Science.gov

Sample records for global expression response

  1. Global gene expression response to telomerase in bovine adrenocortical cells

    SciTech Connect

    Perrault, Steven D.; Hornsby, Peter J.; Betts, Dean H. . E-mail: bettsd@uoguelph.ca

    2005-09-30

    The infinite proliferative capability of most immortalized cells is dependent upon the presence of the enzyme telomerase and its ability to maintain telomere length and structure. However, telomerase may be involved in a greater system than telomere length regulation, as recent evidence has shown it capable of increasing wound healing in vivo, and improving cellular proliferation rate and survival from apoptosis in vitro. Here, we describe the global gene expression response to ectopic telomerase expression in an in vitro bovine adrenocortical cell model. Telomerase-immortalized cells showed an increased ability for proliferation and survival in minimal essential medium above cells transgenic for GFP. cDNA microarray analyses revealed an altered cell state indicative of increased adrenocortical cell proliferation regulated by the IGF2 pathway and alterations in members of the TGF-B family. As well, we identified alterations in genes associated with development and wound healing that support a model that high telomerase expression induces a highly adaptable, progenitor-like state.

  2. Global gene expression analysis of chicken caecal response to Campylobacter jejuni.

    PubMed

    Shaughnessy, Ronan G; Meade, Kieran G; McGivney, Beatrice A; Allan, Brenda; O'Farrelly, Cliona

    2011-07-15

    Campylobacter jejuni colonises the caecum of more than 90% of commercial chickens. Even though colonisation is asymptomatic, we hypothesised that it is mediated by activation of several biological pathways. We therefore used chicken-specific 20K oligonucleotide microarrays to examine global gene expression in C. jejuni-challenged birds. Microarray results demonstrate small but significant fold-changes in expression of 270 genes 20 h post-challenge, corresponding to a wide range of biological processes including cell growth, nutrient metabolism and immunological activity. Expression of NOX1 (2.3-fold) and VCAM1 (1.5-fold) were significantly increased in colonised birds (P<0.05), indicating oxidative burst and endothelial cell activation, respectively. Microarray results, supplemented by qRT-PCR analyses demonstrated increased TOPK (1.9-fold), IL17 (3.6-fold), IL21 (2.1-fold), IL7R (4-fold) and CTLA4 (2.5-fold) gene expression (P<0.05), which was suggestive of T cell mediated activity. Combined these results suggest that C. jejuni has nominal effects on global caecal gene expression in the chicken but significant changes detected are suggestive of a protective intestinal T cell response. PMID:21605915

  3. Gene expression profiling--Opening the black box of plant ecosystem responses to global change

    SciTech Connect

    Leakey, A.D.B.; Ainsworth, E.A.; Bernard, S.M.; Markelz, R.J.C.; Ort, D.R.; Placella, S.A.P.; Rogers, A.; Smith, M.D.; Sudderth, E.A.; Weston, D.J.; Wullschleger, S.D.; Yuan, S.

    2009-11-01

    The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Since the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the 'black box' of unknown mechanism. Various tools and approaches are available for assessing gene expression in model and non-model species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context.

  4. Gene Expression Profiling - Opening the Black Box of Plant Ecosystem Responses to Global Change

    SciTech Connect

    Ainsworth, Elizabeth A.; Bernard, Stephanie M.; Markelz, R.J. Cody; Ort, Donald R.; Placella, Sarah A.; Rogers, Alistair; Smith, Melinda D; Sudderth, Erika A.; Weston, David; Wullschleger, Stan D; Yuan, Shenghua

    2009-01-01

    The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Since the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the black box of unknown mechanism. Various tools and approaches are available for assessing gene expression in model and non-model species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context.

  5. Global gene expression responses to waterlogging in leaves of rape seedlings.

    PubMed

    Lee, Yong-Hwa; Kim, Kwang-Soo; Jang, Young-Seok; Hwang, Ji-Hye; Lee, Dong-Hee; Choi, In-Hu

    2014-02-01

    Soil waterlogging is a serious constraint to crop production. We investigated the physiological responses of rape (Brassica napus L.) seedlings to waterlogging stress and analyzed global gene transcription responses in the aerial leaves of waterlogged rape seedlings. Seedlings of 'Tammi' and 'Youngsan' cultivars were subjected to waterlogging for 3 and 6 days and recovery for 5 days. Waterlogging stress caused a significant decrease in leaf chlorophyll content and premature senescence of the leaves. Maximal quantum efficiency of PSII (F(v)/F(m)) decreased in the waterlogged seedlings compared with the control plants. To evaluate whether the observed physiological changes in the leaves are associated with the differential regulation of gene expression in response to waterlogging stress, we analyzed the global transcriptional profile of leaves of 'Tammi' seedlings that were exposed to waterlogging for a short period (36 and 72 h). SolexaQA RNA-seq analysis revealed that a total of 4,484 contigs (8.5 %) of all contigs assayed (52,747) showed a twofold change in expression after 36 h of the start of waterlogging and 9,659 contigs (18.3 %) showed a twofold change after 72 h. Major genes involved in leaf photosynthesis, including light reactions and carbon-fixing reactions, were downregulated, while a number of genes involved in the scavenging of reactive oxygen species, degradation (proteins, starch, and lipids), premature senescence, and abiotic stress tolerance were upregulated. Transcriptome analysis data suggested that the aerial leaves of waterlogged rape seedlings respond to hypoxia by regulating the expression of diverse genes in the leaves. PMID:24384821

  6. The global gene expression response of Escherichia coli to L-phenylalanine.

    PubMed

    Polen, T; Krämer, M; Bongaerts, J; Wubbolts, M; Wendisch, V F

    2005-02-01

    We investigated the global gene expression changes of Escherichia coli due to the presence of different concentrations of phenylalanine or shikimate in the growth medium. The response to 0.5 g l(-1) phenylalanine primarily reflected a perturbed aromatic amino acid metabolism, in particular due to TyrR-mediated regulation. The addition of 5g l(-1) phenylalanine reduced the growth rate by half and elicited a great number of likely indirect effects on genes regulated in response to changed pH, nitrogen or carbon availability. Consistent with the observed gene expression changes, supplementation with shikimate, tyrosine and tryptophan relieved growth inhibition by phenylalanine. In contrast to the wild-type, a tyrR disruption strain showed increased expression of pckA and of tktB in the presence of phenylalanine, but its growth was not affected by phenylalanine at the concentrations tested. The absence of growth inhibition by phenylalanine suggested that at high phenylalanine concentrations TyrR-defective strains might perform better in phenylalanine production. PMID:15639085

  7. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    PubMed

    Dong, Xiangshu; Yi, Hankuil; Lee, Jeongyeo; Nou, Ill-Sup; Han, Ching-Tack; Hur, Yoonkang

    2015-01-01

    Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT): 5.2% (2,142 genes) in Chiifu and 3.7% (1,535 genes) in Kenshin. The most enriched GO (Gene Ontology) items included 'response to heat', 'response to reactive oxygen species (ROS)', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps) and heat shock factor (Hsf)-like proteins such as HsfB2A (Bra029292), whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853), protein kinases, and phosphatases. Among heat stress (HS) marker genes in Arabidopsis, only exportin 1A (XPO1A) (Bra008580, Bra006382) can be applied to B. rapa for basal thermotolerance (BT) and short-term acquired thermotolerance (SAT) gene. CYP707A3 (Bra025083, Bra021965), which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF) genes, including DREB2A (Bra005852), were involved in HS tolerance in both lines, Bra024224 (MYB41) and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1]) were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  8. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa

    PubMed Central

    Dong, Xiangshu; Yi, Hankuil; Lee, Jeongyeo; Nou, Ill-Sup; Han, Ching-Tack; Hur, Yoonkang

    2015-01-01

    Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5– 4 h at 45°C (high temperature, HT): 5.2% (2,142 genes) in Chiifu and 3.7% (1,535 genes) in Kenshin. The most enriched GO (Gene Ontology) items included ‘response to heat’, ‘response to reactive oxygen species (ROS)’, ‘response to temperature stimulus’, ‘response to abiotic stimulus’, and ‘MAPKKK cascade’. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps) and heat shock factor (Hsf)-like proteins such as HsfB2A (Bra029292), whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853), protein kinases, and phosphatases. Among heat stress (HS) marker genes in Arabidopsis, only exportin 1A (XPO1A) (Bra008580, Bra006382) can be applied to B. rapa for basal thermotolerance (BT) and short-term acquired thermotolerance (SAT) gene. CYP707A3 (Bra025083, Bra021965), which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF) genes, including DREB2A (Bra005852), were involved in HS tolerance in both lines, Bra024224 (MYB41) and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1]) were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data

  9. Microarray Analysis of Global Gene Expression of V. vinifera in Response to Xylella fastidiosa Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we analyzed gene expression profiles of Pierce’s Disease (PD) resistant and susceptible genotypes of V. arizonica hybrids in response to infection by X. fastidiosa (Xf). Here we report the gene expression profile of the PD susceptible European grapevine (V. vinifera) in response to Xf...

  10. Global Analysis of Posttranscriptional Gene Expression in Response to Sodium Arsenite

    PubMed Central

    Qiu, Lian-Qun; Abey, Sarah; Harris, Shawn; Shah, Ruchir; Gerrish, Kevin E.

    2014-01-01

    Background: Inorganic arsenic species are potent environmental toxins and causes of numerous health problems. Most studies have assumed that arsenic-induced changes in mRNA levels result from effects on gene transcription. Objectives: We evaluated the prevalence of changes in mRNA stability in response to sodium arsenite in human fibroblasts. Methods: We used microarray analyses to determine changes in steady-state mRNA levels and mRNA decay rates following 24-hr exposure to noncytotoxic concentrations of sodium arsenite, and we confirmed some of these changes using real-time reverse-transcription polymerase chain reaction (RT-PCR). Results: In arsenite-exposed cells, 186 probe set–identified transcripts were significantly increased and 167 were significantly decreased. When decay rates were analyzed after actinomycin D treatment, only 4,992 (9.1%) of probe set–identified transcripts decayed by > 25% after 4 hr. Of these, 70 were among the 353 whose steady-state levels were altered by arsenite, and of these, only 4 exhibited significantly different decay rates between arsenite and control treatment. Real-time RT-PCR confirmed a major, significant arsenite-induced stabilization of the mRNA encoding δ aminolevulinate synthase 1 (ALAS1), the rate-limiting enzyme in heme biosynthesis. This change presumably accounted for at least part of the 2.7-fold increase in steady-state ALAS1 mRNA levels seen after arsenite treatment. This could reflect decreases in cellular heme caused by the massive induction by arsenite of heme oxygenase mRNA (HMOX1; 68-fold increase), the rate-limiting enzyme in heme catabolism. Conclusions: We conclude that arsenite modification of mRNA stability is relatively uncommon, but in some instances can result in significant changes in gene expression. Citation: Qiu LQ, Abey S, Harris S, Shah R, Gerrish KE, Blackshear PJ. 2015. Global analysis of posttranscriptional gene expression in response to sodium arsenite. Environ Health Perspect 123:324

  11. Prospective Study of Metal Fume-Induced Responses of Global Gene Expression Profiling in Whole Blood

    PubMed Central

    Wang, Zhaoxi; Neuberg, Donna; Su, Li; Kim, Jee Young; Chen, Jiu-Chiuan; Christiani, David C.

    2008-01-01

    Metal particulate inhalation causes pulmonary and cardiovascular diseases. Our previous results showed that systemic responses to short-term occupational welding-fume exposure could be assessed by microarray analyses in whole-blood total RNA sampled before and after exposure. To expand our understanding of the duration of particulate-induced gene expression changes, we conducted a study using a similar population 1 yr after the original study and extended our observations in the postexposure period. We recruited 15 individuals with welding fume exposure and 7 nonexposed individuals. Thirteen of the 22 individuals (9 in exposed group and 4 in nonexposed group) had been monitored in the previous study. Whole-blood total RNA was analyzed at 3 time points, including baseline, immediately following exposure (approximately 5 h after baseline), and 24 h after baseline, using cDNA microarray technology. We replicated the patterns of Gene Ontology (GO) terms associated with response to stimulus, cell death, phosphorus metabolism, localization, and regulation of biological processes significantly enriched with altered genes in the nonsmoking exposed group. Most of the identified genes had opposite expression changes between the exposure and postexposure periods in nonsmoking welders. In addition, we found dose-dependent patterns that were affected by smoking status. In conclusion, short-term occupational exposure to metal particulates causes systemic responses in the peripheral blood. Furthermore, the acute particulate-induced effects on gene expression profiling were transient in nonsmoking welders, with most effects diminishing within 19 h following exposure. PMID:18951227

  12. Global regulation of gene expression in response to cysteine availability in Clostridium perfringens

    PubMed Central

    2010-01-01

    Background Cysteine has a crucial role in cellular physiology and its synthesis is tightly controlled due to its reactivity. However, little is known about the sulfur metabolism and its regulation in clostridia compared with other firmicutes. In Clostridium perfringens, the two-component system, VirR/VirS, controls the expression of the ubiG operon involved in methionine to cysteine conversion in addition to the expression of several toxin genes. The existence of links between the C. perfringens virulence regulon and sulfur metabolism prompted us to analyze this metabolism in more detail. Results We first performed a tentative reconstruction of sulfur metabolism in C. perfringens and correlated these data with the growth of strain 13 in the presence of various sulfur sources. Surprisingly, C. perfringens can convert cysteine to methionine by an atypical still uncharacterized pathway. We further compared the expression profiles of strain 13 after growth in the presence of cystine or homocysteine that corresponds to conditions of cysteine depletion. Among the 177 genes differentially expressed, we found genes involved in sulfur metabolism and controlled by premature termination of transcription via a cysteine specific T-box system (cysK-cysE, cysP1 and cysP2) or an S-box riboswitch (metK and metT). We also showed that the ubiG operon was submitted to a triple regulation by cysteine availability via a T-box system, by the VirR/VirS system via the VR-RNA and by the VirX regulatory RNA. In addition, we found that expression of pfoA (theta-toxin), nagL (one of the five genes encoding hyaluronidases) and genes involved in the maintenance of cell redox status was differentially expressed in response to cysteine availability. Finally, we showed that the expression of genes involved in [Fe-S] clusters biogenesis and of the ldh gene encoding the lactate dehydrogenase was induced during cysteine limitation. Conclusion Several key functions for the cellular physiology of this

  13. Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids

    PubMed Central

    L'Espérance, Sylvain; Bachvarova, Magdalena; Tetu, Bernard; Mes-Masson, Anne-Marie; Bachvarov, Dimcho

    2008-01-01

    Background Chemotherapy (CT) resistance in ovarian cancer (OC) is broad and encompasses diverse unrelated drugs, suggesting more than one mechanism of resistance. To better understand the molecular mechanisms controlling the immediate response of OC cells to CT exposure, we have performed gene expression profiling in spheroid cultures derived from six OC cell lines (OVCAR3, SKOV3, TOV-112, TOV-21, OV-90 and TOV-155), following treatment with 10,0 μM cisplatin, 2,5 μM paclitaxel or 5,0 μM topotecan for 72 hours. Results Exposure of OC spheroids to these CT drugs resulted in differential expression of genes associated with cell growth and proliferation, cellular assembly and organization, cell death, cell cycle control and cell signaling. Genes, functionally involved in DNA repair, DNA replication and cell cycle arrest were mostly overexpressed, while genes implicated in metabolism (especially lipid metabolism), signal transduction, immune and inflammatory response, transport, transcription regulation and protein biosynthesis, were commonly suppressed following all treatments. Cisplatin and topotecan treatments triggered similar alterations in gene and pathway expression patterns, while paclitaxel action was mainly associated with induction of genes and pathways linked to cellular assembly and organization (including numerous tubulin genes), cell death and protein synthesis. The microarray data were further confirmed by pathway and network analyses. Conclusion Most alterations in gene expression were directly related to mechanisms of the cytotoxics actions in OC spheroids. However, the induction of genes linked to mechanisms of DNA replication and repair in cisplatin- and topotecan-treated OC spheroids could be associated with immediate adaptive response to treatment. Similarly, overexpression of different tubulin genes upon exposure to paclitaxel could represent an early compensatory effect to this drug action. Finally, multicellular growth conditions that are

  14. Global Expression Profiling of Transcription Factor Genes Provides New Insights into Pathogenicity and Stress Responses in the Rice Blast Fungus

    PubMed Central

    Park, Sook-Young; Choi, Jaeyoung; Lim, Se-Eun; Lee, Gir-Won; Park, Jongsun; Kim, Yang; Kong, Sunghyung; Kim, Se Ryun; Rho, Hee-Sool; Jeon, Junhyun; Chi, Myung-Hwan; Kim, Soonok; Khang, Chang Hyun; Kang, Seogchan; Lee, Yong-Hwan

    2013-01-01

    Because most efforts to understand the molecular mechanisms underpinning fungal pathogenicity have focused on studying the function and role of individual genes, relatively little is known about how transcriptional machineries globally regulate and coordinate the expression of a large group of genes involved in pathogenesis. Using quantitative real-time PCR, we analyzed the expression patterns of 206 transcription factor (TF) genes in the rice blast fungus Magnaporthe oryzae under 32 conditions, including multiple infection-related developmental stages and various abiotic stresses. The resulting data, which are publicly available via an online platform, provided new insights into how these TFs are regulated and potentially work together to control cellular responses to a diverse array of stimuli. High degrees of differential TF expression were observed under the conditions tested. More than 50% of the 206 TF genes were up-regulated during conidiation and/or in conidia. Mutations in ten conidiation-specific TF genes caused defects in conidiation. Expression patterns in planta were similar to those under oxidative stress conditions. Mutants of in planta inducible genes not only exhibited sensitive to oxidative stress but also failed to infect rice. These experimental validations clearly demonstrated the value of TF expression patterns in predicting the function of individual TF genes. The regulatory network of TF genes revealed by this study provides a solid foundation for elucidating how M. oryzae regulates its pathogenesis, development, and stress responses. PMID:23762023

  15. Changes in global gene expression in response to chemical and genetic perturbation of chromatin structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA methylation and histone acetylation are important for controlling gene expression in all eukaryotes. Microarray analysis revealed an altered gene expression profile after treatment with the DNA methylation inhibitor 5-aza-2’ deoxyctidine (5-AC), which included the upregulation of many transposab...

  16. Gene expression profiling – opening the black box of plant ecosystem responses to global change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining...

  17. Suppressing Sorbitol Synthesis Substantially Alters the Global Expression Profile of Stress Response Genes in Apple (Malus domestica) Leaves.

    PubMed

    Wu, Ting; Wang, Yi; Zheng, Yi; Fei, Zhangjun; Dandekar, Abhaya M; Xu, Kenong; Han, Zhenhai; Cheng, Lailiang

    2015-09-01

    Sorbitol is a major product of photosynthesis in apple (Malus domestica) that is involved in carbohydrate metabolism and stress tolerance. However, little is known about how the global transcript levels in apple leaves respond to decreased sorbitol synthesis. In this study we used RNA sequencing (RNA-seq) profiling to characterize the transcriptome of leaves from transgenic lines of the apple cultivar 'Greensleeves' exhibiting suppressed expression of aldose-6-phosphate reductase (A6PR) to gain insights into sorbitol function and the consequences of decreased sorbitol synthesis on gene expression. We observed that, although the leaves of the low sorbitol transgenic lines accumulate higher levels of various primary metabolites, only very limited changes were found in the levels of transcripts associated with primary metabolism. We suggest that this is indicative of post-transcriptional and/or post-translational regulation of primary metabolite accumulation and central carbon metabolism. However, we identified significantly enriched gene ontology terms belonging to the 'stress related process' category in the antisense lines (P-value < 0.05). These include genes involved in the synthesis/degradation of abscisic acid, salicylic acid and jasmonic acid, nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance genes and ATP-binding cassette (ABC) transporter genes. This suggests that sorbitol plays a role in the responses of apple trees to abiotic and biotic stresses. PMID:26076968

  18. Global transcriptional analysis of Escherichia coli expressing IrrE, a regulator from Deinococcus radiodurans, in response to NaCl shock.

    PubMed

    Zhao, Peng; Zhou, Zhengfu; Zhang, Wei; Lin, Min; Chen, Ming; Wei, Gehong

    2015-04-01

    Improving the microbial tolerance to stresses is very important for bioprocesses. Our previous study showed that IrrE, a global regulator from the extremely radioresistant bacterium Deinococcus radiodurans, dramatically enhanced the multi-stress tolerance of Escherichia coli when expressed exogenously. However, the function of IrrE is still unclear. In this study, we used whole-genome microarray assays to profile the global gene expression of the IrrE-expressing E. coli strain MGE and the control strain MGT with or without salt shock. The analysis showed that IrrE expression led to many differentially expressed genes in E. coli, which were responsible for the transport and metabolism of trehalose and glycerol, nucleotide biosynthesis, carbon source utilization, amino acid utilization, and acid resistance, including many RpoS-dependent genes, e.g., the trehalose biosynthesis genes otsAB, the acid-resistance genes gadABC and uspB, the osmotic and oxidative stress response genes katE (response to DNA damage stimulus and stress) and osmBC (response to stress), and gadWX (which controls the transcription of pH-inducible genes). The intracellular content of trehalose and glycerol increased significantly in the IrrE-expressing strain after NaCl treatment for 0 and 60 min as determined by HPLC. These results indicated the possibility that IrrE regulates the global regulator RpoS. Interestingly, we found that although IrrE did not affect the level of the rpoS transcript, it enhanced the accumulation of the RpoS protein by increasing the expression of the antiadaptors, AppY, IraM and IraD, which inhibit RpoS degradation, suggesting that the accumulation of RpoS due to IrrE regulation is an important way to improve tolerance to salt and other stresses in E. coli. PMID:25703007

  19. Temporal regulation of global gene expression and cellular morphology in Xenopus kidney cells in response to clinorotation

    NASA Astrophysics Data System (ADS)

    Kitamoto, Junko; Fukui, Akimasa; Asashima, Makoto

    Here, we report changes gene expression and morphology of the renal epithelial cell line, A6, which was derived from Xenopus laevis adult kidney that had been induced by long-term culturing with a three-dimensional clinostat. An oligo microarray analysis on the A6 cells showed that mRNA levels for 52 out of 8091 genes were significantly altered in response to clinorotation. On day 5, there was no dramatic change in expression level, but by day 8 and day 10, either upregulation or downregulation of gene expression became evident. By day 15, the expression levels of 18 out of 52 genes had returned to the original levels, while the remaining 34 genes maintained the altered levels of expression. Quantitative analyses of gene expression by real-time PCR confirmed that changes in the mRNA levels of selected genes were found only under clinorotation and not under hypergravity (7 g) or ground control. Morphological changes including loss of dome-like structures and disorganization of both E-cadherin adherence junctions and cortical actin were also observed after 10 days of culturing with clinorotation. These results revealed that the expression of selected genes was altered specifically in A6 cells cultured under clinorotation.

  20. Analysis of Global Gene Expression in Brachypodium distachyon Reveals Extensive Network Plasticity in Response to Abiotic Stress

    PubMed Central

    Priest, Henry D.; Fox, Samuel E.; Rowley, Erik R.; Murray, Jessica R.; Michael, Todd P.; Mockler, Todd C.

    2014-01-01

    Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium. PMID:24489928

  1. Global Gene Expression Alterations as a Crucial Constituent of Human Cell Response to Low Doses of Ionizing Radiation Exposure

    PubMed Central

    Sokolov, Mykyta; Neumann, Ronald

    2015-01-01

    Exposure to ionizing radiation (IR) is inevitable to humans in real-life scenarios; the hazards of IR primarily stem from its mutagenic, carcinogenic, and cell killing ability. For many decades, extensive research has been conducted on the human cell responses to IR delivered at a low dose/low dose (LD) rate. These studies have shown that the molecular-, cellular-, and tissue-level responses are different after low doses of IR (LDIR) compared to those observed after a short-term high-dose IR exposure (HDIR). With the advent of high-throughput technologies in the late 1990s, such as DNA microarrays, changes in gene expression have also been found to be ubiquitous after LDIR. Very limited subset of genes has been shown to be consistently up-regulated by LDIR, including CDKN1A. Further research on the biological effects and mechanisms induced by IR in human cells demonstrated that the molecular and cellular processes, including transcriptional alterations, activated by LDIR are often related to protective responses and, sometimes, hormesis. Following LDIR, some distinct responses were observed, these included bystander effects, and adaptive responses. Changes in gene expression, not only at the level of mRNA, but also miRNA, have been found to crucially underlie these effects having implications for radiation protection purposes. PMID:26729107

  2. Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows

    PubMed Central

    Wathes, D. Claire; Cheng, Zhangrui; Chowdhury, Waliul; Fenwick, Mark A.; Fitzpatrick, Richard; Morris, Dermot G.; Patton, Joe; Murphy, John J.

    2009-01-01

    Most dairy cows suffer uterine microbial contamination postpartum. Persistent endometritis often develops, associated with reduced fertility. We used a model of differential feeding and milking regimes to produce cows in differing negative energy balance status in early lactation (mild or severe, MNEB or SNEB). Blood hematology was assessed preslaughter at 2 wk postpartum. RNA expression in endometrial samples was compared using bovine Affymetrix arrays. Data were mapped using Ingenuity Pathway Analysis. Circulating concentrations of IGF-I remained lower in the SNEB group, whereas blood nonesterified fatty acid and β-hydroxybutyrate concentrations were raised. White blood cell count and lymphocyte number were reduced in SNEB cows. Array analysis of endometrial samples identified 274 differentially expressed probes representing 197 recognized genes between the energy balance groups. The main canonical pathways affected related to immunological and inflammatory disease and connective tissue disorders. Inflammatory response genes with major upregulation in SNEB cows included matrix metalloproteinases, chemokines, cytokines, and calgranulins. Expression of several interferon-inducible genes including ISG20, IFIH1, MX1, and MX2 were also significantly increased in the SNEB cows. These results provide evidence that cows in SNEB were still undergoing an active uterine inflammatory response 2 wk postpartum, whereas MNEB cows had more fully recovered from their energy deficit, with their endometrium reaching a more advanced stage of repair. SNEB may therefore prevent cows from mounting an effective immune response to the microbial challenge experienced after calving, prolonging the time required for uterine recovery and compromising subsequent fertility. PMID:19567787

  3. New Insights on Drought Stress Response by Global Investigation of Gene Expression Changes in Sheepgrass (Leymus chinensis).

    PubMed

    Zhao, Pincang; Liu, Panpan; Yuan, Guangxiao; Jia, Junting; Li, Xiaoxia; Qi, Dongmei; Chen, Shuangyan; Ma, Tian; Liu, Gongshe; Cheng, Liqin

    2016-01-01

    Water is a critical environmental factor that restricts the geographic distribution of plants. Sheepgrass [Leymus chinensis, (Trin.) Tzvel] is an important forage grass in the Eurasia Steppe and a close germplasm for wheat and barley. This native grass adapts well to adverse environments such as cold, salinity, alkalinity and drought, and it can survive when the soil moisture may be less than 6% in dry seasons. However, little is known about how sheepgrass tolerates water stress at the molecular level. Here, drought stress experiment and RNA-sequencing (RNA-seq) was performed in three pools of RNA samples (control, drought stress, and rewatering). We found that sheepgrass seedlings could still survive when the soil water content (SWC) was reduced to 14.09%. Differentially expressed genes (DEGs) analysis showed that 7320 genes exhibited significant responses to drought stress. Of these DEGs, 2671 presented opposite expression trends before and after rewatering. Furthermore, ~680 putative sheepgrass-specific water responsive genes were revealed that can be studied deeply. Gene ontology (GO) annotation revealed that stress-associated genes were activated extensively by drought treatment. Interestingly, cold stress-related genes were up-regulated greatly after drought stress. The DEGs of MAPK and calcium signal pathways, plant hormone ABA, jasmonate, ethylene, brassinosteroid signal pathways, cold response CBF pathway participated coordinatively in sheepgrass drought stress response. In addition, we identified 288 putative transcription factors (TFs) involved in drought response, among them, the WRKY, NAC, AP2/ERF, bHLH, bZIP, and MYB families were enriched, and might play crucial and significant roles in drought stress response of sheepgrass. Our research provided new and valuable information for understanding the mechanism of drought tolerance in sheepgrass. Moreover, the identification of genes involved in drought response can facilitate the genetic improvement of

  4. New Insights on Drought Stress Response by Global Investigation of Gene Expression Changes in Sheepgrass (Leymus chinensis)

    PubMed Central

    Zhao, Pincang; Liu, Panpan; Yuan, Guangxiao; Jia, Junting; Li, Xiaoxia; Qi, Dongmei; Chen, Shuangyan; Ma, Tian; Liu, Gongshe; Cheng, Liqin

    2016-01-01

    Water is a critical environmental factor that restricts the geographic distribution of plants. Sheepgrass [Leymus chinensis, (Trin.) Tzvel] is an important forage grass in the Eurasia Steppe and a close germplasm for wheat and barley. This native grass adapts well to adverse environments such as cold, salinity, alkalinity and drought, and it can survive when the soil moisture may be less than 6% in dry seasons. However, little is known about how sheepgrass tolerates water stress at the molecular level. Here, drought stress experiment and RNA-sequencing (RNA-seq) was performed in three pools of RNA samples (control, drought stress, and rewatering). We found that sheepgrass seedlings could still survive when the soil water content (SWC) was reduced to 14.09%. Differentially expressed genes (DEGs) analysis showed that 7320 genes exhibited significant responses to drought stress. Of these DEGs, 2671 presented opposite expression trends before and after rewatering. Furthermore, ~680 putative sheepgrass-specific water responsive genes were revealed that can be studied deeply. Gene ontology (GO) annotation revealed that stress-associated genes were activated extensively by drought treatment. Interestingly, cold stress-related genes were up-regulated greatly after drought stress. The DEGs of MAPK and calcium signal pathways, plant hormone ABA, jasmonate, ethylene, brassinosteroid signal pathways, cold response CBF pathway participated coordinatively in sheepgrass drought stress response. In addition, we identified 288 putative transcription factors (TFs) involved in drought response, among them, the WRKY, NAC, AP2/ERF, bHLH, bZIP, and MYB families were enriched, and might play crucial and significant roles in drought stress response of sheepgrass. Our research provided new and valuable information for understanding the mechanism of drought tolerance in sheepgrass. Moreover, the identification of genes involved in drought response can facilitate the genetic improvement of

  5. The duration of gastrin treatment affects global gene expression and molecular responses involved in ER stress and anti-apoptosis

    PubMed Central

    2013-01-01

    Background How cells decipher the duration of an external signal into different transcriptional outcomes is poorly understood. The hormone gastrin can promote a variety of cellular responses including proliferation, differentiation, migration and anti-apoptosis. While gastrin in normal concentrations has important physiological functions in the gastrointestine, prolonged high levels of gastrin (hypergastrinemia) is related to pathophysiological processes. Results We have used genome-wide microarray time series analysis and molecular studies to identify genes that are affected by the duration of gastrin treatment in adenocarcinoma cells. Among 403 genes differentially regulated in transiently (gastrin removed after 1 h) versus sustained (gastrin present for 14 h) treated cells, 259 genes upregulated by sustained gastrin treatment compared to untreated controls were expressed at lower levels in the transient mode. The difference was subtle for early genes like Junb and c-Fos, but substantial for delayed and late genes. Inhibition of protein synthesis by cycloheximide was used to distinguish between primary and secondary gastrin regulated genes. The majority of gastrin upregulated genes lower expressed in transiently treated cells were primary genes induced independently of de novo protein synthesis. This indicates that the duration effect of gastrin treatment is mainly mediated via post-translational signalling events, while a smaller fraction of the differentially expressed genes are regulated downstream of primary transcriptional events. Indeed, sustained gastrin treatment specifically induced prolonged ERK1/2 activation and elevated levels of the AP-1 subunit protein JUNB. Enrichment analyses of the differentially expressed genes suggested that endoplasmic reticulum (ER) stress and survival is affected by the duration of gastrin treatment. Sustained treatment exerted an anti-apoptotic effect on serum starvation-induced apoptosis via a PKC-dependent mechanism. In

  6. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus

    PubMed Central

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-01-01

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops. PMID:27491393

  7. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus.

    PubMed

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-01-01

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops. PMID:27491393

  8. Global Gene Expression Profiling of Myeloid Immune Cell Subsets in Response to In Vitro Challenge with Porcine Circovirus 2b

    PubMed Central

    Mavrommatis, Bettina; Offord, Victoria; Patterson, Robert; Watson, Mick; Kanellos, Theo; Steinbach, Falko; Grierson, Sylvia; Werling, Dirk

    2014-01-01

    Compelling evidence suggests that the early interaction between porcine circovirus 2 (PCV-2) and the innate immune system is the key event in the pathogenesis of Post-Weaning Multisystemic Wasting Syndrome (PMWS). Furthermore, PCV2 has been detected in bone-marrow samples, potentially enabling an easy spread and reservoir for the virus. To assess the gene-expression differences induced by an in-vitro PCV2b infection in different three different myeloid innate immune cell subsets generated from the same animal, we used the Agilent Porcine Gene Expression Microarray (V2). Alveolar macrophages (AMØs), monocyte-derived dendritic cells (MoDCs) and bone-marrow cells (BMCs) were generated from each animal, and challenged with a UK-isolate of a PCV2 genotype b-strain at a MOI of 0.5. Remarkably, analysis showed a highly distinct and cell-type dependent response to PCV2b challenge. Overall, MoDCs showed the most marked response to PCV2b challenge in vitro and revealed a key role for TNF in the interaction with PCV2b, whereas only few genes were affected in BMCs and AMØs. These observations were further supported by an enrichment of genes in the downstream NF-κB Signalling pathway as well as an up regulation of genes with pro-apoptotic functions post-challenge. PCV2b challenge increases the expression of a large number of immune-related and pro-apoptotic genes mainly in MoDC, which possibly explain the increased inflammation, granulomatous inflammation and lymphocyte depletion seen in PMWS-affected pigs. PMID:24618842

  9. Characterization of the Humoral Immune Response during Staphylococcus aureus Bacteremia and Global Gene Expression by Staphylococcus aureus in Human Blood

    PubMed Central

    den Reijer, Paul Martijn; Lemmens-den Toom, Nicole; Kant, Samantha; Snijders, Susan V.; Boelens, Hélène; Tavakol, Mehri; Verkaik, Nelianne J.; van Belkum, Alex; Verbrugh, Henri A.; van Wamel, Willem J. B.

    2013-01-01

    Attempts to develop an efficient anti-staphylococcal vaccine in humans have so far been unsuccessful. Therefore, more knowledge of the antigens that are expressed by Staphylococcus aureus in human blood and induce an immune response in patients is required. In this study we further characterize the serial levels of IgG and IgA antibodies against 56 staphylococcal antigens in multiple serum samples of 21 patients with a S. aureus bacteremia, compare peak IgG levels between patients and 30 non-infected controls, and analyze the expression of 3626 genes by two genetically distinct isolates in human blood. The serum antibody levels were measured using a bead-based flow cytometry technique (xMAP®, Luminex corporation). Gene expression levels were analyzed using a microarray (BµG@s microarray). The initial levels and time taken to reach peak IgG and IgA antibody levels were heterogeneous in bacteremia patients. The antigen SA0688 was associated with the highest median initial-to-peak antibody fold-increase for IgG (5.05-fold) and the second highest increase for IgA (2.07-fold). Peak IgG levels against 27 antigens, including the antigen SA0688, were significantly elevated in bacteremia patients versus controls (P≤0.05). Expression of diverse genes, including SA0688, was ubiquitously high in both isolates at all time points during incubation in blood. However, only a limited number of genes were specifically up- or downregulated in both isolates when cultured in blood, compared to the start of incubation in blood or during incubation in BHI broth. In conclusion, most staphylococcal antigens tested in this study, including many known virulence factors, do not induce uniform increases in the antibody levels in bacteremia patients. In addition, the expression of these antigens by S. aureus is not significantly altered by incubation in human blood over time. One immunogenic and ubiquitously expressed antigen is the putative iron-regulated ABC transporter SA0688. PMID

  10. Global Regulation of Gene Expression and Cell Differentiation in Caulobacter crescentus in Response to Nutrient Availability ▿ †

    PubMed Central

    England, Jennifer C.; Perchuk, Barrett S.; Laub, Michael T.; Gober, James W.

    2010-01-01

    In a developmental strategy designed to efficiently exploit and colonize sparse oligotrophic environments, Caulobacter crescentus cells divide asymmetrically, yielding a motile swarmer cell and a sessile stalked cell. After a relatively fixed time period under typical culture conditions, the swarmer cell differentiates into a replicative stalked cell. Since differentiation into the stalked cell type is irreversible, it is likely that environmental factors such as the availability of essential nutrients would influence the timing of the decision to abandon motility and adopt a sessile lifestyle. We measured two different parameters in nutrient-limited chemostat cultures, biomass concentration and the ratio of nonstalked to stalked cells, over a range of flow rates and found that nitrogen limitation significantly extended the swarmer cell life span. The transcriptional profiling experiments described here generate the first comprehensive picture of the global regulatory strategies used by an oligotroph when confronted with an environment where key macronutrients are sparse. The pattern of regulated gene expression in nitrogen- and carbon-limited cells shares some features in common with most copiotrophic organisms, but critical differences suggest that Caulobacter, and perhaps other oligotrophs, have evolved regulatory strategies to deal distinctly with their natural environments. We hypothesize that nitrogen limitation extends the swarmer cell lifetime by delaying the onset of a sequence of differentiation events, which when initiated by the correct combination of external environmental cues, sets the swarmer cell on a path to differentiate into a stalked cell within a fixed time period. PMID:19948804

  11. Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule

    PubMed Central

    Kaur, Charanpreet; Kushwaha, Hemant R.; Mustafiz, Ananda; Pareek, Ashwani; Sopory, Sudhir K.; Singla-Pareek, Sneh L.

    2015-01-01

    Methylglyoxal (MG) is a toxic metabolite produced primarily as a byproduct of glycolysis. Being a potent glycating agent, it can readily bind macromolecules like DNA, RNA, or proteins, modulating their expression and activity. In plants, despite the known inhibitory effects of MG on growth and development, still limited information is available about the molecular mechanisms and response pathways elicited upon elevation in MG levels. To gain insight into the molecular basis of MG response, we have investigated changes in global gene expression profiles in rice upon exposure to exogenous MG using GeneChip microarrays. Initially, growth of rice seedlings was monitored in response to increasing MG concentrations which could retard plant growth in a dose-dependent manner. Upon exposure to 10 mM concentration of MG, a total of 1685 probe sets were up- or down-regulated by more than 1.5-fold in shoot tissues within 16 h. These were classified into 10 functional categories. The genes involved in signal transduction such as, protein kinases and transcription factors, were significantly over-represented in the perturbed transcriptome, of which several are known to be involved in abiotic and biotic stress response indicating a cross-talk between MG-responsive and stress-responsive signal transduction pathways. Through in silico studies, we could predict 7–8 bp long conserved motif as a possible MG-responsive element (MGRE) in the 1 kb upstream region of genes that were more than 10-fold up- or down-regulated in the analysis. Since several perturbations were found in signaling cascades in response to MG, we hereby suggest that it plays an important role in signal transduction probably acting as a stress signal molecule. PMID:26388885

  12. Global gene expression profiling of Bacillus subtilis in response to ammonium and tryptophan starvation as revealed by transcriptome and proteome analysis.

    PubMed

    Tam, Le Thi; Eymann, Christine; Antelmann, Haike; Albrecht, Dirk; Hecker, Michael

    2007-01-01

    The global gene expression profile of Bacillus subtilis in response to ammonium and tryptophan starvation was analyzed using transcriptomics and proteomics which gained novel insights into these starvation responses. The results demonstrate that both starvation conditions induce specific, overlapping and general starvation responses. The TnrA regulon, the glutamine synthetase (glnA) as well as the sigma(L)-dependent bkd and roc operons were most strongly and specifically induced after ammonium starvation. These are involved in the uptake and utilization of ammonium and alternative nitrogen sources such as amino acids, gamma-aminobutyrate, nitrate/nitrite, uric acid/urea and oligopeptides. In addition, several carbon catabolite-controlled genes (e.g. acsA, citB), the alpha-acetolactate synthase/-decarboxylase alsSD operon and several aminotransferase genes were specifically induced after ammonium starvation. The induction of sigma(F)- and sigma(E)-dependent sporulation proteins at later time points in ammonium-starved cells was accompanied by an increased sporulation frequency. The specific response to tryptophan starvation includes the TRAP-regulated tryptophan biosynthesis genes, some RelA-dependent genes (e.g. adeC, ald) as well as spo0E. Furthermore, we recognized overlapping responses between ammonium and tryptophan starvation (e.g. dat, maeN) as well as the common induction of the CodY and sigma(H) general starvation regulons and the RelA-dependent stringent response. Many genes encoding proteins of so far unknown functions could be assigned to specifically or commonly induced genes. PMID:17183219

  13. Antimicrobial resistance: a global response.

    PubMed Central

    Smith, Richard D.; Coast, Joanna

    2002-01-01

    Resistance to antimicrobial therapies reduces the effectiveness of these drugs, leading to increased morbidity, mortality, and health care expenditure. Because globalization increases the vulnerability of any country to diseases occurring in other countries, resistance presents a major threat to global public health, and no country acting on its own can adequately protect the health of its population against it. International collective action is therefore essential. Nevertheless, responsibility for health remains predominantly national. Consequently, there is a potentially significant disparity between the problems and solutions related to antimicrobial resistance and the institutions and mechanisms that are available to deal with them. This paper considers the capacity of national and international institutions and mechanisms to generate a collective response to antimicrobial resistance. Strategies for containing resistance are outlined, with particular reference to globally coordinated activities of countries. The adequacy of national and international responses to resistance is assessed, and the actions that international bodies could take to solve difficulties associated with present responses are highlighted. Approaches are suggested for securing international collective action for the containment of antimicrobial resistance. PMID:11953791

  14. Culturally Responsive: Art Education in a Global Era

    ERIC Educational Resources Information Center

    Lai, Alice

    2012-01-01

    Facing the era of globalization, culturally responsive art teachers must recognize that students' home culture, including local artistic expression, is inevitably influenced by global forces. They should strive to engage with students systems and issues of globalization and its impact on their community culture and art. In this article, the author…

  15. Carbon Nanomaterials Alter Global Gene Expression Profiles.

    PubMed

    Woodman, Sara; Short, John C W; McDermott, Hyoeun; Linan, Alexander; Bartlett, Katelyn; Gadila, Shiva Kumar Goud; Schmelzle, Katie; Wanekaya, Adam; Kim, Kyoungtae

    2016-05-01

    Carbon nanomaterials (CNMs), which include carbon nanotubes (CNTs) and their derivatives, have diverse technological and biomedical applications. The potential toxicity of CNMs to cells and tissues has become an important emerging question in nanotechnology. To assess the toxicity of CNTs and fullerenol C60(OH)24, we in the present work used the budding yeast Saccharomyces cerevisiae, one of the simplest eukaryotic organisms that share fundamental aspects of eukaryotic cell biology. We found that treatment with CNMs, regardless of their physical shape, negatively affected the growth rates, end-point cell densities and doubling times of CNM-exposed yeast cells when compared to unexposed cells. To investigate potential mechanisms behind the CNMs-induced growth defects, we performed RNA-Seq dependent transcriptional analysis and constructed global gene expression profiles of fullerenol C60(OH)24- and CNT-treated cells. When compared to non-treated control cells, CNM-treated cells displayed differential expression of genes whose functions are implicated in membrane transporters and stress response, although differentially expressed genes were not consistent between CNT- and fullerenol C60(OH)24-treated groups, leading to our conclusion that CNMs could serve as environmental toxic factors to eukaryotic cells. PMID:27483901

  16. The Borrelia burgdorferi RelA/SpoT Homolog and Stringent Response Regulate Survival in the Tick Vector and Global Gene Expression during Starvation.

    PubMed

    Drecktrah, Dan; Lybecker, Meghan; Popitsch, Niko; Rescheneder, Philipp; Hall, Laura S; Samuels, D Scott

    2015-09-01

    As the Lyme disease bacterium Borrelia burgdorferi traverses its enzootic cycle, alternating between a tick vector and a vertebrate host, the spirochete must adapt and persist in the tick midgut under prolonged nutrient stress between blood meals. In this study, we examined the role of the stringent response in tick persistence and in regulation of gene expression during nutrient limitation. Nutritionally starving B. burgdorferi in vitro increased the levels of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), collectively referred to as (p)ppGpp, products of the bifunctional synthetase/hydrolase RelBbu (RelA/SpoT homolog). Conversely, returning B. burgdorferi to a nutrient-rich medium decreased (p)ppGpp levels. B. burgdorferi survival in ticks between the larval and nymph blood meals, and during starvation in vitro, was dependent on RelBbu. Furthermore, normal morphological conversion from a flat-wave shape to a condensed round body (RB) form during starvation was dependent on RelBbu; relBbu mutants more frequently formed RBs, but their membranes were compromised. By differential RNA sequencing analyses, we found that RelBbu regulates an extensive transcriptome, both dependent and independent of nutrient stress. The RelBbu regulon includes the glp operon, which is important for glycerol utilization and persistence in the tick, virulence factors and the late phage operon of the 32-kb circular plasmid (cp32) family. In summary, our data suggest that RelBbu globally modulates transcription in response to nutrient stress by increasing (p)ppGpp levels to facilitate B. burgdorferi persistence in the tick. PMID:26371761

  17. The Borrelia burgdorferi RelA/SpoT Homolog and Stringent Response Regulate Survival in the Tick Vector and Global Gene Expression during Starvation

    PubMed Central

    Drecktrah, Dan; Lybecker, Meghan; Popitsch, Niko; Rescheneder, Philipp; Hall, Laura S.; Samuels, D. Scott

    2015-01-01

    As the Lyme disease bacterium Borrelia burgdorferi traverses its enzootic cycle, alternating between a tick vector and a vertebrate host, the spirochete must adapt and persist in the tick midgut under prolonged nutrient stress between blood meals. In this study, we examined the role of the stringent response in tick persistence and in regulation of gene expression during nutrient limitation. Nutritionally starving B. burgdorferi in vitro increased the levels of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), collectively referred to as (p)ppGpp, products of the bifunctional synthetase/hydrolase RelBbu (RelA/SpoT homolog). Conversely, returning B. burgdorferi to a nutrient-rich medium decreased (p)ppGpp levels. B. burgdorferi survival in ticks between the larval and nymph blood meals, and during starvation in vitro, was dependent on RelBbu. Furthermore, normal morphological conversion from a flat-wave shape to a condensed round body (RB) form during starvation was dependent on RelBbu; relBbu mutants more frequently formed RBs, but their membranes were compromised. By differential RNA sequencing analyses, we found that RelBbu regulates an extensive transcriptome, both dependent and independent of nutrient stress. The RelBbu regulon includes the glp operon, which is important for glycerol utilization and persistence in the tick, virulence factors and the late phage operon of the 32-kb circular plasmid (cp32) family. In summary, our data suggest that RelBbu globally modulates transcription in response to nutrient stress by increasing (p)ppGpp levels to facilitate B. burgdorferi persistence in the tick. PMID:26371761

  18. The global response regulator ExpA controls virulence gene expression through RsmA-mediated and RsmA-independent pathways in Pectobacterium wasabiae SCC3193.

    PubMed

    Broberg, M; Lee, G W; Nykyri, J; Lee, Y H; Pirhonen, M; Palva, E T

    2014-03-01

    ExpA (GacA) is a global response regulator that controls the expression of major virulence genes, such as those encoding plant cell wall-degrading enzymes (PCWDEs) in the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. Several studies with pectobacteria as well as related phytopathogenic gammaproteobacteria, such as Dickeya and Pseudomonas, suggest that the control of virulence by ExpA and its homologues is executed partly by modulating the activity of RsmA, an RNA-binding posttranscriptional regulator. To elucidate the extent of the overlap between the ExpA and RsmA regulons in P. wasabiae, we characterized both regulons by microarray analysis. To do this, we compared the transcriptomes of the wild-type strain, an expA mutant, an rsmA mutant, and an expA rsmA double mutant. The microarray data for selected virulence-related genes were confirmed through quantitative reverse transcription (qRT-PCR). Subsequently, assays were performed to link the observed transcriptome differences to changes in bacterial phenotypes such as growth, motility, PCWDE production, and virulence in planta. An extensive overlap between the ExpA and RsmA regulons was observed, suggesting that a substantial portion of ExpA regulation appears to be mediated through RsmA. However, a number of genes involved in the electron transport chain and oligogalacturonide metabolism, among other processes, were identified as being regulated by ExpA independently of RsmA. These results suggest that ExpA may only partially impact fitness and virulence via RsmA. PMID:24441162

  19. Characterization of Changes in Global Genes Expression in the Distal Colon of Loperamide-Induced Constipation SD Rats in Response to the Laxative Effects of Liriope platyphylla

    PubMed Central

    Kim, Ji Eun; Park, So Hae; Kwak, Moon Hwa; Go, Jun; Koh, Eun Kyoung; Song, Sung Hwa; Sung, Ji Eun; Lee, Hee Seob; Hong, Jin Tae; Hwang, Dae Youn

    2015-01-01

    To characterize the changes in global gene expression in the distal colon of constipated SD rats in response to the laxative effects of aqueous extracts of Liriope platyphylla (AEtLP), including isoflavone, saponin, oligosaccharide, succinic acid and hydroxyproline, the total RNA extracted from the distal colon of AEtLP-treated constipation rats was hybridized to oligonucleotide microarrays. The AEtLP treated rats showed an increase in the number of stools, mucosa thickness, flat luminal surface thickness, mucin secretion, and crypt number. Overall, compared to the controls, 581 genes were up-regulated and 216 genes were down-regulated by the constipation induced by loperamide in the constipated rats. After the AEtLP treatment, 67 genes were up-regulated and 421 genes were down-regulated. Among the transcripts up-regulated by constipation, 89 were significantly down-regulated and 22 were recovered to the normal levels by the AEtLP treatment. The major genes in the down-regulated categories included Slc9a5, klk10, Fgf15, and Alpi, whereas the major genes in the recovered categories were Cyp2b2, Ace, G6pc, and Setbp1. On the other hand, after the AEtLP treatment, ten of these genes down-regulated by constipation were up-regulated significantly and five were recovered to the normal levels. The major genes in the up-regulated categories included Serpina3n, Lcn2 and Slc5a8, whereas the major genes in the recovered categories were Tmem45a, Rerg and Rgc32. These results indicate that several gene functional groups and individual genes as constipation biomarkers respond to an AEtLP treatment in constipated model rats. PMID:26151867

  20. The Global Response Regulator ExpA Controls Virulence Gene Expression through RsmA-Mediated and RsmA-Independent Pathways in Pectobacterium wasabiae SCC3193

    PubMed Central

    Broberg, M.; Lee, G. W.; Nykyri, J.; Lee, Y. H.; Pirhonen, M.

    2014-01-01

    ExpA (GacA) is a global response regulator that controls the expression of major virulence genes, such as those encoding plant cell wall-degrading enzymes (PCWDEs) in the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. Several studies with pectobacteria as well as related phytopathogenic gammaproteobacteria, such as Dickeya and Pseudomonas, suggest that the control of virulence by ExpA and its homologues is executed partly by modulating the activity of RsmA, an RNA-binding posttranscriptional regulator. To elucidate the extent of the overlap between the ExpA and RsmA regulons in P. wasabiae, we characterized both regulons by microarray analysis. To do this, we compared the transcriptomes of the wild-type strain, an expA mutant, an rsmA mutant, and an expA rsmA double mutant. The microarray data for selected virulence-related genes were confirmed through quantitative reverse transcription (qRT-PCR). Subsequently, assays were performed to link the observed transcriptome differences to changes in bacterial phenotypes such as growth, motility, PCWDE production, and virulence in planta. An extensive overlap between the ExpA and RsmA regulons was observed, suggesting that a substantial portion of ExpA regulation appears to be mediated through RsmA. However, a number of genes involved in the electron transport chain and oligogalacturonide metabolism, among other processes, were identified as being regulated by ExpA independently of RsmA. These results suggest that ExpA may only partially impact fitness and virulence via RsmA. PMID:24441162

  1. Global Gene Expression Profiles of the Cyanobacterium Synechocystis sp. Strain PCC 6803 in Response to Irradiation with UV-B and White Light

    PubMed Central

    Huang, Lixuan; McCluskey, Michael P.; Ni, Hao; LaRossa, Robert A.

    2002-01-01

    We developed a transcript profiling methodology to elucidate expression patterns of the cyanobacterium Synechocystis sp. strain PCC 6803 and used the technology to investigate changes in gene expression caused by irradiation with either intermediate-wavelength UV light (UV-B) or high-intensity white light. Several families of transcripts were altered by UV-B treatment, including mRNAs specifying proteins involved in light harvesting, photosynthesis, photoprotection, and the heat shock response. In addition, UV-B light induced the stringent response in Synechocystis, as indicated by the repression of ribosomal protein transcripts and other mRNAs involved in translation. High-intensity white light- and UV-B-mediated expression profiles overlapped in the down-regulation of photosynthesis genes and induction of heat shock response but differed in several other transcriptional processes including those specifying carbon dioxide uptake and fixation, the stringent response, and the induction profile of the high-light-inducible proteins. These two profile comparisons not only corroborated known physiological changes but also suggested coordinated regulation of many pathways, including synchronized induction of D1 protein recycling and a coupling between decreased phycobilisome biosynthesis and increased phycobilisome degradation. Overall, the gene expression profile analysis generated new insights into the integrated network of genes that adapts rapidly to different wavelengths and intensities of light. PMID:12446635

  2. Global Expression Studies of Yersinia Pestis Pathogenicity

    SciTech Connect

    Garcia, E; Motin, V; Brubaker, R; Fitch, P

    2002-10-15

    The aim of these studies continues to be the investigation into the molecular mechanisms that underlie the virulence process in Yersinia pestis. In particular, the focus of this work centers on the identification of novel genes and pathways responsible for the pathogenic properties of this organism. In spite of more than four decades of intense investigation in this field, the dilemma as to what makes Y. pestis such a virulent and lethal pathogen remains unanswered. The method being employed makes use microarray technology (DNA chip) that enables the examination of the global activities of the whole complement of genes in this pathogen. Two primary resources available to the investigators (one directly obtained from a separate CBNP-funded project) make these studies possible: (1) Whole genome comparisons of the genes in Y. pestis and its near neighbors with attenuated or non pathogenic characteristics, and (2) the ability to duplicate in vitro, conditions that mimic the infection process of this pathogen. This year we have extended our studies from the original work of characterizing the global transcriptional regulation in Y. pestis triggered during temperature transition from 26 C to 37 C (roughly conditions found in the flea vector and the mammalian host, respectively) to studies of regulation encountered during shift between growth from conditions of neutral pH to acidic pH (the latter conditions, those mimic the environment found inside macrophages, a likely environment found by these cells during infection.). For this work, DNA arrays containing some 5,000 genes (the entire genome of Y. pestis plus those genes found uniquely in the enteropathogen, and near neighbor, Y. pseudotuberculosis) are used to monitor the simultaneous expression levels of each gene of known and unknown function in Y. pestis. Those genes that are up-regulate under the experimental conditions represent genes potentially involved in the pathogenic process. The ultimate role in

  3. Global Analysis of Arabidopsis Gene Expression Uncovers a Complex Array of Changes Impacting Pathogen Response and Cell Cycle during Geminivirus Infection1[W][OA

    PubMed Central

    Ascencio-Ibáñez, José Trinidad; Sozzani, Rosangela; Lee, Tae-Jin; Chu, Tzu-Ming; Wolfinger, Russell D.; Cella, Rino; Hanley-Bowdoin, Linda

    2008-01-01

    Geminiviruses are small DNA viruses that use plant replication machinery to amplify their genomes. Microarray analysis of the Arabidopsis (Arabidopsis thaliana) transcriptome in response to cabbage leaf curl virus (CaLCuV) infection uncovered 5,365 genes (false discovery rate <0.005) differentially expressed in infected rosette leaves at 12 d postinoculation. Data mining revealed that CaLCuV triggers a pathogen response via the salicylic acid pathway and induces expression of genes involved in programmed cell death, genotoxic stress, and DNA repair. CaLCuV also altered expression of cell cycle-associated genes, preferentially activating genes expressed during S and G2 and inhibiting genes active in G1 and M. A limited set of core cell cycle genes associated with cell cycle reentry, late G1, S, and early G2 had increased RNA levels, while core cell cycle genes linked to early G1 and late G2 had reduced transcripts. Fluorescence-activated cell sorting of nuclei from infected leaves revealed a depletion of the 4C population and an increase in 8C, 16C, and 32C nuclei. Infectivity studies of transgenic Arabidopsis showed that overexpression of CYCD3;1 or E2FB, both of which promote the mitotic cell cycle, strongly impaired CaLCuV infection. In contrast, overexpression of E2FA or E2FC, which can facilitate the endocycle, had no apparent effect. These results showed that geminiviruses and RNA viruses interface with the host pathogen response via a common mechanism, and that geminiviruses modulate plant cell cycle status by differentially impacting the CYCD/retinoblastoma-related protein/E2F regulatory network and facilitating progression into the endocycle. PMID:18650403

  4. Arabidopsis Plastid AMOS1/EGY1 Integrates Abscisic Acid Signaling to Regulate Global Gene Expression Response to Ammonium Stress1[W][OA

    PubMed Central

    Li, Baohai; Li, Qing; Xiong, Liming; Kronzucker, Herbert J.; Krämer, Ute; Shi, Weiming

    2012-01-01

    Ammonium (NH4+) is a ubiquitous intermediate of nitrogen metabolism but is notorious for its toxic effects on most organisms. Extensive studies of the underlying mechanisms of NH4+ toxicity have been reported in plants, but it is poorly understood how plants acclimate to high levels of NH4+. Here, we identified an Arabidopsis (Arabidopsis thaliana) mutant, ammonium overly sensitive1 (amos1), that displays severe chlorosis under NH4+ stress. Map-based cloning shows amos1 to carry a mutation in EGY1 (for ethylene-dependent, gravitropism-deficient, and yellow-green-like protein1), which encodes a plastid metalloprotease. Transcriptomic analysis reveals that among the genes activated in response to NH4+, 90% are regulated dependent on AMOS1/EGY1. Furthermore, 63% of AMOS1/EGY1-dependent NH4+-activated genes contain an ACGTG motif in their promoter region, a core motif of abscisic acid (ABA)-responsive elements. Consistent with this, our physiological, pharmacological, transcriptomic, and genetic data show that ABA signaling is a critical, but not the sole, downstream component of the AMOS1/EGY1-dependent pathway that regulates the expression of NH4+-responsive genes and maintains chloroplast functionality under NH4+ stress. Importantly, abi4 mutants defective in ABA-dependent and retrograde signaling, but not ABA-deficient mutants, mimic leaf NH4+ hypersensitivity of amos1. In summary, our findings suggest that an NH4+-responsive plastid retrograde pathway, which depends on AMOS1/EGY1 function and integrates with ABA signaling, is required for the regulation of expression of NH4+-responsive genes that maintain chloroplast integrity in the presence of high NH4+ levels. PMID:23064408

  5. Global gene expression profiling reveals a suppressed immune response pathway associated with 3q amplification in squamous carcinoma of the lung

    PubMed Central

    Qian, Jun; Zou, Yong; Wang, Jing; Zhang, Bing; Massion, Pierre P.

    2015-01-01

    Chromosome 3q26–28 is a critical region of genomic amplification in non-small cell lung cancer (NSCLC), particularly lung squamous cell carcinomas (SCCs). No molecular therapeutic target has shown clinical utility for SCC, in contrast with adenocarcinomas of the lung. To identify novel candidate drivers in this region, we performed both Array Comparative Genomic Hybridization (array CGH, Agilent Human Genome CGH 244A oligo-microarrays) and Gene Expression Microarray (Agilent Human Gene Expression 4 × 44 K microarray) on 24 untreated lung SCC specimens. Using our previously published integrative genomics approach, we identified 12 top amplified driver genes within this region that are highly correlated and overexpressed in lung SCC. We further demonstrated one of the 12 top amplified driver Fragile X mental retardation-related protein 1 (FXR1) as a novel cancer gene in NSCLC and FXR1 executes its regulatory function by forming a novel complex with two other oncogenes, protein kinase C, iota ( PRKCI) and epithelial cell transforming 2 (ECT2) within the same amplicon in lung cancer cell. Here we report that immune response pathways are significantly suppressed in lung SCC and negatively associated with 3q driver gene expression, implying a potential role of 3q drivers in cancer immune-surveillance. In light of the attractive immunotherapy strategy using blockade of negative regulators of T cell function for multiple human cancer including lung SCC, our findings may provide a rationale for targeting 3q drivers in combination of immunotherapies for human tumors harboring the 3q amplicon. The data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE40089. PMID:26484266

  6. Global warming: Economic policy responses

    SciTech Connect

    Dornbusch, R.; Poterba, J.M.

    1991-01-01

    This volume contains the proceedings of a conference that brought together economic experts from Europe, the US, Latin America, and Japan to evaluate key issues in the policy debate in global warming. The following issues are at the center of debates on alternative policies to address global warming: scientific evidence on the magnitude of global warming and the extent to which it is due to human activities; availability of economic tools to control the anthropogenic emissions of greenhouse gases, and how vigorously should they be applied; and political economy considerations which influence the design of an international program for controlling greenhouse gases. Many perspectives are offered on the approaches to remedying environmental problems that are currently being pursued in Europe and the Pacific Rim. Deforestation in the Amazon is discussed, as well as ways to slow it. Public finance assessments are presented of both the domestic and international policy issues raised by plans to levy a tax on the carbon emissions from various fossil fuels. Nine chapters have been processed separately for inclusion in the appropriate data bases.

  7. GLOBAL EMERGING INFECTIONS SURVEILLANCE AND RESPONSE SYSTEM

    EPA Science Inventory

    Department of Defense (DoD) Gonococcal Isolate Surveillance Project (GISP). The DoD Global Emerging Infections Surveillance and Response System (DoD-GEIS) partners with the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) in the global surv...

  8. Global Gene Expression in Staphylococcus aureus Biofilms

    PubMed Central

    Beenken, Karen E.; Dunman, Paul M.; McAleese, Fionnuala; Macapagal, Daphne; Murphy, Ellen; Projan, Steven J.; Blevins, Jon S.; Smeltzer, Mark S.

    2004-01-01

    We previously demonstrated that mutation of the staphylococcal accessory regulator (sarA) in a clinical isolate of Staphylococcus aureus (UAMS-1) results in an impaired capacity to form a biofilm in vitro (K. E. Beenken, J. S. Blevins, and M. S. Smeltzer, Infect. Immun. 71:4206-4211, 2003). In this report, we used a murine model of catheter-based biofilm formation to demonstrate that a UAMS-1 sarA mutant also has a reduced capacity to form a biofilm in vivo. Surprisingly, mutation of the UAMS-1 ica locus had little impact on biofilm formation in vitro or in vivo. In an effort to identify additional loci that might be relevant to biofilm formation and/or the adaptive response required for persistence of S. aureus within a biofilm, we isolated total cellular RNA from UAMS-1 harvested from a biofilm grown in a flow cell and compared the transcriptional profile of this RNA to RNA isolated from both exponential- and stationary-phase planktonic cultures. Comparisons were done using a custom-made Affymetrix GeneChip representing the genomic complement of six strains of S. aureus (COL, N315, Mu50, NCTC 8325, EMRSA-16 [strain 252], and MSSA-476). The results confirm that the sessile lifestyle associated with persistence within a biofilm is distinct by comparison to the lifestyles of both the exponential and postexponential phases of planktonic culture. Indeed, we identified 48 genes in which expression was induced at least twofold in biofilms over expression under both planktonic conditions. Similarly, we identified 84 genes in which expression was repressed by a factor of at least 2 compared to expression under both planktonic conditions. A primary theme that emerged from the analysis of these genes is that persistence within a biofilm requires an adaptive response that limits the deleterious effects of the reduced pH associated with anaerobic growth conditions. PMID:15231800

  9. Global Expression Profiling of Fibroblast Responses to Transforming Growth Factor-β1 Reveals the Induction of Inhibitor of Differentiation-1 and Provides Evidence of Smooth Muscle Cell Phenotypic Switching

    PubMed Central

    Chambers, Rachel C.; Leoni, Patricia; Kaminski, Naftali; Laurent, Geoffrey J.; Heller, Renu A.

    2003-01-01

    Transforming growth factor-β1 (TGF-β1) plays a central role in promoting extracellular matrix protein deposition by promoting the transformation of fibroblasts to myofibroblasts. To gain new insights into the transcriptional programs involved, we profiled human fetal lung fibroblast global gene expression in response to TGF-β1 up to 24 hours using oligonucleotide microarrays. In this report, we present data for 146 genes that were up-regulated at least twofold at two time points. These genes group into several major functional categories, including genes involved in cytoskeletal reorganization (n = 30), matrix formation (n = 25), metabolism and protein biosynthesis (n = 27), cell signaling (n = 21), proliferation and survival (n = 13), gene transcription (n = 9), and of uncertain function (n = 21). For 80 of these genes, this is the first report that they are TGF-β1-responsive. The early induction of two members of the inhibitor of differentiation (ID) family of transcriptional regulators, ID1 and ID3, was followed by the up-regulation of a number of genes that are usually expressed by highly differentiated smooth muscle cells, including smooth muscle myosin heavy chain, basic calponin, and smoothelin. These findings were confirmed at the protein level for primary adult lung fibroblasts. ID1 further behaved like a typical immediate-early gene and, unlike ID3, was expressed and induced at the protein level. Immunohistochemical analysis showed that ID1 was highly expressed by (myo)fibroblasts within fibrotic foci in experimentally induced pulmonary fibrosis. ID1 acts as a dominant-negative antagonist of basic helix-loop-helix transcription factors that drive cell lineage commitment and differentiation. These findings have important implications for our understanding of fibroblast transcriptional programming in response to TGF-β1 during development, oncogenesis, tissue repair, and fibrosis. PMID:12547711

  10. Global Response to Local Ionospheric Mass Ejection

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Fok, M.-C.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.

    2010-01-01

    We revisit a reported "Ionospheric Mass Ejection" using prior event observations to guide a global simulation of local ionospheric outflows, global magnetospheric circulation, and plasma sheet pressurization, and comparing our results with the observed global response. Our simulation framework is based on test particle motions in the Lyon-Fedder-Mobarry (LFM) global circulation model electromagnetic fields. The inner magnetosphere is simulated with the Comprehensive Ring Current Model (CRCM) of Fok and Wolf, driven by the transpolar potential developed by the LFM magnetosphere, and includes an embedded plasmaspheric simulation. Global circulation is stimulated using the observed solar wind conditions for the period 24-25 Sept 1998. This period begins with the arrival of a Coronal Mass Ejection, initially with northward, but later with southward interplanetary magnetic field. Test particles are launched from the ionosphere with fluxes specified by local empirical relationships of outflow to electrodynamic and particle precipitation imposed by the MIlD simulation. Particles are tracked until they are lost from the system downstream or into the atmosphere, using the full equations of motion. Results are compared with the observed ring current and a simulation of polar and auroral wind outflows driven globally by solar wind dynamic pressure. We find good quantitative agreement with the observed ring current, and reasonable qualitative agreement with earlier simulation results, suggesting that the solar wind driven global simulation generates realistic energy dissipation in the ionosphere and that the Strangeway relations provide a realistic local outflow description.

