Global and Local Optimization Algorithms for Optimal Signal Set Design
Kearsley, Anthony J.
2001-01-01
The problem of choosing an optimal signal set for non-Gaussian detection was reduced to a smooth inequality constrained mini-max nonlinear programming problem by Gockenbach and Kearsley. Here we consider the application of several optimization algorithms, both global and local, to this problem. The most promising results are obtained when special-purpose sequential quadratic programming (SQP) algorithms are embedded into stochastic global algorithms.
Globally optimal trial design for local decision making.
Eckermann, Simon; Willan, Andrew R
2009-02-01
Value of information methods allows decision makers to identify efficient trial design following a principle of maximizing the expected value to decision makers of information from potential trial designs relative to their expected cost. However, in health technology assessment (HTA) the restrictive assumption has been made that, prospectively, there is only expected value of sample information from research commissioned within jurisdiction. This paper extends the framework for optimal trial design and decision making within jurisdiction to allow for optimal trial design across jurisdictions. This is illustrated in identifying an optimal trial design for decision making across the US, the UK and Australia for early versus late external cephalic version for pregnant women presenting in the breech position. The expected net gain from locally optimal trial designs of US$0.72M is shown to increase to US$1.14M with a globally optimal trial design. In general, the proposed method of globally optimal trial design improves on optimal trial design within jurisdictions by: (i) reflecting the global value of non-rival information; (ii) allowing optimal allocation of trial sample across jurisdictions; (iii) avoiding market failure associated with free-rider effects, sub-optimal spreading of fixed costs and heterogeneity of trial information with multiple trials. PMID:18435429
Global and Local Sparse Subspace Optimization for Motion Segmentation
NASA Astrophysics Data System (ADS)
Yang, M. Ying; Feng, S.; Ackermann, H.; Rosenhahn, B.
2015-08-01
In this paper, we propose a new framework for segmenting feature-based moving objects under affine subspace model. Since the feature trajectories in practice are high-dimensional and contain a lot of noise, we firstly apply the sparse PCA to represent the original trajectories with a low-dimensional global subspace, which consists of the orthogonal sparse principal vectors. Subsequently, the local subspace separation will be achieved via automatically searching the sparse representation of the nearest neighbors for each projected data. In order to refine the local subspace estimation result, we propose an error estimation to encourage the projected data that span a same local subspace to be clustered together. In the end, the segmentation of different motions is achieved through the spectral clustering on an affinity matrix, which is constructed with both the error estimation and sparse neighbors optimization. We test our method extensively and compare it with state-of-the-art methods on the Hopkins 155 dataset. The results show that our method is comparable with the other motion segmentation methods, and in many cases exceed them in terms of precision and computation time.
New methods for large scale local and global optimization
NASA Astrophysics Data System (ADS)
Byrd, Richard; Schnabel, Robert
1994-07-01
We have pursued all three topics described in the proposal during this research period. A large amount of effort has gone into the development of large scale global optimization methods for molecular configuration problems. We have developed new general purpose methods that combine efficient stochastic global optimization techniques with several new, more deterministic techniques that account for most of the computational effort, and the success, of the methods. We have applied our methods to Lennard-Jones problems with up to 75 atoms, to water clusters with up to 31, molecules, and polymers with up to 58 amino acids. The results appear to be the best so far by general purpose optimization methods, and appear to be leading to some interesting chemistry issues. Our research on the second topic, tensor methods, has addressed several areas. We have designed and implemented tensor methods for large sparse systems of nonlinear equations and nonlinear least squares, and have obtained excellent test results on a wide range of problems. We have also developed new tensor methods for nonlinearly constrained optimization problem, and have obtained promising theoretical and preliminary computational results. Finally, on the third topic, limited memory methods for large scale optimization, we have developed and implemented new, extremely efficient limited memory methods for bound constrained problems, and new limited memory trust regions methods, both using our-recently developed compact representations for quasi-Newton matrices. Computational test results for both methods are promising.
A reconciliation of local and global models for bone remodeling through optimization theory.
Subbarayan, G; Bartel, D L
2000-02-01
Remodeling rules with either a global or a local mathematical form have been proposed for load-bearing bones in the literature. In the local models, the bone architecture (shape, density) is related to the strains/energies sensed at any point in the bone, while in the global models, a criterion believed to be applicable to the whole bone is used. In the present paper, a local remodeling rule with a strain "error" form is derived as the necessary condition for the optimum of a global remodeling criterion, suggesting that many of the local error-driven remodeling rules may have corresponding global optimization-based criteria. The global criterion proposed in the present study is a trade-off between the cost of metabolic growth and use, mathematically represented by the mass, and the cost of failure, mathematically represented by the total strain energy. The proposed global criterion is shown to be related to the optimality criteria methods of structural optimization by the equivalence of the model solution and the fully stressed solution for statically determinate structures. In related work, the global criterion is applied to simulate the strength recovery in bones with screw holes left behind after removal of fracture fixation plates. The results predicted by the model are shown to be in good agreement with experimental results, leading to the conclusion that load-bearing bones are structures with optimal shape and property for their function. PMID:10790832
Optimal Design of Grid-Stiffened Composite Panels Using Global and Local Buckling Analysis
Ambur, D.R.; Jaunky, N.; Knight, N.F. Jr.
1996-04-01
A design strategy for optimal design of composite grid-stiffened panels subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. The design optimization process is adapted to identify the lightest-weight stiffening configuration and pattern for grid stiffened composite panels given the overall panel dimensions, design in-plane loads, material properties, and boundary conditions of the grid-stiffened panel.
