identification and assessment of the microbial bioburden On one hand this is necessary for the long-term securing of human health and performance in a confined environment like the ISS or in a future extraterrestrial habitat On the other hand this is necessary for the development and application of adequate cleaning and sterilization measures of spacecraft for planetary protection reasons especially for already scheduled lander missions to Mars Acknowledgements The ESA Topical Team Biomonitors was financed by ESTEC Contract Nr 137989 99 NL JS The authors thank R Binot for fruitful discussions on the future of biotechnology in

  18. Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments

    SciTech Connect

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Kaiser, Brooke LD; Valovska, Marie-Thrse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif

    2014-12-11

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management as a powerful strategy to adaptation.

  19. The use of PROBA-V data for Global Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Bydekerke, Lieven; Gilliams, Sven; Kempeneers, Pieter; Piccard, Isabelle; Deronde, Bart; Eerens, Herman; Gobin, Anne

    2015-04-01

    Land conversion, forest cutting, urban growth, agricultural expansion, take place at an unprecedented rate and scale such that they have a strong economic and environmental impact. Understanding and measuring dynamics becomes a prerequisite for companies, governments, agencies, NGO's, research institutes and society in general. In many cases the temporal frequency of the information is a requirement to detect phenomena that can occur within a few days and at a certain geographic scale. For example frequent updates on crop condition and projected production are needed to stabilise agricultural markets. Large initiatives such as the GEOGLAM AMIS (Group on Earth Observations Global Agricultural Monitoring - Agricultural Market Information System) respond to this increased need. Observations over large areas are available through satellites, however, the following challenges remain: • obtaining frequent and consistent observations at sufficient level of detail to identify spatial phenomena. At present, no single mission is capable of providing near daily information of any place in the world at scales appropriate to detect land cover/use changes in a consistent manner. • the need for a historical reference. For agricultural monitoring and early warning purposes the comparison of the actual data with a historical reference is of the utmost importance. The PROBA-V mission is an important attempt to overcome these challenges. From its design and within the GIO-Global Land component a lot of work has been done to ensure the consistency between the PROBA-V data and the 15 years historical archive of SPOT-VEGETATION. In this respect PROBA-V observations are comparable with the SPOT-VEGETATION historical baseline and will therefore ensure the continuation of the standard agricultural monitoring products. Next to this integration with the historical archive, PROBA -V also provides an increase in spatial resolution from 1km to 300m and even 100m. The latter ensures a global coverage every 5 days, while daily global coverage is provided at 1 km and 300 m. Within the framework of the FP7 SIGMA project (Stimulating Innovation for Global Monitoring of Agriculture), currently Europe's largest contribution to the abovementioned GEOGLAM initiative, the use of the 100m data set for agricultural monitoring is investigated. To overcome the problem of the reduced revisit time of the 100 m data, the SIGMA projects foresees in a data assimilation of the 100 m and 300 m products. The data assimilation is based on a Kalman filter approach developed by Sedano et al. (2014). As an output, a cloud free composite is produced every ten days at a spatial resolution of 100 m. References Sedano, Fernando, Pieter Kempeneers, and George Hurtt. "A Kalman Filter-Based Method to Generate Continuous Time Series of Medium-Resolution NDVI Images." Remote Sensing 6.12 (2014): 12381-12408. http://proba-v.vgt.vito.be/ http://www.geoglam-sigma.info/

  20. Evaluation of Local Media Surveillance for Improved Disease Recognition and Monitoring in Global Hotspot Regions

    PubMed Central

    Schwind, Jessica S.; Wolking, David J.; Brownstein, John S.; Mazet, Jonna A. K.; Smith, Woutrina A.

    2014-01-01

    Digital disease detection tools are technologically sophisticated, but dependent on digital information, which for many areas suffering from high disease burdens is simply not an option. In areas where news is often reported in local media with no digital counterpart, integration of local news information with digital surveillance systems, such as HealthMap (Boston Children’s Hospital), is critical. Little research has been published in regards to the specific contribution of local health-related articles to digital surveillance systems. In response, the USAID PREDICT project implemented a local media surveillance (LMS) pilot study in partner countries to monitor disease events reported in print media. This research assessed the potential of LMS to enhance digital surveillance reach in five low- and middle-income countries. Over 16 weeks, select surveillance system attributes of LMS, such as simplicity, flexibility, acceptability, timeliness, and stability were evaluated to identify strengths and weaknesses in the surveillance method. Findings revealed that LMS filled gaps in digital surveillance network coverage by contributing valuable localized information on disease events to the global HealthMap database. A total of 87 health events were reported through the LMS pilot in the 16-week monitoring period, including 71 unique reports not found by the HealthMap digital detection tool. Furthermore, HealthMap identified an additional 236 health events outside of LMS. It was also observed that belief in the importance of the project and proper source selection from the participants was crucial to the success of this method. The timely identification of disease outbreaks near points of emergence and the recognition of risk factors associated with disease occurrence continue to be important components of any comprehensive surveillance system for monitoring disease activity across populations. The LMS method, with its minimal resource commitment, could be one tool used to address the information gaps seen in global ‘hot spot’ regions. PMID:25333618

  1. The Heritage of the Operational Usda/nasa Global Reservoir and Lake Monitor

    NASA Astrophysics Data System (ADS)

    Birkett, C. M.; Beckley, B. D.; Reynolds, C. A.

    2012-12-01

    Satellite radar altimetry has the ability to monitor variations in surface water height for large lakes and reservoirs. A clear advantage is the provision of data where in situ data are lacking or where there is restricted access to ground-based measurements. A USDA/NASA funded program is performing altimetric monitoring of the largest lakes and reservoirs around the world. The near-real time height measurements are currently derived from NASA/CNES Jason-2/OSTM mission data. Archived data are also utilized from the NASA/CNES Topex/Poseidon and Jason-1 missions, the NRL GFO mission, and the ESA ENVISAT mission. Lake level products are output within 1-2 weeks after satellite overpass, a time delay which will improve to a few days as the project moves into its next phase. The USDA/FAS utilize the products for assessing irrigation potential (and thus crop production estimates), and for general observation of high-water status and short-term drought. Other end-users explore the products to study climate trends, observe anthropogenic effects, and to consider water management and regional security issues. This presentation explores the heritage of the Global Reservoir and Lake Monitor (GRLM) which has its origins in the field of ocean surface topography and the exploration of radar altimetry techniques over non-ocean surfaces. The current system closely follows the software design of the historical NASA Ocean Pathfinder Project and utilizes a global lakes catalogue that was created for climate change/aridity studies. The output of lake level products, imagery and information also echoes an earlier trial (UNDP-funded) lakes database which first offered altimetric products via the world wide web and which enabled world-wide interest to be both assessed and highlighted.;

  2. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are associated to derive food production estimates. Based on trends analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. CropWatch bulletin can be downloaded from the CropWatch website at http://www.cropwatch.com.cn.

  3. Searchlight Correlation Detectors: Optimal Seismic Monitoring Using Regional and Global Networks

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Kværna, Tormod; Näsholm, Sven Peter

    2015-04-01

    The sensitivity of correlation detectors increases greatly when the outputs from multiple seismic traces are considered. For single-array monitoring, a zero-offset stack of individual correlation traces will provide significant noise suppression and enhanced sensitivity for a source region surrounding the hypocenter of the master event. The extent of this region is limited only by the decrease in waveform similarity with increasing hypocenter separation. When a regional or global network of arrays and/or 3-component stations is employed, the zero-offset approach is only optimal when the master and detected events are co-located exactly. In many monitoring situations, including nuclear test sites and geothermal fields, events may be separated by up to many hundreds of meters while still retaining sufficient waveform similarity for correlation detection on single channels. However, the traveltime differences resulting from the hypocenter separation may result in significant beam loss on the zero-offset stack and a deployment of many beams for different hypothetical source locations in geographical space is required. The beam deployment necessary for optimal performance of the correlation detectors is determined by an empirical network response function which is most easily evaluated using the auto-correlation functions of the waveform templates from the master event. The correlation detector beam deployments for providing optimal network sensitivity for the North Korea nuclear test site are demonstrated for both regional and teleseismic monitoring configurations.

  4. Global Characterization and Monitoring of Forest Cover Using Landsat Data: Opportunities and Challenges

    NASA Technical Reports Server (NTRS)

    Townshend, John R.; Masek, Jeffrey G.; Huang, ChengQuan; Vermote, Eric F.; Gao, Feng; Channan, Saurabh; Sexton, Joseph O.; Feng, Min; Narasimhan, Ramghuram; Kim, Dohyung; Song, Kuan; Song, Danxia; Song, Xiao-Peng; Noojipady, Praveen; Tan, Bin; Hansen, Matthew C.; Li, Mengxue; Wolfe, Robert E.

    2012-01-01

    The compilation of global Landsat data-sets and the ever-lowering costs of computing now make it feasible to monitor the Earth's land cover at Landsat resolutions of 30 m. In this article, we describe the methods to create global products of forest cover and cover change at Landsat resolutions. Nevertheless, there are many challenges in ensuring the creation of high-quality products. And we propose various ways in which the challenges can be overcome. Among the challenges are the need for atmospheric correction, incorrect calibration coefficients in some of the data-sets, the different phenologies between compilations, the need for terrain correction, the lack of consistent reference data for training and accuracy assessment, and the need for highly automated characterization and change detection. We propose and evaluate the creation and use of surface reflectance products, improved selection of scenes to reduce phenological differences, terrain illumination correction, automated training selection, and the use of information extraction procedures robust to errors in training data along with several other issues. At several stages we use Moderate Resolution Spectroradiometer data and products to assist our analysis. A global working prototype product of forest cover and forest cover change is included.

  5. Global monitoring of atmospheric properties by the EOS MODIS. Semiannual technical report, January-June 1993

    SciTech Connect

    King, M.D.

    1993-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) being developed for the Earth Observing System (EOS) is well suited to the global monitoring of atmospheric properties from space. Among the atmospheric properties to be examined using MODIS observations, clouds are especially important, since they are a strong modulator of the shortwave and longwave components of the earth's radiation budget. A knowledge of cloud properties (such as optical thickness and effective radius) and their variation in space and time, is also crucial to studies of global climate change. In addition, with the use of related airborne instrumentation, such as the Cloud Absorption Radiometer (CAR) and MODIS Airborne Simulator (MAS) in intensive field experiments, various types of surface and cloud properties can be derived from the measured bidirectional reflectances. These missions have provided valuable experimental data to determine the capability of narrow bandpass channels in examining the Earth's atmosphere and to aid in defining algorithms and building an understanding of the ability of MODIS to remotely sense atmospheric conditions for assessing global change. Therefore, the primary task objective is to extend and expand the algorithm for retrieving the optical thickness and effective radius of clouds from radiation measurements to be obtained from MODIS. The secondary objective is to obtain an enhanced knowledge of surface angular and spectral properties that can be inferred from airborne directional radiance measurements.

  6. A multimedia approach to environmental monitoring in a northern environment: The Slave River environmental quality monitoring program

    SciTech Connect

    Peddle, J.; Stephens, G. [Indian and Northern Affairs Canada, Yellowknife, Northwest Territory (Canada); Robertson, K. [Government of the Northwest Territories, Yellowknife, Northwest Territory (Canada)

    1995-12-31

    The Slave River Environmental Quality Monitoring Program is a multimedia sampling program that was established in 1990 to characterize baseline conditions of the aquatic ecosystem in the Slave River at Fort Smith, NWT, Canada. The comprehensive nature of the sampling program made it the first of its kind in the Northwest Territories. The Slave River watershed drains an area of approximately 600,000 km{sup 2}, including the Peace and Athabasca Rivers, with the territorial portion being the furthest downstream. Increase in developments in the upstream portion of the basin prompted concerns by northern residents. In order to answer the questions of ``Can one drink the water?`` and ``Can one eat the fish?``, the program had to take an ecosystem approach and analyze a variety of media including water, suspended sediment and fish. In addition, benthic surveys, stable isotope work and delta coring were carried out in conjunction with this study. Samples were collected under both winter ({minus}40 C, under ice) and summer conditions. Samples were analyzed for organic and inorganic parameters including mixed function oxygenases (MFOs), dioxins, furans and other organochlorines. There was an emphasis on those contaminants likely to result from anthropogenic developments upstream, namely pulp and paper mills, agricultural activities and hydrocarbon developments. A comprehensive and extensive database was created which can be used to address concerns, aid in transboundary negotiations and monitor future changes in the quality of the aquatic environment.

  7. A New GLORIA Target Region in the Sierra Nevada, California, USA; Alpine Plant Monitoring For Global Climate Change

    Microsoft Academic Search

    A. Dennis; C. I. Millar; K. E. Murrell

    2004-01-01

    The Global Observation Research Initiative in Alpine Environments (GLORIA) is an international research project with the goal to assess climate change impacts on vegetation in alpine environments worldwide. Standardized protocols direct selection of each node in the network, called a target region, which consists of a set of four geographically proximal mountain summits at elevations extending from treeline to the

  8. Neurocognitive monitors: toward the prevention of cognitive performance decrements and catastrophic failures in the operational environment.

    PubMed

    Thomas, Maria L; Russo, Michael B

    2007-05-01

    Network-centric doctrine and the proposed C41SR (command, control, communications, computers, intelligence, surveillance and reconnaissance) distributions to the individual warfighter require that the cognitive performance, judgment, and decision making of warfighters must be sustained and effectively managed in the forward operating environment, where various physiological and psychological stressors abound, in order to reduce human errors and catastrophic failures. The U.S. Army Medical Research and Materiel Command (USAMRMC) established the Cognitive Performance, Judgment, and Decision-Making Research Program (CPJDRP) in 2004 to direct research to this issue. A Neurophysiological Measures and Cognition Focus Team (NMFCT) was formed to work with augmented cognition investigators and to specifically address the development of neurophysiological measures as potential monitors of alertness-cognitive state in warfighters. The USAM-RMC approach complemented the Defense Advanced Research Projects Agency (DARPA) Augmented Cognition approach, which focused on the detection of workload-related impaired cognitive state, and subsequent modification of information flow through automation. In this preface, the premise for neurophysiological measures as neurocognitive monitors is explained using an example of a neurophysiological index: the oculomotor measure, saccadic velocity. The progress of the NMFCT on the development of a neurocognitive monitor is described, as well as the recommendations of a 2005 USAMRMC/Telemedicine and Advanced Technology Research Center (TATRC)-sponsored workshop. Awareness of neurocognitive monitoring is discussed, as are future endeavors related to operational testing and fieldability. Four papers are summarized in this Neurophysiological Monitoring and Augmented Cognition section involving technologies to enhance cognitive performance in the operational environment: one on dynamic cortical electroencephalography, two on oculometrics, and one on a spatial orientation enhancement system. PMID:17547315

  9. Monitoring human health behaviour in one's living environment: a technological review.

    PubMed

    Lowe, Shane A; Ólaighin, Gearóid

    2014-02-01

    The electronic monitoring of human health behaviour using computer techniques has been an active research area for the past few decades. A wide array of different approaches have been investigated using various technologies including inertial sensors, Global Positioning System, smart homes, Radio Frequency IDentification and others. It is only in recent years that research has turned towards a sensor fusion approach using several different technologies in single systems or devices. These systems allow for an increased volume of data to be collected and for activity data to be better used as measures of behaviour. This change may be due to decreasing hardware costs, smaller sensors, increased power efficiency or increases in portability. This paper is intended to act as a reference for the design of multi-sensor behaviour monitoring systems. The range of technologies that have been used in isolation for behaviour monitoring both in research and commercial devices are reviewed and discussed. Filtering, range, sensitivity, usability and other considerations of different technologies are discussed. A brief overview of commercially available activity monitors and their technology is also included. PMID:24388101

  10. Can the ASAR Global Monitoring Mode Product Adequately Capture Spatial Soil Moisture Variability?

    NASA Astrophysics Data System (ADS)

    Mladenova, I.; Lakshmi, V.; Walker, J.; Panciera, R.; Wagner, W.; Doubkova, M.

    2008-12-01

    Global soil moisture (SM) monitoring in the past several decades has been undertaken mainly at coarse spatial resolution, which is not adequate for addressing small-scale phenomena and processes. The currently operational Advanced Microwave Scanning Radiometer (NASA) and future planned missions such as the Soil Moisture and Ocean Salinity (ESA) and the Soil Moisture Active Passive (NASA) will remain resolution limited. Finer scale soil moisture estimates can be achieved either by down-scaling the available coarse resolution radiometer and scatterometer (i.e. ERS1/2, ASCAT) observations or by using high resolution active microwave SAR type systems (typical resolution is in the order of meters). Considering the complex land surface - backscatter signal interaction, soil moisture inversion utilizing active microwave observations is difficult and generally needs supplementary data. Algorithms based on temporal change detection offer an alternative less complex approach for deriving (and disaggregating coarse) soil moisture estimates. Frequent monitoring and low frequency range along with a high pixel resolution are essential preconditions when characterizing spatial and temporal soil moisture variability. An alternative active system that meets these requirements is the Advance Synthetic Aperture Radar (ASAR) on ENVISAT [C-band, global, 1 km in Global Monitoring (GM) Mode]. The Vienna University of Technology (TU Wien) has developed a 1 km soil moisture product using the temporal change detection approach and the ASAR GM. The TU Wien SM product sensitivity was evaluated at two scales: point (using in situ data from permanent soil moisture stations) and regional [using ground measured data and aircraft estimates derived from the Polarimetric L-band Microwave Radiometer (PLMR)] over the National Airborne Field Experiment (NAFE'05) area located in the Goulburn catchment, SE Australia. The month long (November 2005) campaign was undertaken in a region predominantly covered by grasslands and partly by forests and croplands. Point scale analysis revealed high ASAR sensitivity and adequate response to changes in moisture conditions (R = 0.69 and RMSE = 0.08 v/v). Regional analysis was performed at several different spatial resolutions (1 km to 25 km). ASAR exhibited high noise level and significant wet bias. Increase in pixel size resulted in improving R and RMSE from R = 0.59 and RMSE = 0.14 to R = 0.91 and RMSE = 0.05 at 1 km and 25 km respectively; however, despite the reasonable statistical agreement at 1 km, the soil moisture spatial patterns clearly visible in the PLMR images, the later were verified with ground data, were lacking in the ASAR product.

  11. Global Learning and Observations to Benefit the Environment (GLOBE) - Year 5 Evaluation: Classroom Practices

    NSDL National Science Digital Library

    Barbara Means

    2000-12-01

    This report summarizes the results of the SRI, Inc. evaluation of classroom practices for the Global Learning and Observations to Benefit the Environment (GLOBE) program. For the past two years, SRI's evaluations have focused on providing data to help this international science and education program refine its partnership approach to teacher training and support. In the Year 5 evaluation, they have taken a closer look at the classroom adaptations of GLOBE, examining ways in which teachers have adapted elements of GLOBE to their particular classrooms and priorities as well as the institutional supports that facilitate sustained program participation.

  12. Sub-daily periodicities in the results of local monitoring using global navigation satellite systems

    NASA Astrophysics Data System (ADS)

    Kaftan, Vladimir; Ustinov, Alexander

    Nowadays the more attention is focused on the continuous monitoring by using of global navigation satellite systems (GNSS) in the study and control of stability of engineering structures and natural objects. The diurnal and semi-diurnal oscillations take place in high frequency GNSS observation. These waves are caused by the presence of the high frequency periodicities in changes of all geospheres, but also in systematic errors of GNSS techniques. Thus the diurnal variations are already found in the coordinates of global and regional networks of CORS stations. They are often related with the influence of Earth's diurnal tides. The purpose of this study is to examine the periodic variations in coordinate increments of local monitoring networks of engineering structures and the earth's surface. But in this case the tidal changes have a small influence because of the relative proximity of the network control points. Results of static GNSS observations in the local network with the control vectors baselines from 170 m to 4.3 km of length were used for the analysis of periodicities. The hourly time series of baseline components of the length of two months were analyzed. Three qualitatively different methods were applied: wavelet transformation (Morlet wavelet function), fast Fourier transformation (FFT), and sequential analysis of the dominant harmonics (dominant analysis) for the more sure detection of hidden periodicities. The results of determination of oscillation spectrum were obtained by the three methods mentioned above. For all baselines their good mutual agreement were obtained. Diurnal and semi-diurnal waves are mainly and the most vividly appeared in the horizontal components, in the height’s component there are also other periodicity of the high and low frequencies. The oscillation’s amplitude reaches 4 mm. It is necessary to clarify the nature of the observed oscillations, which will be the main subject of the following more detailed studies. It is important, since the cause of the detected periodic oscillations can be the real changes, such as temperature deformation of engineering structures as well as the changes connected with the influence of systematic errors of GNSS measurements for example. The obtained results lead to the following conclusions. - In the results of GNSS geodynamic monitoring of engineering structures and objects on the earth surface the stable oscillatory components with periods of 1 and 0.5 days, and amplitudes up to 4 mm are found. - Further analysis of the reasons of identified oscillations that may be caused by the real change of monitored objects and as well as systematic errors of measurement GNSS is required.

  13. Resourcesat-1: A global multi-observation mission for resources monitoring

    NASA Astrophysics Data System (ADS)

    Seshadri, K. S. V.; Rao, Mukund; Jayaraman, V.; Thyagarajan, K.; Sridhara Murthi, K. R.

    2005-07-01

    With an array of Indian Remote Sensing Satellites (IRS), a wide variety of national applications have been developed as an inter-agency effort over the past 20 years. Now, the capacity of the programme has been extended into the global arena and IRS is providing operational data services to the global user community. The recently launched IRS satellite, Resourcesat-1, was placed into perfect orbit by India's PSLV and is providing valuable imaging services. Resourcesat-1 is actually like 3 satellites "rolled" into one, imaging a wide field of 710 km area at ˜55 m resolution in multispectral bands from the AWiFS, 23 m resolution in a systematic 142 km swath from four bands of the LISS-3 and the 5.8 m multi-spectral images from the most advanced sensor—LISS-4. Yet another aspect of Resourcesat-1 is it that it marks a "watershed" in terms of a quantum jump in technological capability that India has achieved compared to past missions. The mission has many newer features—the advanced imaging sensors, the more precise attitude and orbit determination systems, the satellite positioning system onboard, the mass storage devices and many other features. This mission has led IRS into a new technological era, and when combined with the technological capability of the forthcoming Cartosat missions, India would have developed technologies that will take us into the new generation of EO satellites for the coming years. This paper provides a detailed description of the Resourcesat-1 mission. From the applications point of view, Resourcesat-1 will open up new avenues for environmental monitoring and resources management—especially for vegetation assessment and disaster management support. The monitoring capability of this mission is also extremely important for a number of applications. The mission has global imaging and servicing capabilities and could be received through the Antrix-Space Imaging network, which markets Resourcesat-1 data worldwide. This paper also describes the applications potentials and global capabilities of the mission. Resourcesat-1 will have continuity and after that a new generation system will provide enhanced and more unique imaging services. Actually, India has a 25 years strategy for EO and a perspective of the same is also described in this paper.

  14. Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments

    SciTech Connect

    VonDrasek, William; Melsio-Pubill, Anna

    2006-05-30

    This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For example, the on-Demand Power Control system for the 1.5 ?m laser is used for high particle density exhaust streams where laser transmission is problematic. For long-distance signal collection a fiber optic communication system is used to reduce noise pick-up. Finally, hardened modules to withstand high ambient temperatures, immune to EMF interference, protection from flying debris, and interfaced with pathlength control laser beam shielding probes were developed specifically for EAF process monitoring. Demonstration of these different system configurations was conducted on Charter Steel's reheat furnace, Imco Recycling, Inc. (now Aleris International, Inc.) aluminum reverberatory furnace, and Gerdau Ameristeel's EAF. Measurements on the reheat furnace demonstrated zone monitoring with the measurement performed close to the steel billet. Results from the aluminum furnace showed the benefit of measuring in-situ near the bath. In this case, low-level furnace optimization was performed and demonstrated 5% fuel savings. Monitoring tests on the EAF off-gas demonstrated the level of industrialization of the sensor to survive the harsh EAF environment. Long-term testing on the EAF has been on-going for over 6 months with essentially zero maintenance. Validation of the TDL measurement on the EAF was confirmed by comparison with extractive sampling CO measurements.

  15. Use of global navigation satellite systems for monitoring deformations of water-development works

    SciTech Connect

    Kaftan, V. I. [Russian Academy of Sciences, Geophysical Center (Russian Federation); Ustinov, A. V. [JSC Institut Gidropreoekt (Russian Federation)

    2013-05-15

    The feasibility of using global radio-navigation satellite systems (GNSS) to improve functional safety of high-liability water-development works - dams at hydroelectric power plants, and, consequently, the safety of the population in the surrounding areas is examined on the basis of analysis of modern publications. Characteristics for determination of displacements and deformations with use of GNSS, and also in a complex with other types of measurements, are compared. It is demonstrated that combined monitoring of deformations of the ground surface of the region, and engineering and technical structures is required to ensure the functional safety of HPP, and reliable metrologic assurance of measurements is also required to obtain actual characteristics of the accuracy and effectiveness of GNSS observations.

  16. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise

    USGS Publications Warehouse

    Webb, Edward L.; Friess, Daniel A.; Krauss, Ken W.; Cahoon, Donald R.; Guntenspergen, Glenn R.; Phelps, Jacob

    2013-01-01

    Sea-level rise threatens coastal salt-marshes and mangrove forests around the world, and a key determinant of coastal wetland vulnerability is whether its surface elevation can keep pace with rising sea level. Globally, a large data gap exists because wetland surface and shallow subsurface processes remain unaccounted for by traditional vulnerability assessments using tide gauges. Moreover, those processes vary substantially across wetlands, so modelling platforms require relevant local data. The low-cost, simple, high-precision rod surface-elevation table–marker horizon (RSET-MH) method fills this critical data gap, can be paired with spatial data sets and modelling and is financially and technically accessible to every country with coastal wetlands. Yet, RSET deployment has been limited to a few regions and purposes. A coordinated expansion of monitoring efforts, including development of regional networks that could support data sharing and collaboration, is crucial to adequately inform coastal climate change adaptation policy at several scales.

  17. The global plasma environment of Titan as observed by Cassini Plasma Spectrometer during the first two close encounters with Titan

    E-print Network

    Johnson, Robert E.

    The global plasma environment of Titan as observed by Cassini Plasma Spectrometer during the first] The Cassini spacecraft flew by Titan on October 26, 2004 and December 13, 2004. In both cases it entered the ionosphere of Titan, allowing exploration of its plasma environment. Using observations from the Cassini

  18. The global plasma environment of Titan as observed by Cassini Plasma Spectrometer during the first two close encounters with Titan

    Microsoft Academic Search

    K. Szego; Z. Bebesi; G. Erdos; L. Foldy; F. Crary; D. J. McComas; D. T. Young; S. Bolton; A. J. Coates; A. M. Rymer; R. E. Hartle; E. C. Sittler; D. Reisenfeld; J. J. Bethelier; R. E. Johnson; H. T. Smith; T. W. Hill; J. Vilppola; J. Steinberg; N. Andre

    2005-01-01

    The Cassini spacecraft flew by Titan on October 26, 2004 and December 13, 2004. In both cases it entered the ionosphere of Titan, allowing exploration of its plasma environment. Using observations from the Cassini Plasma Spectrometer (CAPS) and the Cassini magnetometer along the inbound legs of both flybys, we examine Titan's global plasma environment. On both occasions CAPS detected plasma

  19. The sperm whale sonar: Monitoring and use in mitigation of anthropogenic noise effects in the marine environment

    NASA Astrophysics Data System (ADS)

    André, Michel

    2009-04-01

    Noise pollution in the marine environment is an emerging but serious concern. Its implications are less well understood than other global threats and largely undetectable to everyone but the specialist. In addition, the assessment of the acoustic impact of artificial sounds in the sea is not a trivial task, certainly because there is a lack of information on how the marine organisms process and analyse sounds and how relevant these sounds are for the balance and development of the populations. Further, this possible acoustic impact not only concerns the hearing systems but may also affect other sensory or systemic levels and result equally lethal for the animal concerned. If we add that the negative consequences of a short or long term exposure to artificial sounds may not be immediately observed one can understood how challenging it is to obtain objective data allowing an efficient control of the introduction of anthropogenic sound in the sea. To answer some of these questions, the choice to investigate cetaceans and their adaptation to an aquatic environment is not fortuitous. Cetaceans, because of their optimum use of sound as an ad-hoc source of energy and their almost exclusive dependence on acoustic information, represent not only the best bio-indicator of the effects of noise pollution in the marine environment, but also a source of data to improve and develop human underwater acoustic technology. Here, we present how the characteristics and performance of the sperm whale mid-range biosonar can be used to develop a mitigation solution based on passive acoustics and ambient noise imaging to prevent negative interactions with human activities by monitoring cetacean movements in areas of interest, e.g. deep-sea observatories.

  20. Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic.

    PubMed

    Weber, Jan; Halsall, Crispin J; Muir, Derek; Teixeira, Camilla; Small, Jeff; Solomon, Keith; Hermanson, Mark; Hung, Hayley; Bidleman, Terry

    2010-07-01

    This review investigates the fate and behaviour of endosulfan, a current-use organochlorine pesticide, in temperate environments and the Arctic. Usage data and patterns, physical-chemical properties, environmental partitioning and degradation, environmental levels, global distribution and temporal trends are evaluated and discussed in the context of criteria that designate a substance as a persistent organic pollutant. Endosulfan is one of the most abundant OC pesticides in the global atmosphere and is capable of undergoing long range transport to remote locations such as the Arctic. Degradation of the two isomers, alpha- and beta-endosulfan, does occur in temperate/tropical soil and aquatic systems, both by abiotic and biotic processes, although this is highly dependent on the prevailing environmental conditions. Endosulfan sulfate is the major metabolite and this recalcitrant compound has been detected in air and is present in remote mountain lake sediments, although in comparison to alpha-endosulfan, data for this compound in the wider environment are lacking. Temporal trends from ice/snow cores as well as mountain lake sediments reveal a marked increase in endosulfan accumulation from the 1980s onwards. Furthermore, unlike other 'legacy' OC pesticides, levels of alpha-endosulfan do not show a decline in atmospheric monitoring data, reflecting ongoing use of this pesticide in the northern hemisphere. Endosulfan is present at low concentrations (relative to the pesticide, lindane) in surface Arctic Ocean waters, with the atmosphere likely to be the major contemporary source. Residues of endosulfan have been detected in marine biota for different geographical regions of the Arctic, with higher bioaccumulation factors (>10(3)-10(7)) for zooplankton and various species of fish, compared to studies in warmer/temperate systems. Endosulfan is present in marine mammals, although there is uncertainty in the various Arctic biota datasets due to differences in analytical techniques. For some biota, biomagnification factors for alpha-endosulfan are >1, notably from fish to seal, although there is a wide variability in values between the same species for different regions of the Arctic. There is little if any evidence of trophic magnification of alpha-endosulfan in well-defined marine foodwebs, with some evidence of bio-dilution at higher trophic levels, presumably due to increased metabolism. Endosulfan does fulfil several of the criteria under the UNEP Stockholm Convention for designation as a persistent organic pollutant. The alpha- and beta-isomer have similar physical-chemical properties and environmental behaviour to some of the obsolete organochlorine pesticides, although an assessment of their persistence and toxicity should be viewed alongside endosulfan sulfate, as 'Sigmaendosulfan'. Persistence of 'Sigmaendosulfan' coupled to ongoing use of endosulfan pesticides, will ensure continued long-range transport and contamination of remote environments. PMID:19939436

  1. EDITORIAL: Siberia Integrated Regional Study: multidisciplinary investigations of the dynamic relationship between the Siberian environment and global climate change

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Vaganov, E. A.

    2010-03-01

    This is an editorial overview of the Siberia Integrated Regional Study (SIRS), which is a large-scale investigation of ongoing and future environmental change in Siberia and its relationship to global processes, approaches, existing challenges and future direction. Introduction The SIRS is a mega-project within the Northern Eurasia Earth Science Partnership Initiative (NEESPI), which coordinates interdisciplinary, national and international activities in Northern Eurasia that follow the Earth System Science Program (ESSP) approach. Under the direction of the International Geosphere-Biosphere Program (IGBP), SIRS is one of the Integrated Regional Studies (IRS) that aims to investigate environmental change in Siberia under the current environment of global change, and the potential impact on Earth system dynamics [1]. The regions of interest are those that may function as 'choke or switch points' for the global Earth system, where changes in regional biophysical, biogeochemical and anthropogenic components may have significant consequences for the Earth system at the global scale. Siberia is a large and significant region that may compel change [2]. Regional consequences of global warming (e.g. anomalous increases in cold season temperatures) have already been documented for Siberia [3]. This result is also supported by climate modeling results for the 20th-22nd centuries [4]. Future climatic change threatens Siberia with the shift of permafrost boundaries northward, dramatic changes in land cover (redistribution among boreal forest, wetlands, tundra, and steppe zones often precipitated by fire regime change) and the entire hydrological regime of the territory [5-8]. These processes feed back to and influence climate dynamics through the exchange of energy, water, greenhouse gases and aerosols [9]. Even though there have been a handful of national and international projects focused on the Siberian environment, scientists have minimal knowledge about the processes that control change in this understudied region, particularly those concerning the primary components that influence regional climate (i.e. cloud cover, precipitation) and responses and feedbacks to and from terrestrial and aquatic systems. This provides a strong impetus for the SIRS project. SIRS was initiated at a boreal forest conference in Krasnoyarsk in 2002 under the auspices of the IGBP and ESSP regional strategy by Will Steffen (IGBP) and the Siberian Branch of the Russian Academy of Sciences (SB RAS). Russian and foreign scientific activities continued under the Siberian Center for Environmental Research and Training (SCERT) in 2003. In 2005, the Siberian Branch of the Russian National Committee (SB RNC) for IGBP endorsed these activities and recommended investigations focus on four major themes: quantification of the terrestrial biota full greenhouse gas budget, with a focus on the exchange between biota and atmosphere; monitoring and modeling of regional climate change impacts; development of SIRS informational-computational infrastructure; and development of a regional strategy of adaptation to and mitigation of the negative consequences of global change. SIRS development [10, 11] supports Siberian Earth science investigations funded by the RAS Foundation for Basic Research, the European Commission (EC), the International Science and Technology Center (ISTC) and the National Aeronautics and Space Administration (NASA). SB RNC is responsible for SIRS advances, and SCERT hosts the Committee office and houses major SIRS informational-computational infrastructure development. NEESPI (www.neespi.org/) serves as an IGBP and World Climate Research Programme (WCRP) external project, and as a NEESPI mega-project, SIRS has organized distribution centers in Krasnoyarsk and Tomsk to support NEESPI activity, and has coordinated training and educational activity aimed at young scientists. SIRS approaches and outcomes Organizational activity The 'Siberian Geosphere-Biosphere Program: integrated regional study of contemporary natural and climatic changes' is one of se

  2. Air-quality monitoring and detection of air contamination in an enclosed environment.

    PubMed

    Skliar, M; Ramirez, W F

    1997-01-01

    We report on the development of an air-quality monitoring and early detection system for an enclosed environment with specific emphasis on manned spacecraft. The proposed monitoring approach is based on a distributed parameter model of contaminant dispersion and real-time contaminant concentration measurements. Kalman filtering is identified as a suitable method for generating on-line estimation of the spatial contamination profile, and an implicit Kalman filtering algorithm is shown to be preferable for rear-time implementation. The identification of the contaminant concentration profile allows for a straightforward solution of the early detection of an air contamination event and provides information that enables potential automatic diagnosis of an unknown contamination source. PMID:11542301

  3. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    PubMed Central

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50–75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle. PMID:24706867

  4. Forest productivity and drought in tropical Africa: observations from the Global Ozone Monitoring Experiment-2

    NASA Astrophysics Data System (ADS)

    Robinson, E. S.; Lee, J. E.; Yang, X.