  11. Global Gene Expression Response of a Population Exposed to Benzene: A Pilot Study Exploring the Use of RNA-Sequencing Technology

    PubMed Central

    Thomas, Reuben; McHale, Cliona M.; Lan, Qing; Hubbard, Alan E.; Zhang, Luoping; Vermeulen, Roel; Li, Guilan; Rappaport, Stephen M.; Yin, Songnian; Rothman, Nathaniel; Smith, Martyn T.

    2015-01-01

    The mechanism of toxicity of the leukemogen benzene is not entirely known. This pilot study used RNA-sequencing (RNA-seq) technology to examine the effect of benzene exposure on gene expression in peripheral blood mononuclear cells obtained from 10 workers occupationally exposed to high levels of benzene (≥5 ppm) in air and 10 matched unexposed control workers, from a large study (n = 125) in which gene expression was previously measured by microarray. RNA-seq is more sensitive and has a wider dynamic range for the quantification of gene expression. Further, it has the ability to detect novel transcripts and alternative splice variants. The main conclusions from our analysis of the 20 workers by RNA-seq are as follows: The Pearson correlation between the two technical replicates for the RNA-seq experiments was 0.98 and the correlation between RNA-seq and microarray signals for the 20 subjects was around 0.6. 60% of the transcripts with detected reads from the RNA-seq experiments did not have corresponding probes on the microarrays. Fifty-three percent of the transcripts detected by RNA-seq and 99% of those with probes on the microarray were protein-coding. There was a significant overlap (P < 0.05) in transcripts declared differentially expressed due to benzene exposure using the two technologies. About 20% of the transcripts declared differentially expressed using the RNA-seq data were non-coding transcripts. Six transcripts were determined (false-discovery rate < 0.05) to be alternatively spliced as a result of benzene exposure. Overall, this pilot study shows that RNA-seq can complement the information obtained by microarray in the analysis of changes in transcript expression from chemical exposures. PMID:23907980

  12. 78 FR 18376 - Promotional Rates for Global Express Guaranteed Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Promotional Rates for Global Express Guaranteed Service AGENCY: Postal Service\\TM\\. ACTION: Notice of Promotional Rates. SUMMARY: The Postal Service gives notice of promotional rates for Global Express Guaranteed...

  13. Global Genetic Variations Predict Brain Response to Faces

    PubMed Central

    Dickie, Erin W.; Tahmasebi, Amir; French, Leon; Kovacevic, Natasa; Banaschewski, Tobias; Barker, Gareth J.; Bokde, Arun; Büchel, Christian; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Nichols, Thomas; Lathrop, Mark; Loth, Eva; Pausova, Zdenka; Rietschel, Marcela; Smolka, Michal N.; Ströhle, Andreas; Toro, Roberto; Schumann, Gunter; Paus, Tomáš

    2014-01-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40–50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R2 = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R2 = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network. PMID:25122193

  14. Global genetic variations predict brain response to faces.

    PubMed

    Dickie, Erin W; Tahmasebi, Amir; French, Leon; Kovacevic, Natasa; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun; Büchel, Christian; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Gallinat, Juergen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Nichols, Thomas; Lathrop, Mark; Loth, Eva; Pausova, Zdenka; Rietschel, Marcela; Smolka, Michal N; Ströhle, Andreas; Toro, Roberto; Schumann, Gunter; Paus, Tomáš

    2014-08-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum likelihood (GREML), we related this global genetic variance to that in the brain response to facial expressions, as assessed with functional magnetic resonance imaging (fMRI) in a community-based sample of adolescents (n = 1,620). Brain response to facial expressions was measured in 25 regions constituting a face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40-50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the genotype-phenotype relationship varied as a function of the inter-individual variability in the number of functional connections possessed by a given region (R(2) = 0.38, p<0.001). Furthermore, this variability showed an inverted U relationship with both the number of observed connections (R2 = 0.48, p<0.001) and the magnitude of brain response (R(2) = 0.32, p<0.001). Thus, a significant proportion of the brain response to facial expressions is predicted by common genetic variance in a subset of regions constituting the face network. These regions show the highest inter-individual variability in the number of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network. PMID:25122193

  15. Developing Global Awareness and Responsible World Citizenship with Global Learning

    ERIC Educational Resources Information Center

    Gibson, Kay L.; Rimmington, Glyn M.; Landwehr-Brown, Marjorie

    2008-01-01

    Global learning is a student-centered activity in which learners of different cultures use technology to improve their global perspectives while remaining in their home countries. This article examines the use of global learning with gifted students to develop the knowledge, attitudes, and skills necessary for world citizenship. We describe a…

  16. Redox signaling: globalization of gene expression

    PubMed Central

    Oh, Jeong-Il; Kaplan, Samuel

    2000-01-01

    Here we show that the extent of electron flow through the cbb3 oxidase of Rhodobacter sphaeroides is inversely related to the expression levels of those photosynthesis genes that are under control of the PrrBA two-component activation system: the greater the electron flow, the stronger the inhibitory signal generated by the cbb3 oxidase to repress photosynthesis gene expression. Using site-directed mutagenesis, we show that intramolecular electron transfer within the cbb3 oxidase is involved in signal generation and transduction and this signal does not directly involve the intervention of molecular oxygen. In addition to the cbb3 oxidase, the redox state of the quinone pool controls the transcription rate of the puc operon via the AppA–PpsR antirepressor–repressor system. Together, these interacting regulatory circuits are depicted in a model that permits us to understand the regulation by oxygen and light of photosynthesis gene expression in R.sphaeroides. PMID:10944106

  17. Global Gene Expression Analysis for the Assessment of Nanobiomaterials.

    PubMed

    Hanagata, Nobutaka

    2015-01-01

    Using global gene expression analysis, the effects of biomaterials and nanomaterials can be analyzed at the genetic level. Even though information obtained from global gene expression analysis can be useful for the evaluation and design of biomaterials and nanomaterials, its use for these purposes is not widespread. This is due to the difficulties involved in data analysis. Because the expression data of about 20,000 genes can be obtained at once with global gene expression analysis, the data must be analyzed using bioinformatics. A method of bioinformatic analysis called gene ontology can estimate the kinds of changes on cell functions caused by genes whose expression level is changed by biomaterials and nanomaterials. Also, by applying a statistical analysis technique called hierarchical clustering to global gene expression data between a variety of biomaterials, the effects of the properties of materials on cell functions can be estimated. In this chapter, these theories of analysis and examples of applications to nanomaterials and biomaterials are described. Furthermore, global microRNA analysis, a method that has gained attention in recent years, and its application to nanomaterials are introduced. PMID:26201278

  18. The Global Outbreak Alert and Response Network

    PubMed Central

    Mackenzie, John S.; Drury, Patrick; Arthur, Ray R.; Ryan, Michael J.; Grein, Thomas; Slattery, Raphael; Suri, Sameera; Domingo, Christine Tiffany; Bejtullahu, Armand

    2014-01-01

    The Global Outbreak Alert and Response Network (GOARN) was established in 2000 as a network of technical institutions, research institutes, universities, international health organisations and technical networks willing to contribute and participate in internationally coordinated responses to infectious disease outbreaks. It reflected a recognition of the need to strengthen and coordinate rapid mobilisation of experts in responding to international outbreaks and to overcome the sometimes chaotic and fragmented operations characterising previous responses. The network partners agreed that the World Health Organization would coordinate the network and provide a secretariat, which would also function as the operational support team. The network has evolved to comprise 153 institutions/technical partners and 37 additional networks, the latter encompassing a further 355 members and has been directly involved in 137 missions to 79 countries, territories or areas. Future challenges will include supporting countries to achieve the capacity to detect and respond to outbreaks of international concern, as required by the International Health Regulations (2005). GOARN's increasing regional focus and expanding geographic composition will be central to meeting these challenges. The paper summarises some of network's achievements over the past 13 years and presents some of the future challenges. PMID:25186571

  19. Global Analysis of the Staphylococcus aureus Response to Mupirocin

    PubMed Central

    Reiß, Swantje; Pané-Farré, Jan; Fuchs, Stephan; François, Patrice; Liebeke, Manuel; Schrenzel, Jacques; Lindequist, Ulrike; Lalk, Michael; Wolz, Christiane; Hecker, Michael

    2012-01-01

    In the present study, we analyzed the response of S. aureus to mupirocin, the drug of choice for nasal decolonization. Mupirocin selectively inhibits the bacterial isoleucyl-tRNA synthetase (IleRS), leading to the accumulation of uncharged isoleucyl-tRNA and eventually the synthesis of (p)ppGpp. The alarmone (p)ppGpp induces the stringent response, an important global transcriptional and translational control mechanism that allows bacteria to adapt to nutritional deprivation. To identify proteins with an altered synthesis pattern in response to mupirocin treatment, we used the highly sensitive 2-dimensional gel electrophoresis technique in combination with mass spectrometry. The results were complemented by DNA microarray, Northern blot, and metabolome analyses. Whereas expression of genes involved in nucleotide biosynthesis, DNA metabolism, energy metabolism, and translation was significantly downregulated, expression of isoleucyl-tRNA synthetase, the branched-chain amino acid pathway, and genes with functions in oxidative-stress resistance (ahpC and katA) and putative roles in stress protection (the yvyD homologue SACOL0815 and SACOL1759 and SACOL2131) and transport processes was increased. A comparison of the regulated genes to known regulons suggests the involvement of the global regulators CodY and SigB in shaping the response of S. aureus to mupirocin. Of particular interest was the induced transcription of genes encoding virulence-associated regulators (i.e., arlRS, saeRS, sarA, sarR, sarS, and sigB), as well as genes directly involved in the virulence of S. aureus (i.e., fnbA, epiE, epiG, and seb). PMID:22106209

  20. A Global Drought Observatory for Emergency Response

    NASA Astrophysics Data System (ADS)

    Vogt, Jürgen; de Jager, Alfred; Carrão, Hugo; Magni, Diego; Mazzeschi, Marco; Barbosa, Paulo

    2016-04-01

    Droughts are occurring on all continents and across all climates. While in developed countries they cause significant economic and environmental damages, in less developed countries they may cause major humanitarian catastrophes. The magnitude of the problem and the expected increase in drought frequency, extent and severity in many, often highly vulnerable regions of the world demand a change from the current reactive, crisis-management approach towards a more pro-active, risk management approach. Such approach needs adequate and timely information from global to local scales as well as adequate drought management plans. Drought information systems are important for continuous monitoring and forecasting of the situation in order to provide timely information on developing drought events and their potential impacts. Against this background, the Joint Research Centre (JRC) is developing a Global Drought Observatory (GDO) for the European Commission's humanitarian services, providing up-to-date information on droughts world-wide and their potential impacts. Drought monitoring is achieved by a combination of meteorological and biophysical indicators, while the societal vulnerability to droughts is assessed through the targeted analysis of a series of social, economic and infrastructural indicators. The combination of the information on the occurrence and severity of a drought, on the assets at risk and on the societal vulnerability in the drought affected areas results in a likelihood of impact, which is expressed by a Likelihood of Drought Impact (LDI) indicator. The location, extent and magnitude of the LDI is then further analyzed against the number of people and land use/land cover types affected in order to provide the decision bodies with information on the potential humanitarian and economic bearings in the affected countries or regions. All information is presented through web-mapping interfaces based on OGC standards and customized reports can be drawn by the

  1. The Processing of Emotional Expressions as Discrete and Global Categories.

    ERIC Educational Resources Information Center

    Kestenbaum, Roberta

    This study explored the use of analytic and holistic modes of processing in the recognition of emotional expressions as discrete and global categories. Five- and seven-year-olds and adults were presented with a series of slides that showed different parts of faces depicting either happiness, surprise, fear, or anger. Slides ranged from single…

  2. Global Climate Responses to Anthropogenic Groundwater Exploitation

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Xie, Z.

    2015-12-01

    In this study, a groundwater exploitation scheme is incorporated into the earth system model, Community Earth System Model 1.2.0 (CESM1.2.0), which is called CESM1.2_GW, and the climatic responses to anthropogenic groundwater withdrawal are then investigated on global scale. The scheme models anthropogenic groundwater exploitation and consumption, which are then divided into agricultural irrigation, industrial use and domestic use. A group of 41-year ensemble groundwater exploitation simulations with six different initial conditions, and a group of ensemble control simulations without exploitation are conducted using the developed model CESM1.2_GW with water supplies and demands estimated. The results reveal that the groundwater exploitation and water consumption cause drying effects on soil moisture in deep layers and wetting effects in upper layers, along with a rapidly declining groundwater table in Central US, Haihe River Basin in China and Northern India and Pakistan where groundwater extraction are most severe in the world. The atmosphere also responds to anthropogenic groundwater exploitation. Cooling effects on lower troposphere appear in large areas of North China Plain and of Northern India and Pakistan. Increased precipitation occurs in Haihe River Basin due to increased evapotranspiration from irrigation. Decreased precipitation occurs in Northern India because water vapor here is taken away by monsoon anomalies induced by anthropogenic alteration of groundwater. The local reducing effects of anthropogenic groundwater exploitation on total terrestrial water storage evinces that water resource is unsustainable with the current high exploitation rate. Therefore, a balance between slow groundwater withdrawal and rapid human economic development must be achieved to maintain a sustainable water resource, especially in over-exploitation regions such as Central US, Northern China, India and Pakistan.

  3. Circadian control of global gene expression by the cyanobacterial master regulator RpaA

    PubMed Central

    Markson, Joseph S.; Piechura, Joseph R.; Puszynska, Anna M.; O’Shea, Erin K.

    2014-01-01

    Summary The cyanobacterial circadian clock generates genome-wide transcriptional oscillations and regulates cell division, but the underlying mechanisms are not well understood. Here we show that the response regulator RpaA serves as the master regulator of these clock outputs. Deletion of rpaA abrogates gene expression rhythms globally and arrests cells in a dawn-like expression state. Although rpaA deletion causes core oscillator failure by perturbing clock gene expression, rescuing oscillator function does not restore global expression rhythms. We show that phosphorylated RpaA regulates the expression of not only clock components, generating feedback on the core oscillator, but also a small set of circadian effectors that in turn orchestrate genome-wide transcriptional rhythms. Expression of constitutively active RpaA is sufficient to switch cells from a dawn-like to a dusk-like expression state as well as to block cell division. Hence, complex global circadian phenotypes can be generated by controlling the phosphorylation of a single transcription factor. PMID:24315105

  4. Differential global gene expression in red and white skeletal muscle

    NASA Technical Reports Server (NTRS)

    Campbell, W. G.; Gordon, S. E.; Carlson, C. J.; Pattison, J. S.; Hamilton, M. T.; Booth, F. W.

    2001-01-01

    The differences in gene expression among the fiber types of skeletal muscle have long fascinated scientists, but for the most part, previous experiments have only reported differences of one or two genes at a time. The evolving technology of global mRNA expression analysis was employed to determine the potential differential expression of approximately 3,000 mRNAs between the white quad (white muscle) and the red soleus muscle (mixed red muscle) of female ICR mice (30-35 g). Microarray analysis identified 49 mRNA sequences that were differentially expressed between white and mixed red skeletal muscle, including newly identified differential expressions between muscle types. For example, the current findings increase the number of known, differentially expressed mRNAs for transcription factors/coregulators by nine and signaling proteins by three. The expanding knowledge of the diversity of mRNA expression between white and mixed red muscle suggests that there could be quite a complex regulation of phenotype between muscles of different fiber types.

  5. Global miRNA expression is temporally correlated with acute kidney injury in mice

    PubMed Central

    Chen, Xiao

    2016-01-01

    MicroRNAs (miRNAs) are negative regulators of gene expression and protein abundance. Current evidence shows an association of miRNAs with acute kidney injury (AKI) leading to substantially increased morbidity and mortality. Here, we investigated whether miRNAs are inductive regulators responsible for the pathological development of AKI. Microarray analysis was used to detect temporal changes in global miRNA expression within 48 h after AKI in mice. Results indicated that global miRNA expression gradually increased over 24 h from ischemia reperfusion injury after 24 h, and then decreased from 24 h to 48 h. A similar trend was observed for the index of tubulointerstitial injury and the level of serum creatinine, and there was a significant correlation between the level of total miRNA expression and the level of serum creatinine (p < 0.05). This expression-phenotype correlation was validated by quantitative reverse transcription PCR on individual miRNAs, including miR-18a, -134, -182, -210 and -214. Increased global miRNA expression may lead to widespread translational repression and reduced cellular activity. Furthermore, significant inflammatory cytokine release and peritubular capillary loss were observed, suggesting that the initiation of systematic destruction programs was due to AKI. Our findings provide new understanding of the dominant role of miRNAs in promoting the pathological development of AKI. PMID:26966664

  6. Transcriptomic analysis of global changes in cytokine expression in mouse spleens following acute Toxoplasma gondii infection.

    PubMed

    He, Jun-Jun; Ma, Jun; Song, Hui-Qun; Zhou, Dong-Hui; Wang, Jin-Lei; Huang, Si-Yang; Zhu, Xing-Quan

    2016-02-01

    Toxoplasma gondii is a global pathogen that infects a wide range of animals and humans. During T. gondii infection, the spleen plays an important role in coordinating the adaptive and innate immune responses. However, there is little information regarding the changes in global gene expression within the spleen following T. gondii infection. To address this gap in knowledge, we examined the transcriptome of the mouse spleen following T. gondii infection. We observed differential expression of 2310 transcripts under these conditions. Analysis of KEGG and GO enrichment indicated that T. gondii alters multiple immune signaling cascades. Most of differentially expressed GO terms and pathways were downregulated, while immune-related GO terms and pathways were upregulated with response to T. gondii infection in mouse spleen. Most cytokines were upregulated in infected spleens, and all differentially expressed chemokines were upregulated which enhanced the immune cells chemotaxis to promote recruitment of immune cells, such as neutrophils, eosinophils, monocytes, dendritic cells, macrophages, NK cells, basophils, B cells, and T cells. Although IFN-γ-induced IDO (Ido1) was upregulated in the present study, it may not contribute a lot to the control of T. gondii because most differentially expressed genes involved in tryptophan metabolism pathway were downregulated. Innate immunity pathways, including cytosolic nucleic acid sensing pathway and C-type lectins-Syk-Card9 signaling pathways, were upregulated. We believe our study is the first comprehensive attempt to define the host transcriptional response to T. gondii infection in the mouse spleen. PMID:26508008

  7. Regulation of global gene expression and cell proliferation by APP.

    PubMed

    Wu, Yili; Zhang, Si; Xu, Qin; Zou, Haiyan; Zhou, Weihui; Cai, Fang; Li, Tingyu; Song, Weihong

    2016-01-01

    Down syndrome (DS), caused by trisomy of chromosome 21, is one of the most common genetic disorders. Patients with DS display growth retardation and inevitably develop characteristic Alzheimer's disease (AD) neuropathology, including neurofibrillary tangles and neuritic plaques. The expression of amyloid precursor protein (APP) is increased in both DS and AD patients. To reveal the function of APP and elucidate the pathogenic role of increased APP expression in DS and AD, we performed gene expression profiling using microarray method in human cells overexpressing APP. A set of genes are significantly altered, which are involved in cell cycle, cell proliferation and p53 signaling. We found that overexpression of APP inhibits cell proliferation. Furthermore, we confirmed that the downregulation of two validated genes, PSMA5 and PSMB7, inhibits cell proliferation, suggesting that the downregulation of PSMA5 and PSMB7 is involved in APP-induced cell proliferation impairment. Taken together, this study suggests that APP regulates global gene expression and increased APP expression inhibits cell proliferation. Our study provides a novel insight that APP overexpression may contribute to the growth impairment in DS patients and promote AD pathogenesis by inhibiting cell proliferation including neural stem cell proliferation and neurogenesis. PMID:26936520

  8. Regulation of global gene expression and cell proliferation by APP

    PubMed Central

    Wu, Yili; Zhang, Si; Xu, Qin; Zou, Haiyan; Zhou, Weihui; Cai, Fang; Li, Tingyu; Song, Weihong

    2016-01-01

    Down syndrome (DS), caused by trisomy of chromosome 21, is one of the most common genetic disorders. Patients with DS display growth retardation and inevitably develop characteristic Alzheimer’s disease (AD) neuropathology, including neurofibrillary tangles and neuritic plaques. The expression of amyloid precursor protein (APP) is increased in both DS and AD patients. To reveal the function of APP and elucidate the pathogenic role of increased APP expression in DS and AD, we performed gene expression profiling using microarray method in human cells overexpressing APP. A set of genes are significantly altered, which are involved in cell cycle, cell proliferation and p53 signaling. We found that overexpression of APP inhibits cell proliferation. Furthermore, we confirmed that the downregulation of two validated genes, PSMA5 and PSMB7, inhibits cell proliferation, suggesting that the downregulation of PSMA5 and PSMB7 is involved in APP-induced cell proliferation impairment. Taken together, this study suggests that APP regulates global gene expression and increased APP expression inhibits cell proliferation. Our study provides a novel insight that APP overexpression may contribute to the growth impairment in DS patients and promote AD pathogenesis by inhibiting cell proliferation including neural stem cell proliferation and neurogenesis. PMID:26936520

  9. Resourceful earth: a response to global 2000

    SciTech Connect

    Simon, J.L.; Kahn, H.

    1984-01-01

    Dismayed by the negativism of the Carter Administration's report Global 2000 and suspicious of the political uses being made of it, Professor Simon of the University of Maryland and the late Herman Kahn, with support from the Heritage Foundation, put together these studies by experts to correct what they think are fundamental errors. They call their rather optimistic statements about the future of population, food, water, resources, climate and other things unconditional predictions in the absence of an unforeseeable catastrophe - their underlying assumption being that people will do the right things to adjust constructively to change.

  10. Population-expression models of immune response

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  11. Adults' responsiveness to children's facial expressions.

    PubMed

    Aradhye, Chinmay; Vonk, Jennifer; Arida, Danielle

    2015-07-01

    We investigated the effect of young children's (hereafter children's) facial expressions on adult responsiveness. In Study 1, 131 undergraduate students from a midsized university in the midwestern United States rated children's images and videos with smiling, crying, or neutral expressions on cuteness, likelihood to adopt, and participants' experienced distress. Looking times at images and videos along with perception of cuteness, likelihood to adopt, and experienced distress using 10-point Likert scales were measured. Videos of smiling children were rated as cuter and more likely to be adopted and were viewed for longer times compared with videos of crying children, which evoked more distress. In Study 2, we recorded responses from 101 of the same participants in an online survey measuring gender role identity, empathy, and perspective taking. Higher levels of femininity (as measured by Bem's Sex Role Inventory) predicted higher "likely to adopt" ratings for crying images. These findings indicate that adult perception of children and motivation to nurture are affected by both children's facial expressions and adult characteristics and build on existing literature to demonstrate that children may use expressions to manipulate the motivations of even non-kin adults to direct attention toward and perhaps nurture young children. PMID:25838165

  12. Ezrin Inhibition Up-regulates Stress Response Gene Expression.

    PubMed

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T; Minas, Tsion Z; Conn, Erin J; Hong, Sung-Hyeok; Pauly, Gary T; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A; Toretsky, Jeffrey A; Üren, Aykut

    2016-06-17

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931

  13. Global barotropic response to a tropical forcing

    NASA Technical Reports Server (NTRS)

    Zhang, Yuxia; Mcguirk, James P.

    1993-01-01

    Zonally varying flow has been used to initialize numerical models and has been shown to play an important role in strong localized responses both in extratropics and the tropics. In this study, a climatological 200 mb January mean is used as a steady basic state of a barotropical model which consists of shallow water equations and a mass source centered at 4 deg S/120 deg E to simulate convective heating over Indonesia region. In the experiment, tropical responses appear not only over the western Pacific, where the forcing is located, but also over the eastern Pacific where the response is related to the zonally varying basic state. The westward propagating equatorial Rossby waves excited by the forcing interact with waves out of and into the tropics and the positive and negative phase of the Rossby waves result in blocking circulation over North America and tropical plumes over equatorial eastern Pacific, respectively.

  14. Ecological response to global climatic change

    USGS Publications Warehouse

    Malanson, G.P.; Butler, D.R.; Walsh, S. J.

    2004-01-01

    Climate change and ecological change go hand in hand. Because we value our ecological environment, any change has the potential to be a problem. Geographers have been drawn to this challenge, and have been successful in addressing it, because the primary ecological response to climate changes in the past — the waxing and waning of the great ice sheets over the past 2 million years – was the changing geographic range of the biota. Plants and animals changed their location. Geographers have been deeply involved in documenting the changing biota of the past, and today we are called upon to help assess the possible responses to ongoing and future climatic change and, thus, their impacts. Assessing the potential responses is important for policy makers to judge the outcomes of action or inaction and also sets the stage for preparation for and mitigation of change.

  15. Marine ecosystem responses to Cenozoic global change.

    PubMed

    Norris, R D; Turner, S Kirtland; Hull, P M; Ridgwell, A

    2013-08-01

    The future impacts of anthropogenic global change on marine ecosystems are highly uncertain, but insights can be gained from past intervals of high atmospheric carbon dioxide partial pressure. The long-term geological record reveals an early Cenozoic warm climate that supported smaller polar ecosystems, few coral-algal reefs, expanded shallow-water platforms, longer food chains with less energy for top predators, and a less oxygenated ocean than today. The closest analogs for our likely future are climate transients, 10,000 to 200,000 years in duration, that occurred during the long early Cenozoic interval of elevated warmth. Although the future ocean will begin to resemble the past greenhouse world, it will retain elements of the present "icehouse" world long into the future. Changing temperatures and ocean acidification, together with rising sea level and shifts in ocean productivity, will keep marine ecosystems in a state of continuous change for 100,000 years. PMID:23908226

  16. Global transcriptome response in Lactobacillus sakei during growth on ribose

    PubMed Central

    2011-01-01

    Background Lactobacillus sakei is valuable in the fermentation of meat products and exhibits properties that allow for better preservation of meat and fish. On these substrates, glucose and ribose are the main carbon sources available for growth. We used a whole-genome microarray based on the genome sequence of L. sakei strain 23K to investigate the global transcriptome response of three L. sakei strains when grown on ribose compared with glucose. Results The function of the common regulated genes was mostly related to carbohydrate metabolism and transport. Decreased transcription of genes encoding enzymes involved in glucose metabolism and the L-lactate dehydrogenase was observed, but most of the genes showing differential expression were up-regulated. Especially transcription of genes directly involved in ribose catabolism, the phosphoketolase pathway, and in alternative fates of pyruvate increased. Interestingly, the methylglyoxal synthase gene, which encodes an enzyme unique for L. sakei among lactobacilli, was up-regulated. Ribose catabolism seems closely linked with catabolism of nucleosides. The deoxyribonucleoside synthesis operon transcriptional regulator gene was strongly up-regulated, as well as two gene clusters involved in nucleoside catabolism. One of the clusters included a ribokinase gene. Moreover, hprK encoding the HPr kinase/phosphatase, which plays a major role in the regulation of carbon metabolism and sugar transport, was up-regulated, as were genes encoding the general PTS enzyme I and the mannose-specific enzyme II complex (EIIman). Putative catabolite-responsive element (cre) sites were found in proximity to the promoter of several genes and operons affected by the change of carbon source. This could indicate regulation by a catabolite control protein A (CcpA)-mediated carbon catabolite repression (CCR) mechanism, possibly with the EIIman being indirectly involved. Conclusions Our data shows that the ribose uptake and catabolic machinery in

  17. Responsive or Responsible? Democratic Education for the Global Networked Society

    ERIC Educational Resources Information Center

    Biesta, Gert

    2013-01-01

    In this article, which is based on an invited keynote presentation given at the 14th biennial conference of the European Association for Research on Learning and Instruction (EARLI), the author discusses the question of how education should respond to the ongoing rise of the global networked society. He provides an analysis of the history and…

  18. Global analysis of the immune response

    NASA Astrophysics Data System (ADS)

    Ribeiro, Leonardo C.; Dickman, Ronald; Bernardes, Américo T.

    2008-10-01

    The immune system may be seen as a complex system, characterized using tools developed in the study of such systems, for example, surface roughness and its associated Hurst exponent. We analyze densitometric (Panama blot) profiles of immune reactivity, to classify individuals into groups with similar roughness statistics. We focus on a population of individuals living in a region in which malaria endemic, as well as a control group from a disease-free region. Our analysis groups individuals according to the presence, or absence, of malaria symptoms and number of malaria manifestations. Applied to the Panama blot data, our method proves more effective at discriminating between groups than principal-components analysis or super-paramagnetic clustering. Our findings provide evidence that some phenomena observed in the immune system can be only understood from a global point of view. We observe similar tendencies between experimental immune profiles and those of artificial profiles, obtained from an immune network model. The statistical entropy of the experimental profiles is found to exhibit variations similar to those observed in the Hurst exponent.

  19. Global-Local Precedence in the Perception of Facial Age and Emotional Expression by Children with Autism and Other Developmental Disabilities

    ERIC Educational Resources Information Center

    Gross, Thomas F.

    2005-01-01

    Global information processing and perception of facial age and emotional expression was studied in children with autism, language disorders, mental retardation, and a clinical control group. Children were given a global-local task and asked to recognize age and emotion in human and canine faces. Children with autism made fewer global responses and…

  20. Conceptualizing psychological processes in response to globalization: Components, antecedents, and consequences of global orientations.

    PubMed

    Chen, Sylvia Xiaohua; Lam, Ben C P; Hui, Bryant P H; Ng, Jacky C K; Mak, Winnie W S; Guan, Yanjun; Buchtel, Emma E; Tang, Willie C S; Lau, Victor C Y

    2016-02-01

    The influences of globalization have permeated various aspects of life in contemporary society, from technical innovations, economic development, and lifestyles, to communication patterns. The present research proposed a construct termed global orientation to denote individual differences in the psychological processes of acculturating to the globalizing world. It encompasses multicultural acquisition as a proactive response and ethnic protection as a defensive response to globalization. Ten studies examined the applicability of global orientations among majority and minority groups, including immigrants and sojourners, in multicultural and relatively monocultural contexts, and across Eastern and Western cultures. Multicultural acquisition is positively correlated with both independent and interdependent self-construals, bilingual proficiency and usage, and dual cultural identifications. Multicultural acquisition is promotion-focused, while ethnic protection is prevention-focused and related to acculturative stress. Global orientations affect individuating and modest behavior over and above multicultural ideology, predict overlap with outgroups over and above political orientation, and predict psychological adaptation, sociocultural competence, tolerance, and attitudes toward ethnocultural groups over and above acculturation expectations/strategies. Global orientations also predict English and Chinese oral presentation performance in multilevel analyses and the frequency and pleasantness of intercultural contact in cross-lagged panel models. We discuss how the psychological study of global orientations contributes to theory and research on acculturation, cultural identity, and intergroup relations. PMID:26302436

  1. Terrestrial Feedbacks Incorporated in Global Vegetation Models through Observed Trait-Environment Responses

    NASA Astrophysics Data System (ADS)

    Bodegom, P. V.

    2015-12-01

    Most global vegetation models used to evaluate climate change impacts rely on plant functional types to describe vegetation responses to environmental stresses. In a traditional set-up in which vegetation characteristics are considered constant within a vegetation type, the possibility to implement and infer feedback mechanisms are limited as feedback mechanisms will likely involve a changing expression of community trait values. Based on community assembly concepts, we implemented functional trait-environment relationships into a global dynamic vegetation model to quantitatively assess this feature. For the current climate, a different global vegetation distribution was calculated with and without the inclusion of trait variation, emphasizing the importance of feedbacks -in interaction with competitive processes- for the prevailing global patterns. These trait-environmental responses do, however, not necessarily imply adaptive responses of vegetation to changing conditions and may locally lead to a faster turnover in vegetation upon climate change. Indeed, when running climate projections, simulations with trait variation did not yield a more stable or resilient vegetation than those without. Through the different feedback expressions, global and regional carbon and water fluxes were -however- strongly altered. At a global scale, model projections suggest an increased productivity and hence an increased carbon sink in the next decades to come, when including trait variation. However, by the end of the century, a reduced carbon sink is projected. This effect is due to a downregulation of photosynthesis rates, particularly in the tropical regions, even when accounting for CO2-fertilization effects. Altogether, the various global model simulations suggest the critical importance of including vegetation functional responses to changing environmental conditions to grasp terrestrial feedback mechanisms at global scales in the light of climate change.

  2. Spaceflight Alters Bacterial Gene Expression and Virulence and Reveals Role for Global Regulator Hfq

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Ott, C. M.; zuBentrup, K. Honer; Ramamurthy R.; Quick, L.; Porwollik, S.; Cheng, P.; McClellan, M.; Tsaprailis, G.; Radabaugh, T.; Hunt, A.; Fernandez, D.; Richter, E.; Shah, M.; Kilcoyne, M.; Joshi, L.; Nelman-Gonzalez, M.; Hing, S.; Parra, M.; Dumaras, P.; Norwood, K.; Nickerson, C. A.; Bober, R.; Devich, J.; Ruggles, A.

    2007-01-01

    A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the spaceflight environment has never been accomplished due to significant technological and logistical hurdles. Moreover, the effects of spaceflight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared to identical ground control cultures. Global microarray and proteomic analyses revealed 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground based microgravity culture model. Spaceflight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during spaceflight missions and provide novel therapeutic options on Earth.

  3. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq

    PubMed Central

    Wilson, J. W.; Ott, C. M.; zu Bentrup, K. Höner; Ramamurthy, R.; Quick, L.; Porwollik, S.; Cheng, P.; McClelland, M.; Tsaprailis, G.; Radabaugh, T.; Hunt, A.; Fernandez, D.; Richter, E.; Shah, M.; Kilcoyne, M.; Joshi, L.; Nelman-Gonzalez, M.; Hing, S.; Parra, M.; Dumars, P.; Norwood, K.; Bober, R.; Devich, J.; Ruggles, A.; Goulart, C.; Rupert, M.; Stodieck, L.; Stafford, P.; Catella, L.; Schurr, M. J.; Buchanan, K.; Morici, L.; McCracken, J.; Allen, P.; Baker-Coleman, C.; Hammond, T.; Vogel, J.; Nelson, R.; Pierson, D. L.; Stefanyshyn-Piper, H. M.; Nickerson, C. A.

    2007-01-01

    A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial pathogen Salmonella typhimurium was grown aboard Space Shuttle mission STS-115 and compared with identical ground control cultures. Global microarray and proteomic analyses revealed that 167 transcripts and 73 proteins changed expression with the conserved RNA-binding protein Hfq identified as a likely global regulator involved in the response to this environment. Hfq involvement was confirmed with a ground-based microgravity culture model. Space flight samples exhibited enhanced virulence in a murine infection model and extracellular matrix accumulation consistent with a biofilm. Strategies to target Hfq and related regulators could potentially decrease infectious disease risks during space flight missions and provide novel therapeutic options on Earth. PMID:17901201

  4. Evolutionary responses to global change: lessons from invasive species.

    PubMed

    Moran, Emily V; Alexander, Jake M

    2014-05-01

    Biologists have recently devoted increasing attention to the role of rapid evolution in species' responses to environmental change. However, it is still unclear what evolutionary responses should be expected, at what rates, and whether evolution will save populations at risk of extinction. The potential of biological invasions to provide useful insights has barely been realised, despite the close analogies to species responding to global change, particularly climate change; in both cases, populations encounter novel climatic and biotic selection pressures, with expected evolutionary responses occurring over similar timescales. However, the analogy is not perfect, and invasive species are perhaps best used as an upper bound on expected change. In this article, we review what invasive species can and cannot teach us about likely evolutionary responses to global change and the constraints on those responses. We also discuss the limitations of invasive species as a model and outline directions for future research. PMID:24612028

  5. Globalisation of tobacco industry influence and new global responses.

    PubMed

    Yach, D; Bettcher, D

    2000-06-01

    The globalisation of tobacco marketing, trade, research, and industry influence represents a major threat to public health worldwide. Drawing upon tobacco industry strategy documents prepared over several decades, this paper will demonstrate how the tobacco industry operates as a global force, regarding the world as its operating market by planning, developing, and marketing its products on a global scale. The industry has used a wide range of methods to buy influence and power, and penetrate markets across the world. It has an annual turnover of almost US$400 billion. In contrast, until recently tobacco control lacked global leadership and strategic direction and had been severely underfunded. As part of moving towards a more sustainable form of globalisation, a global enabling environment linked to local actions should focus on the following strategies: global information management; development of nationally and locally grounded action; global regulation, legal instruments, and foreign policy; and establishment of strong partnerships with purpose. As the vector of the tobacco epidemic, the tobacco industry's actions fall far outside of the boundaries of global corporate responsibility. Therefore, global and local actions should not provide the tobacco industry with the two things that it needs to ensure its long term profitability: respectability and predictability. PMID:10841858

  6. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  7. Effect of starvation on global gene expression and proteolysis in rainbow trout (Oncorhynchus mykiss)

    PubMed Central

    Salem, Mohamed; Silverstein, Jeff; Rexroad, Caird E; Yao, Jianbo

    2007-01-01

    Background Fast, efficiently growing animals have increased protein synthesis and/or reduced protein degradation relative to slow, inefficiently growing animals. Consequently, minimizing the energetic cost of protein turnover is a strategic goal for enhancing animal growth. Characterization of gene expression profiles associated with protein turnover would allow us to identify genes that could potentially be used as molecular biomarkers to select for germplasm with improved protein accretion. Results We evaluated changes in hepatic global gene expression in response to 3-week starvation in rainbow trout (Oncorhynchus mykiss). Microarray analysis revealed a coordinated, down-regulated expression of protein biosynthesis genes in starved fish. In addition, the expression of genes involved in lipid metabolism/transport, aerobic respiration, blood functions and immune response were decreased in response to starvation. However, the microarray approach did not show a significant increase of gene expression in protein catabolic pathways. Further studies, using real-time PCR and enzyme activity assays, were performed to investigate the expression of genes involved in the major proteolytic pathways including calpains, the multi-catalytic proteasome and cathepsins. Starvation reduced mRNA expression of the calpain inhibitor, calpastatin long isoform (CAST-L), with a subsequent increase in the calpain catalytic activity. In addition, starvation caused a slight but significant increase in 20S proteasome activity without affecting mRNA levels of the proteasome genes. Neither the mRNA levels nor the activities of cathepsin D and L were affected by starvation. Conclusion These results suggest a significant role of calpain and 20S proteasome pathways in protein mobilization as a source of energy during fasting and a potential association of the CAST-L gene with fish protein accretion. PMID:17880706

  8. Global gene expression profiling in infants with acute respiratory syncytial virus broncholitis demonstrates systemic activation of interferon signaling networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Respiratory syncytial virus (RSV) is a leading cause of pediatric lower respiratory tract infections and has a high impact on pediatric emergency department utilization. Variation in host response may influence the pathogenesis and disease severity. We evaluated global gene expression profiles to be...

  9. Global Metabolic Responses to Salt Stress in Fifteen Species

    PubMed Central

    Pollak, Georg R.; Kuehne, Andreas; Sauer, Uwe

    2016-01-01

    Cells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown. Moreover, it is mostly unclear which, if any, of the metabolic responses to osmotic stress are conserved among diverse organisms or confined to particular groups of species. Here we investigate the global metabolic responses of twelve bacteria, two yeasts and two human cell lines exposed to sustained hyperosmotic salt stress by measuring semiquantitative levels of hundreds of cellular metabolites using nontargeted metabolomics. Beyond the accumulation of osmoprotectants, we observed significant changes of numerous metabolites in all species. Global metabolic responses were predominantly species-specific, yet individual metabolites were characteristically affected depending on species’ taxonomy, natural habitat, envelope structure or salt tolerance. Exploiting the breadth of our dataset, the correlation of individual metabolite response magnitudes across all species implicated lower glycolysis, tricarboxylic acid cycle, branched-chain amino acid metabolism and heme biosynthesis to be generally important for salt tolerance. Thus, our findings place the global metabolic salt stress response into a phylogenetic context and provide insights into the cellular phenotype associated with salt tolerance. PMID:26848578

  10. Alcohol consumption induces global gene expression changes in VTA dopaminergic neurons.

    PubMed

    Marballi, K; Genabai, N K; Blednov, Y A; Harris, R A; Ponomarev, I

    2016-03-01

    Alcoholism is associated with dysregulation in the neural circuitry that mediates motivated and goal-directed behaviors. The dopaminergic (DA) connection between the ventral tegmental area (VTA) and the nucleus accumbens is viewed as a critical component of the neurocircuitry mediating alcohol's rewarding and behavioral effects. We sought to determine the effects of binge alcohol drinking on global gene expression in VTA DA neurons. Alcohol-preferring C57BL/6J × FVB/NJ F1 hybrid female mice were exposed to a modified drinking in the dark (DID) procedure for 3 weeks, while control animals had access to water only. Global gene expression of laser-captured tyrosine hydroxylase (TH)-positive VTA DA neurons was measured using microarrays. A total of 644 transcripts were differentially expressed between the drinking and nondrinking mice, and 930 transcripts correlated with alcohol intake during the last 2 days of drinking in the alcohol group. Bioinformatics analysis of alcohol-responsive genes identified molecular pathways and networks perturbed in DA neurons by alcohol consumption, which included neuroimmune and epigenetic functions, alcohol metabolism and brain disorders. The majority of genes with high and specific expression in DA neurons were downregulated by or negatively correlated with alcohol consumption, suggesting a decreased activity of DA neurons in high drinking animals. These changes in the DA transcriptome provide a foundation for alcohol-induced neuroadaptations that may play a crucial role in the transition to addiction. PMID:26482798

  11. Different Temporal Effects of Ebola Virus VP35 and VP24 Proteins on Global Gene Expression in Human Dendritic Cells

    PubMed Central

    Ilinykh, Philipp A.; Lubaki, Ndongala M.; Widen, Steven G.; Renn, Lynnsey A.; Theisen, Terence C.; Rabin, Ronald L.; Wood, Thomas G.

    2015-01-01

    ABSTRACT Ebola virus (EBOV) causes a severe hemorrhagic fever with a deficient immune response, lymphopenia, and lymphocyte apoptosis. Dendritic cells (DC), which trigger the adaptive response, do not mature despite EBOV infection. We recently demonstrated that DC maturation is unblocked by disabling the innate response antagonizing domains (IRADs) in EBOV VP35 and VP24 by the mutations R312A and K142A, respectively. Here we analyzed the effects of VP35 and VP24 with the IRADs disabled on global gene expression in human DC. Human monocyte-derived DC were infected by wild-type (wt) EBOV or EBOVs carrying the mutation in VP35 (EBOV/VP35m), VP24 (EBOV/VP24m), or both (EBOV/VP35m/VP24m). Global gene expression at 8 and 24 h was analyzed by deep sequencing, and the expression of interferon (IFN) subtypes up to 5 days postinfection was analyzed by quantitative reverse transcription-PCR (qRT-PCR). wt EBOV induced a weak global gene expression response, including markers of DC maturation, cytokines, chemokines, chemokine receptors, and multiple IFNs. The VP35 mutation unblocked the expression, resulting in a dramatic increase in expression of these transcripts at 8 and 24 h. Surprisingly, DC infected with EBOV/VP24m expressed lower levels of many of these transcripts at 8 h after infection, compared to wt EBOV. In contrast, at 24 h, expression of the transcripts increased in DC infected with any of the three mutants, compared to wt EBOV. Moreover, sets of genes affected by the two mutations only partially overlapped. Pathway analysis demonstrated that the VP35 mutation unblocked pathways involved in antigen processing and presentation and IFN signaling. These data suggest that EBOV IRADs have profound effects on the host adaptive immune response through massive transcriptional downregulation of DC. IMPORTANCE This study shows that infection of DC with EBOV, but not its mutant forms with the VP35 IRAD and/or VP24 IRAD disabled, causes a global block in expression of host

  12. Environmental variation and population responses to global change.

    PubMed

    Lawson, Callum R; Vindenes, Yngvild; Bailey, Liam; van de Pol, Martijn

    2015-07-01

    Species' responses to environmental changes such as global warming are affected not only by trends in mean conditions, but also by natural and human-induced environmental fluctuations. Methods are needed to predict how such environmental variation affects ecological and evolutionary processes, in order to design effective strategies to conserve biodiversity under global change. Here, we review recent theoretical and empirical studies to assess: (1) how populations respond to changes in environmental variance, and (2) how environmental variance affects population responses to changes in mean conditions. Contrary to frequent claims, empirical studies show that increases in environmental variance can increase as well as decrease long-term population growth rates. Moreover, environmental variance can alter and even reverse the effects of changes in the mean environment, such that even if environmental variance remains constant, omitting it from population models compromises their ability to predict species' responses to changes in mean conditions. Drawing on theory relating these effects of environmental variance to the curvatures of population growth responses to the environment, we outline how species' traits such as phylogenetic history and body mass could be used to predict their responses to global change under future environmental variability. PMID:25900148

  13. Global response patterns of terrestrial plant species to nitrogen addition.

    PubMed

    Xia, Jianyang; Wan, Shiqiang

    2008-07-01

    Better understanding of the responses of terrestrial plant species under global nitrogen (N) enrichment is critical for projection of changes in structure, functioning, and service of terrestrial ecosystems. Here, a meta-analysis of data from 304 studies was carried out to reveal the general response patterns of terrestrial plant species to the addition of N. Across 456 terrestrial plant species included in the analysis, biomass and N concentration were increased by 53.6 and 28.5%, respectively, under N enrichment. However, the N responses were dependent upon plant functional types, with significantly greater biomass increases in herbaceous than in woody species. Stimulation of plant biomass by the addition of N was enhanced when other resources were improved. In addition, the N responses of terrestrial plants decreased with increasing latitude and increased with annual precipitation. Dependence of the N responses of terrestrial plants on biological realms, functional types, tissues, other resources, and climatic factors revealed in this study can help to explain changes in species composition, diversity, community structure and ecosystem functioning under global N enrichment. These findings are critical in improving model simulation and projection of terrestrial carbon sequestration and its feedbacks to global climate change, especially when progressive N limitation is taken into consideration. PMID:19086179

  14. Global whole-cell FTICR mass spectrometric proteomics analysis of the heat shock response in the radioresistant bacterium Deinococcus radiodurans

    SciTech Connect

    Schmid, Amy K.; Lipton, Mary S.; Mottaz, Heather M.; Monroe, Matthew E.; Smith, Richard D.; Lidstrom, Mary E.

    2005-05-01

    Despite intense interest in the response to radiation in D. radiodurans, little is known about how the organism responds to other stress factors. Our previous studies indicated that D. radiodurans mounts a regulated protective response to heat shock, and that expression of the groESL and dnaKJ operons are induced in response to elevated temperature. In order to gain greater insight into the heat shock response of D. radiodurans on a more global scale, we undertook the study reported here. Using whole-cell semiquantitative mass spectrometric proteomics integrated with global transcriptome microarray analyses, we have determined a core set of highly induced heat shock genes whose expression correlates well at the transcriptional and translational levels. In addition, we observed that the higher the absolute expression of a given gene at physiological conditions, the better the quantitative correlation between RNA and protein expression levels.

  15. Variability-based global sensitivity analysis of circuit response

    NASA Astrophysics Data System (ADS)

    Opalski, Leszek J.

    2014-11-01

    The research problem of interest to this paper is: how to determine efficiently and objectively the most and the least influential parameters of a multimodule electronic system - given the system model f and the module parameter variation ranges. The author investigates if existing generic global sensitivity methods are applicable for electronic circuit design, even if they were developed (and successfully applied) in quite distant engineering areas. A photodiode detector analog front-end system response time is used to reveal capability of the selected global sensitivity approaches under study.

  16. Global Earth Response to Loading by Ocean Tide Models

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Strayer, J. M.

    1979-01-01

    Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean tide models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean tide loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean tide included the effects of self-gravitation and crustal loading.

  17. Defining risk, motivating responsibility and rethinking global warming.

    PubMed

    Cerutti, Furio

    2010-09-01

    This paper breaks with the sociological notion of 'risk society' and argues in favour of a philosophical view that sees the two planetary threats of late modernity, nuclear weapons and global warming, as ultimate challenges to morality and politics rather than risks that we can take and manage. The paper also raises the question of why we should feel responsible for the effects of these two global challenges on future generations and in this sense elaborates on the transgenerational chain of parenthood rather than on considerations of justice. PMID:19798589

  18. A unified sea-level response function to global warming

    NASA Astrophysics Data System (ADS)

    Winkelmann, Ricarda; Mengel, Matthias; Reese, Ronja; Levermann, Anders

    2015-04-01

    Linear response functions provide an alternative to process-based models to project future sea-level rise. They are designed to capture the sea-level response to a certain forcing in a comprehensive manner without relying on the full understanding but comprising all processes involved. Here, we propose one unified sea-level response function to global warming as a synthesis of different response functions of the major contributors: oceanic thermal expansion, ice loss from mountain glaciers as well as ice loss from the two ice-sheets on Greenland and Antarctica both through changes in the surface mass balance and dynamic discharge. Except for surface mass balance changes of the ice sheets which occur instantaneously, each response function is inherently time-dependent and accounts for the fact that past climate change will continue to influence sea-level rise in the future. The proposed functions separately estimate the contributions from the main sea-level components on a centennial time scale. The validity of the approach is assessed by comparing the sea-level estimates obtained via the response functions to observations as well as projections from comprehensive models. Total sea level rise and the observed contributions in the past decades are reasonably well reproduced by our approach. Provided that the underlying dynamic mechanisms do not undergo a qualitative change within the 21st century, the response functions found for the individual components can therefore be merged into a single response function in order to project global sea-level rise for a given global mean temperature anomaly.

  19. Global Patterns in Leaf Respiration and its Temperature Response

    NASA Astrophysics Data System (ADS)

    Heskel, M.; Atkin, O. K.; O'Sullivan, O. S.; Reich, P. B.; Tjoelker, M. G.; Weerasinghe, L. K.; Penillard, A.; Egerton, J. J. G.; Creek, D.; Bloomfield, K. J.; Xiang, J.; Sinca, F.; Stangl, Z.; Martinez-de la Torre, A.; Griffin, K. L.; Huntingford, C.; Hurry, V.; Meir, P.; Turnbull, M.

    2015-12-01

    Leaf respiration (R) represents a massive flux of carbon to the atmosphere. Currently, neither physiological models nor terrestrial biosphere models are able to disentangle sources of variation in leaf R among different plant species and contrasting environments. Similarly, such models do not adequately describe the short-term temperature (T) response of R, which can lead to inaccurate representation of leaf R in simulation models of regional and global terrestrial carbon cyling. Even minor differences in the underlying basal rate of leaf R and/or shape of the T-response curve can significantly impact estimates of carbon released and stored in ecosystems. Given this, we recently assembled and analyzed two new global databases (arctic-to-tropics) of leaf R and its short-term T-dependence. The results highlight variation in basal leaf R among species and across global gradients in T and aridity, with leaf R at a standard T (e.g. 25°C) being greatest in plants growing in the cold, dry Arctic and lowest in the warm, moist tropics. Arctic plants also exhibit higher rates of leaf R at a given photosynthetic capacity or leaf N concentration than their tropical counterparts. The results also point to convergence in the short-term temperature response of respiration across biomes and plant functional types. The applicability and significance of the short-term T-response of R for simulation models of plant and ecosystem carbon fluxes will be discussed.

  20. Subolesin expression in response to pathogen infection in ticks

    PubMed Central

    2010-01-01

    Background Ticks (Acari: Ixodidae) are vectors of pathogens worldwide that cause diseases in humans and animals. Ticks and pathogens have co-evolved molecular mechanisms that contribute to their mutual development and survival. Subolesin was discovered as a tick protective antigen and was subsequently shown to be similar in structure and function to akirins, an evolutionarily conserved group of proteins in insects and vertebrates that controls NF-kB-dependent and independent expression of innate immune response genes. The objective of this study was to investigate subolesin expression in several tick species infected with a variety of pathogens and to determine the effect of subolesin gene knockdown on pathogen infection. In the first experiment, subolesin expression was characterized in ticks experimentally infected with the cattle pathogen, Anaplasma marginale. Subolesin expression was then characterized in questing or feeding adult ticks confirmed to be infected with Anaplasma, Ehrlichia, Rickettsia, Babesia or Theileria spp. Finally, the effect of subolesin knockdown by RNA interference (RNAi) on tick infection was analyzed in Dermacentor variabilis males exposed to various pathogens by capillary feeding (CF). Results Subolesin expression increased with pathogen infection in the salivary glands but not in the guts of tick vector species infected with A. marginale. When analyzed in whole ticks, subolesin expression varied between tick species and in response to different pathogens. As reported previously, subolesin knockdown in D. variabilis infected with A. marginale and other tick-borne pathogens resulted in lower infection levels, while infection with Francisella tularensis increased in ticks after RNAi. When non-tick-borne pathogens were fed to ticks by CF, subolesin RNAi did not affect or resulted in lower infection levels in ticks. However, subolesin expression was upregulated in D. variabilis exposed to Escherichia coli, suggesting that although this

  1. Morphological restriction of human coronary artery endothelial cells substantially impacts global gene expression patterns

    PubMed Central

    Stiles, Jessica M; Pham, Robert; Rowntree, Rebecca K; Amaya, Clarissa; Battiste, James; Boucheron, Laura E; Mitchell, Dianne C; Bryan, Brad A

    2013-01-01

    Alterations in cell shape have been shown to modulate chromatin condensation and cell lineage specification; however, the mechanisms controlling these processes are largely unknown. Because endothelial cells experience cyclic mechanical changes from blood flow during normal physiological processes and disrupted mechanical changes as a result of abnormal blood flow, cell shape deformation and loss of polarization during coronary artery disease, we aimed to determine how morphological restriction affects global gene expression patterns. Human coronary artery endothelial cells (HCAECs) were cultured on spatially defined adhesive micropatterns, forcing them to conform to unique cellular morphologies differing in cellular polarization and angularity. We utilized pattern recognition algorithms and statistical analysis to validate the cytoskeletal pattern reproducibility and uniqueness of each micropattern, and performed microarray analysis on normal-shaped and micropatterned HCAECs to determine how constrained cellular morphology affects gene expression patterns. Analysis of the data revealed that forcing HCAECs to conform to geometrically-defined shapes significantly affects their global transcription patterns compared to nonrestricted shapes. Interestingly, gene expression patterns were altered in response to morphological restriction in general, although they were consistent regardless of the particular shape the cells conformed to. These data suggest that the ability of HCAECs to spread, although not necessarily their particular morphology, dictates their genomics patterns. PMID:23802622

  2. Global change and biodiversity loss: Some impediments to response

    NASA Technical Reports Server (NTRS)

    Borza, Karen; Jamieson, Dale

    1991-01-01

    Discussed here are the effects of anthropogenic global climate change on biodiversity. The focus is on human responses to the problem. Greenhouse warming-induced climate change may shift agricultural growing belts, reduce forests of the Northern Hemisphere and drive many species to extinction, among other effects. If these changes occur together with the mass extinctions already occurring, we may suffer a profound loss of biological diversity.

  3. [Global health--the ethical responsibility of the pharmaceutical industry].

    PubMed

    Lassen, Lars Christian; Thomsen, Mads Krogsgaard

    2006-09-01

    Health is a global concern and all stakeholders in society--including the pharmaceutical industry--have an ethical responsibility to contribute to promote health. At Novo Nordisk, we have decided to focus on defeating diabetes since this is the area where the company can make the biggest difference. Financial viability goes hand in hand with environmental and social responsibility, not only in the external stakeholder dialogue, but also in the quest for attraction and retention of the best possible staff. Examples of the ethical obligations of a pharmaceutical company are presented, as are classical dilemmas faced by the industry. PMID:16999884

  4. Global gene expression changes in BV2 microglial cell line during rabies virus infection.

    PubMed

    Zhao, Pingsen; Yang, Yujiao; Feng, Hao; Zhao, Lili; Qin, Junling; Zhang, Tao; Wang, Hualei; Yang, Songtao; Xia, Xianzhu

    2013-12-01

    Microglia plays a crucial role during virus pathogenesis in the central nervous system (CNS). Infection by rabies virus (RABV) causes a fatal infection in the CNS of all warm-blooded animals. However, the microglial responses to RABV infection have been scarcely reported. To better understand microglia-RABV interactions at the transcriptional level, a genome wide gene expression profile in mouse microglial cells line BV2 was performed using microarray analysis. The global messenger RNA changes in murine microglial cell line BV2 after 12, 24 and 48 h of infection with rabies virus CVS-11 strain were investigated using DNA Microarray and quantitative real-time PCR. Infection of CVS-11 at different time points induced different gene expression signatures in BV2 cells. The expression patterns of differentially expressed genes are shown by K-means clustering in four clusters in RABV- or mock-infected microglia at 12, 24 and 48h post infection (hpi). Gene ontology and network analysis of the differentially expressed genes in responses to RABV were performed by the Ingenuity Pathway Analysis system (IPA, Ingenuity® Systems, http://www.ingenuity.com). The results revealed that 28 genes were significantly up-regulated (P<0.01) and 1 gene was significantly down-regulated (P<0.01) in microglial cells at 12hpi, 72 genes were significantly up-regulated (P<0.01) and 24 genes were significantly down-regulated (P<0.01) at 24hpi, and 671 genes were significantly up-regulated (P<0.01) and 190 genes were significantly down-regulated (P<0.01) at 48hpi. Genes in BV2 were significantly regulated (P<0.01) in response to RABV infection and they were found to be interferon stimulated genes (Isg15, Isg20, Oasl1, Oasl2, Ifit2, Irf7 and Ifi203), chemokine genes (Ccl5, Cxcl10 and Ccrl2) and the proinflammatory factor gene (Interleukin 6). The results indicated that the differentially expressed genes from microglial cells after RABV infection were mainly involved in innate immune responses

  5. Coordinating Canada's research response to global health challenges: the Global Health Research Initiative.

    PubMed

    Di Ruggiero, Erica; Zarowsky, Christina; Frank, John; Mhatre, Sharmila; Aslanyan, Garry; Perry, Alita; Previsich, Nick

    2006-01-01

    The Global Health Research Initiative (GHRI) involving the Canadian International Development Agency, the Canadian Institutes of Health Research, Health Canada and the International Development Research Centre seeks to coordinate Canada's research response to global health challenges. In light of numerous calls to action both nationally and internationally, an orientation to applied health policy and systems research, and to public health research and its application is required to redress global inequalities in wealth and health and to tackle well-documented constraints to achieving the United Nations Millennium Development Goals. Over the last four years, the GHRI has funded close to 70 research program development and pilot projects. However, longer-term investment is needed. The proposed dollars 100 million Teasdale-Corti Global Health Research Partnership Program is such a response, and is intended to support teams of researchers and research users to develop, test and implement innovative approaches to strengthening institutional capacity, especially in low- and middle-income countries; to generating knowledge and its effective application to improve the health of populations, especially those most vulnerable; and to strengthen health systems in those countries. While Canada stands poised to act, concerted leadership and resources are still required to support "research that matters" for health and development in low- and middle-income countries. PMID:16512323

  6. The acid adaptive tolerance response in Campylobacter jejuni induces a global response, as suggested by proteomics and microarrays

    PubMed Central

    Varsaki, Athanasia; Murphy, Caroline; Barczynska, Alicja; Jordan, Kieran; Carroll, Cyril

    2015-01-01

    Campylobacter jejuni CI 120 is a natural isolate obtained during poultry processing and has the ability to induce an acid tolerance response (ATR) to acid + aerobic conditions in early stationary phase. Other strains tested they did not induce an ATR or they induced it in exponential phase. Campylobacter spp. do not contain the genes that encode the global stationary phase stress response mechanism. Therefore, the aim of this study was to identify genes that are involved in the C. jejuni CI 120 early stationary phase ATR, as it seems to be expressing a novel mechanism of stress tolerance. Two-dimensional gel electrophoresis was used to examine the expression profile of cytosolic proteins during the C. jejuni CI 120 adaptation to acid + aerobic stress and microarrays to determine the genes that participate in the ATR. The results indicate induction of a global response that activated a number of stress responses, including several genes encoding surface components and genes involved with iron uptake. The findings of this study provide new insights into stress tolerance of C. jejuni, contribute to a better knowledge of the physiology of this bacterium and highlight the diversity among different strains. PMID:26221965

  7. Global analysis of patterns of gene expression during Drosophila embryogenesis

    PubMed Central

    Tomancak, Pavel; Berman, Benjamin P; Beaton, Amy; Weiszmann, Richard; Kwan, Elaine; Hartenstein, Volker; Celniker, Susan E; Rubin, Gerald M

    2007-01-01

    Background Cell and tissue specific gene expression is a defining feature of embryonic development in multi-cellular organisms. However, the range of gene expression patterns, the extent of the correlation of expression with function, and the classes of genes whose spatial expression are tightly regulated have been unclear due to the lack of an unbiased, genome-wide survey of gene expression patterns. Results We determined and documented embryonic expression patterns for 6,003 (44%) of the 13,659 protein-coding genes identified in the Drosophila melanogaster genome with over 70,000 images and controlled vocabulary annotations. Individual expression patterns are extraordinarily diverse, but by supplementing qualitative in situ hybridization data with quantitative microarray time-course data using a hybrid clustering strategy, we identify groups of genes with similar expression. Of 4,496 genes with detectable expression in the embryo, 2,549 (57%) fall into 10 clusters representing broad expression patterns. The remaining 1,947 (43%) genes fall into 29 clusters representing restricted expression, 20% patterned as early as blastoderm, with the majority restricted to differentiated cell types, such as epithelia, nervous system, or muscle. We investigate the relationship between expression clusters and known molecular and cellular-physiological functions. Conclusion Nearly 60% of the genes with detectable expression exhibit broad patterns reflecting quantitative rather than qualitative differences between tissues. The other 40% show tissue-restricted expression; the expression patterns of over 1,500 of these genes are documented here for the first time. Within each of these categories, we identified clusters of genes associated with particular cellular and developmental functions. PMID:17645804

  8. Responses of Seasonal Precipitation Intensity to Global Warming

    NASA Astrophysics Data System (ADS)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia

    2016-04-01

    Under global warming, the water vapor increases with rising temperature at the rate of 7%/K. Most previous studies focus on the spatial differences of precipitation and suggest that wet regions become wetter and dry regions become drier. Our recent studies show a temporal disparity of global precipitation, which the wet season becomes wetter and dry season becomes drier; therefore, the annual range increases. However, such changes in the annual range are not homogeneous globally, and in fact, the drier trend over the ocean is much larger than that over the land, where the dry season does not become drier. Such precipitation change over land is likely because of decreased omega at 500hPa (more upward motion) in the reanalysis datasets from 1980 to 2013. The trends of vertical velocity and moist static energy profile over the increased precipitation regions become more unstable. The instability is most likely attributed to the change in specific humility below 400hPa. Further, we will use Coupled Model Intercomparison Project Phase 5 (CMIP5) archives to investigate whether the precipitation responses in dry season are different between the ocean and land under global warming.

  9. El Nino/Southern Oscillation response to global warming.

    PubMed

    Latif, M; Keenlyside, N S

    2009-12-01

    The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO(2), accelerating global warming. PMID:19060210

  10. Mentoring health researchers globally: Diverse experiences, programmes, challenges and responses.

    PubMed

    Cole, Donald C; Johnson, Nancy; Mejia, Raul; McCullough, Hazel; Turcotte-Tremblay, Anne-Marie; Barnoya, Joaquin; Falabella Luco, María Soledad

    2016-10-01

    Mentoring experiences and programmes are becoming increasingly recognised as important by those engaged in capacity strengthening in global health research. Using a primarily qualitative study design, we studied three experiences of mentorship and eight mentorship programmes for early career global health researchers based in high-income and low- and middle-income countries. For the latter, we drew upon programme materials, existing unpublished data and more formal mixed-method evaluations, supplemented by individual email questionnaire responses. Research team members wrote stories, and the team assembled and analysed them for key themes. Across the diverse experiences and programmes, key emergent themes included: great mentors inspire others in an inter-generational cascade, mentorship is transformative in personal and professional development and involves reciprocity, and finding the right balance in mentoring relationships and programmes includes responding creatively to failure. Among the challenges encountered were: struggling for more level playing fields for new health researchers globally, changing mindsets in institutions that do not have a culture of mentorship and building collaboration not competition. Mentoring networks spanning institutions and countries using multiple virtual and face-to-face methods are a potential avenue for fostering organisational cultures supporting quality mentorship in global health research. PMID:26234691

  11. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  12. Regulation of Global Gene Expression in Human Loa loa Infection Is a Function of Chronicity

    PubMed Central

    Steel, Cathy; Varma, Sudhir; Nutman, Thomas B.

    2012-01-01

    Background Human filarial infection is characterized by downregulated parasite-antigen specific T cell responses but distinct differences exist between patients with longstanding infection (endemics) and those who acquired infection through temporary residency or visits to filarial-endemic regions (expatriates). Methods and Findings To characterize mechanisms underlying differences in T cells, analysis of global gene expression using human spotted microarrays was conducted on CD4+ and CD8+ T cells from microfilaremic Loa loa-infected endemic and expatriate patients. Assessment of unstimulated cells showed overexpression of genes linked to inflammation and caspase-associated cell death, particularly in endemics, and enrichment of the Th1/Th2 canonical pathway in endemic CD4+ cells. However, pathways within CD8+ unstimulated cells were most significantly enriched in both patient groups. Antigen (Ag)-driven gene expression was assessed to microfilarial Ag (MfAg) and to the nonparasite Ag streptolysin O (SLO). For MfAg-driven cells, the number of genes differing significantly from unstimulated cells was greater in endemics compared to expatriates (p<0.0001). Functional analysis showed a differential increase in genes associated with NFkB (both groups) and caspase activation (endemics). While the expatriate response to MfAg was primarily a CD4+ pro-inflammatory one, the endemic response included CD4+ and CD8+ cells and was linked to insulin signaling, histone complexes, and ubiquitination. Unlike the enrichment of canonical pathways in CD8+ unstimulated cells, both groups showed pathway enrichment in CD4+ cells to MfAg. Contrasting with the divergent responses to MfAg seen between endemics and expatriates, the CD4+ response to SLO was similar; however, CD8+ cells differed strongly in the nature and numbers (156 [endemics] vs 36 [expatriates]) of genes with differential expression. Conclusions These data suggest several important pathways are responsible for the

  13. Voluntourism and global health: preparing dental students for responsible engagement in international programs.

    PubMed

    Seymour, Brittany; Benzian, Habib; Kalenderian, Elsbeth

    2013-10-01

    Harvard School of Dental Medicine (HSDM) estimates that nearly 25 percent of its predoctoral dental students have expressed an interest in global health, including traveling abroad to conduct research or to volunteer in a project. This article addresses the important differences between "voluntourism" (combined volunteering and tourism) and responsible engagement in global health, reports on a pilot workshop at HSDM to promote responsible volunteering, and provides a recommendation on how to address these issues in the context of a dental curriculum. The pilot Workshop for Ethical Volunteering in Global Health was designed as a discussion-based, interactive program that included lectures, small-group activities, and personal reflection. The aim of the workshop was to provide students with a systematic approach to ethical volunteering, critically reflecting on their motivation and attitudes related to conventional models of volunteering and facilitating alignment with principles of global health. Students participated in an anonymous written survey at the start and the close of the workshop. After the workshop, survey results demonstrated a significant increase in understanding the value of applying principles of global health when volunteering in order to avoid negative and unintended impacts on communities. All of the students reported that the workshop influenced the way they view volunteering in dentistry. PMID:24098029

  14. Role of Global and Local Topology in the Regulation of Gene Expression in Streptococcus pneumoniae

    PubMed Central

    Ferrándiz, María-José; Arnanz, Cristina; Martín-Galiano, Antonio J.; Rodríguez-Martín, Carlos; de la Campa, Adela G.