Optimal Design of Grid-Stiffened Composite Panels Using Global and Local Buckling Analysis
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Jaunky, Navin; Knight, Norman F., Jr.
1996-01-01
A design strategy for optimal design of composite grid-stiffened panels subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. The design optimization process is adapted to identify the lightest-weight stiffening configuration and pattern for grid stiffened composite panels given the overall panel dimensions, design in-plane loads, material properties, and boundary conditions of the grid-stiffened panel.
SU-E-J-130: Automating Liver Segmentation Via Combined Global and Local Optimization
Li, Dengwang; Wang, Jie; Kapp, Daniel S.; Xing, Lei
2015-06-15
Purpose: The aim of this work is to develop a robust algorithm for accurate segmentation of liver with special attention paid to the problems with fuzzy edges and tumor. Methods: 200 CT images were collected from radiotherapy treatment planning system. 150 datasets are selected as the panel data for shape dictionary and parameters estimation. The remaining 50 datasets were used as test images. In our study liver segmentation was formulated as optimization process of implicit function. The liver region was optimized via local and global optimization during iterations. Our method consists five steps: 1)The livers from the panel data were segmented manually by physicians, and then We estimated the parameters of GMM (Gaussian mixture model) and MRF (Markov random field). Shape dictionary was built by utilizing the 3D liver shapes. 2)The outlines of chest and abdomen were located according to rib structure in the input images, and the liver region was initialized based on GMM. 3)The liver shape for each 2D slice was adjusted using MRF within the neighborhood of liver edge for local optimization. 4)The 3D liver shape was corrected by employing SSR (sparse shape representation) based on liver shape dictionary for global optimization. Furthermore, H-PSO(Hybrid Particle Swarm Optimization) was employed to solve the SSR equation. 5)The corrected 3D liver was divided into 2D slices as input data of the third step. The iteration was repeated within the local optimization and global optimization until it satisfied the suspension conditions (maximum iterations and changing rate). Results: The experiments indicated that our method performed well even for the CT images with fuzzy edge and tumors. Comparing with physician delineated results, the segmentation accuracy with the 50 test datasets (VOE, volume overlap percentage) was on average 91%–95%. Conclusion: The proposed automatic segmentation method provides a sensible technique for segmentation of CT images. This work is
Global-Local Analysis and Optimization of a Composite Civil Tilt-Rotor Wing
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masound
1999-01-01
This report gives highlights of an investigation on the design and optimization of a thin composite wing box structure for a civil tilt-rotor aircraft. Two different concepts are considered for the cantilever wing: (a) a thin monolithic skin design, and (b) a thick sandwich skin design. Each concept is examined with three different skin ply patterns based on various combinations of 0, +/-45, and 90 degree plies. The global-local technique is used in the analysis and optimization of the six design models. The global analysis is based on a finite element model of the wing-pylon configuration while the local analysis uses a uniformly supported plate representing a wing panel. Design allowables include those on vibration frequencies, panel buckling, and material strength. The design optimization problem is formulated as one of minimizing the structural weight subject to strength, stiffness, and d,vnamic constraints. Six different loading conditions based on three different flight modes are considered in the design optimization. The results of this investigation reveal that of all the loading conditions the one corresponding to the rolling pull-out in the airplane mode is the most stringent. Also the frequency constraints are found to drive the skin thickness limits, rendering the buckling constraints inactive. The optimum skin ply pattern for the monolithic skin concept is found to be (((0/+/-45/90/(0/90)(sub 2))(sub s))(sub s), while for the sandwich skin concept the optimal ply pattern is found to be ((0/+/-45/90)(sub 2s))(sub s).
Donner, René; Menze, Bjoern H; Bischof, Horst; Langs, Georg
2013-12-01
The accurate localization of anatomical landmarks is a challenging task, often solved by domain specific approaches. We propose a method for the automatic localization of landmarks in complex, repetitive anatomical structures. The key idea is to combine three steps: (1) a classifier for pre-filtering anatomical landmark positions that (2) are refined through a Hough regression model, together with (3) a parts-based model of the global landmark topology to select the final landmark positions. During training landmarks are annotated in a set of example volumes. A classifier learns local landmark appearance, and Hough regressors are trained to aggregate neighborhood information to a precise landmark coordinate position. A non-parametric geometric model encodes the spatial relationships between the landmarks and derives a topology which connects mutually predictive landmarks. During the global search we classify all voxels in the query volume, and perform regression-based agglomeration of landmark probabilities to highly accurate and specific candidate points at potential landmark locations. We encode the candidates' weights together with the conformity of the connecting edges to the learnt geometric model in a Markov Random Field (MRF). By solving the corresponding discrete optimization problem, the most probable location for each model landmark is found in the query volume. We show that this approach is able to consistently localize the model landmarks despite the complex and repetitive character of the anatomical structures on three challenging data sets (hand radiographs, hand CTs, and whole body CTs), with a median localization error of 0.80 mm, 1.19 mm and 2.71 mm, respectively. PMID:23664450
Software for global optimization
Mockus, L.