    2014-12-01

    The impact of seasonal water stress on Africa's tropical regions has yet to be characterized despite drought's potential to cause famine and a reduction of biodiversity across the continent. Through the analysis of a new data set of sun-induced chlorophyll fluorescence (SIF) from the Global Ozone Monitoring Experiment-2, we demonstrate that fluorescence varies with water availability, particularly over regions with distinctive wet and dry seasons. Water availability was determined via both precipitation (from the Global Precipitation Climatology Project) and daytime canopy water content measurements (from the SeaWinds Scatterometer onboard the QuickSCAT satellite). Variance in SIF values was largely explained by both canopy water content and precipitation, which paralleled one-another. When viewed in the context of the previously defined relationship between fluorescence and gross primary production (GPP) - SIF scales linearly with GPP - our results suggest that photosynthetic activity in tropical Africa is limited by water availability. The characterization of this trend is critical in defining the response of tropical ecosystems to water stress and corroborating similar relationships in other tropical regions (e.g. Amazonia). Ultimately, the viability of Africa's tropical regions amidst a changing climate is rooted in its ecosystem-wide response to water stress; the future of the African tropics is limited by how well plants cope with water stress.

  5. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence.

    PubMed

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A; Frankenberg, Christian; Huete, Alfredo R; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M; Griffis, Timothy J

    2014-04-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle. PMID:24706867

  6. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  7. [Morphophysiological monitoring of winter wheat at spring in connection with problem of global climate change].

    PubMed

    Klimov, S V; Burakhanova, E A; Dubinina, I M; Alieva, G P; Sal'nikova, E B; Trunova, T I

    2006-01-01

    Data on morphophysiological monitoring of winter wheat (Triticum aestivum L.) cultivar Mironovskaya 808 grown in Hoagland and Arnon solution in a greenhouse and transferred to natural conditions in March-April 2004 with the mean daily temperature of 0.6 +/- 0.7 degrees C within the exposure period of 42 days are presented. Water content, dry weight of plants and their organs, frost hardiness of plants, degree of tissue damage by frost, CO2 metabolism (photosynthesis and respiration), concentrations of sugars in tissues and proportions between different sugar forms, and activities of soluble and insoluble acid and alkaline phosphatases were monitored. Monitoring was carried out for three experimental variants simulating different microclimatic conditions in spring: after snow melting (experiment I), under ice crust (experiment II), and under snow cover (experiment III). Plants in experiments III and II demonstrated a higher water content in tissues, lower frost hardiness, higher rates of biomass loss, lower concentration of sugars and lower di- to monosaccharide ratio in tissues, and higher total invertase activity, particularly, cell wall-associated acid invertase activity. The dark respiration rates at 0 degrees C did not significantly differ between experimental variants. The photosynthetic capacity at this measurement temperature was maintained in all experimental variants being most pronounced in experiment II with the most intense photoinhibition under natural conditions. Comparison of experiments III and II with experiment I is used to discuss the negative effect of changes in certain microclimatic variables associated with global warming and leading to plant extortion and death from frost in spring. PMID:17022477

  8. Climate-monitoring CubeSat mission (CM2): a project for global mesopause temperature sensing

    NASA Astrophysics Data System (ADS)

    Doe, Richard A.; Watchorn, Steven

    2011-10-01

    The goals of the Climate Monitoring CubeSat Mission (CM2) are to accelerate climate projection by obtaining global temperature, tidal and wave measurements with a simple CubeSat-based imaging spectrograph; and to demonstrate how a high-resolution imaging spectrograph can be deployed on a CubeSat satellite. In the middle atmosphere (50 - 100 km), beyond the reach of balloons or satellites, thermal signatures of CO2 radiation and wave activity have been largely missing from climate model inputs. This paper outlines an instrument to advance the state of the art in atmospheric climate projection by providing critical global measurements of middle-atmosphere temperatures and waves with a CubeSatscale imaging spectrograph. The CM2 will remotely sense middle-atmosphere temperatures and waves at ~90 km by analyzing spectra of intrinsically bright molecular oxygen emissions at near-infrared wavelengths in the O2 atmospheric band. The core instrument will be a miniaturized imaging spectrograph based on a monolithic spatial heterodyne spectrometer (SHS). This spectrograph will have sensitivity and spectral resolution to extract temperatures with 10° K precision and waves with 4 km scale resolution along a ~200 km cross-track swath. The SHS is significantly more robust than conventional interferometers, and thus better suited to space-based observation. Acquiring high-resolution middle-atmosphere temperature, tidal, and wave data on a daily, global basis will significantly improve climate models, and will help assess long-term greenhouse gas mitigation policy impact on upper-atmosphere thermal signatures. The CM2 program will also establish the efficacy of highresolution CubeSat-based broadband (near-IR to UV) spectroscopy for application to other atmospheric research missions.

  9. Biomedical real-time monitoring in restricted and safety-critical environments

    PubMed Central

    Astaras, A; Bamidis, P D; Kourtidou-Papadeli, C; Maglaveras, N

    2008-01-01

    Biomedical signal monitoring can counteract the risk of human operator error due to inattention or fatigue in safetycritical and restrictive environments, such as in aviation, space, automobile and heavy industrial machinery operation. Real-time biomedical data acquisition is changing through advances in microelectronics fabrication, bio-MEMS and power micro-generators. Such data acquisition and processing systems are becoming increasingly miniaturised, flexible and pervasive, while data is being collected from inside the human body as well as around it. In this paper we review two related research projects exploiting this technological convergence, discuss its implications and suggest future innovation prospects through further similar cross-disciplinary synergies. PMID:19048087

  10. Dynamic sensor deployment for the monitoring of chemical releases in urban environments (DYCE)

    NASA Astrophysics Data System (ADS)

    Lepley, Jason J.; Lloyd, David R.; Robins, Alan; Rudd, Alison; Wilks, Ashley

    2011-05-01

    We present findings of the DYCE project, which addresses the needs of military and blue light responders to provide a rapid, reliable on-scene analysis of the dispersion of toxic airborne chemical threat agents following their release into the environment. We describe the development and experimental results for a small network of ad-hoc deployable chemical and meteorological sensors capable of identifying and locating the source of the contaminant release, as well as monitoring and estimating the dispersion characteristics of the plume. We further present deployment planning methodologies to optimize the data gathering mission given a constrained asset base.

  11. The Costa Rica GLOBE (Global Learning and Observations to Benefit the Environment) Project as a Learning Science Environment

    NASA Astrophysics Data System (ADS)

    Castro Rojas, María Dolores; Zuñiga, Ana Lourdes Acuña; Ugalde, Emmanuel Fonseca

    2015-04-01

    GLOBE is a global educational program for elementary and high school levels, and its main purpose in Costa Rica is to develop scientific thinking and interest for science in high school students through hydrology research projects that allow them to relate science with environmental issues in their communities. Youth between 12 and 17 years old from public schools participate in science clubs outside of their regular school schedule. A comparison study was performed between different groups, in order to assess GLOBE's applicability as a learning science atmosphere and the motivation and interest it generates in students toward science. Internationally applied scales were used as tools for measuring such indicators, adapted to the Costa Rican context. The results provide evidence statistically significant that the students perceive the GLOBE atmosphere as an enriched environment for science learning in comparison with the traditional science class. Moreover, students feel more confident, motivated and interested in science than their peers who do not participate in the project. However, the results were not statistically significant in this last respect.

  12. What is a habitable environment? -answers from observations of a global transect

    NASA Astrophysics Data System (ADS)

    de Vera, Jean-Pierre; de La Torre Noetzel, Rosa; Onofri, Silvano; Ott, Sieglinde

    Extremophiles are specialists which colonise special niches in these extreme environments due to there adaptation capacities attained during the evolution of life. Some examples of ex-tremophiles and their potential to deal with harsh conditions as well as the characterisation of their niches will be presented. Based on observations and results obtained in the 10th German Antarctic North Victoria Land Expedition (GANOVEX X) in the area of the Transantarctic Mountains led by the German Geosciences and Resource Research Society (BGR) and during an environment characterisation campaign of the European Alps and the Spanish Mountains "Sierra de Gredos" supported by the German Ministry of Economy and Technology (BMWi) a global transect from temperate Alpine regions to Mediterranean mountains and Polar Mountain regions can be analysed. Due to a summary of these results we are able to compare different strategies of colonisation in different habitats of the global mountain transect by cosmopolitan and endemic species as there are, the colonisation of rocks, fissures, cracks, polygon forming substrates, permafrost and glaciers. Data of UV B-, PAR-and IR-radiation measurements, humidity and temperature as well as the activity of microorganisms are accomplishing with more details the habitat characterisation and may give relevant information on probably niches for life on other planets as e.g. the planet Mars and may give answers on the question what is a habitable environment. These results will also form the basis of a series of new space experiments on satellites or on the International Space Station (ISS) and furthermore may lead to progress in probes-and rover-development for particular "hardly" accessible terrains.

  13. Accurate modeling of spectral fine-structure in Earth radiance spectra measured with the Global Ozone Monitoring Experiment

    Microsoft Academic Search

    Rutger van Deelen; Otto P. Hasekamp; Jochen Landgraf

    2007-01-01

    We present what we believe to be a novel approach to simulating the spectral fine structure (<1 nm) in measurements of spectrometers such as the Global Ozone Monitoring Experiment (GOME). GOME measures the Earth's radiance spectra and daily solar irradiance spectra from which a reflectivity spectrum is commonly extracted. The high-frequency structures contained in such a spectrum are, apart from

  14. Reflecting on the EFA Global Monitoring Report's Framework for Understanding Quality Education: A Teacher's Perspective in Eritrea

    ERIC Educational Resources Information Center

    Gordon, Charlie

    2010-01-01

    This paper considers issues concerning the quality of education in Eritrea using the Education for All (EFA) Global Monitoring Report's (GMR) framework for quality education. Drawing on 2 years school-based professional experience in the country, the multiple factors affecting quality in schooling are discussed. The applicability of the GMR…

  15. The ERS-1 Central Africa Mosaic: a new perspective in radar remote sensing for the global monitoring of vegetation

    Microsoft Academic Search

    Gianfranco De Grandi; Jean-Paul Malingreau; Marc Leysen

    1999-01-01

    The Central Africa Mosaic Project (CAMP) is an attempt to bring spaceborne synthetic aperture radar (SAR) remote sensing into an entirely new perspective for tropical forest monitoring, this goal represents a drastic change in the use of radar data, as it brings high-resolution SAR from the role of gap-filler and local hot spot analysis to the role of global mapping

  16. Ambient monitoring of airborne asbestos in non-occupational environments in Tehran, Iran

    NASA Astrophysics Data System (ADS)

    Kakooei, Hossein; Meshkani, Mohsen; Azam, Kamal

    2013-12-01

    Airborne asbestos fiber concentrations were monitored in the urban areas of Tehran, Iran during the period of 23 August to 21 September 2012. The airborne fiber concentrations of 110 air samples collected from 15 different sites in five regions of Tehran. The monitoring sites were located 2.5 m above ground nearby the main street and heavy traffic jam. The ambient air samples were analyzed using scanning electron microscopy (SEM), with energy-dispersive X-ray analysis and phase-contrast optical microscopy (PCM). The geometric means of the airborne asbestos fiber concentrations in the outdoor living areas was 1.6 × 10-2 SEM f ml-1 (1.18 × 10-3 PCM f ml-1). This criteria is considerably higher than those reported for the levels of asbestos in outdoor living areas in the Europe and the non-occupational environment of the Korea. No clear correlation was found between asbestos fiber concentration and the relative humidity and temperature. The SEM and PLM analysis revealed that all samples examined contained only chrysotile asbestos. It can be concluded that several factor such as heavy traffic, cement sheet and pipe consumption of asbestos, and geographical conditions play an important role for the high airborne asbestos levels in the non-occupational environments.

  17. Monitoring performance of the cameras under the high dose-rate gamma ray environments.

    PubMed

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min

    2014-05-01

    CCD/CMOS cameras, loaded on a robot system, are generally used as the eye of the robot and monitoring unit. A major problem that arises when dealing with images provided by CCD/CMOS cameras under severe accident situations of a nuclear power plant is the presence of speckles owing to the high dose-rate gamma irradiation fields. To use a CCD/CMOS camera as a monitoring unit in a high radiation area, the legibility of the camera image in such intense gamma-radiation fields should therefore be defined. In this paper, the authors describe the monitoring index as a figure of merit of the camera's legibleness under a high dose-rate gamma ray irradiation environment. From a low dose-rate (10 Gy h) to a high dose-rate (200 Gy h) level, the legible performances of the cameras owing to the speckles are evaluated. The numbers of speckles generated by gamma ray irradiation in the camera image are calculated by an image processing technique. The legibility of the sensor indicator (thermo/hygrometer) owing to the number of speckles is also presented. PMID:24667385

  18. The galaxy stellar mass function and its evolution with time show no dependence on global environment

    NASA Astrophysics Data System (ADS)

    Vulcani, B.; Poggianti, B. M.; Oemler, A.; Dressler, A.; Aragón-Salamanca, A.; De Lucia, G.; Moretti, A.; Gladders, M.; Abramson, L.; Halliday, C.

    2013-02-01

    We present an analysis of the galaxy stellar mass function in different environments at intermediate redshift (0.3 ? z ? 0.8) for two mass-limited galaxy samples. We use the IMACS Cluster Building Survey (ICBS; M? ? 1010.5 M?) to study cluster, group and field galaxies at z = 0.3-0.45, and the ESO Distant Cluster Survey (EDisCS; M? ? 1010.2 M?) to investigate cluster and group galaxies at z = 0.4-0.8. Our analysis thus includes galaxies with masses reaching just below that of the Milky Way. Excluding the brightest cluster galaxies, we show that the shape of the mass distribution does not seem to depend on global environment, Our two main results are: (1) Galaxies in the virialised regions of clusters, in groups, and in the field follow similar mass distributions. (2) Comparing the ICBS and EDisCS mass functions to mass functions in the local universe, we detect evolution from z ~ 0.4-0.6 to z ~ 0.07 in the sense that the population of low-mass galaxies has grown with time with respect to the population of massive galaxies. This evolution is independent of environment, i.e., the same for clusters and the field. Furthermore, considering only cluster galaxies, we find that no differences can be detected in their mass functions either within the virialised regions, or when we compare galaxies inside and outside the virial radius. Finally, we find that red and blue galaxies have different mass functions. However, the shapes of the mass functions of blue and red galaxies do not seem to depend on their environment (clusters groups and the field). This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. Evaluation of Global Ozone Monitoring Experiment (GOME) ozone profiles from nine different algorithms

    NASA Astrophysics Data System (ADS)

    Meijer, Y. J.; Swart, D. P. J.; Baier, F.; Bhartia, P. K.; Bodeker, G. E.; Casadio, S.; Chance, K.; Del Frate, F.; Erbertseder, T.; Felder, M. D.; Flynn, L. E.; Godin-Beekmann, S.; Hansen, G.; Hasekamp, O. P.; Kaifel, A.; Kelder, H. M.; Kerridge, B. J.; Lambert, J.-C.; Landgraf, J.; Latter, B.; Liu, X.; McDermid, I. S.; Pachepsky, Y.; Rozanov, V.; Siddans, R.; Tellmann, S.; van der A, R. J.; van Oss, R. F.; Weber, M.; Zehner, C.

    2006-11-01

    An evaluation is made of ozone profiles retrieved from measurements of the nadir-viewing Global Ozone Monitoring Experiment (GOME) instrument. Currently, four different approaches are used to retrieve ozone profile information from GOME measurements, which differ in the use of external information and a priori constraints. In total nine different algorithms will be evaluated exploiting the optimal estimation (Royal Netherlands Meteorological Institute, Rutherford Appleton Laboratory, University of Bremen, National Oceanic and Atmospheric Administration, Smithsonian Astrophysical Observatory), Phillips-Tikhonov regularization (Space Research Organization Netherlands), neural network (Center for Solar Energy and Hydrogen Research, Tor Vergata University), and data assimilation (German Aerospace Center) approaches. Analysis tools are used to interpret data sets that provide averaging kernels. In the interpretation of these data, the focus is on the vertical resolution, the indicative altitude of the retrieved value, and the fraction of a priori information. The evaluation is completed with a comparison of the results to lidar data from the Network for Detection of Stratospheric Change stations in Andoya (Norway), Observatoire Haute Provence (France), Mauna Loa (Hawaii), Lauder (New Zealand), and Dumont d'Urville (Antarctic) for the years 1997-1999. In total, the comparison involves nearly 1000 ozone profiles and allows the analysis of GOME data measured in different global regions and hence observational circumstances. The main conclusion of this paper is that unambiguous information on the ozone profile can at best be retrieved in the altitude range 15-48 km with a vertical resolution of 10 to 15 km, precision of 5-10%, and a bias up to 5% or 20% depending on the success of recalibration of the input spectra. The sensitivity of retrievals to ozone at lower altitudes varies from scheme to scheme and includes significant influence from a priori assumptions.

  20. The monitoring system for vibratory disturbance detection in microgravity environment aboard the international space station

    NASA Technical Reports Server (NTRS)

    Laster, Rachel M.

    2004-01-01

    Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to carefully synthesize frequency and acceleration patterns of unknown events within the Excel database into a new file to determine whether or not certain information that is received i s considered a real vibratory source. Once considered as a vibratory source, further analysis is carried out. The resulting information is used to retrain the MEMS to recognize them as known patterns. These different vibratory disturbances are being constantly monitored to observe if, in any way, the disturbances have an effect on the microgravity environment that research experiments are exposed to. If the disturbance has little or no effect on the experiments, then research is continued. However, if the disturbance is harmful to the experiment, scientists act accordingly by either minimizing the source or terminating the research and neither NASA's time nor money is wasted.

  1. Enhancing Global Competitiveness: Benchmarking Airline Operational Performance in Highly Regulated Environments

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.; Kane, Karisa D.

    1998-01-01

    Enhancing competitiveness in the global airline industry is at the forefront of attention with airlines, government, and the flying public. The seemingly unchecked growth of major airline alliances is heralded as an enhancement to global competition. However, like many mega-conglomerates, mega-airlines will face complications driven by size regardless of the many recitations of enhanced efficiency. Outlined herein is a conceptual model to serve as a decision tool for policy-makers, managers, and consumers of airline services. This model is developed using public data for the United States (U.S.) major airline industry available from the U/S. Department of Transportation, Federal Aviation Administration, the National Aeronautics and Space Administration, the National Transportation Safety Board, and other public and private sector sources. Data points include number of accidents, pilot deviations, operational performance indicators, flight problems, and other factors. Data from these sources provide opportunity to develop a model based on a complex dot product equation of two vectors. A row vector is weighted for importance by a key informant panel of government, industry, and consumer experts, while a column vector is established with the factor value. The resulting equation, known as the national Airline Quality Rating (AQR), where Q is quality, C is weight, and V is the value of the variables, is stated Q=C[i1-19] x V[i1-19]. Looking at historical patterns of AQR results provides the basis for establishment of an industry benchmark for the purpose of enhancing airline operational performance. A 7 year average of overall operational performance provides the resulting benchmark indicator. Applications from this example can be applied to the many competitive environments of the global industry and assist policy-makers faced with rapidly changing regulatory challenges.

  2. On the demands on imaging spectrometry for the monitoring of global vegetation fluorescence from space

    NASA Astrophysics Data System (ADS)

    Kraft, S.; Del Bello, U.; Drusch, M.; Gabriele, A.; Harnisch, B.; Moreno, J.

    2013-09-01

    Vegetation fluorescence when measured from space contributes only a tiny fraction of the signal coming on top of the reflected radiance by the Earth surface and the atmosphere. As a consequence, imaging spectrometers have to provide sufficient throughput and radiometric accuracy to enable accurate global monitoring of the daily to seasonal variations of the Earth's vegetation breath, which is particularly challenging if ground resolutions of a few hundred meters are targeted. Since fluorescence retrieval algorithms have to make corrections for atmospheric effects, it is necessary to provide sufficient spectral resolution, so that signal alterations due to the main parameters such as surface pressure, atmospheric temperature profile, vertical distribution of aerosols concentration, and water vapour content can be accurately modelled. ESA's Earth Explorer 8 candidate mission FLEX carries a Fluorescence Imaging Spectrometer (FLORIS), which has been designed and optimised to enable such measurement. The spectrometer will measure in a spectral range between 500 and 780 nm and provide high spectral resolution of 0.3 nm in particular at the Oxygen-A and -B bands. It will also cover the photochemical reflection features between 500 and 600 nm, the Chlorophyll absorption region between 600 and 677 nm, and the red-edge in the region of 697 to 755 nm. FLEX will fly in formation with Sentinel-3 in order to further enhance the spectral coverage from measurements made by the Sentinel-3 instruments OLCI and SLSTR, particularly for cloud screening and proper characterization of the atmospheric status.

  3. Preliminary Concept of Operations for a Global Cylinder Identification and Monitoring System

    SciTech Connect

    Whitaker, J. M. [ORNL; White-Horton, J. L. [ORNL; Morgan, J. B. [InSolves Associates

    2013-08-01

    This report describes a preliminary concept of operations for a Global Cylinder Identification and Monitoring System that could improve the efficiency of the International Atomic Energy Agency (IAEA) in conducting its current inspection activities and could provide a capability to substantially increase its ability to detect credible diversion scenarios and undeclared production pathways involving UF6 cylinders. There exist concerns that a proliferant State with access to enrichment technology could obtain a cylinder containing natural or low-enriched uranium hexafluoride (UF6) and produce a significant quantity (SQ)1 of highly enriched uranium in as little as 30 days. The National Nuclear Security Administration (NNSA) through the Next Generation Safeguards Initiative sponsored a multi-laboratory team to develop an integrated system that provides for detecting scenarios involving 1) diverting an entire declared cylinder for enrichment at a clandestine facility, 2) misusing a declared cylinder at a safeguarded facility, and 3) using an undeclared cylinder at a safeguarded facility. An important objective in developing this integrated system was to improve the timeliness for detecting the cylinder diversion and undeclared production scenarios. Developing this preliminary concept required in-depth analyses of current operational and safeguards practices at conversion, enrichment, and fuel fabrication facilities. The analyses evaluated the processing, movement, and storage of cylinders at the facilities; the movement of cylinders between facilities (including cylinder fabrication); and the misuse of safeguarded facilities.

  4. Installation of a variable-angle spectrometer system for monitoring diffuse and global solar radiation

    NASA Astrophysics Data System (ADS)

    Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.

    2013-11-01

    We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.

  5. The growing pains of global cities : struggles in the urban environment of Dubai and Singapore

    E-print Network

    Haider, Deeba, 1971-

    1999-01-01

    This Master's thesis explores the validity of current theories of globalization through the analysis of two prominent second level global cities, Dubai and Singapore. The hypotheses of global homogenization and hybridization ...

  6. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    USGS Publications Warehouse

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal damping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  7. Development cooperation for health: reviewing a dynamic concept in a complex global aid environment

    PubMed Central

    2012-01-01

    The 4th High Level Forum on Aid Effectiveness, held in Busan, South Korea in November 2011 again promised an opportunity for a "new consensus on development cooperation" to emerge. This paper reviews the recent evolution of the concept of coordination for development assistance in health as the basis from which to understand current discourses. The paper reviews peer-reviewed scientific literature and relevant 'grey' literature, revisiting landmark publications and influential authors, examining the transitions in the conceptualisation of coordination, and the related changes in development assistance. Four distinct transitions in the understanding, orientation and application of coordination have been identified: coordination within the sector, involving geographical zoning, sub-sector specialisation, donor consortia, project co-financing, sector aid, harmonisation of procedures, ear-marked budgetary support, donor agency reform and inter-agency intelligence gathering; sector-wide coordination, expressed particularly through the Sector-Wide Approach; coordination across sectors at national level, expressed in the evolution of Poverty Strategy Reduction Papers and the national monitoring of the Millennium Development Goals; and, most recently, global-level coordination, embodied in the Paris Principles, and the emergence of agencies such as the International Health Partnerships Plus. The transitions are largely but not strictly chronological, and each draws on earlier elements, in ways that are redefined in the new context. With the increasing complexity of both the territory of global health and its governance, and increasing stakeholders and networks, current imaginings of coordination are again being challenged. The High Level Forum in Busan may have been successful in recognising a much more complex landscape for development than previously conceived, but the challenges to coordination remain. PMID:22420459

  8. Snapping turtles (Chelydra serpentina) as monitors for mercury contamination of aquatic environments.

    PubMed

    Golet, W J; Haines, T A

    2001-10-01

    We assessed the distribution of mercury in snapping turtles (Chelydra serpentina) by analyzing front shoulder muscle, back leg muscle, tail muscle, blood, liver, and marginal carapacial scute (shell) of 26 adult turtles from five small lakes. Total mercury concentration in muscle ranged from 50 to 500 ng g(-1) wet weight and was highly correlated among the three tissue locations. There was no relationship between muscle mercury concentration and body size. Mercury concentration in blood was similar to muscle; the correlation with muscle mercury concentration was significant but there was some variability. Mercury concentration in shell was much higher than in muscle or blood, ranging from 500 to 3300 ng g(-1), and was highly correlated with muscle mercury concentration. Liver mercury concentration was similar to shell, but was highly variable and uncorrelated with any other tissue. We conclude that snapping turtles accumulate mercury from their environment and may be useful monitors of mercury contamination. PMID:11683228

  9. Monitoring the Environment using High-Spatial Resolution Remote Sensing: Contribution to Health Information Systems

    NASA Astrophysics Data System (ADS)

    Tourre, Y. M.; Lacaux, J.

    2007-12-01

    Presence (density) of mosquitoes linked to Rift Valley Fever (RVF) epidemics in the Ferlo (Senegal) is evaluated by monitoring the environment from space. Using five SPOT-5 high-resolution images (~10m spatial resolution, on August 17th, 2006) a meridional transect of 290 x 60 km2 is analyzed for the first time. Four major ecozones are thus identified: Senegal River valley; sandy Ferlo; sandy-clayey Ferlo; and steppe/cultivated areas, from north to south, respectively. An integrated/multidisciplinary approach using remote-sensing leads to a composited Zones Potentially Occupied by Mosquitoes (or ZPOMs, with extrema). It is found that at the peak of the rainy season, the area occupied by ponds is of 12,817 ha ± 10% (i.e., ~ 0.8 % of the transect) with a mean ZPOM 17 times larger i.e.: 212,813 ha ± 10 % (or ~14 % of the transect). ZPOMs characteristics (minimum and maximum) at the ecozones levels with different hydrological mechanisms, are presented. Ponds and ZPOMs inter-annual variabilities and RVF risks, are subsequently highlighted by comparing statistics in the so-called Barkedji zone (sandy-clayey Ferlo with a hydrofossil riverbed), for the very humid year of 2003, and the near normal rainfall year of 2006. It is shown that at the end of August 2003/2006, ponds (ZPOMs) areas, were already ~22 (~5) times larger. The key roles played by isolated ponds for animals' exposure to RVF risks are thus identified. These results highlight the importance of monitoring the changing environment when linkages with public health exist. The ZPOM approach is to be adapted for other vector-borne diseases such as malaria, dengue fever, in different places of the world. Results are meant to be included into Health Information Systems (HIS) on an operational basis, in order to minimize socio-economical impacts from epidemics.

  10. CAMS-OPI: A Global Satellite-Rain Gauge Merged Product for Real-Time Precipitation Monitoring Applications.

    NASA Astrophysics Data System (ADS)

    Janowiak, John E.; Xie, Pingping

    1999-11-01

    A method has been developed to produce real-time rain gauge-satellite merged analyses of global monthly precipitation. A dataset of these analyses spans the period from January 1979 to the present, which is sufficiently long to allow the computation of reasonably stable base period means from which departures from `normal' can be computed. The dataset is used routinely for global precipitation monitoring purposes at the National Oceanic and Atmospheric Administration/National Weather Service/National Centers for Environmental Prediction/Climate Prediction Center, is updated monthly, and is available via the Internet.

  11. Monitoring the Shallow Water Table and Vadose Zone of a Humid Subtropical Environment

    NASA Astrophysics Data System (ADS)

    Vomacka, J. G.; Tara, P.; Nachabe, M. H.; Ross, M. A.; Geurink, J.; Basso, R.

    2001-12-01

    In humid environments, such as Florida and the Southeast U.S., a dynamic surficial water table controls many hydrologic fluxes including baseflow, evapotranspiration, and saturation excess runoff. Currently, extensive monitoring of the surficial water table and the shallow vadose zone along two flow paths (hillslope transects) is occurring. The field site is on Long Flat Creek tributary of the Alafia River in west-central Florida. The monitoring system consists of a series of observation wells and soil moisture sensors (ENVIROSCAN), runoff and rainfall excess collector beds, very accurate stream gauging stations, continuous 5-minute rainfall gaging, a total weather station and an evaporation pan. All instruments are automated with pressure transducers and data loggers, providing continuous recording at minutes time intervals. There are three objectives for this field investigation. The first objective is to determine the time scale of water table and gradient fluctuations and their roles in controlling upward fluxes from groundwater to unsaturated zone, and stream baseflow. The second objective is to gain an improved understanding and representation of these processes in order to enhance integrated (coupled surface and groundwater) hydrological models aimed at simulating processes and fluxes across surface water, vadose zone, and groundwater domains. Finally the third objective is to observe the spatial and temporal dynamics of variable runoff source areas. These runoff source areas fringe streams and their spatial and dynamic variability are associated with the hydro-period of forested wetlands.

  12. ISFET-based sensor signal processor chip design for environment monitoring applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Wang, Ming-Ga

    2004-12-01

    In recent years Ion-Sensitive Field Effect Transistor (ISFET) based transducers create valuable applications in physiological data acquisition and environment monitoring. This paper presents a mixed-mode ASIC design for potentiometric ISFET-based bio-chemical sensor applications including H+ sensing and hand-held pH meter. For battery power consideration, the proposed system consists of low voltage (3V) analog front-end readout circuits and digital processor has been developed and fabricated in a 0.5mm double-poly double-metal CMOS technology. To assure that the correct pH value can be measured, the two-point calibration circuitry based on the response of standard pH4 and pH7 buffer solution has been implemented by using algorithmic state machine hardware algorithms. The measurement accuracy of the chip is 10 bits and the measured range between pH 2 to pH 12 compared to ideal values is within the accuracy of 0.1pH. For homeland environmental applications, the system provide rapid, easy to use, and cost-effective on-site testing on the quality of water, such as drinking water, ground water and river water. The processor has a potential usage in battery-operated and portable devices in environmental monitoring applications compared to commercial hand-held pH meter.

  13. Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment

    PubMed Central

    Pavlin, Marko; Belavic, Darko; Novak, Franc

    2012-01-01

    This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing. PMID:22368471

  14. Global Security Rule Sets An Analysis of the Current Global Security Environment and Rule Sets Governing Nuclear Weapons Release

    SciTech Connect

    Mollahan, K; Nattrass, L

    2004-09-30

    America is in a unique position in its history. In maintaining its position as the world's only superpower, the US consistently finds itself taking on the role of a global cop, chief exporter of hard and soft power, and primary impetus for globalization. A view of the current global situation shows an America that can benefit greatly from the effects of globalization and soft power. Similarly, America's power can be reduced significantly if globalization and its soft power are not handled properly. At the same time, America has slowly come to realize that its next major adversary is not a near peer competitor but terrorism and disconnected nations that seek nuclear capabilities. In dealing with this new threat, America needs to come to terms with its own nuclear arsenal and build a security rule set that will establish for the world explicitly what actions will cause the US to consider nuclear weapons release. This rule set; however, needs to be established with sensitivity to the US's international interests in globalization and soft power. The US must find a way to establish its doctrine governing nuclear weapons release without threatening other peaceful nations in the process.

  15. Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station

    NASA Astrophysics Data System (ADS)

    Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.

    2013-12-01

    Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit of the ISS results in varying illumination angles and fix-point spotlight imaging results in varying viewing angles, ideal for viewing steep slopes on glaciers and adjacent areas. Rapid events may be observed in progress by correlating changes in images over a single pass or between passes. We present a working design, data acquisition parameters, science objectives, and data processing strategy for a conceptual instrument, MUIR (Mission to Understand Ice Retreat).