    2014-01-01

    The most basic level of transcription regulation in Streptococcus pneumoniae is the organization of its chromosome in topological domains. In response to drugs that caused DNA-relaxation, a global transcriptional response was observed. Several chromosomal domains were identified based on the transcriptional response of their genes: up-regulated (U), down-regulated (D), non-regulated (N), and flanking (F). We show that these distinct domains have different expression and conservation characteristics. Microarray fluorescence units under non-relaxation conditions were used as a measure of gene transcriptional level. Fluorescence units were significantly lower in F genes than in the other domains with a similar AT content. The transcriptional level of the domains categorized them was D>U>F. In addition, a comparison of 12 S. pneumoniae genome sequences showed a conservation of gene composition within U and D domains, and an extensive gene interchange in F domains. We tested the organization of chromosomal domains by measuring the relaxation-mediated transcription of eight insertions of a heterologous Ptccat cassette, two in each type of domain, showing that transcription depended on their chromosomal location. Moreover, transcription from the four promoters directing the five genes involved in supercoiling homeostasis, located either in U (gyrB), D (topA), or N (gyrA and parEC) domains was analyzed both in their chromosomal locations and in a replicating plasmid. Although expression from the chromosomal PgyrB and PtopA showed the expected domain regulation, their expression was down-regulated in the plasmid, which behaved as a D domain. However, both PparE and PgyrA carried their own regulatory signals, their topology-dependent expression being equivalent in the plasmid or in the chromosome. In PgyrA a DNA bend acted as a DNA supercoiling sensor. These results revealed that DNA topology functions as a general transcriptional regulator, superimposed upon other more

  15. Global Transcriptional Response to Hfe Deficiency and Dietary Iron Overload in Mouse Liver and Duodenum

    PubMed Central

    Rodriguez, Alejandra; Luukkaala, Tiina; Fleming, Robert E.; Britton, Robert S.; Bacon, Bruce R.; Parkkila, Seppo

    2009-01-01

    Iron is an essential trace element whose absorption is usually tightly regulated in the duodenum. HFE-related hereditary hemochromatosis (HH) is characterized by abnormally low expression of the iron-regulatory hormone, hepcidin, which results in increased iron absorption. The liver is crucial for iron homeostasis as it is the main production site of hepcidin. The aim of this study was to explore and compare the genome-wide transcriptome response to Hfe deficiency and dietary iron overload in murine liver and duodenum. Illumina™ arrays containing over 47,000 probes were used to study global transcriptional changes. Quantitative RT-PCR (Q-RT-PCR) was used to validate the microarray results. In the liver, the expression of 151 genes was altered in Hfe−/− mice while dietary iron overload changed the expression of 218 genes. There were 173 and 108 differentially expressed genes in the duodenum of Hfe−/− mice and mice with dietary iron overload, respectively. There was 93.5% concordance between the results obtained by microarray analysis and Q-RT-PCR. Overexpression of genes for acute phase reactants in the liver and a strong induction of digestive enzyme genes in the duodenum were characteristic of the Hfe-deficient genotype. In contrast, dietary iron overload caused a more pronounced change of gene expression responsive to oxidative stress. In conclusion, Hfe deficiency caused a previously unrecognized increase in gene expression of hepatic acute phase proteins and duodenal digestive enzymes. PMID:19787063

  16. Global temperature responses to current emissions from the transport sectors

    PubMed Central

    Berntsen, Terje; Fuglestvedt, Jan

    2008-01-01

    Transport affects climate directly and indirectly through mechanisms that cause both warming and cooling of climate, and the effects operate on very different timescales. We calculate climate responses in terms of global mean temperature and find large differences between the transport sectors with respect to the size and mix of short- and long-lived effects, and even the sign of the temperature response. For year 2000 emissions, road transport has the largest effect on global mean temperature. After 20 and 100 years the response in net temperature is 7 and 6 times higher, respectively, than for aviation. Aviation and shipping have strong but quite uncertain short-lived warming and cooling effects, respectively, that dominate during the first decades after the emissions. For shipping the net cooling during the first 4 decades is due to emissions of SO2 and NOx. On a longer timescale, the current emissions from shipping cause net warming due to the persistence of the CO2 perturbation. If emissions stay constant at 2000 levels, the warming effect from road transport will continue to increase and will be almost 4 times larger than that of aviation by the end of the century. PMID:19047640

  17. Global gene expression profiles in developing soybean seeds.

    PubMed

    Asakura, Tomiko; Tamura, Tomoko; Terauchi, Kaede; Narikawa, Tomoyo; Yagasaki, Kazuhiro; Ishimaru, Yoshiro; Abe, Keiko

    2012-03-01

    The gene expression profiles in soybean (Glycine max L.) seeds at 4 stages of development, namely, pod, 2-mm bean, 5-mm bean, and full-size bean, were examined by DNA microarray analysis. The total genes of each sample were classified into 4 clusters based on stage of development. Gene expression was strictly controlled by seed size, which coincides with the development stage. First, stage specific gene expression was examined. Many transcription factors were expressed in pod, 2-mm bean and 5-mm bean. In contrast, storage proteins were mainly expressed in full-size bean. Next, we extracted the genes that are differentially expressed genes (DEGs) that were extracted using the Rank products method of the Bioconductor software package. These DEGs were sorted into 8 groups using the hclust function according to gene expression patterns. Three of the groups across which the expression levels progressively increased included 100 genes, while 3 groups across which the levels decreased contained 47 genes. Storage proteins, seed-maturation proteins, some protease inhibitors, and the allergen Gly m Bd 28K were classified into the former groups. Lipoxygenase (LOX) family members were present in both the groups, indicating the multi-functionality with different expression patterns. PMID:22245912

  18. Local and global responses in complex gene regulation networks

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Masa; Selvarajoo, Kumar; Piras, Vincent; Tomita, Masaru; Giuliani, Alessandro

    2009-04-01

    An exacerbated sensitivity to apparently minor stimuli and a general resilience of the entire system stay together side-by-side in biological systems. This apparent paradox can be explained by the consideration of biological systems as very strongly interconnected network systems. Some nodes of these networks, thanks to their peculiar location in the network architecture, are responsible for the sensitivity aspects, while the large degree of interconnection is at the basis of the resilience properties of the system. One relevant feature of the high degree of connectivity of gene regulation networks is the emergence of collective ordered phenomena influencing the entire genome and not only a specific portion of transcripts. The great majority of existing gene regulation models give the impression of purely local ‘hard-wired’ mechanisms disregarding the emergence of global ordered behavior encompassing thousands of genes while the general, genome wide, aspects are less known. Here we address, on a data analysis perspective, the discrimination between local and global scale regulations, this goal was achieved by means of the examination of two biological systems: innate immune response in macrophages and oscillating growth dynamics in yeast. Our aim was to reconcile the ‘hard-wired’ local view of gene regulation with a global continuous and scalable one borrowed from statistical physics. This reconciliation is based on the network paradigm in which the local ‘hard-wired’ activities correspond to the activation of specific crucial nodes in the regulation network, while the scalable continuous responses can be equated to the collective oscillations of the network after a perturbation.

  19. Circuitry Linking the Csr and Stringent Response Global Regulatory Systems

    PubMed Central

    Edwards, Adrianne N.; Patterson-Fortin, Laura M.; Vakulskas, Christopher A.; Mercante, Jeffrey W.; Potrykus, Katarzyna; Vinella, Daniel; Camacho, Martha I.; Fields, Joshua A.; Thompson, Stuart A.; Georgellis, Dimitris; Cashel, Michael; Babitzke, Paul; Romeo, Tony

    2011-01-01

    Summary CsrA protein regulates important cellular processes by binding to target mRNAs and altering their translation and/or stability. In Escherichia coli, CsrA binds to sRNAs, CsrB and CsrC, which sequester CsrA and antagonize its activity. Here, mRNAs for relA, spoT and dksA of the stringent response system were found among 721 different transcripts that copurified with CsrA. Many of the transcripts that copurified with CsrA were previously determined to respond to ppGpp and/or DksA. We examined multiple regulatory interactions between the Csr and stringent response systems. Most importantly, DksA and ppGpp robustly activated csrB/C transcription (10-fold), while they modestly activated csrA expression. We propose that CsrA-mediated regulation is relieved during the stringent response. Gel shift assays confirmed high affinity binding of CsrA to relA mRNA leader and weaker interactions with dksA and spoT. Reporter fusions, qRT-PCR, and immunoblotting showed that CsrA repressed relA expression, and (p)ppGpp accumulation during stringent response was enhanced in a csrA mutant. CsrA had modest to negligible effects on dksA and spoT expression. Transcription of dksA was negatively autoregulated via a feedback loop that tended to mask CsrA effects. We propose that the Csr system fine-tunes the stringent response and discuss biological implications of the composite circuitry. PMID:21488981

  20. Global expression profiling reveals genetic programs underlying the developmental divergence between mouse and human embryogenesis

    PubMed Central

    2013-01-01

    Background Mouse has served as an excellent model for studying human development and diseases due to its similarity to human. Advances in transgenic and knockout studies in mouse have dramatically strengthened the use of this model and significantly improved our understanding of gene function during development in the past few decades. More recently, global gene expression analyses have revealed novel features in early embryogenesis up to gastrulation stages and have indeed provided molecular evidence supporting the conservation in early development in human and mouse. On the other hand, little information is known about the gene regulatory networks governing the subsequent organogenesis. Importantly, mouse and human development diverges during organogenesis. For instance, the mouse embryo is born around the end of organogenesis while in human the subsequent fetal period of ongoing growth and maturation of most organs spans more than 2/3 of human embryogenesis. While two recent studies reported the gene expression profiles during human organogenesis, no global gene expression analysis had been done for mouse organogenesis. Results Here we report a detailed analysis of the global gene expression profiles from egg to the end of organogenesis in mouse. Our studies have revealed distinct temporal regulation patterns for genes belonging to different functional (Gene Ontology or GO) categories that support their roles during organogenesis. More importantly, comparative analyses identify both conserved and divergent gene regulation programs in mouse and human organogenesis, with the latter likely responsible for the developmental divergence between the two species, and further suggest a novel developmental strategy during vertebrate evolution. Conclusions We have reported here the first genome-wide gene expression analysis of the entire mouse embryogenesis and compared the transcriptome atlas during mouse and human embryogenesis. Given our earlier observation that genes

  1. The Influence of the Global Gene Expression Shift on Downstream Analyses

    PubMed Central

    Xu, Qifeng; Zhang, Xuegong

    2016-01-01

    The assumption that total abundance of RNAs in a cell is roughly the same in different cells is underlying most studies based on gene expression analyses. But experiments have shown that changes in the expression of some master regulators such as c-MYC can cause global shift in the expression of almost all genes in some cell types like cancers. Such shift will violate this assumption and can cause wrong or biased conclusions for standard data analysis practices, such as detection of differentially expressed (DE) genes and molecular classification of tumors based on gene expression. Most existing gene expression data were generated without considering this possibility, and are therefore at the risk of having produced unreliable results if such global shift effect exists in the data. To evaluate this risk, we conducted a systematic study on the possible influence of the global gene expression shift effect on differential expression analysis and on molecular classification analysis. We collected data with known global shift effect and also generated data to simulate different situations of the effect based on a wide collection of real gene expression data, and conducted comparative studies on representative existing methods. We observed that some DE analysis methods are more tolerant to the global shift while others are very sensitive to it. Classification accuracy is not sensitive to the shift and actually can benefit from it, but genes selected for the classification can be greatly affected. PMID:27092944

  2. Terrestrial ecosystem responses to global change: A research strategy

    SciTech Connect

    1998-09-01

    Uncertainty about the magnitude of global change effects on terrestrial ecosystems and consequent feedbacks to the atmosphere impedes sound policy planning at regional, national, and global scales. A strategy to reduce these uncertainties must include a substantial increase in funding for large-scale ecosystem experiments and a careful prioritization of research efforts. Prioritization criteria should be based on the magnitude of potential changes in environmental properties of concern to society, including productivity; biodiversity; the storage and cycling of carbon, water, and nutrients; and sensitivity of specific ecosystems to environmental change. A research strategy is proposed that builds on existing knowledge of ecosystem responses to global change by (1) expanding the spatial and temporal scale of experimental ecosystem manipulations to include processes known to occur at large scales and over long time periods; (2) quantifying poorly understood linkages among processes through the use of experiments that manipulate multiple interacting environmental factors over a broader range of relevant conditions than did past experiments; and (3) prioritizing ecosystems for major experimental manipulations on the basis of potential positive and negative impacts on ecosystem properties and processes of intrinsic and/or utilitarian value to humans and on feedbacks of terrestrial ecosystems to the atmosphere.

  3. Exceptional epidemics: AIDS still deserves a global response

    PubMed Central

    2009-01-01

    There has been a renewed debate over whether AIDS deserves an exceptional response. We argue that as AIDS is having differentiated impacts depending on the scale of the epidemic, and population groups impacted, and so responses must be tailored accordingly. AIDS is exceptional, but not everywhere. Exceptionalism developed as a Western reaction to a once poorly understood epidemic, but remains relevant in the current multi-dimensional global response. The attack on AIDS exceptionalism has arisen because of the amount of funding targeted to the disease and the belief that AIDS activists prioritize it above other health issues. The strongest detractors of exceptionalism claim that the AIDS response has undermined health systems in developing countries. We agree that in countries with low prevalence, AIDS should be normalised and treated as a public health issue--but responses must forcefully address human rights and tackle the stigma and discrimination faced by marginalized groups. Similarly, AIDS should be normalized in countries with mid-level prevalence, except when life-long treatment is dependent on outside resources--as is the case with most African countries--because treatment dependency creates unique sustainability challenges. AIDS always requires an exceptional response in countries with high prevalence (over 10 percent). In these settings there is substantial morbidity, filling hospitals and increasing care burdens; and increased mortality, which most visibly reduces life expectancy. The idea that exceptionalism is somehow wrong is an oversimplification. The AIDS response can not be mounted in isolation; it is part of the development agenda. It must be based on human rights principles, and it must aim to improve health and well-being of societies as a whole. PMID:19912658

  4. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    SciTech Connect

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  5. Global Magnetospheric Response to an Interplanetary Shock: THEMIS Observations

    NASA Technical Reports Server (NTRS)

    Zhang, Hui; Sibeck, David G.; Zong, Q.-G.; McFadden, James P.; Larson, Davin; Glassmeier, K.-H.; Angelopoulos, V.

    2011-01-01

    We investigate the global response of geospace plasma environment to an interplanetary shock at approx. 0224 UT on May 28, 2008 from multiple THEMIS spacecraft observations in the magnetosheath (THEMIS B and C) and the mid-afternoon (THEMIS A) and dusk magnetosphere (THEMIS D and E). The interaction of the transmitted interplanetary shock with the magnetosphere has global effects. Consequently, it can affect geospace plasma significantly. After interacting with the bow shock, the interplanetary shock transmitted a fast shock and a discontinuity which propagated through the magnetosheath toward the Earth at speeds of 300 km/s and 137 km/s respectively. THEMIS A observations indicate that the plasmaspheric plume changed significantly by the interplanetary shock impact. The plasmaspheric plume density increased rapidly from 10 to 100/ cubic cm in 4 min and the ion distribution changed from isotropic to strongly anisotropic distribution. Electromagnetic ion cyclotron (EMIC) waves observed by THEMIS A are most likely excited by the anisotropic ion distributions caused by the interplanetary shock impact. To our best knowledge, this is the first direct observation of the plasmaspheric plume response to an interplanetary shock's impact. THEMIS A, but not D or E, observed a plasmaspheric plume in the dayside magnetosphere. Multiple spacecraft observations indicate that the dawn-side edge of the plasmaspheric plume was located between THEMIS A and D (or E).

  6. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti

    PubMed Central

    Bottino-Rojas, Vanessa; Talyuli, Octávio A. C.; Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George; Venancio, Thiago M.; Bahia, Ana C.; Sorgine, Marcos H.; Oliveira, Pedro L.; Paiva-Silva, Gabriela O.

    2015-01-01

    Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells. PMID:26275150

  7. In Vitro Global Gene Expression Analyses Support the Ethnopharmacological Use of Achyranthes aspera

    PubMed Central

    Subbarayan, Pochi R.; Sarkar, Malancha; Lokeshwar, Balakrishna L.; Ardalan, Bach

    2013-01-01

    Achyranthes aspera (family Amaranthaceae) is known for its anticancer properties. We have systematically validated the in vitro and in vivo anticancer properties of this plant. However, we do not know its mode of action. Global gene expression analyses may help decipher its mode of action. In the absence of identified active molecules, we believe this is the best approach to discover the mode of action of natural products with known medicinal properties. We exposed human pancreatic cancer cell line MiaPaCa-2 (CRL-1420) to 34 μg/mL of LE for 24, 48, and 72 hours. Gene expression analyses were performed using whole human genome microarrays (Agilent Technologies, USA). In our analyses, 82 (54/28) genes passed the quality control parameter, set at FDR ≤ 0.01 and FC of ≥±2. LE predominantly affected pathways of immune response, metabolism, development, gene expression regulation, cell adhesion, cystic fibrosis transmembrane conductance regulation (CFTR), and chemotaxis (MetaCore tool (Thomson Reuters, NY)). Disease biomarker enrichment analysis identified LE regulated genes involved in Vasculitis—inflammation of blood vessels. Arthritis and pancreatitis are two of many etiologies for vasculitis. The outcome of disease network analysis supports the medicinal use of A. aspera, viz, to stop bleeding, as a cure for pancreatic cancer, as an antiarthritic medication, and so forth. PMID:24454496

  8. Impact of Hfq on Global Gene Expression and Virulence in Klebsiella pneumoniae

    PubMed Central

    Chiang, Ming-Ko; Lu, Min-Chi; Liu, Li-Cheng; Lin, Ching-Ting; Lai, Yi-Chyi

    2011-01-01

    Klebsiella pneumoniae is responsible for a wide range of clinical symptoms. How this bacterium adapts itself to ever-changing host milieu is still a mystery. Recently, small non-coding RNAs (sRNAs) have received considerable attention for their functions in fine-tuning gene expression at a post-transcriptional level to promote bacterial adaptation. Here we demonstrate that Hfq, an RNA-binding protein, which facilitates interactions between sRNAs and their mRNA targets, is critical for K. pneumoniae virulence. A K. pneumoniae mutant lacking hfq (Δhfq) failed to disseminate into extra-intestinal organs and was attenuated on induction of a systemic infection in a mouse model. The absence of Hfq was associated with alteration in composition of envelope proteins, increased production of capsular polysaccharides, and decreased resistance to H2O2, heat shock, and UV irradiation. Microarray-based transcriptome analyses revealed that 897 genes involved in numerous cellular processes were deregulated in the Δhfq strain. Interestingly, Hfq appeared to govern expression of many genes indirectly by affecting sigma factor RpoS and RpoE, since 19.5% (175/897) and 17.3% (155/897) of Hfq-dependent genes belong to the RpoE- and RpoS-regulon, respectively. These results indicate that Hfq regulates global gene expression at multiple levels to modulate the physiological fitness and virulence potential of K. pneumoniae. PMID:21779404

  9. Global Expression Profiling of Low Temperature Induced Genes in the Chilling Tolerant Japonica Rice Jumli Marshi

    PubMed Central

    Chawade, Aakash; Lindlöf, Angelica; Olsson, Björn; Olsson, Olof

    2013-01-01

    Low temperature is a key factor that limits growth and productivity of many important agronomical crops worldwide. Rice (Oryza sativa L.) is negatively affected already at temperatures below +10°C and is therefore denoted as chilling sensitive. However, chilling tolerant rice cultivars exist and can be commercially cultivated at altitudes up to 3,050 meters with temperatures reaching as low as +4°C. In this work, the global transcriptional response to cold stress (+4°C) was studied in the Nepalese highland variety Jumli Marshi (spp. japonica) and 4,636 genes were identified as significantly differentially expressed within 24 hours of cold stress. Comparison with previously published microarray data from one chilling tolerant and two sensitive rice cultivars identified 182 genes differentially expressed (DE) upon cold stress in all four rice cultivars and 511 genes DE only in the chilling tolerant rice. Promoter analysis of the 182 genes suggests a complex cross-talk between ABRE and CBF regulons. Promoter analysis of the 511 genes identified over-represented ABRE motifs but not DRE motifs, suggesting a role for ABA signaling in cold tolerance. Moreover, 2,101 genes were DE in Jumli Marshi alone. By chromosomal localization analysis, 473 of these cold responsive genes were located within 13 different QTLs previously identified as cold associated. PMID:24349120

  10. Global and App Express Updates, 2002-2003. EDExpress Training. Participant Guide.

    ERIC Educational Resources Information Center

    Office of Student Financial Assistance (ED), Washington, DC.

    This manual identifies the major changes for 2002-2003 in EDExpress, the electronic data exchange aspect of the Title IV student financial aid application process. It describes the major changes in the global EDExpress module and the App Express module and discusses locations for other resources describing changes in EDExpress. The Global Module…

  11. Global Expression for Representing Diatomic Potential-Energy Curves

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Schlosser, Herbert; Smith, John R.

    1991-01-01

    A three-parameter expression that gives an accurate fit to diatomic potential curves over the entire range of separation for charge transfers between 0 and 1. It is based on a generalization of the universal binding-energy relation of Smith et al. (1989) with a modification that describes the crossover from a partially ionic state to the neutral state at large separations. The expression is tested by comparison with first-principles calculations of the potential curves ranging from covalently bonded to ionically bonded. The expression is also used to calculate spectroscopic constants form a curve fit to the first-principles curves. A comparison is made with experimental values of the spectroscopic constants.

  12. Global map of physical interactions among differentially expressed genes in multiple sclerosis relapses and remissions.

    PubMed

    Tuller, Tamir; Atar, Shimshi; Ruppin, Eytan; Gurevich, Michael; Achiron, Anat

    2011-09-15

    Multiple sclerosis (MS) is a central nervous system autoimmune inflammatory T-cell-mediated disease with a relapsing-remitting course in the majority of patients. In this study, we performed a high-resolution systems biology analysis of gene expression and physical interactions in MS relapse and remission. To this end, we integrated 164 large-scale measurements of gene expression in peripheral blood mononuclear cells of MS patients in relapse or remission and healthy subjects, with large-scale information about the physical interactions between these genes obtained from public databases. These data were analyzed with a variety of computational methods. We find that there is a clear and significant global network-level signal that is related to the changes in gene expression of MS patients in comparison to healthy subjects. However, despite the clear differences in the clinical symptoms of MS patients in relapse versus remission, the network level signal is weaker when comparing patients in these two stages of the disease. This result suggests that most of the genes have relatively similar expression levels in the two stages of the disease. In accordance with previous studies, we found that the pathways related to regulation of cell death, chemotaxis and inflammatory response are differentially expressed in the disease in comparison to healthy subjects, while pathways related to cell adhesion, cell migration and cell-cell signaling are activated in relapse in comparison to remission. However, the current study includes a detailed report of the exact set of genes involved in these pathways and the interactions between them. For example, we found that the genes TP53 and IL1 are 'network-hub' that interacts with many of the differentially expressed genes in MS patients versus healthy subjects, and the epidermal growth factor receptor is a 'network-hub' in the case of MS patients with relapse versus remission. The statistical approaches employed in this study enabled us

  13. Global gene expression of Poncirus trifoliata, Citrus sunki and their hybrids under infection of Phytophthora parasitica

    PubMed Central

    2011-01-01

    Background Gummosis and root rot caused by Phytophthora are among the most economically important diseases in citrus. Four F1 resistant hybrids (Pool R), and four F1 susceptible hybrids (Pool S) to P. parasitica, were selected from a cross between susceptible Citrus sunki and resistant Poncirus trifoliata cv. Rubidoux. We investigated gene expression in pools of four resistant and four susceptible hybrids in comparison with their parents 48 hours after P. parasitica inoculation. We proposed that genes differentially expressed between resistant and susceptible parents and between their resistant and susceptible hybrids provide promising candidates for identifying transcripts involved in disease resistance. A microarray containing 62,876 UniGene transcripts selected from the CitEST database and prepared by NimbleGen Systems was used for analyzing global gene expression 48 hours after infection with P. parasitica. Results Three pairs of data comparisons (P. trifoliata/C. sunki, Pool R/C. sunki and Pool R/Pool S) were performed. With a filter of false-discovery rate less than 0.05 and fold change greater than 3.0, 21 UniGene transcripts common to the three pairwise comparative were found to be up-regulated, and 3 UniGene transcripts were down-regulated. Among them, our results indicated that the selected transcripts were probably involved in the whole process of plant defense responses to pathogen attack, including transcriptional regulation, signaling, activation of defense genes participating in HR, single dominant genes (R gene) such as TIR-NBS-LRR and RPS4 and switch of defense-related metabolism pathway. Differentially expressed genes were validated by RT-qPCR in susceptible and resistant plants and between inoculated and uninoculated control plants Conclusions Twenty four UniGene transcripts were identified as candidate genes for Citrus response to P. parasitica. UniGene transcripts were likely to be involved in disease resistance, such as genes potentially

  14. Response of seafloor ecosystems to abrupt global climate change

    NASA Astrophysics Data System (ADS)

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-04-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mLṡL-1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  15. Response of seafloor ecosystems to abrupt global climate change

    PubMed Central

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-01-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L−1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems. PMID:25825727

  16. Response of seafloor ecosystems to abrupt global climate change.

    PubMed

    Moffitt, Sarah E; Hill, Tessa M; Roopnarine, Peter D; Kennett, James P

    2015-04-14

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L(-1) [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems. PMID:25825727

  17. Global chromatin fibre compaction in response to DNA damage

    SciTech Connect

    Hamilton, Charlotte; Hayward, Richard L.; Gilbert, Nick

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Robust KAP1 phosphorylation in response to DNA damage in HCT116 cells. Black-Right-Pointing-Pointer DNA repair foci are found in soluble chromatin. Black-Right-Pointing-Pointer Biophysical analysis reveals global chromatin fibre compaction after DNA damage. Black-Right-Pointing-Pointer DNA damage is accompanied by rapid linker histone dephosphorylation. -- Abstract: DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation ({gamma}H2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and {gamma}H2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by

  18. Spontaneous Facial Mimicry in Response to Dynamic Facial Expressions

    ERIC Educational Resources Information Center

    Sato, Wataru; Yoshikawa, Sakiko

    2007-01-01

    Based on previous neuroscientific evidence indicating activation of the mirror neuron system in response to dynamic facial actions, we hypothesized that facial mimicry would occur while subjects viewed dynamic facial expressions. To test this hypothesis, dynamic/static facial expressions of anger/happiness were presented using computer-morphing…

  19. A Global Framework for Monitoring Phenological Responses to Climate Change

    SciTech Connect

    White, Michael A; Hoffman, Forrest M; Hargrove, William Walter; Nemani, Ramakrishna R

    2005-01-01

    Remote sensing of vegetation phenology is an important method with which to monitor terrestrial responses to climate change, but most approaches include signals from multiple forcings, such as mixed phenological signals from multiple biomes, urbanization, political changes, shifts in agricultural practices, and disturbances. Consequently, it is difficult to extract a clear signal from the usually assumed forcing: climate change. Here, using global 8 km 1982 to 1999 Normalized Difference Vegetation Index (NDVI) data and an eight-element monthly climatology, we identified pixels whose wavelet power spectrum was consistently dominated by annual cycles and then created phenologically and climatically self-similar clusters, which we term phenoregions. We then ranked and screened each phenoregion as a function of landcover homogeneity and consistency, evidence of human impacts, and political diversity. Remaining phenoregions represented areas with a minimized probability of non-climatic forcings and form elemental units for long-term phenological monitoring.

  20. Global response of M-I coulping revealed by AMPERE

    NASA Astrophysics Data System (ADS)

    Waters, C. L.; Anderson, B. J.; Korth, H.

    2014-12-01

    The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides one of the few in-situ datasets that allows studies of global properties of magnetosphere-ionosphere (M-I) interactions. The characterisation of the Birkeland currents, sensed by the Iridium constellation of satellites for both hemispheres simultaneously, is possible particularly for storm-time events. Other data sets (e.g. HF radar) that provide large spatial coverage may also be combined with AMPERE data in order to understand hemisphere differences in power input. In this presentation, we focus on the ability of AMPERE data to provide details of M-I coupling in both hemispheres simultaneously. The presentation will be illustrated using examples showing comparisons from north and south hemisphere Birkeland current configurations and Poynting flux.

  1. Global transcriptional response of Lactobacillus reuteri to the sourdough environment.

    PubMed

    Hüfner, Eric; Britton, Robert A; Roos, Stefan; Jonsson, Hans; Hertel, Christian

    2008-10-01

    Lactobacillus reuteri is a lactic acid bacterium that is highly adapted to the sourdough environment. It is a dominant member of industrial type II sourdoughs, and is also able to colonize the intestinal tract of mammals, including humans, and birds. In this study, the transcriptional response of L. reuteri ATCC 55730 was investigated during sourdough fermentation by using whole-genome microarrays. Significant changes of mRNA levels were found for 101 genes involved in diverse cellular processes, such as carbohydrate and energy metabolism, cell envelope biosynthesis, exopolysaccharide production, stress responses, signal transduction and cobalamin biosynthesis. The results showed extensive changes of the organism's gene expression during growth in sourdough as compared with growth in chemically defined medium, and, thus, revealed pathways involved in the adaptation of L. reuteri to the ecological niche of sourdough. The utilization of starch and non-starch carbohydrates, the remodelling of the cell wall, characterized by reduced D-alanylation, and increased amounts of cell wall-associated polysaccharides, as well as the regulatory function of two component systems for cell wall biogenesis and metabolism were suggested by the gene expression data as being important for growth in sourdough. The impact of several L. reuteri genes for effective growth in sourdough was shown by implementation of mutant strains in sourdough fermentation. This study contributes to the understanding of the molecular fundamentals of L. reuteri's ecological competitiveness, and provides a basis for further exploration of genetic traits involved in adaptation to the food environment. PMID:18762399

  2. Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds

    PubMed Central

    Yung, Pui Yi; Grasso, Letizia Lo; Mohidin, Abeed Fatima; Acerbi, Enzo; Hinks, Jamie; Seviour, Thomas; Marsili, Enrico; Lauro, Federico M.

    2016-01-01

    Volatile organic compounds (VOCs) are commonly used as solvents in various industrial settings. Many of them present a challenge to receiving environments, due to their toxicity and low bioavailability for degradation. Microorganisms are capable of sensing and responding to their surroundings and this makes them ideal detectors for toxic compounds. This study investigates the global transcriptomic responses of Escherichia coli K-12 to selected VOCs at sub-toxic levels. Cells grown in the presence of VOCs were harvested during exponential growth, followed by whole transcriptome shotgun sequencing (RNAseq). The analysis of the data revealed both shared and unique genetic responses compared to cells without exposure to VOCs. Results suggest that various functional gene categories, for example, those relating to Fe/S cluster biogenesis, oxidative stress responses and transport proteins, are responsive to selected VOCs in E. coli. The differential expression (DE) of genes was validated using GFP-promoter fusion assays. A variety of genes were differentially expressed even at non-inhibitory concentrations and when the cells are at their balanced-growth. Some of these genes belong to generic stress response and others could be specific to VOCs. Such candidate genes and their regulatory elements could be used as the basis for designing biosensors for selected VOCs. PMID:26818886

  3. Global Expression of Cold-Responsive Genes in Fruit Trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual plants in temperate zones survive low temperature extremes in the form of seeds that over-winter. Perennial plants, like trees, must adapt their physiology and biochemistry to survive winters. How do fruit trees adapt to low temperatures? Research has shown that fruit trees alter the expressi...

  4. Rox3 and Rts1 Function in the Global Stress Response Pathway in Baker's Yeast

    PubMed Central

    Evangelista-Jr., C. C.; Rodriguez-Torres, A. M.; Limbach, M. P.; Zitomer, R. S.

    1996-01-01

    Yeast respond to a variety of stresses through a global stress response that is mediated by a number of signal transduction pathways and the cis-acting STRE DNA sequence. The CYC7 gene, encoding iso-2-cytochrome c, has been demonstrated to respond to heat shock, glucose starvation, approach-to-stationary phase, and, as we demonstrate here, to osmotic stress. This response was delayed in a the hog1-Δ1 strain implicating the Hog1 mitogen-activated protein kinase cascade, a known component of the global stress response. Deletion analysis of the CYC7 regulatory region suggested that three STRE elements were each capable of inducing the stress response. Mutations in the ROX3 gene prevented CYC7 RNA accumulation during heat shock and osmotic stress. ROX3 RNA levels were shown to be induced by stress through a novel regulatory element. A selection for high-copy suppressors of a ROX3 temperature-sensitive allele resulted in the isolation of RTS1, encoding a protein with homology to the B' regulatory subunit of protein phosphatase 2A(0). Deletion of RTS1 caused temperature and osmotic sensitivity and increased accumulation of CYC7 RNA under all conditions. Over-expression of this gene caused increased CYC7 RNA accumulation in rox3 mutants but not in wild-type cells. PMID:8846889

  5. Global Proteomics Analysis of the Response to Starvation in C. elegans*

    PubMed Central

    Larance, Mark; Pourkarimi, Ehsan; Wang, Bin; Brenes Murillo, Alejandro; Kent, Robert; Lamond, Angus I.; Gartner, Anton

    2015-01-01

    Periodic starvation of animals induces large shifts in metabolism but may also influence many other cellular systems and can lead to adaption to prolonged starvation conditions. To date, there is limited understanding of how starvation affects gene expression, particularly at the protein level. Here, we have used mass-spectrometry-based quantitative proteomics to identify global changes in the Caenorhabditis elegans proteome due to acute starvation of young adult animals. Measuring changes in the abundance of over 5,000 proteins, we show that acute starvation rapidly alters the levels of hundreds of proteins, many involved in central metabolic pathways, highlighting key regulatory responses. Surprisingly, we also detect changes in the abundance of chromatin-associated proteins, including specific linker histones, histone variants, and histone posttranslational modifications associated with the epigenetic control of gene expression. To maximize community access to these data, they are presented in an online searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). PMID:25963834

  6. Global proteomic analysis of the chromate response in Arthrobacter sp strain FB24.

    SciTech Connect

    Henne, K. L.; Turse, J. E.; Nicora, C. D.; Lipton, M. S.; Tollaksen, S. L.; Lindberg, C.; Babnigg, G.; Giometti, C. S.; Nakatsu, C. H.; Thompson, D. K.; Konopka, A. E.; Biosciences Division; Purdue Univ.; PNNL

    2009-04-01

    A global proteomic evaluation of the response of Arthrobacter sp. strain FB24 to 5 and 20 mM Cr(VI) was conducted using both two-dimensional gel electrophoresis (2-DGE) and liquid chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS). The changes in protein expression found with 2-DGE indicate alterations in central metabolism and amino acid synthesis. Proteome coverage increased from 22% with 2-DGE to 71% with LC/LC-MS/MS. The proteins exhibiting the highest levels of expression under Cr(VI) stress suggest intracellular sulfur limitation, which could be driven by competition for the sulfate (SO{sub 4}{sup 2-}) transporter by the chromate (CrO{sub 4}{sup 2-}) ion. These results are consistent with the growth defects seen with strain FB24 when Cr(VI) concentrations exceeded 5 mM.

  7. Global Proteomic Analysis of the Chromate Response in Arthrobacter sp strain FB24

    SciTech Connect

    Henne, Kristene L.; Turse, Joshua E.; Nicora, Carrie D.; Lipton, Mary S.; Tollaksen, Sandra L.; Lindberg, Carl; Babbnig, Gyorgy; Giometti, Carol S.; Nakatsu, Cindy N.; Thompson, Dorothea K.; Konopka, Allan

    2009-04-01

    A global proteomic evaluation of the response of Arthrobacter sp. strain FB24 to 5 mM and 20 mM Cr(VI) was conducted using both two-dimensional gel electrophoresis (2-DGE) and liquid chromatography coupled to tandem mass spectrometry (LC/LC-MS/MS). The changes in protein expression found with 2-DGE indicate alterations in central metabolism and amino acid synthesis. Proteome coverage increased from 22% with 2-DGE to 71% with LC/LC-MS/MS. The proteins exhibiting the highest levels of expression under Cr(VI) stress suggest intracellular sulfur limitation, which could be driven by competition for the sulfate (SO42-) transporter by the chromate (CrO42-) ion. These results are consistent with the growth defects seen with strain FB24 when Cr(VI) concentrations exceed 5 mM.

  8. Global Regulation of Gene Expression by the MafR Protein of Enterococcus faecalis.

    PubMed

    Ruiz-Cruz, Sofía; Espinosa, Manuel; Goldmann, Oliver; Bravo, Alicia

    2015-01-01

    Enterococcus faecalis is a natural inhabitant of the human gastrointestinal tract. However, as an opportunistic pathogen, it is able to colonize other host niches and cause life-threatening infections. Its adaptation to new environments involves global changes in gene expression. The EF3013 gene (here named mafR) of E. faecalis strain V583 encodes a protein (MafR, 482 residues) that has sequence similarity to global response regulators of the Mga/AtxA family. The enterococcal OG1RF genome also encodes the MafR protein (gene OG1RF_12293). In this work, we have identified the promoter of the mafR gene using several in vivo approaches. Moreover, we show that MafR influences positively the transcription of many genes on a genome-wide scale. The most significant target genes encode components of PTS-type membrane transporters, components of ABC-type membrane transporters, and proteins involved in the metabolism of carbon sources. Some of these genes were previously reported to be up-regulated during the growth of E. faecalis in blood and/or in human urine. Furthermore, we show that a mafR deletion mutant strain induces a significant lower degree of inflammation in the peritoneal cavity of mice, suggesting that enterococcal cells deficient in MafR are less virulent. Our work indicates that MafR is a global transcriptional regulator. It might facilitate the adaptation of E. faecalis to particular host niches and, therefore, contribute to its potential virulence. PMID:26793169

  9. Global Regulation of Gene Expression by the MafR Protein of Enterococcus faecalis

    PubMed Central

    Ruiz-Cruz, Sofía; Espinosa, Manuel; Goldmann, Oliver; Bravo, Alicia

    2016-01-01

    Enterococcus faecalis is a natural inhabitant of the human gastrointestinal tract. However, as an opportunistic pathogen, it is able to colonize other host niches and cause life-threatening infections. Its adaptation to new environments involves global changes in gene expression. The EF3013 gene (here named mafR) of E. faecalis strain V583 encodes a protein (MafR, 482 residues) that has sequence similarity to global response regulators of the Mga/AtxA family. The enterococcal OG1RF genome also encodes the MafR protein (gene OG1RF_12293). In this work, we have identified the promoter of the mafR gene using several in vivo approaches. Moreover, we show that MafR influences positively the transcription of many genes on a genome-wide scale. The most significant target genes encode components of PTS-type membrane transporters, components of ABC-type membrane transporters, and proteins involved in the metabolism of carbon sources. Some of these genes were previously reported to be up-regulated during the growth of E. faecalis in blood and/or in human urine. Furthermore, we show that a mafR deletion mutant strain induces a significant lower degree of inflammation in the peritoneal cavity of mice, suggesting that enterococcal cells deficient in MafR are less virulent. Our work indicates that MafR is a global transcriptional regulator. It might facilitate the adaptation of E. faecalis to particular host niches and, therefore, contribute to its potential virulence. PMID:26793169

  10. Global gene expression profiles induced by phytoestrogens in human breast cancer cells.

    PubMed

    Dip, Ramiro; Lenz, Sarah; Antignac, Jean-Philippe; Le Bizec, Bruno; Gmuender, Hans; Naegeli, Hanspeter

    2008-03-01

    The nutritional intake of phytoestrogens seems to reduce the risk of breast cancer or other neoplastic diseases. However, these epidemiological findings remain controversial because low doses of phytoestrogens, achievable through soy-rich diets, stimulate the proliferation of estrogen-sensitive tumor cells. The question of whether such phytochemicals prevent cancer or rather pose additional health hazards prompted us to examine global gene expression programs induced by a typical soy product. After extraction from soymilk, phytoestrogens were deconjugated and processed through reverse- and normal-phase cartridges. The resulting mixture was used to treat human target cells that represent a common model system for mammary tumorigenesis. Analysis of mRNA on high-density microarrays revealed that soy phytoestrogens induce a genomic fingerprint that is indistinguishable from the transcriptional effects of the endogenous hormone 17beta-estradiol. Highly congruent responses were also observed by comparing the physiologic estradiol with daidzein, coumestrol, enterolactone, or resveratrol, each representing distinct phytoestrogen structures. More diverging transcriptional profiles were generated when an inducible promoter was used to reconstitute the expression of estrogen receptor beta (ERbeta). Therefore, phytoestrogens appear to mitigate estrogenic signaling in the presence of both ER subtypes but, in late-stage cancer cells lacking ERbeta, these phytochemicals contribute to a tumor-promoting transcriptional signature. PMID:18310284

  11. Thermomechanical global response of the EUVL wafer during exposure

    NASA Astrophysics Data System (ADS)

    Chang, Jaehyuk; Martin, Carl J.; Engelstad, Roxann L.; Lovell, Edward G.

    2002-07-01

    Extreme ultraviolet lithography (EUVL) is one of the leading technologies for Next-Generation Lithography. Continued progress in its development will be facilitated by characterizing all sources of distortion in the chip fabrication process. These include the thermal distortions of the wafer caused by deposited EUVL energy during scanning exposure. Absorbed energy from the beam produces temperature increases and structural displacements in the wafer, which directly contribute to pattern placement errors and image blur. Because of the vacuum conditions of EUVL systems, wafer chucking will be electrostatic, which has a number of advantages over mechanical clamping systems. The goals of this research are to predict the transient temperature increases and corresponding displacements (locally and globally) consistent with the thermomechanical boundary conditions of the wafer. Both thermal and structural finite element models were constructed to numerically simulate wafer exposure. The response of the wafer is relatively sensitive to the interface conditions between the substrate and electrostatic chuck. Thus, parametric studies of the response to changes in the contact conductance and the friction coefficient were performed and are presented in this paper.

  12. Improving models to predict phenological responses to global change

    SciTech Connect

    Richardson, Andrew D.

    2015-11-25

    The term phenology describes both the seasonal rhythms of plants and animals, and the study of these rhythms. Plant phenological processes, including, for example, when leaves emerge in the spring and change color in the autumn, are highly responsive to variation in weather (e.g. a warm vs. cold spring) as well as longer-term changes in climate (e.g. warming trends and changes in the timing and amount of rainfall). We conducted a study to investigate the phenological response of northern peatland communities to global change. Field work was conducted at the SPRUCE experiment in northern Minnesota, where we installed 10 digital cameras. Imagery from the cameras is being used to track shifts in plant phenology driven by elevated carbon dioxide and elevated temperature in the different SPRUCE experimental treatments. Camera imagery and derived products (“greenness”) is being posted in near-real time on a publicly available web page (http://phenocam.sr.unh.edu/webcam/gallery/). The images will provide a permanent visual record of the progression of the experiment over the next 10 years. Integrated with other measurements collected as part of the SPRUCE program, this study is providing insight into the degree to which phenology may mediate future shifts in carbon uptake and storage by peatland ecosystems. In the future, these data will be used to develop improved models of vegetation phenology, which will be tested against ground observations collected by a local collaborator.

  13. Global transcriptional response of Clostridium difficile carrying the CD38 prophage.

    PubMed

    Sekulovic, Ognjen; Fortier, Louis-Charles

    2015-02-01

    Clostridium difficile is one of the most dangerous pathogens in hospital settings. Most strains of C. difficile carry one or more prophages, and some of them, like CD38-2 and CD119, can influence the expression of toxin genes. However, little is known about the global host response in the presence of a given prophage. In order to fill this knowledge gap, we used high-throughput RNA sequencing (RNA-seq) to conduct a genome-wide transcriptomic analysis of the epidemic C. difficile strain R20291 carrying the CD38-2 prophage. A total of 39 bacterial genes were differentially expressed in the R20291 lysogen, 26 of them being downregulated. Several of the regulated genes encode transcriptional regulators and phosphotransferase system (PTS) subunits involved in glucose, fructose, and glucitol/sorbitol uptake and metabolism. CD38-2 also upregulated the expression of a group of regulatory genes located in phi-027, a resident prophage common to most ribotype 027 isolates. The most differentially expressed gene was that encoding the conserved phase-variable cell wall protein CwpV, which was upregulated 20-fold in the lysogen. Quantitative PCR and immunofluorescence showed that the increased cwpV expression results from a greater proportion of cells actively transcribing the gene. Indeed, 95% of f lysogenic cells express cwpV, as opposed to only 5% of wild-type cells. Furthermore, the higher proportion of cells expressing cwpV results from a higher frequency of recombination of the genetic switch controlling phase variation, which we confirmed to be dependent on the host-encoded recombinase RecV. In summary, CD38-2 interferes with phase variation of the surface protein CwpV and the expression of metabolic genes. PMID:25501487

  14. Global Transcriptional Response of Clostridium difficile Carrying the ϕCD38-2 Prophage

    PubMed Central

    Sekulovic, Ognjen

    2014-01-01

    Clostridium difficile is one of the most dangerous pathogens in hospital settings. Most strains of C. difficile carry one or more prophages, and some of them, like ϕCD38-2 and ϕCD119, can influence the expression of toxin genes. However, little is known about the global host response in the presence of a given prophage. In order to fill this knowledge gap, we used high-throughput RNA sequencing (RNA-seq) to conduct a genome-wide transcriptomic analysis of the epidemic C. difficile strain R20291 carrying the ϕCD38-2 prophage. A total of 39 bacterial genes were differentially expressed in the R20291 lysogen, 26 of them being downregulated. Several of the regulated genes encode transcriptional regulators and phosphotransferase system (PTS) subunits involved in glucose, fructose, and glucitol/sorbitol uptake and metabolism. ϕCD38-2 also upregulated the expression of a group of regulatory genes located in phi-027, a resident prophage common to most ribotype 027 isolates. The most differentially expressed gene was that encoding the conserved phase-variable cell wall protein CwpV, which was upregulated ∼20-fold in the lysogen. Quantitative PCR and immunofluorescence showed that the increased cwpV expression results from a greater proportion of cells actively transcribing the gene. Indeed, ∼95% of lysogenic cells express cwpV, as opposed to only ∼5% of wild-type cells. Furthermore, the higher proportion of cells expressing cwpV results from a higher frequency of recombination of the genetic switch controlling phase variation, which we confirmed to be dependent on the host-encoded recombinase RecV. In summary, ϕCD38-2 interferes with phase variation of the surface protein CwpV and the expression of metabolic genes. PMID:25501487

  15. Cell types differ in global coordination of splicing and proportion of highly expressed genes.

    PubMed

    Trakhtenberg, Ephraim F; Pho, Nam; Holton, Kristina M; Chittenden, Thomas W; Goldberg, Jeffrey L; Dong, Lingsheng

    2016-01-01

    Balance in the transcriptome is regulated by coordinated synthesis and degradation of RNA molecules. Here we investigated whether mammalian cell types intrinsically differ in global coordination of gene splicing and expression levels. We analyzed RNA-seq transcriptome profiles of 8 different purified mouse cell types. We found that different cell types vary in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, and that the cell types that express more variants of alternatively spliced transcripts per gene are those that have higher proportion of highly expressed genes. Cell types segregated into two clusters based on high or low proportion of highly expressed genes. Biological functions involved in negative regulation of gene expression were enriched in the group of cell types with low proportion of highly expressed genes, and biological functions involved in regulation of transcription and RNA splicing were enriched in the group of cell types with high proportion of highly expressed genes. Our findings show that cell types differ in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, which represent distinct properties of the transcriptome and may reflect intrinsic differences in global coordination of synthesis, splicing, and degradation of RNA molecules. PMID:27577089

  16. Cell types differ in global coordination of splicing and proportion of highly expressed genes

    PubMed Central

    Trakhtenberg, Ephraim F.; Pho, Nam; Holton, Kristina M.; Chittenden, Thomas W.; Goldberg, Jeffrey L.; Dong, Lingsheng

    2016-01-01

    Balance in the transcriptome is regulated by coordinated synthesis and degradation of RNA molecules. Here we investigated whether mammalian cell types intrinsically differ in global coordination of gene splicing and expression levels. We analyzed RNA-seq transcriptome profiles of 8 different purified mouse cell types. We found that different cell types vary in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, and that the cell types that express more variants of alternatively spliced transcripts per gene are those that have higher proportion of highly expressed genes. Cell types segregated into two clusters based on high or low proportion of highly expressed genes. Biological functions involved in negative regulation of gene expression were enriched in the group of cell types with low proportion of highly expressed genes, and biological functions involved in regulation of transcription and RNA splicing were enriched in the group of cell types with high proportion of highly expressed genes. Our findings show that cell types differ in proportion of highly expressed genes and the number of alternatively spliced transcripts expressed per gene, which represent distinct properties of the transcriptome and may reflect intrinsic differences in global coordination of synthesis, splicing, and degradation of RNA molecules. PMID:27577089

  17. Glial expression of the {beta}-Amyloid Precursor Protein (APP) in global ischemia

    SciTech Connect

    Banati, R.B.; Gehrmann, J.; Kreutzberg, G.W. ||

    1995-07-01

    The {beta}-amyloid precursor protein (APP) bears characteristics of an acute-phase protein and therefore is likely to be involved in the glial response to brain injury. In the brain, APP is rapidly synthesized by activated glial cells in response to comparatively mild neuronal lesions, e.g., a remote peripheral nerve injury. Perfusion deficits in the brain result largely in neuronal necrosis and are a common condition in elderly patients. This neuronal necrosis is accompanied by a pronounced reaction of astrocytes and microglia, which can also be observed in animal models. We have therefore studied in the rat, immunocytochemically, the induction of APP after 30 min of global ischemia caused by four-vessel occlusion. The postischemic brain injuries were examined at survival times from 12 h to 7 days. From day 3 onward, APP immunoreactivity was strongly induced in the CA{sub 1} and CA{sub 4} regions of the rat dorsal hippocampus as well as in the dorsolateral striatum. In these areas, the majority of APP-immunoreactive cells were reactive glial fibrillary acidic protein (GFAP)-positive astrocytes, as shown by double-immunofluorescence labeling for GFAP and APP. Additionally, small ramified cells, most likely activated microglia, expressed APP immunoreactivity. In contrast, in the parietal cortex, APP immunoreactivity occurred focally in clusters of activated microglia rather than in astrocytes, as demonstrated by double-immunofluorescence labeling for APP and the microglia-binding lectin Griffonia simplicifolia isolectin B{sub 4}. In conclusion, following global ischemia, APP is induced in reactive glial cells with spatial differences in the distribution pattern of APP induction in actrocytes and microglia. 51 refs., 4 figs.

  18. Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals.

    PubMed

    Latorre, Mauricio; Ehrenfeld, Nicole; Cortés, María Paz; Travisany, Dante; Budinich, Marko; Aravena, Andrés; González, Mauricio; Bobadilla-Fazzini, Roberto A; Parada, Pilar; Maass, Alejandro

    2016-01-01

    In order to provide new information about the adaptation of Acidithiobacillus ferrooxidans during the bioleaching process, the current analysis presents the first report of the global transcriptional response of the native copper mine strain Wenelen (DSM 16786) oxidized under different sulfide minerals. Microarrays were used to measure the response of At. ferrooxidans Wenelen to shifts from iron supplemented liquid cultures (reference state) to the addition of solid substrates enriched in pyrite or chalcopyrite. Genes encoding for energy metabolism showed a similar transcriptional profile for the two sulfide minerals. Interestingly, four operons related to sulfur metabolism were over-expressed during growth on a reduced sulfur source. Genes associated with metal tolerance (RND and ATPases type P) were up-regulated in the presence of pyrite or chalcopyrite. These results suggest that At. ferrooxidans Wenelen presents an efficient transcriptional system developed to respond to environmental conditions, namely the ability to withstand high copper concentrations. PMID:26476161

  19. CovR-controlled global regulation of gene expression in Streptococcus mutans.

    PubMed

    Dmitriev, Alexander; Mohapatra, Saswat S; Chong, Patrick; Neely, Melody; Biswas, Saswati; Biswas, Indranil

    2011-01-01

    CovR/S is a two-component signal transduction system (TCS) that controls the expression of various virulence related genes in many streptococci. However, in the dental pathogen Streptococcus mutans, the response regulator CovR appears to be an orphan since the cognate sensor kinase CovS is absent. In this study, we explored the global transcriptional regulation by CovR in S. mutans. Comparison of the transcriptome profiles of the wild-type strain UA159 with its isogenic covR deleted strain IBS10 indicated that at least 128 genes (∼6.5% of the genome) were differentially regulated. Among these genes, 69 were down regulated, while 59 were up regulated in the IBS10 strain. The S. mutans CovR regulon included competence genes, virulence related genes, and genes encoded within two genomic islands (GI). Genes encoded by the GI TnSmu2 were found to be dramatically reduced in IBS10, while genes encoded by the GI TnSmu1 were up regulated in the mutant. The microarray data were further confirmed by real-time RT-PCR analyses. Furthermore, direct regulation of some of the differentially expressed genes was demonstrated by electrophoretic mobility shift assays using purified CovR protein. A proteomic study was also carried out that showed a general perturbation of protein expression in the mutant strain. Our results indicate that CovR truly plays a significant role in the regulation of several virulence related traits in this pathogenic streptococcus. PMID:21655290

  20. CovR-Controlled Global Regulation of Gene Expression in Streptococcus mutans

    PubMed Central

    Dmitriev, Alexander; Mohapatra, Saswat S.; Chong, Patrick; Neely, Melody; Biswas, Saswati; Biswas, Indranil

    2011-01-01

    CovR/S is a two-component signal transduction system (TCS) that controls the expression of various virulence related genes in many streptococci. However, in the dental pathogen Streptococcus mutans, the response regulator CovR appears to be an orphan since the cognate sensor kinase CovS is absent. In this study, we explored the global transcriptional regulation by CovR in S. mutans. Comparison of the transcriptome profiles of the wild-type strain UA159 with its isogenic covR deleted strain IBS10 indicated that at least 128 genes (∼6.5% of the genome) were differentially regulated. Among these genes, 69 were down regulated, while 59 were up regulated in the IBS10 strain. The S. mutans CovR regulon included competence genes, virulence related genes, and genes encoded within two genomic islands (GI). Genes encoded by the GI TnSmu2 were found to be dramatically reduced in IBS10, while genes encoded by the GI TnSmu1 were up regulated in the mutant. The microarray data were further confirmed by real-time RT-PCR analyses. Furthermore, direct regulation of some of the differentially expressed genes was demonstrated by electrophoretic mobility shift assays using purified CovR protein. A proteomic study was also carried out that showed a general perturbation of protein expression in the mutant strain. Our results indicate that CovR truly plays a significant role in the regulation of several virulence related traits in this pathogenic streptococcus. PMID:21655290

  1. Global Transcriptomic and Proteomic Responses of Dehalococcoides ethenogenes Strain 195 to Fixed Nitrogen Limitation

    SciTech Connect

    Lee, Patrick K. H.; Dill, Brian; Louie, Tiffany S.; Shah, Manesh B; Verberkmoes, Nathan C; Andersen, Gary L.; Zinder, Stephen H.; Alvarez-Cohen, Lisa

    2012-01-01

    Bacteria of the genus Dehalococcoides play an important role in the reductive dechlorination of chlorinated ethenes. A systems level approach was taken in this study to examine the global transcriptomic and proteomic responses of exponentially growing D. ethenogenes strain 195 to fixed nitrogen limitation (FNL) as dechlorination activity and cell yield both decrease during FNL. As expected, the nitrogen-fixing (nif) genes were differentially up-regulated in the transcriptome and proteome of strain 195 during FNL. Aside from the nif operon, a putative methylglyoxal synthase-encoding gene (DET1576), the product of which is predicted to catalyze the formation of the toxic electrophile methylglyoxal and implicated in the uncoupling of anabolism from catabolism in bacteria, was strongly up-regulated in the transcriptome and could potentially play a role in the observed growth inhibition during FNL. Carbon catabolism genes were generally down regulated in response to FNL and a number of transporters were differentially regulated in response to nitrogen limitation, with some playing apparent roles in nitrogen acquisition while others were associated with general stress responses. A number of genes related to the functions of nucleotide synthesis, replication, transcription, translation, and post-translational modifications were also differentially expressed. One gene coding for a putative reductive dehalogenase (DET1545) and a number coding for oxidoreductases, which have implications in energy generation and redox reactions, were also differentially regulated. Interestingly, most of the genes within the multiple integrated elements were not differentially expressed. Overall, this study elucidates the molecular responses of strain 195 to FNL and identifies differentially expressed genes that are potential biomarkers to evaluate environmental cellular nitrogen status.

  2. Uncertainties in the simulation of permafrost response to global warming

    NASA Astrophysics Data System (ADS)

    Dankers, Rutger; Anisimov, Oleg; Falloon, Pete; Gornall, Jemma; Reneva, Svetlana; Wiltshire, Andy

    2010-05-01

    Permafrost is generally believed to be highly sensitive to global warming, and some studies have projected dramatic reductions in permafrost extent by the end of this century. However, few studies have addressed the uncertainties in simulating the response of permafrost to climate change. Conventional permafrost models are based on well-established relations of permafrost occurrence with climatic variables, but often assume that the ground thermal regime is in equilibrium with the atmospheric climate. The land surface schemes of many climate models, on the other hand, use a process-based approach to simulate the dynamics of frozen ground, but ignore some of the key processes that will determine the pace of the permafrost response, in particular the thermodynamics of the deeper soil. Here we attempt to identify and quantify the different sources of uncertainty in the simulation of the permafrost response to climate change. These include model structure, parameter uncertainty, and uncertainty in the climate signal over permafrost regions. To this end, we used two very different modelling approaches: a stochastic equilibrium model that is able to account for the parameter uncertainty in traditional large-scale models of climate-permafrost interactions; and an updated version of the JULES (Joint UK Land Environment Simulator) land surface scheme, that now includes a representation of organic soils and the deeper soil layers. Both models have been driven by probabilistic climate scenarios from the Hadley Centre (HadCM3) perturbed physics ensemble, that allows for an estimation of the probability density function of key climatic parameters over the region. By using this approach we can compare the level of parameter uncertainty in the stochastic permafrost model to uncertainty in the climate model simulations, and we can determine the differences that arise from the divergent modelling approaches. First results indicate that the spread in the climate scenario ensemble is

  3. Global expression for representing cohesive-energy curves. II

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert; Ferrante, John

    1993-01-01

    Schlosser et al. (1991) showed that the R dependence of the cohesive energy of partially ionic solids may be characterized by a two-term energy relationship consisting of a Coulomb term arising from the charge transfer, delta-Z, and a scaled universal energy function, E*(a *), which accounts for the partially covalent character of the bond and for repulsion between the atomic cores for small R; a* is a scaled length. In the paper by Schlosser et al., the normalized cohesive-energy curves of NaCl-structure alkali-halide crystals were generated with this expression. In this paper we generate the cohesive-energy curves of several families of partially ionic solids with different crystal structures and differing degrees of ionicity. These include the CsCl-structure Cs halides, and the Tl and Ag halides, which have weaker ionic bonding than the alkali halides, and which have the CsCl and NaCl structures, respectively. The cohesive-energy-curve parameters are then used to generate theoretical isothermal compression curves for the Li, Na, K, Cs, and Ag halides. We find good agreement with the available experimental compression data.

  4. Gene expression response of mice after a single dose of 137CS as an internal emitter.

    PubMed

    Paul, Sunirmal; Ghandhi, Shanaz A; Weber, Waylon; Doyle-Eisele, Melanie; Melo, Dunstana; Guilmette, Raymond; Amundson, Sally A

    2014-10-01

    Cesium-137 is a radionuclide of concern in fallout from reactor accidents or nuclear detonations. When ingested or inhaled, it can expose the entire body for an extended period of time, potentially contributing to serious health consequences ranging from acute radiation syndrome to increased cancer risks. To identify changes in gene expression that may be informative for detecting such exposure, and to begin examining the molecular responses involved, we have profiled global gene expression in blood of male C57BL/6 mice injected with 137CsCl. We extracted RNA from the blood of control or 137CsCl-injected mice at 2, 3, 5, 20 or 30 days after exposure. Gene expression was measured using Agilent Whole Mouse Genome Microarrays, and the data was analyzed using BRB-ArrayTools. Between 466-6,213 genes were differentially expressed, depending on the time after 137Cs administration. At early times (2-3 days), the majority of responsive genes were expressed above control levels, while at later times (20-30 days) most responding genes were expressed below control levels. Numerous genes were overexpressed by day 2 or 3, and then underexpressed by day 20 or 30, including many Tp53-regulated genes. The same pattern was seen among significantly enriched gene ontology categories, including those related to nucleotide binding, protein localization and modification, actin and the cytoskeleton, and in the integrin signaling canonical pathway. We compared the expression of several genes three days after 137CsCl injection and three days after an acute external gamma-ray exposure, and found that the internal exposure appeared to produce a more sustained response. Many common radiation-responsive genes are altered by internally administered 137Cs, but the gene expression pattern resulting from continued irradiation at a decreasing dose rate is extremely complex, and appears to involve a late reversal of much of the initial response. PMID:25162453

  5. Gene Expression Response of Mice after a Single Dose of 137Cs as an Internal Emitter

    PubMed Central

    Paul, Sunirmal; Ghandhi, Shanaz A.; Weber, Waylon; Doyle-Eisele, Melanie; Melo, Dunstana; Guilmette, Raymond; Amundson, Sally A.

    2014-01-01

    Cesium-137 is a radionuclide of concern in fallout from reactor accidents or nuclear detonations. When ingested or inhaled, it can expose the entire body for an extended period of time, potentially contributing to serious health consequences ranging from acute radiation syndrome to increased cancer risks. To identify changes in gene expression that may be informative for detecting such exposure, and to begin examining the molecular responses involved, we have profiled global gene expression in blood of male C57BL/6 mice injected with 137CsCl. We extracted RNA from the blood of control or 137CsCl-injected mice at 2, 3, 5, 20 or 30 days after exposure. Gene expression was measured using Agilent Whole Mouse Genome Microarrays, and the data was analyzed using BRB-ArrayTools. Between 466–6,213 genes were differentially expressed, depending on the time after 137Cs administration. At early times (2–3 days), the majority of responsive genes were expressed above control levels, while at later times (20–30 days) most responding genes were expressed below control levels. Numerous genes were overexpressed by day 2 or 3, and then underexpressed by day 20 or 30, including many Tp53-regulated genes. The same pattern was seen among significantly enriched gene ontology categories, including those related to nucleotide binding, protein localization and modification, actin and the cytoskeleton, and in the integrin signaling canonical pathway. We compared the expression of several genes three days after 137CsCl injection and three days after an acute external gamma-ray exposure, and found that the internal exposure appeared to produce a more sustained response. Many common radiation-responsive genes are altered by internally administered 137Cs, but the gene expression pattern resulting from continued irradiation at a decreasing dose rate is extremely complex, and appears to involve a late reversal of much of the initial response. PMID:25162453

  6. Global transcriptome analysis of Bacillus cereus ATCC 14579 in response to silver nitrate stress

    PubMed Central

    2011-01-01

    Silver nanoparticles (AgNPs) were synthesized using Bacillus cereus strains. Earlier, we had synthesized monodispersive crystalline silver nanoparticles using B. cereus PGN1 and ATCC14579 strains. These strains have showed high level of resistance to silver nitrate (1 mM) but their global transcriptomic response has not been studied earlier. In this study, we investigated the cellular and metabolic response of B. cereus ATCC14579 treated with 1 mM silver nitrate for 30 & 60 min. Global expression profiling using genomic DNA microarray indicated that 10% (n = 524) of the total genes (n = 5234) represented on the microarray were up-regulated in the cells treated with silver nitrate. The majority of genes encoding for chaperones (GroEL), nutrient transporters, DNA replication, membrane proteins, etc. were up-regulated. A substantial number of the genes encoding chemotaxis and flagellar proteins were observed to be down-regulated. Motility assay of the silver nitrate treated cells revealed reduction in their chemotactic activity compared to the control cells. In addition, 14 distinct transcripts overexpressed from the 'empty' intergenic regions were also identified and proposed as stress-responsive non-coding small RNAs. PMID:22071005

  7. Effects of oestrogen on microRNA expression in hormone-responsive breast cancer cells.

    PubMed

    Ferraro, Lorenzo; Ravo, Maria; Nassa, Giovanni; Tarallo, Roberta; De Filippo, Maria Rosaria; Giurato, Giorgio; Cirillo, Francesca; Stellato, Claudia; Silvestro, Silvana; Cantarella, Concita; Rizzo, Francesca; Cimino, Daniela; Friard, Olivier; Biglia, Nicoletta; De Bortoli, Michele; Cicatiello, Luigi; Nola, Ernesto; Weisz, Alessandro

    2012-06-01

    Oestrogen receptor alpha (ERα) is a ligand-dependent transcription factor that mediates oestrogen effects in hormone-responsive cells. Following oestrogenic activation, ERα directly regulates the transcription of target genes via DNA binding. MicroRNAs (miRNAs) represent a class of small noncoding RNAs that function as negative regulators of protein-coding gene expression. They are found aberrantly expressed or mutated in cancer, suggesting their crucial role as either oncogenes or tumour suppressor genes. Here, we analysed changes in miRNA expression in response to oestrogen in hormone-responsive breast cancer MCF-7 and ZR-75.1 cells by microarray-mediated expression profiling. This led to the identification of 172 miRNAs up- or down-regulated by ERα in response to 17β-oestradiol, of which 52 are similarly regulated by the hormone in the two cell models investigated. To identify mechanisms by which ERα exerts its effects on oestrogen-responsive miRNA genes, the oestrogen-dependent miRNA expression profiles were integrated with global in vivo ERα binding site mapping in the genome by ChIP-Seq. In addition, data from miRNA and messenger RNA (mRNA) expression profiles obtained under identical experimental conditions were compared to identify relevant miRNA target transcripts. Results show that miRNAs modulated by ERα represent a novel genomic pathway to impact oestrogen-dependent processes that affect hormone-responsive breast cancer cell behaviour. MiRNome analysis in tumour tissues from breast cancer patients confirmed a strong association between expression of these small RNAs and clinical outcome of the disease, although this appears to involve only marginally the oestrogen-regulated miRNAs identified in this study. PMID:22274890

  8. Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough.

    SciTech Connect

    Chhabra, S.R.; He, Q.; Huang, K.H.; Gaucher, S.P.; Alm, E.J.; He,Z.; Hadi, M.Z.; Hazen, T.C.; Wall, J.D.; Zhou, J.; Arkin, A.P.; Singh, A.K.