1994-12-31
The interactive graphical software that implements numeric methods and other techniques to solve global optimization problems is presented. The Bayesian approach to the optimization is the underlying idea of numeric methods used. Software is designed to solve deterministic and stochastic problems of different complexity and with many variables. It includes global and local optimization methods for differentiable and nondifferentiable functions. Implemented numerical techniques for global optimization vary from simple Monte-Carlo simulation to Bayesian methods by J. Mockus and extrapolation theory based methods by Zilinskas. Local optimization techniques includes simplex method of Nelder and Mead method of nonlinear programming by Shitkowski, and method of stochastic approximation with Bayesian step size control by J. Mockus. Software is interactive, it allows user to start and stop chosen method of global or local optimization, define and change its parameters and examine the solution process. Out-put from solution process is both numerical and graphical. Currently available graphical features are the projection of the objective function on a chosen plane and convergence plot. Both these features let the user easily observe solution process and interactively modify it. More features can be added in a standard way. It is up to the user how many graphical and numerical output features activate or deactivate at any given time. Software is implemented in C++ using X Windows as graphical platform.
Local search for optimal global map generation using mid-decadal landsat images
Khatib, L.; Gasch, J.; Morris, R.; Covington, S.
2007-01-01
NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
NASA Astrophysics Data System (ADS)
Shoemaker, C. A.; Singh, A.
2008-12-01
This paper will describe some new optimization algorithms and their application to hydrologic models. The approaches include a parallel version of a new heuristic algorithm combined with tabu search and a mathematically derived global optimization method that is based on trust region methods. The goals of these methods are to find optimal solutions to calibration problems and to design problems with relatively few simulations or (in a parallel environment) relatively little wallclock time. This is important because currently it is not possible to apply global optimization methods like genetic algorithms to computationally expensive simulation models like partial differential equations (with many nodes in groundwater) because it is not feasible to do thousands of simulations to evaluate the objective/fitness function. Results of the application of the algorithms to some complex models of groundwater contamination and phosphorous transport in watersheds will be presented.
NASA Astrophysics Data System (ADS)
Theos, F. V.; Lagaris, I. E.; Papageorgiou, D. G.
2004-05-01
We present two sequential and one parallel global optimization codes, that belong to the stochastic class, and an interface routine that enables the use of the Merlin/MCL environment as a non-interactive local optimizer. This interface proved extremely important, since it provides flexibility, effectiveness and robustness to the local search task that is in turn employed by the global procedures. We demonstrate the use of the parallel code to a molecular conformation problem. Program summaryTitle of program: PANMIN Catalogue identifier: ADSU Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSU Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: PANMIN is designed for UNIX machines. The parallel code runs on either shared memory architectures or on a distributed system. The code has been tested on a SUN Microsystems ENTERPRISE 450 with four CPUs, and on a 48-node cluster under Linux, with both the GNU g77 and the Portland group compilers. The parallel implementation is based on MPI and has been tested with LAM MPI and MPICH Installation: University of Ioannina, Greece Programming language used: Fortran-77 Memory required to execute with typical data: Approximately O( n2) words, where n is the number of variables No. of bits in a word: 64 No. of processors used: 1 or many Has the code been vectorised or parallelized?: Parallelized using MPI No. of bytes in distributed program, including test data, etc.: 147163 No. of lines in distributed program, including the test data, etc.: 14366 Distribution format: gzipped tar file Nature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques can be
NASA Astrophysics Data System (ADS)
Matott, L. S.; Gray, G. A.
2011-12-01
Pump-and-treat systems are a common strategy for groundwater remediation, wherein a system of extraction wells is installed at an affected site to address pollutant migration. In this context, the likely performance of candidate remedial systems is often assessed using groundwater flow modeling. When linked with an optimizer, these models can be utilized to identify a least-cost system design that nonetheless satisfies remediation goals. Moreover, the resulting design problems serve as important tools in the development and testing of optimization algorithms. For example, consider EAGLS (Evolutionary Algorithm Guiding Local Search), a recently developed derivative-free simulation-optimization code that seeks to efficiently solve nonlinear problems by hybridizing local and global search techniques. The EAGLS package was designed to specifically target mixed variable problems and has a limited ability to intelligently adapt its behavior to given problem characteristics. For instance, to solve problems in which there are no discrete or integer variables, the EAGLS code defaults to a multi-start asynchronous parallel pattern search. Therefore, to better understand the behavior of EAGLS, the algorithm was applied to a representative dual-plume pump-and-treat containment problem. A series of numerical experiments were performed involving four different formulations of the underlying pump-and-treat optimization problem, namely: (1) optimization of pumping rates, given fixed number of wells at fixed locations; (2) optimization of pumping rates and locations of a fixed number of wells; (3) optimization of pumping rates and number of wells at fixed locations; and (4) optimization of pumping rates, locations, and number of wells. Comparison of the performance of the EAGLS software with alternative search algorithms across different problem formulations yielded new insights for improving the EAGLS algorithm and enhancing its adaptive behavior.
NASA Astrophysics Data System (ADS)
Cai, X.; Zhang, X.; Zhu, T.
2014-12-01
Global food security is constrained by local and regional land and water availability, as well as other agricultural input limitations and inappropriate national and global regulations. In a theoretical context, this study assumes that optimal water and land uses in local food production to maximize food security and social welfare at the global level can be driven by global trade. It follows the context of "virtual resources trade", i.e., utilizing international trade of agricultural commodities to reduce dependency on local resources, and achieves land and water savings in the world. An optimization model based on the partial equilibrium of agriculture is developed for the analysis, including local commodity production and land and water resources constraints, demand by country, and global food market. Through the model, the marginal values (MVs) of social welfare for water and land at the level of so-called food production units (i.e., sub-basins with similar agricultural production conditions) are derived and mapped in the world. In this personation, we will introduce the model structure, explain the meaning of MVs at the local level and their distribution around the world, and discuss the policy implications for global communities to enhance global food security. In particular, we will examine the economic values of water and land under different world targets of food security (e.g., number of malnourished population or children in a future year). In addition, we will also discuss the opportunities on data to improve such global modeling exercises.