  16. Global Response of Martian Plasma Environment to an Interplanetary Structure: From ENA and Plasma Observations at Mars

    Microsoft Academic Search

    Y. Futaana; S. Barabash; A. Grigoriev; D. Winningham; R. Frahm; M. Yamauchi; R. Lundin

    2007-01-01

    As a part of the global plasma environment study of Mars and its response to the solar wind, we have analyzed a peculiar case of the subsolar energetic neutral atom (ENA) jet observed on June 7, 2004 by the Neutral Particle Detector (NPD) on board the Mars Express satellite. The ``subsolar ENA jet`` is generated by the interaction between the

  17. Cross-Cultural Collisions in Cyberspace: Case Studies of International Legal Issues for Educators Working in Globally Networked Learning Environments

    ERIC Educational Resources Information Center

    Rife, Martine Courant

    2010-01-01

    This article explores some of the legal and law-related challenges educators face in designing, implementing, and sustaining globally networked learning environments (GNLEs) in the context of conflicting international laws on intellectual property and censorship/free speech. By discussing cases and areas involving such legal issues, the article…

  18. Off-the-shelf real-time monitoring of satellite constellations in a visual 3-D environment

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.; Hervias, Felipe; Cheng, Cecilia Han; Mactutis, Anthony; Angelino, Robert

    1996-01-01

    The multimission spacecraft analysis system (MSAS) data monitor is a generic software product for future real-time data monitoring and analysis. The system represents the status of a satellite constellation through the shape, color, motion and position of graphical objects floating in a three dimensional virtual reality environment. It may be used for the monitoring of large volumes of data, for viewing results in configurable displays, and for providing high level and detailed views of a constellation of monitored satellites. It is considered that the data monitor is an improvement on conventional graphic and text-based displays as it increases the amount of data that the operator can absorb in a given period, and can be installed and configured without the requirement for software development by the end user. The functionality of the system is described, including: the navigation abilities; the representation of alarms in the cybergrid; limit violation; real-time trend analysis, and alarm status indication.

  19. A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming

    SciTech Connect

    Shen, W.; Tuleya, R.E.; Ginis, I.

    2000-01-01

    In this study, the effect of thermodynamic environmental changes on hurricane intensity is extensively investigated with the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model for a suite of experiments with different initial upper-tropospheric temperature anomalies up to {+-}4 C and sea surface temperatures ranging from 26 to 31 C given the same relative humidity profile. The results indicate that stabilization in the environmental atmosphere and sea surface temperature (SST) increase cause opposing effects on hurricane intensity. The offsetting relationship between the effects of atmospheric stability increase (decrease) and SST increase (decrease) is monotonic and systematic in the parameter space. This implies that hurricane intensity increase due to a possible global warming associated with increased CO{sub 2} is considerably smaller than that expected from warming of the oceanic waters alone. The results also indicate that the intensity of stronger (weaker) hurricanes is more (less) sensitive to atmospheric stability and SST changes. The model-attained hurricane intensity is found to be well correlated with the maximum surface evaporation and the large-scale environmental convective available potential energy. The model-attained hurricane intensity if highly correlated with the energy available from wet-adiabatic ascent near the eyewall relative to a reference sounding in the undisturbed environment for all the experiments. Coupled hurricane-ocean experiments show that hurricane intensity becomes less sensitive to atmospheric stability and SST changes since the ocean coupling causes larger (smaller) intensity reduction for stronger (weaker) hurricanes. This implies less increase of hurricane intensity related to a possible global warming due to increased CO{sub 2}.

  20. Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns

    Microsoft Academic Search

    Michael P. Barkley; Paul I. Palmer; Uwe Kuhn; Juergen Kesselmeier; Kelly Chance; Thomas P. Kurosu; Randall V. Martin; Detlev Helmig; Alex Guenther

    2008-01-01

    We estimate isoprene emissions over tropical South America during 1997-2001 using column measurements of formaldehyde (HCHO) from the Global Ozone Monitoring Experiment (GOME) satellite instrument, the GEOS-Chem chemistry transport model, and the MEGAN (Model of Emissions of Gases and Aerosols from Nature) bottom-up isoprene inventory. GEOS-Chem is qualitatively consistent with in situ ground-based and aircraft concentration profiles of isoprene and

  1. Sensor Web for Spatio-Temporal Monitoring of a Hydrological Environment

    NASA Technical Reports Server (NTRS)

    Delin, K. A.; Jackson, S. P.; Johnson, D. W.; Burleigh, S. C.; Woodrow, R. R.; McAuley, M.; Britton, J. T.; Dohm, J. M.; Ferre, T. P. A.; Ip, Felipe

    2004-01-01

    The Sensor Web is a macroinstrument concept that allows for the spatio-temporal understanding of an environment through coordinated efforts between multiple numbers and types of sensing platforms, including, in its most general form, both orbital and terrestrial and both fixed and mobile. Each of these platforms, or pods, communicates within its local neighborhood and thus distributes information to the instrument as a whole. The result of sharing and continual processing of this information among all the Sensor Web elements will result in an information flow and a global perception of and reactive capability to the environment. As illustrated, the Sensor Web concept also allows for the recursive notion of a web of webs with individual distributed instruments possibly playing the role of a single node point on a larger Sensor Web instrument. In particular, the fusion of inexpensive, yet sophisticated, commercial technology from both the computation and telecommunication revolutions has enabled the development of practical, fielded, and embedded in situ systems that have been the focus of the NASA/JPL Sensor Webs Project (http://sensorwebs.jpl.nasa.gov/). These Sensor Webs are complete systems consisting of not only the pod elements that wirelessly communicate among themselves, but also interfacing and archiving software that allows for easy use by the end-user. Previous successful deployments have included environments as diverse as coastal regions, Antarctica, and desert areas. The Sensor Web has broad implications for Earth and planetary science and will revolutionize the way experiments and missions are conceived and performed. As part of our current efforts to develop a macrointelligence within the system, we have deployed a Sensor Web at the Central Avra Valley Storage and Recovery Project (CAVSARP) facility located west of Tucson, AZ. This particular site was selected because it is ideal for studying spatio-temporal phenomena and for providing a test site for more sophisticated hydrological studies in the future.

  2. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    E-print Network

    2011-01-01

    resolutions to which global weather and climate models areAt present, global and even regional weather and seasonalglobal oceans. However, the manifestations of environmental change, not to speak of the demand for weather

  3. Chapter 1 Climate monitoring The European Commission strategy for global climate change studies and

    E-print Network

    Daniel, Rosenfeld

    , decreases its density and so creates pressure gradients that propel the global circulation of the atmosphere of the way the latent heating of the atmosphere propels the global circulation has been the main motivation

  4. Monitoring The Dynamics Of Hyper-Saline Environments With Polarimetric SAR: Death Valley, California Example

    NASA Astrophysics Data System (ADS)

    Lasne, Y.; McDonald, K.; Paillou, P.; Freeman, A.; Chapman, B.; Farr, T.; Ruffié, G.; Malézieux, J.

    2008-12-01

    Soil salinization in arid and semi-arid regions still remains one of the most important threats not only for socio-economical issues when dealing with water ressources management, but also for ecological matters such as: desertification, climate changes, and biomass reduction. Then, monitoring and mapping of soil salinity distribution represent today a key challenge in our understanding of such environmental processes. Being highly dependent on the dielectric properties of soils, synthetic aperture radar (SAR) appears to be an efficient tool for the remote sensing of hyper-saline environments. More precisely, the influence of saline deposits on SAR imagery lies in the solubility and ionic properties of the minerals which strongly influence both real and imaginary parts of the complex permittivity of such deposits, and thus the radar backscattering coefficient. Based on temporal series acquired with spaceborne SAR systems (ALOS/PALSAR, SIR-C) over the Death Valley (CA), we show that the copolarized backscattering ratio and phase difference derived from SAR data can be used as suitable indicators to monitor the dynamics of hyper-saline deposits. In particular, we propose these copolar parameters to follow the variations in the dielectric properties of moistened and salt-affected soils on a seasonal time scale because of the close relationship between the salinity (governed by the soil moisture content) and the complex permittivity of the soils. We also highlight a strong temporal correlation between the copolar parameters and weather data since precipitation events control the soil moisture and salinity. In order to allow for a better interpretation of the saline deposits signatures observed on SAR data, we also perform analytical simulations of the radar backscattering associated with saline deposits by means of the IEM scattering model. Using laboratory and in~ situ dielectric measurements as input parameters, we simulate the copolar ratio and phase difference as function of the complex permittivity and surface roughness. Successfully reproducing the observed signature, our results indicate that the analysis of SAR data could also account for the monitoring and understanding of seasonal changes of evaporitic basins through a close correlation between the soil moisture and surface roughness related to the desiccation processes. Such results are of great interest for soil salinity monitoring and the detection of small amounts of subsurface water mixed with evaporites, not only for arid terrestrial surfaces but also for planetary missions, particularly the exploration of Mars. Both of the observation and simulation aspects of our methodology will be thouroughly described at time of the presentation as well as the sustaining measurement technique. We will also present preliminary results derived from the first high-resolution image acquired with the UAVSAR sensor operated by NASA/JPL/CalTech.

  5. Noninvasive in vivo monitoring of tissue-specific global gene expression in humans

    PubMed Central

    Koh, Winston; Pan, Wenying; Gawad, Charles; Fan, H. Christina; Kerchner, Geoffrey A.; Wyss-Coray, Tony; Blumenfeld, Yair J.; El-Sayed, Yasser Y.; Quake, Stephen R.

    2014-01-01

    Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape circulating RNA in a cohort of human subjects. By focusing on genes whose expression is highly specific to certain tissues, we were able to identify the relative contributions of these tissues to circulating RNA and to monitor changes in tissue development and health. As one application of this approach, we performed a longitudinal study on pregnant women and analyzed their combined cell-free RNA transcriptomes across all three trimesters of pregnancy and after delivery. In addition to the analysis of mRNA, we observed and characterized noncoding species such as long noncoding RNA and circular RNA transcripts whose presence had not been previously observed in human plasma. We demonstrate that it is possible to track specific longitudinal phenotypic changes in both the mother and the fetus and that it is possible to directly measure transcripts from a variety of fetal tissues in the maternal blood sample. We also studied the role of neuron-specific transcripts in the blood of healthy adults and those suffering from the neurodegenerative disorder Alzheimer’s disease and showed that disease specific neural transcripts are present at increased levels in the blood of affected individuals. Characterization of the cell-free transcriptome in its entirety may thus provide broad insights into human health and development without the need for invasive tissue sampling. PMID:24799715

  6. Searching for Global Descriptors of Engineered Nanomaterial Fate and Transport in the Environment

    PubMed Central

    Nowack, Bernd

    2012-01-01

    CONSPECTUS Engineered nanomaterials (ENMs) are a new class of environmental pollutants. Researchers are beginning to debate whether new modeling paradigms and experimental tests to obtain model parameters are required for ENMs or if approaches for existing pollutants are robust enough to predict ENM distribution between environmental compartments. This Account outlines how experimental research can yield quantitative data for use in ENM fate and exposure models. We first review experimental testing approaches that are employed with ENMs. Then we compare and contrast ENMs against other pollutants. Finally, we summarize the findings and identify research needs that may yield global descriptors for ENMs that are suitable for use in fate and transport modeling. Over the past decade, researchers have made significant progress in understanding factors that influence the fate and transport of ENMs. In some cases researchers have developed approaches toward global descriptor models (experimental, conceptual, and quantitative). We suggest the following global descriptors for ENMs: octanol-water partition coefficients, solid-water partition coefficients, attachment coefficients, and rate constants describing reactions such as dissolution, sedimentation, and degradation. ENMs appear to accumulate at the octanol-water interface and readily interact with other interfaces, such as lipid-water interfaces. Batch experiments to investigate factors that influence retention of ENMs on solid phases are very promising. However ENMs probably do not behave in the same way as dissolved chemicals, and therefore researchers need to use measurement techniques and concepts more commonly associated with colloids. Despite several years of research with ENMs in column studies, available summaries tend to discuss the effects of ionic strength, pH, organic matter, ENM type, packing media, or other parameters qualitatively rather than reporting quantitative values, such as attachment efficiencies, that would facilitate comparison across studies. Only a few structure-activity relationships have been developed for ENMs so far, but such evaluations will facilitate the understanding of the reactivities of different forms of a single ENM. The establishment of predictive capabilities for ENMs in the environment would enable accurate exposure assessments that would assist in ENM risk management. Such information is also critical for understanding the ultimate disposition of ENMs and may provide a framework for improved engineering of nanomaterials that are more environmentally benign. PMID:22950943

  7. Globalization, international transport and the global environment: Technological innovation, policy making and the reduction of transportation emissions

    Microsoft Academic Search

    A. A. J. Nederveen; J. W. Konings; J. A. Stoop

    2003-01-01

    This article evaluates the opportunities and the feasibility of technological innovations in transport systems in relation to goals of mitigating global air pollution and climate change. The analytical framework for this technological assessment is formed by the life cycle theory, in which technological innovations are related to the development phase of a transport system (introduction, growth, maturity and decline). Based

  8. Teaching about the Global Environment at a Jesuit Liberal Arts University

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.

    2012-12-01

    Teaching about global environmental issues is often reserved to courses in environmental and/or geoscience departments. Universities that do not have departments that fall into these categories may be missing out on educating both science and non-science students about these important and timely issues. Loyola University Maryland is a private Jesuit liberal arts University with no environmental or geoscience department and prior to 2008 had no courses that focused on the science of global environmental issues. Global Environment in a course offered by the Chemistry Department that fills this niche. The course is designed for a general non-science audience, though the course content is also appropriate for science students. The primary goal of the course is for students to learn the basics about how the Earth system works and how our changing climate is related to biodiversity, pollution, water availability and society. The course is designated a diversity course which is a course that fulfills the University's call "to prepare students … to pursue justice by making an action-oriented response to the needs of the world." All students at Loyola University Maryland are required to take one diversity course. For this class, the diversity focus is environmental justice which is brought into the course through lectures, discussions and student projects. By bringing societal impacts into a science course the students can better understand why the environment is important and our actions affect both ourselves and others. The course has also evolved over four iterations into a course that maximizes student involvement while minimizing student angst. One way that this is accomplished is by eliminating tests and substituting daily quizzes using a student response system (clickers). Clickers are also used to poll students and to review what information the students are retaining. Students are able to self-guide their own learning in the course by creating a portfolio focusing on a topic of their choosing that fits within the course content. During class time, recent issues and examples are utilized to promote student discussion and thinking. The course also incorporates active learning such as playing games in class to demonstrate concepts, incorporating field trips into the course, and making posters to share what students have learned with the rest of the university community for Earth Day. To date, 94 students have completed the course which has an enrollment limit of 24 students per semester. These students represent primarily the business school (30%), humanities (38%) and social sciences (27%); however a few natural science majors have also taken the course. About half of the students that have taken the course have been either business (30%) or communications majors (19%). This presentation will feature the techniques and materials used in the course as well as some of the data related to the population and majors served, data from the clicker system and student responses to the course through evaluations and comments.

  9. Alpine Plant Monitoring for Global Climate Change; Analysis of the Four California GLORIA Target Regions

    NASA Astrophysics Data System (ADS)

    Dennis, A.; Westfall, R. D.; Millar, C. I.

    2007-12-01

    The Global Observation Research Initiative in Alpine Environments (GLORIA) is an international research project with the goal to assess climate-change impacts on vegetation in alpine environments worldwide. Standardized protocols direct selection of each node in the network, called a Target Region (TR), which consists of a set of four geographically proximal mountain summits at elevations extending from treeline to the nival zone. For each summit, GLORIA specifies a rigorous mapping and sampling design for data collection, with re-measurement intervals of five years. Whereas TRs have been installed in six continents, prior to 2004 none was completed in North America. In cooperation with the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT), California Native Plant Society, and the White Mountain Research Station, four TRs have been installed in California: two in the Sierra Nevada and two in the White Mountains. We present comparative results from analyses of baseline data across these four TRs. The number of species occurring in the northern Sierra (Tahoe) TR was 35 (16 not found in other TRs); in the central Sierra (Dunderberg) TR 65 species were found. In the White Mountains, 54 species were found on the granitic/volcanic soils TR and 46 (19 not found in other TRs) on the dolomitic soils TR. In all, we observed 83 species in the Sierra Nevada range TRs and 75 in the White Mountain TRs. Using a mixed model ANOVA of percent cover from summit-area-sections and quadrat data, we found primary differences to be among mountain ranges. Major soil differences (dolomite versus non-dolomite) also contribute to floristic differentiation. Aspect did not seem to contribute significantly to diversity either among or within target regions. Summit floras in each target region comprised groups of two distinct types of species: those with notably broad elevational ranges and those with narrow elevational ranges. The former we propose to be species that retain importance in vegetation structure across elevation and the latter to be more sensitive to climate change. In general, we find common species in the Sierra Nevada to be rare in the White Mountains, that the northern Sierra Nevada TR (Tahoe area) to be distinct in many vegetation features, and that distinct substrate differences in the White Mountains delineate significant species diversities. With four target regions, we document patterns of species composition, distribution, and diversity with respect to elevation, aspect, and geographic distance. This provides new information about summit floras in the White Mountains and Sierra Nevada, and documents baseline conditions against which we will measure response to climate change.

  10. Tilt monitoring to assess the stability of geodetic reference points in permafrost environment

    NASA Astrophysics Data System (ADS)

    Kümpel, Hans-Joachim; Fabian, Marcus

    Comparison of station velocities of geodetic very long baseline interferometry (VLBI) and global positioning system (GPS) reference points at the Ny-Ålesund Space Geodetic Observatory on Spitsbergen has raised questions about the stability of the basements of the antennas over time spans of years. The antennas are roughly 100 m apart from each other. They are fixed to concrete basements erected in the permafrost ground. We have installed three continuously recording tiltmeters of resolution 0.1 ?rad on the tops of these basements to monitor micro-movements over about one year, that is over a period where relevant changes in ground frost conditions take place. Several tests conducted during the initial phase of the set-up of the instruments have given insight into the magnitude of short-term tilt signals induced through movements of the VLBI antenna. Analysis of the long-term recordings suggests stable conditions for the basement of the GPS antenna on the 50 ?rad level. For the basement of the VLBI antenna, the situation is less clear. There is evidence for permafrost induced instability in May-July 2002 at this place, however, with some doubts remaining due to partial malfunctioning and questionable temperature sensitivity in one of the components of the tiltmeter that was run here. The total observed tilt signal reflects movements of the entire basement, which do probably not exceed 1 mm.

  11. A method for targeting air samplers for facility monitoring in an urban environment

    NASA Astrophysics Data System (ADS)

    Bieringer, Paul E.; Longmore, Scott; Bieberbach, George; Rodriguez, Luna M.; Copeland, Jeff; Hannan, John

    2013-12-01

    There are a variety of applications that require the use of comprehensive specification of the weather conditions combined with an analysis that uses detailed modeling and simulation. The combination of these two elements can make it difficult to achieve the desired level of fidelity in a logistically feasible way. An example of this type of application is the deployment of surface-based sensors/samplers, which is a common practice for emission, and air quality monitoring purposes where the proper selection of sites for the measurement equipment is critical to an accurate characterization of the emissions. This is particularly true in urban environments where the limited availability of suitable sites and the non-intuitive dispersion patterns associated with the wind flow around the buildings and through the urban canyons make site selection difficult. This article demonstrates an improved methodology for optimally locating for air quality monitoring equipment within this complex and challenging environment. The methodology involves a) the utilization of a longer climatological record of meteorological observations or gridded reanalysis products to better represent the full range of representative meteorological conditions; b) reduction of the full climatological record into a subset of characteristic meteorological patterns and associated frequencies of occurrence, utilizing a multi-dimensional feature extraction and classification technique known as a Self Organizing Map (SOM); c) downscaling and diagnosis of the urban area building-aware wind flow fields for each characteristic meteorological pattern; d) atmospheric transport and dispersion (AT&D) simulations for each downscaled meteorological pattern, utilizing a building aware Lagrangian particle dispersion model; and finally e) the combination of predicted downwind concentrations/dosages for each meteorological pattern with their associated frequency of occurrence are used to generate Probability of Detection/Exceedence spatial maps for prescribed concentration thresholds or standards. The method is flexible and can be tuned to allow the detailed characterization of Probability of Detection (POD) for a given sampler detection threshold and sampling period (e.g. sampling duration, season, time of day). An example of this methodology is illustrated for a single facility in an urban location surrounded by numerous multi-story buildings.

  12. The AMSAT-OSCAR-40 High Elliptical Orbit Radiation Environment Monitoring Payload - First Flight Results

    NASA Astrophysics Data System (ADS)

    Sweeting, Martin, , Sir

    Over the last decade, Surrey's micro-satellites have provided continuous monitoring of the proton and heavy-ion environment encountered in low-Earth orbit (LEO), through the use of a series of silicon PIN-diode-based particle detectors, starting with the UK Defence Evaluation Research Agency's (DERA's) Cosmic-Radiation Environment and Dosimetry (CREDO) payload, flown on-board UoSAT-3 in 1990, followed in 1992 by the Cosmic-Ray Experiment (CRE), developed at the Surrey Space Centre under a micro-satellite Technology Transfer (TT) programme operated between Surrey Satellite Technology Ltd. (SSTL) and the Korea Advanced Institute of Science and Technology (KAIST), and flown on the resulting KITSAT-1 micro-satellite. The CRE was flown again in 1993 on-board the PoSAT- 1 micro-satellite, developed under a similar TT programme operated between SSTL and Portugal. The results from all of these instruments have given a great deal of information on the nature of the low-Earth orbit (LEO) ionising radiation environment, and in the case of the PoSAT-1 CRE, continue to do so. However, to obtain a more complete "picture" of the magnetosphere, it is necessary to orbit instruments much further out in space An opportunity to do this arose in 1994 when amateur radio satellite groups (AMSAT) proposed launching a small (600 kg) communications satellite into highly elliptical orbit. This satellite, called AMSAT-OSCAR-40 (AO-40), was launched by Ariane 5 rocket on 16th November 2000, initially into a geostationary transfer orbit (GTO). The satellite has subsequently been manoeuvred into a highly elliptical, 1070 km x 58,700 km, 6.8o inclination orbit, and thus it affords the opportunity to observe the proton and heavy-ion environment through a large cross-section of Earth's magnetosphere. AO-40 carries a version of the CRE, which has been slightly modified in terms of interfaces and packaging to fit that particular satellite bus. However the particle detecting element is essentially identical to that of the previous CREs, and is able to monitor protons and heavy ions by means of the pulse-height analysis of charge-deposition spectra in a single, shielded 300mm thick, 30mm x 30mm silicon PIN diode. This is connected to a charge amplifier and a "CR-RC" (constant peaking-time) pulse-shaping circuit, which in turn is connected to an event-driven, hardware-logic controlled 512-channel multi-channel analyser, where each channel can log up to 16 million events. The overall experiment is controlled by an 87C51 micro-controller. The pulse-processing section has a "dead-time" of 5 ms, and so the instrument is able to cope with high flux conditions. The useful energy-deposition range of the instrument is approximate 4.5 MeV to 584 MeV - approximately 1.1 MeV per channel. The instruments were calibrated prior to flight by particle sources and by direct charge injection into the analogue front-end. This paper describes the instrument, and reports on the first flight-results, which were obtained in December 2001. The instrument is working well, and as expected, we see a peak in trapped proton flux at L= 1.7 Earth Radius (RE), with a profile largely as predicted by standard models. However, we also detect a significant second peak at approximately L= 3 RE. The cause and nature of this second peak is under investigation, and may well be related to recent major solar flare activity. The flat particle profile beyond L=4 RE indicates that, as expected, the instrument is not contaminated by the detection of outer-belt electrons.

  13. ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment

    Microsoft Academic Search

    Ake Rosenqvist; Masanobu Shimada; Norimasa Ito; Manabu Watanabe

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) is Japan's new-generation Earth Observation satellite, launched in January 2006 by the Japan Aerospace Exploration Agency. ALOS carries two optical instruments (Panchromatic Remote-sensing Instrument for Stereo Mapping and Advanced Visible and Near-Infrared Radiometer type 2) and, to maintain Japan's commitment to spaceborne L-band Synthetic Aperture Radar (SAR), the Phased Array L-band SAR (PALSAR). The

  14. On Planning and Exploiting Schumann Resonance Measurements for Monitoring the Electrical Productivity of Global Lightning Activity

    NASA Astrophysics Data System (ADS)

    Mushtak, V. C.; Williams, E.

    2010-12-01

    The spatial-temporal behavior of world-wide lightning activity can be effectively used as an indicator of various geophysical processes, the global climate change being of a special interest among them. Since it has been reliably established that the lightning activity presents a major source of natural electromagnetic background in the Schumann resonance (SR) frequency range (5 to 40 Hz), SR measurements provide a continuous flow of information about this globally distributed source, thus forming an informative basis for monitoring its behavior via an inversion of observations into the source’s properties. To have such an inversion procedure effective, there is a series of prerequisites to comply with when planning and realizing it: (a) a proper choice of observable parameters to be used in the inversion; (b) a proper choice of a forward propagation model that would be accurate enough to take into consideration the major propagation effects occurring between a source and observer; (c) a proper choice of a method for inverting the sensitivity matrix. While the prerequisite (a) is quite naturally fulfilled by considering the SR resonance characteristics (modal frequencies, intensities, and quality factors), the compliance with prerequisites (b) and (c) has benefitted greatly from earlier seminal work on geophysical inversion by T.R. Madden. Since it has been found that the electrodynamic non-uniformities of the Earth-ionosphere waveguide, primarily the day/night, play an essential role in low-frequency propagation, use has been made of theory for the two-dimensional telegraph equation (TDTE; Kirillov, 2002) developed on the basis of the innovative suggestion by Madden and Thompson (1965) to consider the waveguide, both physically and mathematically, by analogy with a two-dimensional transmission line. Because of the iterative nature of the inversion procedure and the complicated, non-analytical character of the propagation theory, a special, fast-running TDTE forward algorithm has been developed for repeated numerous calculations of the sensitivity matrix. The theory for the inverse boundary value problem from Madden (1972) allows not only to correctly invert the sensitivity matrix, especially when the latter is ill-defined, but also to determine a priori the optimal observational design. The workability of the developed approaches and techniques is illustrated by estimating and processing observations from a network of SR stations located in Europe (Sopron, Hungary; Belsk, Poland), Asia (Shilong, India; Moshiri, Japan), North America (Rhode Island, USA), and Antarctica (Syowa). The spatial dynamics of major lightning “chimneys” determined via the inversion procedure had been found in a good agreement with general geophysical knowledge even when only the modal frequencies had been used. The incorporation of modal intensities greatly improves the agreement, while the Q-factors have been found of a lesser informative value. The preliminary results form a promising basis for achieving the ultimate objective of this study, The authors are deeply grateful to all the participants of the project who have generously, and on a gratis basis, invested their time and effort into preparing and providing the SR data.

  15. Wave Glider Monitoring of Sediment Transport and Dredge Plumes in a Shallow Marine Sandbank Environment.

    PubMed

    Van Lancker, Vera; Baeye, Matthias

    2015-01-01

    As human pressure on the marine environment increases, safeguarding healthy and productive seas increasingly necessitates integrated, time- and cost-effective environmental monitoring. Employment of a Wave Glider proved very useful for the study of sediment transport in a shallow sandbank area in the Belgian part of the North Sea. During 22 days, data on surface and water-column currents and turbidity were recorded along 39 loops around an aggregate-extraction site. Correlation with wave and tidal-amplitude data allowed the quantification of current- and wave-induced advection and resuspension, important background information to assess dredging impacts. Important anomalies in suspended particulate matter concentrations in the water column suggested dredging-induced overflow of sediments in the near field (i.e., dynamic plume), and settling of finer-grained material in the far field (i.e., passive plume). Capturing the latter is a successful outcome to this experiment, since the location of dispersion and settling of a passive plume is highly dependent on the ruling hydro-meteorological conditions and thus difficult to predict. Deposition of the observed sediment plumes may cause habitat changes in the long-term. PMID:26070156

  16. Wave Glider Monitoring of Sediment Transport and Dredge Plumes in a Shallow Marine Sandbank Environment

    PubMed Central

    Van Lancker, Vera; Baeye, Matthias

    2015-01-01

    As human pressure on the marine environment increases, safeguarding healthy and productive seas increasingly necessitates integrated, time- and cost-effective environmental monitoring. Employment of a Wave Glider proved very useful for the study of sediment transport in a shallow sandbank area in the Belgian part of the North Sea. During 22 days, data on surface and water-column currents and turbidity were recorded along 39 loops around an aggregate-extraction site. Correlation with wave and tidal-amplitude data allowed the quantification of current- and wave-induced advection and resuspension, important background information to assess dredging impacts. Important anomalies in suspended particulate matter concentrations in the water column suggested dredging-induced overflow of sediments in the near field (i.e., dynamic plume), and settling of finer-grained material in the far field (i.e., passive plume). Capturing the latter is a successful outcome to this experiment, since the location of dispersion and settling of a passive plume is highly dependent on the ruling hydro-meteorological conditions and thus difficult to predict. Deposition of the observed sediment plumes may cause habitat changes in the long-term. PMID:26070156

  17. Monitoring psychrotrophic lactic acid bacteria contamination in a ready-to-eat vegetable salad production environment.

    PubMed

    Pothakos, Vasileios; Snauwaert, Cindy; De Vos, Paul; Huys, Geert; Devlieghere, Frank

    2014-08-18

    A study monitoring lactic acid bacteria contamination was conducted in a company producing fresh, minimally processed, packaged and ready-to-eat (RTE) vegetable salads (stored at 4°C) in order to investigate the reason for high psychrotrophic LAB levels in the products at the end of shelf-life. Initially, high microbial counts exceeding the established psychrotrophic thresholds (>10(7)-10(8)CFU/g) and spoilage manifestations before the end of the shelf-life (7days) occurred in products containing an assortment of sliced and diced vegetables, but within a one year period these spoilage defects became prevalent in the entire processing plant. Environmental sampling and microbiological analyses of the raw materials and final products throughout the manufacturing process highlighted the presence of high numbers of Leuconostoc spp. in halved and unseeded, fresh sweet bell peppers provided by the supplier. A combination of two DNA fingerprinting techniques facilitated the assessment of the species diversity of LAB present in the processing environment along with the critical point of their introduction in the production facility. Probably through air mediation and surface adhesion, mainly members of the strictly psychrotrophic species Leuconostoc gelidum subsp. gasicomitatum and L. gelidum subsp. gelidum were responsible for the cross-contamination of every vegetable handled within the plant. PMID:24927398

  18. Flood monitoring in a semi-arid environment using spatially high resolution radar and optical data.

    PubMed

    Seiler, Ralf; Schmidt, Jana; Diallo, Ousmane; Csaplovics, Elmar

    2009-05-01

    The geographic term "Niger Inland Delta" stands for a vast plain of approximately 40,000 km(2), which is situated in the western Sahel (Republic of Mali). The Inland Delta is affected by yearly inundation through the variable water levels of the Niger-Bani river system. Due to a good availability of (surface) water, the ecosystem at the Niger Inland Delta serves as resting place stop-over for many migrating birds and other wildlife species as well as economic base for farmers and pastoral people. To foster the sustainable usage of its natural resources and to protect this natural heritage, the entire Niger Inland Delta became RAMSAR site in 2004. This paper aims to test to which extent texture analysis can improve the quality of flood monitoring in a semi-arid environment using spatially high resolution ASAR imaging mode data. We found the Gray Level Dependence Method (GLDM) was most suitable proceeding for our data. Several statistical parameters were calculated via co-occurrence matrices and were used to classify the images in different gradation of soil moisture classes. In a second step we used additional information from spatially high resolution optical data (ASTER) to improve the separability of open water areas from moisture/vegetated areas. PMID:18554774

  19. Kinetic effects on Lunar plasma environment on global scale, mesoscale and microscale

    NASA Astrophysics Data System (ADS)

    Kallio, E.; Dyadechkin, S.; Jarvinen, R.; Wurz, P.; Barabash, S.; Rantala, A.; Alho, M.

    2012-12-01

    Recent Lunar missions have shown that the solar wind interaction with the Moon is complex and scientifically more interesting than anticipated before, as shown by new in situ plasma, neutral atom and magnetic field observations. Especially, an unexpectedly high fraction of the incident solar wind protons is reflected from the surface, and even larger fraction by the Lunar magnetic anomalies. This effect has been observed both by measuring deviated solar wind flow near the magnetic anomalies and by observing decreased flux of energetic neutral hydrogen atoms, ENAs, from the surface region of strong magnetic anomalies. These "macro scale" processes affect the properties of plasma near the Lunar surface. Consequently, also physical processes at "micro scales" within the Debye sheath layer, where the electric potential of the surface and near surface region are controlled by photoelectrons and solar wind particles, are affected. In this work we introduce two numerical kinetic simulation models developed to study the solar wind interaction with the Moon: (1) a hybrid model (HYB-Moon) to study macro scale processes and (2) a full kinetic PIC model to study micro scale processes. Both models are part of the HYB planetary plasma modelling platform developed at the Finnish Meteorological Institute. In the hybrid model ions are modelled as particles while electrons form a charge neutralizing massless fluid. In the Particle-in-cell (PIC) simulation both ions and electrons are modelled as particles. In the presentation we show results based on these models. A schematic illustration of plasmas and fields which affect the lunar dust-plasma environment near the lunar surface: photoelectrons (e-hf), solar wind electrons (e-sw) and ions (H+sw), dust electrons (e-dust), dust particles (q dust), electric field (E) and magnetic field. Because of the non-zero magnetic field associated with the interplanetary magnetic field (Bsw), electric currents in the plasma and the lunar magnetic anomalies, the charged particle follow gyromotion around the magnetic field. The electric field contains the convective electric field of the solar wind (Esw) and the electric field associated with the charge separation within the potential sheath and possible also within magnetic anomalies. The length scale of the potential sheath is the Debye length (lamda D). See Kallio et al., "Kinetic effects on Lunar plasma environment on global scale, mesoscale and microscale" (PSS, 2012, submitted) for details.