    2005-09-16

    Desulfovibrio vulgaris Hildenborough belongs to a class ofsulfate-reducing bacteria (SRB) and is found ubiquitously in nature.Given the importance of SRB-mediated reduction for bioremediation ofmetal ion contaminants, ongoing research on D. vulgaris has been in thedirection of elucidating regulatory mechanisms for this organism under avariety of stress conditions. This work presents a global view of thisorganism's response to elevated growth temperature using whole-celltranscriptomics and proteomics tools. Transcriptional response (1.7-foldchange or greater; Z>1.5) ranged from 1,135 genes at 15 min to 1,463genes at 120 min for a temperature up-shift of 13oC from a growthtemperature of 37oC for this organism and suggested both direct andindirect modes of heat sensing. Clusters of orthologous group categoriesthat were significantly affected included posttranslationalmodifications; protein turnover and chaperones (up-regulated); energyproduction and conversion (down-regulated), nucleotide transport,metabolism (down-regulated), and translation; ribosomal structure; andbiogenesis (down-regulated). Analysis of the genome sequence revealed thepresence of features of both negative and positive regulation whichincluded the CIRCE element and promoter sequences corresponding to thealternate sigma factors ?32 and ?54. While mechanisms of heat shockcontrol for some genes appeared to coincide with those established forEscherichia coli and Bacillus subtilis, the presence of unique controlschemes for several other genes was also evident. Analysis of proteinexpression levels using differential in-gel electrophoresis suggestedgood agreement with transcriptional profiles of several heat shockproteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), andAhpC (DVU2247). The proteomics study also suggested the possibility ofposttranslational modifications in the chaperones DnaK, AhpC, GroES(DVU1977), and GroEL (DVU1976) and also several periplasmic ABCtransporters.

  9. Response of Hypervelocity Boundary Layers to Global and Local Distortion

    NASA Astrophysics Data System (ADS)

    Flaherty, William; Austin, Joanna

    2013-11-01

    Concave surface curvature can impose significant distortion to compressible boundary layer flows due to multiple, potentially coupled, effects including an adverse pressure gradient, bulk flow compression, and possible centrifugal instabilities. Approximate methods provide insight into dominant mechanisms, however few strategies are capable of treating heat transfer effects and predictions diverge significantly from the available experimental data at larger pressure gradient. In this work, we examine the response of boundary layers to global and local distortions in hypervelocity flows where thermochemical energy exchange has significant impact on boundary layer structure and stability. Experiments are carried out in a novel expansion tube facility built at Illinois. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle, even at the conditions of greatest distortion. As a model problem to study the evolution of large-scale structures under strained conditions, streamwise vortices are imposed into the boundary layer. The impact of the additional local distortion is investigated. The heat transfer scaling is found to be robust even in the presence of the imposed structures.

  10. Response of a temperate demersal fish community to global warming

    NASA Astrophysics Data System (ADS)

    Punzón, A.; Serrano, A.; Sánchez, F.; Velasco, F.; Preciado, I.; González-Irusta, J. M.; López-López, L.

    2016-09-01

    Changes in the distribution of the demersal fish species have been identified in north-European Atlantic waters. The consequence of these changes has been a northward shift of the distribution limits and changes in richness. In this study a notable increase in demersal fish species richness per sampling station was detected in the southern Bay of Biscay. This rise was due to an increase in frequency of occurrence and abundance of the majority of fish species in the area (53% from the total species). A fisheries relate explanation was discarded because the mismatch between the changes in the fishing effort and the augment in frequency of occurrence and abundance. On the contrary, these changes are in agreement with expected response under the increasing temperature of the sea observed over the last three decades, associated to global warming. These changes were positively correlated with an increase in temperature of intermediate waters in the study area. In addition, some of these species showed a notable western displacements of the Centre of Gravity in the study area, which would be expected if temperate water species would be favoured by an increase in water temperature. Our results are consistent with studies in the North Sea, where many of these species showing widened distribution limits towards north. The analysis of the results shows that the studied ecosystem, the Bay of Biscay is under a meridionalization process. On the other hand, only one tropicalization event (Lepidotrigla dieuzeidei), was recorded, maybe due to the conservative restrictions applied in species selection.

  11. Macrophage Expression of Inflammatory Genes in Response to EMCV Infection

    PubMed Central

    Shaheen, Zachary R.; Corbett, John A.

    2015-01-01

    The expression and production of type 1 interferon is the classic cellular response to virus infection. In addition to this antiviral response, virus infection also stimulates the production of proinflammatory mediators. In this review, the pathways controlling the induction of inflammatory genes and the roles that these inflammatory mediators contribute to host defense against viral pathogens will be discussed. Specific focus will be on the role of the chemokine receptor CCR5, as a signaling receptor controlling the activation of pathways leading to virus-induced inflammatory gene expression. PMID:26295266

  12. Global transcriptional profiles of the copper responses in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

  13. Global Transcriptional Profiles of the Copper Responses in the Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J.

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

  14. Global health: the ethical responsibility of the pharmaceutical industry.

    PubMed

    Lassen, Lars Christian; Thomsen, Mads Krogsgaard

    2007-02-01

    Health as a global issue concerns all and clearly manifests global inequality. All stakeholders of the healthcare systems and disease treatment--including the pharmaceutical industry--have an ethical obligation to contribute to promoting global health. At Novo Nordisk we primarily focus on providing our contribution to global health through defeating diabetes. At the same time we stand by being a private company required to deliver a financial profit, which is why we must create positive results on the financial, the environmental and the social bottom lines. In this article we attempt to provide a brief overview of some of the initiatives that we think business companies can take--and therefore are also obliged to in promoting global health. Further, we have pointed out a number of dilemmas within research and development as well as business ethics that all companies face when they convert the ethical principles to daily practice globally. PMID:17349219

  15. Mineral supply constraints necessitate a global policy response

    NASA Astrophysics Data System (ADS)

    Nickless, Edmund

    2016-04-01

    Adoption on 12 December 2015 of The Paris Agreement, the first universal climate agreement, suggests that nations will invest in infrastructures for renewable energy sources paving the way to a global low-carbon society. These large-scale changes will require vast amounts of metals and minerals. Regardless of whether known supplies are enough to meet demand in the near future, efforts must be made now to forestall unpredictable yet inevitable supply shortages in the decades to come, shortages that would dramatically impact the building of additional generation and distribution capacity, and deployment of low-carbon technology. But in response to the current downturn in commodity prices, the global mining industry is downsizing and reducing investment in the new exploration, putting at risk future security of supply. Mining and climate change are inextricably linked; the new adaptive technologies needed to tackle climate change depend on extraction of minerals and metals. An interdisciplinary group supported by the International Union of Geological Sciences, the International Council for Science Unions and UNESCO proposes measures to avert the looming minerals crisis that is developing in the context of current recycling capacity and exploration trends. Our immediate goal is to stimulate discussion of supply constraints using available data on mineral reserves. We build on recent discussions of supply risk and criticality with a focus on the source of primary resources over the next two to three decades when the availability of metals for recycling will remain low. Current massive production of iron ore and other such commodities despite record low prices indicates a failure of the traditional supply and demand constraints. Broader discussions of metal and mineral supply beyond current criticality are needed given the pace of technological and demographic change as well as rapid development spurts. Furthermore, accessible mineral deposits are irregularly distributed

  16. Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance

    PubMed Central

    Wareham, Lauren K.; Begg, Ronald; Jesse, Helen E.; van Beilen, Johan W.A.; Ali, Salar; Svistunenko, Dimitri; McLean, Samantha; Hellingwerf, Klaas J.; Sanguinetti, Guido

    2016-01-01

    Abstract Aims: Carbon monoxide is a respiratory poison and gaseous signaling molecule. Although CO-releasing molecules (CORMs) deliver CO with temporal and spatial specificity in mammals, and are proven antimicrobial agents, we do not understand the modes of CO toxicity. Our aim was to explore the impact of CO gas per se, without intervention of CORMs, on bacterial physiology and gene expression. Results: We used tightly controlled chemostat conditions and integrated transcriptomic datasets with statistical modeling to reveal the global effects of CO. CO is known to inhibit bacterial respiration, and we found expression of genes encoding energy-transducing pathways to be significantly affected via the global regulators, Fnr, Arc, and PdhR. Aerobically, ArcA—the response regulator—is transiently phosphorylated and pyruvate accumulates, mimicking anaerobiosis. Genes implicated in iron acquisition, and the metabolism of sulfur amino acids and arginine, are all perturbed. The global iron-related changes, confirmed by modulation of activity of the transcription factor Fur, may underlie enhanced siderophore excretion, diminished intracellular iron pools, and the sensitivity of CO-challenged bacteria to metal chelators. Although CO gas (unlike H2S and NO) offers little protection from antibiotics, a ruthenium CORM is a potent adjuvant of antibiotic activity. Innovation: This is the first detailed exploration of global bacterial responses to CO, revealing unexpected targets with implications for employing CORMs therapeutically. Conclusion: This work reveals the complexity of bacterial responses to CO and provides a basis for understanding the impacts of CO from CORMs, heme oxygenase activity, or environmental sources. Antioxid. Redox Signal. 24, 1013–1028. PMID:26907100

  17. Global gene expression analysis of peripheral blood mononuclear cells in rhesus monkey infants with CA16 infection-induced HFMD.

    PubMed

    Song, Jie; Hu, Yajie; Hu, Yunguang; Wang, Jingjing; Zhang, Xiaolong; Wang, Lichun; Guo, Lei; Wang, Yancui; Ning, Ruotong; Liao, Yun; Zhang, Ying; Zheng, Huiwen; Shi, Haijing; He, Zhanlong; Li, Qihan; Liu, Longding

    2016-03-01

    Coxsackievirus A16 (CA16) is a dominant pathogen that results in hand, foot, and mouth disease and causes outbreaks worldwide, particularly in the Asia-Pacific region. However, the underlying molecular mechanisms remain unclear. Our previous study has demonstrated that the basic CA16 pathogenic process was successfully mimicked in rhesus monkey infant. The present study focused on the global gene expression changes in peripheral blood mononuclear cells of rhesus monkey infants with hand, foot, and mouth disease induced by CA16 infection at different time points. Genome-wide expression analysis was performed with Agilent whole-genome microarrays and established bioinformatics tools. Nine hundred and forty-eight significant differentially expressed genes that were associated with 5 gene ontology categories, including cell communication, cell cycle, immune system process, regulation of transcription and metabolic process were identified. Subsequently, the mapping of genes related to the immune system process by PANTHER pathway analysis revealed the predominance of inflammation mediated by chemokine and cytokine signaling pathways and the interleukin signaling pathway. Ultimately, co-expressed genes and their networks were analyzed. The results revealed the gene expression profile of the immune system in response to CA16 in rhesus monkey infants and suggested that such an immune response was generated as a result of the positive mobilization of the immune system. This initial microarray study will provide insights into the molecular mechanism of CA16 infection and will facilitate the identification of biomarkers for the evaluation of vaccines against this virus. PMID:26775814

  18. MGMT expression predicts response to temozolomide in pancreatic neuroendocrine tumors.

    PubMed

    Cros, J; Hentic, O; Rebours, V; Zappa, M; Gille, N; Theou-Anton, N; Vernerey, D; Maire, F; Lévy, P; Bedossa, P; Paradis, V; Hammel, P; Ruszniewski, P; Couvelard, A

    2016-08-01

    Temozolomide (TEM) showed encouraging results in well-differentiated pancreatic neuroendocrine tumors (WDPNETs). Low O(6)-methylguanine-DNA methyltransferase (MGMT) expression and MGMT promoter methylation within tumors correlate with a better outcome under TEM-based chemotherapy in glioblastoma. We aimed to assess whether MGMT expression and MGMT promoter methylation could help predict the efficacy of TEM-based chemotherapy in patients with WDPNET. Consecutive patients with progressive WDPNET and/or liver involvement over 50% who received TEM between 2006 and 2012 were retrospectively studied. Tumor response was assessed according to Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 guidelines. Nuclear expression of MGMT was assessed by immunochemistry (H-score, 0-300) and MGMT promoter methylation by pyrosequencing. Forty-three patients (21 men, 58years (27-84)) with grade 1 WDPNET (n=6) or 2 (n=36) were analyzed. Objective response, stable disease, and progression rates were seen in 17 patients (39.5%), 18 patients (41.9%), and 8 patients (18.6%), respectively. Low MGMT expression (≤50) was associated with radiological objective response (P=0.04) and better progression-free survival (PFS) (HR=0.35 (0.15-0.81), P=0.01). Disease control rate at 18months of treatment remained satisfying with an MGMT score up to 100 (74%) but dropped with a higher expression. High MGMT promoter methylation was associated with a low MGMT expression and longer PFS (HR=0.37 (0.29-1.08), P=0.05). Low MGMT score (≤50) appears to predict an objective tumor response, whereas an intermediate MGMT score (50-100) seems to be associated with prolonged stable disease. PMID:27353036

  19. Terrestrial Ecosystem Responses to Global Change: A Research Strategy

    SciTech Connect

    Ecosystems Working Group,

    1998-09-23

    Uncertainty about the magnitude of global change effects on terrestrial ecosystems and consequent feedbacks to the atmosphere impedes sound policy planning at regional, national, and global scales. A strategy to reduce these uncertainties must include a substantial increase in funding for large-scale ecosystem experiments and a careful prioritization of research efforts. Prioritization criteria should be based on the magnitude of potential changes in environmental properties of concern to society, including productivity; biodiversity; the storage and cycling of carbon, water, and nutrients; and sensitivity of specific ecosystems to environmental change. A research strategy is proposed that builds on existing knowledge of ecosystem responses to global change by (1) expanding the spatial and temporal scale of experimental ecosystem manipulations to include processes known to occur at large scales and over long time periods; (2) quantifying poorly understood linkages among processes through the use of experiments that manipulate multiple interacting environmental factors over a broader range of relevant conditions than did past experiments; and (3) prioritizing ecosystems for major experimental manipulations on the basis of potential positive and negative impacts on ecosystem properties and processes of intrinsic and/or utilitarian value to humans and on feedbacks of terrestrial ecosystems to the atmosphere. Models and experiments are equally important for developing process-level understanding into a predictive capability. To support both the development and testing of mechanistic ecosystem models, a two-tiered design of ecosystem experiments should be used. This design should include both (1) large-scale manipulative experiments for comprehensive testing of integrated ecosystem models and (2) multifactor, multilevel experiments for parameterization of process models across the critical range of interacting environmental factors (CO{sub 2}, temperature, water

  20. Global 2000: The Presidential Task Force on Resources and the Environment--A Series of Responses.

    ERIC Educational Resources Information Center

    Scrofani, E. Robert; And Others

    A series of responses to "The Global 2000 Report to the President" is presented. The Global 2000 Report examines the issues and interdependencies of population, resources, and environment in the long term global perspective (ED 188 935). According to the above report, if present trends continue, serious stresses of overcrowding, pollution,…

  1. Psycho-physiological responses to expressive piano performance.

    PubMed

    Nakahara, Hidehiro; Furuya, Shinichi; Francis, Peter R; Kinoshita, Hiroshi

    2010-03-01

    The present study examined selected autonomic and cardio-respiratory responses of nine elite pianists during solo performances of the same single musical piece. The subjects performed the piece with and without self-perceived emotional expression, and with and without free ancillary body movements during expressive performance. Autonomic nervous system and cardio-respiratory parameters were continuously monitored during all experimental conditions. These parameters were heart rate (HR), sweating rate, the root mean square of successive difference (RMSSD) of heart rate variability and respiratory measurements such as oxygen consumption (VO(2)), minute ventilation, tidal volume and respiratory rate. Kinematics of the trunk and arms were recorded during all conditions. The subjects also provided subjective rating of the emotions that they experienced during their performances for each experimental condition. Analysis revealed that expressive performance clearly produced higher levels of valence and arousal than the non-expressive condition. This observation is consistent with current embodiment theory. The expressive condition also had significantly higher levels of HR, sweating rate, minute ventilation, and tidal volume, and lower levels of RMSSD and respiratory rate than the non-expressive condition. No difference was found for VO(2) between these conditions. The expressive condition with ancillary body movements did not significantly differentiate any of the physiological measures except for respiratory rate from those observed without such body movements. These findings suggested that expressive musical performance could modulate the emotion-related autonomic and cardio-respiratory responses that are independent of the effect of physiological load due to expressive ancillary body movements in playing the selected music on the piano. PMID:20025907

  2. Global Responses to Potential Climate Change: A Simulation.

    ERIC Educational Resources Information Center

    Williams, Mary Louise; Mowry, George

    This interdisciplinary five-day unit provides students with an understanding of the issues in the debate on global climate change. Introductory lessons enhance understanding of the "greenhouse gases" and their sources with possible global effects of climate change. Students then roleplay negotiators from 10 nations in a simulation of the…

  3. A Critique and Response to Multicultural Visions of Globalization

    ERIC Educational Resources Information Center

    Sriraman, Bharath; Adrian, Harry

    2008-01-01

    The paper by White in this issue of Interchange contains an interesting model for a global educational perspective based on the writings of Aurobindo and Pierre Teilhard de Chardin. White proposes a foundation for this new perspective based on the synthesis of Aurobindo's and de Chardin's theories of global, social, and conscious evolution. In our…

  4. Global Analysis of Gene Expression Profiles in Physic Nut (Jatropha curcas L.) Seedlings Exposed to Salt Stress

    PubMed Central

    Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2014-01-01

    Background Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many “biological processes” were affected by salt stress, particular those categories belong to “metabolic process”, such as “primary metabolism process”, “cellular metabolism process” and “macromolecule metabolism process”. The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. Conclusions/Significance The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future. PMID:24837971

  5. Living without Oxygen: Anoxia-Responsive Gene Expression and Regulation.

    PubMed

    Larade, Kevin; Storey, Kenneth B

    2009-04-01

    Many species of marine mollusks demonstrate exceptional capacities for long term survival without oxygen. Analysis of gene expression under anoxic conditions, including the subsequent translational responses, allows examination of the functional mechanisms that support and regulate natural anaerobiosis and permit noninjurious transitions between aerobic and anoxic states. Identification of stress-specific gene expression can provide important insights into the metabolic adaptations that are needed for anoxia tolerance, with potential applications to anoxia-intolerant systems. Various methods are available to do this, including high throughput microarray screening and construction and screening of cDNA libraries. Anoxia-responsive genes have been identified in mollusks; some have known functions in other organisms but were not previously linked with anoxia survival. In other cases, completely novel anoxia-responsive genes have been discovered, some that show known motifs or domains that hint at function. Selected genes are expressed at different times over an anoxia-recovery time course with their transcription and translation being actively regulated to ensure protein expression at the optimal time. An examination of transcript status over the course of anoxia exposure and subsequent aerobic recovery identifies genes, and the proteins that they encode, that enhance cell survival under oxygen-limited conditions. Analysis of data generated from non-mainstream model systems allows for insight into the response by cells to anoxia stress. PMID:19794879

  6. Emotional Responses to Music: Experience, Expression, and Physiology

    ERIC Educational Resources Information Center

    Lundqvist, Lars-Olov; Carlsson, Fredrik; Hilmersson, Per; Juslin, Patrik N.

    2009-01-01

    A crucial issue in research on music and emotion is whether music evokes genuine emotional responses in listeners (the emotivist position) or whether listeners merely perceive emotions expressed by the music (the cognitivist position). To investigate this issue, we measured self-reported emotion, facial muscle activity, and autonomic activity in…

  7. Global Gene Expression Profiling in PAI-1 Knockout Murine Heart and Kidney: Molecular Basis of Cardiac-Selective Fibrosis

    PubMed Central

    Ghosh, Asish K.; Murphy, Sheila B.; Kishore, Raj; Vaughan, Douglas E.

    2013-01-01

    Fibrosis is defined as an abnormal matrix remodeling due to excessive synthesis and accumulation of extracellular matrix proteins in tissues during wound healing or in response to chemical, mechanical and immunological stresses. At present, there is no effective therapy for organ fibrosis. Previous studies demonstrated that aged plasminogen activator inhibitor-1(PAI-1) knockout mice develop spontaneously cardiac-selective fibrosis without affecting any other organs. We hypothesized that differential expressions of profibrotic and antifibrotic genes in PAI-1 knockout hearts and unaffected organs lead to cardiac selective fibrosis. In order to address this prediction, we have used a genome-wide gene expression profiling of transcripts derived from aged PAI-1 knockout hearts and kidneys. The variations of global gene expression profiling were compared within four groups: wildtype heart vs. knockout heart; wildtype kidney vs. knockout kidney; knockout heart vs. knockout kidney and wildtype heart vs. wildtype kidney. Analysis of illumina-based microarray data revealed that several genes involved in different biological processes such as immune system processing, response to stress, cytokine signaling, cell proliferation, adhesion, migration, matrix organization and transcriptional regulation were affected in hearts and kidneys by the absence of PAI-1, a potent inhibitor of urokinase and tissue-type plasminogen activator. Importantly, the expressions of a number of genes, involved in profibrotic pathways including Ankrd1, Pi16, Egr1, Scx, Timp1, Timp2, Klf6, Loxl1 and Klotho, were deregulated in PAI-1 knockout hearts compared to wildtype hearts and PAI-1 knockout kidneys. While the levels of Ankrd1, Pi16 and Timp1 proteins were elevated during EndMT, the level of Timp4 protein was decreased. To our knowledge, this is the first comprehensive report on the influence of PAI-1 on global gene expression profiling in the heart and kidney and its implication in fibrogenesis and

  8. Drug effects on responses to emotional facial expressions: recent findings

    PubMed Central

    Miller, Melissa A.; Bershad, Anya K.; de Wit, Harriet

    2016-01-01

    Many psychoactive drugs increase social behavior and enhance social interactions, which may, in turn, increase their attractiveness to users. Although the psychological mechanisms by which drugs affect social behavior are not fully understood, there is some evidence that drugs alter the perception of emotions in others. Drugs can affect the ability to detect, attend to, and respond to emotional facial expressions, which in turn may influence their use in social settings. Either increased reactivity to positive expressions or decreased response to negative expressions may facilitate social interaction. This article reviews evidence that psychoactive drugs alter the processing of emotional facial expressions using subjective, behavioral, and physiological measures. The findings lay the groundwork for better understanding how drugs alter social processing and social behavior more generally. PMID:26226144

  9. Drug effects on responses to emotional facial expressions: recent findings.

    PubMed

    Miller, Melissa A; Bershad, Anya K; de Wit, Harriet

    2015-09-01

    Many psychoactive drugs increase social behavior and enhance social interactions, which may, in turn, increase their attractiveness to users. Although the psychological mechanisms by which drugs affect social behavior are not fully understood, there is some evidence that drugs alter the perception of emotions in others. Drugs can affect the ability to detect, attend to, and respond to emotional facial expressions, which in turn may influence their use in social settings. Either increased reactivity to positive expressions or decreased response to negative expressions may facilitate social interaction. This article reviews evidence that psychoactive drugs alter the processing of emotional facial expressions using subjective, behavioral, and physiological measures. The findings lay the groundwork for better understanding how drugs alter social processing and social behavior more generally. PMID:26226144

  10. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    SciTech Connect

    He, Z.; Zhou, A.; Baidoo, E.; He, Q.; Joachimiak, M. P.; Benke, P.; Phan, R.; Mukhopadhyay, A.; Hemme, C.L.; Huang, K.; Alm, E.J.; Fields, M.W.; Wall, J.; Stahl, D.; Hazen, T.C.; Keasling, J.D.; Arkin, A.P.; Zhou, J.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed. Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.

  11. Integrated Transcriptomic and Proteomic Analysis of the Global Response of Synechococcus to High Light Stress*

    PubMed Central

    Xiong, Qian; Feng, Jie; Li, Si-ting; Zhang, Gui-ying; Qiao, Zhi-xian; Chen, Zhuo; Wu, Ying; Lin, Yan; Li, Tao; Ge, Feng; Zhao, Jin-dong

    2015-01-01

    Sufficient light is essential for the growth and physiological functions of photosynthetic organisms, but prolonged exposure to high light (HL) stress can cause cellular damage and ultimately result in the death of these organisms. Synechococcus sp. PCC 7002 (hereafter Synechococcus 7002) is a unicellular cyanobacterium with exceptional tolerance to HL intensities. However, the molecular mechanisms involved in HL response by Synechococcus 7002 are not well understood. Here, an integrated RNA sequencing transcriptomic and quantitative proteomic analysis was performed to investigate the cellular response to HL in Synechococcus 7002. A total of 526 transcripts and 233 proteins were identified to be differentially regulated under HL stress. Data analysis revealed major changes in mRNAs and proteins involved in the photosynthesis pathways, resistance to light-induced damage, DNA replication and repair, and energy metabolism. A set of differentially expressed mRNAs and proteins were validated by quantitative RT-PCR and Western blot, respectively. Twelve genes differentially regulated under HL stress were selected for knockout generation and growth analysis of these mutants led to the identification of key genes involved in the response of HL in Synechococcus 7002. Taken altogether, this study established a model for global response mechanisms to HL in Synechococcus 7002 and may be valuable for further studies addressing HL resistance in photosynthetic organisms. PMID:25681118

  12. Intercomparison of Simulated Global Vegetation Distributions in Response to 6 kyr BP Orbital Forcing.

    NASA Astrophysics Data System (ADS)

    Harrison, S. P.; Jolly, D.; Laarif, F.; Abe-Ouchi, A.; Dong, B.; Herterich, K.; Hewitt, C.; Joussaume, S.; Kutzbach, J. E.; Mitchell, J.; de Noblet, N.; Valdes, P.

    1998-11-01

    The response of ten atmospheric general circulation models to orbital forcing at 6 kyr BP has been investigated using the BIOME model, which predicts equilibrium vegetation distribution, as a diagnostic. Several common features emerge: (a) reduced tropical rain forest as a consequence of increased aridity in the equatorial zone, (b) expansion of moisture-demanding vegetation in the Old World subtropics as a consequence of the expansion of the Afro-Asian monsoon, (c) an increase in warm grass/shrub in the Northern Hemisphere continental interiors in response to warming and enhanced aridity, and (d) a northward shift in the tundra-forest boundary in response to a warmer growing season at high northern latitudes. These broadscale features are consistent from model to model, but there are differences in their expression at a regional scale. Vegetation changes associated with monsoon enhancement and high-latitude summer warming are consistent with palaeoenvironmental observations, but the simulated shifts in vegetation belts are too small in both cases. Vegetation changes due to warmer and more arid conditions in the midcontinents of the Northern Hemisphere are consistent with palaeoenvironmental data from North America, but data from Eurasia suggests conditions were wetter at 6 kyr BP than today. The models show quantitatively similar vegetation changes in the intertropical zone, and in the northern and southern extratropics. The small differences among models in the magnitude of the global vegetation response are not related to differences in global or zonal climate averages, but reflect differences in simulated regional features. Regional-scale analyses will therefore be necessary to identify the underlying causes of such differences among models.

  13. Chemopreventive agents alters global gene expression pattern: predicting their mode of action and targets.

    PubMed

    Narayanan, Bhagavathi A

    2006-12-01

    Chemoprevention has the potential to be a major component of colon, breast, prostate and lung cancer control. Epidemiological, experimental, and clinical studies provide evidence that antioxidants, anti-inflammatory agents, n-3 polyunsaturated fatty acids and several other phytochemicals possess unique modes of action against cancer growth. However, the mode of action of several of these agents at the gene transcription level is not completely understood. Completion of the human genome sequence and the advent of DNA microarrays using cDNAs enhanced the detection and identification of hundreds of differentially expressed genes in response to anticancer drugs or chemopreventive agents. In this review, we are presenting an extensive analysis of the key findings from studies using potential chemopreventive agents on global gene expression patterns, which lead to the identification of cancer drug targets. The summary of the study reports discussed in this review explains the extent of gene alterations mediated by more than 20 compounds including antioxidants, fatty acids, NSAIDs, phytochemicals, retinoids, selenium, vitamins, aromatase inhibitor, lovastatin, oltipraz, salvicine, and zinc. The findings from these studies further reveal the utility of DNA microarray in characterizing and quantifying the differentially expressed genes that are possibly reprogrammed by the above agents against colon, breast, prostate, lung, liver, pancreatic and other cancer types. Phenolic antioxidant resveratrol found in berries and grapes inhibits the formation of prostate tumors by acting on the regulatory genes such as p53 while activating a cascade of genes involved in cell cycle and apoptosis including p300, Apaf-1, cdk inhibitor p21, p57 (KIP2), p53 induced Pig 7, Pig 8, Pig 10, cyclin D, DNA fragmentation factor 45. The group of genes significantly altered by selenium includes cyclin D1, cdk5, cdk4, cdk2, cdc25A and GADD 153. Vitamine D shows impact on p21(Waf1/Cip1) p27 cyclin B

  14. Growth-rate dependent global effects on gene expression in bacteria

    PubMed Central

    Klumpp, Stefan; Zhang, Zhongge; Hwa, Terence

    2010-01-01

    Summary Bacterial gene expression depends not only on specific regulations but also directly on bacterial growth, because important global parameters such as the abundance of RNA polymerases and ribosomes are all growth-rate dependent. Understanding these global effects is necessary for a quantitative understanding of gene regulation and for the robust design of synthetic genetic circuits. The observed growth-rate dependence of constitutive gene expression can be explained by a simple model using the measured growth-rate dependence of the relevant cellular parameters. More complex growth dependences for genetic circuits involving activators, repressors and feedback control were analyzed, and salient features were verified experimentally using synthetic circuits. The results suggest a novel feedback mechanism mediated by general growth-dependent effects and not requiring explicit gene regulation, if the expressed protein affects cell growth. This mechanism can lead to growth bistability and promote the acquisition of important physiological functions such as antibiotic resistance and tolerance (persistence). PMID:20064380

  15. Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean

    PubMed Central

    Song, Hui; Wang, Pengfei; Hou, Lei; Zhao, Shuzhen; Zhao, Chuanzhi; Xia, Han; Li, Pengcheng; Zhang, Ye; Bian, Xiaotong; Wang, Xingjun

    2016-01-01

    WRKY proteins are plant specific transcription factors involved in various developmental and physiological processes, especially in biotic and abiotic stress resistance. Although previous studies suggested that WRKY proteins in soybean (Glycine max var. Williams 82) involved in both abiotic and biotic stress responses, the global information of WRKY proteins in the latest version of soybean genome (Wm82.a2v1) and their response to dehydration and salt stress have not been reported. In this study, we identified 176 GmWRKY proteins from soybean Wm82.a2v1 genome. These proteins could be classified into three groups, namely group I (32 proteins), group II (120 proteins), and group III (24 proteins). Our results showed that most GmWRKY genes were located on Chromosome 6, while chromosome 11, 12, and 20 contained the least number of this gene family. More GmWRKY genes were distributed on the ends of chromosomes to compare with other regions. The cis-acting elements analysis suggested that GmWRKY genes were transcriptionally regulated upon dehydration and salt stress. RNA-seq data analysis indicated that three GmWRKY genes responded negatively to dehydration, and 12 genes positively responded to salt stress at 1, 6, and 12 h, respectively. We confirmed by qRT-PCR that the expression of GmWRKY47 and GmWRKY 58 genes was decreased upon dehydration, and the expression of GmWRKY92, 144 and 165 genes was increased under salt treatment. PMID:26870047

  16. Interpreting physiological responses to environmental change through gene expression profiling.

    PubMed

    Gracey, Andrew Y

    2007-05-01

    Identification of differentially expressed genes in response to environmental change offers insights into the roles of the transcriptome in the regulation of physiological responses. A variety of methods are now available to implement large-scale gene expression screens, and each method has specific advantages and disadvantages. Construction of custom cDNA microarrays remains the most popular route to implement expression screens in the non-model organisms favored by comparative physiologists, and we highlight some factors that should be considered when embarking along this path. Using a carp cDNA microarray, we have undertaken a broad, system-wide gene expression screen to investigate the physiological mechanisms underlying cold and hypoxia acclimation. This dataset provides a starting point from which to explore a range of specific mechanistic hypotheses at all levels of organization, from individual biochemical pathways to the level of the whole organism. We demonstrate the utility of two data analysis methods, Gene Ontology profiling and rank-based statistical methods, to summarize the probable physiological function of acclimation-induced gene expression changes, and to prioritize specific genes as candidates for further study. PMID:17449823

  17. Integrated transcriptomic and proteomic analysis of the global response of Wolbachia to doxycycline-induced stress

    PubMed Central

    Darby, Alistair C; Christina Gill, A; Armstrong, Stuart D; Hartley, Catherine S; Xia, Dong; Wastling, Jonathan M; Makepeace, Benjamin L

    2014-01-01

    The bacterium Wolbachia (order Rickettsiales), representing perhaps the most abundant vertically transmitted microbe worldwide, infects arthropods and filarial nematodes. In arthropods, Wolbachia can induce reproductive alterations and interfere with the transmission of several arthropod-borne pathogens. In addition, Wolbachia is an obligate mutualist of the filarial parasites that cause lymphatic filariasis and onchocerciasis in the tropics. Targeting Wolbachia with tetracycline antibiotics leads to sterilisation and ultimately death of adult filariae. However, several weeks of treatment are required, restricting the implementation of this control strategy. To date, the response of Wolbachia to stress has not been investigated, and almost nothing is known about global regulation of gene expression in this organism. We exposed an arthropod Wolbachia strain to doxycycline in vitro, and analysed differential expression by directional RNA-seq and label-free, quantitative proteomics. We found that Wolbachia responded not only by modulating expression of the translation machinery, but also by upregulating nucleotide synthesis and energy metabolism, while downregulating outer membrane proteins. Moreover, Wolbachia increased the expression of a key component of the twin-arginine translocase (tatA) and a phosphate ABC transporter ATPase (PstB); the latter is associated with decreased susceptibility to antimicrobials in free-living bacteria. Finally, the downregulation of 6S RNA during translational inhibition suggests that this small RNA is involved in growth rate control. Despite its highly reduced genome, Wolbachia shows a surprising ability to regulate gene expression during exposure to a potent stressor. Our findings have general relevance for the chemotherapy of obligate intracellular bacteria and the mechanistic basis of persistence in the Rickettsiales. PMID:24152719

  18. Comparative Digital Gene Expression Analysis of the Arabidopsis Response to Volatiles Emitted by Bacillus amyloliquefaciens

    PubMed Central

    Hao, Hai-Ting; Zhao, Xia; Shang, Qian-Han; Wang, Yun; Guo, Zhi-Hong; Zhang, Yu-Bao; Xie, Zhong-Kui; Wang, Ruo-Yu

    2016-01-01

    Some plant growth-promoting rhizobacteria (PGPR) regulated plant growth and elicited plant basal immunity by volatiles. The response mechanism to the Bacillus amyloliquefaciens volatiles in plant has not been well studied. We conducted global gene expression profiling in Arabidopsis after treatment with Bacillus amyloliquefaciens FZB42 volatiles by Illumina Digital Gene Expression (DGE) profiling of different growth stages (seedling and mature) and tissues (leaves and roots). Compared with the control, 1,507 and 820 differentially expressed genes (DEGs) were identified in leaves and roots at the seedling stage, respectively, while 1,512 and 367 DEGs were identified in leaves and roots at the mature stage. Seventeen genes with different regulatory patterns were validated using quantitative RT-PCR. Numerous DEGs were enriched for plant hormones, cell wall modifications, and protection against stress situations, which suggests that volatiles have effects on plant growth and immunity. Moreover, analyzes of transcriptome difference in tissues and growth stage using DGE profiling showed that the plant response might be tissue-specific and/or growth stage-specific. Thus, genes encoding flavonoid biosynthesis were downregulated in leaves and upregulated in roots, thereby indicating tissue-specific responses to volatiles. Genes related to photosynthesis were downregulated at the seedling stage and upregulated at the mature stage, respectively, thereby suggesting growth period-specific responses. In addition, the emission of bacterial volatiles significantly induced killing of cells of other organism pathway with up-regulated genes in leaves and the other three pathways (defense response to nematode, cell morphogenesis involved in differentiation and trichoblast differentiation) with up-regulated genes were significantly enriched in roots. Interestingly, some important alterations in the expression of growth-related genes, metabolic pathways, defense response to biotic

  19. Comparative Digital Gene Expression Analysis of the Arabidopsis Response to Volatiles Emitted by Bacillus amyloliquefaciens.

    PubMed

    Hao, Hai-Ting; Zhao, Xia; Shang, Qian-Han; Wang, Yun; Guo, Zhi-Hong; Zhang, Yu-Bao; Xie, Zhong-Kui; Wang, Ruo-Yu

    2016-01-01

    Some plant growth-promoting rhizobacteria (PGPR) regulated plant growth and elicited plant basal immunity by volatiles. The response mechanism to the Bacillus amyloliquefaciens volatiles in plant has not been well studied. We conducted global gene expression profiling in Arabidopsis after treatment with Bacillus amyloliquefaciens FZB42 volatiles by Illumina Digital Gene Expression (DGE) profiling of different growth stages (seedling and mature) and tissues (leaves and roots). Compared with the control, 1,507 and 820 differentially expressed genes (DEGs) were identified in leaves and roots at the seedling stage, respectively, while 1,512 and 367 DEGs were identified in leaves and roots at the mature stage. Seventeen genes with different regulatory patterns were validated using quantitative RT-PCR. Numerous DEGs were enriched for plant hormones, cell wall modifications, and protection against stress situations, which suggests that volatiles have effects on plant growth and immunity. Moreover, analyzes of transcriptome difference in tissues and growth stage using DGE profiling showed that the plant response might be tissue-specific and/or growth stage-specific. Thus, genes encoding flavonoid biosynthesis were downregulated in leaves and upregulated in roots, thereby indicating tissue-specific responses to volatiles. Genes related to photosynthesis were downregulated at the seedling stage and upregulated at the mature stage, respectively, thereby suggesting growth period-specific responses. In addition, the emission of bacterial volatiles significantly induced killing of cells of other organism pathway with up-regulated genes in leaves and the other three pathways (defense response to nematode, cell morphogenesis involved in differentiation and trichoblast differentiation) with up-regulated genes were significantly enriched in roots. Interestingly, some important alterations in the expression of growth-related genes, metabolic pathways, defense response to biotic

  20. Expressive suppression and neural responsiveness to nonverbal affective cues.

    PubMed

    Petrican, Raluca; Rosenbaum, R Shayna; Grady, Cheryl

    2015-10-01

    Optimal social functioning occasionally requires concealment of one's emotions in order to meet one's immediate goals and environmental demands. However, because emotions serve an important communicative function, their habitual suppression disrupts the flow of social exchanges and, thus, incurs significant interpersonal costs. Evidence is accruing that the disruption in social interactions, linked to habitual expressive suppression use, stems not only from intrapersonal, but also from interpersonal causes, since the suppressors' restricted affective displays reportedly inhibit their interlocutors' emotionally expressive behaviors. However, expressive suppression use is not known to lead to clinically significant social impairments. One explanation may be that over the lifespan, individuals who habitually suppress their emotions come to compensate for their interlocutors' restrained expressive behaviors by developing an increased sensitivity to nonverbal affective cues. To probe this issue, the present study used functional magnetic resonance imaging (fMRI) to scan healthy older women while they viewed silent videos of a male social target displaying nonverbal emotional behavior, together with a brief verbal description of the accompanying context, and then judged the target's affect. As predicted, perceivers who reported greater habitual use of expressive suppression showed increased neural processing of nonverbal affective cues. This effect appeared to be coordinated in a top-down manner via cognitive control. Greater neural processing of nonverbal cues among perceivers who habitually suppress their emotions was linked to increased ventral striatum activity, suggestive of increased reward value/personal relevance ascribed to emotionally expressive nonverbal behaviors. These findings thus provide neural evidence broadly consistent with the hypothesized link between habitual use of expressive suppression and compensatory development of increased responsiveness to

  1. Analysis of global gene expression changes in human bronchial epithelial cells exposed to spores of the allergenic fungus, Alternaria alternata

    PubMed Central

    Babiceanu, M. C.; Howard, B. A.; Rumore, A. C.; Kita, H.; Lawrence, C. B.

    2013-01-01

    Exposure and sensitivity to ubiquitous airborne fungi such as Alternaria alternata have long been implicated in the development, onset, and exacerbation of chronic allergic airway disorders. This present study is the first to investigate global changes in host gene expression during the interaction of cultured human bronchial epithelial cells and live Alternaria spores. In in vitro experiments human bronchial epithelial cells (BEAS-2B) were exposed to spores or media alone for 24 h. RNA was collected from three biological replicates per treatment and was used to assess changes in gene expression patterns using Affymetrix Human Genome U133 Plus 2.0 Arrays. In cells treated with Alternaria spores compared to controls, 613 probe sets representing 460 individual genes were found differentially expressed (p ≤ 0.05). In this set of 460 statistically significant, differentially expressed genes, 397 genes were found to be up-regulated and 63 were down-regulated. Of these 397 up-regulated genes, 156 genes were found to be up-regulated ≥2 fold. Interestingly, none of the 63 down-regulated genes were found differentially expressed at ≤−2 fold. Differentially expressed genes were identified following statistical analysis and subsequently used for pathway and network evaluation. Interestingly, many cytokine and chemokine immune response genes were up-regulated with a particular emphasis on interferon-inducible genes. Genes involved in cell death, retinoic acid signaling, and TLR3 response pathways were also significantly up-regulated. Many of the differentially up-regulated genes have been shown in other systems to be associated with innate immunity, inflammation and/or allergic airway diseases. This study now provides substantial information for further investigating specific genes and innate immune system pathways activated by Alternaria in the context of allergic airway diseases. PMID:23882263

  2. Differential gene expression in normal and transformed human mammary epithelial cells in response to oxidative stress

    PubMed Central

    Cortes, Diego F; Sha, Wei; Hower, Valerie; Blekherman, Greg; Laubenbacher, Reinhard; Akman, Steven; Torti, Suzy V; Shulaev, Vladimir

    2011-01-01

    Oxidative stress plays a key role in breast carcinogenesis. To investigate whether normal and malignant breast epithelial cells differ in their responses to oxidative stress, we examined the global gene expression profiles of three cell types, representing cancer progression from a normal to a malignant stage, under oxidative stress. Normal human mammary epithelial cells (HMEC), an immortalized cell line (HMLER-1), and a tumorigenic cell line (HMLER-5), were exposed to increased levels of reactive oxygen species (ROS) by treatment with glucose oxidase. Functional analysis of the metabolic pathways enriched with differentially expressed genes demonstrates that normal and malignant breast epithelial cells diverge substantially in their response to oxidative stress. While normal cells exhibit the up-regulation of antioxidant mechanisms, cancer cells are unresponsive to the ROS insult. However, the gene expression response of normal HMEC cells under oxidative stress is comparable to that of the malignant cells under normal conditions, indicating that altered redox status is persistent in breast cancer cells, which makes them resistant to increased generation of ROS. This study discusses some of the possible adaptation mechanisms of breast cancer cells under persistent oxidative stress that differentiate them from the response to acute oxidative stress in normal mammary epithelial cells. PMID:21397008

  3. Global Information Justice: Rights, Responsibilities, and Caring Connections.

    ERIC Educational Resources Information Center

    Smith, Martha

    2001-01-01

    Explains the concept of global information justice and describes it as an ethical ideal, as an organizing principle for a model for analysis, and as a direction for policy making. Discusses the use of new technologies; access to technology; ownership; privacy; security; community; and the Universal Declaration of Human Rights. (Author/LRW)

  4. Gene Expression of Corals in Response to Macroalgal Competitors

    PubMed Central

    Shearer, Tonya L.; Snell, Terry W.; Hay, Mark E.

    2014-01-01

    As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora) versus the more resistant (M. digitata) coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens. PMID:25500576

  5. Gene expression of corals in response to macroalgal competitors.

    PubMed

    Shearer, Tonya L; Snell, Terry W; Hay, Mark E

    2014-01-01

    As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora) versus the more resistant (M. digitata) coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens. PMID:25500576

  6. Pregnancy Complicated by Obesity Induces Global Transcript Expression Alterations in Visceral and Subcutaneous Fat

    PubMed Central

    Bashiri, Asher; Heo, Hye J.; Ben-Avraham, Danny; Mazor, Moshe; Budagov, Temuri; Einstein, Francine H.; Atzmon, Gil

    2014-01-01

    Maternal obesity is a significant risk factor for development of both maternal and fetal metabolic complications. Increase in visceral fat and insulin resistance is a metabolic hallmark of pregnancy, yet little is known how obesity alters adipose cellular function and how this may contribute to pregnancy morbidities. We sought to identify alterations in genome-wide transcription expression in both visceral (omental) and abdominal subcutaneous fat deposits in pregnancy complicated by obesity. Visceral and abdominal subcutaneous fat deposits were collected from normal weight and obese pregnant women (n=4/group) at time of scheduled uncomplicated cesarean section. A genome-wide expression array (Affymetrix Human Exon 1.0 st platform), validated by quantitative real-time PCR, was utilized to establish the gene transcript expression profile in both visceral and abdominal subcutaneous fat in normal weight and obese pregnant women. Global alteration in gene expression was identified in pregnancy complicated by obesity. These regions of variations lead to identification of indolethylamine N-methyltransferase (INMT), tissue factor pathway inhibitor-2 (TFPI-2), and ephrin type-B receptor 6 (EPHB6), not previously associated with fat metabolism during pregnancy. In addition, subcutaneous fat of obese pregnant women demonstrated increased coding protein transcripts associated with apoptosis compared to lean counterparts. Global alteration of gene expression in adipose tissue may contribute to adverse pregnancy outcomes associated with obesity. PMID:24696292

  7. Global variability in gene expression and alternative splicing is modulated by mitochondrial content.

    PubMed

    Guantes, Raul; Rastrojo, Alberto; Neves, Ricardo; Lima, Ana; Aguado, Begoña; Iborra, Francisco J

    2015-05-01

    Noise in gene expression is a main determinant of phenotypic variability. Increasing experimental evidence suggests that genome-wide cellular constraints largely contribute to the heterogeneity observed in gene products. It is still unclear, however, which global factors affect gene expression noise and to what extent. Since eukaryotic gene expression is an energy demanding process, differences in the energy budget of each cell could determine gene expression differences. Here, we quantify the contribution of mitochondrial variability (a natural source of ATP variation) to global variability in gene expression. We find that changes in mitochondrial content can account for ∼50% of the variability observed in protein levels. This is the combined result of the effect of mitochondria dosage on transcription and translation apparatus content and activities. Moreover, we find that mitochondrial levels have a large impact on alternative splicing, thus modulating both the abundance and type of mRNAs. A simple mathematical model in which mitochondrial content simultaneously affects transcription rate and splicing site choice can explain the alternative splicing data. The results of this study show that mitochondrial content (and/or probably function) influences mRNA abundance, translation, and alternative splicing, which ultimately affects cellular phenotype. PMID:25800673

  8. Differential miRNA expression profiles in proliferating or differentiated keratinocytes in response to gamma irradiation

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs), a group of short non-coding RNAs that negatively regulate gene expression, have recently emerged as potential modulators of cellular response to ionizing radiations both in vitro and in vivo in various cell types and tissues. However, in epidermal cells, the involvement of the miRNA machinery in the cellular response to ionizing radiations remains to be clarified. Indeed, understanding the mechanisms of cutaneous radiosensitivity is an important issue since skin is the most exposed organ to ionizing radiations and among the most sensitive. Results We settled up an expression study of miRNAs in primary human skin keratinocytes using a microfluidic system of qPCR assay, which permits to assess the expression of almost 700 annotated miRNAs. The keratinocytes were cultured to a proliferative or a differentiated state mimicking basal or suprabasal layers of human epidermis. These cells were irradiated at 10 mGy or 6 Gy and RNA was extracted 3 hours after irradiation. We found that proliferative cells irradiated at 6 Gy display a global fall of miRNA expression whereas differentiated cells exposed to the same dose display a global increase of miRNAs expression. We identified twenty miRNAs weakly but significantly modulated after 6 Gy irradiation, whereas only 2 miRNAs were modulated after low-dose irradiation in proliferating cells. To go further into the biological meaning of this miRNA response, we over-expressed some of the responding miRNA in proliferating cells: we observed a significant decrease of cell viability 72 hours after irradiation. Functional annotation of their predicted targets revealed that G-protein related pathways might be regulated by these responding miRNAs. Conclusions Our results reveal that human primary keratinocytes exposed to ionizing irradiation expressed a miRNA pattern strongly related to the differentiation status of irradiated cells. We also demonstrate that some miRNAs play a role in the radiation

  9. Global Developmental Gene Expression and Pathway Analysis of Normal Brain Development and Mouse Models of Human Neuronal Migration Defects

    PubMed Central

    Pramparo, Tiziano; Libiger, Ondrej; Jain, Sonia; Li, Hong; Youn, Yong Ha; Hirotsune, Shinji; Schork, Nicholas J.; Wynshaw-Boris, Anthony

    2011-01-01

    Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3ε that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3ε), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define

  10. A global response to a global problem: the epidemic of overnutrition.

    PubMed Central

    Chopra, Mickey; Galbraith, Sarah; Darnton-Hill, Ian

    2002-01-01

    It is estimated that by 2020 two-thirds of the global burden of disease will be attributable to chronic noncommunicable diseases, most of them strongly associated with diet. The nutrition transition towards refined foods, foods of animal origin, and increased fats plays a major role in the current global epidemics of obesity, diabetes and cardiovascular diseases, among other noncommunicable conditions. Sedentary lifestyles and the use of tobacco are also significant risk factors. The epidemics cannot be ended simply by encouraging people to reduce their risk factors and adopt healthier lifestyles, although such encouragement is undoubtedly beneficial if the targeted people can respond. Unfortunately, increasingly obesogenic environments, reinforced by many of the cultural changes associated with globalization, make even the adoption of healthy lifestyles, especially by children and adolescents, more and more difficult. The present paper examines some possible mechanisms for, and WHO's role in, the development of a coordinated global strategy on diet, physical activity and health. The situation presents many countries with unmanageable costs. At the same time there are often continuing problems of undernutrition. A concerted multisectoral approach, involving the use of policy, education and trade mechanisms, is necessary to address these matters. PMID:12571723

  11. Gene expression in epithelial cells in response to pneumovirus infection

    PubMed Central

    Domachowske, Joseph B; Bonville, Cynthia A; Rosenberg, Helene F

    2001-01-01

    Respiratory syncytial virus (RSV) and pneumonia virus of mice (PVM) are viruses of the family Paramyxoviridae, subfamily pneumovirus, which cause clinically important respiratory infections in humans and rodents, respectively. The respiratory epithelial target cells respond to viral infection with specific alterations in gene expression, including production of chemoattractant cytokines, adhesion molecules, elements that are related to the apoptosis response, and others that remain incompletely understood. Here we review our current understanding of these mucosal responses and discuss several genomic approaches, including differential display reverse transcription-polymerase chain reaction (PCR) and gene array strategies, that will permit us to unravel the nature of these responses in a more complete and systematic manner. PMID:11686888

  12. Global changes in biogeochemical cycles in response to human activities

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Melillo, Jerry

    1994-01-01

    The main objective of our research was to characterize biogeochemical cycles at continental and global scales in both terrestrial and aquatic ecosystems. This characterization applied to both natural ecosystems and those disturbed by human activity. The primary elements of interest were carbon and nitrogen and the analysis sought to quantify standing stocks and dynamic cycling processes. The translocation of major nutrients from the terrestrial landscape to the atmosphere (via trace gases) and to fluvial systems (via leaching, erosional losses, and point source pollution) were of particular importance to this study. Our aim was to develop the first generation of Earth System Models. Our research was organized around the construction and testing of component biogeochemical models which treated terrestrial ecosystem processes, aquatic nutrient transport through drainage basins, and trace gas exchanges at the continental and global scale. A suite of three complementary models were defined within this construct. The models were organized to operate at a 1/2 degree latitude by longitude level of spatial resolution and to execute at a monthly time step. This discretization afforded us the opportunity to understand the dynamics of the biosphere down to subregional scales, while simultaneously placing these dynamics into a global context.

  13. Global Gene Expression Profiling through the Complete Life Cycle of Trypanosoma vivax

    PubMed Central

    Jackson, Andrew P.; Goyard, Sophie; Xia, Dong; Foth, Bernardo J.; Sanders, Mandy; Wastling, Jonathan M.; Minoprio, Paola; Berriman, Matthew

    2015-01-01

    The parasitic flagellate Trypanosoma vivax is a cause of animal trypanosomiasis across Africa and South America. The parasite has a digenetic life cycle, passing between mammalian hosts and insect vectors, and a series of developmental forms adapted to each life cycle stage. Each point in the life cycle presents radically different challenges to parasite metabolism and physiology and distinct host interactions requiring remodeling of the parasite cell surface. Transcriptomic and proteomic studies of the related parasites T. brucei and T. congolense have shown how gene expression is regulated during their development. New methods for in vitro culture of the T. vivax insect stages have allowed us to describe global gene expression throughout the complete T. vivax life cycle for the first time. We combined transcriptomic and proteomic analysis of each life stage using RNA-seq and mass spectrometry respectively, to identify genes with patterns of preferential transcription or expression. While T. vivax conforms to a pattern of highly conserved gene expression found in other African trypanosomes, (e.g. developmental regulation of energy metabolism, restricted expression of a dominant variant antigen, and expression of ‘Fam50’ proteins in the insect mouthparts), we identified significant differences in gene expression affecting metabolism in the fly and a suite of T. vivax-specific genes with predicted cell-surface expression that are preferentially expressed in the mammal (‘Fam29, 30, 42’) or the vector (‘Fam34, 35, 43’). T. vivax differs significantly from other African trypanosomes in the developmentally-regulated proteins likely to be expressed on its cell surface and thus, in the structure of the host-parasite interface. These unique features may yet explain the species differences in life cycle and could, in the form of bloodstream-stage proteins that do not undergo antigenic variation, provide targets for therapy. PMID:26266535

  14. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    NASA Astrophysics Data System (ADS)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  15. Global gene expression and the role of sigma factors in Neisseria gonorrhoeae in interactions with epithelial cells.

    PubMed

    Du, Ying; Lenz, Jonathan; Arvidson, Cindy Grove

    2005-08-01

    Like many bacterial pathogens, Neisseria gonorrhoeae must adapt to environmental changes in order to successfully colonize and proliferate in a new host. Modulation of gene expression in response to environmental signals is an efficient mechanism used by bacteria to achieve this goal. Using DNA microarrays and a tissue culture model for gonococcal infection, we examined global changes in gene expression in N. gonorrhoeae in response to adherence to host cells. Among those genes induced upon adherence to human epithelial cells in culture was rpoH, which encodes a homolog of the heat shock sigma factor, sigma(32) (RpoH), as well as genes of the RpoH regulon, groEL and groES. Attempts to construct an rpoH null mutant in N. gonorrhoeae were unsuccessful, suggesting that RpoH is essential for viability of N. gonorrhoeae. The extracytoplasmic sigma factor, RpoE (sigma(E)), while known to regulate rpoH in other bacteria, was found not to be necessary for the up-regulation of rpoH in gonococci upon adherence to host cells. To examine the role of RpoH in host cell interactions, an N. gonorrhoeae strain conditionally expressing rpoH was constructed. The results of our experiments showed that while induction of rpoH expression is not necessary for adherence of gonococci to epithelial cells, it is important for the subsequent invasion step, as gonococci depleted for rpoH invade cells two- to threefold less efficiently than a wild-type strain. Taken together, these results indicate that sigma(32), but not sigma(E), is important for the response of gonococci in the initial steps of an infection. PMID:16040997

  16. Social responses to expressive suppression: The role of personality judgments.

    PubMed

    Tackman, Allison M; Srivastava, Sanjay

    2016-04-01

    Why do people who suppress their emotion-expressive behavior have difficulty forming close, supportive relationships? Previous studies have found that suppression disrupts the dynamics of social interactions and existing relationships. We evaluated a complementary hypothesis: that suppression functions as a behavioral cue leading others to form negative personality impressions of suppressors, even at zero-acquaintance. In 2 studies, participants reported personality judgments and other impressions of targets who either suppressed or expressed their emotion-expressive behavior in response to amusing or sad film clips. In findings replicated across studies, targets who suppressed either amusement or sadness were judged as less extraverted, less agreeable, and more interpersonally avoidant and anxious than targets who expressed emotions, and participants were less interested in affiliating with suppressors compared with expressers. Effects were amplified when targets suppressed amusement (compared with sadness) and when participants knew the emotional context (compared with when they did not) and, thus, could form expectations about what emotions targets should be showing. Extraversion and agreeableness judgments mediated the effect of suppression on participants' disinterest in affiliating. In Study 2, which extended Study 1 in several ways, effects were pronounced for the enthusiasm aspect of extraversion and the compassion aspect of agreeableness. We also found evidence that judgments of suppressors do not simply fall between neutral and fully expressing targets; rather, judgments of suppressors are qualitatively different. We discuss implications for understanding the social consequences of emotion regulation-in particular, how beyond disrupting relationships, suppression may prevent some relationships from even forming in the first place. PMID:26280841

  17. Trends in TIMSS Responses over Time: Evidence of Global Forces in Education?

    ERIC Educational Resources Information Center

    Rutkowski, Leslie; Rutkowski, David

    2009-01-01

    In this article, the influence of global processes on international mathematics curricula as evidenced by item responses to 3 Trends in International Mathematics and Science Study (TIMSS) administrations (1995, 1999, and 2003) is considered. Based on Dale's (2000) argument, we set out to test 2 plausible impacts of global processes on education.…

  18. A Conceptual Framework for Responsive Global Engagement in Communication Sciences and Disorders

    ERIC Educational Resources Information Center

    Hyter, Yvette D.

    2014-01-01

    The field of speech-language pathology needs a conceptual framework to guide the provision of services in a globalized world. Proposed in this article is a conceptual framework designed to facilitate responsive global engagement for professionals such as speech-language pathologists, who are increasingly serving diverse populations around the…

  19. Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency

    PubMed Central

    2013-01-01

    Background TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in defense responses to biotic and abiotic stresses. Here, we identified the TIFY genes (designated PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. Results Nineteen genes from the PvTIFY gene family were identified through whole-genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the newly designed Bean Custom Array 90 K was performed on transgenic roots of composite plants with modulated (RNAi-silencing or over-expression) PvTIFY10C gene expression. Data were interpreted using Gene Ontology and MapMan adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress responses and metabolism in PvTIFY10C silenced vs. over-expressing roots. These data point to transcript reprogramming (mainly repression) orchestrated by PvTIFY10C. In addition, we found that several PvTIFY genes, as well as genes from the JA biosynthetic pathway, responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, and signaling were oppositely-regulated in control vs. PvTIFY10C-silenced roots of composite plants under P-stress. These data indicate that PvTIFY10C regulates, directly or indirectly, the

  20. Gender Differences in Emotional Response: Inconsistency between Experience and Expressivity.

    PubMed

    Deng, Yaling; Chang, Lei; Yang, Meng; Huo, Meng; Zhou, Renlai

    2016-01-01

    The present study investigated gender differences in both emotional experience and expressivity. Heart rate (HR) was recorded as an indicator of emotional experience while the participants watched 16 video clips that induced eight types of emotion (sadness, anger, horror, disgust, neutrality, amusement, surprise, and pleasure). We also asked the participants to report valence, arousal, and motivation as indicators of emotional expressivity. Overall, the results revealed gender differences in emotional experience and emotional expressivity. When watching videos that induced anger, amusement, and pleasure, men showed larger decreases in HR, whereas women reported higher levels of arousal. There was no gender difference in HR when the participants watched videos that induced horror and disgust, but women reported lower valence, higher arousal, and stronger avoidance motivation than did men. Finally, no gender difference was observed in sadness or surprise, although there was one exception-women reported higher arousal when watching videos that induced sadness. The findings suggest that, when watching videos that induce an emotional response, men often have more intense emotional experiences, whereas women have higher emotional expressivity, particularly for negative emotions. In addition, gender differences depend on the specific emotion type but not the valence. PMID:27362361

  1. Gender Differences in Emotional Response: Inconsistency between Experience and Expressivity

    PubMed Central

    Deng, Yaling; Chang, Lei; Yang, Meng; Huo, Meng

    2016-01-01

    The present study investigated gender differences in both emotional experience and expressivity. Heart rate (HR) was recorded as an indicator of emotional experience while the participants watched 16 video clips that induced eight types of emotion (sadness, anger, horror, disgust, neutrality, amusement, surprise, and pleasure). We also asked the participants to report valence, arousal, and motivation as indicators of emotional expressivity. Overall, the results revealed gender differences in emotional experience and emotional expressivity. When watching videos that induced anger, amusement, and pleasure, men showed larger decreases in HR, whereas women reported higher levels of arousal. There was no gender difference in HR when the participants watched videos that induced horror and disgust, but women reported lower valence, higher arousal, and stronger avoidance motivation than did men. Finally, no gender difference was observed in sadness or surprise, although there was one exception—women reported higher arousal when watching videos that induced sadness. The findings suggest that, when watching videos that induce an emotional response, men often have more intense emotional experiences, whereas women have higher emotional expressivity, particularly for negative emotions. In addition, gender differences depend on the specific emotion type but not the valence. PMID:27362361

  2. Sustainable water future with global implications: everyone's responsibility.

    PubMed

    Kuylenstierna, J L; Bjorklund, G; Najlis, P

    1997-01-01

    The current use and management of freshwater is not sustainable in many countries and regions of the world. If current trends are maintained, about two-thirds of the world's population will face moderate to severe water stress by 2025 compared to one-third at present. This water stress will hamper economic and social development unless action is taken to deal with the emerging problems. The Comprehensive Assessment of the Freshwater Resources of the World, prepared by the UN and the Stockholm Environment Institute, calls for immediate action to prevent further deterioration of freshwater resources. Although most problems related to water quantity and quality require national and regional solutions, only a global commitment can achieve the necessary agreement on principles, as well as financial means to attain sustainability. Due to the central and integrated role played by water in human activities, any measures taken need to incorporate a wide range of social, ecological and economic factors and needs. The Assessment thus addresses the many issues related to freshwater use, such as integrated land and water management at the watershed level, global food security, water supply and sanitation, ecosystem requirements, pollution, strengthening of major groups, and national water resource assessment capabilities and monitoring networks. Governments are urged to work towards a consensus regarding global principles and guidelines for integrated water management, and towards their implementation in local and regional water management situations. The alternative development options available to countries facing water stress, or the risk thereof, needs to be considered in all aspects of development planning. PMID:12321854

  3. Transcriptome Expression Profiling in Response to Drought Stress in Paulownia australis

    PubMed Central

    Dong, Yanpeng; Fan, Guoqiang; Zhao, Zhenli; Deng, Minjie

    2014-01-01

    The response and adaptation to drought remains poorly understood for Paulownia australis. To investigate this issue, transcriptome profiling of four P. australis accessions (two diploid and the other two autotetraploid) under water stress condition were studied using Illumina Genome Analyzer IIx analysis. The current study aimed to identify genes of P. australis metabolism pathways that might be involved in this plant’s response to water deficit. Potted seedlings were subjected to well-watered conditions and drought stress, respectively. More than 290 million raw transcript reads were assembled into 111,660 unigenes, with a mean length of 1013 bp. Clusters of orthologous groups, gene ontology and the Kyoto Encyclopedia of Genes and Genomes annotations analyses were performed on the unigenes. Many differentially expressed genes and several metabolic pathways were identified. Quantitative real-time polymerase chain reaction was used to verify the expression patterns of 14 genes. Our study identified altered gene expression in P. australis induced by drought stress and provided a comprehensive map of drought-responsive genes and pathways in this species. To our knowledge, this is the first publicly available global transcriptome study of P. australis. This study provides a valuable genetic resource for this species. PMID:24642880

  4. Microemboli alter the acute stress response and cause prolonged expression of MCP-1 in the hippocampus.

    PubMed

    Nemeth, Christina L; Neigh, Gretchen N

    2015-04-01

    Microvascular ischemia is linked to cardiovascular disease pathology, as well as alterations in mood and cognition. Ischemia activates the hypothalamic-pituitary-adrenal (HPA) axis and through chronic activation, alters HPA axis function. Dysregulation of the HPA axis can lead to the chronic release of glucocorticoids, a hyper-inflammatory cerebral response, cell damage, and changes in behavior. Although the interactions between injury and HPA axis activity have been established in global ischemia, HPA-related repercussions of diffuse ischemic damage and subsequent inflammation have not been assessed. The current study used a rat model of microsphere embolism (ME) ischemia to test the hypothesis that microvascular ischemia would lead to long term alterations in HPA axis function and inflammatory activity. Furthermore, given the pro-inflammatory nature of chronic stress, we assessed the implications of chronic stress for gene expression of inflammatory factors and key components of the glucocorticoid receptor response, following microvascular ischemia. Results indicated that ME altered the response to an acute stress fourteen days following ME injury and increased hippocampal expression of monocyte chemoattractant protein 1 (Mcp-1) as long as 4 weeks following ME injury, without concomitant effects on gene expression of the glucocorticoid receptor or its co-chaperones. Furthermore, no exacerbative effects of chronic stress exposure were observed following ME injury beyond the effects of ME injury alone. Together, these results indicate that ME injury is sufficient to alter both HPA axis activity and cerebral inflammation for a prolonged period of time following injury. PMID:25697594

  5. Mitochondrial gene expression, antioxidant responses, and histopathology after cadmium exposure.

    PubMed

    Al Kaddissi, Simone; Legeay, Alexia; Elia, Antonia Concetta; Gonzalez, Patrice; Floriani, Magali; Cavalie, Isabelle; Massabuau, Jean-Charles; Gilbin, Rodolphe; Simon, Olivier

    2014-08-01

    The present study investigates cadmium effects on the transcription of mitochondrial genes of Procambarus clarkii after acute (0.05, 0.5, and 5 mg Cd/L; 4-10 days) and chronic exposures (10 μg Cd/L; 30-60 days). Transcriptional responses of cox1, atp6, and 12S using quantitative real-time RT-PCR were assessed in gills and hepatopancreas. Additionally, the expression levels of genes involved in detoxification and/or oxidative stress responses [mt, sod(Mn)] and enzymatic activities of antioxidants (SOD, CAT, GPX, and GST) were analyzed. The histopathological effects in hepatopancreas of crayfish were evaluated by light microscopy. Relationships between endpoints at different levels of biological organization and Cd bioaccumulation were also examined. Cd induced high levels of bioaccumulation, which was followed by mitochondrial dysfunction and histological alterations in both experiments. Moreover, perturbations in the defence mechanisms against oxidative stress tended to increase with time. Results also showed that molecular responses can vary depending on the intensity and duration of the chemical stress applied to the organisms and that the study of mt gene expression levels seemed to be the best tool to assess Cd intoxication. PMID:23065898

  6. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess.