Rattenborg, Niels C; Lima, Steven L; Lesku, John A
2012-10-01
In most animals, sleep is considered a global brain and behavioral state. However, recent intracortical recordings have shown that aspects of non-rapid eye movement (NREM) sleep and wakefulness can occur simultaneously in different parts of the cortex in mammals, including humans. Paradoxically, however, NREM sleep still manifests as a global behavioral shutdown. In this review, the authors examine this paradox from an evolutionary perspective. On the basis of strategic modeling, they suggest that in animals with brains composed of heavily interconnected and functionally interdependent units, a global regulator of sleep maintains the behavioral shutdown that defines sleep and thereby ensures that local use-dependent functions are performed in a safe and efficient manner. This novel perspective has implications for understanding deficits in human cognitive performance resulting from sleep deprivation, sleep disorders such as sleepwalking, changes in consciousness that occur during sleep, and the function of sleep itself. PMID:22572533
Pfeffer, A; Das, S; Lawless, D; Ng, B
2006-10-10
Many dynamic systems involve a number of entities that are largely independent of each other but interact with each other via a subset of state variables. We present global/local dynamic models (GLDMs) to capture these kinds of systems. In a GLDM, the state of an entity is decomposed into a globally influenced state that depends on other entities, and a locally influenced state that depends only on the entity itself. We present an inference algorithm for GLDMs called global/local particle filtering, that introduces the principle of reasoning globally about global dynamics and locally about local dynamics. We have applied GLDMs to an asymmetric urban warfare environment, in which enemy units form teams to attack important targets, and the task is to detect such teams as they form. Experimental results for this application show that global/local particle filtering outperforms ordinary particle filtering and factored particle filtering.
Global Optimality of the Successive Maxbet Algorithm.
ERIC Educational Resources Information Center
Hanafi, Mohamed; ten Berge, Jos M. F.
2003-01-01
It is known that the Maxbet algorithm, which is an alternative to the method of generalized canonical correlation analysis and Procrustes analysis, may converge to local maxima. Discusses an eigenvalue criterion that is sufficient, but not necessary, for global optimality of the successive Maxbet algorithm. (SLD)
Homotopy optimization methods for global optimization.
Dunlavy, Daniel M.; O'Leary, Dianne P.
2005-12-01
We define a new method for global optimization, the Homotopy Optimization Method (HOM). This method differs from previous homotopy and continuation methods in that its aim is to find a minimizer for each of a set of values of the homotopy parameter, rather than to follow a path of minimizers. We define a second method, called HOPE, by allowing HOM to follow an ensemble of points obtained by perturbation of previous ones. We relate this new method to standard methods such as simulated annealing and show under what circumstances it is superior. We present results of extensive numerical experiments demonstrating performance of HOM and HOPE.
Intervals in evolutionary algorithms for global optimization
Patil, R.B.
1995-05-01
Optimization is of central concern to a number of disciplines. Interval Arithmetic methods for global optimization provide us with (guaranteed) verified results. These methods are mainly restricted to the classes of objective functions that are twice differentiable and use a simple strategy of eliminating a splitting larger regions of search space in the global optimization process. An efficient approach that combines the efficient strategy from Interval Global Optimization Methods and robustness of the Evolutionary Algorithms is proposed. In the proposed approach, search begins with randomly created interval vectors with interval widths equal to the whole domain. Before the beginning of the evolutionary process, fitness of these interval parameter vectors is defined by evaluating the objective function at the center of the initial interval vectors. In the subsequent evolutionary process the local optimization process returns an estimate of the bounds of the objective function over the interval vectors. Though these bounds may not be correct at the beginning due to large interval widths and complicated function properties, the process of reducing interval widths over time and a selection approach similar to simulated annealing helps in estimating reasonably correct bounds as the population evolves. The interval parameter vectors at these estimated bounds (local optima) are then subjected to crossover and mutation operators. This evolutionary process continues for predetermined number of generations in the search of the global optimum.
Global optimization methods for engineering design
NASA Technical Reports Server (NTRS)
Arora, Jasbir S.
1990-01-01
The problem is to find a global minimum for the Problem P. Necessary and sufficient conditions are available for local optimality. However, global solution can be assured only under the assumption of convexity of the problem. If the constraint set S is compact and the cost function is continuous on it, existence of a global minimum is guaranteed. However, in view of the fact that no global optimality conditions are available, a global solution can be found only by an exhaustive search to satisfy Inequality. The exhaustive search can be organized in such a way that the entire design space need not be searched for the solution. This way the computational burden is reduced somewhat. It is concluded that zooming algorithm for global optimizations appears to be a good alternative to stochastic methods. More testing is needed; a general, robust, and efficient local minimizer is required. IDESIGN was used in all numerical calculations which is based on a sequential quadratic programming algorithm, and since feasible set keeps on shrinking, a good algorithm to find an initial feasible point is required. Such algorithms need to be developed and evaluated.