  20. Monitoring and benchmarking government policies and actions to improve the healthiness of food environments: a proposed Government Healthy Food Environment Policy Index.

    PubMed

    Swinburn, B; Vandevijvere, S; Kraak, V; Sacks, G; Snowdon, W; Hawkes, C; Barquera, S; Friel, S; Kelly, B; Kumanyika, S; L'Abbé, M; Lee, A; Lobstein, T; Ma, J; Macmullan, J; Mohan, S; Monteiro, C; Neal, B; Rayner, M; Sanders, D; Walker, C

    2013-10-01

    Government action is essential to increase the healthiness of food environments and reduce obesity, diet-related non-communicable diseases (NCDs), and their related inequalities. This paper proposes a monitoring framework to assess government policies and actions for creating healthy food environments. Recommendations from relevant authoritative organizations and expert advisory groups for reducing obesity and NCDs were examined, and pertinent components were incorporated into a comprehensive framework for monitoring government policies and actions. A Government Healthy Food Environment Policy Index (Food-EPI) was developed, which comprises a 'policy' component with seven domains on specific aspects of food environments, and an 'infrastructure support' component with seven domains to strengthen systems to prevent obesity and NCDs. These were revised through a week-long consultation process with international experts. Examples of good practice statements are proposed within each domain, and these will evolve into benchmarks established by governments at the forefront of creating and implementing food policies for good health. A rating process is proposed to assess a government's level of policy implementation towards good practice. The Food-EPI will be pre-tested and piloted in countries of varying size and income levels. The benchmarking of government policy implementation has the potential to catalyse greater action to reduce obesity and NCDs. PMID:24074208

  1. Monitoring Trends in Global Combat: A New Dataset of Battle Deaths

    Microsoft Academic Search

    Bethany Lacina; Nils Petter Gleditsch

    2005-01-01

    Both academic publications and public media often make inappropriate use of incommensurate conflict statistics, creating misleading impressions about patterns in global warfare. This article clarifies the distinction between combatant deaths, battle deaths, and war deaths. A new dataset of battle deaths in armed conflict is presented for the period 1946–2002. Global battle deaths have been decreasing over most of this

  2. National Biological Monitoring Inventory. [Data base for information on biological monitoring of power plant impacts on environment

    Microsoft Academic Search

    Burgess

    1979-01-01

    The National Biological Monitoring Inventory, initiated in 1975, currently consists of four computerized data bases and voluminous manual files. MAIN BIOMON contains detailed information on 1,021 projects, while MINI BIOMON provides skeletal data for over 3,000 projects in the 50 states, Puerto Rico, the Virgin Islands, plus a few in Canada and Mexico. BIBLIO BIOMON and DIRECTORY BIOMON complete the

  3. Dust storm monitoring: effects on the environment, human health, and potential security conflicts

    NASA Astrophysics Data System (ADS)

    Davara, Fernando; de la Cruz, Antonio

    2004-10-01

    Monitoring dust storms with recently available medium and moderate resolution satellites (Meris, Modis and SeaWiFS) is providing new global information regarding the sources, transportation tracks and affected areas. Saharan dust plumes reach the SE region of the United States and the Caribbean region in summer and the Amazon basin in winter. Generally these Saharan plumes branch off in dust tracks along the North Atlantic reaching Western Europe as far north as the Scandinavian countries. Furthermore, dust storms originating in the Eastern Sahara and Northern African deserts form dust plumes propagated by the Sirocco winds that, after crossing the Mediterranean Sea, affect Southern and Central Europe particularly during spring and summer. Dust storms originating in the Gobi and Taklamakan deserts blow in an easterly direction propagating dust plumes affecting Korea, Japan and reach the United States after crossing the Pacific Ocean. The large amount of cyclic deposition generated by dust storms produces an environmental impact that causes the decay of coral reefs in the Caribbean, the origin and distribution of red tides and the disappearance of sea grasses. The relationship of dust plumes with the increasing number of asthma and allergy cases in the Caribbean correlates well with the appearance of similar cases in Europe and elsewhere during the mid 1980s. The recurrence presence of insecticides in regions where these products were banned long ago, or where they were never used, may be partly due to Saharan dust plumes. The loss of agricultural soil, literally blown away by dust storms in the source areas, creates hardship, hunger and forced-migration. Dust storms should be considered as an important security issue.

  4. Global Response of Martian Plasma Environment to an Interplanetary Structure: From Ena and Plasma Observations at Mars

    Microsoft Academic Search

    Y. Futaana; S. Barabash; A. Grigoriev; D. Winningham; R. Frahm; M. Yamauchi; R. Lundin

    2006-01-01

    As a part of the global plasma environment study of Mars and its response to the solar wind, we have analyzed a peculiar case\\u000a of the subsolar energetic neutral atom (ENA) jet observed on June 7, 2004 by the Neutral Particle Detector (NPD) on board\\u000a the Mars Express satellite. The “subsolar ENA jet” is generated by the interaction between the

  5. Correlation of green house molecules with global and surface temperature and its effect on environment

    Microsoft Academic Search

    P. K. Jana; I. Saha

    2011-01-01

    A critical analysis has been made on contribution to green house molecules on global warming and surface air temperature rise.\\u000a The nature of yearly variations of concentrations of green house molecules and global and surface temperature has been presented.\\u000a Climate change, environmental and economic effects are briefly mentioned. Various diseases caused by global warming are also\\u000a discussed.

  6. Application of low-background gamma-ray spectrometry to monitor radioactivity in the environment and food.

    PubMed

    Khan, A J; Semkow, T M; Beach, S E; Haines, D K; Bradt, C J; Bari, A; Syed, U-F; Torres, M; Marrantino, J; Kitto, M E; Menia, T; Fielman, E

    2014-08-01

    The results are described of an upgrade of the low-background gamma-ray spectrometry laboratory at New York State Department of Health by acquiring sensitivity to low-energy gamma rays. Tuning of the spectrometer and its low-energy response characteristics are described. The spectrometer has been applied to monitor the environment by measuring aerosols and water in New York State contaminated by the 2011 Fukushima accident plume. In addition, the spectrometer has been used to monitor radioactivity in food by performing a study of cesium in Florida milk. PMID:24836905

  7. Space Weather Monitors -- A Global Education and Small Instruments Program for the IHY 2007

    NASA Astrophysics Data System (ADS)

    Scherrer, D. K.; Mitchell, R.; Cohen, M.; Clark, W.; Styner, R.; Roche, A.; Scherrer, P.; Inan, U.; Lee, S.; Winegarden, S.; Tan, J.; Khanal, S.

    2005-12-01

    Earth's ionosphere reacts strongly to the intense x-ray and ultraviolet radiation released by the Sun during solar events and by lightning during thunderstorms. Students around the world can directly monitor and track these sudden ionospheric disturbances (SIDs) by using a receiver to monitor the signal strength from distant VLF transmitters, and noting unusual changes as the waves bounce off the ionosphere. Stanford's Solar Center, in conjunction with the Space, Telecommunications and Radioscience Laboratory and local educators, have developed inexpensive ionospheric disturbance monitors that students can install and use at their local schools. Students "buy in" to the project by building their own antenna, a simple structure costing little and taking a couple hours to assemble. Data collection and analysis is handled by a local PC. Stanford is providing a centralized data repository where students can exchange and discuss data. Two versions of the monitors exist -- a low-cost version (nicknamed "SID") designed to detect solar flares, and a more sensitive version ("AWESOME") that provides both solar and nighttime research-quality data. Both monitors are currently being placed in high schools and community colleges around the US. Students will have the opportunity to work with a researcher "mentor" to collect and interpret data. Our space weather monitors have been chosen as educational and small intruments projects for deployment to 191 countries around the world for the International Heliophysical Year, 2007. Our presentation will focus on the educational aspects of the Space Weather Monitor program.

  8. The use of embedded sensors for the monitoring of adhesive joints in marine environments

    NASA Astrophysics Data System (ADS)

    McGovern, Scott T.; Spinks, Geoffrey M.; Wallace, Gordon G.

    2005-05-01

    A copolymer incorporating polyaniline was used as a sensing medium in the construction of a resistance based humidity sensor. Aniline monomer was polymerised in the presence of poly (butyl acrylate / vinyl acetate) and a copolymer containing polyaniline emeraldine salt was obtained. The sensing medium was then developed by redissolving 1-2 w/w% of the resulting polymer residue in dichloromethane to produce a processable polymer blend solution. Some of this polymer residue was also de-doped in a solution of ammonia, and then washed with distilled water until the waste water had a neutral pH. This residue was then redissolved at 1-2 w/w% in dichloromethane to produce a second processable polymer blend this time containing polyaniline emeraldine base. The final sensor design utilised 125?m polyester insulated platinum wire as conducting electrodes that were dip coated in the emeraldine salt copolymer solution and allowed to dry in a desiccator. The sensor was then dip-coated in a protective barrier layer of the emeraldine base copolymer to prevent over-oxidation and/or de-protonation of the emeraldine salt sensing medium under this coating. The sensors had an overall final thickness of less than 150?m and showed high sensitivity to humidity, low resistance, and good reversibility without hysteresis. Sensors were monitored for 2-probe resistance changes when in contact with water. Calibration curves for each sensor were produced to convert the resistance reading to mass uptake of water. Individual sensors were embedded within Aluminium 5083 / Araldite 2015 adhesive joints to monitor mass uptake of water when exposed to marine environments. Correlations between mass uptake of water and joint strength were made. There are various advantages of such a sensor design. Polymer based thin film humidity sensors have the advantage that the high processability of the material allows for simple fabrication of a range of geometries including smaller sensor designs. The ease of processing gives a low cost sensor, whilst the small size and good mechanical properties gives a robust sensor which has the flexibility to be able to be used in applications where dynamic stresses and strains are encountered. Such sensors may find uses in a number of areas including electronic textiles, food/ electronics packaging and corrosion detection.

  9. Monitoring of the Environment at the Transplant Unit—Hemato-Oncology Clinic

    PubMed Central

    Matoušková, Ivanka; Holy, Ond?ej

    2014-01-01

    Aims: Aim of this study was to monitor the environment at the Transplant Unit—Hemato-Oncology Clinic, University Hospital Olomouc (Olomouc, Czech Republic) and identify risks for the patients. Methods and Results: Microorganisms were cultivated under standard aerobic conditions. Strains were biochemically identified using the BD Phoenix™ PID Panel (USA). Legionella pneumophila was identified by DNA sequencing. From the air, the most frequently isolated strains were coagulase-negative staphylococci (94.3%), Micrococcus spp. and Bacillus spp. No Gram-negative strains were isolated from the air. From the surfaces, the most frequently isolated Gram-positive strains were coagulase-negative staphylococci (67.4%), Bacillus spp., enterococci (5.5%), Staphylococcus aureus (2.3%) and Micrococcus spp. (1.7%). From the surfaces, the most frequently isolated Gram-negative strains were from genera Pseudomonas (28%), Enterobacter (28%), E. coli (6%), and Klebsiella spp. (5%). From the personnel, the most frequently isolated Gram-positive strains were coagulase-negative staphylococci (59.6%), Bacillus spp. (24.1%) and Staphylococcus aureus (9.8%). From the personnel, the most frequently isolated Gram-negative strains were Enterobacter spp. (61%), Klebsiella oxytoca (18%), and E. coli (11%). Microscopic filamentous fungi were isolated in 13 cases (2.71%). Isolated strains were Aspergillus spp. (4), Trichoderma spp. (2), Penicillium spp. (2), one case of the strains Paecilomyces spp., Eurotium spp., Monilia spp. Conclusions: The study found no significant deviations in the microbial contamination of the cleanroom air. The personnel entrance of the Transplant Unit represent a high risk area, an extreme value (7270 CFU/m3) was recorded. Regime measures are fully effective, no other deficiencies were found. Significance and Impact of the Study: This epidemiological study, which was held for the duration of one year at the Transplant Unit—Hemato-Oncology Clinic, University Hospital Olomouc. The study monitored microbial contamination of the cleanroom air, surfaces, water, colonization of the personnel by bacterial strains of epidemiological consequence. PMID:25222472

  10. Think Locally, Act Globally! Linking Local and Global Communities through Democracy and Environment. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Dowler, Lorraine

    Designed so that it can be adapted to a wide range of student abilities and institutional settings, this learning module on the human dimensions of global change seeks to: actively engage students in problem solving, challenge them to think critically, invite them to participate in the process of scientific inquiry, and involve them in cooperative…

  11. Monitoring the Impact of Anthropogenic and Natural Influences on the Environment of Mesoamerica

    NASA Astrophysics Data System (ADS)

    Hardin, D.; Graves, S.; Sever, T.; Irwin, D.

    2005-12-01

    Mesoamerica - composed of the seven Central American countries and the five southernmost states of Mexico - is one of the richest biological regions in the world. The region is home to approximately eight percent of the planet's biodiversity. There are 14 biosphere reserves, eight world heritage sites and 589 protected areas. The human population, of over 45 million people consists of more than 50 ethnic groups. This rich biological and cultural diversity is threatened by human influence and natural disasters. Illegal logging and slash and burn agriculture are major contributors to extensive deforestation. Earthquakes, volcanoes, drought, and severe storms threaten the region. Of particular note is the massive destruction and loss of life resulting from hurricane Mitch in 1998. An international effort is underway to preserve the remaining forested regions, with its biodiversity, and to promote sustained development throughout the region. In 2002 the National Aeronautics and Space Administration (NASA) joined with the World Bank and the United States Agency for International Development (USAID) to work with the Central American Commission for Environment and Development (CCAD), to develop an advanced decision support system for Mesoamerica known as SERVIR. (SERVIR is a Spanish acronym meaning to serve.) The partners are contributing expertise in space-based observation with information management technologies and intimate knowledge of local ecosystems to create a system for use by scientists, educators, and policy makers to monitor and forecast ecological changes, respond to natural disasters, and better understand both natural and human induced effects. NASA/Marshall Space Flight Center and the University of Alabama in Huntsville (UAH) are concentrating on the preparation of data products and Information Technology applications that will integrate information from the entire region into a coherent information system that is easy to access and utilize. Already, numerous products derived from data from NASA's Earth-Sun Connection missions (formerly known as the Earth Science Enterprise) have been developed. Data from the MODIS instrument is being used to create imagery products that can be used to monitor the extent of fires, and the location of harmful algae blooms. Data from the NOAA GOES satellites are made available at 15 minute intervals for weather forecasting. Other data products are planned that will address issues such as local flooding and hot spots. Many other institutions, both in the United States and in Central America, are generating data products for the region. In an effort to make all of the information readily available, UAH is developing web services and related GIS applications. These technologies are designed to present the information in both two and three dimensions, giving the decision makers clear representations of the physical environment. By providing data products that accurately capture specific geophysical phenomena and, an information delivery system that combines inputs from each country, we are making inroads toward preserving the wealth to society that Mesoamerica provides.

  12. Satellite monitoring of the global ocean surface during 1987-1989

    NASA Technical Reports Server (NTRS)

    Halpern, David

    1992-01-01

    Long-term simultaneous global coverage of AVHRR sea surface temperature, SSMI surface wind speed, GEOSAT sea surface height, and ARGOS buoy drift began in 1987. Methodology to create annual atlases of monthly mean distributions is described.

  13. 75 FR 62837 - Cooperative Agreement To Support Building Global Capacity for the Surveillance and Monitoring of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ...diversion, intentional adulteration, and the increasing complexity and reduced transparency of the supply chain due to globalization and limited regulatory capacity (such as in resource-constrained countries and/or countries where regulatory...

  14. U.S. Interests and the Global Environment. Occasional Paper 35.

    ERIC Educational Resources Information Center

    Caldwell, Lynton K.

    This essay presents an argument for policies responsive to global environmental needs by examining the causes and consequences of six critical environmental issues, and then offering specific U.S. policy recommendations. Following an explanation of the global nature of environmental problems, a summary of the salient facts regarding the following…

  15. Real Time On-line Space Research Laboratory Environment Monitoring with Off-line Trend and Prediction Analysis

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2006-01-01

    One of the responsibilities of the NASA Glenn Principal Investigator Microgravity Services is to support NASA sponsored investigators in the area of reduced-gravity acceleration data analysis, interpretation and the monitoring of the reduced-gravity environment on-board various carriers. With the International Space Station currently operational, a significant amount of acceleration data is being down-linked and processed on ground for both the space station onboard environment characterization (and verification) and scientific experiments. Therefore, to help principal investigator teams monitor the acceleration level on-board the International Space Station to avoid undesirable impact on their experiment, when possible, the NASA Glenn Principal Investigator Microgravity Services developed an artificial intelligence monitoring system, which detects in near real time any change in the environment susceptible to affect onboard experiments. The main objective of the monitoring system is to help research teams identify the vibratory disturbances that are active at any instant of time onboard the International Space Station that might impact the environment in which their experiment is being conducted. The monitoring system allows any space research scientist, at any location and at any time, to see the current acceleration level on-board the Space Station via the World Wide Web. From the NASA Glenn s Exploration Systems Division web site, research scientists can see in near real time the active disturbances, such as pumps, fans, compressor, crew exercise, re-boost, extra-vehicular activity, etc., and decide whether or not to continue operating or stopping (or making note of such activity for later correlation with science results) their experiments based on the g-level associated with that specific event. A dynamic graphical display accessible via the World Wide Web shows the status of all the vibratory disturbance activities with their degree of confidence as well as their g-level contribution to the environment. The system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many Increments of the space station for selected disturbance activities. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential system failure as well as for use by research scientists during their science results analysis. Examples of both real time on-line vibratory disturbance detection and off-line trend analysis are presented in this paper. Several soft computing techniques such as Kohonen s Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  16. Biochemical characterization of the antioxidant system in the scallop Adamussium colbecki, a sentinel organism for monitoring the Antarctic environment

    Microsoft Academic Search

    F. Regoli; G. B. Principato; E. Bertoli; M. Nigro; E. Orlando

    1997-01-01

    The scallop Adamussium colbecki can be profitably used for monitoring Antarctic coastal environments but its utility would be increased if chemical analyses\\u000a of pollutants were integrated with data on their biological effects. Since oxidative stress is a common pathway of toxicity\\u000a induced by xenobiotics, a preliminary biochemical characterization was carried out on the antioxidant system of this species\\u000a and baseline

  17. Monitoring system for high energy cosmic ray observation in space environment using advanced electro-optic Pockels techniques

    Microsoft Academic Search

    Hiroko SAITO; Toshiaki URABE; Yasuhiro TANAKA; Tatsuo TAKADA; Y. Murooka; N. Tomita

    2000-01-01

    In order to monitor high-energy cosmic rays in a space environment, we succeeded initially in measuring the 2-dimensional birefringence produced due to space charges in dielectric material using a Pockels effect. If high-energy charged particles penetrate into the Pockels crystal and accumulate in it, 2-dimensional birefringence properties are formed in the crystal. In this paper, we introduce the experimental results

  18. Remote sensing of gene expression in Planta: transgenic plants as monitors of exogenous stress perception in extraterrestrial environments

    NASA Technical Reports Server (NTRS)

    Manak, Michael S.; Paul, Anna-Lisa; Sehnke, Paul C.; Ferl, Robert J.

    2002-01-01

    Transgenic arabidopsis plants containing the alcohol dehydrogenase (Adh) gene promoter fused to the green fluorescent protein (GFP) reporter gene were developed as biological sensors for monitoring physiological responses to unique environments. Plants were monitored in vivo during exposure to hypoxia, high salt, cold, and abcissic acid in experiments designed to characterize the utility and responses of the Adh/GFP biosensors. Plants in the presence of environmental stimuli that induced the Adh promoter responded by expressing GFP, which in turn generated a detectable fluorescent signal. The GFP signal degraded when the inducing stimulus was removed. Digital imaging of the Adh/GFP plants exposed to each of the exogenous stresses demonstrated that the stress-induced gene expression could be followed in real time. The experimental results established the feasibility of using a digital monitoring system for collecting gene expression data in real time from Transgenic Arabidopsis Gene Expression System (TAGES) biosensor plants during space exploration experiments.

  19. LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008

    Microsoft Academic Search

    M. Avian; A. Kellerer-Pirklbauer; A. Bauer

    2009-01-01

    Permafrost areas receive more and more attention in terms of natural hazards in recent years due to ongoing global warming. Active rockglaciers are mixtures of debris and ice (of different origin) in high-relief environments indicating permafrost conditions for a substantial period of time. Style and velocity of the downward movement of this debris-ice-mass is influenced by topoclimatic conditions. The rockglacier

  20. The participatory design of a performance oriented monitoring and evaluation system in an international development environment.

    PubMed

    Guerra-López, Ingrid; Hicks, Karen

    2015-02-01

    This article illustrates the application of the impact monitoring and evaluation process for the design and development of a performance monitoring and evaluation framework in the context of human and institutional capacity development. This participative process facilitated stakeholder ownership in several areas including the design, development, and use of a new monitoring and evaluation system, as well their targeted results and accomplishments through the use of timely performance data gathered through ongoing monitoring and evaluation. The process produced a performance indicator map, a comprehensive monitoring and evaluation framework, and data collection templates to promote the development, implementation, and sustainability of the monitoring and evaluation system of a farmer's trade union in an African country. PMID:25279997

  1. Simultaneous real-time global electron content determination and solar EUV flux monitoring thanks to the RT-IGS global network datastreams

    NASA Astrophysics Data System (ADS)

    Hernandez-Pajares, Manuel; Garcia-Rigo, Alberto; Prieto-Cerdeira, Roberto; Orus-Perez, Raul; Beniguel, Yannick; Caissy, Mark; Agrotis, Loukis; Weber, George

    The availability of real-time GNSS datastreams from the Real-Time International GNSS Service (RT-IGS) has enabled new and improved applications in geoscience and engineering, for such network of global continuously operating reference stations. We are going to summarize two of them, developed by UPC-IONSAT and supported by the European Space Agency (ESA), among RT-IGS. On the one hand, UPC-IONSAT has developed a first RT version of its ionospheric electron content data driven model (RT-TOMION) in the frame of the Real Time International GNSS Service (RT-IGS) as ionospheric analysis center (see “Caissy M. et al.: The International GNSS Real-Time Service, GPS World, June 2012”). RT-TOMION is directly fed by RT-IGS observations and solved thanks to a combined Tomographic-Kriging technique, which is continuously running in real-time mode as in the case of datastreams. So far its performance has been mainly limited by the reduced, though increasing, number of worldwide GNSS receivers with availability of data in real-time. On the other hand, considering the same RT-IGS datastreams, UPC-IONSAT has been monitoring the solar EUV flux in real-time, by means of a new technique that has been recently developed (“Hernández-Pajares M. et al., GNSS measurement of EUV photons flux rate during strong and mid solar flares, Space weather,10-12, pp. 1-16, 2012”). In fact, monitoring of the rapid variation of the EUV solar flux is directly providing warnings of Solar Flare alarms (among other ionospheric variability indices), in the context of ESA’s MONITOR project, intended for the study of the Solar Cycle maximum, and its influence on GNSS services. In this context, a summary of the performance of both real-time systems, which are fed simultaneously with the same global RT GNSS data, is presented. The emphasis would be on its present strengths, additional potentialities and applications. The quality of the results will be characterized by means of direct comparisons with independent reference data, such as dual-frequency altimeter measurements (for RT-Vertical Electron Content), and direct measurements from dedicated solar probes (for the retrieval of EUV solar flux rate).

  2. Monitoring

    MedlinePLUS Videos and Cool Tools

    ... Tracker App Tip Sheets and Handouts AADE7 Self-Care Behaviors Healthy Eating Being Active Monitoring Taking Medication ... Legislative Action Center Federal Legislation State Legislation Affordable Care Act Information Advocacy Tools and Resources Affordable Care ...

  3. Monitoring the Home Environment Using Domestic Robot Cheng Guo, Jeffery Boyd, Saul Greenberg, Ehud Sharlin

    E-print Network

    Greenberg, Saul

    , the AIBO is a dog-like toy equipped with a variety of sensors and wireless capability. It is able to react Monitor project, we use a domestic robot dog as a mediator for people to remotely monitor their home range from domestic service robots like the Roomba [1], to intelligent and toy-like robots

  4. Harsh-environment MEMS temperature sensors for aircraft bearing health monitoring applications

    Microsoft Academic Search

    Sean Scott

    2011-01-01

    Bearings are among the most important components in a wide variety of commercial and defense applications including aircraft, wind mills, automotive engines and others. Diagnosis of bearing failure remains an unsolved issue today due to the inability to accurately and continuously monitor critical failure signals. Although monitoring of a bearing's acceleration has been accomplished, it has been shown that a

  5. Evaluating The Global Inventory of Planetary Analog Environments on Earth: An Ontological Approach

    Microsoft Academic Search

    P. G. Conrad

    2010-01-01

    Introduction: Field sites on Earth are routinely used to simulate planetary environments so that we can try to understand the evidence of processes such as sedimentary deposition, weathering, evolution of habitable environments, and behavior of spacecraft and instrumentation prior to selection of mission architectures, payload investigations and landing sites for in situ exploration of other planets. The rapid evolution of

  6. Environment, Complexity and Professional Training in Agriculture. "Turning Local Learning into Global Knowledge."

    ERIC Educational Resources Information Center

    Prevost, P.

    1994-01-01

    Training farmers to care for the environment must address the complex relationship between farming and the environment. The example of maize weeding in France demonstrates the process of decision making on a farm and the need for teaching about complexity and adopting a pragmatic approach to training. (SK)

  7. TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Karsenti, Eric [EMBL Heidelberg

    2013-03-01

    Eric Karsenti of EMBL delivers the closing keynote on "TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  8. Development and Analysis of Global, High-Resolution Diagnostic Metrics for Vegetation Monitoring, Yield Estimation and Famine Mitigation

    NASA Astrophysics Data System (ADS)

    Anderson, B. T.; Zhang, P.; Myneni, R.

    2008-12-01

    Drought, through its impact on food scarcity and crop prices, can have significant economic, social, and environmental impacts - presently, up to 36 countries and 73 million people are facing food crises around the globe. Because of these adverse affects, there has been a drive to develop drought and vegetation- monitoring metrics that can quantify and predict human vulnerability/susceptibility to drought at high- resolution spatial scales over the entire globe. Here we introduce a new vegetation-monitoring index utilizing data derived from satellite-based instruments (the Moderate Resolution Imaging Spectroradiometer - MODIS) designed to identify the vulnerability of vegetation in a particular region to climate variability during the growing season. In addition, the index can quantify the percentage of annual grid-point vegetation production either gained or lost due to climatic variability in a given month. When integrated over the growing season, this index is shown to be better correlated with end-of-season crop yields than traditional remotely-sensed or meteorological indices. In addition, in-season estimates of the index, which are available in near real-time, provide yield forecasts comparable to concurrent in situ objective yield surveys, which are only available in limited regions of the world. Overall, the cost effectiveness and repetitive, near-global view of earth's surface provided by this satellite-based vegetation monitoring index can potentially improve our ability to mitigate human vulnerability/susceptibility to drought and its impacts upon vegetation and agriculture.

  9. Using global information technology to detect, monitor, and control mosquito pest and disease vector populations.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geographic Information Systems (GIS), image analysis, and remote sensing comprise global information technologies that are used to characterize pest and vector populations of mosquitoes. At this national meeting, scientists from ARS and McNeese State University organized and convened a half-day sym...

  10. Satellite Remote Sensing Missions for Monitoring Water, Carbon, and global Climate Change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, the subjects of water, carbon, and global climate change have attracted worldwide attention by scientists and the media. Climate change, whether associated with human- induced or natural variations, has and will continue to be important to policy makers and the public. It is clear t...

  11. Monitoring global geodynamical parameter variations with GPS and low earth satellites

    Microsoft Academic Search

    S. C. Wu; S. M. Lichten; R. P. Malla

    1992-01-01

    A low earth satellite enhances global geodynamical parameters determination with GPS in two ways. First, it improves the GPS orbits, which in turn improve the estimates of other parameters. Secondly, a low earth satellite completes an orbit cycle in far shorter time (90 to 120 minutes) than do GPS satellites (12 hours); it observes more GPS satellites than a ground

  12. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Astrophysics Data System (ADS)

    Minow, J. I.; Pettit, D. R.; Hartman, W. A.

    2012-12-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data in support of a variety of ISS engineering and operations activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS from 2006 to the present time to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to the combined effects of electrostatic current collection processes from the plasma environment and inductive (vxB) effects due to the motion of the vehicle across the Earth's magnetic field. An ongoing effort to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and document ISS frame charging as the vehicle passes through regions of precipitating auroral electrons is challenged by restrictions on the available FPMU operation time. The instruments can only be operated during campaign periods limited to about a third of a year in accumulated operation time and FPMU data is down linked through the ISS Ku band telemetry system, a shared resource. As a result, FPMU campaign periods of a few days to weeks have typically been scheduled for periods of a week or two in advance. Capturing geomagnetic storm data under these conditions depended on the fortuitous event of a storm starting during a previously planned FPMU campaign period, an unlikely event at a time when Solar Cycle 24 was ending and a protracted solar minimum gave little in the way of geoeffective solar disturbances. However, with the start of Solar Cycle 24 the number of solar disturbances and associated geomagnetic storms started to increase and we modified our strategy to improve the chances of capturing geomagnetic storm data. We now monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have now been successful in capturing FPMU records from a number of geomagnetic storm periods including variations in ISS frame potential at high latitudes associated with geomagnetic activity that we interpret as auroral charging. In addition, space weather summaries were provided to ISS Expedition 30/31 crew along with predictions for upcoming auroral activity and estimates for times the ISS orbit would pass through regions of high magnetic latitude to enhance crew opportunities to image aurora from the ISS. This presentation will describe the near real time space weather resources utilized to predict FPMU operation times, summarize the results from FPMU operations during the geomagnetic storm periods, and provide examples of auroral images obtained by the ISS crew during recent storm periods from the spring and summer of 2012.

  13. A Neural Network Model for K(?) Retrieval and Application to Global Kpar Monitoring.

    PubMed

    Chen, Jun; Zhu, Yuanli; Wu, Yongsheng; Cui, Tingwei; Ishizaka, Joji; Ju, Yongtao

    2015-01-01

    Accurate estimation of diffuse attenuation coefficients in the visible wavelengths Kd(?) from remotely sensed data is particularly challenging in global oceanic and coastal waters. The objectives of the present study are to evaluate the applicability of a semi-analytical Kd(?) retrieval model (SAKM) and Jamet's neural network model (JNNM), and then develop a new neural network Kd(?) retrieval model (NNKM). Based on the comparison of Kd(?) predicted by these models with in situ measurements taken from the global oceanic and coastal waters, all of the NNKM, SAKM, and JNNM models work well in Kd(?) retrievals, but the NNKM model works more stable and accurate than both SAKM and JNNM models. The near-infrared band-based and shortwave infrared band-based combined model is used to remove the atmospheric effects on MODIS data. The Kd(?) data was determined from the atmospheric corrected MODIS data using the NNKM, JNNM, and SAKM models. The results show that the NNKM model produces <30% uncertainty in deriving Kd(?) from global oceanic and coastal waters, which is 4.88-17.18% more accurate than SAKM and JNNM models. Furthermore, we employ an empirical approach to calculate Kpar from the NNKM model-derived diffuse attenuation coefficient at visible bands (443, 488, 555, and 667 nm). The results show that our model presents a satisfactory performance in deriving Kpar from the global oceanic and coastal waters with 20.2% uncertainty. The Kpar are quantified from MODIS data atmospheric correction using our model. Comparing with field measurements, our model produces ~31.0% uncertainty in deriving Kpar from Bohai Sea. Finally, the applicability of our model for general oceanographic studies is briefly illuminated by applying it to climatological monthly mean remote sensing reflectance for time ranging from July, 2002- July 2014 at the global scale. The results indicate that the high Kd(?) and Kpar values are usually found around the coastal zones in the high latitude regions, while low Kd(?) and Kpar values are usually found in the open oceans around the low-latitude regions. These results could improve our knowledge about the light field under waters at either the global or basin scales, and be potentially used into general circulation models to estimate the heat flux between atmosphere and ocean. PMID:26083341

  14. A Neural Network Model for K(?) Retrieval and Application to Global Kpar Monitoring

    PubMed Central

    Chen, Jun; Zhu, Yuanli; Wu, Yongsheng; Cui, Tingwei; Ishizaka, Joji; Ju, Yongtao

    2015-01-01

    Accurate estimation of diffuse attenuation coefficients in the visible wavelengths Kd(?) from remotely sensed data is particularly challenging in global oceanic and coastal waters. The objectives of the present study are to evaluate the applicability of a semi-analytical Kd(?) retrieval model (SAKM) and Jamet’s neural network model (JNNM), and then develop a new neural network Kd(?) retrieval model (NNKM). Based on the comparison of Kd(?) predicted by these models with in situ measurements taken from the global oceanic and coastal waters, all of the NNKM, SAKM, and JNNM models work well in Kd(?) retrievals, but the NNKM model works more stable and accurate than both SAKM and JNNM models. The near-infrared band-based and shortwave infrared band-based combined model is used to remove the atmospheric effects on MODIS data. The Kd(?) data was determined from the atmospheric corrected MODIS data using the NNKM, JNNM, and SAKM models. The results show that the NNKM model produces <30% uncertainty in deriving Kd(?) from global oceanic and coastal waters, which is 4.88-17.18% more accurate than SAKM and JNNM models. Furthermore, we employ an empirical approach to calculate Kpar from the NNKM model-derived diffuse attenuation coefficient at visible bands (443, 488, 555, and 667 nm). The results show that our model presents a satisfactory performance in deriving Kpar from the global oceanic and coastal waters with 20.2% uncertainty. The Kpar are quantified from MODIS data atmospheric correction using our model. Comparing with field measurements, our model produces ~31.0% uncertainty in deriving Kpar from Bohai Sea. Finally, the applicability of our model for general oceanographic studies is briefly illuminated by applying it to climatological monthly mean remote sensing reflectance for time ranging from July, 2002- July 2014 at the global scale. The results indicate that the high Kd(?) and Kpar values are usually found around the coastal zones in the high latitude regions, while low Kd(?) and Kpar values are usually found in the open oceans around the low-latitude regions. These results could improve our knowledge about the light field under waters at either the global or basin scales, and be potentially used into general circulation models to estimate the heat flux between atmosphere and ocean. PMID:26083341

  15. An application of Global Positioning System data from the Plate Boundary Observatory for deformation monitoring purposes (Invited)

    NASA Astrophysics Data System (ADS)

    Murray-Moraleda, J. R.; Liu, Z.; Segall, P.