    PubMed

    Luo, Jie; Zhou, Jing; Li, Hong; Shi, Wenguang; Polle, Andrea; Lu, Mengzhu; Sun, Xiaomei; Luo, Zhi-Bin

    2015-12-01

    Nitrogen (N) starvation and excess have distinct effects on N uptake and metabolism in poplars, but the global transcriptomic changes underlying morphological and physiological acclimation to altered N availability are unknown. We found that N starvation stimulated the fine root length and surface area by 54 and 49%, respectively, decreased the net photosynthetic rate by 15% and reduced the concentrations of NH4+, NO3(-) and total free amino acids in the roots and leaves of Populus simonii Carr. in comparison with normal N supply, whereas N excess had the opposite effect in most cases. Global transcriptome analysis of roots and leaves elucidated the specific molecular responses to N starvation and excess. Under N starvation and excess, gene ontology (GO) terms related to ion transport and response to auxin stimulus were enriched in roots, whereas the GO term for response to abscisic acid stimulus was overrepresented in leaves. Common GO terms for all N treatments in roots and leaves were related to development, N metabolism, response to stress and hormone stimulus. Approximately 30-40% of the differentially expressed genes formed a transcriptomic regulatory network under each condition. These results suggest that global transcriptomic reprogramming plays a key role in the morphological and physiological acclimation of poplar roots and leaves to N starvation and excess. PMID:26420789

  7. Microarray analysis of differentially expressed gene responses to bisphenol A in Arabidopsis.

    PubMed

    Tian, Yong-Sheng; Jin, Xiao-Fen; Fu, Xiao-Yan; Zhao, Wei; Han, Hong-Juan; Zhu, Bo; Liu, Man-; Yao, Quan-Hong

    2014-08-01

    Environmental levels of bisphenol A (BPA) are a global concern because the compound can cause damage to reproductive organs, the thyroid gland, and brain tissues at developmental stages. Plants are important in removing BPA from the atmosphere, soil, and water. However, knowledge on the mechanism by which plants respond to this compound is limited. To determine the response mechanism of plants to BPA, we used a microarray system to analyze the gene expression patterns of Arabidopsis thaliana after irrigation with 3.0 mM BPA. We identified 651 genes that were differentially expressed upregulated and 470 genes that were downregulated by BPA. These genes may specifically contribute to BPA uptake, transformation, conjugation, and compartmentation in plants. The potential function of upregulated genes in plant defense against BPA was also determined. PMID:25056792

  8. Constraint and divergence of global gene expression in the mammalian embryo

    PubMed Central

    Spies, Noah; Smith, Cheryl L; Rodriguez, Jesse M; Baker, Julie C; Batzoglou, Serafim; Sidow, Arend

    2015-01-01

    The effects of genetic variation on gene regulation in the developing mammalian embryo remain largely unexplored. To globally quantify these effects, we crossed two divergent mouse strains and asked how genotype of the mother or of the embryo drives gene expression phenotype genomewide. Embryonic expression of 331 genes depends on the genotype of the mother. Embryonic genotype controls allele-specific expression of 1594 genes and a highly overlapping set of cis-expression quantitative trait loci (eQTL). A marked paucity of trans-eQTL suggests that the widespread expression differences do not propagate through the embryonic gene regulatory network. The cis-eQTL genes exhibit lower-than-average evolutionary conservation and are depleted for developmental regulators, consistent with purifying selection acting on expression phenotype of pattern formation genes. The widespread effect of maternal and embryonic genotype in conjunction with the purifying selection we uncovered suggests that embryogenesis is an important and understudied reservoir of phenotypic variation. DOI: http://dx.doi.org/10.7554/eLife.05538.001 PMID:25871848

  9. The Global Burden of Disease Assessments—WHO Is Responsible?

    PubMed Central

    Stein, Claudia; Kuchenmüller, Tanja; Hendrickx, Saskia; Prüss-Űstün, Annette; Wolfson, Lara; Engels, Dirk; Schlundt, Jørgen

    2007-01-01

    The Global Burden of Disease (GBD) concept has been used by the World Health Organization (WHO) for its reporting on health information for nearly 10 years. The GBD approach results in a single summary measure of morbidity, disability, and mortality, the so-called disability-adjusted life year (DALY). To ensure transparency and objectivity in the derivation of health information, WHO has been urged to use reference groups of external experts to estimate burden of disease. Under the leadership and coordination of WHO, expert groups have been appraising and abstracting burden of disease information. Examples include the Child Health Epidemiology Reference Group (CHERG), the Malaria Monitoring and Evaluation Reference Group (MERG), and the recently established Foodborne Disease Burden Epidemiology Reference Group (FERG). The structure and functioning of and lessons learnt by these groups are described in this paper. External WHO expert groups have provided independent scientific health information while operating under considerable differences in structure and functioning. Although it is not appropriate to devise a single “best practice” model, the common thread described by all groups is the necessity of WHO's leadership and coordination to ensure the provision and dissemination of health information that is to be globally accepted and valued. PMID:18160984

  10. PKG in honey bees: spatial expression, Amfor gene expression, sucrose responsiveness, and division of labor.

    PubMed

    Thamm, Markus; Scheiner, Ricarda

    2014-06-01

    Division of labor is a hallmark of social insects. In honey bees, division of labor involves transition of female workers from one task to the next. The most distinct tasks are nursing (providing food for the brood) and foraging (collecting pollen and nectar). The brain mechanisms regulating this form of behavioral plasticity have largely remained elusive. Recently, it was suggested that division of labor is based on nutrition-associated signaling pathways. One highly conserved gene associated with food-related behavior across species is the foraging gene, which encodes a cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). Our analysis of this gene reveals the presence of alternative splicing in the honey bee. One isoform is expressed in the brain. Expression of this isoform is most pronounced in the mushroom bodies, the subesophageal ganglion, and the corpora allata. Division of labor and sucrose responsiveness in honey bees correlate significantly with foraging gene expression in distinct brain regions. Activating PKG selectively increases sucrose responsiveness in nurse bees to the level of foragers, whereas the same treatment does not affect responsiveness to light. These findings demonstrate a direct link between PKG signaling in distinct brain areas and division of labor. Furthermore, they demonstrate that the difference in sensory responsiveness between nurse bees and foragers can be compensated for by activating PKG. Our findings on the function of PKG in regulating specific sensory responsiveness and social organization offer valuable indications for the function of the cGMP/PKG pathway in many other insects and vertebrates. PMID:24214291

  11. Assessing Global Transcriptome Changes in Response to South African Cassava Mosaic Virus [ZA-99] Infection in Susceptible Arabidopsis thaliana

    PubMed Central

    Pierce, Erica J.; Rey, M. E. Chrissie

    2013-01-01

    In susceptible plant hosts, co-evolution has favoured viral strategies to evade host defenses and utilize resources to their own benefit. The degree of manipulation of host gene expression is dependent on host-virus specificity and certain abiotic factors. In order to gain insight into global transcriptome changes for a geminivirus pathosystem, South African cassava mosaic virus [ZA:99] and Arabidopsis thaliana, 4×44K Agilent microarrays were adopted. After normalization, a log2 fold change filtering of data (p<0.05) identified 1,743 differentially expressed genes in apical leaf tissue. A significant increase in differential gene expression over time correlated with an increase in SACMV accumulation, as virus copies were 5-fold higher at 24 dpi and 6-fold higher at 36 dpi than at 14 dpi. Many altered transcripts were primarily involved in stress and defense responses, phytohormone signalling pathways, cellular transport, cell-cycle regulation, transcription, oxidation-reduction, and other metabolic processes. Only forty-one genes (2.3%) were shown to be continuously expressed across the infection period, indicating that the majority of genes were transient and unique to a particular time point during infection. A significant number of pathogen-responsive genes were suppressed during the late stages of pathogenesis, while during active systemic infection (14 to 24 dpi), there was an increase in up-regulated genes in several GO functional categories. An adaptive response was initiated to divert energy from growth-related processes to defense, leading to disruption of normal biological host processes. Similarities in cell-cycle regulation correlated between SACMV and Cabbage leaf curl virus (CaLCuV), but differences were also evident. Differences in gene expression between the two geminiviruses clearly demonstrated that, while some global transcriptome responses are generally common in plant virus infections, temporal host-specific interactions are required for

  12. Gene and MicroRNA Expression Responses to Exercise; Relationship with Insulin Sensitivity

    PubMed Central

    McLean, Carrie S.; Mielke, Clinton; Cordova, Jeanine M.; Langlais, Paul R.; Bowen, Benjamin; Miranda, Danielle; Coletta, Dawn K.; Mandarino, Lawrence J.

    2015-01-01

    Background Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner. Methods and Findings Euglycemic clamps were used to measure insulin sensitivity and muscle biopsies were done at rest and 30 minutes after a single acute exercise bout in 14 healthy participants. Changes in mRNA expression were assessed using microarrays, and miRNA analysis was performed in a subset of 6 of the participants using sequencing techniques. Following exercise, 215 mRNAs were changed at the probe level (Bonferroni-corrected P<0.00000115). Pathway and Gene Ontology analysis showed enrichment in MAP kinase signaling, transcriptional regulation and DNA binding. Changes in several transcription factor mRNAs were correlated with insulin sensitivity, including MYC, r=0.71; SNF1LK, r=0.69; and ATF3, r= 0.61 (5 corrected for false discovery rate). Enrichment in the 5’-UTRs of exercise-responsive genes suggested regulation by common transcription factors, especially EGR1. miRNA species of interest that changed after exercise included miR-378, which is located in an intron of the PPARGC1B gene. Conclusions These results indicate that transcription factor gene expression responses to exercise depend highly on insulin sensitivity in healthy people. The overall pattern suggests a coordinated cycle by which exercise and insulin sensitivity regulate gene expression in muscle. PMID:25984722

  13. A Robust Response of the Hadley Circulation to Global Warming

    NASA Technical Reports Server (NTRS)

    Lau, William K M.; Kim, Kyu-Myong

    2014-01-01

    Tropical rainfall is expected to increase in a warmer climate. Yet, recent studies have inferred that the Hadley Circulation (HC), which is primarily driven by latent heating from tropical rainfall, is weakened under global warming. Here, we show evidence of a robust intensification of the HC from analyses of 33 CMIP5 model projections under a scenario of 1 per year CO2 emission increase. The intensification is manifested in a deep-tropics squeeze, characterized by a pronounced increase in the zonal mean ascending motion in the mid and upper troposphere, a deepening and narrowing of the convective zone and enhanced rainfall in the deep tropics. These changes occur in conjunction with a rise in the region of maximum outflow of the HC, with accelerated meridional mass outflow in the uppermost branch of the HC away from the equator, coupled to a weakened inflow in the return branches of the HC in the lower troposphere.

  14. Family health nursing: a response to the global health challenges.

    PubMed

    Martin, Paul; Duffy, Tim; Johnston, Brian; Banks, Pauline; Harkess-Murphy, Eileen; Martin, Colin R

    2013-02-01

    The European Family Health Nursing Project is a revitalized World Health Organization initiative led by the University of the West of Scotland. Partner countries include Armenia, Austria, Germany, Italy, Poland, Portugal, Romania, Slovenia, and Spain. European Union Lifelong Learning funding was received in 2011 to facilitate a consistency of approach in the development of a definition of family health nursing, required core competencies and capabilities, and consequent education and training requirements. Global health challenges have informed the development of the project: increasingly aging populations, the increasing incidence in noncommunicable diseases that are currently the main cause of death, and the significant progress made in the way health systems have developed to meet the demands in relation to access and equality of health services. Governments and policy makers should develop a health workforce based on the principles of teamwork and interdisciplinarity while recognizing the core contribution of the "specialist generalist" role in the primary care setting. PMID:23288887

  15. Stress, and pathogen response gene expression in modeled microgravity

    NASA Technical Reports Server (NTRS)

    Sundaresan, Alamelu; Pellis, Neal R.

    2006-01-01

    Purpose: Immune suppression in microgravity has been well documented. With the advent of human exploration and long-term space travel, the immune system of the astronaut must be optimally maintained. It is important to investigate the expression patterns of cytokine genes, because they are directly related to immune response. Heat shock proteins (HSPs), also called stress proteins, are a group of proteins that are present in the cells of every life form. These proteins are induced when a cell responds to stressors such as heat, cold and oxygen deprivation. Microgravity is another stressor that may regulate HSPs. Heat shock proteins trigger immune response through activities that occur both inside the cell (intracellular) and outside the cell (extracellular). Knowledge about these two gene groups could lead to establishment of a blueprint of the immune response and adaptation-related genes in the microgravity environment. Methods: Human peripheral blood cells were cultured in 1g (T flask) and modeled microgravity (MMG, rotating-wall vessel) for 24 and 72 hours. Cell samples were collected and subjected to gene array analysis using the Affymetrix HG_U95 array. Data was collected and subjected to a two-way analysis of variance. The genes related to immune and stress responses were analyzed. Results and Conclusions: HSP70 was up-regulated by more than two fold in microgravity culture, while HSP90 was significantly down-regulated. HSP70 is not typically expressed in all kinds of cells, but it is expressed at high levels in stress conditions. HSP70 participates in translation, protein translocation, proteolysis and protein folding, suppressing aggregation and reactivating denatured proteins. Increased serum HSP70 levels correlate with a better outcome for heat-stroke or severe trauma patients. At the same time, elevated serum levels of HSP70 have been detected in patients with peripheral or renal vascular disease. HSP90 has been identified in the cytosol, nucleus and

  16. Global reductions in seafloor biomass in response to climate change

    PubMed Central

    Jones, Daniel O B; Yool, Andrew; Wei, Chih-Lin; Henson, Stephanie A; Ruhl, Henry A; Watson, Reg A; Gehlen, Marion

    2014-01-01

    Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091–2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006–2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide. PMID:24382828

  17. Global reductions in seafloor biomass in response to climate change.

    PubMed

    Jones, Daniel O B; Yool, Andrew; Wei, Chih-Lin; Henson, Stephanie A; Ruhl, Henry A; Watson, Reg A; Gehlen, Marion

    2014-06-01

    Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091-2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006-2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide. PMID:24382828

  18. RESPONSES AND FEEDBACK TO GLOBAL FORESTS TO CLIMATE CHANGE

    EPA Science Inventory

    The accumulation of greenhouse gases in the atmosphere over the past century is projected to cause a warming of the Earth. limate change predictions vary by region and terrestrial biosphere response and feedbacks will be ecosystem specific. orests play a major role in the earth's...

  19. RESPONSE AND FEEDBACKS OF FOREST ECOSYSTEMS TO GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    The accumulation of greenhouse gases in the atmosphere over the past century is projected to cause a warming of the Earth. Climate Change predictions vary by region and terrestrial biosphere response, and feedbacks will be ecosystem specific. Forests play a major role in the Eart...

  20. Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.)

    PubMed Central

    Ohtsu, Kazuhiro; Smith, Marianne B; Emrich, Scott J; Borsuk, Lisa A; Zhou, Ruilian; Chen, Tianle; Zhang, Xiaolan; Timmermans, Marja C P; Beck, Jon; Buckner, Brent; Janick-Buckner, Diane; Nettleton, Dan; Scanlon, Michael J; Schnable, Patrick S

    2007-01-01

    All above-ground plant organs are derived from shoot apical meristems (SAMs). Global analyses of gene expression were conducted on maize (Zea mays L.) SAMs to identify genes preferentially expressed in the SAM. The SAMs were collected from 14-day-old B73 seedlings via laser capture microdissection (LCM). The RNA samples extracted from LCM-collected SAMs and from seedlings were hybridized to microarrays spotted with 37 660 maize cDNAs. Approximately 30% (10 816) of these cDNAs were prepared as part of this study from manually dissected B73 maize apices. Over 5000 expressed sequence tags (ESTs) (about 13% of the total) were differentially expressed (P<0.0001) between SAMs and seedlings. Of these, 2783 and 2248 ESTs were up- and down-regulated in the SAM, respectively. The expression in the SAM of several of the differentially expressed ESTs was validated via quantitative RT-PCR and/or in situ hybridization. The up-regulated ESTs included many regulatory genes including transcription factors, chromatin remodeling factors and components of the gene-silencing machinery, as well as about 900 genes with unknown functions. Surprisingly, transcripts that hybridized to 62 retrotransposon-related cDNAs were also substantially up-regulated in the SAM. Complementary DNAs derived from the LCM-collected SAMs were sequenced to identify additional genes that are expressed in the SAM. This generated around 550 000 ESTs (454-SAM ESTs) from two genotypes. Consistent with the microarray results, approximately 14% of the 454-SAM ESTs from B73 were retrotransposon-related. Possible roles of genes that are preferentially expressed in the SAM are discussed. PMID:17764504

  1. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa.

    PubMed

    Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo

    2014-11-01

    Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops. PMID:25214014

  2. Effect of light on global gene expression in the neuroglobin-deficient mouse retina

    PubMed Central

    ILMJÄRV, STEN; REIMETS, RIIN; HUNDAHL, CHRISTIAN ANSGAR; LUUK, HENDRIK

    2014-01-01

    Several previous studies have raised controversy over the functional role of neuroglobin (Ngb) in the retina. Certain studies indicate a significant impact of Ngb on retinal physiology, whereas others are conflicting. The present is an observational study that tested the effect of Ngb deficiency on gene expression in dark- and light-adapted mouse retinas. Large-scale gene expression profiling was performed using GeneChip® Mouse Exon 1.0 ST arrays and the results were compared to publicly available data sets. The lack of Ngb was found to have a minor effect on the light-induced retinal gene expression response. In addition, there was no increase in the expression of marker genes associated with hypoxia, endoplasmic reticulum-stress and oxidative stress in the Ngb-deficient retina. By contrast, several genes were identified that appeared to be differentially expressed between the genotypes when the effect of light was ignored. The present study indicates that Ngb deficiency does not lead to major alternations in light-dependent gene expression response, but leads to subtle systemic differences of a currently unknown functional significance. PMID:25279145

  3. Mitochondrial and nuclear genomic responses to loss of LRPPRC expression.

    PubMed

    Gohil, Vishal M; Nilsson, Roland; Belcher-Timme, Casey A; Luo, Biao; Root, David E; Mootha, Vamsi K

    2010-04-30

    Rapid advances in genotyping and sequencing technology have dramatically accelerated the discovery of genes underlying human disease. Elucidating the function of such genes and understanding their role in pathogenesis, however, remain challenging. Here, we introduce a genomic strategy to characterize such genes functionally, and we apply it to LRPPRC, a poorly studied gene that is mutated in Leigh syndrome, French-Canadian type (LSFC). We utilize RNA interference to engineer an allelic series of cellular models in which LRPPRC has been stably silenced to different levels of knockdown efficiency. We then combine genome-wide expression profiling with gene set enrichment analysis to identify cellular responses that correlate with the loss of LRPPRC. Using this strategy, we discovered a specific role for LRPPRC in the expression of all mitochondrial DNA-encoded mRNAs, but not the rRNAs, providing mechanistic insights into the enzymatic defects observed in the disease. Our analysis shows that nuclear genes encoding mitochondrial proteins are not collectively affected by the loss of LRPPRC. We do observe altered expression of genes related to hexose metabolism, prostaglandin synthesis, and glycosphingolipid biology that may either play an adaptive role in cell survival or contribute to pathogenesis. The combination of genetic perturbation, genomic profiling, and pathway analysis represents a generic strategy for understanding disease pathogenesis. PMID:20220140

  4. Expression of DNA damage response genes indicate progressive breast tumors.

    PubMed

    Gochhait, Sailesh; Dar, Surabhi; Pal, Ranjana; Gupta, Pawan; Bamezai, Rameshwar N K

    2009-01-18

    To assess how the abnormal expression of DNA damage response (DDR) genes correlate with oncogenesis, we analyzed mRNA levels of ATM-CHK2-P53 axis in 65 sporadic breast tumors by real-time PCR followed by evaluation of P53 protein and its activation status in representative samples. Univariate analysis showed a significantly higher transcript level for ATM (P=0.002), MDM2 (P=0.015) and p21 (P=0.013) in stage 1 tumors when compared against those of later stages. Although p53 transcript levels showed the characteristic increase in stage 1, a fourfold increase of p53 in N3 tumors than other nodal stages (P=0.0007) significantly increased its expression in stage 3B. The accumulated p53 at stage 3B, confirmed also at the protein level (P=0.012), was rendered nonfunctional by reduced P53 activation (p-P53Ser15; P=0.00007) or increased rate of mutation, substantiated further by the corresponding failure of upregulation of downstream genes, MDM2 and p21. We conclude that the alteration of DDR expression facilitates tumor progression and its possible therapeutic implications need to be studied in future. PMID:18805634

  5. Atomic oxygen distributions in the Venus thermosphere: Comparisons between Venus Express observations and global model simulations

    NASA Astrophysics Data System (ADS)

    Brecht, A. S.; Bougher, S. W.; Gérard, J.-C.; Soret, L.

    2012-02-01

    Nightglow emissions provide insight into the global thermospheric circulation, specifically in the transition region (˜70-120 km). The O 2 IR nightglow statistical map created from Venus Express (VEx) Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) observations has been used to deduce a three-dimensional atomic oxygen density map. In this study, the National Center of Atmospheric Research (NCAR) Venus Thermospheric General Circulation Model (VTGCM) is utilized to provide a self-consistent global view of the atomic oxygen density distribution. More specifically, the VTGCM reproduces a 2D nightside atomic oxygen density map and vertical profiles across the nightside, which are compared to the VEx atomic oxygen density map. Both the simulated map and vertical profiles are in close agreement with VEx observations within a ˜30° contour of the anti-solar point. The quality of agreement decreases past ˜30°. This discrepancy implies the employment of Rayleigh friction within the VTGCM may be an over-simplification for representing wave drag effects on the local time variation of global winds. Nevertheless, the simulated atomic oxygen vertical profiles are comparable with the VEx profiles above 90 km, which is consistent with similar O 2 ( 1Δ) IR nightglow intensities. The VTGCM simulations demonstrate the importance of low altitude trace species as a loss for atomic oxygen below 95 km. The agreement between simulations and observations provides confidence in the validity of the simulated mean global thermospheric circulation pattern in the lower thermosphere.

  6. Global antibody response to Staphylococcus aureus live-cell vaccination.

    PubMed

    Selle, Martina; Hertlein, Tobias; Oesterreich, Babett; Klemm, Theresa; Kloppot, Peggy; Müller, Elke; Ehricht, Ralf; Stentzel, Sebastian; Bröker, Barbara M; Engelmann, Susanne; Ohlsen, Knut

    2016-01-01

    The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration. PMID:27103319

  7. Global antibody response to Staphylococcus aureus live-cell vaccination

    PubMed Central

    Selle, Martina; Hertlein, Tobias; Oesterreich, Babett; Klemm, Theresa; Kloppot, Peggy; Müller, Elke; Ehricht, Ralf; Stentzel, Sebastian; Bröker, Barbara M.; Engelmann, Susanne; Ohlsen, Knut

    2016-01-01

    The pathogen Staphylococcus aureus causes a broad range of severe diseases and is feared for its ability to rapidly develop resistance to antibiotic substances. The increasing number of highly resistant S. aureus infections has accelerated the search for alternative treatment options to close the widening gap in anti-S. aureus therapy. This study analyses the humoral immune response to vaccination of Balb/c mice with sublethal doses of live S. aureus. The elicited antibody pattern in the sera of intravenously and intramuscularly vaccinated mice was determined using of a recently developed protein array. We observed a specific antibody response against a broad set of S. aureus antigens which was stronger following i.v. than i.m. vaccination. Intravenous but not intramuscular vaccination protected mice against an intramuscular challenge infection with a high bacterial dose. Vaccine protection was correlated with the strength of the anti-S. aureus antibody response. This study identified novel vaccine candidates by using protein microarrays as an effective tool and showed that successful vaccination against S. aureus relies on the optimal route of administration. PMID:27103319

  8. Is increased Nuclear Energy a practical response to Global Warming?

    NASA Astrophysics Data System (ADS)

    Stevens, Jeanne

    2007-05-01

    With the threat of global warming there has been renewed interest in nuclear energy as a carbon-free energy source. There are currently 15 nuclear power plants planned for completion in the U.S. by 2014. In the last 30 years, however, investment and public support for nuclear energy has been minimal. Some factors that led to this loss of interest - high economic costs, risk of accident and radiation exposure, and the challenges of storing nuclear waste - have been analyzed in several recent publications. Comparing the costs and risks of nuclear energy to the benefits in reduced carbon emissions is the goal of this report. Coal plants contribute the most carbon dioxide of all types of power plants. The method of this study is a direct comparison of coal plants and nuclear plants in four areas: the current cost per kWh, the predicted annual cost for health issues, the statistically predicted deaths, and the clean-up costs assuming each facility is as ``green'' as possible. A normalized cost/risk value is then calculated for each plant type. Discussion for how these values are likely to vary is included. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.C1.11

  9. Global monsoon precipitation responses to large volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  10. Global monsoon precipitation responses to large volcanic eruptions

    PubMed Central

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-01-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  11. Helix/Coil Nucleation: A Local Response to Global Demands

    PubMed Central

    Vorov, Oleg K.; Livesay, Dennis R.; Jacobs, Donald J.

    2009-01-01

    Abstract A complete description of protein structure and function must include a proper treatment of mechanisms that lead to cooperativity. The helix/coil transition serves as a simple example of a cooperative folding process, commonly described by a nucleation-propagation mechanism. The prevalent view is that coil structure must first form a short segment of helix in a localized region despite paying a free energy cost (nucleation). Afterward, helical structure propagates outward from the nucleation site. Both processes entail enthalpy-entropy compensation that derives from the loss in conformational entropy on helix formation with concomitant gain in favorable interactions. Nucleation-propagation models inherently assume that cooperativity arises from a sequential series of local events. An alternative distance constraint model asserts there is a direct link between available degrees of freedom and cooperativity through the nonadditivity in conformational entropy. That is, helix nucleation is a concerted manifestation of rigidity propagating through atomic structure. The link between network rigidity and nonadditivity of conformational entropy is shown in this study by solving the distance constraint model using a simple global constraint counting approximation. Cooperativity arises from competition between excess and deficiency in available degrees of freedom in the coil and helix states respectively. PMID:19948130

  12. Global monsoon precipitation responses to large volcanic eruptions.

    PubMed

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-01-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  13. Child organ trafficking: global reality and inadequate international response.

    PubMed

    Bagheri, Alireza

    2016-06-01

    In organ transplantation, the demand for human organs has grown far faster than the supply of organs. This has opened the door for illegal organ trade and trafficking including from children. Organized crime groups and individual organ brokers exploit the situation and, as a result, black markets are becoming more numerous and organized organ trafficking is expanding worldwide. While underprivileged and vulnerable men and women in developing countries are a major source of trafficked organs, and may themselves be trafficked for the purpose of illegal organ removal and trade, children are at especial risk of exploitation. With the confirmed cases of children being trafficked for their organs, child organ trafficking, which once called a "modern urban legend", is a sad reality in today's world. By presenting a global picture of child organ trafficking, this paper emphasizes that child organ trafficking is no longer a myth but a reality which has to be addressed. It argues that the international efforts against organ trafficking and trafficking in human beings for organ removal have failed to address child organ trafficking adequately. This chapter suggests that more orchestrated international collaboration as well as development of preventive measure and legally binding documents are needed to fight child organ trafficking and to support its victims. PMID:26612382

  14. Valuation of mountain glaciation response on global warming

    SciTech Connect

    Ananicheva, M.D.; Davidovich, N.V.

    1997-12-31

    Quantitative estimates of main climatic parameters, influencing the glacier regime (summer air temperature and annual solid precipitation), and glaciologic characteristics (mass balance components, equilibrium line altitude and rate of air temperature at this height), received on the basis of the scenario for a climate development according to R. Wetherald and S. Manabe (1982) are submitted. The possible reaction of mountain glaciation on global warming is considered for two mountain countries: South-eastern Alaska and Pamir-Alay (Central Asia). In given paper we have tried to evaluate changes of the mountain glaciation regime for a time of CO{sub 2} doubling in the atmosphere, basing on the scenario of climate development and modern statistical relationships between climatic and glaciologic parameters. The GCM scenario of R. Wetherald and C. Manabe (GFDL model) which is made with respect of mountain territories is in the basis our calculations. As initial materials we used data of long-term observations and the maps of World Atlas of Snow and Ice Resources (WASIR).

  15. Global gene expression profiles of ischemic preconditioning in deceased donor liver transplantation.

    PubMed

    Raza, Ali; Dikdan, George; Desai, Kunj K; Shareef, Asif; Fernandes, Helen; Aris, Virginie; de la Torre, Andrew N; Wilson, Dorian; Fisher, Adrian; Soteropoulos, Patricia; Koneru, Baburao

    2010-05-01

    The benefits of ischemic preconditioning (IPC) in reducing ischemia/reperfusion injury (IRI) remain indistinct in human liver transplantation (LT). To further understand mechanistic aspects of IPC, we performed microarray analyses as a nested substudy in a randomized trial of 10-minute IPC in 101 deceased donor LTs. Liver biopsies were performed after cold storage and at 90 minutes postreperfusion in 40 of 101 subjects. Global gene expression profiles in 6 biopsy pairs in IPC and work standard organ recovery groups at both time points were compared using the Affymetrix GeneChip Human Gene 1.0 ST array. Transcripts with >1.5-fold change and P < 0.05 were considered significant. IPC altered expression of 82 transcripts in antioxidant, immunological, lipid biosynthesis, cell development and growth, and other groups. Real-time polymerase chain reaction and immunoblotting validated our microarray data. IPC-induced overexpression of glutathione S-transferase mu transcripts (GSTM1, GSTM3, GSTM4, and GSTM5) was accompanied by increased protein expression and may contribute to a decrease in oxidative stress. However, the increased expression of fatty acid synthase may increase oxidative stress, and tumor necrosis factor ligand superfamily member 10 may promote apoptosis. These changes, in combination with decreased expression of heparin-binding epidermal growth factor-like growth factor and insulin-like growth factor binding protein-1, both of which inhibit apoptosis, may increase IRI. In our study of deceased donor LT, IPC induces changes in gene expression, some of which are potentially beneficial but some which are potentially injurious. Thus, our findings of changes in gene expression mirror the outcomes in our clinical trial. PMID:20440768

  16. Early-response cytokine expression in adult middle ear effusions.

    PubMed

    Ondrey, F G; Juhn, S K; Adams, G L

    1998-10-01

    Various cytokines are presently known to be associated with the regulation of inflammatory responses. In pediatric otitis media, cytokines that correlate with various degrees of inflammation are present in middle ear effusions as inflammatory mediators. The present study was undertaken to examine the potential role of the early-response cytokines, interleukin-1beta and tumor necrosis factor-alpha, in adult otitis media. Fifty-nine adults with otitis media underwent tympanocentesis, and the effusion specimens were analyzed for the presence of both cytokines by enzyme-linked immunosorbent assay methods. Eighty-eight percent of the effusions were serous in nature. Sixty-seven percent of the patients had a known history of head and neck malignancy and radiation to the temporal bone. Twelve percent of the effusions were positive for interleukin-1beta expression, compared with 85% of effusions in children with otitis media. Eight percent of the effusions contained tumor necrosis factor-alpha, compared with 85% of those collected in pediatric otitis media. All of the specimens that contained tumor necrosis factor-alpha also contained interleukin-1beta. In the present study, there was no correlation with head and neck malignancy/radiation or the clinical degree of inflammation with the presence of either cytokine. We conclude that adult otitis media is associated with lower expression of an acute inflammatory response, as judged by the levels of interleukin-1beta and tumor necrosis factor-alpha in the effusions. Additionally, adult otitis probably represents a less severe and more chronic inflammatory state in comparison with pediatric otitis media. Further analysis of inflammatory mediators in adult otitis media is necessary to evaluate the contribution of cytokines in relation to various etiologic factors. PMID:9781987

  17. Gene expression during the first 28 days of axolotl limb regeneration I: Experimental design and global analysis of gene expression

    PubMed Central

    Palumbo, Alex; Nagarajan, Radha; Gardiner, David M.; Muneoka, Ken; Stromberg, Arnold J.; Athippozhy, Antony T.

    2015-01-01

    Abstract While it is appreciated that global gene expression analyses can provide novel insights about complex biological processes, experiments are generally insufficiently powered to achieve this goal. Here we report the results of a robust microarray experiment of axolotl forelimb regeneration. At each of 20 post‐amputation time points, we estimated gene expression for 10 replicate RNA samples that were isolated from 1 mm of heterogeneous tissue collected from the distal limb tip. We show that the limb transcription program diverges progressively with time from the non‐injured state, and divergence among time adjacent samples is mostly gradual. However, punctuated episodes of transcription were identified for five intervals of time, with four of these coinciding with well‐described stages of limb regeneration—amputation, early bud, late bud, and pallet. The results suggest that regeneration is highly temporally structured and regulated by mechanisms that function within narrow windows of time to coordinate transcription within and across cell types of the regenerating limb. Our results provide an integrative framework for hypothesis generation using this complex and highly informative data set. PMID:27168937

  18. Evolutionary History of Lagomorphs in Response to Global Environmental Change

    PubMed Central

    Ge, Deyan; Wen, Zhixin; Xia, Lin; Zhang, Zhaoqun; Erbajeva, Margarita; Huang, Chengming; Yang, Qisen

    2013-01-01

    Although species within Lagomorpha are derived from a common ancestor, the distribution range and body size of its two extant groups, ochotonids and leporids, are quite differentiated. It is unclear what has driven their disparate evolutionary history. In this study, we compile and update all fossil records of Lagomorpha for the first time, to trace the evolutionary processes and infer their evolutionary history using mitochondrial genes, body length and distribution of extant species. We also compare the forage selection of extant species, which offers an insight into their future prospects. The earliest lagomorphs originated in Asia and later diversified in different continents. Within ochotonids, more than 20 genera occupied the period from the early Miocene to middle Miocene, whereas most of them became extinct during the transition from the Miocene to Pliocene. The peak diversity of the leporids occurred during the Miocene to Pliocene transition, while their diversity dramatically decreased in the late Quaternary. Mantel tests identified a positive correlation between body length and phylogenetic distance of lagomorphs. The body length of extant ochotonids shows a normal distribution, while the body length of extant leporids displays a non-normal pattern. We also find that the forage selection of extant pikas features a strong preference for C3 plants, while for the diet of leporids, more than 16% of plant species are identified as C4 (31% species are from Poaceae). The ability of several leporid species to consume C4 plants is likely to result in their size increase and range expansion, most notably in Lepus. Expansion of C4 plants in the late Miocene, the so-called ‘nature’s green revolution’, induced by global environmental change, is suggested to be one of the major ‘ecological opportunities’, which probably drove large-scale extinction and range contraction of ochotonids, but inversely promoted diversification and range expansion of leporids

  19. Evolutionary history of lagomorphs in response to global environmental change.

    PubMed

    Ge, Deyan; Wen, Zhixin; Xia, Lin; Zhang, Zhaoqun; Erbajeva, Margarita; Huang, Chengming; Yang, Qisen

    2013-01-01

    Although species within Lagomorpha are derived from a common ancestor, the distribution range and body size of its two extant groups, ochotonids and leporids, are quite differentiated. It is unclear what has driven their disparate evolutionary history. In this study, we compile and update all fossil records of Lagomorpha for the first time, to trace the evolutionary processes and infer their evolutionary history using mitochondrial genes, body length and distribution of extant species. We also compare the forage selection of extant species, which offers an insight into their future prospects. The earliest lagomorphs originated in Asia and later diversified in different continents. Within ochotonids, more than 20 genera occupied the period from the early Miocene to middle Miocene, whereas most of them became extinct during the transition from the Miocene to Pliocene. The peak diversity of the leporids occurred during the Miocene to Pliocene transition, while their diversity dramatically decreased in the late Quaternary. Mantel tests identified a positive correlation between body length and phylogenetic distance of lagomorphs. The body length of extant ochotonids shows a normal distribution, while the body length of extant leporids displays a non-normal pattern. We also find that the forage selection of extant pikas features a strong preference for C(3) plants, while for the diet of leporids, more than 16% of plant species are identified as C(4) (31% species are from Poaceae). The ability of several leporid species to consume C(4) plants is likely to result in their size increase and range expansion, most notably in Lepus. Expansion of C(4) plants in the late Miocene, the so-called 'nature's green revolution', induced by global environmental change, is suggested to be one of the major 'ecological opportunities', which probably drove large-scale extinction and range contraction of ochotonids, but inversely promoted diversification and range expansion of leporids. PMID

  20. Contrasting responses of Central Asian rock glaciers to global warming

    PubMed Central

    Sorg, Annina; Kääb, Andreas; Roesch, Andrea; Bigler, Christof; Stoffel, Markus

    2015-01-01

    While the responses of Tien Shan glaciers – and glaciers elsewhere – to climatic changes are becoming increasingly well understood, this is less the case for permafrost in general and for rock glaciers in particular. We use a novel approach to describe the climate sensitivity of rock glaciers and to reconstruct periods of high and low rock glacier activity in the Tien Shan since 1895. Using more than 1500 growth anomalies from 280 trees growing on rock glacier bodies, repeat aerial photography from Soviet archives and high-resolution satellite imagery, we present here the world's longest record of rock glacier movements. We also demonstrate that the rock glaciers exhibit synchronous periods of activity at decadal timescales. Despite the complex energy-balance processes on rock glaciers, periods of enhanced activity coincide with warm summers, and the annual mass balance of Tuyuksu glacier fluctuates asynchronously with rock glacier activity. At multi-decadal timescales, however, the investigated rock glaciers exhibit site-specific trends reflecting different stages of inactivation, seemingly in response to the strong increase in air temperature since the 1970s. PMID:25657095

  1. Contrasting responses of Central Asian rock glaciers to global warming.

    PubMed

    Sorg, Annina; Kääb, Andreas; Roesch, Andrea; Bigler, Christof; Stoffel, Markus

    2015-01-01

    While the responses of Tien Shan glaciers--and glaciers elsewhere--to climatic changes are becoming increasingly well understood, this is less the case for permafrost in general and for rock glaciers in particular. We use a novel approach to describe the climate sensitivity of rock glaciers and to reconstruct periods of high and low rock glacier activity in the Tien Shan since 1895. Using more than 1500 growth anomalies from 280 trees growing on rock glacier bodies, repeat aerial photography from Soviet archives and high-resolution satellite imagery, we present here the world's longest record of rock glacier movements. We also demonstrate that the rock glaciers exhibit synchronous periods of activity at decadal timescales. Despite the complex energy-balance processes on rock glaciers, periods of enhanced activity coincide with warm summers, and the annual mass balance of Tuyuksu glacier fluctuates asynchronously with rock glacier activity. At multi-decadal timescales, however, the investigated rock glaciers exhibit site-specific trends reflecting different stages of inactivation, seemingly in response to the strong increase in air temperature since the 1970s. PMID:25657095

  2. The global workforce shortages and the migration of medical professions: the Australian policy response

    PubMed Central

    Smith, Saxon D

    2008-01-01

    Medical migration sees the providers of medical services (in particular medical practitioners) moving from one region or country to another. This creates problems for the provision of public health and medical services and poses challenges for laws in the nation state and for laws in the global community. There exists a global shortage of healthcare professionals. Nation states and health rights movements have been both responsible for, and responsive to, this global community shortage through a variety of health policy, regulation and legislation which directly affects the migration of medical providers. The microcosm responses adopted by individual nation states, such as Australia, to this workforce shortage further impact on the global workforce shortage through active recruitment of overseas-trained healthcare professionals. "Push" and "pull" factors exist which encourage medical migration of healthcare professionals. A nation state's approach to health policy, regulation and legislation dramatically helps to create these "push factors" and "pull factors". A co-ordinated global response is required with individual nation states being cognisant of the impact of their health policy, regulations and legislation on the global community through the medical migration of healthcare professionals. PMID:18507867

  3. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress.

    PubMed

    Prasad, Kasavajhala V S K; Abdel-Hameed, Amira A E; Xing, Denghui; Reddy, Anireddy S N

    2016-01-01

    Abiotic and biotic stresses cause significant yield losses in all crops. Acquisition of stress tolerance in plants requires rapid reprogramming of gene expression. SR1/CAMTA3, a member of signal responsive transcription factors (TFs), functions both as a positive and a negative regulator of biotic stress responses and as a positive regulator of cold stress-induced gene expression. Using high throughput RNA-seq, we identified ~3000 SR1-regulated genes. Promoters of about 60% of the differentially expressed genes have a known DNA binding site for SR1, suggesting that they are likely direct targets. Gene ontology analysis of SR1-regulated genes confirmed previously known functions of SR1 and uncovered a potential role for this TF in salt stress. Our results showed that SR1 mutant is more tolerant to salt stress than the wild type and complemented line. Improved tolerance of sr1 seedlings to salt is accompanied with the induction of salt-responsive genes. Furthermore, ChIP-PCR results showed that SR1 binds to promoters of several salt-responsive genes. These results suggest that SR1 acts as a negative regulator of salt tolerance by directly repressing the expression of salt-responsive genes. Overall, this study identified SR1-regulated genes globally and uncovered a previously uncharacterized role for SR1 in salt stress response. PMID:27251464

  4. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress

    PubMed Central

    Prasad, Kasavajhala V. S. K.; Abdel-Hameed, Amira A. E.; Xing, Denghui; Reddy, Anireddy S. N.

    2016-01-01

    Abiotic and biotic stresses cause significant yield losses in all crops. Acquisition of stress tolerance in plants requires rapid reprogramming of gene expression. SR1/CAMTA3, a member of signal responsive transcription factors (TFs), functions both as a positive and a negative regulator of biotic stress responses and as a positive regulator of cold stress-induced gene expression. Using high throughput RNA-seq, we identified ~3000 SR1-regulated genes. Promoters of about 60% of the differentially expressed genes have a known DNA binding site for SR1, suggesting that they are likely direct targets. Gene ontology analysis of SR1-regulated genes confirmed previously known functions of SR1 and uncovered a potential role for this TF in salt stress. Our results showed that SR1 mutant is more tolerant to salt stress than the wild type and complemented line. Improved tolerance of sr1 seedlings to salt is accompanied with the induction of salt-responsive genes. Furthermore, ChIP-PCR results showed that SR1 binds to promoters of several salt-responsive genes. These results suggest that SR1 acts as a negative regulator of salt tolerance by directly repressing the expression of salt-responsive genes. Overall, this study identified SR1-regulated genes globally and uncovered a previously uncharacterized role for SR1 in salt stress response. PMID:27251464

  5. Studying Biological Responses to Global Change in Atmospheric Oxygen

    PubMed Central

    Powell, Frank L.

    2010-01-01

    A popular book recently hypothesized that change in atmospheric oxygen over geological time is the most important physical factor in the evolution of many fundamental characteristics of modern terrestrial animals. This hypothesis is generated primarily using fossil data but the present paper considers how modern experimental biology can be used to test it. Comparative physiology and experimental evolution clearly show that changes in atmospheric O2 over the ages had the potential to drive evolution, assuming the physiological O2-sensitivity of animals today is similar to the past. Established methods, such as phylogenetically independent contrasts, as well new approaches, such as adding environmental history to phylogenetic analyses or modeling interactions between environmental stresses and biological responses with different rate constants, may be useful for testing (disproving) hypotheses about biological adaptations to changes in atmospheric O2. PMID:20385257

  6. Response of Vegetation in Northern China to Global Warming

    NASA Astrophysics Data System (ADS)

    Cui, H.; Huang, R.

    2009-05-01

    (Sophora japonica), tree of heaven (Ailanthus altissima), yellow locust (Robinia pseudoacacia), staghorn sumac (Rhus typhina), and gingko (Ginkgo biloba) have also been pushing northward to Huhhot, (41 degree N)Chifeng (42 degree N) and Tongliao (43 degree N), Inner Mongolia Autonomous Region. Alpine timberline has also been moved to higher altitude in Wutai Mt., Shanxi Province and Changbaishan Mt., Jilin Province. Although global warming seems to benefit agriculture in some cases, considering the decrease of wetness, the perspective is still uncertain. Drought and frost hazard are stress factors for the vegetation introduced to the northern areas. Chinese scholars are carefully watching the trend.

  7. Histone Modifications at Human Enhancers Reflect Global Cell Type-Specific Gene Expression

    PubMed Central

    Heintzman, Nathaniel D.; Hon, Gary C.; Hawkins, R. David; Kheradpour, Pouya; Stark, Alexander; Harp, Lindsey F.; Ye, Zhen; Lee, Leonard K.; Stuart, Rhona K.; Ching, Christina W.; Ching, Keith A.; Antosiewicz, Jessica E.; Liu, Hui; Zhang, Xinmin; Green, Roland D.; Stewart, Ron; Thomson, James A.; Crawford, Gregory E.; Kellis, Manolis; Ren, Bing

    2010-01-01

    The human body is composed of diverse cell types with distinct functions. While it is known that lineage specification depends on cell specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene1–3, the relative roles of these regulatory elements in this process is not clear. We have previously developed a chromatin immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers, and insulators in the human genome4–6. Here, we use the same approach to identify these elements in multiple cell types and investigated their roles in cell type-specific gene expression. We observed that chromatin state at promoters and CTCF-binding at insulators are largely invariant across diverse cell types. By contrast, enhancers are marked with highly cell type-specific histone modification patterns, strongly correlate to cell type-specific gene expression programs on a global scale, and are functionally active in a cell type-specific manner. Our results defined over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalog of human enhancers and highlighting the role of these elements in cell type-specific gene expression. PMID:19295514

  8. Novel phenotypes of Escherichia coli tat mutants revealed by global gene expression and phenotypic analysis.

    PubMed

    Ize, Bérengère; Porcelli, Ida; Lucchini, Sacha; Hinton, Jay C; Berks, Ben C; Palmer, Tracy

    2004-11-12

    The Tat protein export system serves to export folded proteins harboring an N-terminal twin arginine signal peptide across the cytoplasmic membrane. In this study, we have used gene expression profiling of Escherichia coli supported by phenotypic analysis to investigate how cells respond to a defect in the Tat pathway. Previous work has demonstrated that strains mutated in genes encoding essential Tat pathway components are defective in the integrity of their cell envelope because of the mislocalization of two amidases involved in cell wall metabolism (Ize, B., Stanley, N. R., Buchanan, G., and Palmer, T. (2003) Mol. Microbiol. 48, 1183-1193). To distinguish between genes that are differentially expressed specifically because of the cell envelope defect and those that result from other effects of the tatC deletion, we also analyzed two different transposon mutants of the DeltatatC strain that have their outer membrane integrity restored. Approximately 50% of the genes that were differentially expressed in the tatC mutant are linked to the envelope defect, with the products of many of these genes involved in self-defense or protection mechanisms, including the production of exopolysaccharide. Among the changes that were not explicitly linked to envelope integrity, we characterized a role for the Tat system in iron acquisition and copper homeostasis. Finally, we have demonstrated that overproduction of the Tat substrate SufI saturates the Tat translocon and produces effects on global gene expression that are similar to those resulting from the DeltatatC mutation. PMID:15347649

  9. Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation

    PubMed Central

    Deng, Wenjun; Babu, I. Ramesh; Su, Dan; Yin, Shanye; Begley, Thomas J.; Dedon, Peter C.

    2015-01-01

    Post-transcriptional modifications of transfer RNAs (tRNAs) have long been recognized to play crucial roles in regulating the rate and fidelity of translation. However, the extent to which they determine global protein production remains poorly understood. Here we use quantitative proteomics to show a direct link between wobble uridine 5-methoxycarbonylmethyl (mcm5) and 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modifications catalyzed by tRNA methyltransferase 9 (Trm9) in tRNAArg(UCU) and tRNAGlu(UUC) and selective translation of proteins from genes enriched with their cognate codons. Controlling for bias in protein expression and alternations in mRNA expression, we find that loss of Trm9 selectively impairs expression of proteins from genes enriched with AGA and GAA codons under both normal and stress conditions. Moreover, we show that AGA and GAA codons occur with high frequency in clusters along the transcripts, which may play a role in modulating translation. Consistent with these results, proteins subject to enhanced ribosome pausing in yeast lacking mcm5U and mcm5s2U are more likely to be down-regulated and contain a larger number of AGA/GAA clusters. Together, these results suggest that Trm9-catalyzed tRNA modifications play a significant role in regulating protein expression within the cell. PMID:26670883

  10. Iron Regulates Expression of Bacillus cereus Hemolysin II via Global Regulator Fur

    PubMed Central

    Shadrin, Andrey; Rodikova, Ekaterina A.; Andreeva-Kovalevskaya, Zhanna I.; Protsenko, Alexey S.; Mayorov, Sergey G.; Galaktionova, Darya Yu; Magelky, Erica

    2012-01-01

    The capacity of pathogens to respond to environmental signals, such as iron concentration, is key to bacterial survival and establishment of a successful infection. Bacillus cereus is a widely distributed bacterium with distinct pathogenic properties. Hemolysin II (HlyII) is one of its pore-forming cytotoxins and has been shown to be involved in bacterial pathogenicity in a number of cell and animal models. Unlike many other B. cereus pathogenicity factors, HlyII is not regulated by pleiotropic transcriptional regulator PlcR but is controlled by its own regulator, HlyIIR. Using a combination of in vivo and in vitro techniques, we show that hlyII expression is also negatively regulated by iron by the global regulator Fur via direct interaction with the hlyII promoter. DNase I footprinting and in vitro transcription experiments indicate that Fur prevents RNA polymerase binding to the hlyII promoter. HlyII expression profiles demonstrate that both HlyIIR and Fur regulate HlyII expression in a concerted fashion, with the effect of Fur being maximal in the early stages of bacterial growth. In sum, these results show that Fur serves as a transcriptional repressor for hlyII expression. PMID:22522892

  11. Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing

    PubMed Central

    Chen, Zhiyuan; Hagen, Darren E.; Wang, Juanbin; Elsik, Christine G.; Ji, Tieming; Siqueira, Luiz G.; Hansen, Peter J.; Rivera, Rocío M.

    2016-01-01

    ABSTRACT Genomic imprinting is an epigenetic mechanism that leads to parental-allele-specific gene expression. Approximately 150 imprinted genes have been identified in humans and mice but less than 30 have been described as imprinted in cattle. For the purpose of de novo identification of imprinted genes in bovine, we determined global monoallelic gene expression in brain, skeletal muscle, liver, kidney and placenta of day ∼105 Bos taurus indicus × Bos taurus taurus F1 conceptuses using RNA sequencing. To accomplish this, we developed a bioinformatics pipeline to identify parent-specific single nucleotide polymorphism alleles after filtering adenosine to inosine (A-to-I) RNA editing sites. We identified 53 genes subject to monoallelic expression. Twenty three are genes known to be imprinted in the cow and an additional 7 have previously been characterized as imprinted in human and/or mouse that have not been reported as imprinted in cattle. Of the remaining 23 genes, we found that 10 are uncharacterized or unannotated transcripts located in known imprinted clusters, whereas the other 13 genes are distributed throughout the bovine genome and are not close to any known imprinted clusters. To exclude potential cis-eQTL effects on allele expression, we corroborated the parental specificity of monoallelic expression in day 86 Bos taurus taurus × Bos taurus taurus conceptuses and identified 8 novel bovine imprinted genes. Further, we identified 671 candidate A-to-I RNA editing sites and describe random X-inactivation in day 15 bovine extraembryonic membranes. Our results expand the imprinted gene list in bovine and demonstrate that monoallelic gene expression can be the result of cis-eQTL effects. PMID:27245094

  12. Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing.

    PubMed

    Chen, Zhiyuan; Hagen, Darren E; Wang, Juanbin; Elsik, Christine G; Ji, Tieming; Siqueira, Luiz G; Hansen, Peter J; Rivera, Rocío M

    2016-07-01

    Genomic imprinting is an epigenetic mechanism that leads to parental-allele-specific gene expression. Approximately 150 imprinted genes have been identified in humans and mice but less than 30 have been described as imprinted in cattle. For the purpose of de novo identification of imprinted genes in bovine, we determined global monoallelic gene expression in brain, skeletal muscle, liver, kidney and placenta of day ∼105 Bos taurus indicus × Bos taurus taurus F1 conceptuses using RNA sequencing. To accomplish this, we developed a bioinformatics pipeline to identify parent-specific single nucleotide polymorphism alleles after filtering adenosine to inosine (A-to-I) RNA editing sites. We identified 53 genes subject to monoallelic expression. Twenty three are genes known to be imprinted in the cow and an additional 7 have previously been characterized as imprinted in human and/or mouse that have not been reported as imprinted in cattle. Of the remaining 23 genes, we found that 10 are uncharacterized or unannotated transcripts located in known imprinted clusters, whereas the other 13 genes are distributed throughout the bovine genome and are not close to any known imprinted clusters. To exclude potential cis-eQTL effects on allele expression, we corroborated the parental specificity of monoallelic expression in day 86 Bos taurus taurus × Bos taurus taurus conceptuses and identified 8 novel bovine imprinted genes. Further, we identified 671 candidate A-to-I RNA editing sites and describe random X-inactivation in day 15 bovine extraembryonic membranes. Our results expand the imprinted gene list in bovine and demonstrate that monoallelic gene expression can be the result of cis-eQTL effects. PMID:27245094

  13. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays.

    PubMed

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Nauts, Robin; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of

  14. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays

    PubMed Central

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Nauts, Robin; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of

  15. Adaptation responses to climate change differ between global megacities

    NASA Astrophysics Data System (ADS)

    Georgeson, Lucien; Maslin, Mark; Poessinouw, Martyn; Howard, Steve

    2016-06-01

    Urban areas are increasingly at risk from climate change, with negative impacts predicted for human health, the economy and ecosystems. These risks require responses from cities to improve their resilience. Policymakers need to understand current adaptation spend to plan comprehensively and effectively. Through the measurement of spend in the newly defined `adaptation economy', we analyse current climate change adaptation efforts in ten megacities. In all cases, the adaptation economy remains a small part of the overall economy, representing a maximum of 0.33% of a city's gross domestic product (here referred to as GDPc). Differences in total spend are significant between cities in developed, emerging and developing countries, ranging from #15 million to #1,600 million. Comparing key subsectors, we demonstrate the differences in adaptation profiles. Developing cities have higher proportional spend on health and agriculture, whereas developed cities have higher spend on energy and water. Spend per capita and percentage of GDPc comparisons more clearly show disparities between cities. Developing country cities spend half the proportion of GDPc and significantly less per capita, suggesting that adaptation spend is driven by wealth rather than the number of vulnerable people. This indicates that current adaptation activities are insufficient in major population centres in developing and emerging economies.

  16. Guanosine 3′,5′-bispyrophosphate coordinates global gene expression during glucose-lactose diauxie in Escherichia coli

    PubMed Central

    Traxler, Matthew F.; Chang, Dong-Eun; Conway, Tyrrell

    2006-01-01

    Guanosine 3′,5′-bispyrophosphate (ppGpp), also known as “magic spot,” has been shown to bind prokaryotic RNA polymerase to down-regulate ribosome production and increase transcription of amino acid biosynthesis genes during the stringent response to amino acid starvation. Because many environmental growth perturbations cause ppGpp to accumulate, we hypothesize ppGpp to have an overarching role in regulating the genetic program that coordinates transitions between logarithmic growth (feast) and growth arrest (famine). We used the classic glucose-lactose diauxie as an experimental system to investigate the temporal changes in transcription that accompany growth arrest and recovery in wild-type Escherichia coli and in mutants that lack RelA (ppGpp synthetase) and other global regulators, i.e., RpoS and Crp. In particular, diauxie was delayed in the relA mutant and was accompanied by a 15% decrease in the number of carbon sources used and a 3-fold overall decrease in the induction of RpoS and Crp regulon genes. Thus the data significantly expand the previously known role of ppGpp and support a model wherein the ppGpp-dependent redistribution of RNA polymerase across the genome is the driving force behind control of the stringent response, general stress response, and starvation-induced carbon scavenging. Our conceptual model of diauxie describes these global control circuits as dynamic, interconnected, and dependent upon ppGpp for the efficient temporal coordination of gene expression that programs the cell for transitions between feast and famine. PMID:16467149

  17. Global stability for delay-dependent HTLV-I model with CTL immune response

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Liu, Jun

    2016-06-01

    We present a delay-dependent HTLV-I model with CTL immune response. The basic reproduction number is obtained for the existence of positive steady state. By constructing suitable Lyapunov functions, when the basic reproduction number is less than one, the infection-free steady state is globally asymptotically stable; when the basic reproduction number is greater than one, the infected steady state is globally asymptotically stable.

  18. Effects of the Cryptochrome CryB from Rhodobacter sphaeroides on Global Gene Expression in the Dark or Blue Light or in the Presence of Singlet Oxygen

    PubMed Central

    Frühwirth, Sebastian; Teich, Kristin; Klug, Gabriele

    2012-01-01

    Several regulators are controlling the formation of the photosynthetic apparatus in the facultatively photosynthetic bacterium Rhodobacter sphaeroides. Among the proteins affecting photosynthesis gene expression is the blue light photoreceptor cryptochrome CryB. This study addresses the effect of CryB on global gene expression. The data reveal that CryB does not only influence photosynthesis gene expression but also genes for the non-photosynthetic energy metabolism like citric acid cycle and oxidative phosphorylation. In addition several genes involved in RNA processing and in transcriptional regulation are affected by a cryB deletion. Although CryB was shown to undergo a photocycle it does not only affect gene expression in response to blue light illumination but also in response to singlet oxygen stress conditions. While there is a large overlap in these responses, some CryB-dependent effects are specific for blue-light or photooxidative stress. In addition to protein-coding genes some genes for sRNAs show CryB-dependent expression. These findings give new insight into the function of bacterial cryptochromes and demonstrate for the first time a function in the oxidative stress response. PMID:22496766

  19. The effect of blur on cortical responses to global form and motion

    PubMed Central

    Burton, Eliza A.; Wattam-Bell, John; Rubin, Gary S.; Atkinson, Janette; Braddick, Oliver; Nardini, Marko

    2015-01-01

    Global form and motion sensitivity undergo long development in childhood with motion sensitivity rather than form being impaired in a number of childhood disorders and both impaired in adult clinical populations. This suggests extended development and vulnerability of extrastriate cortical areas associated with global processing. However, in some developmental and clinical populations, it remains unclear to what extent impairments might reflect deficits at earlier stages of visual processing, such as reduced visual acuity and contrast sensitivity. To address this, we investigated the impact of degraded spatial vision on cortical global form and motion processing in healthy adults. Loss of high spatial frequencies was simulated using a diffuser to blur the stimuli. Participants completed behavioral and EEG tests of global form and motion perception under three levels of blur. For the behavioral tests, participants' form and motion coherence thresholds were measured using a two-alternative, forced-choice procedure. Steady-state visual evoked potentials were used to measure cortical responses to changes in the coherence of global form and motion stimuli. Both global form and global motion perception were impaired with increasing blur as measured by elevated behavioral thresholds and reduced cortical responses. However, form thresholds showed greater impairment in both behavioral and EEG measures than motion thresholds at the highest levels of blur. The results suggest that high spatial frequencies play an important role in the perception of both global form and motion but are especially significant for global form. Overall, the results reveal complex interactions between low-level factors and global visual processing, highlighting the importance of taking these factors into account when investigating extrastriate function in low vision populations. PMID:26605841

  20. Modulation of Inflammatory Responses after Global Ischemia by Transplanted Umbilical-Cord Matrix Stem Cells

    PubMed Central

    Hirko, Aaron; Dallasen, Renee; Jomura, Sachiko; Xu, Yan

    2009-01-01

    Rat umbilical cord matrix (RUCM) cells are stem-cell-like cells and have been shown to reduce neuronal loss in the selectively vulnerable brain regions after cardiac arrest (CA). Here, we investigate whether this protection is mediated by the RUCM cells’ modulation of the post-ischemia inflammation responses, which have long been implicated as a secondary mechanism of injury following ischemia. Brain sections were examined immunohistochemically for GFAP, vimentin, and nestin as markers for astroglia and reactive astrogliosis, Ricinus Communis Agglutinin-1 (RCA-1) as a marker for microglia, and Ki67 as a marker for cell proliferation. Rats were randomly assigned to six experimental groups: (1) 8-min CA without treatment, (2) 8-min CA pretreated with culture medium injection, (3) 8-min CA pretreated with RUCM cells, (4) sham-operated CA, (5) medium injection without CA, and (6) RUCM cell transplantation without CA. Groups 1–3 have significantly higher Ki67+ cell counts and higher GFAP+ immunoreactivity in the hippocampal CA1 region compared to groups 4–6, irrespective of treatment. Groups 1 and 2 have highly elevated GFAP+, vimentin+, and nestin+ immunoreactivity, indicating reactive astrogliosis. Strikingly, RUCM cell treatment nearly completely inhibited the appearance of vimentin+ and greatly reduced nestin+ reactive astrocytes. RUCM cell treatment also greatly reduced RCA-1 expression, which is found to strongly correlate with the neuronal loss in the CA1 region. Our study indicates that treatment with stem-cell-like RUCM cells modulates the inflammatory response to global ischemia and renders neuronal protection by preventing permanent damage to the selectively vulnerable astrocytes in the CA1 region. PMID:18719227

  1. The metabolic background is a global player in Saccharomyces gene expression epistasis.

    PubMed

    Alam, Mohammad Tauqeer; Zelezniak, Aleksej; Mülleder, Michael; Shliaha, Pavel; Schwarz, Roland; Capuano, Floriana; Vowinckel, Jakob; Radmaneshfar, Elahe; Krüger, Antje; Calvani, Enrica; Michel, Steve; Börno, Stefan; Christen, Stefan; Patil, Kiran Raosaheb; Timmermann, Bernd; Lilley, Kathryn S; Ralser, Markus

    2016-01-01

    The regulation of gene expression in response to nutrient availability is fundamental to the genotype-phenotype relationship. The metabolic-genetic make-up of the cell, as reflected in auxotrophy, is hence likely to be a determinant of gene expression. Here, we address the importance of the metabolic-genetic background by monitoring transcriptome, proteome and metabolome in a repertoire of 16 Saccharomyces cerevisiae laboratory backgrounds, combinatorially perturbed in histidine, leucine, methionine and uracil biosynthesis. The metabolic background affected up to 85% of the coding genome. Suggesting widespread confounding, these transcriptional changes show, on average, 83% overlap between unrelated auxotrophs and 35% with previously published transcriptomes generated for non-metabolic gene knockouts. Background-dependent gene expression correlated with metabolic flux and acted, predominantly through masking or suppression, on 88% of transcriptional interactions epistatically. As a consequence, the deletion of the same metabolic gene in a different background could provoke an entirely different transcriptional response. Propagating to the proteome and scaling up at the metabolome, metabolic background dependencies reveal the prevalence of metabolism-dependent epistasis at all regulatory levels. Urging a fundamental change of the prevailing laboratory practice of using auxotrophs and nutrient supplemented media, these results reveal epistatic intertwining of metabolism with gene expression on the genomic scale. PMID:27572163

  2. Protein expression patterns of the yeast mating response.

    PubMed

    Yuan, Haiyu; Zhang, Rongfei; Shao, Bin; Wang, Xuan; Ouyang, Qi; Hao, Nan; Luo, Chunxiong

    2016-06-13

    Microfluidics, in combination with time-lapse microscopy, is a transformative technology that significantly enhances our ability to monitor and probe biological processes in living cells. However, high-throughput microfluidic devices mostly require sophisticated preparatory and setup work and are thus hard to adopt by non-experts. In this work, we designed an easy-to-use microfluidic chip, which enables tracking of 48 GFP-tagged yeast strains, with each strain under two different stimulus conditions, in a single experiment. We used this technology to investigate the dynamic pattern of protein expression during the yeast mating differentiation response. High doses of pheromone induce cell cycle arrest and the shmoo morphology, whereas low doses of pheromone lead to elongation and chemotrophic growth. By systematically analyzing the protein dynamics of 156 pheromone-regulated genes, we identified groups of genes that are preferentially induced in response to low-dose pheromone (elongation during growth) or high-dose pheromone (shmoo formation and cell cycle arrest). The protein dynamics of these genes may provide insights into the mechanisms underlying the differentiation switch induced by different doses of pheromone. PMID:27177258

  3. Global microRNA expression is essential for murine mast cell development in vivo

    PubMed Central

    Oh, Sun Young; Brandal, Stephanie; Kapur, Reuben; Zhu, Zhou; Takemoto, Clifford M.

    2014-01-01

    microRNAs (miRNAs) are small, non-coding RNAs that have been shown to play a critical role in normal physiology and disease, such as hematopoietic development and cancer. However, their role in mast cell function and development is poorly understood. The major objective of this study was to determine how global miRNA expression affects mast cell physiology. The RNase III endonuclease, Dicer, is required for the processing of pre-miRNAs into mature miRNAs. To investigate the effect of global miRNA depletion on mast cells in vivo, we generated a mast cell-specific knock out of Dicer in mice. Transgenic mice (Mcpt5-Cre) that express Cre selectively in connective tissue mast cells were crossed with mice carrying the floxed conditional Dicer allele (Dicer fl/fl). Mcpt5-Cre x Dicer fl/fl mice with homozygous Dicer gene deletion in mast cells were found to have a profound mast cell deficiency with near complete loss of peritoneal, gastrointestinal, and skin mast cells. We examined the in vivo functional consequence of mast cell-specific Dicer deletion using an IgE-dependent passive systemic anaphylaxis (PSA) murine model. IgE sensitized wild type Mcpt5-Cre x Dicer +/+ and heterozygous Mcpt5-Cre x Dicer fl/+ mice show marked hypothermia with antigen; however, homozygous Mcpt5-Cre x Dicer fl/fl mice were completely unresponsive to antigen challenge. These studies suggest a critical role for Dicer and miRNA expression for establishment of tissue compartments of functional mast cells in vivo. PMID:25201754

  4. The global gene expression profile of the secondary transition during pancreatic development.

    PubMed

    Willmann, Stefanie J; Mueller, Nikola S; Engert, Silvia; Sterr, Michael; Burtscher, Ingo; Raducanu, Aurelia; Irmler, Martin; Beckers, Johannes; Sass, Steffen; Theis, Fabian J; Lickert, Heiko

    2016-02-01

    Pancreas organogenesis is a highly dynamic process where neighboring tissue interactions lead to dynamic changes in gene regulatory networks that orchestrate endocrine, exocrine, and ductal lineage formation. To understand the spatio-temporal regulatory logic we have used the Forkhead transcription factor Foxa2-Venus fusion (FVF) knock-in reporter mouse to separate the FVF(+) pancreatic epithelium from the FVF(−) surrounding tissue (mesenchyme, neurons, blood, and blood vessels) to perform a genome-wide mRNA expression profiling at embryonic days (E) 12.5-15.5. Annotating genes and molecular processes suggest that FVF marks endoderm-derived multipotent epithelial progenitors at several lineage restriction steps, when the bulk of endocrine, exocrine and ductal cells are formed during the secondary transition. In the pancreatic epithelial compartment, we identified most known endocrine and exocrine lineage determining factors and diabetes-associated genes, but also unknown genes with spatio-temporal regulated pancreatic expression. In the non-endoderm-derived compartment, we identified many well-described regulatory genes that are not yet functionally annotated in pancreas development, emphasizing that neighboring tissue interactions are still ill defined. Pancreatic expression of over 635 genes was analyzed with them RNA in situ hybridization Genepaint public database. This validated the quality of the profiling data set and identified hundreds of genes with spatially restricted expression patterns in the pancreas. Some of these genes are also targeted by pancreatic transcription factors and show active chromatin marks in human islets of Langerhans. Thus, with the highest spatio-temporal resolution of a global gene expression profile during the secondary transition, our study enables to shed light on neighboring tissue interactions, developmental timing and diabetes gene regulation. PMID:26643664

  5. Global Analysis of Gene Expression Profiles in Developing Physic Nut (Jatropha curcas L.) Seeds

    PubMed Central

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Background Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29–41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. Conclusions/Significance The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production. PMID:22574177

  6. AUXIN RESPONSE FACTOR7 Restores the Expression of Auxin-Responsive Genes in Mutant Arabidopsis Leaf Mesophyll ProtoplastsW⃞

    PubMed Central

    Wang, Shucai; Tiwari, Shiv B.; Hagen, Gretchen; Guilfoyle, Tom J.