Enhancing Polyhedral Relaxations for Global Optimization
ERIC Educational Resources Information Center
Bao, Xiaowei
2009-01-01
During the last decade, global optimization has attracted a lot of attention due to the increased practical need for obtaining global solutions and the success in solving many global optimization problems that were previously considered intractable. In general, the central question of global optimization is to find an optimal solution to a given…
Think Globally and Act Locally.
ERIC Educational Resources Information Center
Alger, Chadwick F.
1985-01-01
Suggests ways teachers can involve themselves and their students in local action as a means of furthering effective and practical global education. Considers possible barriers related to the ideology of the state system, and current breakthroughs, e.g., the nuclear freeze movement, anti-apartheid activism, and the sanctuary movement for Salvadoran…
Computational methods for global/local analysis
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.; Mccleary, Susan L.; Aminpour, Mohammad A.; Knight, Norman F., Jr.
1992-01-01
Computational methods for global/local analysis of structures which include both uncoupled and coupled methods are described. In addition, global/local analysis methodology for automatic refinement of incompatible global and local finite element models is developed. Representative structural analysis problems are presented to demonstrate the global/local analysis methods.
Global Design Optimization for Fluid Machinery Applications
NASA Technical Reports Server (NTRS)
Shyy, Wei; Papila, Nilay; Tucker, Kevin; Vaidyanathan, Raj; Griffin, Lisa
2000-01-01
Recent experiences in utilizing the global optimization methodology, based on polynomial and neural network techniques for fluid machinery design are summarized. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. Another advantage is that these methods do not need to calculate the sensitivity of each design variable locally. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables and methods for predicting the model performance. Examples of applications selected from rocket propulsion components including a supersonic turbine and an injector element and a turbulent flow diffuser are used to illustrate the usefulness of the global optimization method.
Yang, Zili
2009-03-19
In the duration of this project, we finished the main tasks set up in the initial proposal. These tasks include: collecting needed data of regional aerosol emissions (mainly SO2); building the RICES model; conducting preliminary simulation runs on some policy scenarios. We established a unified and transparent IA modeling platform that connecting climate change and local air pollution. The RICES model is the pioneering IA model that treats climate change and local air pollution as correlated global and local stock externalities.
Local optimization of neuron arbors.
Cherniak, C
1992-01-01
How parsimoniously is brain wiring laid out, that is, how well does a neuron minimize costs of connections among its synapses? Neural optimization of dendritic and axonic arbors can be evaluated using a generalization of the Steiner tree concept from combinatorial network optimization theory. Local branch-junction geometry of neuronal connecting structures fits a volume minimization model well. In addition, volume of the arborizations at this neighborhood level is significantly more strongly minimized than their length, signal propagation speed, or surface area. The mechanism of this local volume optimization resembles those involved in formation of nonliving tree structures such as river junctions and electric-discharge patterns, and appears to govern initial nerve growth-cone behavior through vector-mechanical energy minimization. PMID:1586674
Global versus local adsorption selectivity
NASA Astrophysics Data System (ADS)
Pauzat, Françoise; Marloie, Gael; Markovits, Alexis; Ellinger, Yves
2015-10-01
The origin of the enantiomeric excess found in the amino acids present in the organic matter of carbonaceous meteorites is still unclear. Selective adsorption of one of the two enantiomers existing after a racemic formation could be part of the answer. Hereafter we report a comparative study of the adsorption of the R and S enantiomers of α-alanine and lactic acid on the hydroxylated { } chiral surface of α-quartz using numerical simulation techniques. Structurally different adsorption sites were found with opposite R versus S selectivity for the same molecule-surface couple, raising the problem of whether to consider adsorption as a local property or as a global response characteristic of the whole surface. To deal with the second term of this alternative, a statistical approach was designed, based on the occurrence of each adsorption site whose energy was calculated using first principle periodic density functional theory. It was found that R-alanine and S-lactic acid are the enantiomers preferentially adsorbed, even if the adsorption process on the quartz { } surface stays with a disappointingly poor enantio-selectivity. Nevertheless, it highlighted the important point that considering adsorption as a global property changes perspectives in the search for more efficient enantio-selective supports and more generally changes the way to apprehend adsorption processes in astro-chemistry/biology.
An approximation based global optimization strategy for structural synthesis
NASA Technical Reports Server (NTRS)
Sepulveda, A. E.; Schmit, L. A.
1991-01-01
A global optimization strategy for structural synthesis based on approximation concepts is presented. The methodology involves the solution of a sequence of highly accurate approximate problems using a global optimization algorithm. The global optimization algorithm implemented consists of a branch and bound strategy based on the interval evaluation of the objective function and constraint functions, combined with a local feasible directions algorithm. The approximate design optimization problems are constructed using first order approximations of selected intermediate response quantities in terms of intermediate design variables. Some numerical results for example problems are presented to illustrate the efficacy of the design procedure setforth.
On Global Optimal Sailplane Flight Strategy
NASA Technical Reports Server (NTRS)
Sander, G. J.; Litt, F. X.
1979-01-01
The derivation and interpretation of the necessary conditions that a sailplane cross-country flight has to satisfy to achieve the maximum global flight speed is considered. Simple rules are obtained for two specific meteorological models. The first one uses concentrated lifts of various strengths and unequal distance. The second one takes into account finite, nonuniform space amplitudes for the lifts and allows, therefore, for dolphin style flight. In both models, altitude constraints consisting of upper and lower limits are shown to be essential to model realistic problems. Numerical examples illustrate the difference with existing techniques based on local optimality conditions.