    2009-12-01

    The Plate Boundary Observatory (PBO) represents a major step forward in Global Positioning System (GPS) coverage for the western United States by increasing the spatial density of stations, generating daily position estimates, and providing the infrastructure for high-rate and real-time positioning. In addition to producing vital input for a wide range of crustal deformation studies, PBO significantly expands opportunities for monitoring and event response. This presentation will focus on one such effort. Data from large continuous GPS networks like PBO should be monitored for temporal changes, be they tectonic, volcanic, hydrologic, anthropogenic, or instrumental in origin. Since it is not feasible to review time series by eye on a daily basis, automated approaches are required. Here we apply a Kalman filtering based method, termed the Network Inversion Filter (Segall and Matthews, 1997; McGuire and Segall, 2003), to monitor daily GPS data for deformation-related transient signals. This approach relies on the spatial coherence of signals due to transient sources such as fault slip in order to separate them from spatially-localized time-dependent noise. The dense GPS coverage provided by PBO has augmented pre-existing continuous GPS networks making it now feasible to test this method in California. Results from synthetic tests using the >400 station southern California continuous GPS network configuration demonstrate this approach can extract fault slip signals from data contaminated by plausible noise processes. We will present results using real data from the San Francisco Bay Area and discuss the role and limitations of this methodology in hazard monitoring.

  16. Monitoring global geodynamical parameter variations with GPS and low earth satellites

    NASA Technical Reports Server (NTRS)

    Wu, S. C.; Lichten, S. M.; Malla, R. P.

    1992-01-01

    A low earth satellite enhances global geodynamical parameters determination with GPS in two ways. First, it improves the GPS orbits, which in turn improve the estimates of other parameters. Secondly, a low earth satellite completes an orbit cycle in far shorter time (90 to 120 minutes) than do GPS satellites (12 hours); it observes more GPS satellites than a ground receiver does in shorter time and increases the correlation between GPS orbit errors. This reduces the error in the determination of nonrotational coordinate parameters, i.e., geocentric offset of ground tracking sites. Covariance results with the global geodynamical parameters modeled as constants, and as random-walk parameters to closer reflect the actual variations, are compared. The effects of using different GPS data quality and different ground tracking network are studied. The case of using two earth satellites in orthogonal orbital planes is also investigated.

  17. AQUARIUS: A Passive/Active Microwave Sensor to Monitor Sea Surface Salinity Globally from Space

    NASA Technical Reports Server (NTRS)

    LeVine, David; Lagerloef, Gary S. E.; Colomb, F. Raul; Chao, Yi

    2004-01-01

    Salinity is important for understanding ocean dynamics, energy exchange with the atmosphere and the global water cycle. Existing data is limited and much of the ocean has never even been sampled. Sea surface salinity can be measured remotely by satellite and a three year mission for this purpose called AquariudSAC-D has recently been selected by NASA's Earth System Science Pathfinder (ESSP) program. The objective is to map the salinity field globally with a spatial resolution of 100 km and a monthly average accuracy of 0.2 psu. The mission, scheduled for launch in 2008, is a partnership of the United States National Aeronautics and Space Agency (NASA) and the Argentine Comision National de Actividades Epaciales (CONAE).

  18. Integrating Genome-based Informatics to Modernize Global Disease Monitoring, Information Sharing, and Response

    PubMed Central

    Brown, Eric W.; Detter, Chris; Gerner-Smidt, Peter; Gilmour, Matthew W.; Harmsen, Dag; Hendriksen, Rene S.; Hewson, Roger; Heymann, David L.; Johansson, Karin; Ijaz, Kashef; Keim, Paul S.; Koopmans, Marion; Kroneman, Annelies; Wong, Danilo Lo Fo; Lund, Ole; Palm, Daniel; Sawanpanyalert, Pathom; Sobel, Jeremy; Schlundt, Jørgen

    2012-01-01

    The rapid advancement of genome technologies holds great promise for improving the quality and speed of clinical and public health laboratory investigations and for decreasing their cost. The latest generation of genome DNA sequencers can provide highly detailed and robust information on disease-causing microbes, and in the near future these technologies will be suitable for routine use in national, regional, and global public health laboratories. With additional improvements in instrumentation, these next- or third-generation sequencers are likely to replace conventional culture-based and molecular typing methods to provide point-of-care clinical diagnosis and other essential information for quicker and better treatment of patients. Provided there is free-sharing of information by all clinical and public health laboratories, these genomic tools could spawn a global system of linked databases of pathogen genomes that would ensure more efficient detection, prevention, and control of endemic, emerging, and other infectious disease outbreaks worldwide. PMID:23092707

  19. Monitoring Needs to Transform Amazonian Forest Maintenance Into a Global Warming-Mitigation Option

    Microsoft Academic Search

    Philip M. Fearnside

    1997-01-01

    Two approaches are frequently mentioned in proposals to use tropical forest maintenance as a carbon offset. One is to set\\u000a up specific reserves, funding the establishment, demarcation, and guarding of these units. Monitoring, in this case, consists\\u000a of the relatively straightforward process of confirming that the forest stands in question continue to exist. In Amazonia,\\u000a where large expanses of tropical

  20. Global positioning system reobservations over the Eastern United States Strain Monitoring Network

    SciTech Connect

    Strange, W.E. [National Geodetic Survey, Silver Spring, MD (United States)] [National Geodetic Survey, Silver Spring, MD (United States)

    1996-06-01

    In the period March--May, 1990, a 45 station geodetic network, originally established in November--December, 1987, was reobserved using global positioning system (GPS) technology. This network, known as the Eastern US Strain network, was established for the purpose of determining strain and deformation in the central and eastern US. This 1990 reobservation was the first of a series of reobservations scheduled to take place over a decade in order to place meaningful constraints on the small differential movements involved.

  1. The role of vegetation change on surface energy partitioning: insights from a global flux monitoring network

    NASA Astrophysics Data System (ADS)

    Stoy, Paul; Juang, Jehn-Yih; Siqueira, Mario; Novick, Kim; Katul, Gabriel

    2010-05-01

    Vegetation contributes to the absorption and partitioning of energy at the Earth's surface and the surface-atmosphere flux of important greenhouse gases. Changes to vegetation alter the surface energy balance and biogeochemical fluxes. Recent publications have stressed the need to quantify both biogeochemical and biogeophysical effects of land cover change on regional and global climate using a combination of observations and models. This presentation focuses on the observational record by synthesizing surface-atmosphere radiation balance characteristics - including surface albedo and the fluxes of latent and sensible heat - across global ecosystems in the FLUXNET database. We present characteristic seasonal courses of energy balance components across globally distributed ecosystems and demonstrate the impacts of vegetation change on the surface energy balance. We then perform a perturbation analysis on the energy balance equation to quantify the effects of land cover change on surface radiometric and aerodynamic temperatures in paired eddy covariance towers across the globe. Results emphasize the importance of evapotranspiritive cooling in addition to alterations in albedo on surface temperature change. For example, in the Duke Forest experiment, increases in albedo during a shift from abandoned field to pine or hardwood forest warmed the surface by ca. 1° C on an annual basis, but enhanced evapotranspiration cooled the surface by ca. 2 to 3° C such that reforestation induced a net surface cooling. Results using a general methodology agreed with previous results (Juang et al., 2007, Geophysical Research Letters, L21408). Global modeling exercises may underemphasize the role of evaporative cooling versus that of albedo in surface energy balance studies.

  2. Biodiversity Monitoring Using NGS Approaches on Unusual Substrates (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Gilbert, Tom [National History Museum of Denmark

    2013-03-01

    Tom Gilbert of the Natural History Museum of Denmark on "Biodiversity monitoring using NGS approaches on unusual substrates" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

  3. Business Protocol and Etiquette: Preparing Students for the Global Business Environment.

    ERIC Educational Resources Information Center

    Lazorchak, Shirley A.

    2000-01-01

    The Business Etiquette Dining Tutorial is designed to teach students the skills of dining domestically and internationally in business settings. A test with 19 students showed that it improved their knowledge and ability to adapt to different cultural environments. (SK)

  4. Monitoring

    DOEpatents

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  5. Automatic underwater radiotelemetry system to monitor temperature responses of fish in a freshwater environment

    Microsoft Academic Search

    W. Prepejchal; M. M. Thommes; S. A. Spigarelli; J. R. Haumann; P. E. Hess

    1980-01-01

    An automated radiotelemetry system developed to monitor body and water temperature of free-swimming fish is described. The receiving and data acquisition unit can be programmed to monitor as many as 16 transmitters (fish); each transmitter can time-multiply data from up to 9 resistive transducers. A typical transmitter with saddle-type attachment, suitable for fish weighing 1 to over 10 kg, has

  6. Bio-inspired multi-agent data harvesting in a proactive urban monitoring environment

    Microsoft Academic Search

    Uichin Lee; Eugenio Magistretti; Mario Gerla; Paolo Bellavista; Pietro Liò; Kang-won Lee

    2009-01-01

    Vehicular sensor networks (VSNs) enable brand new and promising sensing applications, such as traffic reporting, relief to environmental monitoring, and distributed surveillance. In our past work, we have designed and implemented MobEyes, a middleware solution to support VSN-based urban monitor- ing, where agent vehicles (e.g., police cars) move around and harvest meta-data about sensed information from regular VSN-enabled vehicles. In

  7. Wireless physiological monitoring and ocular tracking: 3D calibration in a fully-immersive virtual health care environment.

    PubMed

    Zhang, Lelin; Chi, Yu Mike; Edelstein, Eve; Schulze, Jurgen; Gramann, Klaus; Velasquez, Alvaro; Cauwenberghs, Gert; Macagno, Eduardo

    2010-01-01

    Wireless physiological/neurological monitoring in virtual reality (VR) offers a unique opportunity for unobtrusively quantifying human responses to precisely controlled and readily modulated VR representations of health care environments. Here we present such a wireless, light-weight head-mounted system for measuring electrooculogram (EOG) and electroencephalogram (EEG) activity in human subjects interacting with and navigating in the Calit2 StarCAVE, a five-sided immersive 3-D visualization VR environment. The system can be easily expanded to include other measurements, such as cardiac activity and galvanic skin responses. We demonstrate the capacity of the system to track focus of gaze in 3-D and report a novel calibration procedure for estimating eye movements from responses to the presentation of a set of dynamic visual cues in the StarCAVE. We discuss cyber and clinical applications that include a 3-D cursor for visual navigation in VR interactive environments, and the monitoring of neurological and ocular dysfunction in vision/attention disorders. PMID:21095772

  8. SPRING 2010 ISSUE 11 JMBA Global Marine Environment 3 ur oceans comprise 97% of the water

    E-print Network

    Watson, Andrew

    rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of greenhouse gases in the atmosphere, rising global temperatures and have an important influence on weather rise in temperatures over the last few decades has contributed to rising sea- level and pronounced

  9. It Is a Small World after All: Teaching Business Ethics in a Global Environment

    ERIC Educational Resources Information Center

    Budden, Connie B.; Budden, Michael C.

    2011-01-01

    Increasingly, managers and employees are facing ethical issues when conducting business in the global marketplace. Business educators attempting to teach appropriate ethical behavior and develop skills for dealing with complex ethical situations need to incorporate realistic case scenarios to challenge students. Such cases should appropriately…

  10. Faculty Position in Watershed Modelling Global Institute for Water Security and School of Environment and Sustainability

    E-print Network

    Saskatchewan, University of

    Faculty Position in Watershed Modelling Global Institute for Water Security and School in the area of watershed modelling, with preference given to candidates with experience of working at large research collaboration with national stakeholders and international researchers is desirable. For senior

  11. GLOBAL DEVELOPMENT AND ENVIRONMENT INSTITUTE WORKING PAPER NO. 09-06

    E-print Network

    Tufts University

    theories, quantitative measurement, and econometrics. The core model is that of autonomous, rational agents crisis of global climate change, it is argued, requires that economists move beyond modeling. On the one hand, many are trained in "hard" economic measurement, modeling, and analysis, of the sort

  12. Atmospheric Environment 42 (2008) 35433561 MICS-Asia II: Impact of global emissions on regional

    E-print Network

    2008-01-01

    This study quantifies the seasonality and geographic variability of global pollutant inflow to Asia. Asia is often looked to as a major source of intercontinental air pollution transport with rising emissions and efficient pollutant export processes. However, the degree to which foreign emissions have been imported

  13. GLOBAL DEVELOPMENT AND ENVIRONMENT INSTITUTE WORKING PAPER NO. 11-03

    E-print Network

    Tufts University

    , economics education, behavioral economics, stereotyping, gender, sex, finance, markets #12;GDAE Working Prevented the Global Financial Crisis? Implications for Teaching about Gender, Behavior, and Economics Julie, or Behavioral Economics, and offers an important teaching moment. The first part of this essay argues that while

  14. Evaluating The Global Inventory of Planetary Analog Environments on Earth: An Ontological Approach

    NASA Astrophysics Data System (ADS)

    Conrad, P. G.

    2010-12-01

    Introduction: Field sites on Earth are routinely used to simulate planetary environments so that we can try to understand the evidence of processes such as sedimentary deposition, weathering, evolution of habitable environments, and behavior of spacecraft and instrumentation prior to selection of mission architectures, payload investigations and landing sites for in situ exploration of other planets. The rapid evolution of astrobiology science drivers for space exploration as well as increasing capability to explore planetary surfaces in situ has led to a proliferation of declarations that various Earth environments are analogs for less accessible planetary environments. We have not yet progressed to standardized measures of analog fidelity, and the analog value of field sites can be variable de-pending upon a variety of factors. Here we present a method of evaluating the fidelity and hence utility of analog environments by using an ontological approach to evaluating how well the analogs work. The use of ontologies as specification constructs is now quite common in artificial intelligence, systems engineering, business development and various informatics systems. We borrow from these developments just as they derive from the original use of ontology in philosophy, where it was meant as a systematic approach to describing the fundamental elements that define “being,” or existence [1]. An ontology is a framework for the specification of a concept or domain of interest. The knowledge regarding that domain, eg., inventory of objects, hierarchical classes, relationships and functions is what describes and defines the domain as a declarative formalism [2]. In the case of planetary environments, one can define a list of fundamen-tal attributes without which the domain (environment) in question must be defined (classified) otherwise. In particu-lar this is problematic when looking at ancient environments because of their alteration over time. In other words, their fundamental attributes may no longer exist and have to be reconstructed. In the case of Earth analogs for Mars, there are important distinctions that cannot be duplicated in contemporary Earth environments—we cannot produce the same surface conditions with respect to thermal fluctuation, ionizing radiation and extremely oxidizing chemistry. Mars analogs on Earth: We have studied the habitability of several desert environments on Earth by measuring their chemical, physical and biological features. These locations, which include Battleship Promontory in the McMurdo Dry Valleys, Antarctica; several sites in Svalbard, the arctic; the Imperial Dunes in southern California and Amboy Crater in the Mojave Desert, CA, form the basis for a trial ontology of analog environments which have varying degrees of analogy to potential environments of interest on Mars for exploration of its habitability potential. We present a trial taxonomy for Mars analog environments to which we can add the attributes of other environments advocated as Earth analogs for Mars. References: [1] Bunge,M.,Treatise on Basic Philosophy: Ontology I, The Furniture of the World, Reidel, 1977. [2] Gruber, T. R., (1993). Knowledge Acquisition, 5(2):199-220.

  15. Bacillus endospores isolated from granite: close molecular relationships to globally distributed Bacillus spp. from endolithic and extreme environments.

    PubMed

    Fajardo-Cavazos, Patricia; Nicholson, Wayne

    2006-04-01

    As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain approximately 500 cultivable Bacillus spores and approximately 10(4) total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted. PMID:16597992

  16. Nuclear Power Plant environment`s surveillance by satellite remote sensing and in-situ monitoring data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    The main environmental issues affecting the broad acceptability of nuclear power plant are the emission of radioactive materials, the generation of radioactive waste, and the potential for nuclear accidents. All nuclear fission reactors, regardless of design, location, operator or regulator, have the potential to undergo catastrophic accidents involving loss of control of the reactor core, failure of safety systems and subsequent widespread fallout of hazardous fission products. Risk is the mathematical product of probability and consequences, so lowprobability and high-consequence accidents, by definition, have a high risk. NPP environment surveillance is a very important task in frame of risk assessment. Satellite remote sensing data had been applied for dosimeter levels first time for Chernobyl NPP accident in 1986. Just for a normal functioning of a nuclear power plant, multitemporal and multispectral satellite data in complementarily with field data are very useful tools for NPP environment surveillance and risk assessment. Satellite remote sensing is used as an important technology to help environmental research to support research analysis of spatio-temporal dynamics of environmental features nearby nuclear facilities. Digital processing techniques applied to several LANDSAT, MODIS and QuickBird data in synergy with in-situ data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air. As a test case the methodology was applied for for Nuclear Power Plant (NPP) Cernavoda, Romania. Thermal discharge from nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube River. Water temperatures captured in thermal IR imagery are correlated with meteorological parameters. If during the winter thermal plume is localized to an area of a few km of NPP, the temperature difference between the plume and non-plume areas being about 1.5 oC, during summer and fall , is a larger thermal plume up to 5-6 km far along Danube Black Sea Canal ,the temperature change is about 1.0 oC.

  17. Retrieval and molecule sensitivity studies for the global ozone monitoring experiment and the scanning imaging absorption spectrometer for atmospheric chartography

    NASA Technical Reports Server (NTRS)

    Chance, Kelly V.; Burrows, John P.; Schneider, Wolfgang

    1991-01-01

    The Global Ozone Monitoring Experiment (GOME) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) are diode based spectrometers that will make atmospheric constituent and aerosol measurements from European satellite platforms beginning in the mid 1990's. GOME measures the atmosphere in the UV and visible in nadir scanning, while SCIAMACHY performs a combination of nadir, limb, and occultation measurements in the UV, visible, and infrared. A summary is presented of the sensitivity studies that were performed for SCIAMACHY measurements. As the GOME measurement capability is a subset of the SCIAMACHY measurement capability, the nadir, UV, and visible portion of the studies is shown to apply to GOME as well.

  18. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment.

    PubMed

    Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran

    2014-07-01

    Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation's electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments. PMID:25685516

  19. Natural disaster reduction applications of the Chinese small satellite constellation for environment and disaster monitoring and forecasting

    NASA Astrophysics Data System (ADS)

    Liu, Sanchao; Fan, Yida; Gao, Maofang

    2013-10-01

    The Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting (SSCEDMF) is an important component of Chinese satellites earth observation system. The first stage of SSCEDMF is composed by "2+1" satellites. The 2 optical satellites (HJ-1-A and HJ-1-B) and 1 S band microwave satellite (HJ-1-C) were successful launched on September 6, 2008 and November 19, 2012 respectively. This article introduced SSCEDMF characteristic and the disaster reduction application system and satellites on-orbit test works, and also analyzed the application capacity in natural disasters included flood, ice flooding, wild fire, severely drought, snow disasters, large area landslide and debris flow, sea ice, earthquake recovering, desertification and plant diseases and insect pests. Furthermore, we show some cases of China's and other countries' new natural disasters forecasting, monitoring, assessment and recovery construction.

  20. Evaluating a system of systems approach for integrated global weather, climate, and hazard monitoring

    NASA Astrophysics Data System (ADS)

    Birk, Ronald; Baldauf, Brian; Ohlemacher, Rick; Andreoli, Leo

    2008-08-01

    Northrop Grumman Corporation (NGC) provides systems and technologies to ensure national security based on technologies - from undersea to outer space, and in cyberspace. With a heritage of developing and integrating science instruments on space platforms and airborne systems, NGC is conducting analysis of alternatives for a global observing system that integrates data collected from geostationary and polar-orbiting satellites with Unmanned Aerial System (UAS) platforms. This enhanced acquisition of environmental data will feed decision support systems such as the TouchTable ® to deliver improved decision making capabilities. Rapidly fusing and displaying multiple types of weather and ocean observations, imagery, and environmental data with geospatial data to create an integrated source of information for end users such as emergency managers and planners will deliver innovative solutions to improve disaster warning, mitigate disaster impacts, and reduce the loss of life and property. We present analysis of alternatives of combinations of sensor platforms that integrate space and airborne systems with ground and ocean observing sensors and form the basis for vertically integrated global observing systems with the capacity to improve measurements associated with hazard and climate-related uncertainties. The analyses include candidate sensors deployed on various configurations of satellites that include NPOESS, GOES R, and future configurations, augmented by UAS vehicles including Global Hawk, configured to deliver innovative environmental data collection capabilities over a range of environmental conditions, including severe hazards, such as hurricanes and extreme wildland fires. Resulting approaches are evaluated based on metrics that include their technical feasibility, capacity to be integrated with evolving Earth science models and relevant decision support tools, and life cycle costs.

  1. Depositional environment of Toarcian shales from northern Germany as monitored with porphyrins

    SciTech Connect

    Sundararaman, P.; Schoell, M. (Chevron Oil Field Research Co., La Habra, CA (United States)); Littke, R.; Baker, D.R.; Leythaeuser, D.; Rullkoetter, J. (Institute of Petroleum and Organic Geochemistry at the Research Center, Juelich (Germany))

    1993-09-01

    Changes in the depositional environment of Lias [epsilon] (Toarcian shales) and adjacent Pliensbachian and Aalenian shales in northern Germany were inferred from the porphyrin distribution of the extracts. The predominance of nickel porphyrins or the absence of vanadyl porphyrins in the extracts from the Pliensbachian and Aalenian shales is taken as reflecting its deposition in an oxic environment. In such environments, vanadium is not present as VO[sup 2+] and, thus, is not available for complexation with porphyrins. The higher concentration of porphyrins, as well as the presence of vanadyl porphyrins in the extracts from the Posidonia shale section, is related to its deposition in an anoxic environment. In an anoxic environment, the pheopigments, the precursors to porphyrins, are better preserved. Also, in an anoxic environment, vanadium is present as VO[sup 2+] and is thus available for complexation with porphyrins. Within the posidonia shale section, the concentrations of porphyrins vary. The variations in the concentrations of nickel and vanadyl porphyrins are synchronous in Units I and II. In Unit III, the concentrations of nickel porphyrins are uniform, but that of vanadyl porphyrins decrease gradually. These variations most likely reflect changes in productivity coupled with changes in the redox conditions of depositional environment.

  2. Global-scale analysis of vegetation indices for moderate resolution monitoring of terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Huete, Alfredo R.; Didan, Kamel; van Leeuwen, Willem J. D.; Vermote, Eric F.

    1999-12-01

    Vegetation indices have emerged as important tools in the seasonal and inter-annual monitoring of the Earth's vegetation. They are radiometric measures of the amount and condition of vegetation. In this study, the Sea-viewing Wide Field-of-View sensor (SeaWiFS) is used to investigate coarse resolution monitoring of vegetation with multiple indices. A 30-day series of SeaWiFS data, corrected for molecular scattering and absorption, was composited to cloud-free, single channel reflectance images. The normalized difference vegetation index (NDVI) and an optimized index, the enhanced vegetation index (EVI), were computed over various 'continental' regions. The EVI had a normal distribution of values over the continental set of biomes while the NDVI was skewed toward higher values and saturated over forested regions. The NDVI resembled the skewed distributions found in the red band while the EVI resembled the normal distributions found in the NIR band. The EVI minimized smoke contamination over extensive portions of the tropics. As a result, major biome types with continental regions were discriminable in both the EVI imagery and histograms, whereas smoke and saturation considerably degraded the NDVI histogram structure preventing reliable discrimination of biome types.

  3. A rapidly deployable chemical sensing network for the real-time monitoring of toxic airborne contaminant releases in urban environments

    NASA Astrophysics Data System (ADS)

    Lepley, Jason J.; Lloyd, David R.

    2010-04-01

    We present findings of the DYCE project, which addresses the needs of military and blue light responders in providing a rapid, reliable on-scene analysis of the dispersion of toxic airborne contaminants following their malicious or accidental release into a rural, urban or industrial environment. We describe the development of a small network of ad-hoc deployable chemical and meteorological sensors capable of identifying and locating the source of the contaminant release, as well as monitoring and estimating the dispersion characteristics of the plume. We further present deployment planning methodologies to optimize the data gathering mission given a constrained asset base.

  4. A demonstration of centimeter-level monitoring of polar motion with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Lindqwister, U. J.; Freedman, A. P.; Blewitt, G.

    1992-01-01

    Daily estimates of the Earth's pole position were obtained with the Global Positioning System (GPS) by using measurements obtained during the GPS IERS (International Earth Rotation Service) and Geodynamics (GIG'91) experiment from 22 Jan. to 13 Feb. 1991. Data from a globally distributed network consisting of 21 Rogue GPS receivers were chosen for the analysis. A comparison of the GPS polar motion series with nine 24-hour very long baseline interferometry (VLBI) estimates yielded agreement in the day-to-day pole position of about 1.5 cm for both X and Y polar motion. A similar comparison of GPS and satellite laser ranging (SLR) data showed agreement to about 1.0 cm. These preliminary results indicate that polar motion can be determined by GPS independent of, and at a level comparable to, that which is obtained from either VLBI or SLR. Furthermore, GPS can provide these data with a daily frequency that neither alternative technique can readily achieve. Thus, GPS promises to be a powerful tool for determining high-frequency platform parameter variation, essential for the ultraprecise spacecraft-tracking requirements of the coming years.

  5. A global drought monitoring system: insights of an approach integrating remote sensing data and vulnerability to food insecurity

    NASA Astrophysics Data System (ADS)

    Angeluccetti, Irene; Perez, Francesca; Cámaro, Walther; Demarchi, Alessandro

    2015-04-01

    Early Warning Systems (EWS) for drought are currently underdeveloped compared to those related to other natural hazards. Both forecasting and monitoring of drought events are still posing challenges to the scientific community. In fact, the multifaceted nature of drought (i.e. hydrological, meteorological, and agricultural) is source of coexistence for different ways to measure this phenomenon and its effects. Similarly, drought impacts are various and complex thus difficult to be univocally measured. In the present study an approach for monitoring drought in near-real time and for estimating its impacts is presented. The EWS developed runs on a global extent and is mainly based on the early detection and monitoring of vegetation stress. On the one hand the monitoring of vegetation phenological parameters, whose extraction is based on the analysis of the MODIS-derived NDVI function, allows the fortnightly assessment of the vegetation productivity which could be expected at the end of the growing season. On the other hand, the Standardized Precipitation Index (SPI), calculated adapting TRMM-derived precipitation data in a selected distribution is used, before the growing season start, in order to early detect meteorological conditions which could give rise to vegetation stress events. During the growing season the SPI is used as check information for vegetation conditions. The relationships between rainfall and vegetation dynamics have been statistically analyzed considering different types of vegetation, in order to identify the most suitable rainfall cumulating interval to be used for the proposed monitoring procedures in different areas. A simplified vulnerability model, coupled with the above-mentioned hazard data, returns food security conditions, i.e. the estimated impacts over an investigated area. The model includes a set of agricultural indicators that accounts for the diversity of cultivated crops, the percentage of irrigated area and the suitability of soils. In addition the people's strategy to supply food is mapped through the use of gravity spatial choice models. This leads to the definition of hazard-specific risk zones, upon which to base the allocation of the calculated alerts. The performances of the proposed EWS were evaluated, for a selection of national case studies, with comparable ground-truth data derived from local food security assessments. The system is deployed on a WebGIS platform for its use by the widest possible audience.

  6. A program in global biology. [biota-environment interaction important to life

    NASA Technical Reports Server (NTRS)

    Mooneyhan, D. W.

    1983-01-01

    NASA's Global Biology Research Program and its goals for greater understanding of planetary biological processes are discussed. Consideration is given to assessing major pathways and rates of exchange of elements such as carbon and nitrogen, extrapolating local rates of anaerobic activities, determining exchange rates of ocean nutrients, and developing models for the global cycles of carbon, nitrogen, sulfur, and phosphorus. Satellites and sensors operating today are covered: the Nimbus, NOAA, and Landsat series. Block diagrams of the software and hardware for a typical ground data processing and analysis system are provided. Samples of the surface cover data achieved with the Advanced Very High Resolution Radiometer, the Multispectral Scanner, and the Thematic Mapper are presented, as well as a productive capacity model for coastal wetlands. Finally, attention is given to future goals, their engineering requirements, and the necessary data analysis system.

  7. Late Palaeozoic global changes affecting high-latitude environments and biotas: An introduction

    Microsoft Academic Search

    G. R. Shi; J. B. Waterhouse

    The Late Palaeozoic Ice Age (LPIA), spanning approximately from ~320 Ma (Serpukhovian, late Mississippian) to 290 Ma (mid-Sakmarian, Early Permian), represents the vegetated Earth’s largest and most long-lasting regime of severe and multiple glaciations, involving processes and patterns probably comparable to those of the Last Ice Age. Accompanying the LPIA occurred a number of broadly synchronous global environmental and biotic

  8. Internationalization as a response to globalization: Radical shifts in university environments

    Microsoft Academic Search

    Nelly P. Stromquist

    2007-01-01

    This case study probes recent developments in a number of academic and non-academic aspects of a private research university\\u000a in response to current globalization trends. Under the name of internationalization, university administrators and external\\u000a firms are emerging as powerful decision-makers shaping academic content and even academic governance. This is manifested in\\u000a student recruitment and in the hiring of prestigious professors

  9. Global positioning system measurements over a strain monitoring network in the eastern two-thirds of the United States

    SciTech Connect

    Strange, W.E.

    1991-09-01

    A 45-station geodetic network was established in 1987 using global positioning system (GPS) technology to provide a means of monitoring strain and deformation in the central and eastern United States. Reduction of the initial epoch data showed that accuracies of 1 to 3 cm can be achieved for horizontal position, provided sufficient observations are available and there are four or more fiducial stations whose positions are known a priori, for example from Very Long Baseline Interferometry measurements. Accuracies obtained provide the ability to determine strain at the 1:10{sup 7} to 1:10{sup 8} level. Vertical positions are less accurate because of problems in modeling refraction and are determined at the 5 to 7 cm level. It is planned to remeasure this network at regular intervals in the coming years to place bounds on the strain occurring in the central and eastern United States. This network is also expected to serve as a reference network for more detailed monitoring networks in areas of high risk such as the New Madrid area. Future measurements are expected to provide more accurate results because of increased numbers of GPS satellites available and improved computation software. The improved software will also allow future upgrading of the accuracy of the 1987 observations. 3 figs., 5 tabs.

  10. Monitoring Viable Fungal and Bacterial Bioaerosol Concentrations to Identify Acceptable Levels for Common Indoor Environments

    E-print Network

    Robertson, L. D.

    1998-01-01

    /or medical environments. New sampling methodologies are being developed to evaluate bioaerosol concentrations. These include ergosterol, beta Beta 1-3 Glucan, DNA fingerprinting, and others. While these methodologies may offer alternative means...

  11. DEVELOPMENT OF ADVANCED IN SITU TECHNIQUES FOR CHEMISTRY MONITORING AND CORROSION MITIGATION IN SCWO ENVIRONMENTS

    EPA Science Inventory

    We propose to develop chemical and corrosion sensors for use in high subcritical and supercritical aqueous environments, to improve their precision and reliability, and to use them to characterize the fundamental properties of supercritical aqueous solutions. A better understandi...

  12. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  13. Archaea in artificial environments: Their presence in global spacecraft clean rooms and impact on planetary protection

    Microsoft Academic Search

    Christine Moissl-Eichinger

    2011-01-01

    The presence and role of Archaea in artificial, human-controlled environments is still unclear. The search for Archaea has been focused on natural biotopes where they have been found in overwhelming numbers, and with amazing properties. However, they are considered as one of the major group of microorganisms that might be able to survive a space flight, or even to thrive

  14. Stereo Vision in Structured Environments by Consistent Semi-Global Matching

    Microsoft Academic Search

    Heiko Hirschmüller

    2006-01-01

    This paper considers the use of stereo vision in structured environments. Sharp discontinuities and large untextured areas must be anticipated, but complex or natural shapes of objects and fine structures should be handled as well. Additionally, radiometric differences of input images often occur in practice. Finally, computation time is an issue for handling large or many images in acceptable time.