    2005-01-01

    AUXIN RESPONSE FACTOR7 (ARF7) is one of five ARF transcriptional activators in Arabidopsis thaliana that is proposed to regulate auxin-responsive expression of genes containing TGTCTC auxin response elements in their promoters. An Arabidopsis mutant (nonphototropic hypocotyl4-1 [nph4-1]) that is a null for ARF7 showed strongly reduced expression of integrated auxin-responsive reporter genes and natural genes that were monitored in Arabidopsis leaf mesophyll protoplasts. Expression of the reporter and natural genes was restored in an auxin-dependent manner when protoplasts were transfected with a 35S:ARF7 effector gene, encoding a full-length ARF7 protein. Transfection of effector genes encoding other ARF activators restored auxin-responsive gene expression to varying degrees, but less than that observed with the ARF7 effector gene. Arabidopsis lines that were null for ARF6, ARF8, or ARF19 were not defective in expression of the reporter and natural auxin response genes assayed in mesophyll protoplasts, suggesting that ARF7 plays a major role in regulating expression of a subset of auxin response genes in leaf mesophyll cells. Auxin-responsive gene expression was induced in wild-type protoplasts and restored in nph4-1 protoplasts only with auxin and not with other hormones, including brassinolide. In the presence of auxin, however, brassinolide modestly enhanced auxin-responsive gene expression. PMID:15923351

  7. Public responses to global warming in Newcastle, Australia: Environmental values and environmental decision making

    SciTech Connect

    Bulkeley, H.

    1997-12-31

    This paper seeks to address tile social and cultural dimensions of the global warming issue through an analysis of `public` responses in Newcastle, Australia, based on recent research undertaken for a PhD thesis. Given the history of Australian involvement in the F.C.C.C process this case-study will provides an interesting context in which to analyse discourses of environmental values. It is argued that these discourses shape and are shaped by public responses to global environmental issues in ways which have important implications for the definition of issues as `problems` with acceptable solutions, for the implementation of such solutions and for their political consequences.

  8. Identification of Novel Cellular Targets in Biliary Tract Cancers Using Global Gene Expression Technology

    PubMed Central

    Hansel, Donna E.; Rahman, Ayman; Hidalgo, Manuel; Thuluvath, Paul J.; Lillemoe, Keith D.; Shulick, Richard; Ku, Ja-Lok; Park, Jae-Gahb; Miyazaki, Kohje; Ashfaq, Raheela; Wistuba, Ignacio I.; Varma, Ram; Hawthorne, Lesleyann; Geradts, Joseph; Argani, Pedram; Maitra, Anirban

    2003-01-01

    Biliary tract carcinoma carries a poor prognosis, and difficulties with clinical management in patients with advanced disease are often due to frequent late-stage diagnosis, lack of serum markers, and limited information regarding biliary tumor pathogenesis. RNA-based global analyses of gene expression have led to the identification of a large number of up-regulated genes in several cancer types. We have used the recently developed Affymetrix U133A gene expression microarrays containing nearly 22,000 unique transcripts to obtain global gene expression profiles from normal biliary epithelial scrapings (n = 5), surgically resected biliary carcinomas (n = 11), and biliary cancer cell lines (n = 9). Microarray hybridization data were normalized using dCHIP (http://www.dCHIP.org) to identify differentially up-regulated genes in primary biliary cancers and biliary cancer cell lines and their expression profiles was compared to that of normal epithelial scrapings using the dCHIP software as well as Significance Analysis of Microarrays or SAM (http://www-stat.stanford.edu/∼tibs/SAM/). Comparison of the dCHIP and SAM datasets revealed an overlapping list of 282 genes expressed at greater than threefold levels in the cancers compared to normal epithelium (t-test P <0.1 in dCHIP, and median false discovery rate <10 in SAM). Several pathways integral to tumorigenesis were up-regulated in the biliary cancers, including proliferation and cell cycle antigens (eg, cyclins D2 and E2, cdc2/p34, and geminin), transcription factors (eg, homeobox B7 and islet-1), growth factors and growth factor receptors (eg, hepatocyte growth factor, amphiregulin, and insulin-like growth factor 1 receptor), and enzymes modulating sensitivity to chemotherapeutic agents (eg, cystathionine β synthase, dCMP deaminase, and CTP synthase). In addition, we identified several “pathway” genes that are rapidly emerging as novel therapeutic targets in cancer (eg, cytosolic phospholipase A2, an upstream

  9. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis†

    PubMed Central

    Eymann, Christine; Homuth, Georg; Scharf, Christian; Hecker, Michael

    2002-01-01

    The stringent response in Bacillus subtilis was characterized by using proteome and transcriptome approaches. Comparison of protein synthesis patterns of wild-type and relA mutant cells cultivated under conditions which provoke the stringent response revealed significant differences. According to their altered synthesis patterns in response to dl-norvaline, proteins were assigned to four distinct classes: (i) negative stringent control, i.e., strongly decreased protein synthesis in the wild type but not in the relA mutant (e.g., r-proteins); (ii) positive stringent control, i.e., induction of protein synthesis in the wild type only (e.g., YvyD and LeuD); (iii) proteins that were induced independently of RelA (e.g., YjcI); and (iv) proteins downregulated independently of RelA (e.g., glycolytic enzymes). Transcriptome studies based on DNA macroarray techniques were used to complement the proteome data, resulting in comparable induction and repression patterns of almost all corresponding genes. However, a comparison of both approaches revealed that only a subset of RelA-dependent genes or proteins was detectable by proteomics, demonstrating that the transcriptome approach allows a more comprehensive global gene expression profile analysis. The present study presents the first comprehensive description of the stringent response of a bacterial species and an almost complete map of protein-encoding genes affected by (p)ppGpp. The negative stringent control concerns reactions typical of growth and reproduction (ribosome synthesis, DNA synthesis, cell wall synthesis, etc.). Negatively controlled unknown y-genes may also code for proteins with a specific function during growth and reproduction (e.g., YlaG). On the other hand, many genes are induced in a RelA-dependent manner, including genes coding for already-known and as-yet-unknown proteins. A passive model is preferred to explain this positive control relying on the redistribution of the RNA polymerase under the

  10. Global profiling of Shewanella oneidensis MR-1: Expression of hypothetical genes and improved functional annotations

    SciTech Connect

    Picone, Alex F.; Galperin, Michael Y.; Romine, Margaret; Higdon, Roger; Makarova, Kira S.; Kolker, Natali; Anderson, Gordon A; Qiu, Xiaoyun; Babnigg, Gyorgy; Beliaev, Alexander S; Edlefsen, Paul; Elias, Dwayne A.; Gorby, Dr. Yuri A.; Holzman, Ted; Klappenbach, Joel; Konstantinidis, Konstantinos T; Land, Miriam L; Lipton, Mary S.; McCue, Lee Ann; Monroe, Matthew; Pasa-Tolic, Ljiljana; Pinchuk, Grigoriy; Purvine, Samuel; Serres, Margrethe H.; Tsapin, Sasha; Zakrajsek, Brian A.; Zhu, Wenguang; Zhou, Jizhong; Larimer, Frank W; Lawrence, Charles E.; Riley, Monica; Collart, Frank; YatesIII, John R.; Smith, Richard D.; Nealson, Kenneth H.; Fredrickson, James K; Tiedje, James M.

    2005-01-01

    The gamma-proteobacterium Shewanella oneidensis strain MR-1 is a metabolically versatile organism that can reduce a wide range of organic compounds, metal ions, and radionuclides. Similar to most other sequenced organisms, approximate to40% of the predicted ORFs in the S. oneidensis genome were annotated as uncharacterized "hypothetical" genes. We implemented an integrative approach by using experimental and computational analyses to provide more detailed insight into gene function. Global expression profiles were determined for cells after UV irradiation and under aerobic and suboxic growth conditions. Transcriptomic and proteomic analyses confidently identified 538 hypothetical genes as expressed in S. oneidensis cells both as mRNAs and proteins (33% of all predicted hypothetical proteins). Publicly available analysis tools and databases and the expression data were applied to improve the annotation of these genes. The annotation results were scored by using a seven-category schema that ranked both confidence and precision of the functional assignment. We were able to identify homologs for nearly all of these hypothetical proteins (97%), but could confidently assign exact biochemical functions for only 16 proteins (category 1; 3%). Altogether, computational and experimental evidence provided functional assignments or insights for 240 more genes (categories 2-5; 45%). These functional annotations advance our understanding of genes involved in vital cellular processes, including energy conversion, ion transport, secondary metabolism, and signal transduction. We propose that this integrative approach offers a valuable means to undertake the enormous challenge of characterizing the rapidly growing number of hypothetical proteins with each newly sequenced genome.

  11. Global signal modulation of single-trial fMRI response variability: Effect on positive vs negative BOLD response relationship.

    PubMed

    Mayhew, S D; Mullinger, K J; Ostwald, D; Porcaro, C; Bowtell, R; Bagshaw, A P; Francis, S T

    2016-06-01

    In functional magnetic resonance imaging (fMRI), the relationship between positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to stimulation is potentially informative about the balance of excitatory and inhibitory brain responses in sensory cortex. In this study, we performed three separate experiments delivering visual, motor or somatosensory stimulation unilaterally, to one side of the sensory field, to induce PBR and NBR in opposite brain hemispheres. We then assessed the relationship between the evoked amplitudes of contralateral PBR and ipsilateral NBR at the level of both single-trial and average responses. We measure single-trial PBR and NBR peak amplitudes from individual time-courses, and show that they were positively correlated in all experiments. In contrast, in the average response across trials the absolute magnitudes of both PBR and NBR increased with increasing stimulus intensity, resulting in a negative correlation between mean response amplitudes. Subsequent analysis showed that the amplitude of single-trial PBR was positively correlated with the BOLD response across all grey-matter voxels and was not specifically related to the ipsilateral sensory cortical response. We demonstrate that the global component of this single-trial response modulation could be fully explained by voxel-wise vascular reactivity, the BOLD signal standard deviation measured in a separate resting-state scan (resting state fluctuation amplitude, RSFA). However, bilateral positive correlation between PBR and NBR regions remained. We further report that modulations in the global brain fMRI signal cannot fully account for this positive PBR-NBR coupling and conclude that the local sensory network response reflects a combination of superimposed vascular and neuronal signals. More detailed quantification of physiological and noise contributions to the BOLD signal is required to fully understand the trial-by-trial PBR and NBR relationship compared with that of

  12. Daily Verbal and Nonverbal Expression of Osteoarthritis Pain and Spouse Responses

    PubMed Central

    Wilson, Stephanie J.; Martire, Lynn M.; Keefe, Francis J.; Mogle, Jacqueline A.; Stephens, Mary Ann Parris; Schulz, Richard

    2013-01-01

    The current study applied a model of pain communication [10] to examine the distinction between verbal and nonverbal pain expression in their prediction of punishing, empathic, and solicitous spouse responses to patient pain. It was hypothesized that on days when patients engaged in more nonverbal expression spouses would respond more positively (i.e., with less punishing, and more solicitous and empathic behavior). The same pattern was predicted for verbal expression. In addition, it was expected that associations between patient nonverbal pain expression and positive spouse responses would be strengthened, and that the association with punishing responses would be weakened, on days when levels of verbal pain expression were higher than usual, regardless of daily pain severity. In a 22-day diary study, 144 individuals with knee osteoarthritis and their spouses completed daily measures of pain expression, spouse responses, health, and affect. The predicted positive main effect of nonverbal expression on empathic and solicitous responses was supported by the data, as was the positive main effect for verbal pain expression. Results from moderation analyses partially supported our hypothesis in that a) patients’ nonverbal pain expression was even more strongly related to empathic and solicitous spouse responses on days of high verbal pain expression, and b) patients were buffered from spouse punishing responses on days when both nonverbal and verbal expression were high. These findings suggest that pain expression in both verbal and nonverbal modes of communication is important for positive and negative spousal responses. PMID:23791895

  13. Time-lag effects of global vegetation responses to climate change.

    PubMed

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time-lag effects is quite

  14. Model-based synthesis of locally contingent responses to global market signals

    NASA Astrophysics Data System (ADS)

    Magliocca, N. R.

    2015-12-01

    Rural livelihoods and the land systems on which they depend are increasingly influenced by distant markets through economic globalization. Place-based analyses of land and livelihood system sustainability must then consider both proximate and distant influences on local decision-making. Thus, advancing land change theory in the context of economic globalization calls for a systematic understanding of the general processes as well as local contingencies shaping local responses to global signals. Synthesis of insights from place-based case studies of land and livelihood change is a path forward for developing such systematic knowledge. This paper introduces a model-based synthesis approach to investigating the influence of local socio-environmental and agent-level factors in mediating land-use and livelihood responses to changing global market signals. A generalized agent-based modeling framework is applied to six case-study sites that differ in environmental conditions, market access and influence, and livelihood settings. The largest modeled land conversions and livelihood transitions to market-oriented production occurred in sties with relatively productive agricultural land and/or with limited livelihood options. Experimental shifts in the distributions of agents' risk tolerances generally acted to attenuate or amplify responses to changes in global market signals. Importantly, however, responses of agents at different points in the risk tolerance distribution varied widely, with the wealth gap growing wider between agents with higher or lower risk tolerance. These results demonstrate model-based synthesis is a promising approach to overcome many of the challenges of current synthesis methods in land change science, and to identify generalized as well as locally contingent responses to global market signals.

  15. Global gene expression changes in human embryonic lung fibroblasts induced by organic extracts from respirable air particles

    PubMed Central

    2012-01-01

    Background Recently, we used cell-free assays to demonstrate the toxic effects of complex mixtures of organic extracts from urban air particles (PM2.5) collected in four localities of the Czech Republic (Ostrava-Bartovice, Ostrava-Poruba, Karvina and Trebon) which differed in the extent and sources of air pollution. To obtain further insight into the biological mechanisms of action of the extractable organic matter (EOM) from ambient air particles, human embryonic lung fibroblasts (HEL12469) were treated with the same four EOMs to assess changes in the genome-wide expression profiles compared to DMSO treated controls. Method For this purpose, HEL cells were incubated with subtoxic EOM concentrations of 10, 30, and 60 μg EOM/ml for 24 hours and global gene expression changes were analyzed using human whole genome microarrays (Illumina). The expression of selected genes was verified by quantitative real-time PCR. Results Dose-dependent increases in the number of significantly deregulated transcripts as well as dose-response relationships in the levels of individual transcripts were observed. The transcriptomic data did not differ substantially between the localities, suggesting that the air pollution originating mainly from various sources may have similar biological effects. This was further confirmed by the analysis of deregulated pathways and by identification of the most contributing gene modulations. The number of significantly deregulated KEGG pathways, as identified by Goeman's global test, varied, depending on the locality, between 12 to 29. The Metabolism of xenobiotics by cytochrome P450 exhibited the strongest upregulation in all 4 localities and CYP1B1 had a major contribution to the upregulation of this pathway. Other important deregulated pathways in all 4 localities were ABC transporters (involved in the translocation of exogenous and endogenous metabolites across membranes and DNA repair), the Wnt and TGF-β signaling pathways (associated

  16. Chromium stress response effect on signal transduction and expression of signaling genes in rice.

    PubMed

    Trinh, Ngoc-Nam; Huang, Tsai-Lien; Chi, Wen-Chang; Fu, Shih-Feng; Chen, Chi-Chien; Huang, Hao-Jen

    2014-02-01

    Hexavalent chromium [Cr(VI)] is a non-essential metal for normal plants and is toxic to plants at high concentrations. However, signaling pathways and molecular mechanisms of its action on cell function and gene expression remain elusive. In this study, we found that Cr(VI) induced endogenous reactive oxygen species (ROS) generation and Ca(2+) accumulation and activated NADPH oxidase and calcium-dependent protein kinase. We investigated global transcriptional changes in rice roots by microarray analysis. Gene expression profiling indicated activation of abscisic acid-, ethylene- and jasmonic acid-mediated signaling and inactivation of gibberellic acid-related pathways in Cr(VI) stress-treated rice roots. Genes encoding signaling components such as the protein kinases domain of unknown function 26, receptor-like cytoplasmic kinase, LRK10-like kinase type 2 and protein phosphatase 2C, as well as transcription factors WRKY and apetala2/ethylene response factor were predominant during Cr(VI) stress. Genes involved in vesicle trafficking were subjected to functional characterization. Pretreating rice roots with a vesicle trafficking inhibitor, brefeldin A, effectively reduced Cr(VI)-induced ROS production. Suppression of the vesicle trafficking gene, Exo70, by virus-induced gene silencing strategies revealed that vesicle trafficking is required for mediation of Cr(VI)-induced ROS production. Taken together, these findings shed light on the molecular mechanisms in signaling pathways and transcriptional regulation in response to Cr stress in plants. PMID:24033343

  17. Postauricular and eyeblink startle responses to facial expressions.

    PubMed

    Hess, Ursula; Sabourin, Gabrielle; Kleck, Robert E

    2007-05-01

    Emotional facial expressions have affective significance. Smiles, for example, are perceived as positive and responded to with increased happiness, whereas angry expressions are perceived as negative and threatening. Yet, these perceptions are modulated in part by facial morphological cues related to the sex of the expresser. The present research assessed both eyeblink startle and the postauricular reflex during happy and angry expressions by men and women. For this 14 male and 16 female undergraduates saw happy, neutral, and angry facial expressions as well as positive and negative pictures. The postauricular reflex was potentiated during happy expressions and inhibited during anger expressions; however, as expected, this pattern was more clearly found for female expressers. Conversely, the expected pattern of eyeblink startle potentiation during angry faces and inhibition during happy faces was found only for male expressers. PMID:17371491

  18. Global Profiling of Shewanella oneidensis MR-1: Expression of Hypothetical Genes and Improved functional annotations

    SciTech Connect

    Kolker, Eugene; Picone, Alessandro F.; Galperin, Michael Y.; Romine, Margaret F.; Higdon, Roger; Makarova, Kira S.; Kolker, Natali; Anderson, Gordon A.; Qiu, Xiaoyun; Auberry, Kenneth J.; Babnigg, Gyorgy; Beliaev, Alex S.; Edlefsen, Paul; Elias, Dwayne A.; Gorby, Yuri A.; Holzman, Ted; Klappenbach, Joel; Konstantinidis, Kostas; Land, Miriam L.; Lipton, Mary S.; McCue, Lee-Ann; Monroe, Matthew E.; Pasa-Tolic, Liljiana; Pinchuk, Grigoriy E.; Purvine, Samuel O.; Serres, Margaret; Tsapin, Sasha; Zakrajsek, Brian A.; Zhu, Wenhong; Zhou, Jizhong; Larimer, Frank; Lawrence, Charles; Riley, Monica; Collart, Frank R.; Yates, III, John R.; Smith, Richard D.; Giometti, Carol S.; Nealson, Kenneth; Fredrickson, Jim K.; Tiedje, James M.

    2005-02-08

    The y-proteobacterium Shewanella oneidensis strain MR-1 is a respiratory versatile organism that can reduce a wide range of organics, metals, and radionuclides. Similar to most other sequenced organisms, approximately 40% of the predicted ORFs in the MR-1 genome were annotated as uncharacterized ''hypothetical'' genes. We implemented an integrative approach using experimental and computational analyses to provide more detailed insight into their function. Global expression studies were conducted using RNA and protein expression profiling of cells cultivated under aerobic, suboxic, and fumarate reducing conditions, phosphate limitation and UV irradiation. transcriptomic and proteomic analyses confidently identified 538 ''hypothetical'' genes as expressed in S. oneidensis cells both as mRNAs and proteins (33% of all ''hypothetical'' proteins). Publicly available analysis tools and databases and our own expression data were applied to improve the annotation of these genes. The annotation results were scored using a seven-category schema that ranked both confidence and precision of the functional assignment. We identified homologs for nearly all of these ''hypothetical'' proteins (96%), thus allowing us to minimally classify them as ''conserved proteins''. Computational and/or experimental evidence provided more precise functional assignments for 297 genes (categories 1-4; 55%). These improved functional annotations will significantly widen our understanding of vital cellular processes including signal transduction, ion transport, secondary metabolism, and transcription, as well as structural elements, such as cellular membranes. We propose that this integrative approach offers a viable means to undertake the enormous challenge of characterizing the rapidly growing number of ''hypothetical'' proteins with each newly sequenced genome.

  19. Transcriptome analysis reveals global expression changes in an industrial L-lysine producer of Corynebacterium glutamicum.

    PubMed

    Hayashi, Mikiro; Ohnishi, Junko; Mitsuhashi, Satoshi; Yonetani, Yoshiyuki; Hashimoto, Shin-Ichi; Ikeda, Masato

    2006-02-01

    Toward the elucidation of advanced mechanisms of L-lysine production by Corynebacterium glutamicum, a highly developed industrial strain B-6 was analyzed from the viewpoint of gene expression. Northern blot analysis showed that the lysC gene encoding aspartokinase, the key enzyme of L-lysine biosynthesis, was up-regulated by several folds in strain B-6, while no repression mechanism exists in L-lysine biosynthesis of this bacterium. To analyze the underlying mechanisms of the up-regulation, we compared the transcriptome between strain B-6 and its parental wild-type, finding that not only lysC but also many other amino acid-biosynthetic genes were up-regulated in the producer. These results suggest that a certain global regulatory mechanism is involved in the industrial levels of L-lysine production. PMID:16495679

  20. Sequence and Expression Analyses of Ethylene Response Factors Highly Expressed in Latex Cells from Hevea brasiliensis

    PubMed Central

    Piyatrakul, Piyanuch; Yang, Meng; Putranto, Riza-Arief; Pirrello, Julien; Dessailly, Florence; Hu, Songnian; Summo, Marilyne; Theeravatanasuk, Kannikar; Leclercq, Julie; Kuswanhadi; Montoro, Pascal

    2014-01-01

    The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors. PMID:24971876

  1. Genome-wide transcriptome analysis of expression in rice seedling roots in response to supplemental nitrogen.

    PubMed

    Chandran, Anil Kumar Nalini; Priatama, Ryza A; Kumar, Vikranth; Xuan, Yuanhu; Je, Byoung Il; Kim, Chul Min; Jung, Ki-Hong; Han, Chang-Deok

    2016-08-01

    Nitrogen (N) is the most important macronutrient for plant growth and grain yields. For rice crops, nitrate and ammonium are the major N sources. To explore the genomic responses to ammonium supplements in rice roots, we used 17-day-old seedlings grown in the absence of external N that were then exposed to 0.5mM (NH4)2SO4 for 3h. Transcriptomic profiles were examined by microarray experiments. In all, 634 genes were up-regulated at least two-fold by the N-supplement when compared with expression in roots from untreated control plants. Gene Ontology (GO) enrichment analysis revealed that those upregulated genes are associated with 23 GO terms. Among them, metabolic processes for diverse amino acids (i.e., aspartate, threonine, tryptophan, glutamine, l-phenylalanine, and thiamin) as well as nitrogen compounds are highly over-represented, demonstrating that our selected genes are suitable for studying the N-response in roots. This enrichment analysis also indicated that nitrogen is closely linked to diverse transporter activities by primary metabolites, including proteins (amino acids), lipids, and carbohydrates, and is associated with carbohydrate catabolism and cell wall organization. Integration of results from omics analysis of metabolic pathways and transcriptome data using the MapMan tool suggested that the TCA cycle and pathway for mitochondrial electron transport are co-regulated when rice roots are exposed to ammonium. We also investigated the expression of N-responsive marker genes by performing a comparative analysis with root samples from plants grown under different NH4(+) treatments. The diverse responses to such treatment provide useful insight into the global changes related to the shift from an N-deficiency to an enhanced N-supply in rice, a model crop plant. PMID:27340859

  2. A Robust Response of Precipitation to Global Warming from CMIP5 Models

    NASA Technical Reports Server (NTRS)

    Lau, K. -M.; Wu, H. -T.; Kim, K. -M.

    2012-01-01

    How precipitation responds to global warming is a major concern to society and a challenge to climate change research. Based on analyses of rainfall probability distribution functions of 14 state-of-the-art climate models, we find a robust, canonical global rainfall response to a triple CO2 warming scenario, featuring 100 250% more heavy rain, 5-10% less moderate rain, and 10-15% more very light or no-rain events. Regionally, a majority of the models project a consistent response with more heavy rain events over climatologically wet regions of the deep tropics, and more dry events over subtropical and tropical land areas. Results suggest that increased CO2 emissions induce basic structural changes in global rain systems, increasing risks of severe floods and droughts in preferred geographic locations worldwide.

  3. VIRTIS on Venus Express: retrieval of real surface emissivity on global scales

    NASA Astrophysics Data System (ADS)

    Arnold, Gabriele E.; Kappel, David; Haus, Rainer; Telléz Pedroza, Laura; Piccioni, Giuseppe; Drossart, Pierre

    2015-09-01

    The extraction of surface emissivity data provides the data base for surface composition analyses and enables to evaluate Venus' geology. The Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA's Venus Express mission measured, inter alia, the nightside thermal emission of Venus in the near infrared atmospheric windows between 1.0 and 1.2 μm. These data can be used to determine information about surface properties on global scales. This requires a sophisticated approach to understand and consider the effects and interferences of different atmospheric and surface parameters influencing the retrieved values. In the present work, results of a new technique for retrieval of the 1.0 - 1.2 μm - surface emissivity are summarized. It includes a Multi-Window Retrieval Technique, a Multi-Spectrum Retrieval technique (MSR), and a detailed reliability analysis. The MWT bases on a detailed radiative transfer model making simultaneous use of information from different atmospheric windows of an individual spectrum. MSR regularizes the retrieval by incorporating available a priori mean values, standard deviations as well as spatial-temporal correlations of parameters to be retrieved. The capability of this method is shown for a selected surface target area. Implications for geologic investigations are discussed. Based on these results, the work draws conclusions for future Venus surface composition analyses on global scales using spectral remote sensing techniques. In that context, requirements for observational scenarios and instrumental performances are investigated, and recommendations are derived to optimize spectral measurements for Venus' surface studies.

  4. Global effects on gene expression in fission yeast by silencing and RNA interference machineries.

    PubMed

    Hansen, Klavs R; Burns, Gavin; Mata, Juan; Volpe, Thomas A; Martienssen, Robert A; Bähler, Jürg; Thon, Geneviève

    2005-01-01

    Histone modifications influence gene expression in complex ways. The RNA interference (RNAi) machinery can repress transcription by recruiting histone-modifying enzymes to chromatin, although it is not clear whether this is a general mechanism for gene silencing or whether it requires repeated sequences such as long terminal repeats (LTRs). We analyzed the global effects of the Clr3 and Clr6 histone deacetylases, the Clr4 methyltransferase, the zinc finger protein Clr1, and the RNAi proteins Dicer, RdRP, and Argonaute on the transcriptome of Schizosaccharomyces pombe (fission yeast). The clr mutants derepressed similar subsets of genes, many of which also became transcriptionally activated in cells that were exposed to environmental stresses such as nitrogen starvation. Many genes that were repressed by the Clr proteins clustered in extended regions close to the telomeres. Surprisingly few genes were repressed by both the silencing and RNAi machineries, with transcripts from centromeric repeats and Tf2 retrotransposons being notable exceptions. We found no correlation between repression by RNAi and proximity to LTRs, and the wtf family of repeated sequences seems to be repressed by histone deacetylation independent of RNAi. Our data indicate that the RNAi and Clr proteins show only a limited functional overlap and that the Clr proteins play more global roles in gene silencing. PMID:15632061

  5. Integrated analysis of the genomic, biochemical, and physiological responses of a model ecosystem to global change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our aim is to understand and integrate the molecular, biochemical, physiological and ecological responses of plants in the field to factors of global climate change. This research used Free Air-gas Concentration Enrichment (FACE) technology to enrich [CO2] and [O3] to levels predicted for 2050, in a...

  6. Global Agenda, Local Responses: Changing Education Governance in Hong Kong's Higher Education

    ERIC Educational Resources Information Center

    Chan, David K. K.

    2007-01-01

    Hong Kong has undergone a series of educational reforms since the mid 1990s in response to the tidal wave of globalisation. This article tries to examine the recent education reforms in Hong Kong's higher education within the global context, by putting into perspective a discussion of its policy implications of marketisation, privatisation and…

  7. Global Influences and Local Responses: The Restructuring of the University of Botswana, 1990-2000

    ERIC Educational Resources Information Center

    Tabulawa, Richard

    2007-01-01

    The University of Botswana has not escaped the reform fever currently gripping higher education institutions the world-over. In the late 1980s the University initiated an administrative/management restructuring exercise whose resultant structure was implemented between 1998 and 2000. The exercise, in many respects, was a response to globalization.…

  8. Internationalization as a Response to Globalization: Radical Shifts in University Environments

    ERIC Educational Resources Information Center

    Stromquist, Nelly P.

    2007-01-01

    This case study probes recent developments in a number of academic and non-academic aspects of a private research university in response to current globalization trends. Under the name of internationalization, university administrators and external firms are emerging as powerful decision-makers shaping academic content and even academic…

  9. Global Transcriptome Analysis Reveals That Poly(ADP-Ribose) Polymerase 1 Regulates Gene Expression through EZH2.

    PubMed

    Martin, Kayla A; Cesaroni, Matteo; Denny, Michael F; Lupey, Lena N; Tempera, Italo

    2015-12-01

    Posttranslational modifications, such as poly(ADP-ribosyl)ation (PARylation), regulate chromatin-modifying enzymes, ultimately affecting gene expression. This study explores the role of poly(ADP-ribose) polymerase (PARP) on global gene expression in a lymphoblastoid B cell line. We found that inhibition of PARP catalytic activity with olaparib resulted in global gene deregulation, affecting approximately 11% of the genes expressed. Gene ontology analysis revealed that PARP could exert these effects through transcription factors and chromatin-remodeling enzymes, including the polycomb repressive complex 2 (PRC2) member EZH2. EZH2 mediates the trimethylation of histone H3 at lysine 27 (H3K27me3), a modification associated with chromatin compaction and gene silencing. Both pharmacological inhibition of PARP and knockdown of PARP1 induced the expression of EZH2, which resulted in increased global H3K27me3. Chromatin immunoprecipitation confirmed that PARP1 inhibition led to H3K27me3 deposition at EZH2 target genes, which resulted in gene silencing. Moreover, increased EZH2 expression is attributed to the loss of the occupancy of the transcription repressor E2F4 at the EZH2 promoter following PARP inhibition. Together, these data show that PARP plays an important role in global gene regulation and identifies for the first time a direct role of PARP1 in regulating the expression and function of EZH2. PMID:26370511

  10. Global Transcriptome Analysis Reveals That Poly(ADP-Ribose) Polymerase 1 Regulates Gene Expression through EZH2

    PubMed Central

    Martin, Kayla A.; Cesaroni, Matteo; Denny, Michael F.; Lupey, Lena N.

    2015-01-01

    Posttranslational modifications, such as poly(ADP-ribosyl)ation (PARylation), regulate chromatin-modifying enzymes, ultimately affecting gene expression. This study explores the role of poly(ADP-ribose) polymerase (PARP) on global gene expression in a lymphoblastoid B cell line. We found that inhibition of PARP catalytic activity with olaparib resulted in global gene deregulation, affecting approximately 11% of the genes expressed. Gene ontology analysis revealed that PARP could exert these effects through transcription factors and chromatin-remodeling enzymes, including the polycomb repressive complex 2 (PRC2) member EZH2. EZH2 mediates the trimethylation of histone H3 at lysine 27 (H3K27me3), a modification associated with chromatin compaction and gene silencing. Both pharmacological inhibition of PARP and knockdown of PARP1 induced the expression of EZH2, which resulted in increased global H3K27me3. Chromatin immunoprecipitation confirmed that PARP1 inhibition led to H3K27me3 deposition at EZH2 target genes, which resulted in gene silencing. Moreover, increased EZH2 expression is attributed to the loss of the occupancy of the transcription repressor E2F4 at the EZH2 promoter following PARP inhibition. Together, these data show that PARP plays an important role in global gene regulation and identifies for the first time a direct role of PARP1 in regulating the expression and function of EZH2. PMID:26370511

  11. Global vegetation productivity response to climatic oscillations during the satellite era.

    PubMed

    Gonsamo, Alemu; Chen, Jing M; Lombardozzi, Danica

    2016-10-01

    Climate control on global vegetation productivity patterns has intensified in response to recent global warming. Yet, the contributions of the leading internal climatic variations to global vegetation productivity are poorly understood. Here, we use 30 years of global satellite observations to study climatic variations controls on continental and global vegetation productivity patterns. El Niño-Southern Oscillation (ENSO) phases (La Niña, neutral, and El Niño years) appear to be a weaker control on global-scale vegetation productivity than previously thought, although continental-scale responses are substantial. There is also clear evidence that other non-ENSO climatic variations have a strong control on spatial patterns of vegetation productivity mainly through their influence on temperature. Among the eight leading internal climatic variations, the East Atlantic/West Russia Pattern extensively controls the ensuing year vegetation productivity of the most productive tropical and temperate forest ecosystems of the Earth's vegetated surface through directionally consistent influence on vegetation greenness. The Community Climate System Model (CCSM4) simulations do not capture the observed patterns of vegetation productivity responses to internal climatic variations. Our analyses show the ubiquitous control of climatic variations on vegetation productivity and can further guide CCSM and other Earth system models developments to represent vegetation response patterns to unforced variability. Several winter time internal climatic variation indices show strong potentials on predicting growing season vegetation productivity two to six seasons ahead which enables national governments and farmers forecast crop yield to ensure supplies of affordable food, famine early warning, and plan management options to minimize yield losses ahead of time. PMID:26919189

  12. Expression of heat shock protein genes in insect stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heat shock proteins (HSPs) that are abundantly expressed in insects are important modulators of insect survival. Expression of HSP genes in insects is not only developmentally regulated, but also induced by various stressors in order to confer protection against such stressors. The expression o...

  13. PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in Chlamydomonas reinhardtii.

    PubMed

    Bajhaiya, Amit K; Dean, Andrew P; Zeef, Leo A H; Webster, Rachel E; Pittman, Jon K

    2016-03-01

    Many eukaryotic microalgae modify their metabolism in response to nutrient stresses such as phosphorus (P) starvation, which substantially induces storage metabolite biosynthesis, but the genetic mechanisms regulating this response are poorly understood. Here, we show that P starvation-induced lipid and starch accumulation is inhibited in a Chlamydomonas reinhardtii mutant lacking the transcription factor Pi Starvation Response1 (PSR1). Transcriptomic analysis identified specific metabolism transcripts that are induced by P starvation but misregulated in the psr1 mutant. These include transcripts for starch and triacylglycerol synthesis but also transcripts for photosynthesis-, redox-, and stress signaling-related proteins. To further examine the role of PSR1 in regulating lipid and starch metabolism, PSR1 complementation lines in the psr1 strain and PSR1 overexpression lines in a cell wall-deficient strain were generated. PSR1 expression in the psr1 lines was shown to be functional due to rescue of the psr1 phenotype. PSR1 overexpression lines exhibited increased starch content and number of starch granules per cell, which correlated with a higher expression of specific starch metabolism genes but reduced neutral lipid content. Furthermore, this phenotype was consistent in the presence and absence of acetate. Together, these results identify a key transcriptional regulator in global metabolism and demonstrate transcriptional engineering in microalgae to modulate starch biosynthesis. PMID:26704642

  14. PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in Chlamydomonas reinhardtii1[OPEN

    PubMed Central

    Bajhaiya, Amit K.; Dean, Andrew P.; Zeef, Leo A.H.; Webster, Rachel E.; Pittman, Jon K.

    2016-01-01

    Many eukaryotic microalgae modify their metabolism in response to nutrient stresses such as phosphorus (P) starvation, which substantially induces storage metabolite biosynthesis, but the genetic mechanisms regulating this response are poorly understood. Here, we show that P starvation-induced lipid and starch accumulation is inhibited in a Chlamydomonas reinhardtii mutant lacking the transcription factor Pi Starvation Response1 (PSR1). Transcriptomic analysis identified specific metabolism transcripts that are induced by P starvation but misregulated in the psr1 mutant. These include transcripts for starch and triacylglycerol synthesis but also transcripts for photosynthesis-, redox-, and stress signaling-related proteins. To further examine the role of PSR1 in regulating lipid and starch metabolism, PSR1 complementation lines in the psr1 strain and PSR1 overexpression lines in a cell wall-deficient strain were generated. PSR1 expression in the psr1 lines was shown to be functional due to rescue of the psr1 phenotype. PSR1 overexpression lines exhibited increased starch content and number of starch granules per cell, which correlated with a higher expression of specific starch metabolism genes but reduced neutral lipid content. Furthermore, this phenotype was consistent in the presence and absence of acetate. Together, these results identify a key transcriptional regulator in global metabolism and demonstrate transcriptional engineering in microalgae to modulate starch biosynthesis. PMID:26704642

  15. Global Gene Expression Profiling in R155H Knock-In Murine Model of VCP Disease

    PubMed Central

    Nalbandian, Angèle; Ghimbovschi, Svetlana; Wang, Zuyi; Knoblach, Susan; Llewellyn, Katrina J.; Vesa, Jouni; Hoffman, Eric P.; Kimonis, Virginia E.

    2014-01-01

    Dominant mutations in the valosin containing protein (VCP) gene cause inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), which is characterized by progressive muscle weakness, dysfunction in bone remodeling, and frontotemporal dementia. More recently, VCP has been linked to 2% of familial amyotrophic lateral sclerosis (ALS) cases. VCP plays a significant role in a plethora of cellular functions including membrane fusion, transcription activation, nuclear envelope reconstruction, post-mitotic organelle reassembly, cell cycle control. To elucidate the pathological mechanisms underlying the VCP disease progression, we have previously generated a VCPR155H/+ mouse model with the R155H mutation. Histological analyses of mutant muscle showed vacuolization of myofibrils, centrally located nuclei, and disorganized muscle fibers. Global expression profiling of VCPR155H/+ mice using gene annotations by DAVID identified key dysregulated signaling pathways including genes involved in the physiological system development and function, diseases and disorders, and molecular and cellular functions. There were a total of 212 significantly dysregulated genes, several of which are involved in the regulation of proteasomal function and NF-κB signaling cascade. Findings of the gene expression study were validated by using quantitative reverse transcriptase polymerase chain reaction analyses to test genes involved in various signaling cascades. This investigation reveals the importance of the VCPR155H/+ mouse model in the understanding of cellular and molecular mechanisms causing VCP-associated neurodegenerative diseases and in the discovery of novel therapeutic advancements and strategies for patients suffering with these debilitating disorders. PMID:25388089

  16. Histopathologic alterations associated with global gene expression due to chronic dietary TCDD exposure in juvenile zebrafish.

    PubMed

    Liu, Qing; Spitsbergen, Jan M; Cariou, Ronan; Huang, Chun-Yuan; Jiang, Nan; Goetz, Giles; Hutz, Reinhold J; Tonellato, Peter J; Carvan, Michael J

    2014-01-01

    The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb) and male (18.04 ppb) fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption. PMID:24988445

  17. Histopathologic Alterations Associated with Global Gene Expression Due to Chronic Dietary TCDD Exposure in Juvenile Zebrafish

    PubMed Central

    Liu, Qing; Spitsbergen, Jan M.; Cariou, Ronan; Huang, Chun-Yuan; Jiang, Nan; Goetz, Giles; Hutz, Reinhold J.; Tonellato, Peter J.; Carvan, Michael J.

    2014-01-01

    The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb) and male (18.04 ppb) fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption. PMID:24988445

  18. Global transcriptomic profiling of bovine endometrial immune response in vitro. I. Effect of lipopolysaccharide on innate immunity.

    PubMed

    Oguejiofor, Chike F; Cheng, Zhangrui; Abudureyimu, Ayimuguli; Fouladi-Nashta, Ali A; Wathes, D Claire

    2015-10-01

    The dysregulation of endometrial immune response to bacterial lipopolysaccharide (LPS) has been implicated in uterine disease and infertility in the postpartum dairy cow, although the mechanisms are not clear. Here, we investigated whole-transcriptomic gene expression in primary cultures of mixed bovine epithelial and stromal endometrial cells. Cultures were exposed to LPS for 6 h, and cellular response was measured by bovine microarray. Approximately 30% of the 1006 genes altered by LPS were classified as being involved in immune response. Cytokines and chemokines (IL1A, CX3CL1, CXCL2, and CCL5), interferon (IFN)-stimulated genes (RSAD2, MX2, OAS1, ISG15, and BST2), and the acute phase molecule SAA3 were the most up-regulated genes. Ingenuity Pathway Analysis identified up-regulation of many inflammatory cytokines and chemokines, which function to attract immune cells to the endometrium, together with vascular adhesion molecules and matrix metalloproteinases, which can facilitate immune cell migration from the tissue toward the uterine lumen. Increased expression of many IFN-signaling genes, immunoproteasomes, guanylate-binding proteins, and genes involved in the intracellular recognition of pathogens suggests important roles for these molecules in the innate defense against bacterial infections. Our findings confirmed the important role of endometrial cells in uterine innate immunity, whereas the global approach used identified several novel immune response pathways triggered by LPS in the endometrium. Additionally, many genes involved in endometrial response to the conceptus in early pregnancy were also altered by LPS, suggesting one mechanism whereby an ongoing response to infection may interfere with the establishment of pregnancy. PMID:26353891

  19. Exploiting disorder for global response: Independence of bond-level response and selected-bond removal networks

    NASA Astrophysics Data System (ADS)

    Nagel, Sidney R.

    2015-03-01

    The properties of amorphous solids near jamming are qualitatively different from those of simple crystals. In a crystal with only one atom per unit cell, all atoms play the same role in producing the solid's global response to an external perturbation; disordered materials are not similarly constrained. We will demonstrate a new principle that emerges for disordered matter: independence of bond-level response. This independence refers not only to the dearth of strong correlations between the response of one bond compared to another, but also, and more importantly, to the variation of response of any specific bond to different external perturbations. Using selected-bond removal networks, where individual bonds can be successively removed , we demonstrate that one can drive the overall system to different regimes of behavior. Consequently one can exploit disorder to achieve unique, varied, textured and tunable global response. Work done in collaboration with Carl P. Goodrich and Andrea J. Liu. Research supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

  20. Evaluation of Affinity-Tagged Protein Expression Strategies using Local and Global Isotope Ratio Measurements

    SciTech Connect

    Hervey, IV, William Judson; Khalsa-Moyers, Gurusahai K; Lankford, Patricia K; Owens, Elizabeth T; McKeown, Catherine K; Lu, Tse-Yuan S; Foote, Linda J; Morrell-Falvey, Jennifer L; McDonald, W Hayes; Pelletier, Dale A; Hurst, Gregory {Greg} B

    2009-01-01

    Protein enrichments of engineered, affinity-tagged (or bait ) fusion proteins with interaction partners are often laden with background, non-specific proteins, due to interactions that occur in vitro as an artifact of the technique. Furthermore, the in vivo expression of the bait protein may itself affect physiology or metabolism. In this study, intrinsic affinity purification challenges were investigated in a model protein complex, DNA-dependent RNA polymerase (RNAP), encompassing chromosome- and plasmid-encoding strategies for bait proteins in two different microbial species: Escherichia coli and Rhodopseudomonas palustris. Isotope ratio measurements of bait protein expression strains relative to native, wild-type strains were performed by liquid chromatography tandem mass spectrometry (LC-MS-MS) to assess bait protein expression strategies in each species. Authentic interacting proteins of RNAP were successfully discerned from artifactual co-isolating proteins by the isotopic differentiation of interactions as random or targeted (I-DIRT) method (A. J. Tackett et al. J. Proteome Res. 2005, 4 (5), 1752-1756). To investigate broader effects of bait protein production in the bacteria, we compared proteomes from strains harboring a plasmid that encodes an affinity-tagged subunit (RpoA) of the RNAP complex with the corresponding wild-type strains using stable isotope metabolic labeling. The ratio of RpoA abundance in plasmid strains versus wild type was 0.8 for R. palustris and 1.7 for E. coli. While most other proteins showed no appreciable difference, proteins significantly increased in abundance in plasmid-encoded bait-expressing strains of both species included the plasmid encoded antibiotic resistance protein, GenR and proteins involved in amino acid biosynthesis. Together, these local, complex-specific and more global, whole proteome isotopic abundance ratio measurements provided a tool for evaluating both in vivo and in vitro effects of plasmid

  1. Prostaglandin F2a activates stress response signaling and induces expression of activating transcription factor 3 (ATF3) in bovine large luteal cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pulsatile uterine secretion of prostaglandin F2 alpha (PGF) triggers the regression of the corpus luteum (CL). Recent studies have explored global changes in gene expression in response to PGF that may contribute to structural and functional regression of the CL. Activating transcription facto...

  2. USE OF GENE EXPRESSION ANALYSIS INCORPORATING OPERON-TRANSCRIPTIONAL COUPLING AND TOXICANT DOSE RESPONSE TO DISTINGUISH AMONG STRUCTURAL HOMOLOGUES OF MX

    EPA Science Inventory

    We recently described a general method that can improve microarray analysis of toxicant-exposed cells that uses the intrinsic power of transcriptional coupling and toxicant concentration-expression response data. In this analysis, we characterized changes in global gene expressio...

  3. Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration.

    PubMed

    Chen-Plotkin, Alice S; Geser, Felix; Plotkin, Joshua B; Clark, Chris M; Kwong, Linda K; Yuan, Wuxing; Grossman, Murray; Van Deerlin, Vivianna M; Trojanowski, John Q; Lee, Virginia M-Y

    2008-05-15

    Frontotemporal lobar degeneration is a fatal neurodegenerative disease that results in progressive decline in behavior, executive function and sometimes language. Disease mechanisms remain poorly understood. Recently, however, the DNA- and RNA-binding protein TDP-43 has been identified as the major protein present in the hallmark inclusion bodies of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U), suggesting a role for transcriptional dysregulation in FTLD-U pathophysiology. Using the Affymetrix U133A microarray platform, we profiled global gene expression in both histopathologically affected and unaffected areas of human FTLD-U brains. We then characterized differential gene expression with biological pathway analyses, cluster and principal component analyses, and subgroup analyses based on brain region and progranulin (GRN) gene status. Comparing 17 FTLD-U brains to 11 controls, we identified 414 upregulated and 210 downregulated genes in frontal cortex (P-value < 0.001). Moreover, cluster and principal component analyses revealed that samples with mutations or possibly pathogenic variations in the GRN gene (GRN+, 7/17) had an expression signature that was distinct from both normal controls and FTLD-U samples lacking GRN gene variations (GRN-, 10/17). Within the subgroup of GRN+ FTLD-U, we found >1300 dysregulated genes in frontal cortex (P-value < 0.001), many participating in pathways uniquely dysregulated in the GRN+ cases. Our findings demonstrate a distinct molecular phenotype for GRN+ FTLD-U, not readily apparent on clinical or histopathological examination, suggesting distinct pathophysiological mechanisms for GRN+ and GRN- subtypes of FTLD-U. In addition, these data from a large number of human brains provide a valuable resource for future testing of disease hypotheses. PMID:18223198

  4. Global Gene Expression Profiles of Bacillus subtilis Grown under Anaerobic Conditions

    PubMed Central

    Ye, Rick W.; Tao, Wang; Bedzyk, Laura; Young, Thomas; Chen, Mario; Li, Liao

    2000-01-01

    Bacillus subtilis can grow under anaerobic conditions, either with nitrate or nitrite as the electron acceptor or by fermentation. A DNA microarray containing 4,020 genes from this organism was constructed to explore anaerobic gene expression patterns on a genomic scale. When mRNA levels of aerobic and anaerobic cultures during exponential growth were compared, several hundred genes were observed to be induced or repressed under anaerobic conditions. These genes are involved in a variety of cell functions, including carbon metabolism, electron transport, iron uptake, antibiotic production, and stress response. Among the highly induced genes are not only those responsible for nitrate respiration and fermentation but also those of unknown function. Certain groups of genes were specifically regulated during anaerobic growth on nitrite, while others were primarily affected during fermentative growth, indicating a complex regulatory circuitry of anaerobic metabolism. PMID:10913079

  5. A consistent picture of the hydroclimatic response to global warming from multiple indices: Models and observations

    NASA Astrophysics Data System (ADS)

    Giorgi, F.; Coppola, E.; Raffaele, F.

    2014-10-01

    We analyze trends of six daily precipitation-based and physically interconnected hydroclimatic indices in an ensemble of historical and 21st century climate projections under forcing from increasing greenhouse gas (GHG) concentrations (Representative Concentration Pathways (RCP)8.5), along with gridded (land only) observations for the late decades of the twentieth century. The indices include metrics of intensity (SDII) and extremes (R95) of precipitation, dry (DSL), and wet spell length, the hydroclimatic intensity index (HY-INT), and a newly introduced index of precipitation area (PA). All the indices in both the 21st century and historical simulations provide a consistent picture of a predominant shift toward a hydroclimatic regime of more intense, shorter, less frequent, and less widespread precipitation events in response to GHG-induced global warming. The trends are larger and more spatially consistent over tropical than extratropical regions, pointing to the importance of tropical convection in regulating this response, and show substantial regional spatial variability. Observed trends in the indices analyzed are qualitatively and consistently in line with the simulated ones, at least at the global and full tropical scale, further supporting the robustness of the identified prevailing hydroclimatic responses. The HY-INT, PA, and R95 indices show the most consistent response to global warming, and thus offer the most promising tools for formal hydroclimatic model validation and detection/attribution studies. The physical mechanism underlying this response and some of the applications of our results are also discussed.

  6. Diverse responses of phenology to global changes in a grassland ecosystem

    PubMed Central

    Cleland, Elsa E.; Chiariello, Nona R.; Loarie, Scott R.; Mooney, Harold A.; Field, Christopher B.

    2006-01-01

    Shifting plant phenology (i.e., timing of flowering and other developmental events) in recent decades establishes that species and ecosystems are already responding to global environmental change. Earlier flowering and an extended period of active plant growth across much of the northern hemisphere have been interpreted as responses to warming. However, several kinds of environmental change have the potential to influence the phenology of flowering and primary production. Here, we report shifts in phenology of flowering and canopy greenness (Normalized Difference Vegetation Index) in response to four experimentally simulated global changes: warming, elevated CO2, nitrogen (N) deposition, and increased precipitation. Consistent with previous observations, warming accelerated both flowering and greening of the canopy, but phenological responses to the other global change treatments were diverse. Elevated CO2 and N addition delayed flowering in grasses, but slightly accelerated flowering in forbs. The opposing responses of these two important functional groups decreased their phenological complementarity and potentially increased competition for limiting soil resources. At the ecosystem level, timing of canopy greenness mirrored the flowering phenology of the grasses, which dominate primary production in this system. Elevated CO2 delayed greening, whereas N addition dampened the acceleration of greening caused by warming. Increased precipitation had no consistent impacts on phenology. This diversity of phenological changes, between plant functional groups and in response to multiple environmental changes, helps explain the diversity in large-scale observations and indicates that changing temperature is only one of several factors reshaping the seasonality of ecosystem processes. PMID:16954189

  7. Response of global particulate-matter-related mortality to changes in local precursor emissions.

    PubMed

    Lee, Colin J; Martin, Randall V; Henze, Daven K; Brauer, Michael; Cohen, Aaron; Donkelaar, Aaron van

    2015-04-01

    Recent Global Burden of Disease (GBD) assessments estimated that outdoor fine-particulate matter (PM2.5) is a causal factor in over 5% of global premature deaths. PM2.5 is produced by a variety of direct and indirect, natural and anthropogenic processes that complicate PM2.5 management. This study develops a proof-of-concept method to quantify the effects on global premature mortality of changes to PM2.5 precursor emissions. Using the adjoint of the GEOS-Chem chemical transport model, we calculated sensitivities of global PM2.5-related premature mortality to emissions of precursor gases (SO2, NOx, NH3) and carbonaceous aerosols. We used a satellite-derived ground-level PM2.5 data set at approximately 10 × 10 km(2) resolution to better align the exposure with population density. We used exposure-response functions from the GBD project to relate mortality to exposure in the adjoint calculation. The response of global mortality to changes in local anthropogenic emissions varied spatially by several orders of magnitude. The largest reductions in mortality for a 1 kg km(-2) yr(-1) decrease in emissions were for ammonia and carbonaceous aerosols in Eastern Europe. The greatest reductions in mortality for a 10% decrease in emissions were found for secondary inorganic sources in East Asia. In general, a 10% decrease in SO2 emissions was the most effective source to control, but regional exceptions were found. PMID:25730303

  8. Dynamic responses of atmospheric carbon dioxide concentration to global temperature changes between 1850 and 2010

    NASA Astrophysics Data System (ADS)

    Wang, Weile; Nemani, Ramakrishna

    2016-02-01

    Changes in Earth's temperature have significant impacts on the global carbon cycle that vary at different time scales, yet to quantify such impacts with a simple scheme is traditionally deemed difficult. Here, we show that, by incorporating a temperature sensitivity parameter (1.64 ppm yr-1 °C-1) into a simple linear carbon-cycle model, we can accurately characterize the dynamic responses of atmospheric carbon dioxide (CO2) concentration to anthropogenic carbon emissions and global temperature changes between 1850 and 2010 ( r 2 > 0.96 and the root-mean-square error < 1 ppm for the period from 1960 onward). Analytical analysis also indicates that the multiplication of the parameter with the response time of the atmospheric carbon reservoir (~12 year) approximates the long-term temperature sensitivity of global atmospheric CO2 concentration (~15 ppm °C-1), generally consistent with previous estimates based on reconstructed CO2 and climate records over the Little Ice Age. Our results suggest that recent increases in global surface temperatures, which accelerate the release of carbon from the surface reservoirs into the atmosphere, have partially offset surface carbon uptakes enhanced by the elevated atmospheric CO2 concentration and slowed the net rate of atmospheric CO2 sequestration by global land and oceans by ~30% since the 1960s. The linear modeling framework outlined in this paper thus provides a useful tool to diagnose the observed atmospheric CO2 dynamics and monitor their future changes.

  9. Priorities for developing countries in the global response to non-communicable diseases

    PubMed Central

    2012-01-01

    The growing global burden of non communicable diseases (NCDs) is now killing 36 million people each year and needs urgent and comprehensive action. This article provides an overview of key critical issues that need to be resolved to ensure that recent political commitments are translated into practical action. These include: (i) categorizing and prioritizing NCDs in order to inform donor funding commitments and priorities for intervention; (ii) finding the right balance between the relative importance of treatment and prevention to ensure that responses cover those at risk, and those who are already sick; (iii) defining the appropriate health systems response to address the needs of patients with diseases characterized by long duration and often slow progression; (iv) research needs, in particular translational research in the delivery of care; and (v) sustained funding to support the global NCD response. PMID:22686126

  10. Social Alienation in Schizophrenia Patients: Association with Insula Responsiveness to Facial Expressions of Disgust

    PubMed Central

    Lindner, Christian; Dannlowski, Udo; Walhöfer, Kirsten; Rödiger, Maike; Maisch, Birgit; Bauer, Jochen; Ohrmann, Patricia; Lencer, Rebekka; Zwitserlood, Pienie; Kersting, Anette; Heindel, Walter; Arolt, Volker

    2014-01-01

    Introduction Among the functional neuroimaging studies on emotional face processing in schizophrenia, few have used paradigms with facial expressions of disgust. In this study, we investigated whether schizophrenia patients show less insula activation to macro-expressions (overt, clearly visible expressions) and micro-expressions (covert, very brief expressions) of disgust than healthy controls. Furthermore, departing from the assumption that disgust faces signal social rejection, we examined whether perceptual sensitivity to disgust is related to social alienation in patients and controls. We hypothesized that high insula responsiveness to facial disgust predicts social alienation. Methods We used functional magnetic resonance imaging to measure insula activation in 36 schizophrenia patients and 40 healthy controls. During scanning, subjects passively viewed covert and overt presentations of disgust and neutral faces. To measure social alienation, a social loneliness scale and an agreeableness scale were administered. Results Schizophrenia patients exhibited reduced insula activation in response to covert facial expressions of disgust. With respect to macro-expressions of disgust, no between-group differences emerged. In patients, insula responsiveness to covert faces of disgust was positively correlated with social loneliness. Furthermore, patients' insula responsiveness to covert and overt faces of disgust was negatively correlated with agreeableness. In controls, insula responsiveness to covert expressions of disgust correlated negatively with agreeableness. Discussion Schizophrenia patients show reduced insula responsiveness to micro-expressions but not macro-expressions of disgust compared to healthy controls. In patients, low agreeableness was associated with stronger insula response to micro- and macro-expressions of disgust. Patients with a strong tendency to feel uncomfortable with social interactions appear to be characterized by a high sensitivity for

  11. After the Global Fund: who can sustain the HIV/AIDS response in Peru and how?

    PubMed

    Amaya, Ana B; Caceres, Carlos F; Spicer, Neil; Balabanova, Dina

    2014-01-01

    Peru has received around $70 million from Global Fund to fight AIDS, Tuberculosis and Malaria (Global Fund). Recent economic growth resulted in grant ineligibility, enabling greater government funding, yet doubts remain concerning programme continuity. This study examines the transition from Global Fund support to increasing national HIV/AIDS funding in Peru (2004-2012) by analysing actor roles, motivations and effects on policies, identifying recommendations to inform decision-makers on priority areas. A conceptual framework, which informed data collection, was developed. Thirty-five in-depth interviews were conducted from October to December 2011 in Lima, Peru, among key stakeholders involved in HIV/AIDS work. Findings show that Global Fund involvement led to important breakthroughs in the HIV/AIDS response, primarily concerning treatment access, focus on vulnerable populations and development of a coordination body. Nevertheless, reliance on Global Fund financing for prevention activities via non-governmental organisations, compounded by lack of government direction and weak regional governance, diluted power and caused role uncertainty. Strengthening government and regional capacity and fostering accountability mechanisms will facilitate an effective transition to government-led financing. Only then can achievements gained from the Global Fund presence be maintained, providing lessons for countries seeking to sustain programmes following donor exit. PMID:24499125

  12. Differential Gene Expression Reveals Candidate Genes for Drought Stress Response in Abies alba (Pinaceae)

    PubMed Central

    Ziegenhagen, Birgit; Liepelt, Sascha

    2015-01-01

    Increasing drought periods as a result of global climate change pose a threat to many tree species by possibly outpacing their adaptive capabilities. Revealing the genetic basis of drought stress response is therefore implemental for future conservation strategies and risk assessment. Access to informative genomic regions is however challenging, especially for conifers, partially due to their large genomes, which puts constraints on the feasibility of whole genome scans. Candidate genes offer a valuable tool to reduce the complexity of the analysis and the amount of sequencing work and costs. For this study we combined an improved drought stress phenotyping of needles via a novel terahertz water monitoring technique with Massive Analysis of cDNA Ends to identify candidate genes for drought stress response in European silver fir (Abies alba Mill.). A pooled cDNA library was constructed from the cotyledons of six drought stressed and six well-watered silver fir seedlings, respectively. Differential expression analyses of these libraries revealed 296 candidate genes for drought stress response in silver fir (247 up- and 49 down-regulated) of which a subset was validated by RT-qPCR of the twelve individual cotyledons. A majority of these genes code for currently uncharacterized proteins and hint on new genomic resources to be explored in conifers. Furthermore, we could show that some traditional reference genes from model plant species (GAPDH and eIF4A2) are not suitable for differential analysis and we propose a new reference gene, TPC1, for drought stress expression profiling in needles of conifer seedlings. PMID:25924061

  13. Linking above and belowground responses to global change at community and ecosystem scales.

    SciTech Connect

    Antoninka, Anita; Wolf, Julie; Bowker, Matt; Classen, Aimee T; JohnsonPhD, Dr Nancy C

    2009-01-01

    Cryptic belowground organisms are difficult to observe and their responses to global changes are not well understood. Nevertheless, there is reason to believe that interactions among above- and belowground communities may mediate ecosystem responses to global change. We used grassland mesocosms to manipulate the abundance of one important group of soil organisms, arbuscular mycorrhizal (AM) fungi, and to study community and ecosystem responses to CO2 and N enrichment. After two growing seasons, biomass responses of plant communities were recorded, and soil community responses were measured using microscopy, phospholipid fatty acids (PLFA) and community-level physiological profiles (CLPP). Ecosystem responses were examined by measuring net primary production (NPP), evapotranspiration, total soil organic matter (SOM), and extractable mineral N. Structural equation modeling was used to examine the causal relationships among treatments and response variables. We found that while CO2 and N tended to directly impact ecosystem functions (evapotranspiration and NPP, respectively), AM fungi indirectly impacted ecosystem functions by strongly influencing the composition of plant and soil communities. For example, the presence of AM fungi had a strong influence on other root and soil fungi and soil bacteria. We found that the mycotrophic status of the dominant plant species in the mesocosms determined whether the presence of AM fungi increased or decreased NPP. Mycotrophic grasses dominated the mesocosm communities during the first growing season, and thus, the mycorrhizal treatments had the highest NPP. In contrast, non-mycotrophic forbs were dominant during the second growing season and thus, the mycorrhizal treatments had the lowest NPP. The composition of the plant community strongly influenced soil N; and the composition of the soil organisms strongly influenced SOM accumulation in the mesocosms. These results show how linkages between above- and belowground communities

  14. The orphan response regulator CovR: a globally negative modulator of virulence in Streptococcus suis serotype 2.

    PubMed

    Pan, Xiuzhen; Ge, Junchao; Li, Ming; Wu, Bo; Wang, Changjun; Wang, Jing; Feng, Youjun; Yin, Zhimin; Zheng, Feng; Cheng, Gong; Sun, Wen; Ji, Hongfeng; Hu, Dan; Shi, Peiju; Feng, Xiaodan; Hao, Xina; Dong, Ruiping; Hu, Fuquan; Tang, Jiaqi

    2009-04-01

    Streptococcus suis serotype 2 is an emerging zoonotic pathogen responsible for a wide range of life-threatening diseases in pigs and humans. However, the pathogenesis of S. suis serotype 2 infection is not well understood. In this study, we report that an orphan response regulator, CovR, globally regulates gene expression and negatively controls the virulence of S. suis 05ZYH33, a streptococcal toxic shock syndrome (STSS)-causing strain. A covR-defective (DeltacovR) mutant of 05ZYH33 displayed dramatic phenotypic changes, such as formation of longer chains, production of thicker capsules, and increased hemolytic activity. Adherence of the DeltacovR mutant to epithelial cells was greatly increased, and its resistance to phagocytosis and killing by neutrophils and monocytes was also significantly enhanced. More importantly, inactivation of covR increased the lethality of S. suis serotype 2 in experimental infection of piglets, and this phenotype was restored by covR complementation. Colonization experiments also showed that the DeltacovR mutant exhibited an increased ability to colonize susceptible tissues of piglets. The pleiotropic phenotype of the DeltacovR mutant is in full agreement with the large number of genes controlled by CovR as revealed by transcription profile analysis: 2 genes are positively regulated, and 193 are repressed, including many that encode known or putative virulence factors. These findings suggested that CovR is a global repressor in virulence regulation of STSS-causing S. suis serotype 2. PMID:19181815

  15. Global Pattern of Gene Expression of Xanthomonas axonopodis pv. glycines Within Soybean Leaves.

    PubMed

    Chatnaparat, Tiyakhon; Prathuangwong, Sutruedee; Lindow, Steven E

    2016-06-01

    To better understand the behavior of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean within its host, its global transcriptome within soybean leaves was compared with that in a minimal medium in vitro, using deep sequencing of mRNA. Of 5,062 genes predicted from a draft genome of X. axonopodis pv. glycines, 534 were up-regulated in the plant, while 289 were down-regulated. Genes encoding YapH, a cell-surface adhesin, as well as several others encoding cell-surface proteins, were down-regulated in soybean. Many genes encoding the type III secretion system and effector proteins, cell wall-degrading enzymes and phosphate transporter proteins were strongly expressed at early stages of infection. Several genes encoding RND multidrug efflux pumps were induced in planta and by isoflavonoids in vitro and were required for full virulence of X. axonopodis pv. glycines, as well as resistance to soybean phytoalexins. Genes encoding consumption of malonate, a compound abundant in soybean, were induced in planta and by malonate in vitro. Disruption of the malonate decarboxylase operon blocked growth in minimal media with malonate as the sole carbon source but did not significantly alter growth in soybean, apparently because genes for sucrose and fructose uptake were also induced in planta. Many genes involved in phosphate metabolism and uptake were induced in planta. While disruption of genes encoding high-affinity phosphate transport did not alter growth in media varying in phosphate concentration, the mutants were severely attenuated for growth in soybean. This global transcriptional profiling has provided insight into both the intercellular environment of this soybean pathogen and traits used by X. axonopodis pv. glycines to promote disease. PMID:27003800

  16. Enhanced subliminal emotional responses to dynamic facial expressions.

    PubMed

    Sato, Wataru; Kubota, Yasutaka; Toichi, Motomi

    2014-01-01

    Emotional processing without conscious awareness plays an important role in human social interaction. Several behavioral studies reported that subliminal presentation of photographs of emotional facial expressions induces unconscious emotional processing. However, it was difficult to elicit strong and robust effects using this method. We hypothesized that dynamic presentations of facial expressions would enhance subliminal emotional effects and tested this hypothesis with two experiments. Fearful or happy facial expressions were presented dynamically or statically in either the left or the right visual field for 20 (Experiment 1) and 30 (Experiment 2) ms. Nonsense target ideographs were then presented, and participants reported their preference for them. The results consistently showed that dynamic presentations of emotional facial expressions induced more evident emotional biases toward subsequent targets than did static ones. These results indicate that dynamic presentations of emotional facial expressions induce more evident unconscious emotional processing. PMID:25250001

  17. Functional diversity of melanopsins and their global expression in the teleost retina.

    PubMed

    Davies, Wayne I L; Zheng, Lei; Hughes, Steven; Tamai, T Katherine; Turton, Michael; Halford, Stephanie; Foster, Russell G; Whitmore, David; Hankins, Mark W

    2011-12-01

    Melanopsin (OPN4) is an opsin photopigment that, in mammals, confers photosensitivity to retinal ganglion cells and regulates circadian entrainment and pupil constriction. In non-mammalian species, two forms of opn4 exist, and are classified into mammalian-like (m) and non-mammalian-like (x) clades. However, far less is understood of the function of this photopigment family. Here we identify in zebrafish five melanopsins (opn4m-1, opn4m-2, opn4m-3, opn4x-1 and opn4x-2), each encoding a full-length opsin G protein. All five genes are expressed in the adult retina in a largely non-overlapping pattern, as revealed by RNA in situ hybridisation and immunocytochemistry, with at least one melanopsin form present in all neuronal cell types, including cone photoreceptors. This raises the possibility that the teleost retina is globally light sensitive. Electrophysiological and spectrophotometric studies demonstrate that all five zebrafish melanopsins encode a functional photopigment with peak spectral sensitivities that range from 470 to 484 nm, with opn4m-1 and opn4m-3 displaying invertebrate-like bistability, where the retinal chromophore interchanges between cis- and trans-isomers in a light-dependent manner and remains within the opsin binding pocket. In contrast, opn4m-2, opn4x-1 and opn4x-2 are monostable and function more like classical vertebrate-like photopigments, where the chromophore is converted from 11-cis to all-trans retinal upon absorption of a photon, hydrolysed and exits from the binding pocket of the opsin. It is thought that all melanopsins exhibit an invertebrate-like bistability biochemistry. Our novel findings, however, reveal the presence of both invertebrate-like and vertebrate-like forms of melanopsin in the teleost retina, and indicate that photopigment bistability is not a universal property of the melanopsin family. The functional diversity of these teleost melanopsins, together with their widespread expression pattern within the retina

  18. 17α-Ethinylestradiol (EE2) effect on global gene expression in primary rainbow trout (Oncorhynchus mykiss) hepatocytes.