Local cooling despite global warming
NASA Astrophysics Data System (ADS)
Girihagama, Lakshika Nilmini Kumari
How much warmer is the ocean surface than the atmosphere directly above it? Part 1 of the present study offers a means to quantify this temperature difference using a nonlinear one-dimensional global energy balance coupled ocean--atmosphere model ("Aqua Planet"). The significance of our model, which is of intermediate complexity, is its ability to obtain an analytical solution for the global average temperatures. Preliminary results show that, for the present climate, global mean ocean temperature is 291.1 K whereas surface atmospheric temperature is 287.4 K. Thus, the surface ocean is 3.7 K warmer than the atmosphere above it. Temporal perturbation of the global mean solution obtained for "Aqua Planet" showed a stable system. Oscillation amplitude of the atmospheric temperature anomaly is greater in magnitude to those found in the ocean. There is a phase shift (a lag in the ocean), which is caused by oceanic thermal inertia. Climate feedbacks due to selected climate parameters such as incoming radiation, cloud cover, and CO2 are discussed. Warming obtained with our model compares with Intergovernmental Panel on Climate Change's (IPCC) estimations. Application of our model to local regions illuminates the importance of evaporative cooling in determining derived air-sea temperature offsets, where an increase in the latter increases the systems overall sensitivity to evaporative cooling. In part 2, we wish to answer the fairly complicated question of whether global warming and an increased freshwater flux cause Northern Hemispheric warming or cooling. Starting from the assumption of the ocean as the primary source of variability in the Northern hemispheric ocean--atmosphere coupled system, we employed a simple non--linear one--dimensional coupled ocean--atmosphere model similar to the "Aqua Planet" model but with additional advective heat transports. The simplicity of this model allows us to analytically predict the evolution of many dynamical variables of interest
Thinking Globally when Teaching Locally
ERIC Educational Resources Information Center
Van Reken, Ruth E.; Rushmore, Sally
2009-01-01
Advances in science and technology, globalization of trade, international competition for markets, ethnic conflicts, and the limits of the planet's ecosystem have brought global issues and the people of the world to doorsteps and classrooms. With the increasing interaction among peoples of the world, skills in cross-cultural communication,…
Application of clustering global optimization to thin film design problems.
Lemarchand, Fabien
2014-03-10
Refinement techniques usually calculate an optimized local solution, which is strongly dependent on the initial formula used for the thin film design. In the present study, a clustering global optimization method is used which can iteratively change this initial formula, thereby progressing further than in the case of local optimization techniques. A wide panel of local solutions is found using this procedure, resulting in a large range of optical thicknesses. The efficiency of this technique is illustrated by two thin film design problems, in particular an infrared antireflection coating, and a solar-selective absorber coating. PMID:24663856
THE LOCAL LIMIT OF GLOBAL GYROKINETIC SIMULATIONS
CANDY J; WALTZ RE; DORLAND W
2003-10-01
OAK-B135 Global gyrokinetic simulations of turbulence include physical effects that are not retained in local flux-tube simulations. nevertheless, in the limit of sufficiently small {rho}* (gyroradius compared to system size) it is expected that a local simulation should agree with a global one (at the local simulation radius) since all effects that are dropped in the local simulations are expected to vanish as {rho}* {yields} 0. In this note, global simulations of a well-established test case are indeed shown to recover the flux-tube limit at each radius.
A Memetic Algorithm for Global Optimization of Multimodal Nonseparable Problems.
Zhang, Geng; Li, Yangmin
2016-06-01
It is a big challenging issue of avoiding falling into local optimum especially when facing high-dimensional nonseparable problems where the interdependencies among vector elements are unknown. In order to improve the performance of optimization algorithm, a novel memetic algorithm (MA) called cooperative particle swarm optimizer-modified harmony search (CPSO-MHS) is proposed in this paper, where the CPSO is used for local search and the MHS for global search. The CPSO, as a local search method, uses 1-D swarm to search each dimension separately and thus converges fast. Besides, it can obtain global optimum elements according to our experimental results and analyses. MHS implements the global search by recombining different vector elements and extracting global optimum elements. The interaction between local search and global search creates a set of local search zones, where global optimum elements reside within the search space. The CPSO-MHS algorithm is tested and compared with seven other optimization algorithms on a set of 28 standard benchmarks. Meanwhile, some MAs are also compared according to the results derived directly from their corresponding references. The experimental results demonstrate a good performance of the proposed CPSO-MHS algorithm in solving multimodal nonseparable problems. PMID:26292352
Global optimality of extremals: An example
NASA Technical Reports Server (NTRS)
Kreindler, E.; Newman, F.
1980-01-01
The question of the existence and location of Darboux points is crucial for minimally sufficient conditions for global optimality and for computation of optimal trajectories. A numerical investigation is presented of the Darboux points and their relationship with conjugate points for a problem of minimum fuel, constant velocity, and horizontal aircraft turns to capture a line. This simple second order optimal control problem shows that ignoring the possible existence of Darboux points may play havoc with the computation of optimal trajectories.
Bayesian approach to global discrete optimization
Mockus, J.; Mockus, A.; Mockus, L.