  15. Global Channels of Evidence for Learning and Assessment in Complex Game Environments

    ERIC Educational Resources Information Center

    Nelson, Brian C.; Erlandson, Benjamin; Denham, Andre

    2011-01-01

    In this paper, we take a designer's look at how the activities and data of learning and assessment can be structured in immersive virtual game environments called Massively Multi-Player Online Games (MMOG). In doing so, we examine the channels of evidence through which learning and assessment activities are derived in MMOGs, offering examples of…

  16. Home Musical Environment of Children in Singapore: On Globalization, Technology, and Media

    ERIC Educational Resources Information Center

    Lum, Chee-Hoo

    2008-01-01

    The home musical environments of a class of 28 first-grade children in Singapore were examined in this ethnographic study. Technology was an integral part of the soundscape in the home. The musical repertoire gathered was closely associated with electronic and pop-influenced music, approaching the styles favored by teens and adults. Particular…

  17. Stockholm Environment Institute, Project Report -2013 Global Ageing and Environmental Change

    E-print Network

    #12;Stockholm Environment Institute Kräftriket 2B 106 91 Stockholm Sweden Tel: +46 8 674 7070 Fax: +46 Humanitarian Aid and Civil Protection This publication may be reproduced in whole or in part and in any form of the Third Age. Finally, we would like to thank all the respondents who generously gave of their time

  18. Environments

    Microsoft Academic Search

    Steve Benford; John Bowers; Lennart E. Fahl; Chris Greenhalgh; Dave Snowdon

    This paper explores the issue of user embodiment within collaborative virtual environments. By user embodiment we mean the provision of users with appropriate body images so as to represent them to others and also to themselves. By collaborative virtual environments we mean multi-user virtual reality systems which explicitly support co-operative work (although we argue that the results of our exploration

  19. Global positioning system surveying to monitor land subsidence in Sacramento Valley, California, USA

    USGS Publications Warehouse

    Ikehara, M.E.

    1994-01-01

    A subsidence research program began in 1985 to document the extent and magnitude of land subsidence in Sacramento Valley, California, an area of about 15 600 km2m, using Global Positioning System (GPS) surveying. In addition to periodic conventional spirit levelling, an examination was made of the changes in GPS-derived ellipsoidal height differences (summary differences) between pairs of adjacent bench marks in central Sacramento Valley from 1986 to 1989. The average rates of land subsidence in the southern Sacramento Valley for the past several decades were determined by comparing GPS-derived orthometric heights with historic published elevations. A maximum average rate of 0.053 m year-1 (0.90 m in 17 years) of subsidence has been measured. -Author

  20. Monitoring recent crustal movements in the Kenya rift valley by global positioning system (GPS) — a proposal

    NASA Astrophysics Data System (ADS)

    Rostom, R. S.

    There is evidence that the Kenya Rift is active. 1990 witnessed the execution of the Kenya Rift International Seismic Project to study the deep structure of the Kenya Rift. Yet there is no actual measurement of the rate of its spreading. Estimation based on volumes of volcanic rocks extruded over a given period has led to a wide range of estimates (0.2-2 mm/a). There is a need to establish geometrically the real spreading rate at present. The new technology (Global Positioning System) in its precise mode gives a promise to solve the problem. A preliminary network is proposed to consist of 4 points on each of the Rift walls. The logistics of site location, configuration of the network, observation method, frequency, etc. are discussed. The project requires international cooperation for execution.

  1. MARYLAND DEPARTMENT OF THE ENVIRONMENT NON-TIDAL BENTHIC MACROINVERTEBRATE MONITORING PROGRAM

    EPA Science Inventory

    The Maryland Non-tidal Benthic Macroinvertebrate Monitoring Program provides data on benthic macroinvertebrates for many streams in the state. Through it, an entire network of 100 stations in the nontidal reaches of Marylands Chesapeake Bay Basin are sampled within a two year per...

  2. Chlorinated hydrocarbons in the marine environment. A report prepared by the Panel on Monitoring Persistent Pesticides in the Marine Environment of the Committee on Oceanography

    USGS Publications Warehouse

    Panel on Monitoring Persistent Pesticides in the Marine Environment; Goldberg, E.D.; Butler, P.; Meier, P.; Menzel, D.; Paulik, G.; Risebrough, R.; Stickel, L.F.

    1971-01-01

    SUMMARY AND RECOMMENDATIONS : The oceans are an ultimate accumulation site for the persistent chlorinated hydrocarbons. As much as 25 percent of the DDT compounds produced to date may have been transferred to the sea. The amount of DDT compounds in the marine biota is estimated to be less than 0.1 percent of total production, yet this amount has produced a demonstrable impact upon the marine environment. Populations of fish-eating birds have experienced reproductive failure and decline. With continued accumulations of persistent chlorinated hydrocarbons in the marine ecosystem, additional species will be threatened. Continued release of these pollutants to the environment can only accelerate the accumulation of unacceptable levels of persistent chlorinated hydrocarbons in the tissues of marine food fish. Certain risks in the utilization of chlorinated hydrocarbons are especially hard to quantify, but they require serious consideration. The rate at which such substances degrade to harmless products in the marine system is unknown; the half-lives of some of the more persistent materials are certainly of the order of years, and perhaps even of decades or centuries. If most of the remaining 75 percent of the persistent chlorinated hydrocarbons is now in reservoirs that will in time transfer their contents to the sea, we may expect an increased level of these substances in marine organisms, despite future improvements of manufacturing practices. In fact, if these compounds degrade with half-lives of decades or longer, there will be no opportunity to redress the consequences. The more the problems are studied, the more unexpected effects are identified. In view of the findings of the past decade, our prediction of the potential hazards of chlorinated hydrocarbons in the marine environment may be vastly underestimated. The Panel makes the following recommendations, which will be developed and expanded in the remainder of the report: ? A massive national effort should be made immediately to effect a drastic reduction of the escape of persistent toxicants into the environment, with the ultimate aim of achieving virtual cessation in the shortest possible time. ? Programs should be designed both to determine the rates of entry of each pollutant into the marine environment and to make base-line determinations of the distribution of the pollutants among the components of that environment, These should be followed by a program of monitoring long-term trends in order to record progress and to document possible disaster. ? The laws relating to the registration of chemical substances and the release of production figures by government should be examined and perhaps revised in light of evidence of environmental deterioration caused by some of these substances.

  3. Infrasound network implementation in Iceland - examples of volcano monitoring in an extreme environment

    NASA Astrophysics Data System (ADS)

    Jónsdóttir, Kristín; Ripepe, Maurizio; Barsotti, Sara; Björnsson, Halldór; Del Donne, Dario; Vogfjörð, Kristín

    2015-04-01

    The installation of a network of infrasound arrays for volcano monitoring has been initiated in Iceland. In collaboration with the University of Florence (UNIFI), The Icelandic Meteorological Office (IMO) has been operating infrasound arrays since the Eyjafjallajökull eruption in 2010. An important support came through the 26 partner FP7 FUTUREVOLC project which runs from 2012 - 2016. This project which is relevant to the EU "Supersite concept" for long term monitoring in geologically active regions of Europe, is led by the University of Iceland together with IMO which leads long-term monitoring of geohazards in Iceland and is responsible for maintaining instrument networks for this purpose. As a part of the ground based FUTUREVOLC network, infrasound arrays, are used to monitor volcanic eruptive activity. The arrays are composed of 4 elements with a triangular geometry and an aperture of 120 m where each element has a differential pressure transducer with a sensitivity of 25 mV/Pa in the frequency band 0.001-50 Hz and a noise level of 10-2 Pa. Infrasound is recorded on site at 100 Hz and 24 bits and transmitted via Internet link both to the IMO and UNIFI. Three arrays are installed in South Iceland, one in Gunnarsholt, one in Þjórsárdalur and one in Kirkjubæjarklaustur. These places were chosen with the aim to optimize wind noice reduction (onsite bushes and trees) and close proximity to volcanoes such as Hekla, Katla, Torfajökull, Eyjafjallajökull, Vestmannaeyjar and the Vatnajökull ice cap which covers four central volcanoes known for explosive eruptions. In September 2014, the fourth array was installed a few km north of Vatnajökull glacier, just north of the large effusive eruption in Holuhraun which started on 29 August 2014 and is still ongoing in January 2015. The eruption is associated with the ongoing Bárðarbunga volcanic unrest and caldera collapse which is being monitored closely by the IMO and FUTUREVOLC partners. The new array has the potential of monitoring an explosive subglacial eruption, which could pose a threat to aviation as well as a flood risk to the lowlands. We present several examples of data analysis and near-real-time online visualization from the Holuhraun eruption. Since the eruption is mainly effusive it only produces a weak infrasound signal related to the large lava lake- like activity, which is picked up by the two closest arrays. Depending on weather conditions, infrasound monitoring allows to define changes and pulsations in the eruptive activity.

  4. A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications

    NASA Astrophysics Data System (ADS)

    Bovensmann, H.; Buchwitz, M.; Burrows, J. P.; Reuter, M.; Krings, T.; Gerilowski, K.; Schneising, O.; Heymann, J.; Tretner, A.; Erzinger, J.

    2010-01-01

    Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas causing global warming. The atmospheric CO2 concentration increased by more than 30% since pre-industrial times - primarily due to burning of fossil fuels - and still continues to increase. Reporting of CO2 emissions is required by the Kyoto protocol. Independent verification of reported emissions, which are typially not directly measured, by methods such as inverse modeling of measured atmospheric CO2 concentrations is currently not possible globally due to lack of appropriate observations. Existing greenhouse gas observing satellites such as SCIAMACHY and GOSAT focus on advancing our understanding of natural CO2 sources and sinks. The obvious next step for future generation satellites is to also measure anthropogenic CO2 emissions. Here we present a promising satellite remote sensing technology based on spectroscopic measurements of reflected solar radiation in the short-wave infrared (SWIR) and near-infrared (NIR) spectral regions and show, using power plants as an example, that strong localized CO2 point sources can be detected and their emissions quantified. This requires mapping the CO2 column distribution at a spatial resolution of 2×2 km2 or better with a precision of about 0.5% (2 ppm) or better of the background column. We indicate that this can be achieved with existing technology. For a single satellite in sun-synchronous orbit with an across-track swath width of 500 km each power plant is overflown every 6 days or faster. Based on clear sky statistics we conservatively estimate that about one useful measurement per 1-2 months for a given power plant can typically be achieved. We found that the uncertainty of the retrieved power plant CO2 emission during a single satellite overpass is in the range 0.5-5 MtCO2/year - depending on observation conditions - which is about 2-20% of the CO2 emission of large power plants (25 Mt CO2/year). The investigated instrument aims at fulfilling all requirements for global regional-scale CO2 and CH4 surface flux inverse modeling. Using a significantly less demanding instrument concept based on a single SWIR channel we indicate that this also enables the monitoring of power plant CO2 emissions in addition to high-quality methane retrievals. The latter has already been demonstrated by SCIAMACHY. The discussed technology has the potential to significantly contribute to an independent verification of reported anthropogenic CO2 emissions and therefore could be an important component of a future global anthropogenic CO2 emission monitoring system. This is of relevance in the context of Kyoto protocol follow-on agreements but also allows to detect and monitor strong natural CO2 and CH4 emitters such as (mud) volcanoes.

  5. The polar oceans and their role in shaping the global environment

    SciTech Connect

    Johannessen, O.M.; Muench, R.D.; Overland, J.E. [eds.

    1994-12-31

    This book is a comprehensive treatment of major advances made in the past decade in understanding of the interactions between polar oceans and the local atmosphere and ocean system. Included are 38 papers discussing the circulation, dynamics and convective processes occurring in the polar oceans; its carbon cycle chemistry and biology; the paleooceanography and paleoclimate of the polar regions; the interaction between the polar ocean and the global climate, and a variety of strategies for detection of climate change in polar regions, predominantly Arctic.

  6. Archaea in artificial environments: their presence in global spacecraft clean rooms and impact on planetary protection.

    PubMed

    Moissl-Eichinger, Christine

    2011-02-01

    The presence and role of Archaea in artificial, human-controlled environments is still unclear. The search for Archaea has been focused on natural biotopes where they have been found in overwhelming numbers, and with amazing properties. However, they are considered as one of the major group of microorganisms that might be able to survive a space flight, or even to thrive on other planets. Although still concentrating on aerobic, bacterial spores as a proxy for spacecraft cleanliness, space agencies are beginning to consider Archaea as a possible contamination source that could affect future searches for life on other planets. This study reports on the discovery of archaeal 16S rRNA gene signatures not only in US American spacecraft assembly clean rooms but also in facilities in Europe and South America. Molecular methods revealed the presence of Crenarchaeota in all clean rooms sampled, while signatures derived from methanogens and a halophile appeared only sporadically. Although no Archaeon was successfully enriched in our multiassay cultivation approach thus far, samples from a European clean room revealed positive archaeal fluorescence in situ hybridization (FISH) signals of rod-shaped microorganisms, representing the first visualization of Archaea in clean room environments. The molecular and visual detection of Archaea was supported by the first quantitative PCR studies of clean rooms, estimating the overall quantity of Archaea therein. The significant presence of Archaea in these extreme environments in distinct geographical locations suggests a larger role for these microorganisms not only in natural biotopes, but also in human controlled and rigorously cleaned environments. PMID:20703318

  7. Archaea in artificial environments: Their presence in global spacecraft clean rooms and impact on planetary protection

    PubMed Central

    Moissl-Eichinger, Christine

    2011-01-01

    The presence and role of Archaea in artificial, human-controlled environments is still unclear. The search for Archaea has been focused on natural biotopes where they have been found in overwhelming numbers, and with amazing properties. However, they are considered as one of the major group of microorganisms that might be able to survive a space flight, or even to thrive on other planets. Although still concentrating on aerobic, bacterial spores as a proxy for spacecraft cleanliness, space agencies are beginning to consider Archaea as a possible contamination source that could affect future searches for life on other planets. This study reports on the discovery of archaeal 16S rRNA gene signatures not only in US American spacecraft assembly clean rooms but also in facilities in Europe and South America. Molecular methods revealed the presence of Crenarchaeota in all clean rooms sampled, while signatures derived from methanogens and a halophile appeared only sporadically. Although no Archaeon was successfully enriched in our multiassay cultivation approach thus far, samples from a European clean room revealed positive archaeal fluorescence in situ hybridization (FISH) signals of rod-shaped microorganisms, representing the first visualization of Archaea in clean room environments. The molecular and visual detection of Archaea was supported by the first quantitative PCR studies of clean rooms, estimating the overall quantity of Archaea therein. The significant presence of Archaea in these extreme environments in distinct geographical locations suggests a larger role for these microorganisms not only in natural biotopes, but also in human controlled and rigorously cleaned environments. PMID:20703318

  8. Enhanced Sensitivity of Gas Sensor Based on Poly(3-hexylthiophene) Thin-Film Transistors for Disease Diagnosis and Environment Monitoring

    PubMed Central

    Cavallari, Marco R.; Izquierdo, José E. E.; Braga, Guilherme S.; Dirani, Ely A. T.; Pereira-da-Silva, Marcelo A.; Rodríguez, Estrella F. G.; Fonseca, Fernando J.

    2015-01-01

    Electronic devices based on organic thin-film transistors (OTFT) have the potential to supply the demand for portable and low-cost gadgets, mainly as sensors for in situ disease diagnosis and environment monitoring. For that reason, poly(3-hexylthiophene) (P3HT) as the active layer in the widely-used bottom-gate/bottom-contact OTFT structure was deposited over highly-doped silicon substrates covered with thermally-grown oxide to detect vapor-phase compounds. A ten-fold organochloride and ammonia sensitivity compared to bare sensors corroborated the application of this semiconducting polymer in sensors. Furthermore, P3HT TFTs presented approximately three-order higher normalized sensitivity than any chemical sensor addressed herein. The results demonstrate that while TFTs respond linearly at the lowest concentration values herein, chemical sensors present such an operating regime mostly above 2000 ppm. Simultaneous alteration of charge carrier mobility and threshold voltage is responsible for pushing the detection limit down to units of ppm of ammonia, as well as tens of ppm of alcohol or ketones. Nevertheless, P3HT transistors and chemical sensors could compose an electronic nose operated at room temperature for a wide range concentration evaluation (1–10,000 ppm) of gaseous analytes. Targeted analytes include not only biomarkers for diseases, such as uremia, cirrhosis, lung cancer and diabetes, but also gases for environment monitoring in food, cosmetic and microelectronics industries. PMID:25912354

  9. Enhanced Sensitivity of Gas Sensor Based on Poly(3-hexylthiophene) Thin-Film Transistors for Disease Diagnosis and Environment Monitoring.

    PubMed

    Cavallari, Marco R; Izquierdo, José E E; Braga, Guilherme S; Dirani, Ely A T; Pereira-da-Silva, Marcelo A; Rodríguez, Estrella F G; Fonseca, Fernando J

    2015-01-01

    Electronic devices based on organic thin-film transistors (OTFT) have the potential to supply the demand for portable and low-cost gadgets, mainly as sensors for in situ disease diagnosis and environment monitoring. For that reason, poly(3-hexylthiophene) (P3HT) as the active layer in the widely-used bottom-gate/bottom-contact OTFT structure was deposited over highly-doped silicon substrates covered with thermally-grown oxide to detect vapor-phase compounds. A ten-fold organochloride and ammonia sensitivity compared to bare sensors corroborated the application of this semiconducting polymer in sensors. Furthermore, P3HT TFTs presented approximately three-order higher normalized sensitivity than any chemical sensor addressed herein. The results demonstrate that while TFTs respond linearly at the lowest concentration values herein, chemical sensors present such an operating regime mostly above 2000 ppm. Simultaneous alteration of charge carrier mobility and threshold voltage is responsible for pushing the detection limit down to units of ppm of ammonia, as well as tens of ppm of alcohol or ketones. Nevertheless, P3HT transistors and chemical sensors could compose an electronic nose operated at room temperature for a wide range concentration evaluation (1-10,000 ppm) of gaseous analytes. Targeted analytes include not only biomarkers for diseases, such as uremia, cirrhosis, lung cancer and diabetes, but also gases for environment monitoring in food, cosmetic and microelectronics industries. PMID:25912354

  10. Global Monitoring and Forecasting of Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program

    Microsoft Academic Search

    Jeffrey S. Reid; Edward J. Hyer; Elaine M. Prins; Douglas L. Westphal; Jianglong Zhang; Jun Wang; Sundar A. Christopher; Cynthia A. Curtis; Christopher C. Schmidt; Daniel P. Eleuterio; Kim A. Richardson; Jay P. Hoffman

    2009-01-01

    Recently, global biomass-burning research has grown from what was primarily a climate field to include a vibrant air quality observation and forecasting community. While new fire monitoring systems are based on fundamental Earth Systems Science (ESS) research, adaptation to the forecasting problem requires special procedures and simplifications. In a reciprocal manner, results from the air quality research community have contributed

  11. Ozone profile retrieval from Global Ozone Monitoring Experiment (GOME) data using a neural network approach (Neural Network Ozone Retrieval System (NNORSY))

    Microsoft Academic Search

    M. D. Müller; A. K. Kaifel; M. Weber; S. Tellmann; J. P. Burrows; D. Loyola

    2003-01-01

    The inverse radiative transfer equation to retrieve atmospheric ozone distribution from the UV-visible satellite spectrometer Global Ozone Monitoring Experiment (GOME) has been modeled by means of a feed forward neural network. This Neural Network Ozone Retrieval System (NNORSY) was trained exclusively on a data set of GOME radiances collocated with ozone measurements from ozonesondes, Halogen Occultation Experiment, Stratospheric Aerosol and

  12. GlobVolcano: Earth Observation Services for global monitoring of active volcanoes

    NASA Astrophysics Data System (ADS)

    Tampellini, L.; Ratti, R.; Borgström, S.; Seifert, F. M.; Solaro, G.

    2009-04-01

    The GlobVolcano project is part of the Data User Element (DUE) programme of the European Space Agency (ESA). The objective of the project is to demonstrate EO-based (Earth Observation) services able to support the Volcanological Observatories and other mandate users (Civil Protection, scientific communities of volcanoes) in their monitoring activities. The information service is assessed in close cooperation with the user organizations for different types of active volcano, from various geographical areas in various climatic zones. Users are directly and actively involved in the validation of the Earth Observation products, by comparing them with ground data available at each site. The following EO-based information services have been defined, harmonising the user requirements provided by a worldwide selection of user organizations. - Deformation Mapping - Surface Thermal Anomalies - Volcanic Gas Emission (SO2) - Volcanic Ash Tracking During the first phase of the project (completed in June 2008) a pre-operational information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations (i.e. Piton de la Fournaise in La Reunion Island, Karthala in Comore Islands, Stromboli, Volcano and Etna in Italy, Soufrière Hills in Montserrat Island, Colima in Mexico, Merapi in Indonesia). The second phase of the project (currently on-going) concerns the service provision on pre-operational basis. Fifteen volcanic sites located in four continents are regularly monitored and as many user organizations are involved and cooperating with the project team. Based on user requirements, the GlobVolcano Information System has been developed following system engineering rules and criteria, besides most recent interoperability standards for geospatial data. The GlobVolcano Information System includes two main elements: 1. The GlobVolcano Data Processing System, which consists of seven of EO data processing subsystems located at each respective service centre. 2. The GlobVolcano Information Service, which is the provision infrastructure, including three elements: - GlobVolcano Products Archives, including two main functionalities: WMS (Web Map Service) for products visualization through the GVUI and products delivery. - GlobVolcano Metadata Catalogue, offering CS-W (Catalogue Service for Web) functionality. - GlobVolcano User Interface (GVUI), based on the Virtual Earth platform. Whereas product downloading is allowed to committed user organisations only, the Metadata Catalogue can be publicly accessed, thus providing a powerful tool for scientific interchanges and cooperation among the user organizations and scientific communities of volcanoes.

  13. An Optical Fiber-Based Sensor Array for the Monitoring of Zinc and Copper Ions in Aqueous Environments

    PubMed Central

    Kopitzke, Steven; Geissinger, Peter

    2014-01-01

    Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments. PMID:24549250

  14. Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy

    NASA Astrophysics Data System (ADS)

    Khidir, Jarjees; Chen, Youhua; Anderson, Gary

    2013-05-01

    This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.

  15. An Assessment of Potential Detectors to Monitor the Man-made Orbital Debris Environment. [space debris

    NASA Technical Reports Server (NTRS)

    Reynolds, R. C.; Ruck, G. T.

    1983-01-01

    Observations using NORAD radar showed that man made debris exceeds the natural environment for large objects. For short times (a few days to a few weeks) after solid rocket motor (SRM) firings in LEO, man made debris in the microparticle size range also appears to exceed the meteoroid environment. The properties of the debris population between these size regimes is currently unknown as there has been no detector system able to perform the required observations. The alternatives for obtaining data on this currently unobserved segment of the population are assessed.

  16. Advances in structural monitoring with Global Positioning System technology: 1997-2006

    NASA Astrophysics Data System (ADS)

    Ogaja, Clement; Li, Xiaojing; Rizos, Chris

    2007-11-01

    Over the last decade, users of the Global Positioning System (GPS) have developed the technology capable of meeting stringent requirements to study the dynamics of tall buildings, towers, and bridges during earthquakes, wind-induced deformation and traffic loading. Dynamic measurements of relative displacements of structures is currently possible using real-time kinematic (RTK) positioning techniques, now advanced to record typically at 10-20 Hz (or higher - e.g., 100 Hz) with an accuracy of ±1 cm horizontally and ±2 cm vertically. With further advances in the technology and improvements in sampling capability, it is possible to meet the needs of real-time displacement information for the structural engineering community. After a decade of great strides in proving the feasibility of the technology, focus is moving to sensor integration and operational systems. Several investigators are now routinely researching the integration of GPS with other sensors (accelerometers, fibre optics, pseudolites, etc.) to utilise the complementary benefits and overcome limitations of the individual systems. Examples of real-time operational systems exist to demonstrate the significance of GPS technology in measuring the dynamic behaviour of large engineering structures.

  17. Assessment of Pulse Counting Magnetometer Technology for Solar-Terrestrial Environment Monitoring

    Microsoft Academic Search

    M. Connors; J. Ponto; M. Foote

    2002-01-01

    Commercial pulse-counting fluxgate magnetometer heads offer promise for low-cost magnetic monitoring. Having an entirely digital output consisting of pulses in the tens of kHz, they are well suited to use with microcontrollers. In turn the magnetic data storage and transmission requirements are well handled by personal computers (PCs), to which microcontrollers are easily interfaced. A further relevant technology is that

  18. High resolution temperature monitoring in a borehole, detection of the deterministic signals in noisy environment

    Microsoft Academic Search

    V. ?ermák; J. Šafanda; M. Krešl

    2008-01-01

    Temperature was monitored as a function of time at several selected depth levels in a slim experimental borehole. The hole\\u000a is 15 cm in diameter, 150 m deep, and effectively sealed from the influx of ground water by a plastic tube of 5 cm diameter.\\u000a The mean temperature gradient is 19.2 mK\\/m. The borehole was drilled in 1993 and has

  19. Apparatus for monitoring tritium in tritium contaminating environments using a modified Kanne chamber

    DOEpatents

    Anderson, David F. (Los Alamos, NM)

    1984-01-01

    A conventional Kanne tritium monitor has been redesigned to reduce its sensitivity to such contaminants as tritiated water vapor and tritiated oil. The high voltage electrode has been replaced by a wire cylinder and the collector electrode has been reduced in diameter. The area sensitive to contamination has thereby been reduced by about a factor of forty while the overall apparatus sensitivity and operation has not been affected. The design allows for in situ decontamination of the chambers, if necessary.

  20. Apparatus for monitoring tritium in tritium-contaminating environments using a modified Kanne chamber

    DOEpatents

    Anderson, D.F.

    1981-01-27

    A conventional Kanne tritium monitor has been redesigned to reduce its sensitivity to such contaminants as tritiated water vapor and tritiated oil. The high voltage electrode has been replaced by a wire cylinder and the collector electrode has been reduced in diameter. The area sensitive to contamination has thereby been reduced by about a factor of forty while the overall apparatus sensitivity and operation has not been affected. The design allows for in situ decontamination of the chambers, if necessary.

  1. Children of Screen And Monitor1 Estonian Schoolchildren in the New Media Environment

    Microsoft Academic Search

    EPP LAUK

    Estonia, at Independence in 1991, was a digital desert compared to Western European countries. The digital revolution that was encircling the globe coincided with a major societal transition - the change from communism to democracy and a free market economy - in Estonia. The experience of the digital revolution in the West was a 'natural evolution' in a stable environment.

  2. Monitoring Viable Fungal and Bacterial Bioaerosol Concentrations to Identify Acceptable Levels for Common Indoor Environments

    Microsoft Academic Search

    L. D. Robertson

    1997-01-01

    Little characterization of bioaerosol concentrations between 200 and 450 cfu.m-3 has been carried out to address potential concerns about indoor air quality. The present research describes measurements of indoor bioaerosol concentrations and concludes that a level of nontoxigenic and nonpathogenic organisms ? 300 cfu·m -3 should be typical for environments in which nor mal, nonimmunocompromised people live. With the exception

  3. Guiding an image acquisition strategy: MODIS-derived growing season timing and cloud cover probability as inputs to a global agriculture monitoring (GEO-GLAM) system of systems

    NASA Astrophysics Data System (ADS)

    Whitcraft, A. K.; Vermote, E.

    2012-12-01

    Satellite remote sensing is an invaluable tool in the collection of data and generation of information about global agricultural production and food security. In order to secure the necessary image acquisitions for these global agricultural monitoring applications, we must first articulate Earth observation (EO) requirements for the diverse agricultural landscapes and cropping systems which cover the land surface. Crucial to this task are the identification of growing season timing at a meaningful spatial scale, so as to better define the necessary periods of image acquisition, as well as the determination of the likelihood of a cloud-free observation during different portions of the agricultural growing season. To this end, ten years of MODIS imagery have been used to determine phenological transition dates (start, peak, and end of season) and their ranges over that time period at 0.5 degree globally. This is the first set of global, satellite-derived, cropland-specific calendar dates. Because cloud cover presents a temporally and spatially heterogeneous obstacle in optical remote sensing of many important agricultural areas, roughly a decade of MODIS observations have been used to determine the likelihood of a cloud-free observation during different portions of the agricultural growing season at 0.05 degree. This research shows persistent cloud cover during crucial portions of the growing season for some important agricultural regions, information which can be used to better define the actual repeat time required to obtain a valid acquisition and provides evidence for a constellation approach for Earth observations for agricultural monitoring. Coupled with the growing season calendars, this research provides important inputs to agricultural production and food security monitoring in the context of the Global Agricultural Monitoring initiative (GEO-GLAM), an effort by the Group on Earth Observations (GEO) to synergize existing national and regional observation systems for improved agricultural production and food security monitoring.

  4. Chemical environment and Ce valence: Global trends in transition-metal compounds

    SciTech Connect

    Neifeld, R.A.; Croft, M.; Mihalisin, T.; Segre, C.U.; Madigan, M.; Torikachvili, M.S.; Maple, M.B.; DeLong, L.E.

    1985-11-15

    Results of L/sub III/ absorption spectroscopy measurements on a wide range of Ce--transition-metal (T) compounds are presented and Ce valence-state estimates are made. We are able to identify extremely regular trends in the response of the Ce valence and Ce-T hybridization strength to systematic variations in the solid-state chemical environment. Our work facilitates identification of the specific elements in the T-metal electronic structure which drive the Ce valence-state change.

  5. GlobVolcano pre-operational services for global monitoring active volcanoes

    NASA Astrophysics Data System (ADS)

    Tampellini, Lucia; Ratti, Raffaella; Borgström, Sven; Seifert, Frank Martin; Peltier, Aline; Kaminski, Edouard; Bianchi, Marco; Branson, Wendy; Ferrucci, Fabrizio; Hirn, Barbara; van der Voet, Paul; van Geffen, J.

    2010-05-01

    The GlobVolcano project (2007-2010) is part of the Data User Element programme of the European Space Agency (ESA). The project aims at demonstrating Earth Observation (EO) based integrated services to support the Volcano Observatories and other mandate users (e.g. Civil Protection) in their monitoring activities. The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. In a first phase, a complete information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations. In the currently on-going second phase, GlobVolcano is delivering pre-operational services over 15 volcanic sites located in three continents and as many user organizations are involved and cooperating with the project team. The set of GlobVolcano offered EO based information products is composed as follows: Deformation Mapping DInSAR (Differential Synthetic Aperture Radar Interferometry) has been used to study a wide range of surface displacements related to different phenomena (e.g. seismic faults, volcanoes, landslides) at a spatial resolution of less than 100 m and cm-level precision. Permanent Scatterers SAR Interferometry method (PSInSARTM) has been introduced by Politecnico of Milano as an advanced InSAR technique capable of measuring millimetre scale displacements of individual radar targets on the ground by using multi-temporal data-sets, estimating and removing the atmospheric components. Other techniques (e.g. CTM) have followed similar strategies and have shown promising results in different scenarios. Different processing approaches have been adopted, according to data availability, characteristic of the area and dynamic characteristics of the volcano. Conventional DInSAR: Colima (Mexico), Nyiragongo (Congo), Pico (Azores), Areanal (Costa Rica) PSInSARTM: Piton de la Fournaise (La Reunion Island), Stromboli and Volcano (Italy), Hilo (Hawai), Mt. St. Helens (United States), CTM (Coherent Target Monitoring): Cumbre Vieja (La Palma) To generate products either Envisat ASAR, Radarsat 1or ALOS PALSAR data have been used. Surface Thermal Anomalies Volcanic hot-spots detection, radiant flux and effusion rate (where applicable) calculation of high temperature surface thermal anomalies such as active lava flow, strombolian activity, lava dome, pyroclastic flow and lava lake can be performed through MODIS (Terra / Aqua) MIR and TIR channels, or ASTER (Terra), HRVIR/HRGT (SPOT4/5) and Landsat family SWIR channels analysis. ASTER and Landsat TIR channels allow relative radiant flux calculation of low temperature anomalies such as lava and pyroclastic flow cooling, crater lake and low temperature fumarolic fields. MODIS, ASTER and SPOT data are processed to detect and measure the following volcanic surface phenomena: Effusive activity Piton de la Fournaise (Reunion Island); Mt Etna (Italy). Lava dome growths, collapses and related pyroclastic flows Soufrière Hills (Montserrat); Arenal - (Costa Rica). Permanent crater lake and ephemeral lava lake Karthala (Comores Islands). Strombolian activity Stromboli (Italy). Low temperature fumarolic fields Nisyros (Greece), Vulcano (Italy), Mauna Loa (Hawaii). Volcanic Emission The Volcanic Emission Service is provided to the users by a link to GSE-PROMOTE - Support to Aviation Control Service (SACS). The aim of the service is to deliver in near-real-time data derived from satellite measurements regarding SO2 emissions (SO2 vertical column density - Dobson Unit [DU]) possibly related to volcanic eruptions and to track the ash injected into the atmosphere during a volcanic eruption. SO2 measurements are derived from different satellite instruments, such as SCIAMACHY, OMI and GOME-2. The tracking of volcanic ash is accomplished by using SEVIRI-MSG data and, in particular, the following channels VIS 0.6 and IR 3.9, and along with IR8.7, IR 10.8 and IR 12.0. The GlobVolcano information system and its current experimentation represent a

  6. A global analysis of the electrodynamic interactions between a space station and the ionospheric plasma environment

    NASA Technical Reports Server (NTRS)

    Wang, J.; Hastings, D. E.

    1991-01-01

    A general analysis of the electrodynamic interactions between a space station with two biased platforms and the ionospheric plasma is presented. This problem can be separated into a far-field problem, concerned with the electromagnetic interference surrounding the entire space station, and a near-field problem, concentrated on the interactions in the vicinity of the biased platforms. The far-field problem is solved by application of plasma fluid theory. The space station will generate a radiation field composed mainly of the Alfven waves. This far-field radiation depends on the details of the near-field current collection. Computer particle simulations were performed in the near-field of the biased platform to study the plasma flow field, the sheath structure and the current collection. Approximate analytical solutions to the near-field are also obtained. The far-field and near-field solutions are coupled to provide a global description of the electrodynamic interactions.

  7. Global MHD Simulations of Space Plasma Environments: Heliosphere, Comets, Magnetospheres of Plants and Satellites

    NASA Technical Reports Server (NTRS)

    Kabin, K.; Hansen, K. C.; Gombosi, T. I.; Combi, M. R.; Linde, T. J.; DeZeeuw, D. L.; Groth, C. P. T.; Powell, K. G.; Nagy, A. F.