    PubMed

    Hultman, Maria T; Song, You; Tollefsen, Knut Erik

    2015-12-01

    The potential impact of endocrine disrupting chemicals (EDCs) in the aquatic environment has driven the development of screening assays to evaluate the estrogenic properties of chemicals and their effects on aquatic organisms such as fish. However, obtaining full concentration-response relationships in animal (in vivo) exposure studies are laborious, costly and unethical, hence a need for developing feasible alternative (non-animal) methods. Use of in vitro bioassays such as primary fish hepatocytes, which retain many of the native properties of the liver, has been proposed for in vitro screening of estrogen receptor (ER) agonists and antagonists. The aim of present study was to characterize the molecular mode of action (MoA) of the ER agonist 17α-ethinylestradiol (EE2) in primary rainbow trout (Oncorhynchus mykiss) hepatocytes. A custom designed salmonid 60,000-feature (60k) oligonucleotide microarray was used to characterize the potential MoAs after 48h exposure to EE2. The microarray analysis revealed several concentration-dependent gene expression alterations including classical estrogen sensitive biomarker gene expression (e.g. estrogen receptor α, vitellogenin, zona radiata). Gene Ontology (GO) analysis displayed transcriptional changes suggesting interference of cellular growth, fatty acid and lipid metabolism potentially mediated through the estrogen receptor (ER), which were proposed to be associated with modulation of genes involved in endocrine function and reproduction. Pathway analysis supported the identified GOs and revealed modulation of additional genes associated with apoptosis and cholesterol biosynthesis. Differentially expressed genes (DEGs) related to impaired lipid metabolism (e.g. peroxisome proliferator-activated receptor α and γ), growth (e.g. insulin growth factor protein 1), phase I and II biotransformation (e.g. cytochrome P450 1A, sulfotransferase, UDP-glucuronosyltransferase and glutathione S-transferase) provided additional

  19. Dual-site phosphorylation of the control of virulence regulator impacts group a streptococcal global gene expression and pathogenesis.

    PubMed

    Horstmann, Nicola; Saldaña, Miguel; Sahasrabhojane, Pranoti; Yao, Hui; Su, Xiaoping; Thompson, Erika; Koller, Antonius; Shelburne, Samuel A

    2014-05-01

    Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR) protein from the major human pathogen group A Streptococcus (GAS) influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53) in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65) as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk). Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A) or had functional constitutive phosphorylation at T65 (CovR-T65E) had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A) was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data establish that Cov

  20. Dual-Site Phosphorylation of the Control of Virulence Regulator Impacts Group A Streptococcal Global Gene Expression and Pathogenesis

    PubMed Central

    Horstmann, Nicola; Saldaña, Miguel; Sahasrabhojane, Pranoti; Yao, Hui; Su, Xiaoping; Thompson, Erika; Koller, Antonius; Shelburne, Samuel A.

    2014-01-01

    Phosphorylation relays are a major mechanism by which bacteria alter transcription in response to environmental signals, but understanding of the functional consequences of bacterial response regulator phosphorylation is limited. We sought to characterize how phosphorylation of the control of virulence regulator (CovR) protein from the major human pathogen group A Streptococcus (GAS) influences GAS global gene expression and pathogenesis. CovR mainly serves to repress GAS virulence factor-encoding genes and has been shown to homodimerize following phosphorylation on aspartate-53 (D53) in vitro. We discovered that CovR is phosphorylated in vivo and that such phosphorylation is partially heat-stable, suggesting additional phosphorylation at non-aspartate residues. Using mass spectroscopy along with targeted mutagenesis, we identified threonine-65 (T65) as an additional CovR phosphorylation site under control of the serine/threonine kinase (Stk). Phosphorylation on T65, as mimicked by the recombinant CovR T65E variant, abolished in vitro CovR D53 phosphorylation. Similarly, isoallelic GAS strains that were either unable to be phosphorylated at D53 (CovR-D53A) or had functional constitutive phosphorylation at T65 (CovR-T65E) had essentially an identical gene repression profile to each other and to a CovR-inactivated strain. However, the CovR-D53A and CovR-T65E isoallelic strains retained the ability to positively influence gene expression that was abolished in the CovR-inactivated strain. Consistent with these observations, the CovR-D53A and CovR-T65E strains were hypervirulent compared to the CovR-inactivated strain in a mouse model of invasive GAS disease. Surprisingly, an isoalleic strain unable to be phosphorylated at CovR T65 (CovR-T65A) was hypervirulent compared to the wild-type strain, as auto-regulation of covR gene expression resulted in lower covR gene transcript and CovR protein levels in the CovR-T65A strain. Taken together, these data establish that Cov

  1. Global transcriptional response of Escherichia coli O157:H7 to growth transitions in glucose minimal medium

    PubMed Central

    Bergholz, Teresa M; Wick, Lukas M; Qi, Weihong; Riordan, James T; Ouellette, Lindsey M; Whittam, Thomas S

    2007-01-01

    Background: Global patterns of gene expression of Escherichia coli K-12 during growth transitions have been deeply investigated, however, comparable studies of E. coli O157:H7 have not been explored, particularly with respect to factors regulating virulence genes and genomic islands specific to this pathogen. To examine the impact of growth phase on the dynamics of the transcriptome, O157:H7 Sakai strain was cultured in MOPS minimal media (0.1% glucose), RNA harvested at 10 time points from early exponential to full stationary phase, and relative gene expression was measured by co-hybridization on high-density DNA microarrays. Expression levels of 14 genes, including those encoding Shiga toxins and other virulence factors associated with the locus of enterocyte effacement (LEE), were confirmed by Q-PCR. Results: Analysis of variance (R/MAANOVA, Fs test) identified 442 (36%) of 1239 O157-specific ORFs and 2110 (59%) of 3647 backbone ORFs that changed in expression significantly over time. QT cluster analysis placed 2468 of the 2552 significant ORFs into 12 groups; each group representing a distinct expression pattern. ORFs from the largest cluster (n = 1078) decreased in expression from late exponential to early stationary phase: most of these ORFs are involved in functions associated with steady state growth. Also represented in this cluster are ORFs of the TAI island, encoding tellurite resistance and urease activity, which decreased ~4-fold. Most ORFs of the LEE pathogenicity island also decreased ~2-fold by early stationary phase. The ORFs encoding proteins secreted via the LEE encoded type III secretion system, such as tccP and espJ, also decreased in expression from exponential to stationary phase. Three of the clusters (n = 154) comprised genes that are transiently upregulated at the transition into stationary phase and included genes involved in nutrient scavenging. Upregulated genes with an increase in mRNA levels from late exponential to early stationary

  2. A Canonical Response in Rainfall Characteristics to Global Warming: Projections by IPCC CMIP5 Models

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.; Kim, K. M.

    2012-01-01

    Changes in rainfall characteristics induced by global warming are examined based on probability distribution function (PDF) analysis, from outputs of 14 IPCC (Intergovernmental Panel on Climate Change), CMIP (5th Coupled Model Intercomparison Project) models under various scenarios of increased CO2 emissions. Results show that collectively CMIP5 models project a robust and consistent global and regional rainfall response to CO2 warming. Globally, the models show a 1-3% increase in rainfall per degree rise in temperature, with a canonical response featuring large increase (100-250 %) in frequency of occurrence of very heavy rain, a reduction (5-10%) of moderate rain, and an increase (10-15%) of light rain events. Regionally, even though details vary among models, a majority of the models (>10 out of 14) project a consistent large scale response with more heavy rain events in climatologically wet regions, most pronounced in the Pacific ITCZ and the Asian monsoon. Moderate rain events are found to decrease over extensive regions of the subtropical and extratropical oceans, but increases over the extratropical land regions, and the Southern Oceans. The spatial distribution of light rain resembles that of moderate rain, but mostly with opposite polarity. The majority of the models also show increase in the number of dry events (absence or only trace amount of rain) over subtropical and tropical land regions in both hemispheres. These results suggest that rainfall characteristics are changing and that increased extreme rainfall events and droughts occurrences are connected, as a consequent of a global adjustment of the large scale circulation to global warming.

  3. Nurse responses to patient expressions of spiritual distress.

    PubMed

    Taylor, Elizabeth Johnston; Mamier, Iris

    2013-01-01

    This secondary analysis of data from 200 practicing registered nurses' and student nurses' responses to 3 vignettes depicting patient spiritual distress were evaluated qualitatively and quantitatively (using the Empathic Response Scale). Findings showed wide variation in these nurses' ability to respond empathically; while some responses would be healing, others were potentially hurtful. PMID:23774721

  4. Global gene expression profiling of somatic motor neuron populations with different vulnerability identify molecules and pathways of degeneration and protection

    PubMed Central

    Karlsson, Martin; Osborn, Teresia; Ludwig, Wesley

    2010-01-01

    Different somatic motor neuron subpopulations show a differential vulnerability to degeneration in diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy and spinobulbar muscular atrophy. Studies in mutant superoxide dismutase 1 over-expressing amyotrophic lateral sclerosis model mice indicate that initiation of disease is intrinsic to motor neurons, while progression is promoted by astrocytes and microglia. Therefore, analysis of the normal transcriptional profile of motor neurons displaying differential vulnerability to degeneration in motor neuron disease could give important clues to the mechanisms of relative vulnerability. Global gene expression profiling of motor neurons isolated by laser capture microdissection from three anatomical nuclei of the normal rat, oculomotor/trochlear (cranial nerve 3/4), hypoglossal (cranial nerve 12) and lateral motor column of the cervical spinal cord, displaying differential vulnerability to degeneration in motor neuron disorders, identified enriched transcripts for each neuronal subpopulation. There were striking differences in the regulation of genes involved in endoplasmatic reticulum and mitochondrial function, ubiquitination, apoptosis regulation, nitrogen metabolism, calcium regulation, transport, growth and RNA processing; cellular pathways that have been implicated in motor neuron diseases. Confirmation of genes of immediate biological interest identified differential localization of insulin-like growth factor II, guanine deaminase, peripherin, early growth response 1, soluble guanylate cyclase 1A3 and placental growth factor protein. Furthermore, the cranial nerve 3/4-restricted genes insulin-like growth factor II and guanine deaminase protected spinal motor neurons from glutamate-induced toxicity (P < 0.001, ANOVA), indicating that our approach can identify factors that protect or make neurons more susceptible to degeneration. PMID:20826431

  5. Genome-Wide Linkage Analysis of Global Gene Expression in Loin Muscle Tissue Identifies Candidate Genes in Pigs

    PubMed Central

    Steibel, Juan Pedro; Bates, Ronald O.; Rosa, Guilherme J. M.; Tempelman, Robert J.; Rilington, Valencia D.; Ragavendran, Ashok; Raney, Nancy E.; Ramos, Antonio Marcos; Cardoso, Fernando F.; Edwards, David B.; Ernst, Catherine W.

    2011-01-01

    Background Nearly 6,000 QTL have been reported for 588 different traits in pigs, more than in any other livestock species. However, this effort has translated into only a few confirmed causative variants. A powerful strategy for revealing candidate genes involves expression QTL (eQTL) mapping, where the mRNA abundance of a set of transcripts is used as the response variable for a QTL scan. Methodology/Principal Findings We utilized a whole genome expression microarray and an F2 pig resource population to conduct a global eQTL analysis in loin muscle tissue, and compared results to previously inferred phenotypic QTL (pQTL) from the same experimental cross. We found 62 unique eQTL (FDR <10%) and identified 3 gene networks enriched with genes subject to genetic control involved in lipid metabolism, DNA replication, and cell cycle regulation. We observed strong evidence of local regulation (40 out of 59 eQTL with known genomic position) and compared these eQTL to pQTL to help identify potential candidate genes. Among the interesting associations, we found aldo-keto reductase 7A2 (AKR7A2) and thioredoxin domain containing 12 (TXNDC12) eQTL that are part of a network associated with lipid metabolism and in turn overlap with pQTL regions for marbling, % intramuscular fat (% fat) and loin muscle area on Sus scrofa (SSC) chromosome 6. Additionally, we report 13 genomic regions with overlapping eQTL and pQTL involving 14 local eQTL. Conclusions/Significance Results of this analysis provide novel candidate genes for important complex pig phenotypes. PMID:21346809

  6. Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warming.

    PubMed

    Vallina, S M; Simó, R; Manizza, M

    2007-10-01

    The solar radiation dose in the oceanic upper mixed layer (SRD) has recently been identified as the main climatic force driving global dimethylsulfide (DMS) dynamics and seasonality. Because DMS is suggested to exert a cooling effect on the earth radiative budget through its involvement in the formation and optical properties of tropospheric clouds over the ocean, a positive relationship between DMS and the SRD supports the occurrence of a negative feedback between the oceanic biosphere and climate, as postulated 20 years ago. Such a natural feedback might partly counteract anthropogenic global warming through a shoaling of the mixed layer depth (MLD) and a consequent increase of the SRD and DMS concentrations and emission. By applying two globally derived DMS diagnostic models to global fields of MLD and chlorophyll simulated with an Ocean General Circulation Model coupled to a biogeochemistry model for a 50% increase of atmospheric CO(2) and an unperturbed control run, we have estimated the response of the DMS-producing pelagic ocean to global warming. Our results show a net global increase in surface DMS concentrations, especially in summer. This increase, however, is so weak (globally 1.2%) that it can hardly be relevant as compared with the radiative forcing of the increase of greenhouse gases. This contrasts with the seasonal variability of DMS (1000-2000% summer-to-winter ratio). We suggest that the "plankton-DMS-clouds-earth albedo feedback" hypothesis is less strong a long-term thermostatic system than a seasonal mechanism that contributes to regulate the solar radiation doses reaching the earth's biosphere. PMID:17901211

  7. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    NASA Technical Reports Server (NTRS)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  8. Regional and global temperature response to anthropogenic SO2 emissions from China in three climate models

    NASA Astrophysics Data System (ADS)

    Kasoar, Matthew; Voulgarakis, Apostolos; Lamarque, Jean-François; Shindell, Drew T.; Bellouin, Nicolas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-08-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  9. Soil Microbial Community Responses to Long-Term Global Change Factors in a California Grassland

    NASA Astrophysics Data System (ADS)

    Qin, K.; Peay, K.

    2015-12-01

    Soil fungal and bacterial communities act as mediators of terrestrial carbon and nutrient cycling, and interact with the aboveground plant community as both pathogens and mutualists. However, these soil microbial communities are sensitive to changes in their environment. A better understanding of the response of soil microbial communities to global change may help to predict future soil microbial diversity, and assist in creating more comprehensive models of terrestrial carbon and nutrient cycles. This study examines the effects of four global change factors (increased temperature, increased variability in precipitation, nitrogen deposition, and CO2 enrichment) on soil microbial communities at the Jasper Ridge Global Change Experiment (JRGCE), a full-factorial global change manipulative experiment on three hectares of California grassland. While similar studies have examined the effects of global change on soil microbial communities, few have manipulated more factors or been longer in duration than the JRGCE, which began field treatments in 1998. We find that nitrogen deposition, CO2 enrichment, and increased variability in precipitation significantly affect the structure of both fungal and bacterial communities, and explain more of the variation in the community structures than do local soil chemistry or aboveground plant community. Fungal richness is correlated positively with soil nitrogen content and negatively with soil water content. Arbuscular mycorrhizal fungi (AMF), which associate closely with herbaceous plants' roots and assist in nutrient uptake, decrease in both richness and relative abundance in elevated CO2 treatments.

  10. Responsivity to Offspring's Expression of Emotion among Childhood-Onset Depressed Mothers

    ERIC Educational Resources Information Center

    Shaw, Daniel S.; Schonberg, Michael; Sherrill, Joel; Huffman, Drew; Lukon, Joella; Obrosky, David; Kovacs, Maria

    2006-01-01

    This study examined responsivity of mothers with childhood-onset depression (COD) in relation to children's overt expression of positive and negative emotion. It was hypothesized that COD and control mothers would differ in contingent responsivity to their children's expression of both positivity and different types of negative emotionality. Using…

  11. The Effectiveness of Express Mail as a Response Stimulator in Mail Surveys of Difficult Populations.

    ERIC Educational Resources Information Center

    Anderson, John F.; And Others

    Many different techniques have been used to increase response rates to surveys. In this study, Federal Express overnight service was used to test the effectiveness of express mail in stimulating response to a mail survey of 132 physicians. The sample was randomly split into two groups. One group received the initial mailing by Federal Express…

  12. GLOBAL TRANSCRIPTIONAL RESPONSE OF PORCINE MESENTERIC LYMPH NODES TO SALMONELLA ENTERICA SEROVAR TYPHIMURIUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonellosis is prevalent worldwide and is both a food safety and animal production problem. To understand the host transcriptional response to Salmonella enterica serovar Typhimurium, the Affymetrix GeneChip® porcine genome array was used to identify differentially expressed (DE) genes in mesente...

  13. Multiple Determinants, Common Vulnerabilities, and Creative Responses: Addressing the AIDS Pandemic in Diverse Populations Globally

    PubMed Central

    Mayer, Kenneth H.; Pape, Jean William; Wilson, Phill; Diallo, Dazon Dixon; Saavedra, Jorge; Mimiaga, Matthew J.; Koenig, Serena; Farmer, Paul

    2012-01-01

    The AIDS epidemic has been fueled by global inequities. Ranging from gender inequality and underdevelopment to homophobia impeding health care access for men who have sex with men (MSM), imbalanced resource allocations and social biases have potentiated the epidemic’s spread. However, recognition of culturally specific aspects of each microepidemic has yielded development of community-based organizations, which have resulted in locally effective responses to AIDS. This effective approach to HIV prevention, care and treatment is illustrated through examples of community-based responses in Haiti, the United States, Africa, and other impoverished settings. PMID:22772387

  14. Eag1, Eag2, and SK3 potassium channel expression in the rat hippocampus after global transient brain ischemia.

    PubMed

    de Oliveira, R M Weffort; Martin, S; de Oliveira, C Lino; Milani, H; Schiavon, A P; Joca, S; Pardo, L A; Stühmer, W; Del Bel, E A

    2012-03-01

    Transient global brain ischemia causes delayed neuronal death in the hippocampus that has been associated with impairments in hippocampus-dependent brain function, such as mood, learning, and memory. We investigated the expression of voltage-dependent Kcnh1 and Kcnh5, ether à go-go-related Eag1 and Eag2 (K(V) 10.1 and K(V) 10.2), and small-conductance calcium-activated SK3 (K(Ca) 2.3, Kcnn3) K(+) channels in the hippocampus in rats after transient global brain ischemia. We tested whether the expression of these channels is associated with behavioral changes by evaluating the animals in the elevated plus maze and step-down inhibitory avoidance task. Seven or tweny-eight days after transient global brain ischemia, one group of rats had the hippocampus bilaterally dissected, and mRNA levels were determined. Seven days after transient global brain ischemia, the rats exhibited a decrease in anxiety-like behavior and memory impairments. An increase in anxiety levels was detected 28 days after ischemia. Eag2 mRNA downregulation was observed in the hippocampus 7 days after transient global brain ischemia, whereas Eag1 and SK3 mRNA expression remained unaltered. This is the first experimental evidence that transient global brain ischemia temporarily alters Eag2. The number of intact-appearing pyramidal neurons was substantially decreased in CA1 and statistically measurable in CA2, CA3, and CA4 hippocampal subfields compared with sham control animals 7 or 28 days after ischemia. mRNA expression in the rat hippocampus. The present results provide further information for the characterization of the physiological role of Eag2 channels in the central nervous system. PMID:22006722

  15. An interactive database of cocaine-responsive gene expression.

    PubMed

    Freeman, Willard M; Dougherty, Kathryn E; Vacca, Sally E; Vrana, Kent E

    2002-03-12

    The postgenomic era of large-scale gene expression studies is inundating drug abuse researchers and many other scientists with findings related to gene expression. This information is distributed across many different journals, and requires laborious literature searches. Here, we present an interactive database that combines existing information related to cocaine-mediated changes in gene expression in an easy-to-use format. The database is limited to statistically significant changes in mRNA or protein expression after cocaine administration. The Flash-based program is integrated into a Web page, and organizes changes in gene expression based on neuroanatomical region, general function, and gene name. Accompanying each gene is a description of the gene, links to the original publications, and a link to the appropriate OMIM (Online Mendelian Inheritance in Man) entry. The nature of this review allows for timely modifications and rapid inclusion of new publications, and should help researchers build second-generation hypotheses on the role of gene expression changes in the physiology and behavior of cocaine abuse. Furthermore, this method of organizing large volumes of scientific information can easily be adapted to assist researchers in fields outside of drug abuse. PMID:12805995

  16. Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Qu, Xia; Huang, Gang; Zhou, Wen

    2014-07-01

    East Asia summer rainfall is of great social-economic importance. Based on observations, reanalysis and simulations of 16 Coupled Models Intercomparison Project phase 5 (CMIP5) models, the responses of East Asia summer precipitation, as well as some relevant features, to global warming are investigated. The CMIP5 historical simulation reasonably reproduces the climatology of summer rainfall, the associated circulation, the moisture and its transportation, and the mid-troposphere horizontal advection of temperature as well. Under global warming, the rainfall enhancement is robustly projected in the state-of-the-art models over North China, Northeast China, northern coast of Japan and the Kuroshio. As well, the total summer rainfall over East Asia is consistently increased in the models. For the consistent responses, the moisture budget analysis based on the simulations shows that two factors are responsible: one is increased moisture. As East Asia is a climatological ascent region in northern summer, increased moisture induced by global warming leads to more moisture transported upward and thus the rainfall rise. The other is enhanced evaporation, which may be caused by surface warming and provides more precipitable water to the atmosphere column. Furthermore, the results may provide some implications to the long-term variability of East Asia summer rainfall over the last several decades.

  17. The financial crisis and global health: the International Monetary Fund's (IMF) policy response.

    PubMed

    Ruckert, Arne; Labonté, Ronald

    2013-09-01

    In this article, we interrogate the policy response of the International Monetary Fund (IMF) to the global financial crisis, and discuss the likely global health implications, especially in low-income countries. In doing so, we ask if the IMF has meaningfully loosened its fiscal deficit targets in light of the economic challenges posed by the financial crisis and adjusted its macro-economic policy advice to this new reality; or has the rhetoric of counter-cyclical spending failed to translate into additional fiscal space for IMF loan-recipient countries, with negative health consequences? To answer these questions, we assess several post-crisis IMF lending agreements with countries requiring financial assistance, and draw upon recent academic studies and civil society reports examining policy conditionalities still being prescribed by the IMF. We also reference recent studies examining the health impacts of these conditionalities. We demonstrate that while the IMF has been somewhat more flexible in its crisis response than in previous episodes of financial upheaval, there has been no meaningful rethinking in the application of dominant neoliberal macro-economic policies. After showing some flexibility in the initial crisis response, the IMF is pushing for excessive contraction in most low and middle-income countries. We conclude that there remains a wide gap between the rhetoric and the reality of the IMF's policy and programming advice, with negative implications for global health. PMID:22504946

  18. Heterogeneous global crop yield response to biochar: a meta-regression analysis

    NASA Astrophysics Data System (ADS)

    Crane-Droesch, Andrew; Abiven, Samuel; Jeffery, Simon; Torn, Margaret S.

    2013-12-01

    Biochar may contribute to climate change mitigation at negative cost by sequestering photosynthetically fixed carbon in soil while increasing crop yields. The magnitude of biochar’s potential in this regard will depend on crop yield benefits, which have not been well-characterized across different soils and biochars. Using data from 84 studies, we employ meta-analytical, missing data, and semiparametric statistical methods to explain heterogeneity in crop yield responses across different soils, biochars, and agricultural management factors, and then estimate potential changes in yield across different soil environments globally. We find that soil cation exchange capacity and organic carbon were strong predictors of yield response, with low cation exchange and low carbon associated with positive response. We also find that yield response increases over time since initial application, compared to non-biochar controls. High reported soil clay content and low soil pH were weaker predictors of higher yield response. No biochar parameters in our dataset—biochar pH, percentage carbon content, or temperature of pyrolysis—were significant predictors of yield impacts. Projecting our fitted model onto a global soil database, we find the largest potential increases in areas with highly weathered soils, such as those characterizing much of the humid tropics. Richer soils characterizing much of the world’s important agricultural areas appear to be less likely to benefit from biochar.

  19. MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection

    PubMed Central

    Gong, Ai-Yu; Hu, Guoku; Zhou, Rui; Liu, Jun; Feng, Yaoyu; Soukup, Garrett A.; Chen, Xian-Ming

    2011-01-01

    Cryptosporidium parvum is a protozoan parasite that infects gastrointestinal epithelial cells and causes diarrheal disease in humans and animals globally. Pathological changes following C. parvum infection include crypt hyperplasia, a modest inflammatory reaction with increased infiltration of lymphocytes into intestinal mucosa. Expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), on infected epithelial cell surfaces may facilitate adhesion and recognition of lymphocytes at infection sites. MicroRNAs (miRNAs) are small RNA molecules of 23 nucleotides that negatively regulate protein-coding gene expression via translational suppression or mRNA degradation. We recently reported that microRNA-221 (miR-221) regulates ICAM-1 translation through targeting the ICAM-1 3′-untranslated region (UTR). In this study, we tested the role of miR-221 in regulating ICAM-1 expression in epithelial cells in response to C. parvum infection using an in vitro model of human biliary cryptosporidiosis. Up-regulation of ICAM-1 at both message and protein levels was detected in epithelial cells following C. parvum infection. Inhibition of ICAM-1 transcription with actinomycin D could only partially block C. parvum-induced ICAM-1 expression at the protein level. Cryptosporidium parvum infection decreased miR-221 expression in infected epithelial cells. When cells were transfected with a luciferase reporter construct covering the miR-221 binding site in the ICAM-1 3′-UTR and then exposed to C. parvum, an enhanced luciferase activity was detected. Transfection of miR-221 precursor abolished C. parvum-stimulated ICAM-1 protein expression. In addition, expression of ICAM-1 on infected epithelial cells facilitated epithelial adherence of co-cultured Jurkat cells. These results indicate that miR-221-mediated translational suppression controls ICAM-1 expression in epithelial cells in response to C. parvum infection. PMID:21236259

  20. Time course differential gene expression in response to porcine circovirus type 2 subclinical infection

    PubMed Central

    Tomás, Anna; Fernandes, Lana T.; Sánchez, Armand; Segalés, Joaquim

    2009-01-01

    This study was aimed at characterizing the potential differences in gene expression in piglets inoculated with Porcine circovirus type 2 (PCV2), the essential causative agent of postweaning multisystemic wasting syndrome. Seven-day-old caesarean-derived, colostrum-deprived piglets were distributed into two groups: control (n = 8) and pigs inoculated with 105.2 TCID50 of the Burgos PCV2 isolate (n = 16). One control and three inoculated pigs were necropsied on days 1, 2, 5, and 8 post-infection (p.i.). The remaining pigs (four of each group) were sequentially bled on days 0, 7, 14, 21, and 29 p.i. (necropsy). Total RNA from the mediastinal lymph node (MLN) and lysed whole blood (LWB) samples were hybridized to Affymetrix Porcine GeneChip®. Forty-three probes were differentially expressed (DE) in MLN samples (FDR < 0.1, fold change > 2) and were distributed into three clusters: globally down-regulated genes, and up-regulated genes at early (first week p.i.) and late (day 29 p.i.) stages of infection. In LWB samples, maximal differences were observed at day 7 p.i., with 54 probes DE between control and inoculated pigs. Main Gene Ontology biological processes assigned to up-regulated genes were related to the immune response. Six common genes were found in both types of samples, all of which belonged to the interferon signaling antiviral effector pathway. Down-regulated genes were mainly related to cell adhesion and migration in MLN, and cellular organization and biogenesis in LWB. Microarray results were validated by quantitative real-time PCR. This study provides, for the first time, the characterization of the early and late molecular events taking place in response to a subclinical PCV2 infection. PMID:19825344

  1. Germ Cell Nuclear Factor (GCNF) Represses Oct4 Expression and Globally Modulates Gene Expression in Human Embryonic Stem (hES) Cells*

    PubMed Central

    Wang, Hongran; Wang, Xiaohong; Xu, Xueping; Kyba, Michael; Cooney, Austin J.

    2016-01-01

    Oct4 is considered a key transcription factor for pluripotent stem cell self-renewal. It binds to specific regions within target genes to regulate their expression and is downregulated upon induction of differentiation of pluripotent stem cells; however, the mechanisms that regulate the levels of human Oct4 expression remain poorly understood. Here we show that expression of human Oct4 is directly repressed by germ cell nuclear factor (GCNF), an orphan nuclear receptor, in hES cells. Knockdown of GCNF by siRNA resulted in maintenance of Oct4 expression during RA-induced hES cell differentiation. While overexpression of GCNF promoted repression of Oct4 expression in both undifferentiated and differentiated hES cells. The level of Oct4 repression was dependent on the level of GCNF expression in a dose-dependent manner. mRNA microarray analysis demonstrated that overexpression of GCNF globally regulates gene expression in undifferentiated and differentiated hES cells. Within the group of altered genes, GCNF down-regulated 36% of the genes, and up-regulated 64% in undifferentiated hES cells. In addition, GCNF also showed a regulatory gene pattern that is different from RA treatment during hES cell differentiation. These findings increase our understanding of the mechanisms that maintain hES cell pluripotency and regulate gene expression during the differentiation process. PMID:26769970

  2. Global alteration in gene expression profiles of deciduas from women with idiopathic recurrent pregnancy loss

    PubMed Central

    Krieg, S.A.; Fan, X.; Hong, Y.; Sang, Q.-X.; Giaccia, A.; Westphal, L.M.; Lathi, R.B.; Krieg, A.J.; Nayak, N.R.

    2012-01-01

    Recurrent pregnancy loss (RPL) occurs in ∼5% of women. However, the etiology is still poorly understood. Defects in decidualization of the endometrium during early pregnancy contribute to several pregnancy complications, such as pre-eclampsia and intrauterine growth restriction (IUGR), and are believed to be important in the pathogenesis of idiopathic RPL. We performed microarray analysis to identify gene expression alterations in the deciduas of idiopathic RPL patients. Control patients had one antecedent term delivery, but were undergoing dilation and curettage for current aneuploid miscarriage. Gene expression differences were evaluated using both pathway and gene ontology (GO) analysis. Selected genes were validated using quantitative reverse transcription–polymerase chain reaction (qRT–PCR). A total of 155 genes were found to be significantly dysregulated in the deciduas of RPL patients (>2-fold change, P < 0.05), with 22 genes up-regulated and 133 genes down-regulated. GO analysis linked a large percentage of genes to discrete biological functions, including immune response (23%), cell signaling (18%) and cell invasion (17.1%), and pathway analysis revealed consistent changes in both the interleukin 1 (IL-1) and IL-8 pathways. All genes in the IL-8 pathway were up-regulated while genes in the IL-1 pathway were down-regulated. Although both pathways can promote inflammation, IL-1 pathway activity is important for normal implantation. Additionally, genes known to be critical for degradation of the extracellular matrix, including matrix metalloproteinase 26 and serine peptidase inhibitor Kazal-type 1, were also highly up-regulated. In this first microarray approach to decidual gene expression in RPL patients, our data suggest that dysregulation of genes associated with cell invasion and immunity may contribute significantly to idiopathic recurrent miscarriage. PMID:22505054

  3. A global profile of glucose-sensitive endothelial-expressed long non-coding RNAs.

    PubMed

    Singh, Krishna K; Mantella, Laura-Eve; Pan, Yi; Quan, Adrian; Sabongui, Sandra; Sandhu, Paul; Teoh, Hwee; Al-Omran, Mohammed; Verma, Subodh

    2016-09-01

    Hyperglycemia-related endothelial dysfunction is believed to be the crux of diabetes-associated micro- and macro-vascular complications. We conducted a systematic transcriptional survey to screen for human endothelial long non-coding RNAs (lncRNAs) regulated by elevated glucose levels. lncRNAs and protein-coding transcripts from human umbilical vein endothelial cells (HUVECs) cultured under high (25 mmol/L) or normal (5 mmol/L) glucose conditions for 24 h were profiled with the Arraystar Human LncRNA Expression Microarray V3.0. Of the 30 586 lncRNAs screened, 100 were significantly upregulated and 186 appreciably downregulated (P < 0.05) in response to high-glucose exposure. In the same HUVEC samples, 133 of the 26 109 mRNAs screened were upregulated and 166 downregulated. Of these 299 differentially expressed mRNAs, 26 were significantly associated with 28 differentially expressed long intergenic non-coding RNAs (P < 0.05). Bioinformatics analyses indicated that the mRNAs most upregulated are primarily enriched in axon guidance signaling pathways; those most downregulated are notably involved in pathways targeting vascular smooth muscle cell contraction, dopaminergic signaling, ubiquitin-mediated proteolysis, and adrenergic signaling. This is the first lncRNA and mRNA transcriptome profile of high-glucose-mediated changes in human endothelial cells. These observations may prove novel insights into novel regulatory molecules and pathways of hyperglycemia-related endothelial dysfunction and, accordingly, diabetes-associated vascular disease. PMID:27434139

  4. Global gene expression analysis during sporulation of the aquatic fungus Blastocladiella emersonii.

    PubMed

    Vieira, André L G; Gomes, Suely L

    2010-03-01

    The Blastocladiella emersonii life cycle presents a number of drastic biochemical and morphological changes, mainly during two cell differentiation stages: germination and sporulation. To investigate the transcriptional changes taking place during the sporulation phase, which culminates with the production of the zoospores, motile cells responsible for the dispersal of the fungus, microarray experiments were performed. Among the 3,773 distinct genes investigated, a total of 1,207 were classified as differentially expressed, relative to time zero of sporulation, at at least one of the time points analyzed. These results indicate that accurate transcriptional control takes place during sporulation, as well as indicating the necessity for distinct molecular functions throughout this differentiation process. The main functional categories overrepresented among upregulated genes were those involving the microtubule, the cytoskeleton, signal transduction involving Ca(2+), and chromosome organization. On the other hand, protein biosynthesis, central carbon metabolism, and protein degradation were the most represented functional categories among downregulated genes. Gene expression changes were also analyzed in cells sporulating in the presence of subinhibitory concentrations of glucose or tryptophan. Data obtained revealed overexpression of microtubule and cytoskeleton transcripts in the presence of glucose, probably causing the shape and motility problems observed in the zoospores produced under this condition. In contrast, the presence of tryptophan during sporulation led to upregulation of genes involved in oxidative stress, proteolysis, and protein folding. These results indicate that distinct physiological pathways are involved in the inhibition of sporulation due to these two classes of nutrient sources. PMID:20038607

  5. Global Gene Expression Analysis of the Zoonotic Parasite Trichinella spiralis Revealed Novel Genes in Host Parasite Interaction

    PubMed Central

    Jiang, Ning; Wang, Jielin; Tang, Bin; Lu, Huijun; Peng, Shuai; Chang, Zhiguang; Tang, Yizhi; Yin, Jigang; Liu, Mingyuan; Tan, Yan; Chen, Qijun

    2012-01-01

    Background Trichinellosis is a typical food-borne zoonotic disease which is epidemic worldwide and the nematode Trichinella spiralis is the main pathogen. The life cycle of T. spiralis contains three developmental stages, i.e. adult worms, new borne larva (new borne L1 larva) and muscular larva (infective L1 larva). Stage-specific gene expression in the parasites has been investigated with various immunological and cDNA cloning approaches, whereas the genome-wide transcriptome and expression features of the parasite have been largely unknown. The availability of the genome sequence information of T. spiralis has made it possible to deeply dissect parasite biology in association with global gene expression and pathogenesis. Methodology and Principal Findings In this study, we analyzed the global gene expression patterns in the three developmental stages of T. spiralis using digital gene expression (DGE) analysis. Almost 15 million sequence tags were generated with the Illumina RNA-seq technology, producing expression data for more than 9,000 genes, covering 65% of the genome. The transcriptome analysis revealed thousands of differentially expressed genes within the genome, and importantly, a panel of genes encoding functional proteins associated with parasite invasion and immuno-modulation were identified. More than 45% of the genes were found to be transcribed from both strands, indicating the importance of RNA-mediated gene regulation in the development of the parasite. Further, based on gene ontological analysis, over 3000 genes were functionally categorized and biological pathways in the three life cycle stage were elucidated. Conclusions and Significance The global transcriptome of T. spiralis in three developmental stages has been profiled, and most gene activity in the genome was found to be developmentally regulated. Many metabolic and biological pathways have been revealed. The findings of the differential expression of several protein families facilitate

  6. Survey of Transcript Expression in Rainbow Trout Leukocytes Reveals a Major Contribution of Interferon-Responsive Genes in the Early Response to a Rhabdovirus Infection

    PubMed Central

    O'Farrell, Caroline; Vaghefi, Nikta; Cantonnet, Monique; Buteau, Bénédicte; Boudinot, Pierre; Benmansour, Abdenour

    2002-01-01

    Virus infections induce changes in the expression of host cell genes. A global knowledge of these modifications should help to better understand the virus/host cell interactions. To obtain a more comprehensive view of the rainbow trout response to a viral infection, we used the subtractive suppressive hybridization methodology in the viral hemorrhagic septicemia model of infection. We infected rainbow trout leukocytes with viral hemorrhagic septicemia virus (VHSV), and total RNA from infected and mock-infected cells was compared at 40 h postinfection. Twenty-four virus-induced genes were ultimately retrieved from the subtracted cDNA library, and their differential expression was further confirmed by semiquantitative reverse transcription-PCR and Northern blot analysis. Among these sequences, three were already described as VHSV-induced genes. Eight sequences with known homologs were extended to full-length cDNA using 5′ and 3′ rapid amplification of cDNA ends, and they were subsequently divided into three functional subsets. Four genes were homologous to mammalian interferon responsive genes, three were similar to chemo-attractant molecules (CXC chemokine, galectin), and two had nucleic acid binding domains. All of the virus-induced genes were also induced by rainbow trout interferon, indicating that the interferon pathway is the predominant component of the anti-VHSV response. They were also expressed in vivo in experimentally infected fish, indicating their biological relevance in natural infection. PMID:12134009

  7. Soil hydrological properties regulate grassland ecosystem responses to multifactor global change: A modeling analysis

    NASA Astrophysics Data System (ADS)

    Weng, Ensheng; Luo, Yiqi

    2008-09-01

    We conducted a modeling study to evaluate how soil hydrological properties regulate water and carbon dynamics of grassland ecosystems in response to multifactor global change. We first calibrated a process-based terrestrial ecosystem (TECO) model against data from two experiments with warming and clipping or doubled precipitation in Great Plains. The calibrated model was used to simulate responses of soil moisture, evaporation, transpiration, runoff, net primary production (NPP), ecosystem respiration (Rh), and net ecosystem production (NEP) to changes in precipitation amounts and intensity, increased temperature, and elevated atmospheric [CO2] along a soil texture gradient (sand, sandy loam, loam, silt loam, and clay loam). Soil available water capacity (AWC), which is the difference between field capacity and wilting point, was used as the index to represent soil hydrological properties of the five soil texture types. Simulation results showed that soil AWC altered partitioning of precipitation among runoff, evaporation, and transpiration, and consequently regulated ecosystem responses to global environmental changes. The fractions of precipitation that were used for evaporation and transpiration increased with soil AWC but decreased for runoff. High AWC could greatly buffer water stress during long drought periods, particularly after a large rainfall event. NPP, Rh, and NEP usually increased with AWC under ambient and 50% increased precipitation scenarios. With the halved precipitation amount, NPP, Rh, and NEP only increased from 7% to 7.5% of AWC followed by declines. Warming and CO2 effects on soil moisture, evapotranspiration, and runoff were magnified by soil AWC. Regulatory patterns of AWC on responses of NPP, Rh, and NEP to warming were complex. In general, CO2 effects on NPP, Rh, and NEP increased with soil AWC. Our results indicate that variations in soil texture may be one of the major causes underlying variable responses of ecosystems to global changes

  8. Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation

    NASA Astrophysics Data System (ADS)

    Nishina, K.; Ito, A.; Beerling, D. J.; Cadule, P.; Ciais, P.; Clark, D. B.; Falloon, P.; Friend, A. D.; Kahana, R.; Kato, E.; Keribin, R.; Lucht, W.; Lomas, M.; Rademacher, T. T.; Pavlick, R.; Schaphoff, S.; Vuichard, N.; Warszawaski, L.; Yokohata, T.

    2014-04-01

    Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and may play a key role in biospheric feedbacks with elevated atmospheric carbon dioxide (CO2) in a warmer future world. We examined the simulation results of seven terrestrial biome models when forced with climate projections from four representative-concentration-pathways (RCPs)-based atmospheric concentration scenarios. The goal was to specify calculated uncertainty in global SOC stock projections from global and regional perspectives and give insight to the improvement of SOC-relevant processes in biome models. SOC stocks among the biome models varied from 1090 to 2650 Pg C even in historical periods (ca. 2000). In a higher forcing scenario (i.e., RCP8.5), inconsistent estimates of impact on the total SOC (2099-2000) were obtained from different biome model simulations, ranging from a net sink of 347 Pg C to a net source of 122 Pg C. In all models, the increasing atmospheric CO2 concentration in the RCP8.5 scenario considerably contributed to carbon accumulation in SOC. However, magnitudes varied from 93 to 264 Pg C by the end of the 21st century across biome models. Using the time-series data of total global SOC simulated by each biome model, we analyzed the sensitivity of the global SOC stock to global mean temperature and global precipitation anomalies (ΔT and ΔP respectively) in each biome model using a state-space model. This analysis suggests that ΔT explained global SOC stock changes in most models with a resolution of 1-2 °C, and the magnitude of global SOC decomposition from a 2 °C rise ranged from almost 0 to 3.53 Pg C yr-1 among the biome models. However, ΔP had a negligible impact on change in the global SOC changes. Spatial heterogeneity was evident and inconsistent among the biome models, especially in boreal to arctic regions. Our study reveals considerable climate uncertainty in SOC decomposition responses to climate and CO2 change among biome models. Further

  9. Quantitative Assessment of the Integrated Response in Global Heat and Moisture Budgets to Changing Solar Irradiance

    NASA Technical Reports Server (NTRS)

    White, Warren B.; Cayan, Daniel R.; Dettinger, Michael; Sharber, James (Technical Monitor)

    2001-01-01

    Earlier, we found time sequences of basin- and global-average upper ocean temperature (that is, diabatic heat storage above the main pycnocline) for 40 years from 1955-1994 and of sea surface temperature for 95 years from 1900-1994 associated with changes in the Sun's radiative forcing on decadal and interdecadal timescales, lagging by 10 deg.- 30 deg. of phase and confined to the upper 60-120 m. Yet, the observed changes in upper ocean temperature (approx. 0.1 K) were approximately twice those expected from the Stefan-Boltzmann black-body radiation law for the Earth's surface, with phase lags (0 deg. to 30 deg. of phase) much shorter than the 90 deg. phase shift expected as well. Moreover, White et al. (1997, 1998) found the Earth's global decadal mode in covarying SST and SLP anomalies phase locked to the decadal signal in the Sun's irradiance. Yet, Allan (2000) found this decadal signal also characterized by patterns similar to those observed on biennial and interannual time scales; that is, the Troposphere Biennial Oscillation (TBO) and the El Nino and the Southern Oscillation (ENSO). This suggested that small changes in the Sun's total irradiance could excite this global decadal mode in the Earth's ocean-atmosphere-terrestrial system similar to those excited internally on biennial and interannual period scales. This is a significant finding, proving that energy budget models (that is, models based on globally-averaged radiation balances) yield unrealistic responses. Thus, the true response must include positive and negative feedbacks in the Earth's ocean-atmosphere-terrestrial system as its internal mode (that is, the natural mode of the system) respond in damped resonance to quasi-periodic decadal changes in the Sun's irradiance. Moreover, these responses are not much different from those occurring internally on biennial and interannual period scales.

  10. Laboratory test simulation for non-flat response calibration of global Earth albedo monitor

    NASA Astrophysics Data System (ADS)

    Seong, Sehyun; Kim, Sug-Whan; Ryu, Dongok; Hong, Jinsuk; Lockwood, Mike

    2012-09-01

    In this report, we present laboratory test simulation for directional responsivity of a global Earth albedo monitoring instrument. The sensor is to observe the Sun and the Earth, alternately, and measure their shortwave (<4μm) radiations around the L1 halo orbit to obtain global Earth albedo. The instrument consists of a broadband scanning radiometer (energy channel instrument) and an imager (visible channel instrument) with ±2° field-of-view. In the case of the energy channel instrument, radiations arriving at the viewing ports from the Sun and the Earth are directed toward the pyroelectric detector via two spherical folding mirrors and a 3D compound parabolic concentrator (CPC). The instrument responsivity is defined by the ratio of the incident radiation input to the instrument output signal. The radiometer's relative directional responsivity needs to be characterized across the field-of-view to assist output signal calibration. For the laboratory test, the distant small source configuration consists of an off-axis collimator and the instrument with adjustable mounts. Using reconstructed 3D CPC surface, the laboratory test simulation for predicting the instrument directional responsivity was conducted by a radiative transfer computation with ray tracing technique. The technical details of the laboratory test simulation are presented together with future plan.

  11. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia.

    PubMed

    Ramcharitar, J U; Tan, E W; Fortune, E S

    2006-11-01

    Eigenmannia, a genus of weakly electric fish, exhibits a specialized behavior known as the jamming avoidance response (JAR). The JAR results in a categorical difference between Eigenmannia that are in groups of conspecifics and those that are alone. Fish in groups exhibit the JAR behavior and thereby experience ongoing, global synchronous 20- to 50-Hz electrosensory oscillations, whereas solitary fish do not. Although previous work has shown that these ongoing signals do not significantly degrade electrosensory behavior, these oscillations nevertheless elicit short-term synaptic depression in midbrain circuits. Because short-term synaptic depression can have profound effects on the transmission of information through synapses, we examined the differences in intracellularly recorded responses of midbrain neurons in awake, behaving fish to moving electrosensory images under electrosensory conditions that mimic solitary fish and fish in groups. In solitary conditions, moving objects elicited Gaussian or sinusoidal postsynaptic potentials (PSPs) that commonly exhibited preferential responses to a direction of motion. Surprisingly, when the same stimulus was presented in the presence of the global oscillations, directional selectivity was increased in all neurons tested. The magnitudes of the differences in PSP amplitude for preferred and nonpreferred directions were correlated with a measure of short-term synaptic depression in both conditions. The electrosensory consequences of the JAR appear to result in an enhancement of the representation of direction of motion in midbrain neurons. The data also support a role for short-term synaptic depression in the generation and modulation of directional responses. PMID:16790600

  12. The Yeast Anaerobic Response Element AR1b Regulates Aerobic Antifungal Drug-dependent Sterol Gene Expression*

    PubMed Central

    Gallo-Ebert, Christina; Donigan, Melissa; Liu, Hsing-Yin; Pascual, Florencia; Manners, Melissa; Pandya, Devanshi; Swanson, Robert; Gallagher, Denise; Chen, WeiWei; Carman, George M.; Nickels, Joseph T.

    2013-01-01

    Saccharomyces cerevisiae ergosterol biosynthesis, like cholesterol biosynthesis in mammals, is regulated at the transcriptional level by a sterol feedback mechanism. Yeast studies defined a 7-bp consensus sterol-response element (SRE) common to genes involved in sterol biosynthesis and two transcription factors, Upc2 and Ecm22, which direct transcription of sterol biosynthetic genes. The 7-bp consensus SRE is identical to the anaerobic response element, AR1c. Data indicate that Upc2 and Ecm22 function through binding to this SRE site. We now show that it is two novel anaerobic AR1b elements in the UPC2 promoter that direct global ERG gene expression in response to a block in de novo ergosterol biosynthesis, brought about by antifungal drug treatment. The AR1b elements are absolutely required for auto-induction of UPC2 gene expression and protein and require Upc2 and Ecm22 for function. We further demonstrate the direct binding of recombinant expressed S. cerevisiae ScUpc2 and pathogenic Candida albicans CaUpc2 and Candida glabrata CgUpc2 to AR1b and SRE/AR1c elements. Recombinant endogenous promoter studies show that the UPC2 anaerobic AR1b elements act in trans to regulate ergosterol gene expression. Our results indicate that Upc2 must occupy UPC2 AR1b elements in order for ERG gene expression induction to take place. Thus, the two UPC2-AR1b elements drive expression of all ERG genes necessary for maintaining normal antifungal susceptibility, as wild type cells lacking these elements have increased susceptibility to azole antifungal drugs. Therefore, targeting these specific sites for antifungal therapy represents a novel approach to treat systemic fungal infections. PMID:24163365

  13. Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan

    SciTech Connect

    Jackson, Anna Francina; Williams, Andrew; Recio, Leslie; Waters, Michael D.; Lambert, Iain B.; Yauk, Carole L.

    2014-01-01

    Furan is a chemical hepatocarcinogen in mice and rats. Its previously postulated cancer mode of action (MOA) is chronic cytotoxicity followed by sustained regenerative proliferation; however, its molecular basis is unknown. To this end, we conducted toxicogenomic analysis of B3C6F1 mouse livers following three week exposures to non-carcinogenic (0, 1, 2 mg/kg bw) or carcinogenic (4 and 8 mg/kg bw) doses of furan. We saw enrichment for pathways responsible for cytotoxicity: stress-activated protein kinase (SAPK) and death receptor (DR5 and TNF-alpha) signaling, and proliferation: extracellular signal-regulated kinases (ERKs) and TNF-alpha. We also noted the involvement of NF-kappaB and c-Jun in response to furan, which are genes that are known to be required for liver regeneration. Furan metabolism by CYP2E1 produces cis-2-butene-1,4-dial (BDA), which is required for ensuing cytotoxicity and oxidative stress. NRF2 is a master regulator of gene expression during oxidative stress and we suggest that chronic NFR2 activity and chronic inflammation may represent critical transition events between the adaptive (regeneration) and adverse (cancer) outcomes. Another objective of this study was to demonstrate the applicability of toxicogenomics data in quantitative risk assessment. We modeled benchmark doses for our transcriptional data and previously published cancer data, and observed consistency between the two. Margin of exposure values for both transcriptional and cancer endpoints were also similar. In conclusion, using furan as a case study we have demonstrated the value of toxicogenomics data in elucidating dose-dependent MOA transitions and in quantitative risk assessment. - Highlights: • Global gene expression changes in furan-exposed mouse livers were analyzed. • A molecular mode of action for furan-induced hepatocarcinogenesis is proposed. • Key pathways include NRF2, SAPK, ERK and death receptor signaling. • Important roles for TNF-alpha, c-Jun, and NF

  14. Association of DNA methyltransferases expression with global and gene-specific DNA methylation in colorectal cancer cells.

    PubMed

    Sarabi, Mostafa Moradi; Naghibalhossaini, Fakhraddin

    2015-10-01

    There are conflicting reports regarding the association between DNA methyltransferases (DNMTs) expression and global or gene-specific DNA methylation in colorectal cancer (CRC) cells. To correlate DNMTs expression with DNA methylation, we quantified DNMT1, DNMT3A and DNMT3B mRNA levels in five CRC cell lines (HCT116, LS180, HT29/219, Caco2 and SW742) by real-time reverse-transcriptase polymerase chain reaction (PCR) assay. In addition, we examined the global 5-methyl cytosine levels and the methylation patterns of 12 CpG islands in these CRC cells by enzyme-linked immunosorbent assay and methylation-specific PCR methods, respectively. The average expression levels of three DNMTs in HCT116, Caco2, HT29/219 and SW742, relative to the expression level in LS180 (taken to be 1), were 90.1, 31.6, 2.66 and 1.86. Our data indicated that overall about 1.45%, 1.03%, 0.98%, 0.86% and 0.85% of the cytosines were methylated in the genome of HCT116, Caco2, HT29/219, SW742 and LS180 cells, respectively. The 5-mC percentages were positively correlated with the relative cellular DNMTs expression in five CRC cell lines as verified by Pearson correlation test. However, we found no positive correlation between mRNA expression of DNMTs and gene promoter hypermethylation in these cells. Our results suggest that cellular DNMT expression is positively correlated with global DNA methylation level but not with regional DNA hypermethylation at each locus. PMID:26416384

  15. Immune response genes receptors expression and polymorphisms in relation to multiple sclerosis susceptibility and response to INF-β therapy.

    PubMed

    Karam, Rehab A; Rezk, Noha A; Amer, Mona M; Fathy, Hala A

    2016-09-01

    Interferon (IFN)-β is one of the disease modifying drugs used in the treatment of multiple sclerosis. A predictive marker that indicates good or poor response to the treatment is highly desirable. We aimed to investigate the relation between the immune response genes receptors (IFNAR1, IFNAR2, and CCR5) expression and their polymorhic variants and multiple sclerosis (MS) susceptibility as well as the response to IFN-β therapy. The immune response genes receptors expression and genotyping were analyzed in 80 patients with MS, treated with IFN-β and in 110 healthy controls. There was a significant decrease of IFNAR1 and IFNAR2 mRNA expression and a significant increase of CCR5 mRNA expression in MS patients compared with the control group. Also, the level of IFNAR1, IFNAR2, and CCR5 mRNA expression was found to be significantly lower in the responders than nonresponders. Carriers of IFNAR1 18417 C/C genotype and C allele had an increased risk of developing MS. There was a significant relation between CCR5 Δ32 allele and IFN-β treatment response in MS patients. Our results highlighted the significance of IFNAR and CCR5 genes in multiple sclerosis risk and the response to IFN-β therapy. © 2016 IUBMB Life, 68(9):727-734, 2016. PMID:27346865

  16. The Global Emerging Infection Surveillance and Response System (GEIS), a U.S. government tool for improved global biosurveillance: a review of 2009

    PubMed Central

    2011-01-01

    The Armed Forces Health Surveillance Center, Global Emerging Infections Surveillance and Response System (AFHSC-GEIS) has the mission of performing surveillance for emerging infectious diseases that could affect the United States (U.S.) military. This mission is accomplished by orchestrating a global portfolio of surveillance projects, capacity-building efforts, outbreak investigations and training exercises. In 2009, this portfolio involved 39 funded partners, impacting 92 countries. This article discusses the current biosurveillance landscape, programmatic details of organization and implementation, and key contributions to force health protection and global public health in 2009. PMID:21388562

  17. Expression Profiling of LPS Responsive miRNA in Primary Human Macrophages

    PubMed Central

    Naqvi, Afsar Raza; Zhong, Sheng; Dang, Hong; Fordham, Jezrom B; Nares, Salvador; Khan, Asma

    2016-01-01

    microRNAs (miRNAs) have emerged as important regulators of the innate and adaptive immune response. The purpose of the present study was to interrogate miRNA profiles of primary human macrophages challenged with bacterial lipopolysaccharide (LPS) with focus on expression kinetics. We employed Nanostring platform to precisely characterize the changes in miRNA expression following different doses and durations of LPS exposure. Differentially expressed miRNAs were identified in response to LPS challenge with convergent and divergent expression profiles. Pathway analysis of LPS-responsive miRNAs revealed regulation of biological processes linked to key cell signaling (including PIK3-Akt, MAP kinase, ErbB) and pathogen response pathways. Our data provide a comprehensive miRNA profiling of human primary macrophages treated with LPS. These results show that bacterial Toll like receptor (TLR) ligands can temporally modulate macrophage miRNA expression. PMID:27307950

  18. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    PubMed Central

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC’s effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  19. Skeletal muscle HSP expression in response to immobilization and remobilization.

    PubMed

    Venojärvi, M; Kvist, M; Jozsa, L; Kalimo, H; Hänninen, O; Atalay, M

    2007-04-01

    Heat shock proteins play an important regulatory role in the cellular defence. Oxidative stress is one of the factors inducing heat shock protein expression. This study tested the effects of 4 weeks of immobilization and subsequent remobilization on heat shock protein expression and oxidative stress in the lateral gastrocnemius and plantaris muscles of the rat. Active mobilization or free mobilization protocols were used for remobilization. In active mobilization, strenuous uphill treadmill running, twice a day, was started immediately after the immobilization and lasted for six days. Rats in the free mobilization group moved freely in their cages immediately after the immobilization. Expression of heat shock proteins was upregulated during the recovery from immobilization, especially in the lateral gastrocnemius muscle in the active mobilization group. However, markers of oxidative stress, such as protein carbonyls and 4-hydroxynonenal protein adducts, or activities of the antioxidant enzymes glutathione peroxidase and glutathione reductase, did not change after the immobilization and subsequent recovery. In summary, following immobilization, both intensive and spontaneous exercise upregulated the heat shock protein expressions in the lateral gastrocnemius muscle and partly in the plantaris muscle, which may contribute to the recovery from immobilization atrophy. PMID:17024631

  20. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses.

    PubMed

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC's effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  1. The Bacterial Response Regulator ArcA Uses a Diverse Binding Site Architecture to Regulate Carbon Oxidation Globally

    PubMed Central

    Park, Dan M.; Akhtar, Md. Sohail; Ansari, Aseem Z.; Landick, Robert; Kiley, Patricia J.

    2013-01-01

    Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, σ70-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis. PMID:24146625

  2. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances.

    PubMed

    Carnicer, Jofre; Sardans, Jordi; Stefanescu, Constantí; Ubach, Andreu; Bartrons, Mireia; Asensio, Dolores; Peñuelas, Josep

    2015-01-01

    Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses. PMID:25270104

  3. Down-regulation of IKKβ expression in glioma-infiltrating microglia/macrophages is associated with defective inflammatory/immune gene responses in glioblastoma

    PubMed Central

    Nauman, Pawel; Gabrusiewicz, Konrad; Sielska, Małgorzata; Przanowski, Piotr; Maleszewska, Marta; Rajan, Wenson D.; Pszczolkowska, Dominika; Tykocki, Tomasz; Grajkowska, Wieslawa; Kotulska, Katarzyna; Roszkowski, Marcin; Kostkiewicz, Boguslaw; Kaminska, Bozena

    2015-01-01

    Glioblastoma (GBM) is an aggressive malignancy associated with profound host immunosuppression. Microglia and macrophages infiltrating GBM acquire the pro-tumorigenic, M2 phenotype and support tumor invasion, proliferation, survival, angiogenesis and block immune responses both locally and systematically. Mechanisms responsible for immunological deficits in GBM patients are poorly understood. We analyzed immune/inflammatory gene expression in five datasets of low and high grade gliomas, and performed Gene Ontology and signaling pathway analyses to identify defective transcriptional responses. The expression of many immune/inflammatory response and TLR signaling pathway genes was reduced in high grade gliomas compared to low grade gliomas. In particular, we found the reduced expression of the IKBKB, a gene coding for IKKβ, which phosphorylates IκB proteins and represents a convergence point for most signal transduction pathways leading to NFκB activation. The reduced IKBKB expression and IKKβ levels in GBM tissues were demonstrated by qPCR, Western blotting and immunohistochemistry. The IKKβ expression was down-regulated in microglia/macrophages infiltrating glioblastoma. NFκB activation, prominent in microglia/macrophages infiltrating low grade gliomas, was reduced in microglia/macrophages in glioblastoma tissues. Down-regulation of IKBKB expression and NFκB signaling in microglia/macrophages infiltrating glioblastoma correlates with defective expression of immune/inflammatory genes and M2 polarization that may result in the global impairment of anti-tumor immune responses in glioblastoma. PMID:26427514

  4. Global Transcriptome Analysis of Gracilaria changii (Rhodophyta) in Response to Agarolytic Enzyme and Bacterium.

    PubMed

    Lim, Ee-Leen; Siow, Rouh-San; Abdul Rahim, Raha; Ho, Chai-Ling

    2016-04-01

    Many bacterial epiphytes of agar-producing seaweeds secrete agarase that degrade algal cell wall matrix into oligoagars which elicit defense-related responses in the hosts. The molecular defense responses of red seaweeds are largely unknown. In this study, we surveyed the defense-related transcripts of an agarophyte, Gracilaria changii, treated with β-agarase through next generation sequencing (NGS). We also compared the defense responses of seaweed elicited by agarase with those elicited by an agarolytic bacterium isolated from seaweed, by profiling the expression of defense-related genes using quantitative reverse transcription real-time PCR (qRT-PCR). NGS detected a total of 391 differentially expressed genes (DEGs) with a higher abundance (>2-fold change with a p value <0.001) in the agarase-treated transcriptome compared to that of the non-treated G. changii. Among these DEGs were genes related to signaling, bromoperoxidation, heme peroxidation, production of aromatic amino acids, chorismate, and jasmonic acid. On the other hand, the genes encoding a superoxide-generating NADPH oxidase and related to photosynthesis were downregulated. The expression of these DEGs was further corroborated by qRT-PCR results which showed more than 90 % accuracy. A comprehensive analysis of their gene expression profiles between 1 and 24 h post treatments (hpt) revealed that most of the genes analyzed were consistently upregulated or downregulated by both agarase and agarolytic bacterial treatments, indicating that the defense responses induced by both treatments are highly similar except for genes encoding vanadium bromoperoxidase and animal heme peroxidase. Our study has provided the first glimpse of the molecular defense responses of G. changii to agarase and agarolytic bacterial treatments. PMID:26631182

  5. Separating the nature and nurture of the allocation of energy in response to global change.

    PubMed

    Applebaum, Scott L; Pan, T-C Francis; Hedgecock, Dennis; Manahan, Donal T

    2014-07-01

    Understanding and predicting biological stability and change in the face of rapid anthropogenic modifications of ecosystems and geosystems are grand challenges facing environmental and life scientists. Physiologically, organisms withstand environmental stress through changes in biochemical regulation that maintain homeostasis, which necessarily demands tradeoffs in the use of metabolic energy. Evolutionarily, in response to environmentally forced energetic tradeoffs, populations adapt based on standing genetic variation in the ability of individual organisms to reallocate metabolic energy. Combined study of physiology and genetics, separating "Nature and Nurture," is, thus, the key to understanding the potential for evolutionary adaptation to future global change. To understand biological responses to global change, we need experimentally tractable model species that have the well-developed physiological, genetic, and genomic resources necessary for partitioning variance in the allocation of metabolic energy into its causal components. Model species allow for discovery and for experimental manipulation of relevant phenotypic contrasts and enable a systems-biology approach that integrates multiple levels of analyses to map genotypic-to-phenotypic variation. Here, we illustrate how combined physiological and genetic studies that focus on energy metabolism in developmental stages of a model marine organism contribute to an understanding of the potential to adapt to environmental change. This integrative research program provides insights that can be readily incorporated into individual-based ecological models of population persistence under global change. PMID:24907199

  6. Comparison of a separated flow response to localized and global-type disturbances

    NASA Astrophysics Data System (ADS)

    Monnier, Bruno; Williams, David R.; Weier, Tom; Albrecht, Thomas

    2016-07-01

    The flow structure and lift response of a separated flow over an airfoil that is subjected to an impulsive type of pitching motion are compared to the response produced by a localized pulse disturbance at the leading edge of an airfoil. Time-resolved PIV data are used to obtain the velocity field on the suction side of the airfoil. POD analysis shows that the majority of energy is contained within the first four modes. Strong similarities in the shapes of the POD basis functions are found, especially for the second mode, irrespective of the type of actuation (global or local). The time-varying coefficient of this second POD mode tracks the negative of the lift coefficient or circulation in each case. Basis functions from the localized actuation data were projected on the velocity field of the globally actuated flow to obtain a hybrid set of coefficients. The hybrid coefficients matched reasonably well with the coefficients obtained from the original POD analysis for the globally excited flow. Both types of actuation were found to generate very similar Lagrangian flow structures. The results suggest a certain degree of universality in the POD modes/flow structures for the separated flow over an airfoil, irrespective of the type of excitation.

  7. Blunt ocean dynamical thermostat in response of tropical eastern Pacific SST to global warming

    NASA Astrophysics Data System (ADS)

    An, Soon-Il; Im, Seul-Hee

    2014-10-01

    Using an intermediate ocean-atmosphere coupled model (ICM) for the tropical Pacific, we investigated the role of the ocean dynamical thermostat (ODT) in regulating the tropical eastern Pacific sea surface temperature (SST) under global warming conditions. The external, uniformly distributed surface heating results in the cooling of the tropical eastern Pacific "cold tongue," and the amplitude of the cooling increases as more heat is added but not simply linearly. Furthermore, an upper bound for the influence of the equatorially symmetric surface heating on the cold tongue cooling exists. The additional heating beyond the upper bound does not cool the cold tongue in a systematic manner. The heat budget analysis suggests that the zonal advection is the primary factor that contributes to such nonlinear SST response. The radiative heating due to the greenhouse effect (hereafter, RHG) that is obtained from the multi-model ensemble of the Climate Model Intercomparison Project Phase III (CMIP3) was externally given to ICM. The RHG obtained from the twentieth century simulation intensified the cold tongue cooling and the subtropical warming, which were further intensified by the RHG from the doubled CO2 concentration simulation. However, the cold tongue cooling was significantly reduced and the negative SST response region was shrunken toward the equator by the RHG from the quadrupled CO2 concentration simulation, while the subtropical warming increased further. A systematic RHG forced experiment having the same spatial pattern of RHG from doubled CO2 concentration simulation with different amplitude of forcing revealed that the ocean dynamical response to global warming tended to enhance the cooling in the tropical eastern Pacific by virtue of meridional advection and upwelling; however, these cooling effects could not fully compensate a given RHG warming as the external forcing becomes larger. Moreover, the feedback by the zonal thermal advection actually exerted the

  8. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands.

    PubMed

    Seabloom, Eric W; Borer, Elizabeth T; Buckley, Yvonne M; Cleland, Elsa E; Davies, Kendi F; Firn, Jennifer; Harpole, W Stanley; Hautier, Yann; Lind, Eric M; MacDougall, Andrew S; Orrock, John L; Prober, Suzanne M; Adler, Peter B; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori A; Blumenthal, Dana M; Brown, Cynthia S; Brudvig, Lars A; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L; Crawley, Michael J; Damschen, Ellen I; Dantonio, Carla M; DeCrappeo, Nicole M; Du, Guozhen; Fay, Philip A; Frater, Paul; Gruner, Daniel S; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S; Humphries, Hope C; Jin, Virginia L; Kay, Adam; Kirkman, Kevin P; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Ladwig, Laura; Lambrinos, John G; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R; Pyke, David A; Risch, Anita C; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D; Wright, Justin; Yang, Louie

    2015-01-01

    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands. PMID:26173623

  9. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands

    PubMed Central

    Seabloom, Eric W.; Borer, Elizabeth T.; Buckley, Yvonne M.; Cleland, Elsa E.; Davies, Kendi F.; Firn, Jennifer; Harpole, W. Stanley; Hautier, Yann; Lind, Eric M.; MacDougall, Andrew S.; Orrock, John L.; Prober, Suzanne M.; Adler, Peter B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Blumenthal, Dana M.; Brown, Cynthia S.; Brudvig, Lars A.; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen I.; Dantonio, Carla M.; DeCrappeo, Nicole M.; Du, Guozhen; Fay, Philip A.; Frater, Paul; Gruner, Daniel S.; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S.; Humphries, Hope C.; Jin, Virginia L.; Kay, Adam; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M. H.; La Pierre, Kimberly J.; Ladwig, Laura; Lambrinos, John G.; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R.; Pyke, David A.; Risch, Anita C.; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D.; Wright, Justin; Yang, Louie

    2015-01-01

    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands. PMID:26173623

  10. Constraints on the transient climate response from observed global temperature and ocean heat uptake

    NASA Astrophysics Data System (ADS)

    Knutti, Reto; Tomassini, Lorenzo

    2008-05-01

    Projections of future transient global temperature increase in climate models for a known forcing depend on the strength of the atmospheric feedbacks and the rate of transient ocean heat uptake. A Bayesian framework and an intermediate complexity climate model are used to calculate a probability density function (PDF) of the transient climate response (TCR), constrained by observations of global surface warming and ocean heat uptake. The PDF constrained by observations is wider than the TCR range of current climate models, and has a slightly lower mean. Uncertainties in the observed ocean warming are shown to potentially affect the TCR. It is proposed, however, that even if models were found to overestimate ocean heat uptake, correcting that bias would lead to revisions in surface temperature projections over the twenty-first century that are smaller than the uncertainties introduced by poorly quantified atmospheric feedbacks.