1994-12-31
We discuss advantages and disadvantages of the Bayesian approach (average case analysis). We present the portable interactive version of software for continuous global optimization. We consider practical multidimensional problems of continuous global optimization, such as optimization of VLSI yield, optimization of composite laminates, estimation of unknown parameters of bilinear time series. We extend Bayesian approach to discrete optimization. We regard the discrete optimization as a multi-stage decision problem. We assume that there exists some simple heuristic function which roughly predicts the consequences of the decisions. We suppose randomized decisions. We define the probability of the decision by the randomized decision function depending on heuristics. We fix this function with exception of some parameters. We repeat the randomized decision several times at the fixed values of those parameters and accept the best decision as the result. We optimize the parameters of the randomized decision function to make the search more efficient. Thus we reduce the discrete optimization problem to the continuous problem of global stochastic optimization. We solve this problem by the Bayesian methods of continuous global optimization. We describe the applications to some well known An problems of discrete programming, such as knapsack, traveling salesman, and scheduling.
Local Literacies, Global Scales: The Labor of Global Connectivity
ERIC Educational Resources Information Center
Stornaiuolo, Amy; LeBlanc, Robert Jean
2014-01-01
While connecting students and teachers in new configurations using digital technologies offers great promise for literacy and learning, this column considers the complexities of negotiating local and global literacies in global collaborations. It introduces the theoretical concept of "scaling" to highlight the ways teachers actively and…
Local Decisions and Global Networks
ERIC Educational Resources Information Center
King, David C.; Long, Cathryn J.
1976-01-01
Impact of economic and urban planning on the natural environment can be studied through local situations: California conservation students realized the detrimental effects of a seemingly beneficial dam project. Students were inspired to initiate community-state action to correct damage to wildlife, sanitation, and farming. (AV)
Applications of parallel global optimization to mechanics problems
NASA Astrophysics Data System (ADS)
Schutte, Jaco Francois
Global optimization of complex engineering problems, with a high number of variables and local minima, requires sophisticated algorithms with global search capabilities and high computational efficiency. With the growing availability of parallel processing, it makes sense to address these requirements by increasing the parallelism in optimization strategies. This study proposes three methods of concurrent processing. The first method entails exploiting the structure of population-based global algorithms such as the stochastic Particle Swarm Optimization (PSO) algorithm and the Genetic Algorithm (GA). As a demonstration of how such an algorithm may be adapted for concurrent processing we modify and apply the PSO to several mechanical optimization problems on a parallel processing machine. Desirable PSO algorithm features such as insensitivity to design variable scaling and modest sensitivity to algorithm parameters are demonstrated. A second approach to parallelism and improving algorithm efficiency is by utilizing multiple optimizations. With this method a budget of fitness evaluations is distributed among several independent sub-optimizations in place of a single extended optimization. Under certain conditions this strategy obtains a higher combined probability of converging to the global optimum than a single optimization which utilizes the full budget of fitness evaluations. The third and final method of parallelism addressed in this study is the use of quasiseparable decomposition, which is applied to decompose loosely coupled problems. This yields several sub-problems of lesser dimensionality which may be concurrently optimized with reduced effort.
Similarity-based global optimization of buildings in urban scene
NASA Astrophysics Data System (ADS)
Zhu, Quansheng; Zhang, Jing; Jiang, Wanshou
2013-10-01
In this paper, an approach for the similarity-based global optimization of buildings in urban scene is presented. In the past, most researches concentrated on single building reconstruction, making it difficult to reconstruct reliable models from noisy or incomplete point clouds. To obtain a better result, a new trend is to utilize the similarity among the buildings. Therefore, a new similarity detection and global optimization strategy is adopted to modify local-fitting geometric errors. Firstly, the hierarchical structure that consists of geometric, topological and semantic features is constructed to represent complex roof models. Secondly, similar roof models can be detected by combining primitive structure and connection similarities. At last, the global optimization strategy is applied to preserve the consistency and precision of similar roof structures. Moreover, non-local consolidation is adapted to detect small roof parts. The experiments reveal that the proposed method can obtain convincing roof models and promote the reconstruction quality of 3D buildings in urban scene.
Consuming Globalization, Local Identities, and Common Experiences
ERIC Educational Resources Information Center
Filax, Gloria
2004-01-01
In articulating global and local forms of sexuality and its impact on how people conceptualise conceptualised LGBT issues in education, the author explores three timely texts: (1) Dennis Altman's "Global Sex" (2000); (2) Vanessa Baird's "The No-Nonsense Guide to Sexual Diversity" (2001); and (3) an edited volume by Evelyn Blackwood and Saskia…
Spanish as a World Language: The Interplay of Globalized Localization and Localized Globalization
ERIC Educational Resources Information Center
Nino-Murcia, Mercedes; Godenzzi, Juan Carlos; Rothman, Jason
2008-01-01
This article argues that two movements in constant interplay operate within the historical trajectory of the Spanish language: the localization that becomes globalized and the globalization that becomes localized. Equally, this article illustrates how, at the same time that Spanish is expanding in the world, new idiosyncratic and localized forms…
Local and Global Thinking in Statistical Inference
ERIC Educational Resources Information Center
Pratt, Dave; Johnston-Wilder, Peter; Ainley, Janet; Mason, John
2008-01-01
In this reflective paper, we explore students' local and global thinking about informal statistical inference through our observations of 10- to 11-year-olds, challenged to infer the unknown configuration of a virtual die, but able to use the die to generate as much data as they felt necessary. We report how they tended to focus on local changes…
Tsunamis: Global Exposure and Local Risk Analysis
NASA Astrophysics Data System (ADS)
Harbitz, C. B.; Løvholt, F.; Glimsdal, S.; Horspool, N.; Griffin, J.; Davies, G.; Frauenfelder, R.