    2000-01-01

    Magnetohydrodynamics (MHD) provides an approximate description of a great variety of processes in space physics. Accurate numerical solutions of the MHD equations are still a challenge, but in the past decade a number of robust methods have appeared. Once these techniques made the direct solution of MHD equations feasible, a number of global three-dimensional models were designed and applied to many space physics objects. The range of these objects is truly astonishing, including active galactic nuclei, the heliosphere, the solar corona, and the solar wind interaction with planets, satellites, and comets. Outside the realm of space physics, MHD theory has been applied to such diverse problems as laboratory plasmas and electromagnetic casting of liquid metals. In this paper we present a broad spectrum of models of different phenomena in space science developed in the recent years at the University of Michigan. Although the physical systems addressed by these models are different, they all use the MHD equations as a unifying basis.

  8. Environments

    Microsoft Academic Search

    John Grundy; John Hosking; Rick Mugridge

    Developers need tool support to help manage the wide range of inconsistencies that occur during software development. Such tools need to provide developers with ways to define, detect, record, present, interact with, monitor and resolve complex inconsistencies between different views of software artefacts, different developers and different phases of software development. This paper describes our experience with building complex multiple-view

  9. Occupational Exposure to Ultrafine Particles among Airport Employees - Combining Personal Monitoring and Global Positioning System

    PubMed Central

    Møller, Karina Lauenborg; Thygesen, Lau Caspar; Schipperijn, Jasper; Loft, Steffen; Bonde, Jens Peter; Mikkelsen, Sigurd; Brauer, Charlotte

    2014-01-01

    Background Exposure to ultrafine particles (UFP) has been linked to cardiovascular and lung diseases. Combustion of jet fuel and diesel powered handling equipment emit UFP resulting in potentially high exposure levels among employees working at airports. High levels of UFP have been reported at several airports, especially on the apron, but knowledge on individual exposure profiles among different occupational groups working at an airport is lacking. Purpose The aim of this study was to compare personal exposure to UFP among five different occupational groups working at Copenhagen Airport (CPH). Method 30 employees from five different occupational groups (baggage handlers, catering drivers, cleaning staff and airside and landside security) at CPH were instructed to wear a personal monitor of particle number concentration in real time and a GPS device. The measurements were carried out on 8 days distributed over two weeks in October 2012. The overall differences between the groups were assessed using linear mixed model. Results Data showed significant differences in exposure levels among the groups when adjusted for variation within individuals and for effect of time and date (p<0.01). Baggage handlers were exposed to 7 times higher average concentrations (geometric mean, GM: 37×103 UFP/cm3, 95% CI: 25–55×103 UFP/cm3) than employees mainly working indoors (GM: 5×103 UFP/cm3, 95% CI: 2–11×103 UFP/cm3). Furthermore, catering drivers, cleaning staff and airside security were exposed to intermediate concentrations (GM: 12 to 20×103 UFP/cm3). Conclusion The study demonstrates a strong gradient of exposure to UFP in ambient air across occupational groups of airport employees. PMID:25203510

  10. The Use of a Mock Environment Summit to Support Learning about Global Climate Change

    NSDL National Science Digital Library

    Catherine Gautier

    2005-01-01

    NOTE: This is a large file, 26.6 mb in size! This article advocates the use of a Learner-Centered Environment (LCE) to teach Earth System Science. In this instance, LCE takes the form of a mock environmental summit in which students play the roles of country representatives and participate in activities such as writings, class discussions, presentations and negotiations. Rubrics developed for each activity are used both to assess student learning and to communicate feedback to students about their work. The study suggests that the adoption of an LCE enhanced student learning of content and critical skills. The frequent student presentations were found to play a major role in student learning. The rubrics served as scaffolding for knowledge construction, helped students to self-assess and maintain their quality of work, and allowed instructors to provide quick and efficient feedback. The development of basic learner-centered tools and teaching practices will help Earth System Science instructors provide learning environments most suitable for their discipline.

  11. A survey of the performance of silicon carbide and phosphate bonded refractories in locally oxydizing, globally reducing environments

    SciTech Connect

    King, Paul E.; Clark, John A., III; Higgins, Leonard G.

    2003-10-01

    Silicon carbide and phosphate bonded, high chromium refractories have been tested and utilized in an environment which includes locally oxidizing and globally reducing conditions. The regime where the transition between oxidizing and reducing conditions exists is of concern for life expectancy and use characteristics of the refractories. This study compares the performance characteristics of these two types of refractories in a pilot scale operation. The refractories were studied in a side-by-side manner and evaluated for their corresponding life expectancy. Quantitative and qualitative measurements indicate which of these two materials behaves better and under what conditions this is true. The results of this study indicate installation characteristics and life expectancy under extreme conditions. Also included in this study are such issues as thermal cycling and wear during the use of the refractories.

  12. On Using WWLLN Observations as Starting Information for the Quantitative Schumann Resonance Monitoring of Global Lightning Activity

    NASA Astrophysics Data System (ADS)

    Mushtak, V. C.; Guha, A.; Williams, E.

    2013-12-01

    The idea of the extremely-low-frequency (ELF) monitoring of global lightning activity is based on the small attenuation (a few tenths of dB/Mm) of ELF waves and, hence, the occurrence of interference phenomena (Schumann resonance (SR) patterns). As a result, SR observations: a) collect signals from parent lightning events over the entire current moment range (in contrast to the events from the tail of the distribution in the WWLLN data), b) cover the activity regions of the entire globe practically uniformly from a net of a few stations (in contrast to the spatially and temporarily non-uniform coverage by the WWLLN), and c) provide information on the mutual locations of sources and observers uniquely reflected in the SR characteristics (modal intensities, frequencies, and quality factors). However, some physically substantiated advantages (for instance, the global coverage) of the SR technique turn into certain methodological shortcomings (for instance, low spatial resolution) when the technique is exploited as a practical monitoring procedure. While some of the SR shortcomings (such as spatial resolution ) are not important when considering the source strengths of global lightning regions (chimneys) with continental dimensions, other challenges of the SR technique require use of additional information. As a primary challenge, there is the problem of an extremely complicated multi-dimensional relief of the functional minimized in the inversion procedure; due to the presence of local (secondary) minima along with the global (major) one, the inversion's result is critically dependent on the quality of initial guesses for the sought-for parameters of the source model (geographical locations, dimensions, and quantitative source strengths of the major chimneys). Attempts to use the general lightning climatology for this initial guess have not resolved the problem of local minima due to the pronounced day-to-day variability of lightning scenarios in individual chimneys, and exploring this variability, along with quantitative source strengths, is one of the major objectives of this study. The problem has been resolved by the exploitation of the WWLLN stroke location data for initial guesses of the spatial parameters of the source model, with electromagnetic observations (SR modal characteristics) used for estimating the initial relative contributions - and, hence, source strengths - of individual chimneys. Using data from nine SR stations scattered over the globe from the Arctic to Antarctica and from USA to India to Japan, the effectiveness of the technique has now been tested and confirmed. It has been shown that, with the relative hour-by-hour source strengths of the chimneys estimated from the whole net of the SR stations, the temporal variations of these activities as ';seen' from individual stations correlate with coefficients up to 0.8, thereby confirming the objectivity of the approach and the suitability of the initial guesses for further ';full-gear' SR inversion. As an additional benefit of this study, the quality of the absolute calibrations at individual stations has been assessed and compared.

  13. A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications

    NASA Astrophysics Data System (ADS)

    Bovensmann, H.; Buchwitz, M.; Burrows, J. P.; Reuter, M.; Krings, T.; Gerilowski, K.; Schneising, O.; Heymann, J.; Tretner, A.; Erzinger, J.

    2010-07-01

    Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas (GHG) causing global warming. The atmospheric CO2 concentration increased by more than 30% since pre-industrial times - primarily due to burning of fossil fuels - and still continues to increase. Reporting of CO2 emissions is required by the Kyoto protocol. Independent verification of reported emissions, which are typially not directly measured, by methods such as inverse modeling of measured atmospheric CO2 concentrations is currently not possible globally due to lack of appropriate observations. Existing satellite instruments such as SCIAMACHY/ENVISAT and TANSO/GOSAT focus on advancing our understanding of natural CO2 sources and sinks. The obvious next step for future generation satellites is to also constrain anthropogenic CO2 emissions. Here we present a promising satellite remote sensing concept based on spectroscopic measurements of reflected solar radiation and show, using power plants as an example, that strong localized CO2 point sources can be detected and their emissions quantified. This requires mapping the atmospheric CO2 column distribution at a spatial resolution of 2×2 km2 with a precision of 0.5% (2 ppm) or better. We indicate that this can be achieved with existing technology. For a single satellite in sun-synchronous orbit with a swath width of 500 km, each power plant (PP) is overflown every 6 days or more frequent. Based on the MODIS cloud mask data product we conservatively estimate that typically 20 sufficiently cloud free overpasses per PP can be achieved every year. We found that for typical wind speeds in the range of 2-6 m/s the statistical uncertainty of the retrieved PP CO2 emission due to instrument noise is in the range 1.6-4.8 MtCO2/yr for single overpasses. This corresponds to 12-36% of the emission of a mid-size PP (13 MtCO2/yr). We have also determined the sensitivity to parameters which may result in systematic errors such as atmospheric transport and aerosol related parameters. We found that the emission error depends linearly on wind speed, i.e., a 10% wind speed error results in a 10% emission error, and that neglecting enhanced aerosol concentrations in the PP plume may result in errors in the range 0.2-2.5 MtCO2/yr, depending on PP aerosol emission. The discussed concept has the potential to contribute to an independent verification of reported anthropogenic CO2 emissions and therefore could be an important component of a future global anthropogenic GHG emission monitoring system. This is of relevance in the context of Kyoto protocol follow-on agreements but also allows detection and monitoring of a variety of other strong natural and anthropogenic CO2 and CH4 emitters. The investigated instrument is not limited to these applications as it has been specified to also deliver the data needed for global regional-scale CO2 and CH4 surface flux inverse modeling.

  14. A biodiversity indicators dashboard: addressing challenges to monitoring progress towards the Aichi biodiversity targets using disaggregated global data.

    PubMed

    Han, Xuemei; Smyth, Regan L; Young, Bruce E; Brooks, Thomas M; Sánchez de Lozada, Alexandra; Bubb, Philip; Butchart, Stuart H M; Larsen, Frank W; Hamilton, Healy; Hansen, Matthew C; Turner, Will R

    2014-01-01

    Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's "Aichi Targets". These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong) and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity "dashboard"--a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate), state of species (Red List Index), conservation response (protection of key biodiversity areas), and benefits to human populations (freshwater provision). Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the protection of natural resources. PMID:25409183

  15. A Biodiversity Indicators Dashboard: Addressing Challenges to Monitoring Progress towards the Aichi Biodiversity Targets Using Disaggregated Global Data

    PubMed Central

    Han, Xuemei; Smyth, Regan L.; Young, Bruce E.; Brooks, Thomas M.; Sánchez de Lozada, Alexandra; Bubb, Philip; Butchart, Stuart H. M.; Larsen, Frank W.; Hamilton, Healy; Hansen, Matthew C.; Turner, Will R.

    2014-01-01

    Recognizing the imperiled status of biodiversity and its benefit to human well-being, the world's governments committed in 2010 to take effective and urgent action to halt biodiversity loss through the Convention on Biological Diversity's “Aichi Targets”. These targets, and many conservation programs, require monitoring to assess progress toward specific goals. However, comprehensive and easily understood information on biodiversity trends at appropriate spatial scales is often not available to the policy makers, managers, and scientists who require it. We surveyed conservation stakeholders in three geographically diverse regions of critical biodiversity concern (the Tropical Andes, the African Great Lakes, and the Greater Mekong) and found high demand for biodiversity indicator information but uneven availability. To begin to address this need, we present a biodiversity “dashboard” – a visualization of biodiversity indicators designed to enable tracking of biodiversity and conservation performance data in a clear, user-friendly format. This builds on previous, more conceptual, indicator work to create an operationalized online interface communicating multiple indicators at multiple spatial scales. We structured this dashboard around the Pressure-State-Response-Benefit framework, selecting four indicators to measure pressure on biodiversity (deforestation rate), state of species (Red List Index), conservation response (protection of key biodiversity areas), and benefits to human populations (freshwater provision). Disaggregating global data, we present dashboard maps and graphics for the three regions surveyed and their component countries. These visualizations provide charts showing regional and national trends and lay the foundation for a web-enabled, interactive biodiversity indicators dashboard. This new tool can help track progress toward the Aichi Targets, support national monitoring and reporting, and inform outcome-based policy-making for the protection of natural resources. PMID:25409183

  16. Emerging Animal Parasitic Diseases: A Global Overview and Appropriate Strategies for their Monitoring and Surveillance in Nigeria.

    PubMed

    Atehmengo, Ngongeh L; Nnagbo, Chiejina S

    2014-01-01

    Emerging animal parasitic diseases are reviewed and appropriate strategies for efficient monitoring and surveillance in Nigeria are outlined. Animal and human parasitic infections are distinguished. Emerging diseases have been described as those diseases that are being recognised for the first time or diseases that are already recorded but their frequency and/or geographic range is being increased tremendously. Emergence of new diseases may be due to a number of factors such as the spread of a new infectious agent, recognition of an infection that has been in existence but undiagnosed, or when it is realised that an established disease has an infectious origin. The terms could also be used to describe the resurgence of a known infection after its incidence had been known to have declined. Emerging infections are compounding the control of infectious diseases and huge resources are being channeled to alleviate the rising challenge. The diseases are numerous and include helminth, protozoal / rickettsial and entomological. A list of parasitic emerging diseases in Nigeria is included. Globally occurring emerging parasitic diseases are also outlined. Emerging and re-emerging infections can be brought about by many factors including climate change and global warming, changes in biodiversity, population mobility, movement of animals, globalisation of commerce/trade and food supply, social and cultural factors such as food eating habits, religious beliefs, farming practices, trade of infected healthy animals, reduction in the available land for animals, immune-suppressed host and host density and misuse or over use of some drugs leading to drug resistance. PMID:25328553

  17. The role of spaceborne millimeter-wave radar in the global monitoring of ice cloud

    SciTech Connect

    Brown, P.R.A.; Illingworth, A.J. [Univ. of Reading, Reading (United Kingdom)] [Univ. of Reading, Reading (United Kingdom); Heymsfield, A.J. [National Center for Atmospheric Research, Boulder, CO (United States)] [National Center for Atmospheric Research, Boulder, CO (United States)

    1995-11-01

    The potential of spaceborne 94-GHz radar for measuring global vertical distribution and water content of ice clouds is assessed. Longwave (LW) fluxes for model ice clouds are calculated and used to determine minimum cloud optical depths that will change outgoing longwave radiation or flux divergence within a cloud layer greater than 10 W m{sup -2}, and in surface downward LW flux greater than 5 W m{sup -2}, compared to clear-sky value. Optical depth values are used to define radiatively significant clouds. Thresholds of radiative significance are calculated for radiation parameters and for tropical and midlatitude cirrus clouds. Observational data of ice crystal size spectra from midlatitude and tropical cirrus are used to assess radar capability to meet measurement requirements. A radar threshold of -30 dBZ should detect 99% (92%) of radiatively significant clouds in the midlatitudes. Detection efficiency may be reduced significantly for tropical clouds at very low temperatures (-80 C). LW flux calculations also establish the optical depth accuracy required to estimate LW fluxes or flux divergence. Accuracy requirements are also given in terms of ice water content (IWC) for validating cloud parameterization in general circulation models (GCMs). IWC estimates are derived using radar and additional information to define mean crystal size. IWC for samples with a horizontal scale of 1-2 km has a bias of less than 8%. For IWC larger than 0.01 g m{sup -3}, random error is from +50 to -35%; for 0.001 g m{sup -3}, random error is between +80 and -45%. This is also the best achievable accuracy for cloud optical depth estimates and meets requirements derived from LW flux calculations. Without independent particle size information, random error is from +85 to -55% for IWC greater than 0.01 g m{sup -3} and estimated bias is less than {plus_minus}15%. This accuracy is sufficient to provide useful constraints on GCM cloud parameterization schemes. 34 refs., 15 figs., 6 tabs.

  18. Sensing technology for pressure, flow, viscosity and moisture content monitoring in autoclave environments

    SciTech Connect

    Beadles, J.R.; Spellman, G.P.

    1992-03-01

    This report is an evaluation of sensor technology for continuously determining pressure, flow, viscosity, and moisture content of the resin in fiber composite laminates that are being cured in an autoclave. An effort has been made to identify the individuals and firms active in research and manufacture of such sensors. Monitoring technologies of interest include dielectric, fiber optic, strain gage, capacitive, ultrasonic, piezoelectric, nuclear magnetic resonance, resistance change, vibration, tracer/fluorescent particle analysis, and anemometer. The focus is on sensors that produce real-time data; techniques that rely on indirect correlations and modeling for estimates of effects are discussed only briefly.

  19. Study of different Chemcatcher configurations in the monitoring of nonylphenol ethoxylates and nonylphenol in aquatic environment.

    PubMed

    Ahkola, Heidi; Herve, Sirpa; Knuutinen, Juha

    2014-01-01

    The main aim of the European Union Water Framework Directive (WFD) (2000/60/EC) is to protect rivers, lakes, coastal waters and groundwaters (EC 2000). The implementation of the WFD requires monitoring the concentration levels of several priority pollutants such as nonylphenol ethoxylates (NPEOs) and nonylphenol (NP) in the area of EU. The present practices for determining the concentration levels of various pollutants are, in many respects, insufficient, and there is an urgent need to develop more cost-effective sampling methods. A passive sampling tool named Chemcatcher was tested for monitoring NPEOs and NP in aqueous media. These environmentally harmful substances have been widely used in different household and industrial applications, and they affect aquatic ecosystems, for example, by acting as endocrine disrupting compounds. The suitability of different receiving phases which were sulfonated styrene-divinylbenzene reversed phase polymer (SDB-RPS), standard styrene-divinyl benzene polymer (SDB-XC) and C-18 (octadecyl) was assessed in laboratory and field trials. The effect of a diffusion membrane on the accumulation of studied compounds was also investigated. The SDB-XC and C-18 receiving phases collected the NPEOs and NP most effectively. The water flow affected the accumulation factor of the studied substances in the field trials, and the water concentrations calculated using sampling rates were tenfold lower than those measured with conventional spot sampling. The concentration of the analytes in spot samples taken from the sampling sites might be higher because in that case, the particle-bound fraction is also measured. The NPEOs readily attach to suspended matter, and therefore, the total concentration of such compounds in water is much higher. Also, the spot samples were not taken daily but once a week, while the passive samplers collected the compounds continuously for 2- or 4-week time periods. This may cause differences when comparing the results of those two methods as well. Both techniques can be applied for monitoring the concentration levels at different sampling sites, but the calculated and measured analyte concentrations in surrounding water are not necessarily comparable with each other. More experiments are still needed to study the effect of hydrological issues and humic substances on the accumulation of chemicals. However, the Chemcatcher passive sampler gives valuable information about the mean concentration levels of studied compounds during 2- or 4-week sampling period. This is important for comparison of annual monitoring results, especially in sampling sites with rapidly fluctuating concentrations. PMID:24705895

  20. sPlot - the new global vegetation-plot database for addressing trait-environment relationships across the world's biomes

    NASA Astrophysics Data System (ADS)

    Purschke, Oliver; Dengler, Jürgen; Bruelheide, Helge; Chytrý, Milan; Jansen, Florian; Hennekens, Stephan; Jandt, Ute; Jiménez-Alfaro, Borja; Kattge, Jens; De Patta Pillar, Valério; Sandel, Brody; Winter, Marten

    2015-04-01

    The trait composition of plant communities is determined by abiotic, biotic and historical factors, but the importance of macro-climatic factors in explaining trait-environment relationships at the local scale remains unclear. Such knowledge is crucial for biogeographical and ecological theory but also relevant to devise management measures to mitigate the negative effects of climate change. To address these questions, an iDiv Working Group has established the first global vegetation-plot database (sPlot). sPlot currently contains ~700,000 plots from over 50 countries and all biomes, and is steadily growing. Approx. 70% of the most frequent species are represented by at least one trait in the global trait database TRY and gap-filled data will become available for the most common traits. We will give an overview about the structure and present content of sPlot in terms of spatial distribution, data properties and trait coverage. We will explain next steps and perspectives, present first cross-biome analyses of community-weighted mean traits and trait variability, and highlight some ecological questions that can be addressed with sPlot.

  1. Risk Factor Monitoring and Methods Branch | Measuring the Built Environment - A Key Shaper of Health Determinants

    Cancer.gov

    An urban sprawl index developed by Dr. David Berrigan and colleagues can be used to measure how the built environment changes over time and to examine its role in access to health services or as an influence on dietary and physical activity behaviors. This innovation was a semifinalist in the 2014 HHS Innovates competition. A report describes the development and analysis of updated sprawl indices for the U.S. and Ewing's earlier sprawl index developed with 2000 Census data.

  2. Cell-Based Sensor System Using L6 Cells for Broad Band Continuous Pollutant Monitoring in Aquatic Environments

    PubMed Central

    Kubisch, Rebekka; Bohrn, Ulrich; Fleischer, Maximilian; Stütz, Evamaria

    2012-01-01

    Pollution of drinking water sources represents a continuously emerging problem in global environmental protection. Novel techniques for real-time monitoring of water quality, capable of the detection of unanticipated toxic and bioactive substances, are urgently needed. In this study, the applicability of a cell-based sensor system using selected eukaryotic cell lines for the detection of aquatic pollutants is shown. Readout parameters of the cells were the acidification (metabolism), oxygen consumption (respiration) and impedance (morphology) of the cells. A variety of potential cytotoxic classes of substances (heavy metals, pharmaceuticals, neurotoxins, waste water) was tested with monolayers of L6 cells (rat myoblasts). The cytotoxicity or cellular effects induced by inorganic ions (Ni2+ and Cu2+) can be detected with the metabolic parameters acidification and respiration down to 0.5 mg/L, whereas the detection limit for other substances like nicotine and acetaminophen are rather high, in the range of 0.1 mg/L and 100 mg/L. In a close to application model a real waste water sample shows detectable signals, indicating the existence of cytotoxic substances. The results support the paradigm change from single substance detection to the monitoring of overall toxicity. PMID:22737014

  3. Observing Earth's Changing Environment

    NASA Astrophysics Data System (ADS)

    Elachi, Charles

    Over the last decade, a wide variety of spaceborne instruments have been developed and deployed to observe the Earth's environment on a global and almost continuous basis. Today, we have the capability to map solid surface topography, cover and subtle motion; to monitor on a global basis the ocean topography, circulation, temperature and near-surface wind; the atmospheric temperature and aerosol profiles, clouds and rain profile, water content; a significant number of atmospheric constituents, etc. Near-term missions will add the capability to map ocean salinity, soil moisture, and carbon dioxide profile, among others. These spaceborne measurements play a critical role in assessing the state of Earth's environment and how it is changing; the most recent example being the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. With more countries launching Earth observing satellites, the challenge is now evolving from making measurements to assimilation of multiple data sources into decision support systems. The Global Earth Observation Systems of Systems (GEOSS) will link together existing and planned observing systems around the world and promote common technical standards so that data from thousands of different instruments can be combined into coherent data sets. In addition, Europe has initiated the Global Monitoring for Environment and Security (GMES) to integrate information services for the environment and security. The U.S. has begun implementation of recommendations from the National Academy of Sciences Earth Science "Decadal Survey," which includes observations, models and decision support leading to societal benefits. These future systems will not only provide a means to access and combine data sets to address model uncertainties, but will also enable risk assessments of potential decisions. In this talk I will give an overview of the present capability and expected development over the next decade, and how these capabilities will form a solid scientific assessment of the changes in the global environment and provide information to policy makers to address and mitigate global change.

  4. UNU Monitor

    Microsoft Academic Search

    Juha I. Uitto

    1995-01-01

    UNU Monitor is a quarterly review of the United Nations University's (UNU) current research, publications and forthcoming projects in the area of global environmental change. This issue's Monitor features a report by Haresh C Shah UNU Visiting Scholar and Chairman of the Civil Engineering Department at Stanford University, USA, on the increase in global earthquake risk. The article also includes

  5. Multi-sensor fusion system using wavelet-based detection algorithm applied to physiological monitoring under high-G environment

    NASA Astrophysics Data System (ADS)

    Ryoo, Han Chool

    2000-06-01

    A significant problem in physiological state monitoring systems with single data channels is high rates of false alarm. In order to reduce false alarm probability, several data channels can be integrated to enhance system performance. In this work, we have investigated a sensor fusion methodology applicable to physiological state monitoring, which combines local decisions made from dispersed detectors. Difficulties in biophysical signal processing are associated with nonstationary signal patterns and individual characteristics of human physiology resulting in nonidentical observation statistics. Thus a two compartment design, a modified version of well established fusion theory in communication systems, is presented and applied to biological signal processing where we combine discrete wavelet transforms (DWT) with sensor fusion theory. The signals were decomposed in time-frequency domain by discrete wavelet transform (DWT) to capture localized transient features. Local decisions by wavelet power analysis are followed by global decisions at the data fusion center operating under an optimization criterion, i.e., minimum error criterion (MEC). We used three signals acquired from human volunteers exposed to high-G forces at the human centrifuge/dynamic flight simulator facility in Warminster, PA. The subjects performed anti-G straining maneuvers to protect them from the adverse effects of high-G forces. These maneuvers require muscular tensing and altered breathing patterns. We attempted to determine the subject's state by detecting the presence or absence of the voluntary anti-G straining maneuvers (AGSM). During the exposure to high G force the respiratory patterns, blood pressure and electroencephalogram (EEG) were measured to determine changes in the subject's state. Experimental results show that the probability of false alarm under MEC can be significantly reduced by applying the same rule found at local thresholds to all subjects, and MEC can be employed as a robust system to the case of defective/jammed local sensors. This implies the feasibility of our system for physiological state monitoring under a unifying criterion by biological information fusion, and provides significant guidance for algorithm development.

  6. Distributed smart device for monitoring, control and management of electric loads in domotic environments.

    PubMed

    Morales, Ricardo; Badesa, Francisco J; García-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose María

    2012-01-01

    This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket) has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron) used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753) to measure the consumption of electrical energy and then to transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600) has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user's program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device. PMID:22778581

  7. Distributed Smart Device for Monitoring, Control and Management of Electric Loads in Domotic Environments

    PubMed Central

    Morales, Ricardo; Badesa, Francisco J.; García-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose María

    2012-01-01

    This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket) has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron) used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753) to measure the consumption of electrical energy and then to transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600) has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user's program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device. PMID:22778581

  8. Evaluating a radiation monitor for mixed-field environments based on SRAM technology

    NASA Astrophysics Data System (ADS)

    Tsiligiannis, G.; Dilillo, L.; Bosio, A.; Girard, P.; Pravossoudovitch, S.; Todri, A.; Virazel, A.; Mekki, J.; Brugger, M.; Wrobel, F.; Saigne, F.

    2014-05-01

    Instruments operating in particle accelerators and colliders are exposed to radiations that are composed of particles of different types and energies. Several of these instruments often embed devices that are not hardened against radiation effects. Thus, there is a strong need for monitoring the levels of radiation inside the mixed-field radiation areas, throughout different positions. Different metrics exist for measuring the radiation damage induced to electronic devices, such as the Total Ionizing Dose (TID), the Displacement Damage (DD) and of course the fluence of particles for estimating the error rates of the electronic devices among other applications. In this paper, we propose an SRAM based monitor, that is used to define the fluence of High Energy Hadrons (HEH) by detecting Single Event Upsets in the memory array. We evaluated the device by testing it inside the H4IRRAD area of CERN, a test area that reproduces the radiation conditions inside the Large Hadron Collider (LHC) tunnel and its shielded areas. By using stability estimation methods and presenting experimental data, we prove that this device is proper to be used for such a purpose.

  9. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    SciTech Connect

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  10. MERCATOR-Ocean monitoring and forecasting : a 4D vision of the global ocean. Data policy and applications.

    NASA Astrophysics Data System (ADS)

    Toumazou, V.; Nouel, L.; Sureau, J.; Greiner, E.; Landes, V.; Dombrowsky, E.; Charon, I.

    2003-12-01

    Mercator Ocean is a public interest grouping formed in Toulouse in early 2002 by six major players in the French oceanography community: the space agency CNES, the scientific research centre CNRS, IFREMER (the institute of marine research and exploration), the development research institute IRD, the Météo France weather service, and SHOM (the French Navy's hydrography & oceanography department). In 1995, these same organizations gave themselves seven years to achieve a challenging objective: to conceive, develop and implement France's first operational oceanography system. The unique system would be capable of describing, analysing and predicting conditions at the ocean surface and subsurface in real time, anytime, anywhere in the world, even in the most inhospitable seas. That objective was met on 17 January 2001 with the release of the first Mercator ocean bulletin, providing a two-week forecast for the entire North Atlantic. Two thousands new forecast charts are now added to the MERCATOR bulletin every week. Building on these successes, a dedicated operational oceanography team, Mercator Ocean, was set up in 2002. Mercator Ocean's mission is to deliver incremental improvements in the service provided by this new operational oceanography capability by increasing the resolution and the geographic coverage of the models used. The new high-resolution model that is now on line offers 6 km grid resolution, and the first models offering global ocean coverage will be implemented late 2003. Over the next four years, Mercator Ocean also plans to establish a European Operational Oceanography Centre in Toulouse. Objective 1. Develop an operational oceanography system using three-dimensional simulation and a high-resolution primitive-equation model capable of assimilating satellite data (from the Jason altimetry satellite in particular) and in-situ ocean observation data (particularly those gathered by the CORIOLIS centre). 2. Support applications for commercial shipping and naval forces, promote sustainable stewardship of the world's oceans, oceanographic research, safety at sea, environmental monitoring and conservation, and further knowledge of the ocean's role in climatic change. 3. Contribute to the international GODAE initiative (Global Ocean Data Assimilation Experiment) through routine real-time analysis and forecasting of global ocean conditions. Our poster describes our data distribution policy and some of our major recent applications : Ocean racing, Fishing, Oil spill and Off-shore oil exploration.

  11. Earth Radiation Budget Experiment (ERBE) Data Sets for Global Environment and Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Bess, T. Dale; Carlson, Ann B.; Denn, Fredrick M.

    1997-01-01

    For a number of years there has been considerable interest in the earth's radiation budget (ERB) or energy balance, and entails making the best measurements possible of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation. ERB data are fundamental to the development of realistic climate models and studying natural and anthropogenic perturbations of the climate. Much of the interest and investigations in the earth's energy balance predated the age of earth-orbiting satellites (Hunt et al., 1986). Beginning in the mid 1960's earth-orbiting satellites began to play an important role in making measurements of the earth's radiation flux although much effort had gone into measuring ERB parameters prior to 1960 (House et al., 1986). Beginning in 1974 and extending until the present time, three different satellite experiments (not all operating at the same time) have been making radiation budget measurements almost continually in time. Two of the experiments were totally dedicated to making radiation budget measurements of the earth, and the other experiment flown on NOAA sun-synchronous AVHRR weather satellites produced radiation budget parameters as a by-product. The heat budget data from the AVHRR satellites began collecting data in June 1974 and have operated almost continuously for 23 years producing valuable data for long term climate monitoring.

  12. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2008-01-01

    Observations of the Earth from space over the past 30 years has enabled an increasingly detailed view of our Earth's atmosphere, land, oceans, and cryosphere, and its many alterations over time. With the advent of improvements in technology, together with increased understanding of the physical principles of remote sensing, it is now possible to routinely observe the global distribution of atmospheric constituents, including both cloud and aerosol optical properties, land surface reflectance, sea ice and glaciers, and numerous properties of the world's oceans. This talk will review the current status of recent NASA Earth observing missions, and summarize key findings. These missions include EOS missions such as Landsat 7, QuikScat, Terra, Jason-1, Aqua, ICESat, SORCE, and Aura, as well as Earth probe missions such as TRMM and SeaWiFS. Recent findings from Cloud- Sat and CALIPSO from the Earth System Science Pathfinder program will also be summarized, if time permits. Due to its wide utilization by the Earth science community, both in the US and abroad, special emphasis will be placed on the Moderate Resolution Imaging Spectroradiometer (MODIS), developed by NASA and launched onboard the Terra spacecraft in 1999 and the Aqua spacecraft in 2002. As the quintessential instrument of the Earth Observing System, it is widely used for studies of the oceans, land, and atmosphere, and its lengthening time series of Earth observations is finding utilization in many communities for both climate, weather, and applications use.

  13. Operational Global Deterministic and Ensemble Wave Prediction Systems at Environment Canada

    NASA Astrophysics Data System (ADS)

    Bernier, Natacha; Peel, Syd; Bélanger, Jean-Marc; Roch, Michel; Lépine, Mario; Pellerin, Pierre; Henrique Alves, José; Tolman, Hendrik

    2015-04-01

    Canada's new global deterministic and ensemble wave prediction systems are presented together with an evaluation of their performance over a 5 month hindcast. Particular attention is paid to the Arctic Ocean where accurate forecasts are crucial for maintaining safe activities such as drilling, and vessel operation. The wave prediction systems are based on WAVEWATCHIII and are operated at grid spacings of 1/4° (deterministic) and 1/2 ° (ensemble). Both systems are run twice daily with lead times of 120h (5 days) for the deterministic systems and 240h (10 days) for the ensemble system. The wave prediction systems will be shown to have skill in forecasting significant wave height and peak period over the future several days. Beyond lead times of 120h, deterministic forecasts are extended using ensembles of wave forecasts to generate probabilistic forecasts for long-range events. New displays will be used to summarize the wealth of information generated by ensembles into depictions that could help support early warning systems.

  14. GIS-project: geodynamic globe for global monitoring of geological processes

    NASA Astrophysics Data System (ADS)

    Ryakhovsky, V.; Rundquist, D.; Gatinsky, Yu.; Chesalova, E.