  11. [Progress in global health response to the Post-2015 development agenda].

    PubMed

    Xie, Zheng; Liu, Pei-long; Guo, Yan

    2013-06-18

    This research reviews the recent global health response to the Post-2015 development agenda setting. It discusses three burning issues during the on-going country consultation: how health can be fitted into the post-MDG agenda, the achievements and lessons learnt from Millennium Development Goals (MDG), and health related goals and indicators setting. It suggests that the relationship between health and development is dynamic, thus, health acts on not only the contributor to development but also the beneficiary and indicator of sustainable development. Though great achievements on health have been made since 2000, equity and human right remain challenges to the MDG. Universal Health Coverage and Healthy Life Expectancy are two potential goals for the post-MDG agenda. China has also been involved in this global process, but more actions should be taken to make its voice heard by the world. PMID:23774936

  12. Transcriptome assembly and expression profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense

    PubMed Central

    Sun, Min; Ting Li, Yi; Liu, Yang; Chin Lee, Shao; Wang, Lan

    2016-01-01

    Cadmium (Cd) pollution is a serious global problem, which causes irreversible toxic effects on animals. Freshwater crab, Sinopotamon henanense, is a useful environmental indicator since it is widely distributed in benthic habitats whereby it tends to accumulate Cd and other toxicants. However, its molecular responses to Cd toxicity remain unclear. In this study, we performed transcriptome sequencing and gene expression analyses of its hepatopancreas with and without Cd treatments. A total of 7.78 G clean reads were obtained from the pooled samples, and 68,648 unigenes with an average size of 622 bp were assembled, in which 5,436 were metabolism-associated and 2,728 were stimulus response-associated that include 380 immunity-related unigenes. Expression profile analysis demonstrated that most genes involved in macromolecular metabolism, oxidative phosphorylation, detoxification and anti-oxidant defense were up-regulated by Cd exposure, whereas immunity-related genes were down-regulated, except the genes involved in phagocytosis were up-regulated. The current data indicate that Cd exposure alters gene expressions in a concentration-dependent manner. Therefore, our results provide the first comprehensive S.henanense transcriptome dataset, which is useful for biological and ecotoxicological studies on this crab and its related species at molecular level, and some key Cd-responsive genes may provide candidate biomarkers for monitoring aquatic pollution by heavy metals. PMID:26786678

  13. Transcriptome assembly and expression profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense.

    PubMed

    Sun, Min; Ting Li, Yi; Liu, Yang; Chin Lee, Shao; Wang, Lan

    2016-01-01

    Cadmium (Cd) pollution is a serious global problem, which causes irreversible toxic effects on animals. Freshwater crab, Sinopotamon henanense, is a useful environmental indicator since it is widely distributed in benthic habitats whereby it tends to accumulate Cd and other toxicants. However, its molecular responses to Cd toxicity remain unclear. In this study, we performed transcriptome sequencing and gene expression analyses of its hepatopancreas with and without Cd treatments. A total of 7.78 G clean reads were obtained from the pooled samples, and 68,648 unigenes with an average size of 622 bp were assembled, in which 5,436 were metabolism-associated and 2,728 were stimulus response-associated that include 380 immunity-related unigenes. Expression profile analysis demonstrated that most genes involved in macromolecular metabolism, oxidative phosphorylation, detoxification and anti-oxidant defense were up-regulated by Cd exposure, whereas immunity-related genes were down-regulated, except the genes involved in phagocytosis were up-regulated. The current data indicate that Cd exposure alters gene expressions in a concentration-dependent manner. Therefore, our results provide the first comprehensive S.henanense transcriptome dataset, which is useful for biological and ecotoxicological studies on this crab and its related species at molecular level, and some key Cd-responsive genes may provide candidate biomarkers for monitoring aquatic pollution by heavy metals. PMID:26786678

  14. Digital Gene Expression Analysis of Ponkan Mandarin (Citrus reticulata Blanco) in Response to Asia Citrus Psyllid-Vectored Huanglongbing Infection

    PubMed Central

    Zhong, Yun; Cheng, Chunzhen; Jiang, Bo; Jiang, Nonghui; Zhang, Yongyan; Hu, Minlun; Zhong, Guangyan

    2016-01-01

    Citrus Huanglongbing (HLB), the most destructive citrus disease, can be transmitted by psyllids and diseased budwoods. Although the final symptoms of the two main HLB transmission ways were similar and hard to distinguish, the host responses might be different. In this study, the global gene changes in leaves of ponkan (Citrus reticulata) mandarin trees following psyllid-transmission of HLB were analyzed at the early symptomatic stage (13 weeks post inoculation, wpi) and late symptomatic stage (26 wpi) using digital gene expression (DGE) profiling. At 13 wpi, 2452 genes were downregulated while only 604 genes were upregulated in HLB infected ponkan leaves but no pathway enrichment was identified. Gene function analysis showed impairment in defense at the early stage of infection. At late stage of 26 wpi, however, differentially expressed genes (DEGs) involved in carbohydrate metabolism, plant defense, hormone signaling, secondary metabolism, transcription regulation were overwhelmingly upregulated, indicating that the defense reactions were eventually activated. The results indicated that HLB bacterial infection significantly influenced ponkan gene expression, and a delayed response of the host to the fast growing bacteria might be responsible for its failure in fighting against the bacteria. PMID:27384559

  15. Digital Gene Expression Analysis of Ponkan Mandarin (Citrus reticulata Blanco) in Response to Asia Citrus Psyllid-Vectored Huanglongbing Infection.

    PubMed

    Zhong, Yun; Cheng, Chunzhen; Jiang, Bo; Jiang, Nonghui; Zhang, Yongyan; Hu, Minlun; Zhong, Guangyan

    2016-01-01

    Citrus Huanglongbing (HLB), the most destructive citrus disease, can be transmitted by psyllids and diseased budwoods. Although the final symptoms of the two main HLB transmission ways were similar and hard to distinguish, the host responses might be different. In this study, the global gene changes in leaves of ponkan (Citrus reticulata) mandarin trees following psyllid-transmission of HLB were analyzed at the early symptomatic stage (13 weeks post inoculation, wpi) and late symptomatic stage (26 wpi) using digital gene expression (DGE) profiling. At 13 wpi, 2452 genes were downregulated while only 604 genes were upregulated in HLB infected ponkan leaves but no pathway enrichment was identified. Gene function analysis showed impairment in defense at the early stage of infection. At late stage of 26 wpi, however, differentially expressed genes (DEGs) involved in carbohydrate metabolism, plant defense, hormone signaling, secondary metabolism, transcription regulation were overwhelmingly upregulated, indicating that the defense reactions were eventually activated. The results indicated that HLB bacterial infection significantly influenced ponkan gene expression, and a delayed response of the host to the fast growing bacteria might be responsible for its failure in fighting against the bacteria. PMID:27384559

  16. Transcriptome assembly and expression profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense

    NASA Astrophysics Data System (ADS)

    Sun, Min; Ting Li, Yi; Liu, Yang; Chin Lee, Shao; Wang, Lan

    2016-01-01

    Cadmium (Cd) pollution is a serious global problem, which causes irreversible toxic effects on animals. Freshwater crab, Sinopotamon henanense, is a useful environmental indicator since it is widely distributed in benthic habitats whereby it tends to accumulate Cd and other toxicants. However, its molecular responses to Cd toxicity remain unclear. In this study, we performed transcriptome sequencing and gene expression analyses of its hepatopancreas with and without Cd treatments. A total of 7.78 G clean reads were obtained from the pooled samples, and 68,648 unigenes with an average size of 622 bp were assembled, in which 5,436 were metabolism-associated and 2,728 were stimulus response-associated that include 380 immunity-related unigenes. Expression profile analysis demonstrated that most genes involved in macromolecular metabolism, oxidative phosphorylation, detoxification and anti-oxidant defense were up-regulated by Cd exposure, whereas immunity-related genes were down-regulated, except the genes involved in phagocytosis were up-regulated. The current data indicate that Cd exposure alters gene expressions in a concentration-dependent manner. Therefore, our results provide the first comprehensive S.henanense transcriptome dataset, which is useful for biological and ecotoxicological studies on this crab and its related species at molecular level, and some key Cd-responsive genes may provide candidate biomarkers for monitoring aquatic pollution by heavy metals.

  17. Global RT-PCR and RT-qPCR Analysis of the mRNA Expression of the Human PTPome.

    PubMed

    Nunes-Xavier, Caroline E; Pulido, Rafael

    2016-01-01

    Comprehensive comparative gene expression analysis of the tyrosine phosphatase superfamily members (PTPome) under cell- or tissue-specific growth conditions may help to define their individual and specific role in physiology and disease. Semi-quantitative and quantitative PCR are commonly used methods to analyze and measure gene expression. Here, we describe technical aspects of PTPome mRNA expression analysis by semi-quantitative RT-PCR and quantitative RT-PCR (RT-qPCR). We provide a protocol for each method consisting in reverse transcription followed by PCR using a global platform of specific PTP primers. The chapter includes aspects from primer validation to the setup of the PTPome RT-qPCR platform. Examples are given of PTP-profiling gene expression analysis using a human breast cancer cell line upon long-term or short-term treatment with cell signaling-activation agents. PMID:27514798

  18. Improving Global Building Exposure Data for Disaster Forecasting, Mitigation, and Response

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Huyck, C.; Lewis, G.; Becker, M.; Vinay, S.; Tralli, D.; Eguchi, R.

    2013-12-01

    This paper describes an exploratory study being performed under the NASA Applied Sciences Program where the goal is to integrate Earth science data and information for disaster forecasting, mitigation and response. Specifically, we are delivering EO-derived built environment data and information for use in catastrophe (CAT) models and loss estimation tools. CAT models and loss estimation tools typically use GIS exposure databases to characterize the real-world environment. These datasets are often a source of great uncertainty in the loss estimates, particularly in international events, because the data are incomplete, and sometimes inaccurate and disparate in quality from one region to another. Preliminary research by project team members as part of the Global Earthquake Model (GEM) consortium suggests that a strong relationship exists between the height and volume of built-up areas and NASA data products from the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the NASA Socioeconomic Data and Applications Center (SEDAC). Applying this knowledge within the framework of the GEM Global Exposure Database (GED) is significantly enhancing our ability to quantify building exposure, particularly in developing countries and emerging insurance markets. Global insurance products that have a more comprehensive basis for assessing risk and exposure - as from EO-derived data and information assimilated into CAT models and loss estimation tools - will help a) help to transform the way in which we measure, monitor and assess the vulnerability of our communities globally, and in turn, b) help encourage the investments needed - especially in the developing world - stimulating economic growth and actions that would lead to a more disaster-resilient world. Improved building exposure data will also be valuable for near-real time applications such as emergency response

  19. Transcriptional and translational regulatory responses to iron limitation in the globally distributed marine bacterium Candidatus Pelagibacter ubique

    SciTech Connect

    Smith, Daniel P.; Kitner, J. B.; Norbeck, Angela D.; Clauss, Therese RW; Lipton, Mary S.; Schwalbach, M. S.; Steindler, L.; Nicora, Carrie D.; Smith, Richard D.; Giovannoni, Stephen J.

    2010-05-05

    Abstract Background: Iron is recognized as an important micronutrient that limits microbial plankton productivity over vast regions of the oceans. We investigated the gene expression responses of Candidatus Pelagibacter ubique cultures to iron limitation in natural seawater media supplemented with a siderophore to chelate iron. Methodology/Principal Findings: Microarray data indicated transcription of the periplasmic iron binding protein sfuC increased by 16-fold, and iron transporter subunits, iron-sulfur center assembly genes, and the putative ferroxidase rubrerythrin transcripts increased to a lesser extent. Quantitative peptide mass spectrometry revealed that sfuC protein abundance increased 27-fold, despite an average decrease of 59% across the global proteome. Two RNA-binding proteins, CspE and CspL, correlated well with iron availability, suggesting that they may contribute to the observed differences between the transcriptome and proteome. Conclusions/Significance: We propose sfuC as a marker gene for indicating iron limitation in marine metatranscriptomic and metaproteomic ecological surveys. The marked proteome reduction was not directly correlated to changes in the transcriptome, implicating post-transcriptional regulatory mechanisms as modulators of protein expression. We propose a model in which the RNA-binding activity of cspE and cspL selectively enables protein synthesis of the iron acquisition protein sfuC during transient growth-limiting episodes of iron scarcity.

  20. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli

    PubMed Central

    Kahramanoglou, Christina; Seshasayee, Aswin S. N.; Prieto, Ana I.; Ibberson, David; Schmidt, Sabine; Zimmermann, Jurgen; Benes, Vladimir; Fraser, Gillian M.

    2011-01-01

    Nucleoid-associated proteins (NAPs) are global regulators of gene expression in Escherichia coli, which affect DNA conformation by bending, wrapping and bridging the DNA. Two of these—H-NS and Fis—bind to specific DNA sequences and structures. Because of their importance to global gene expression, the binding of these NAPs to the DNA was previously investigated on a genome-wide scale using ChIP-chip. However, variation in their binding profiles across the growth phase and the genome-scale nature of their impact on gene expression remain poorly understood. Here, we present a genome-scale investigation of H-NS and Fis binding to the E. coli chromosome using chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq). By performing our experiments under multiple time-points during growth in rich media, we show that the binding regions of the two proteins are mutually exclusive under our experimental conditions. H-NS binds to significantly longer tracts of DNA than Fis, consistent with the linear spread of H-NS binding from high- to surrounding lower-affinity sites; the length of binding regions is associated with the degree of transcriptional repression imposed by H-NS. For Fis, a majority of binding events do not lead to differential expression of the proximal gene; however, it has a significant indirect effect on gene expression partly through its effects on the expression of other transcription factors. We propose that direct transcriptional regulation by Fis is associated with the interaction of tandem arrays of Fis molecules to the DNA and possible DNA bending, particularly at operon-upstream regions. Our study serves as a proof-of-principle for the use of ChIP-seq for global DNA-binding proteins in bacteria, which should become significantly more economical and feasible with the development of multiplexing techniques. PMID:21097887

  1. Global gene expression profiling in human lung cells exposed to cobalt

    PubMed Central

    Malard, Veronique; Berenguer, Frederic; Prat, Odette; Ruat, Sylvie; Steinmetz, Gerard; Quemeneur, Eric

    2007-01-01

    Background It has been estimated that more than 1 million workers in the United States are exposed to cobalt. Occupational exposure to 59 Co occurs mainly via inhalation and leads to various lung diseases. Cobalt is classified by the IARC as a possible human carcinogen (group 2B). Although there is evidence for in vivo and in vitro toxicity, the mechanisms of cobalt-induced lung toxicity are not fully known. The purpose of this work was to identify potential signatures of acute cobalt exposure using a toxicogenomic approach. Data analysis focused on some cellular processes and protein targets that are thought to be relevant for carcinogenesis, transport and biomarker research. Results A time course transcriptome analysis was performed on A549 human pulmonary cells, leading to the identification of 85 genes which are repressed or induced in response to soluble 59 Co. A group of 29 of these genes, representing the main biological functions, was assessed by quantitative RT-PCR. The expression profiles of six of them were then tested by quantitative RT-PCR in a time-dependent manner and three modulations were confirmed by Western blotting. The 85 modulated genes include potential cobalt carriers (FBXL2, ZNT1, SLC12A5), tumor suppressors or transcription factors (MAZ, DLG1, MYC, AXL) and genes linked to the stress response (UBC, HSPCB, BNIP3L). We also identified nine genes coding for secreted proteins as candidates for biomarker research. Of those, TIMP2 was found to be down-regulated and this modulation was confirmed, in a dose-dependent manner, at protein level in the supernatant of exposed cells. Conclusion Most of these genes have never been described as related to cobalt stress and provide original hypotheses for further study of the effects of this metal ion on human lung epithelial cells. A putative biomarker of cobalt toxicity was identified. PMID:17553155

  2. Trial-to-trial correlation between thalamic sensory response and global EEG activity.

    PubMed

    Katz, Yonatan; Okun, Michael; Lampl, Ilan

    2012-03-01

    Thalamic gating of sensory inputs to the cortex varies with behavioral conditions, such as sleep-wake cycles, or with different stages of anesthesia. Behavioral conditions in turn are accompanied by stereotypic spectral content of the EEG. In the rodent somatosensory system, the receptive field size of the ventral posteromedial thalamic nucleus (VPM) shrinks when anesthesia is deepened. Here we examined whether evoked thalamic responses are correlated with global EEG activity on a fine time scale of a few seconds. Trial-by-trial analysis of responses of VPM cells to whisker stimulation in lightly anesthetized rats indicated that increased EEG power in the delta band (1-4 Hz) was accompanied by a small, but highly significant, reduction in spontaneous and evoked thalamic firing. The opposite effect was found for the gamma EEG band (30-50 Hz). These significant correlations were not accompanied by an apparent change in the size of the receptive fields and were not EEG phase-related. The correlation between EEG and firing rate was observed only in neurons that responded to multiple whiskers and was higher for the non-principal whiskers. Importantly, the contributions of the two EEG bands to the modulation of VPM responses were to a large extent independent of each other. Our findings suggest that information conveyed by different whiskers can be rapidly modulated according to the global brain activity. PMID:22384999

  3. Responses in the right posterior superior temporal sulcus show a feature-based response to facial expression.

    PubMed

    Flack, Tessa R; Andrews, Timothy J; Hymers, Mark; Al-Mosaiwi, Mohammed; Marsden, Samuel P; Strachan, James W A; Trakulpipat, Chayanit; Wang, Liang; Wu, Tian; Young, Andrew W

    2015-08-01

    The face-selective region of the right posterior superior temporal sulcus (pSTS) plays an important role in analysing facial expressions. However, it is less clear how facial expressions are represented in this region. In this study, we used the face composite effect to explore whether the pSTS contains a holistic or feature-based representation of facial expression. Aligned and misaligned composite images were created from the top and bottom halves of faces posing different expressions. In Experiment 1, participants performed a behavioural matching task in which they judged whether the top half of two images was the same or different. The ability to discriminate the top half of the face was affected by changes in the bottom half of the face when the images were aligned, but not when they were misaligned. This shows a holistic behavioural response to expression. In Experiment 2, we used fMR-adaptation to ask whether the pSTS has a corresponding holistic neural representation of expression. Aligned or misaligned images were presented in blocks that involved repeating the same image or in which the top or bottom half of the images changed. Increased neural responses were found in the right pSTS regardless of whether the change occurred in the top or bottom of the image, showing that changes in expression were detected across all parts of the face. However, in contrast to the behavioural data, the pattern did not differ between aligned and misaligned stimuli. This suggests that the pSTS does not encode facial expressions holistically. In contrast to the pSTS, a holistic pattern of response to facial expression was found in the right inferior frontal gyrus (IFG). Together, these results suggest that pSTS reflects an early stage in the processing of facial expression in which facial features are represented independently. PMID:25967084

  4. Expression of Multidrug Resistance Efflux Pump Gene norA Is Iron Responsive in Staphylococcus aureus

    PubMed Central

    Deng, Xin; Sun, Fei; Ji, Quanjiang; Liang, Haihua; Missiakas, Dominique; Lan, Lefu

    2012-01-01

    Staphylococcus aureus utilizes efflux transporter NorA to pump out a wide range of structurally dissimilar drugs, conferring low-level multidrug resistance. The regulation of norA expression has yet to be fully understood although past studies have revealed that this gene is under the control of the global transcriptional regulator MgrA and the two-component system ArlRS. To identify additional regulators of norA, we screened a transposon library in strain Newman expressing the transcriptional fusion norA-lacZ for altered β-galactosidase activity. We identify a transposon insertion in fhuB, a gene that encodes a ferric hydroxamate uptake system permease, and propose that the norA transcription is iron responsive. In agreement with this observation, addition of FeCl3 repressed the induction of norA-lacZ, suggesting that bacterial iron uptake plays an important role in regulating norA transcription. In addition, a fur (ferric uptake regulator) deletion exhibited compromised norA transcription and reduced resistance to quinolone compared to the wild-type strain, indicating that fur functions as a positive regulator of norA. A putative Fur box identified in the promoter region of norA was confirmed by electrophoretic mobility shift and DNase I footprint assays. Finally, by employing a siderophore secretion assay, we reveal that NorA may contribute to the export of siderophores. Collectively, our experiments uncover some novel interactions between cellular iron level and norA regulation in S. aureus. PMID:22267518

  5. Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis

    PubMed Central

    Tan, Xiaoping; Meyers, Blake C; Kozik, Alexander; West, Marilyn AL; Morgante, Michele; St Clair, Dina A; Bent, Andrew F; Michelmore, Richard W

    2007-01-01

    Background Nucleotide binding site-leucine rich repeat (NBS-LRR)-encoding genes comprise the largest class of plant disease resistance genes. The 149 NBS-LRR-encoding genes and the 58 related genes that do not encode LRRs represent approximately 0.8% of all ORFs so far annotated in Arabidopsis ecotype Col-0. Despite their prevalence in the genome and functional importance, there was little information regarding expression of these genes. Results We analyzed the expression patterns of ~170 NBS-LRR-encoding and related genes in Arabidopsis Col-0 using multiple analytical approaches: expressed sequenced tag (EST) representation, massively parallel signature sequencing (MPSS), microarray analysis, rapid amplification of cDNA ends (RACE) PCR, and gene trap lines. Most of these genes were expressed at low levels with a variety of tissue specificities. Expression was detected by at least one approach for all but 10 of these genes. The expression of some but not the majority of NBS-LRR-encoding and related genes was affected by salicylic acid (SA) treatment; the response to SA varied among different accessions. An analysis of previously published microarray data indicated that ten NBS-LRR-encoding and related genes exhibited increased expression in wild-type Landsberg erecta (Ler) after flagellin treatment. Several of these ten genes also showed altered expression after SA treatment, consistent with the regulation of R gene expression during defense responses and overlap between the basal defense response and salicylic acid signaling pathways. Enhancer trap analysis indicated that neither jasmonic acid nor benzothiadiazole (BTH), a salicylic acid analog, induced detectable expression of the five NBS-LRR-encoding genes and one TIR-NBS-encoding gene tested; however, BTH did induce detectable expression of the other TIR-NBS-encoding gene analyzed. Evidence for alternative mRNA polyadenylation sites was observed for many of the tested genes. Evidence for alternative splicing

  6. Philanthropic Engagement in Education: Localised Expressions of Global Flows in India

    ERIC Educational Resources Information Center

    Srivastava, Prachi

    2016-01-01

    This article argues that the rise of domestic and international philanthropic engagement in education in India cannot be understood in isolation; rather, it is part of a broader trend of what is termed "new global philanthropy in education" in the Global South. Central to understanding the nature of this engagement is the localised…

  7. Quantitative analysis of p53 expression in human normal and cancer tissue microarray with global normalization method

    PubMed Central

    Idikio, Halliday A

    2011-01-01

    Tissue microarray based immunohistochemical staining and proteomics are important tools to create and validate clinically relevant cancer biomarkers. Immunohistochemical stains using formalin-fixed tissue microarray sections for protein expression are scored manually and semi-quantitatively. Digital image analysis methods remove some of the drawbacks of manual scoring but may need other methods such as normalization to provide across the board utility. In the present study, quantitative proteomics-based global normalization method was used to evaluate its utility in the analysis of p53 protein expression in mixed human normal and cancer tissue microarray. Global normalization used the mean or median of β-actin to calculate ratios of individual core stain intensities, then log transformed the ratios, calculate a mean or median and subtracted the value from the log of ratios. In the absence of global normalization of p53 protein expression, 44% (42 of 95) of tissue cores were positive using the median of intensity values and 40% (38 of 95) using the mean of intensities as cut-off points. With global normalization, p53 positive cores changed to 20% (19 of 95) when using median of intensities and 15.8%(15 of 95) when the mean of intensities were used. In conclusion, the global normalization method helped to define positive p53 staining in the tissue microarray set used. The method used helped to define clear cut-off points and confirmed all negatively stained tissue cores. Such normalization methods should help to better define clinically useful biomarkers. PMID:21738821

  8. Child Care Teachers' Response to Children's Emotional Expression

    ERIC Educational Resources Information Center

    Ahn, Hey Jun; Stifter, Cynthia

    2006-01-01

    This observational study examined practices through which child care teachers socialize children's emotion. A specific aim was to describe strategies of teacher intervention in response to emotion displayed by children in child care centers, and to answer the question of differential interactions based on children's age and gender. The results of…

  9. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis.

    PubMed

    Bläsing, Oliver E; Gibon, Yves; Günther, Manuela; Höhne, Melanie; Morcuende, Rosa; Osuna, Daniel; Thimm, Oliver; Usadel, Björn; Scheible, Wolf-Rüdiger; Stitt, Mark

    2005-12-01

    The diurnal cycle strongly influences many plant metabolic and physiological processes. Arabidopsis thaliana rosettes were harvested six times during 12-h-light/12-h-dark treatments to investigate changes in gene expression using ATH1 arrays. Diagnostic gene sets were identified from published or in-house expression profiles of the response to light, sugar, nitrogen, and water deficit in seedlings and 4 h of darkness or illumination at ambient or compensation point [CO(2)]. Many sugar-responsive genes showed large diurnal expression changes, whose timing matched that of the diurnal changes of sugars. A set of circadian-regulated genes also showed large diurnal changes in expression. Comparison of published results from a free-running cycle with the diurnal changes in Columbia-0 (Col-0) and the starchless phosphoglucomutase (pgm) mutant indicated that sugars modify the expression of up to half of the clock-regulated genes. Principle component analysis identified genes that make large contributions to diurnal changes and confirmed that sugar and circadian regulation are the major inputs in Col-0 but that sugars dominate the response in pgm. Most of the changes in pgm are triggered by low sugar levels during the night rather than high levels in the light, highlighting the importance of responses to low sugar in diurnal gene regulation. We identified a set of candidate regulatory genes that show robust responses to alterations in sugar levels and change markedly during the diurnal cycle. PMID:16299223

  10. Gene Expression Analysis of Pak Choi in Response to Vernalization

    PubMed Central

    Sun, Mengxia; Qi, Xianhui; Hou, Leiping; Xu, Xiaoyong; Zhu, Zhujun; Li, Meilan

    2015-01-01

    Pak choi is a seed vernalization-type plant whose vernalization mechanism is currently unclear. Therefore, it is critical to discover genes related to vernalization and research its functions during vernalization in pak choi. Here, the gene expression profiles in the shoot apex were analyzed after low temperature treatment using high-throughput RNA sequencing technology. The results showed that there are 1,664 and 1,192 differentially expressed genes (DEGs) in pak choi in cold treatment ending and before flower bud differentiation, respectively, including 42 genes that exhibited similar expression trend at both stages. Detailed annotation revealed that the proteins encoded by the DEGs are located in the extracellular region, cell junction and extracellular matrix. These proteins exhibit activity such as antioxidant activity and binding protein/transcription factor activity, and they are involved in signal transduction and the immune system/biological processes. Among the DEGs, Bra014527 was up-regulated in low temperature treatment ending, Bra024097 was up-regulated before flower bud differentiation and Bra035940 was down-regulated at both stages in low temperature-treated shoot apices. Homologues of these genes in A. thaliana, AT3G59790, AT4G30200 and AT5G61150, are involved in flowering and vernalization, suggesting that they take part in the vernalization process in pak choi. Further pathway enrichment analysis revealed that most genes were enriched in the tryptophan metabolism and glucosinolate biosynthesis pathways. However, the functions of tryptophan and glucosinolate in vernalization are not yet clear and require further analysis. PMID:26517271

  11. Response of a global atmospheric circulation model to spatio-temporal stochastic forcing: ensemble statistics

    NASA Astrophysics Data System (ADS)

    Pérez-Muñuzuri, V.; Lorenzo, M. N.; Montero, P.; Fraedrich, K.; Kirk, E.; Lunkeit, F.

    The response of a simplified global atmospheric circulation model (PUMA) to spatiotemporal stochastic forcing is analyzed using the statistical measures originally developed for ensemble forecast evaluation. The nontrivial effects of time and length correlations of the stochastic forcing on the ensemble scores (e.g. spread and 'error') are studied. A maximum for these scores is observed to occur for specific values of the correlation time. The effects of multiplicative and additive contributions of the correlated noise are analyzed in terms of the noise and PUMA parameters.

  12. Global seabird responses to forage fish depletion: one-third for the birds

    USGS Publications Warehouse

    Cury, P.M.; Boyd, I.L.; Bonhommeau, S.; Anker-Nilssen, T.; Crawford, R.J.M.; Furness, R.W.; Mills, J.A.; Murphy, E.J.; Osterblom, H.; Paleczny, M.; Piatt, John F.; Roux, J.-P.; Shannon, L.; Sydeman, W.J.

    2011-01-01

    Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed "forage fish") abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.

  13. Global seabird response to forage fish depletion - One-third for the birds

    USGS Publications Warehouse

    Cury, P.M.; Boyd, I.L.; Bonhommeau, S.; Anker-Nilssen, T.; Crawford, R.J.M.; Furness, R.W.; Mills, J.A.; Murphy, E.J.; Osterblom, H.; Paleczny, M.; Piatt, J.F.; Roux, J.-P.; Shannon, L.; Sydeman, W.J.

    2011-01-01

    Determining the form of key predator-prey relationships is critical for understanding marine ecosystem dynamics. Using a comprehensive global database, we quantified the effect of fluctuations in food abundance on seabird breeding success. We identified a threshold in prey (fish and krill, termed "forage fish") abundance below which seabirds experience consistently reduced and more variable productivity. This response was common to all seven ecosystems and 14 bird species examined within the Atlantic, Pacific, and Southern Oceans. The threshold approximated one-third of the maximum prey biomass observed in long-term studies. This provides an indicator of the minimal forage fish biomass needed to sustain seabird productivity over the long term.

  14. Managing the global commons decision making and conflict resolution in response to climate change

    SciTech Connect

    Rayner, S. ); Naegeli, W.; Lund, P. )

    1990-07-01

    A workshop was convened to develop a better understanding of decision-making matters concerning management of the global commons and to resolve conflicts in response to climate change. This workshop report does not provide a narrative of the proceedings. The workshop program is included, as are the abstracts of the papers that were presented. Only the introductory paper on social science research by William Riebsame and the closing summary by Richard Rockwell are reprinted here. This brief report focuses instead on the deliberations of the working groups that developed during the workshop. 4 figs., 1 tab.

  15. Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response.

    PubMed

    Khraiwesh, Basel; Qudeimat, Enas; Thimma, Manjula; Chaiboonchoe, Amphun; Jijakli, Kenan; Alzahmi, Amnah; Arnoux, Marc; Salehi-Ashtiani, Kourosh

    2015-01-01

    Changes in the environment, such as those caused by climate change, can exert stress on plant growth, diversity and ultimately global food security. Thus, focused efforts to fully understand plant response to stress are urgently needed in order to develop strategies to cope with the effects of climate change. Because Physcomitrella patens holds a key evolutionary position bridging the gap between green algae and higher plants, and because it exhibits a well-developed stress tolerance, it is an excellent model for such exploration. Here, we have used Physcomitrella patens to study genome-wide responses to abiotic stress through transcriptomic analysis by a high-throughput sequencing platform. We report a comprehensive analysis of transcriptome dynamics, defining profiles of elicited gene regulation responses to abiotic stress-associated hormone Abscisic Acid (ABA), cold, drought, and salt treatments. We identified more than 20,000 genes expressed under each aforementioned stress treatments, of which 9,668 display differential expression in response to stress. The comparison of Physcomitrella patens stress regulated genes with unicellular algae, vascular and flowering plants revealed genomic delineation concomitant with the evolutionary movement to land, including a general gene family complexity and loss of genes associated with different functional groups. PMID:26615914

  16. Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response

    PubMed Central

    Khraiwesh, Basel; Qudeimat, Enas; Thimma, Manjula; Chaiboonchoe, Amphun; Jijakli, Kenan; Alzahmi, Amnah; Arnoux, Marc; Salehi-Ashtiani, Kourosh

    2015-01-01

    Changes in the environment, such as those caused by climate change, can exert stress on plant growth, diversity and ultimately global food security. Thus, focused efforts to fully understand plant response to stress are urgently needed in order to develop strategies to cope with the effects of climate change. Because Physcomitrella patens holds a key evolutionary position bridging the gap between green algae and higher plants, and because it exhibits a well-developed stress tolerance, it is an excellent model for such exploration. Here, we have used Physcomitrella patens to study genome-wide responses to abiotic stress through transcriptomic analysis by a high-throughput sequencing platform. We report a comprehensive analysis of transcriptome dynamics, defining profiles of elicited gene regulation responses to abiotic stress-associated hormone Abscisic Acid (ABA), cold, drought, and salt treatments. We identified more than 20,000 genes expressed under each aforementioned stress treatments, of which 9,668 display differential expression in response to stress. The comparison of Physcomitrella patens stress regulated genes with unicellular algae, vascular and flowering plants revealed genomic delineation concomitant with the evolutionary movement to land, including a general gene family complexity and loss of genes associated with different functional groups. PMID:26615914

  17. MICROARRAY GENE EXPRESSION ANALYSIS OF GRAPE PLANTS IN RESPONSE TO XYLELLA FASTIDIOSA INFECTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcriptional profiling using a custom high-density microarray chip of 20,020 Vitis transcripts showed significant variations in responses between the susceptible and resistant genotypes to Xylella fastidiosa (Xf) infection. Differentially expressed transcripts reflecting spatial and temporal resp...

  18. Analysis of Gene Expression and Physiological Responses in Three Mexican Maize Landraces under Drought Stress and Recovery Irrigation

    PubMed Central

    Hayano-Kanashiro, Corina; Calderón-Vázquez, Carlos; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Simpson, June

    2009-01-01

    Background Drought is one of the major constraints for plant productivity worldwide. Different mechanisms of drought-tolerance have been reported for several plant species including maize. However, the differences in global gene expression between drought-tolerant and susceptible genotypes and their relationship to physiological adaptations to drought are largely unknown. The study of the differences in global gene expression between tolerant and susceptible genotypes could provide important information to design more efficient breeding programs to produce maize varieties better adapted to water limiting conditions. Methodology/Principal Findings Changes in physiological responses and gene expression patterns were studied under drought stress and recovery in three Mexican maize landraces which included two drought tolerant (Cajete criollo and Michoacán 21) and one susceptible (85-2) genotypes. Photosynthesis, stomatal conductance, soil and leaf water potentials were monitored throughout the experiment and microarray analysis was carried out on transcripts obtained at 10 and 17 days following application of stress and after recovery irrigation. The two tolerant genotypes show more drastic changes in global gene expression which correlate with different physiological mechanisms of adaptation to drought. Differences in the kinetics and number of up- and down-regulated genes were observed between the tolerant and susceptible maize genotypes, as well as differences between the two tolerant genotypes. Interestingly, the most dramatic differences between the tolerant and susceptible genotypes were observed during recovery irrigation, suggesting that the tolerant genotypes activate mechanisms that allow more efficient recovery after a severe drought. Conclusions/Significance A correlation between levels of photosynthesis and transcription under stress was observed and differences in the number, type and expression levels of transcription factor families were also

  19. Unpredictable, unpreventable and impersonal medicine: global disaster response in the 21st century.

    PubMed

    Andrews, Russell J; Quintana, Leonidas M

    2015-01-01

    The United Nations has recognized the devastating consequences of "unpredictable, unpreventable and impersonal" disasters-at least US $2 trillion in economic damage and more than 1.3 million lives lost from natural disasters in the last two decades alone. In many disasters (both natural and man-made) hundreds-and in major earthquakes, thousands-of lives are lost in the first days following the event because of the lack of medical/surgical facilities to treat those with potentially survivable injuries. Disasters disrupt and destroy not only medical facilities in the disaster zone but also infrastructure (roads, airports, electricity) and potentially local healthcare personnel as well. To minimize morbidity and mortality from disasters, medical treatment must begin immediately, within minutes ideally, but certainly within 24 h (not the days to weeks currently seen in medical response to disasters). This requires that all resources-medical equipment and support, and healthcare personnel-be portable and readily available; transport to the disaster site will usually require helicopters, as military medical response teams in developed countries have demonstrated. Some of the resources available and in development for immediate medical response for disasters-from portable CT scanners to telesurgical capabilities-are described. For immediate deployment, these resources-medical equipment and personnel-must be ready for deployment on a moment's notice and not require administrative approvals or bureaucratic authorizations from numerous national and international agencies, as is presently the case. Following the "trauma center/stroke center" model, disaster response incorporating "disaster response centers" would be seamlessly integrated into the ongoing daily healthcare delivery systems worldwide, from medical education and specialty training (resident/registrar) to acute and subacute intensive care to long-term rehabilitation. The benefits of such a global disaster

  20. pAKT Expression and Response to Sorafenib in Differentiated Thyroid Cancer.

    PubMed

    Yarchoan, Mark; Ma, Changqing; Troxel, Andrea B; Stopenski, Stephen J; Tang, Waixing; Cohen, Aaron B; Pappas-Paxinos, Marina; Johnson, Burles A; Chen, Emerson Y; Feldman, Michael D; Brose, Marcia S

    2016-06-01

    Sorafenib has an antitumor activity in patients with radioactive iodine-refractory differentiated thyroid carcinoma (RAIR-DTC). Prior research has implicated signaling through the MAPK and AKT/PI3K pathways in the progression of DTC. To assess whether the activity of these pathways is predictive of response to sorafenib, we retrospectively studied molecular tumor markers from these two pathways from a phase 2 study of sorafenib in RAIR-DTC. Tumor samples from 40 of 53 DTC subjects obtained prior to initiation of sorafenib were immunostained with DAB-labeled antibodies to phospho-AKT (pAKT), phospho-ERK (pERK), and phospho-S6 (pS6). BRAFV600E genetic mutation analysis was performed on all samples. Expression levels and mutational status were compared to response and progression-free survival (PFS) for each patient. Low tumor expression of nuclear pAKT was associated with partial response to sorafenib (p < 0.01). Patients with nuclear pAKT expression that was below the median for our sample were more than three times as likely to have a partial response as patients with equal to or above median expression. There was no correlation between tumor expression of nuclear pERK or pS6 and response. Endothelial cell and pericyte expression of pERK, pAKT, and pS6 were not predictive of response. There was no correlation between BRAFV600E mutation status and partial response. No correlation was observed between either the expression of pAKT, pERK, or pS6, or the presence of the BRAFV600E mutation, and PFS. In conclusion, lower tumor expression of nuclear pAKT was associated with higher rate of response to sorafenib. This observation justifies evaluation of combination therapy with sorafenib and an inhibitor of the PI3K/AKT signaling pathway in RAIR-DTC. PMID:26994002

  1. Global Epitranscriptomics Profiling of RNA Post-Transcriptional Modifications as an Effective Tool for Investigating the Epitranscriptomics of Stress Response.

    PubMed

    Rose, Rebecca E; Pazos, Manuel A; Curcio, M Joan; Fabris, Daniele

    2016-03-01

    The simultaneous detection of all the post-transcriptional modifications (PTMs) that decorate cellular RNA can provide comprehensive information on the effects of changing environmental conditions on the entire epitranscriptome. To capture this type of information, we performed the analysis of ribonucleotide mixtures produced by hydrolysis of total RNA extracts from S. cerevisiae that was grown under hyperosmotic and heat shock conditions. Their global PTM profiles clearly indicated that the cellular responses to these types of stresses involved profound changes in the production of specific PTMs. The observed changes involved not only up-/down-regulation of typical PTMs, but also the outright induction of new ones that were absent under normal conditions, or the elimination of others that were normally present. Pointing toward the broad involvement of different classes of RNAs, many of the newly observed PTMs differed from those engaged in the known tRNA-based mechanism of translational recoding, which is induced by oxidative stress. Some of the expression effects were stress-specific, whereas others were not, thus suggesting that RNA PTMs may perform multifaceted activities in stress response, which are subjected to distinctive regulatory pathways. To explore their signaling networks, we implemented a strategy based on the systematic deletion of genes that connect established response genes with PTM biogenetic enzymes in a putative interactomic map. The results clearly identified PTMs that were under direct HOG control, a well-known protein kinase pathway involved in stress response in eukaryotes. Activation of this signaling pathway has been shown to result in the stabilization of numerous mRNAs and the induction of selected lncRNAs involved in chromatin remodeling. The fact that PTMs are capable of altering the activity of the parent RNAs suggest their possible participation in feedback mechanisms aimed at modulating the regulatory functions of such RNAs. This

  2. The positive Indian Ocean Dipole-like response in the tropical Indian Ocean to global warming

    NASA Astrophysics Data System (ADS)

    Luo, Yiyong; Lu, Jian; Liu, Fukai; Wan, Xiuquan

    2016-04-01

    Climate models project a positive Indian Ocean Dipole (pIOD)-like SST response in the tropical Indian Ocean to global warming. By employing the Community Earth System Model and applying an overriding technique to its ocean component (version 2 of the Parallel Ocean Program), this study investigates the similarities and differences of the formation mechanisms for the changes in the tropical Indian Ocean during the pIOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, wind-thermocline-SST feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases. Some differences are also found, including the fact that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the pIOD but by the anomalous upper-ocean stratification under global warming. These findings are further examined through an analysis of the mixed layer heat budget.

  3. Leveraging the Laboratory Response Network Model for the Global Health Security Agenda

    PubMed Central

    Maryogo-Robinson, Lucy

    2014-01-01

    Promoting global health security as an international priority is a challenge; the US Centers for Disease Control and Prevention (CDC) in its Global Health Security Agenda has articulated the importance of accelerating progress toward a world safe and secure from infectious disease threats. The goals are to (1) prevent and reduce the likelihood of outbreaks—natural, accidental, or intentional; (2) detect threats early to save lives; and (3) respond rapidly and effectively using multisectoral, international coordination and communication. Foundational to this agenda is the World Health Organization (WHO) Revised International Health Regulations (IHR) of 2005, which provide the legal framework for countries to strengthen their health systems in order to be able to respond to any public health emergency of international concern. This article proposes leveraging the distributed structure of the US-managed Laboratory Response Network for Biological Threats Preparedness (LRN-B) to develop the core capacity of laboratory testing and to fulfill the laboratory-strengthening component of the Global Health Security Agenda. The LRN model offers an effective mechanism to detect and respond to public health emergencies of international concern. PMID:25254916

  4. Research ethics in global mental health: advancing culturally responsive mental health research.

    PubMed

    Ruiz-Casares, Mónica

    2014-12-01

    Global mental health research is needed to inform effective and efficient services and policy interventions within and between countries. Ethical reflection should accompany all GMHR and human resource capacity endeavors to ensure high standards of respect for participants and communities and to raise public debate leading to changes in policies and regulations. The views and circumstances of ethno-cultural and disadvantaged communities in the Majority and Minority world need to be considered to enhance scientific merit, public awareness, and social justice. The same applies to people with vulnerabilities yet who are simultaneously capable, such as children and youth. The ethical principles of respect for persons or autonomy, beneficence/non-maleficence, justice, and relationality require careful contextualization for research involving human beings. Building on the work of Fisher and colleagues (2002), this article highlights some strategies to stimulate the ethical conduct of global mental health research and to guide decision-making for culturally responsible research, such as developing culturally sensitive informed consent and disclosure policies and procedures; paying special attention to socioeconomic, cultural, and environmental risks and benefits; and ensuring meaningful community and individual participation. Research and capacity-building partnerships, political will, and access to resources are needed to stimulate global mental health research and consolidate ethical practice. PMID:24668025

  5. Complex response of dinoflagellate distribution patterns to cooler early Oligocene global oceans

    NASA Astrophysics Data System (ADS)

    Woods, Mark; Vandenbroucke, Thijs; Williams, Mark; Riding, James; De Schepper, Stijn; Sabbe, Koen

    2013-04-01

    Analysis of dinoflagellate cysts using two new global ocean datasets for the Mid Eocene (Bartonian) and Early Oligocene (Rupelian) reveals unexpected changes in their global distribution. The impact of Rupelian cooling appears to be globally asymmetric; the dinoflagellate cyst cooling signal is clearer in the southern hemisphere, but much less evident in the northern hemisphere. Additionally, a significant number of species with low and mid-latitude northern hemisphere occurrences in the Bartonian, unexpectedly extend their northward ranges in the Rupelian, including some 'warm water' forms. This may show that Rupelian dinoflagellate cyst distribution is a response to changes in a range of environmental variables linked to climate-cooling, for example changes in nutrient fluxes triggered by glacially-induced base-level fall, or complex reorganisation of ocean current systems between the Bartonian and Rupelian. Apparent lack of a clear climate-cooling signal in Rupelian dinoflagellate cyst distribution may in part reflect published evidence suggesting that summer SSTs in the early Rupelian northern hemisphere were only slightly reduced compared to the later part of the Eocene, despite much colder winters. The relatively broad temperature tolerance of many extant dinoflagellate species, and dormant cyst formation during short-lived environmental deterioration, may have contributed to allowing Rupelian dinoflagellates to thrive in more highly seasonal but otherwise hospitable, northern hemisphere oceans.

  6. Surface functionalities of gold nanoparticles impact embryonic gene expression responses

    PubMed Central

    Truong, Lisa; Tilton, Susan C.; Zaikova, Tatiana; Richman, Erik; Waters, Katrina M.; Hutchison, James E.; Tanguay, Robert L.

    2012-01-01

    Incorporation of gold nanoparticles (AuNPs) into consumer products is increasing; however, there is a gap in available toxicological data to determine the safety of AuNPs. In this study, we utilised the embryonic zebrafish to investigate how surface functionalisation and charge influence molecular responses. Precisely engineered AuNPs with 1.5 nm cores were synthesised and functionalized with three ligands: 2-mercaptoethanesulfonic acid (MES), N,N,N-trimethylammoniumethanethiol (TMAT), or 2-(2-(2-mercaptoethoxy)ethoxy)ethanol. Developmental assessments revealed differential biological responses when embryos were exposed to the functionalised AuNPs at the same concentration. Using inductively coupled plasma–mass spectrometry, AuNP uptake was confirmed in exposed embryos. Following exposure to MES- and TMAT-AuNPs from 6 to 24 or 6 to 48 h post fertilisation, pathways involved in inflammation and immune response were perturbed. Additionally, transport mechanisms were misregulated after exposure to TMAT and MES-AuNPs, demonstrating that surface functionalisation influences many molecular pathways. PMID:22263968

  7. Expression Profiling of Cucumis sativus in Response to Infection by Pseudoperonospora cubensis

    PubMed Central

    Vaillancourt, Brieanne; Childs, Kevin L.; Hamilton, John P.; Day, Brad; Buell, C. Robin

    2012-01-01

    The oomycete pathogen, Pseudoperonospora cubensis, is the causal agent of downy mildew on cucurbits, and at present, no effective resistance to this pathogen is available in cultivated cucumber (Cucumis sativus). To better understand the host response to a virulent pathogen, we performed expression profiling throughout a time course of a compatible interaction using whole transcriptome sequencing. As described herein, we were able to detect the expression of 15,286 cucumber genes, of which 14,476 were expressed throughout the infection process from 1 day post-inoculation (dpi) to 8 dpi. A large number of genes, 1,612 to 3,286, were differentially expressed in pair-wise comparisons between time points. We observed the rapid induction of key defense related genes, including catalases, chitinases, lipoxygenases, peroxidases, and protease inhibitors within 1 dpi, suggesting detection of the pathogen by the host. Co-expression network analyses revealed transcriptional networks with distinct patterns of expression including down-regulation at 2 dpi of known defense response genes suggesting coordinated suppression of host responses by the pathogen. Comparative analyses of cucumber gene expression patterns with that of orthologous Arabidopsis thaliana genes following challenge with Hyaloperonospora arabidopsidis revealed correlated expression patterns of single copy orthologs suggesting that these two dicot hosts have similar transcriptional responses to related pathogens. In total, the work described herein presents an in-depth analysis of the interplay between host susceptibility and pathogen virulence in an agriculturally important pathosystem. PMID:22545095

  8. Global Analysis of Host and Bacterial Ubiquitinome in Response to Salmonella Typhimurium Infection.

    PubMed

    Fiskin, Evgenij; Bionda, Tihana; Dikic, Ivan; Behrends, Christian

    2016-06-16

    Ubiquitination serves as a critical signal in the host immune response to infection. Many pathogens have evolved strategies to exploit the ubiquitin (Ub) system to promote their own survival through a complex interplay between host defense machinery and bacterial virulence factors. Here we report dynamic changes in the global ubiquitinome of host epithelial cells and invading pathogen in response to Salmonella Typhimurium infection. The most significant alterations in the host ubiquitinome concern components of the actin cytoskeleton, NF-κB and autophagy pathways, and the Ub and RHO GTPase systems. Specifically, infection-induced ubiquitination promotes CDC42 activity and linear ubiquitin chain formation, both being required for NF-κB activation. Conversely, the bacterial ubiquitinome exhibited extensive ubiquitination of various effectors and several outer membrane proteins. Moreover, we reveal that bacterial Ub-modifying enzymes modulate a unique subset of host targets, affecting different stages of Salmonella infection. PMID:27211868

  9. Orbit response matrix measurements for 10Hz global orbit feedback in RHIC

    SciTech Connect

    Liu, C.; Minty, M.

    2010-10-01

    The 10 Hz global orbit feedback system (gofb) was designed to correct the 10 Hz horizontal beam perturbations in both rings that are suspected to be caused by vibrations of the final focusing quadrupoles (triplets). The full system envisioned for Run-11 consists of 36 BPMs, corresponding to 2 per triplet in each of the 12 triplet locations and two in each of the 6 arcs, and 1 dipole corrector at each triplet location for a total of 12 correctors. Prototype testing was successfully carried out during RHIC Run-10 in store condition with 4 new dipole correctors (with independent power supplies) and 8 stripline beam position monitors (BPMs) per accelerator. An SVD-based algorithm was used to compute the applied corrections. For Run-10, the response matrix was provided by W. W. MacKay. The response matrix R relates corrector angles to beam displacements at BPMs.

  10. GloboLakes: A global observatory of lake responses to environmental change.

    NASA Astrophysics Data System (ADS)

    Groom, Steve; Tyler, Andrew; Hunter, Peter; Spyrakos, Evangelos; Martinez-Vicente, Victor; Merchant, Chris; Cutler, Mark; Rowan, John; Dawson, Terry; Maberly, Stephen; Cavalho, Laurence; Elliot, Alex; Thackery, Stephen; Miller, Claire; Scott, Marian

    2014-05-01

    The world's freshwater ecosystems are vital components of the global biosphere, yet are vulnerable to climate and other human-induced change. There is increasing recognition that lakes play an important role in global biogeochemical cycling and provide key ecosystem services. However, our understanding of how lakes respond to environmental change at a global scale, and how this impacts on their status and function, is hampered by limited information on their chemical, physical and ecological condition. There are estimated to be over 300 million lakes globally, of which over 17,000 are greater than 10 km2 in surface area. These numbers have limited the systematic study of lake ecosystems. GloboLakes is a five-year UK research programme investigating the state of lakes and their response to climatic and other environmental drivers of change. It will establish a satellite-based observatory with archive and near-real time data processing to produce a time series of observed biogeochemical parameters and lake temperature for over 1000 lakes globally. This will be supported by linked ancillary data on climate and catchment land-use. The ability to monitor a large number of lakes consistently at high frequency and globally will facilitate a paradigm shift in our understanding of how lakes respond to environmental change at different spatial and temporal scales. A key requirement is to validate satellite retrieval algorithms and test the time-series of resulting lake properties such as chlorophyll-a by comparison with in situ data. To support the former extensive bio-optical and constituent data were taken in year 1 of the project in a number of UK lakes with a variety of trophic states. Furthermore, for wider validation activities GloboLakes has established the LIMNADES initiative to create a centralised database of ground bio-optical measurements of worldwide lakes through voluntary cooperation across the international scientific community. This presentation will

  11. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems.

    PubMed

    Yang, Yuting; Guan, Huade; Batelaan, Okke; McVicar, Tim R; Long, Di; Piao, Shilong; Liang, Wei; Liu, Bing; Jin, Zhao; Simmons, Craig T

    2016-01-01

    Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon cycle. However, the response of the coupled water and carbon cycles to drought and the underlying mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on ecosystem water use efficiency (WUE = gross primary production (GPP)/evapotranspiration (ET)). Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-years) and global gridded diagnostic modelling based on existing observation and a data-adaptive machine learning approach), we find a contrasting response of WUE to drought between arid (WUE increases with drought) and semi-arid/sub-humid ecosystems (WUE decreases with drought), which is attributed to different sensitivities of ecosystem processes to changes in hydro-climatic conditions. WUE variability in arid ecosystems is primarily controlled by physical processes (i.e., evaporation), whereas WUE variability in semi-arid/sub-humid regions is mostly regulated by biological processes (i.e., assimilation). We also find that shifts in hydro-climatic conditions over years would intensify the drought effect on WUE. Our findings suggest that future drought events, when coupled with an increase in climate variability, will bring further threats to semi-arid/sub-humid ecosystems and potentially result in biome reorganization, starting with low-productivity and high water-sensitivity grassland. PMID:26983909

  12. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems

    PubMed Central

    Yang, Yuting; Guan, Huade; Batelaan, Okke; McVicar, Tim R.; Long, Di; Piao, Shilong; Liang, Wei; Liu, Bing; Jin, Zhao; Simmons, Craig T.

    2016-01-01

    Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon cycle. However, the response of the coupled water and carbon cycles to drought and the underlying mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on ecosystem water use efficiency (WUE = gross primary production (GPP)/evapotranspiration (ET)). Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-years) and global gridded diagnostic modelling based on existing observation and a data-adaptive machine learning approach), we find a contrasting response of WUE to drought between arid (WUE increases with drought) and semi-arid/sub-humid ecosystems (WUE decreases with drought), which is attributed to different sensitivities of ecosystem processes to changes in hydro-climatic conditions. WUE variability in arid ecosystems is primarily controlled by physical processes (i.e., evaporation), whereas WUE variability in semi-arid/sub-humid regions is mostly regulated by biological processes (i.e., assimilation). We also find that shifts in hydro-climatic conditions over years would intensify the drought effect on WUE. Our findings suggest that future drought events, when coupled with an increase in climate variability, will bring further threats to semi-arid/sub-humid ecosystems and potentially result in biome reorganization, starting with low-productivity and high water-sensitivity grassland. PMID:26983909

  13. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Yang, Yuting; Guan, Huade; Batelaan, Okke; McVicar, Tim R.; Long, Di; Piao, Shilong; Liang, Wei; Liu, Bing; Jin, Zhao; Simmons, Craig T.

    2016-03-01

    Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon cycle. However, the response of the coupled water and carbon cycles to drought and the underlying mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on ecosystem water use efficiency (WUE = gross primary production (GPP)/evapotranspiration (ET)). Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-years) and global gridded diagnostic modelling based on existing observation and a data-adaptive machine learning approach), we find a contrasting response of WUE to drought between arid (WUE increases with drought) and semi-arid/sub-humid ecosystems (WUE decreases with drought), which is attributed to different sensitivities of ecosystem processes to changes in hydro-climatic conditions. WUE variability in arid ecosystems is primarily controlled by physical processes (i.e., evaporation), whereas WUE variability in semi-arid/sub-humid regions is mostly regulated by biological processes (i.e., assimilation). We also find that shifts in hydro-climatic conditions over years would intensify the drought effect on WUE. Our findings suggest that future drought events, when coupled with an increase in climate variability, will bring further threats to semi-arid/sub-humid ecosystems and potentially result in biome reorganization, starting with low-productivity and high water-sensitivity grassland.

  14. Terrestrial water flux responses to global warming in tropical rainforest areas

    NASA Astrophysics Data System (ADS)

    Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia; Kumar, Sanjiv

    2016-05-01

    Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 archives have been examined to explore the changes in normalized terrestrial water fluxes (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results show that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.

  15. Earthquake casualty models within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, David J.; Earle, Paul; Porter, Keith A.; Hearne, Mike

    2011-01-01

    Since the launch of the USGS’s Prompt Assessment of Global Earthquakes for Response (PAGER) system in fall of 2007, the time needed for the U.S. Geological Survey (USGS) to determine and comprehend the scope of any major earthquake disaster anywhere in the world has been dramatically reduced to less than 30 min. PAGER alerts consist of estimated shaking hazard from the ShakeMap system, estimates of population exposure at various shaking intensities, and a list of the most severely shaken cities in the epicentral area. These estimates help government, scientific, and relief agencies to guide their responses in the immediate aftermath of a significant earthquake. To account for wide variability and uncertainty associated with inventory, structural vulnerability and casualty data, PAGER employs three different global earthquake fatality/loss computation models. This article describes the development of the models and demonstrates the loss estimation capability for earthquakes that have occurred since 2007. The empirical model relies on country-specific earthquake loss data from past earthquakes and makes use of calibrated casualty rates for future prediction. The semi-empirical and analytical models are engineering-based and rely on complex datasets including building inventories, time-dependent population distributions within different occupancies, the vulnerability of regional building stocks, and casualty rates given structural collapse.

  16. Push, pull, and reverse: self-interest, responsibility, and the global health care worker shortage.

    PubMed

    Kirby, Katherine E; Siplon, Patricia

    2012-06-01

    The world is suffering from a dearth of health care workers, and sub-Saharan Africa, an area of great need, is experiencing the worst shortage. Developed countries are making the problem worse by luring health care workers away from the countries that need them most, while developing countries do not have the resources to stem the flow or even replace those lost. Postmodern philosopher Emmanuel Levinas offers a unique ethical framework that is helpful in assessing both the irresponsibility inherent in the current global health care situation and the responsibility and obligation held by the stakeholders involved in this global crisis. Drawing on Levinas' exploration of individual freedom and self-pursuit, infinite responsibility for the Other, and the potential emergence of a just community, we demonstrate its effectiveness in explaining the health care worker crisis, and we argue in favor of a variety of policy and development assistance measures that are grounded in an orientation of non-indifference toward Others. PMID:21744290

  17. Clouds, water vapor and the response of the extratropical jets to global warming

    NASA Astrophysics Data System (ADS)

    Voigt, A.; Shaw, T.

    2015-12-01

    Climate models suggest that global warming will cause substantial changes of the mid-latitude circulation, including meridional shifts of the extratropical jets and storm tracks. The magnitude, and in some circumstances even the sign, of these shifts remains subject to large model uncertainties, however. In this talk I will report on recent work that demonstrates the importance of longwave radiative effects of clouds and water vapor for the jet position and its response to warming. To this end, I will apply a hierarchy of climate models ranging from CMIP5 models in realisitic setups to dry idealized general circulation models. I will show that cloud changes, in particular those of the tropics and mid-latitudes, and high-latitude water vapor changes push the jet towards the pole under global warming, whereas equatorial water vapor changes pull the jet towards the equator. These radiative impacts of clouds and water vapor on the jet are found to be consistent with our understanding of the response of the dry circulation to diabatic heating. I will also discuss the extent to which mid-latitude clouds are controlled by the jet. Finally, I will show that CMIP5 model spread in warming-induced jet shifts is correlated with model spread in regional changes of clouds and water vapor. These results provide evidence that part of the climate model uncertainty in projections of future jet shifts might result from uncertainty in how clouds and water vapor respond to global warming, and how they modify the longwave radiation inside the atmosphere.

  18. Diversity in global gene expression and morphology across a watercress (Nasturtium officinale R. Br.) germplasm collection: first steps to breeding.

    PubMed

    Payne, Adrienne C; Clarkson, Graham J J; Rothwell, Steve; Taylor, Gail

    2015-01-01

    Watercress (Nasturtium officinale R. Br.) is a nutrient intense, leafy crop that is consumed raw or in soups across the globe, but for which, currently no genomic resources or breeding programme exists. Promising morphological, biochemical and functional genomic variation was identified for the first time in a newly established watercress germplasm collection, consisting of 48 watercress accessions sourced from contrasting global locations. Stem length, stem diameter and anti-oxidant (AO) potential varied across the accessions. This variation was used to identify three extreme contrasting accessions for further analysis. Variation in global gene expression was investigated using an Affymetrix Arabidopsis ATH1 microarray gene chip, using the commercial control (C), an accession selected for dwarf phenotype with a high AO potential (dwarfAO, called 'Boldrewood') and one with high AO potential alone. A set of transcripts significantly differentially expressed between these three accessions, were identified, including transcripts involved in the regulation of growth and development and those involved in secondary metabolism. In particular, when differential gene expression was compared between C and dwarfAO, the dwarfAO was characterised by increased expression of genes encoding glucosinolates, which are known precursors of phenethyl isothiocyanate, linked to the anti-carcinogenic effects well-documented in watercress. This study provides the first analysis of natural variation across the watercress genome and has identified important underpinning information for future breeding for enhanced anti-carcinogenic properties and morphology traits in this nutrient-intense crop. PMID:26504575

  19. Diversity in global gene expression and morphology across a watercress (Nasturtium officinale R. Br.) germplasm collection: first steps to breeding

    PubMed Central

    Payne, Adrienne C.; Clarkson, Graham J.J.; Rothwell, Steve; Taylor, Gail

    2015-01-01

    Watercress (Nasturtium officinale R. Br.) is a nutrient intense, leafy crop that is consumed raw or in soups across the globe, but for which, currently no genomic resources or breeding programme exists. Promising morphological, biochemical and functional genomic variation was identified for the first time in a newly established watercress germplasm collection, consisting of 48 watercress accessions sourced from contrasting global locations. Stem length, stem diameter and anti-oxidant (AO) potential varied across the accessions. This variation was used to identify three extreme contrasting accessions for further analysis. Variation in global gene expression was investigated using an Affymetrix Arabidopsis ATH1 microarray gene chip, using the commercial control (C), an accession selected for dwarf phenotype with a high AO potential (dwarfAO, called ‘Boldrewood’) and one with high AO potential alone. A set of transcripts significantly differentially expressed between these three accessions, were identified, including transcripts involved in the regulation of growth and development and those involved in secondary metabolism. In particular, when differential gene expression was compared between C and dwarfAO, the dwarfAO was characterised by increased expression of genes encoding glucosinolates, which are known precursors of phenethyl isothiocyanate, linked to the anti-carcinogenic effects well-documented in watercress. This study provides the first analysis of natural variation across the watercress genome and has identified important underpinning information for future breeding for enhanced anti-carcinogenic properties and morphology traits in this nutrient-intense crop. PMID:26504575

  20. Peripheral inflammation is associated with remote global gene expression changes in the brain

    PubMed Central

    2014-01-01

    Background Although the central nervous system (CNS) was once considered an immunologically privileged site, in recent years it has become increasingly evident that cross talk between the immune system and the CNS does occur. As a result, patients with chronic inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease or psoriasis, are often further burdened with neuropsychiatric symptoms, such as depression, anxiety and fatigue. Despite the recent advances in our understanding of neuroimmune communication pathways, the precise effect of peripheral immune activation on neural circuitry remains unclear. Utilizing transcriptomics in a well-characterized murine model of systemic inflammation, we have started to investigate the molecular mechanisms by which inflammation originating in the periphery can induce transcriptional modulation in the brain. Methods Several different systemic and tissue-specific models of peripheral toll-like-receptor-(TLR)-driven (lipopolysaccharide (LPS), lipoteichoic acid and Imiquimod) and sterile (tumour necrosis factor (TNF) and 12-O-tetradecanoylphorbol-13-acetate (TPA)) inflammation were induced in C57BL/6 mice. Whole brain transcriptional profiles were assessed and compared 48 hours after intraperitoneal injection of lipopolysaccharide or vehicle, using Affymetrix GeneChip microarrays. Target gene induction, identified by microarray analysis, was validated independently using qPCR. Expression of the same panel of target genes was then investigated in a number of sterile and other TLR-dependent models of peripheral inflammation. Results Microarray analysis of whole brains collected 48 hr after LPS challenge revealed increased transcription of a range of interferon-stimulated genes (ISGs) in the brain. In addition to acute LPS challenge, ISGs were induced in the brain following both chronic LPS-induced systemic inflammation and Imiquimod-induced skin inflammation. Unique to the brain, this transcriptional response is

  1. Methyl-methanesulfonate sensitivity 19 expression is associated with metastasis and chemoradiotherapy response in esophageal cancer

    PubMed Central

    Zhang, Jin-Liang; Wang, Hui-Yun; Yang, Qing; Lin, Shi-Yong; Luo, Guang-Yu; Zhang, Rong; Xu, Guo-Liang

    2015-01-01

    AIM: To investigate the clinical significance of methyl-methanesulfonate sensitivity 19 (MMS19) expression in esophageal squamous cell carcinoma (ESCC). METHODS: Between June 2008 and May 2013, specimens from 103 patients who underwent endoscopic biopsy for the diagnosis of ESCC at the endoscopy center of Sun Yat-Sen University Cancer Center were collected; 52 matched-normal esophageal squamous epithelium samples were biopsied as controls. MMS19 protein expression was measured by immunohistochemistry. Of the 103 cases of ESCC, 49 received radical surgery following neoadjuvant chemoradiotherapy consisting of concurrent radiation in a total dose of 40 Gy and two cycles of chemotherapy with vinorelbine and cisplatin. Relationships between MMS19 expression, clinicopathologic characteristics and chemoradiotherapy response were analyzed. RESULTS: The MMS19 protein could be detected in both the cytoplasm and nucleus of most specimens. High cytoplasmic expression of MMS19 was detected in 63.1% of ESCC samples, whereas high nuclear expression of MMS19 was found in 35.0%. High cytoplasmic MMS19 expression was associated with regional lymph node metastases (OR = 11.3, 95%CI: 2.3-54.7; P < 0.001) and distant metastases (OR = 13.1, 95%CI: 1.7-103.0; P = 0.002). Furthermore, high cytoplasmic MMS19 expression was associated with a response of ESCC to chemoradiotherapy (OR = 11.5, 95%CI: 3.0-44.5; P < 0.001), with a high cytoplasmic MMS19 expression rates in 79.3% and 25.0% of patients from the good chemoradiotherapy response group and poor response group, respectively. Nuclear MMS19 expression did not show any significant association with clinicopathologic characteristics or chemoradiotherapy response in ESCC. CONCLUSION: The results of our preliminary study suggest that MMS19 may be a potential new predictor of metastasis and chemoradiotherapy response in ESCC. PMID:25892874

  2. Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations

    PubMed Central

    Abdallah, Abdallah M.; Hill-Cawthorne, Grant A.; Otto, Thomas D.; Coll, Francesc; Guerra-Assunção, José Afonso; Gao, Ge; Naeem, Raeece; Ansari, Hifzur; Malas, Tareq B.; Adroub, Sabir A.; Verboom, Theo; Ummels, Roy; Zhang, Huoming; Panigrahi, Aswini Kumar; McNerney, Ruth; Brosch, Roland; Clark, Taane G.; Behr, Marcel A.; Bitter, Wilbert; Pain, Arnab

    2015-01-01

    Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protect