    2003-04-01

    A multilayer geodynamic globe at the scale 1:10,000,000 was created at the end of the nineties in the GIS Center of the Vernadsky Museum. A special soft-and-hardware complex was elaborated for its visualization with a set of multitarget object directed databases. The globe includes separate thematic covers represented by digital sets of spatial geological, geochemical, and geophysical information (maps, schemes, profiles, stratigraphic columns, arranged databases etc.). At present the largest databases included in the globe program are connected with petrochemical and isotopic data on magmatic rocks of the World Ocean and with the large and supperlarge mineral deposits. Software by the Environmental Scientific Research Institute (ESRI), USA as well as ArcScan vectrorizator were used for covers digitizing and database adaptation (ARC/INFO 7.0, 8.0). All layers of the geoinformational project were obtained by scanning of separate objects and their transfer to the real geographic co-ordinates of an equiintermediate conic projection. Then the covers were projected on plane degree-system geographic co-ordinates. Some attributive databases were formed for each thematic layer, and in the last stage all covers were combined into the single information system. Separate digital covers represent mathematical descriptions of geological objects and relations between them, such as Earth's altimetry, active fault systems, seismicity etc. Some grounds of the cartographic generalization were taken into consideration in time of covers compilation with projection and co-ordinate systems precisely answered a given scale. The globe allows us to carry out in the interactive regime the formation of coordinated with each other object-oriented databases and thematic covers directly connected with them. They can be spread for all the Earth and the near-Earth space, and for the most well known parts of divergent and convergent boundaries of the lithosphere plates. Such covers and time series reflect in diagram form a total combination and dynamics of data on the geological structure, geophysical fields, seismicity, geomagnetism, composition of rock complexes, and metalloge-ny of different areas on the Earth's surface. They give us possibility to scale, detail, and develop 3D spatial visualization. Information filling the covers could be replenished as in the existing so in newly formed databases with new data. The integrated analyses of the data allows us more precisely to define our ideas on regularities in development of lithosphere and mantle unhomogeneities using some original technologies. It also enables us to work out 3D digital models for geodynamic development of tectonic zones in convergent and divergent plate boundaries with the purpose of integrated monitoring of mineral resources and establishing correlation between seismicity, magmatic activity, and metallogeny in time-spatial co-ordinates. The created multifold geoinformation system gives a chance to execute an integral analyses of geoinformation flows in the interactive regime and, in particular, to establish some regularities in the time-spatial distribution and dynamics of main structural units in the lithosphere, as well as illuminate the connection between stages of their development and epochs of large and supperlarge mineral deposit formation. Now we try to use the system for prediction of large oil and gas concentration in the main sedimentary basins. The work was supported by RFBR, (grants 93-07-14680, 96-07-89499, 99-07-90030, 00-15-98535, 02-07-90140) and MTC.

  15. Enhanced 911/Global Position System Wizard: A Telemedicine Application for the Prevention of Severe Hypoglycemia—Monitor, Alert, and Locate

    PubMed Central

    Dassau, Eyal; Jovanovi?, Lois; Doyle, Francis J.; Zisser, Howard C.

    2009-01-01

    Intensive insulin therapy has an inherent risk of hypoglycemia that can lead to loss of consciousness, cardiac arrhythmia, seizure, and death (“dead-in-bed syndrome”). This risk of hypoglycemia is a major concern for patients, families, and physicians. The need for an automated system that can alert in the event of severe hypoglycemia is evident. In engineering systems, where there is a risk of malfunction of the primary control system, alert and safety mechanisms are implemented in layers of protection. This concept has been adopted in the proposed system that integrates a hypoglycemia prediction algorithm with a global position system (GPS) locator and short message service such that the current glucose value with the rate of change (ROC) and the location of the subject can be communicated to a predefined list. Furthermore, if the system is linked to the insulin pump, it can suspend the pump or decrease the basal insulin infusion rate to prevent the pending event. The system was evaluated on clinical datasets of glucose tracings from the DexCom Seven® system. Glucose tracings were analyzed for hypoglycemia events and then a text message was broadcast to a predefined list of people who were notified with the glucose value, ROC, GPS coordinates, and a Google map of the location. In addition to providing a safety layer to a future artificial pancreas, this system also can be easily implemented in current continuous glucose monitors to help provide information and alerts to people with diabetes. PMID:20144406

  16. The Civitavecchia Coastal Environment Monitoring System (C-CEMS): an integrated approach to the study of coastal oceanographic processes

    NASA Astrophysics Data System (ADS)

    Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Bonamano, Simone; Martellucci, Riccardo; Pierattini, Alberto; Albani, Marta; Borsellino, Chiara; Zappalà, Giuseppe

    2015-04-01

    The study of the physical and biological processes of the coastal environment, characterized by high spatial and time variability, requires the adoption of multidisciplinary strategies of investigation that takes into account, not only the biotic and abiotic components of coastal marine ecosystems, but also the terrestrial, atmospheric and hydrological features linked to them. The understanding of coastal environment is fundamental to face efficiently and effectively the pollution phenomena, as expected by Marine Strategy (2008/56 EC) Directive, which is focused on the achievement of GES by 2020 in all Member States. Following these lines, the Laboratory of Experimental Oceanology and Marine Ecology (University of Tuscia) has developed a multi-platform observing network (the Civitavecchia Coastal Environment Monitoring System, C-CEMS) that operates since 2005 in the coastal marine area of Civitavecchia (northern Tyrrhenian Sea, Italy), where multiple uses (industrial, commercial and tourist activities) and high ecological values (Posidonia oceanica meadows, hard-bottom benthic communities, priority species, etc.) closely coexist. Furthermore, in the last years the Civitavecchia harbour, which is one of the main ports of Europe, has been subjected to a series of expansion works that could impact significantly on the coastal environment. The C-CEMS, implemented in the current configuration, is composed by five main modules (fixed stations, in-situ measurements and samplings, satellite observations, numerical models, GIS) which provide integrated informations to be used in different fields of the environmental research. The fixed stations system controls one weather, two water quality and two wave-buoy stations along the coast. In addition to the long term observations acquired by the fixed stations (L-TER), in situ surveys are periodically carried out for the monitoring of the physical, chemical and biological characteristics of the water column and marine sediments as well as of the benthic biota. The in situ data, integrated with satellite observations (temperature, chlorophyll a and TSM), are used to feed and validate the numerical models, which allow to analyse and forecast the dynamics of conservative and non-conservative particles under different conditions. Finally, the C-CEMS informations combined with diverse kind of datasets (fishery, land use, hydrology, orography, archeologic, naturalistic, etc) can be represented in thematic maps called Sea Uses Maps, supporting the management decisions of the stakeholders. As examples of C-CEMS applications two case studies are reported in this work: the analysis of faecal bacteria dispersion for bathing water quality assessment, and the evaluation of the effects of the dredged activities on Posidonia meadows and soft-bottom benthic communities.

  17. Global outlook on nutrition and the environment: meeting the challenges of the next millennium.

    PubMed

    Iyengar, G V; Nair, P P

    2000-04-17

    As we enter the new millennium, nearly 800 million of the World's population will remain chronically malnourished. Nearly 200 million children are moderately to severely underweight, while 70 million are severely malnourished. And those who are yet to be born will be faced with the same set of circumstances that predispose them to malnutrition and its consequences. Eradication of nutritional deficiencies among women and children on a global scale are needed to ensure improved quality of life for the next generation of citizens. Primary deficiencies in vitamin A, iron, iodine, calcium, folic acid and trace elements such as zinc are compounded by pollutants caused by human activity. Environmental lead, arsenic, mercury, and other heavy metals that enter the food chain can seriously deplete body stores of iron, vitamin C and other essential nutrients leading to decreased immune defenses, intrauterine growth retardation, impaired psycho-social faculties and other disabilities associated with malnutrition. Increased susceptibilities to communicable diseases, and those provoked by water or insect borne vectors are additional risks encountered by malnourished individuals. Migration of populations from rural to urban centers and the expansion of major metropolitan areas have had a significant and adverse impact on the quality of life of these citizens. In the next 20 years most of the growth in urban populations will be in Asia and Latin America. Urbanization and the resultant burden on limited national resources is a major contributory factor to malnutrition. There are many other lifestyle-associated disabilities such as use of tobacco (cancer) and alcoholism that require active intervention. Within the family unit, socioeconomic factors and the status of women (literacy, economic independence) are major determinants of the quality of life. In the coming century, the World will have to meet these challenges by careful planning and international cooperation. PMID:10813462

  18. Global Adaptation to a Lipid Environment Triggers the Dormancy-Related Phenotype of Mycobacterium tuberculosis

    PubMed Central

    Rodríguez, Juan G.; Hernández, Adriana C.; Helguera-Repetto, Cecilia; Aguilar Ayala, Diana; Guadarrama-Medina, Rosalina; Anzóla, Juan M.; Bustos, Jose R.; Zambrano, María M.; González-y-Merchand, Jorge

    2014-01-01

    ABSTRACT Strong evidence supports the idea that fatty acids rather than carbohydrates are the main energy source of Mycobacterium tuberculosis during infection and latency. Despite that important role, a complete scenario of the bacterium’s metabolism when lipids are the main energy source is still lacking. Here we report the development of an in vitro model to analyze adaptation of M. tuberculosis during assimilation of long-chain fatty acids as sole carbon sources. The global lipid transcriptome revealed a shift toward the glyoxylate cycle, the overexpression of main regulators whiB3, dosR, and Rv0081, and the increased expression of several genes related to reductive stress. Our evidence showed that lipid storage seems to be the selected mechanism used by M. tuberculosis to ameliorate the assumed damage of reductive stress and that concomitantly the bacilli acquired a slowed-growth and drug-tolerant phenotype, all characteristics previously associated with the dormant stage. Additionally, intergenic regions were also detected, including the unexpected upregulation of tRNAs that suggest a new role for these molecules in the acquisition of a drug-tolerant phenotype by dormant bacilli. Finally, a set of lipid signature genes for the adaptation process was also identified. This in vitro model represents a suitable condition to illustrate the participation of reductive stress in drugs’ activity against dormant bacilli, an aspect scarcely investigated to date. This approach provides a new perspective to the understanding of latent infection and suggests the participation of previously undetected molecules. PMID:24846381

  19. A Proposal for Geologic Radioactive Waste Disposal Environmental Zero-State and Subsequent Monitoring Definition - First Lessons Learned from the French Environment Observatory - 13188

    SciTech Connect

    Landais, Patrick; Leclerc, Elisabeth; Mariotti, Andre [Andra, 1-7 rue Jean Monnet, 92298 Chatenay Malabry (France)] [Andra, 1-7 rue Jean Monnet, 92298 Chatenay Malabry (France)

    2013-07-01

    Obtaining a reference state of the environment before the beginning of construction work for a geological repository is essential as it will be useful for further monitoring during operations and beyond, thus keeping a memory of the original environmental state. The area and the compartments of the biosphere to be observed and monitored as well as the choice of the markers (e.g. bio-markers, biodiversity, quality of the environment, etc.) to be followed must be carefully selected. In parallel, the choice and selection of the environmental monitoring systems (i.e. scientific and technical criteria, social requirements) will be of paramount importance for the evaluation of the perturbations that could be induced during the operational phase of the repository exploitation. This paper presents learning points of the French environment observatory located in the Meuse/Haute-Marne that has been selected for studying the feasibility of the underground disposal of high level wastes in France. (authors)

  20. Monitoring Viable Fungal and Bacterial Bioaerosol Concentrations to Identify Acceptable Levels for Common Indoor Environments 

    E-print Network

    Robertson, L. D.

    1998-01-01

    stage microbial sampler and the Andersen 10-850 two stage microbial sampler. Data obtained fiom the first stage of the Andersen 10-850 was excluded fiom the sample population. All samplers were calibrated at a flow rate of 28.3 liters per minute... average of 158 CFUlm3 is similar to indoor concentrations observed in other research (27,28). The eighteen percent (18%) value obtained in this study falls below the thirty three percent (33%) indoor/outdoor ratio recommended for indoor environments...

  1. Comparison of GOES Space Environment Monitor Data Collected During Solar Cycles 22, 23, and 24

    NASA Astrophysics Data System (ADS)

    Wilkinson, D. C.

    2014-12-01

    NOAA's Geosynchronous Operational Environmental Satellites (GOES) have been observing the environment in near-earth-space for 40 years. These observations have included solar X-rays that are a sensitive indicator of the onset of solar flares and are used for the classification of flare magnitude. Energetic particle detectors capture a spectrum of electron, proton, and alpha-particle fluxes due to both solar activity and galactic cosmic rays. Magnetometers measure the magnitude and direction of the magnetic field 6.6 earth radii above the equator. This presentation will graphically compare those observations for solar cycles 22, 23, and 24.

  2. Analysis and Description of HOLTIN Service Provision for AECG monitoring in Complex Indoor Environments

    PubMed Central

    Led, Santiago; Azpilicueta, Leire; Aguirre, Erik; de Espronceda, Miguel Martínez; Serrano, Luis; Falcone, Francisco

    2013-01-01

    In this work, a novel ambulatory ECG monitoring device developed in-house called HOLTIN is analyzed when operating in complex indoor scenarios. The HOLTIN system is described, from the technological platform level to its functional model. In addition, by using in-house 3D ray launching simulation code, the wireless channel behavior, which enables ubiquitous operation, is performed. The effect of human body presence is taken into account by a novel simplified model embedded within the 3D Ray Launching code. Simulation as well as measurement results are presented, showing good agreement. These results may aid in the adequate deployment of this novel device to automate conventional medical processes, increasing the coverage radius and optimizing energy consumption. PMID:23584122

  3. Optimising the neutron environment of Radiation Portal Monitors: a computational optimisation study

    E-print Network

    Gilbert, Mark R; Packer, Lee W

    2015-01-01

    Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model helium-3 detector system we have conducted a parameter study to identify the optimum combination of detector shielding and collimation that maximises the sensitivity of RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Fu...

  4. The Exploitation of Data from Remote and Human Sensors for Environment Monitoring in the SMAT Project

    PubMed Central

    Meo, Rosa; Roglia, Elena; Bottino, Andrea

    2012-01-01

    In this paper, we outline the functionalities of a system that integrates and controls a fleet of Unmanned Aircraft Vehicles (UAVs). UAVs have a set of payload sensors employed for territorial surveillance, whose outputs are stored in the system and analysed by the data exploitation functions at different levels. In particular, we detail the second level data exploitation function whose aim is to improve the sensors data interpretation in the post-mission activities. It is concerned with the mosaicking of the aerial images and the cartography enrichment by human sensors—the social media users. We also describe the software architecture for the development of a mash-up (the integration of information and functionalities coming from the Web) and the possibility of using human sensors in the monitoring of the territory, a field in which, traditionally, the involved sensors were only the hardware ones. PMID:23247415

  5. Monitoring restoration impacts to endemic plant communities in soil inclusions of arid environments

    USGS Publications Warehouse

    Louhaichi, Mounir; Pyke, David A.; Shaff, Scott E.; Johnson, Douglas E.

    2013-01-01

    Soil inclusions are small patches of soil with different properties than the surrounding, dominant soil. In arid areas of western North America, soil inclusions called slickspot soils are saltier than adjacent soil and support different types of native vegetation. Traditional sagebrush restoration efforts, such as using drills to plant seeds or herbicides to control invasive vegetation, may damage sensitive slickspot soil and supporting vegetation. USGS scientists David Pyke and Scott Shaff and collaborators monitored slickspot size and cover of endangered slickspot peppergrass for two years to see if they were affected by the application of the herbicide glyphosate or by a minimum-till drill in the Snake River Plain, ID. The researchers examined the use of aerial photographs versus on-the-ground measurements and concluded that slickspot sizes were not affected by these treatments. Remote sensing using aerial photographs proved a useful method for mapping slickspot soils.

  6. Intensive care window: real-time monitoring and analysis in the intensive care environment.

    PubMed

    Stylianides, Nikolas; Dikaiakos, Marios D; Gjermundrød, Harald; Panayi, George; Kyprianou, Theodoros

    2011-01-01

    This paper introduces a novel, open-source middleware framework for communication with medical devices and an application using the middleware named intensive care window (ICW). The middleware enables communication with intensive care unit bedside-installed medical devices over standard and proprietary communication protocol stacks. The ICW application facilitates the acquisition of vital signs and physiological parameters exported from patient-attached medical devices and sensors. Moreover, ICW provides runtime and post-analysis procedures for data annotation, data visualization, data query, and analysis. The ICW application can be deployed as a stand-alone solution or in conjunction with existing clinical information systems providing a holistic solution to inpatient medical condition monitoring, early diagnosis, and prognosis. PMID:21062685

  7. Understanding the Role of Biology in the Global Environment: NASA'S Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Townsend, William F.

    1996-01-01

    NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.

  8. Detection and quantification of the crayfish plague agent in natural waters: direct monitoring approach for aquatic environments.

    PubMed

    Strand, David A; Holst-Jensen, Arne; Viljugrein, Hildegunn; Edvardsen, Bente; Klaveness, Dag; Jussila, Japo; Vrålstad, Trude

    2011-05-24

    Aphanomyces astaci, a specialised parasite of North American freshwater crayfish, is the disease agent of crayfish plague that is lethal to European freshwater crayfish. The life cycle of A. astaci has been inferred from experimental laboratory studies, but less is known about its natural sustainability and ecology. To address such questions, tools for monitoring of A. astaci directly in aquatic environments are needed. Here, we present an approach for detecting and quantifying A. astaci directly from water samples using species-specific TaqMan minor groove binder real-time PCR. Samples of a 10-fold dilution series from approximately 10(4) to approximately 1 spore of A. astaci were repeatedly tested, and reliable detection down to 1 spore was demonstrated. Further, to simulate real-life samples from natural water bodies, water samples from lakes of various water qualities were spiked with spores. The results demonstrated that co-extracted humic acids inhibit detection significantly. However, use of bovine serum albumin or the TaqMan Environmental Master Mix largely removes this problem. The practical application of the approach was successfully demonstrated on real-life water samples from crayfish farms in Finland hosting infected North American signal crayfish Pacifastacus leniusculus. Direct monitoring of A. astaci from aquatic environments may find application in the management of wild noble crayfish Astacus astacus stocks, improved aquaculture practices and more targeted conservation actions. The approach will further facilitate studies of A. astaci spore dynamics during plague outbreaks and in carrier crayfish populations, which will broaden our knowledge of the biology of this devastating crayfish pathogen. PMID:21797031

  9. In-Situ Monitoring of Trace Gases in a Non-Urban Environment

    SciTech Connect

    Mioduszewski, John R.; Yu, Xiao-Ying; Morris, Victor R.; Berkowitz, Carl M.; Flaherty, Julia E.

    2011-01-01

    A set of commercial instruments measuring carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), and nitrogen oxides [nitric oxide (NO), nitrogen dioxide (NO2), and odd nitrogens (NOX)] was integrated and deployed in a non–urban environment. The deployment occurred between July 2, 2007 and August 7, 2007 in Richland, WA. The mixing ratios of all species were lower than in most rural–suburban environments, and strong diurnal patterns were observed. NO2 was depleted by photochemically formed ozone during the day and replenished at night as ozone was destroyed. The highest ozone concentration during these episodes was 45 ppb. The overall average was 15 ppb with readings approaching near zero at times. This observation is low compared to average daytime summer readings of 60–80 ppb in highly populated and industrialized urban areas in the Pacific Northwest region. Back?trajectory analysis and prevailing weather conditions both indicated that much of the ozone was transported locally or was produced in–situ. Analysis of SO2 as a tracer for O3 advection further indicated lack of long–range regional transport of pollutants to Richland. We also present results of analysis of high ozone episodes and comparisons relative to other areas in the Pacific Northwest region. These results provide a useful sample data set to study the historical record of air quality in rural Eastern Washington.

  10. Increased potential to monitor water quality in the near-shore environment with Landsat's next-generation satellite

    NASA Astrophysics Data System (ADS)

    Gerace, Aaron D.; Schott, John R.; Nevins, Robert

    2013-01-01

    The Operational Land Imager (OLI) is a new sensor developed by the joint USGS-NASA Landsat Data Continuity Mission that should become a valuable tool for studying inland and coastal waters. With upgrades to spectral coverage, 12-bit quantization, and increased signal-to-noise due to its new push-broom design, OLI exhibits the potential to become the first Landsat sensor with the radiometric resolution necessary for retrieval of the three primary constituents in Case 2 waters: chlorophyll, suspended materials, and colored-dissolved organic matter. Considering its traditional 30-m spatial resolution, this next-generation Landsat satellite will be especially useful for monitoring the near-shore environment. This work presents the relevant sensor parameters and results of experiments designed to determine if OLI will have the radiometric sensitivity necessary for water-based research. An OLI sensor model is developed, and its ability to retrieve water constituents from simulated data is compared with that of existing sensors. Results indicate that when atmospheric effects are properly accounted for, OLI introduces retrieval errors of less than 11% of the expected observable range for all three constituents. Furthermore, by spatially averaging a few OLI pixels, noise can be reduced to the Medium Resolution Imaging Spectrometer levels, making this next Landsat instrument an exciting option for monitoring inland and coastal waters.

  11. Investigating the Martian Environment with the Mars Global Surveyor Thermal Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Roush, T. L.

    1999-01-01

    The Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor (MGS) is being used to investigate the surface and atmosphere of Mars and the martian moons Phobos and Deimos. As such, it builds upon infrared observations obtained by previous spacecraft, e.g.. Mariner 9 and Viking Orbiters. The objectives of the TES experiment are: (1) determine and map surface minerals. rocks. and ices; (2) study the atmospheric dust composition. particle size, and spatial and temporal distribution; (3) investigate condensate clouds, CO2 and H2O, location. temperature, and height; (4) investigate polar cap deposits, e.g., growth, retreat, and energy balance; (5) measure the thermo-physical properties of surface materials; and (6) characterize the atmospheric structure and dynamics. The TES instrument is based upon a Michelson interferometer and collects data in the 1700-200 per cm region (about 6-50 micron at 5 or 10 per cm resolution. There are also broad-band bolometric (4.5100 microns and solar reflectance (0.3-2.7 microns) channels. The TES was designed to have a noise equivalent spectral radiance of 1.2 x l0(exp -8) per W per square cm per sr per cm corresponding to a signal-to-noise ratio of 490 at 1000 per cm (10 mm) for a 270 K scene and preflight data suggest a radiometric accuracy of about 1.2 x 10(exp -8) per W per square cm per sr per cm. In-flight observations indicate a small systematic calibration offset of about 1.2 x 10(exp -7) per W per square cm per sr per cm is present in the TES data. MGS achieved Mars orbital insertion September 11, 1997, and entered the initial aerobraking phase. MGS should have reached a circular orbit by early 1998. However, structural damage to one solar panel occurred during its deployment in the cruise phase and ultimately required an assessment of the extent of the damage and a much slower aerobraking period. This has delayed reaching the final circular orbit until March 1999. TES and the other MGS science instruments began operating just after orbital insertion and continued to obtain data until November 1998 when the TES was turned off to reduce power consumption on the spacecraft. TES data obtained during orbits 2 to 53 have previously been published and clearly illustrate the variety of scientific questions that can be addressed with them.

  12. The fascinating side of dirt: Soil and the global environment course

    NASA Astrophysics Data System (ADS)

    Grand, S.; Krzic, M.; Crowley, C.; Lascu, G.; Rosado, J.

    2012-04-01

    Soil has recently been attracting some renewed public attention due to its inextricable link to current environmental challenges such as climate change, food security and water resource protection. It is increasingly acknowledged that the world's future will require a better understanding of soil science. Yet enrolment in soil related programs at universities in North America and around the world has been declining. One of the proposed causes for this drop is the tendency for soil science education to emphasize the agricultural side of soil science, while our increasingly urban and environmentally conscious student population is more interested in environmental sciences. To address this issue, in 2011 we created an on-line, first-year soil science course designed specifically to communicate the significance of soil science to global environmental questions. We propose that this type of course is an effective way to help increase interest in higher level soil courses and reverse the downward trend in enrolments. The course content was centered on prominent environmental issues, which were used to introduce basic concepts of soil science. Course materials emphasized integration with other natural resources disciplines such as ecology, biogeochemistry and hydrology. The online format allowed for a seamless integration of multimedia components and web content into course materials, and is believed to be appealing to technologically savvy new generations of students. Online discussion boards were extensively used to maintain strong student engagement in the course. Discussion topics were based on soil-related news stories that helped demonstrate the relevance of soils to society and illustrate the complex and often controversial nature of environmental issues. Students also made significant use of an online bulletin board to post information about environmental events and share news stories related to the course. This course was offered for the first time in term 1 of the 2011/12 academic year. Preliminary student feedback was very positive. In the presentation, we will evaluate the overall course performance in generating enthusiasm for soil. We will also present the lesson learned, particularly regarding facilitating student's transition from this introductory course to more quantitative soil science courses.

  13. The fate of microcystins in the environment and challenges for monitoring.

    PubMed

    Schmidt, Justine R; Wilhelm, Steven W; Boyer, Gregory L

    2014-01-01

    Microcystins are secondary metabolites produced by cyanobacteria that act as hepatotoxins in higher organisms. These toxins can be altered through abiotic processes, such as photodegradation and adsorption, as well as through biological processes via metabolism and bacterial degradation. Some species of bacteria can degrade microcystins, and many other organisms metabolize microcystins into a series of conjugated products. There are toxicokinetic models used to examine microcystin uptake and elimination, which can be difficult to compare due to differences in compartmentalization and speciation. Metabolites of microcystins are formed as a detoxification mechanism, and little is known about how quickly these metabolites are formed. In summary, microcystins can undergo abiotic and biotic processes that alter the toxicity and structure of the microcystin molecule. The environmental impact and toxicity of these alterations and the metabolism of microcystins remains uncertain, making it difficult to establish guidelines for human health. Here, we present the current state of knowledge regarding the alterations microcystins can undergo in the environment. PMID:25514094

  14. Current Measurements and Overwash Monitoring Using Tilt Current Meters in Three Coastal Environments

    NASA Astrophysics Data System (ADS)

    Lowell, N. S.; Sherwood, C. R.; Decarlo, T. M.; Grant, J. R.

    2014-12-01

    Tilt Current Meters (TCMs) provide accurate, cost effective measurements of near-bottom current velocities. Many studies in coastal environments require current measurements, which are frequently made with Acoustic Doppler Profilers (ADPs). ADPs are expensive, however, and may not be suitable for locations where there is significant risk of damage, loss, or theft or where a large spatial array of measurements is required. TCMs, by contrast, are smaller, less expensive, and easier to deploy. This study tested TCMs in three sites to determine their suitability for use in research applications. TCMs are based on the drag-tilt principle, where the instrument tilts in response to current. The meter consists of a buoyant float with an onboard accelerometer, three-axis tilt sensor, three-axis magnetometer (compass), and a data logger. Current measurements are derived by post processing the tilt and compass values and converting them to velocity using empirical calibration data. Large data-storage capacity (4 GB) and low power requirements allow long deployments (many months) at high sample rates (16 Hz). We demonstrate the utility of TCM current measurements on a reef at Dongsha Atoll in the South China Sea, and in Vineyard Sound off Cape Cod, where the TCM performance was evaluated against ADP measurements. We have also used the TCM to record waves during an overwash event on a Cape Cod barrier beach during a winter storm. The TCM recorded waves as they came through the overwash channel, and the data were in agreement with the water-level record used as a reference. These tests demonstrate that TCMs may be used in a variety of near shore environments and have the potential to significantly increase the density of meters in future studies were current measurements are required.

  15. New Archive Products and Services from the GOES-N Solar X-ray Imager and Space Environment Monitor

    NASA Astrophysics Data System (ADS)

    Wilkinson, D. C.

    2005-12-01

    The first generation Solar X-ray Imager (SXI) was launched onboard GOES-12 in 2001. The most unique aspect of the Solar X-ray Imager (SXI) data flow was that the data were transferred from the Space Environment Center (SEC) to the archive at the National Geophysical Data Center (NGDC) in real-time. The cost savings and convenience of this data handling strategy has encouraged SEC and NGDC to adopt a similar strategy to the next generation SXI to be flown onboard NOAA's GOES-N satellite in 2005. In addition, data from the GOES-N Space Environment Monitor (SEM) will also be delivered to NGDC in real-time, which will provide the opportunity to produce new data products that combine various data types. For example, the standard SXI movie products can be combined with whole disk X-ray Sensor (XRS) data, providing a means to visualize the relationship between the classic XRS trace and the X-ray image. NGDC is encouraging users of SXI and SEM to propose other data products that they would like to see produce from SXI and SEM in real-time.

  16. The shuttle activation monitor; A system for direct comparison of gamma-ray detector materials in a space environment

    SciTech Connect

    Haskins, P.S.; McKisson, J.E.; Ely, D.W.; Weisenberger, A.G. (Florida Univ., Gainesville, FL (USA)); Piercey, R.B. (Mississippi State Univ., Mississippi State, MS (USA)); Dyer, C.S. (Royal Aerospace Establishment (GB)); Ramayya, A.V. (Vanderbilt Univ., Nashville, TN (USA)); Camp, D.E. (Lawrence Livermore National Lab., CA (USA))

    1990-06-01

    An experiment system is described which was used to compare gamma-ray detector materials in a space environment. Two 3 in. {times} 3 in. scintillator detectors, NaI and BGO, were flown on the Space Shuttle Columbia August 8--13, 1989 as part of the shuttle activation monitor (SAM) experiment. The goals of this experiment were to compare the performance of the two detector materials in the same environment and to measure the variations in dynamic radiation background as a function of geomagnetic coordinates, amount of shielding, and type of detector material. Twenty-four hours of data in five-minute time bins were recorded with each detector in both high-shielding and low-shielding locations in the Orbiter middeck. The high-inclination orbit (57{degrees}, 160 nautical miles) provided exposure to the trapped charged particles in the South Atlantic Anomaly as well as the electrons in the polar regions. The system used specially adapted off-the-shelf hardware for data acquisition and storage. The multichannel analyzer was a commercially available unit with added circuitry to support an active particle shield. Data during the flight were stored using a cassette tape recorder. A preliminary look at some of the data from the first flight is presented.

  17. Monitoring occurrence and persistence of Listeria monocytogenes in foods and food processing environments in the Republic of Ireland

    PubMed Central

    Leong, Dara; Alvarez-Ordóñez, Avelino; Jordan, Kieran

    2014-01-01

    Although rates of listeriosis are low in comparison to other foodborne pathogenic illness, listeriosis poses a significant risk to human health as the invasive form can have a mortality rate as high as 30%. Food processors, especially those who produce ready-to-eat (RTE) products, need to be vigilant against Listeria monocytogenes, the causative pathogen of listeriosis, and as such, the occurrence of L. monocytogenes in food and in the food processing environment needs to be carefully monitored. To examine the prevalence and patterns of contamination in food processing facilities in Ireland, 48 food processors submitted 8 samples every 2 months from March 2013 to March 2014 to be analyzed for L. monocytogenes. No positive samples were detected at 38% of the processing facilities tested. Isolates found at the remaining 62% of facilities were characterized by serotyping and Pulsed Field Gel Electrophoresis (PFGE). A general L. monocytogenes prevalence of 4.6% was seen in all samples analyzed with similar rates seen in food and environmental samples. Differences in prevalence were seen across different food processors, food sectors, sampling months etc. and PFGE analysis allowed for the examination of contamination patterns and for the identification of several persistent strains. Seven of the food processing facilities tested showed contamination with persistent strains and evidence of bacterial transfer from the processing environment to food (the same pulsotype found in both) was seen in four of the food processing facilities tested. PMID:25191314

  18. Optimising the neutron environment of Radiation Portal Monitors: a computational optimisation study

    E-print Network

    Mark R. Gilbert; Zamir Ghani; Lee W. Packer

    2015-03-25

    Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model helium-3 detector system we have conducted a parameter study to identify the optimum combination of detector shielding and collimation that maximises the sensitivity of RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Furthermore, optimisation of the air gap surrounding the helium tubes also improves detector efficiency.

  19. Monitoring and Characterization of Miscellaneous Electrical Loads in a Large Retail Environment

    SciTech Connect

    Gentile-Polese, L.; Frank, S.; Sheppy, M.; Lobato, C.; Rader, E.; Smith, J.; Long, N.

    2014-02-01

    Buildings account for 40% of primary energy consumption in the United States (residential 22%; commercial 18%). Most (70% residential and 79% commercial) is used as electricity. Thus, almost 30% of U.S. primary energy is used to provide electricity to buildings. Plug loads play an increasingly critical role in reducing energy use in new buildings (because of their increased efficiency requirements), and in existing buildings (as a significant energy savings opportunity). If all installed commercial building miscellaneous electrical loads (CMELs) were replaced with energy-efficient equipment, a potential annual energy saving of 175 TWh, or 35% of the 504 TWh annual energy use devoted to MELs, could be achieved. This energy saving is equivalent to the annual energy production of 14 average-sized nuclear power plants. To meet DOE's long-term goals of reducing commercial building energy use and carbon emissions, the energy efficiency community must better understand the components and drivers of CMEL energy use, and develop effective reduction strategies. These goals can be facilitated through improved data collection and monitoring methodologies, and evaluation of CMELs energy-saving techniques.

  20. Radon and thoron monitoring in the environment of Kumaun Himalayas: survey and outcomes.

    PubMed

    Ramola, R C; Negi, M S; Choubey, V M

    2005-01-01

    Monitoring of radon, thoron and their daughter products was carried out in houses of Kumaun Himalaya, India using LR-115 plastic track detectors. The measurements were made in residential houses from June 1999 to May 2000 at a height of 2.5 m from ground level using a twin chamber radon dosimeter. The twin chamber radon dosimeter can record the values of radon, thoron and their decay products separately. Maximum and minimum indoor radon and thoron concentrations were evaluated and activity concentrations of radon and thoron daughters were estimated. The resulting dose rates due to radon, thoron and their decay products varied from 0.04 to 1.89 microSv/h. A detailed analysis of the distribution of radon, thoron and their decay products inside the house is also reported. The observed dose rates inside the houses of Kumaun Himalaya were found to be lower than the ICRP recommended value of 200 Bq/m3 and thus are within safe limits. PMID:15571877