2014-12-01
The 2004 Indian Ocean tsunami led to a better understanding of the likelihood of tsunami occurrence and potential tsunami inundation, and the Hyogo Framework for Action (HFA) was one direct result of this event. The United Nations International Strategy for Disaster Risk Reduction (UN-ISDR) adopted HFA in January 2005 in order to reduce disaster risk. As an instrument to compare the risk due to different natural hazards, an integrated worldwide study was implemented and published in several Global Assessment Reports (GAR) by UN-ISDR. The results of the global earthquake induced tsunami hazard and exposure analysis for a return period of 500 years are presented. Both deterministic and probabilistic methods (PTHA) are used. The resulting hazard levels for both methods are compared quantitatively for selected areas. The comparison demonstrates that the analysis is rather rough, which is expected for a study aiming at average trends on a country level across the globe. It is shown that populous Asian countries account for the largest absolute number of people living in tsunami prone areas, more than 50% of the total exposed people live in Japan. Smaller nations like Macao and the Maldives are among the most exposed by population count. Exposed nuclear power plants are limited to Japan, China, India, Taiwan, and USA. On the contrary, a local tsunami vulnerability and risk analysis applies information on population, building types, infrastructure, inundation, flow depth for a certain tsunami scenario with a corresponding return period combined with empirical data on tsunami damages and mortality. Results and validation of a GIS tsunami vulnerability and risk assessment model are presented. The GIS model is adapted for optimal use of data available for each study. Finally, the importance of including landslide sources in the tsunami analysis is also discussed.
Global Response to Local Ionospheric Mass Ejection
NASA Technical Reports Server (NTRS)
Moore, T. E.; Fok, M.-C.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.
2010-01-01
We revisit a reported "Ionospheric Mass Ejection" using prior event observations to guide a global simulation of local ionospheric outflows, global magnetospheric circulation, and plasma sheet pressurization, and comparing our results with the observed global response. Our simulation framework is based on test particle motions in the Lyon-Fedder-Mobarry (LFM) global circulation model electromagnetic fields. The inner magnetosphere is simulated with the Comprehensive Ring Current Model (CRCM) of Fok and Wolf, driven by the transpolar potential developed by the LFM magnetosphere, and includes an embedded plasmaspheric simulation. Global circulation is stimulated using the observed solar wind conditions for the period 24-25 Sept 1998. This period begins with the arrival of a Coronal Mass Ejection, initially with northward, but later with southward interplanetary magnetic field. Test particles are launched from the ionosphere with fluxes specified by local empirical relationships of outflow to electrodynamic and particle precipitation imposed by the MIlD simulation. Particles are tracked until they are lost from the system downstream or into the atmosphere, using the full equations of motion. Results are compared with the observed ring current and a simulation of polar and auroral wind outflows driven globally by solar wind dynamic pressure. We find good quantitative agreement with the observed ring current, and reasonable qualitative agreement with earlier simulation results, suggesting that the solar wind driven global simulation generates realistic energy dissipation in the ionosphere and that the Strangeway relations provide a realistic local outflow description.
Orbit design and optimization based on global telecommunication performance metrics
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Lee, Charles H.; Kerridge, Stuart; Cheung, Kar-Ming; Edwards, Charles D.
2006-01-01
The orbit selection of telecommunications orbiters is one of the critical design processes and should be guided by global telecom performance metrics and mission-specific constraints. In order to aid the orbit selection, we have coupled the Telecom Orbit Analysis and Simulation Tool (TOAST) with genetic optimization algorithms. As a demonstration, we have applied the developed tool to select an optimal orbit for general Mars telecommunications orbiters with the constraint of being a frozen orbit. While a typical optimization goal is to minimize tele-communications down time, several relevant performance metrics are examined: 1) area-weighted average gap time, 2) global maximum of local maximum gap time, 3) global maximum of local minimum gap time. Optimal solutions are found with each of the metrics. Common and different features among the optimal solutions as well as the advantage and disadvantage of each metric are presented. The optimal solutions are compared with several candidate orbits that were considered during the development of Mars Telecommunications Orbiter.
Thriving locally in the global economy.
Kanter, Rosabeth Moss
2003-08-01
More and more small and midsize companies are joining corporate giants in striving to exploit international growth markets. At the same time, civic leaders worry about their communities' economic future in light of the impact of global forces on the operation and survival of business. How can communities retain local vitality yet still link their business to the global economy? Harvard professor Rosabeth Moss Kanter addresses that question in this classic HBR article, orginally published in 1995. To avoid a clash between international economic interests and local political interests, globalizing business must learn how to be responsive to the communities in which they operate, Kanter says. And communities must determine how to create a civic culture that will attract and retain footloose companies. The author surveyed five U.S. regions with direct connections to the global economy--Boston, Cleveland, Miami, Seattle, and the Spartanburg-Greenville region of South Carolina--to determine their business and civic leader's strategies for improving their constituent's quality of life. She identified ways in which the global economy can work locally by capitalizing on the resources that distinguish one place from another. Kanter argues that regions can invest in capabilities that connect their local populations to the global economy in one of three ways: as thinkers, makers, or traders. She points to the Spartanburg-Greenville region as a good example of a world-class makers, with its exceptional blue-collar workforce that has attracted more than 200 companies from 18 countries. The history of the economic development of this region is a lesson for those seeking to understand how to achieve world-class status and bring local residents into the world economy. PMID:12884672
Global source optimization for MEEF and OPE
NASA Astrophysics Data System (ADS)
Matsui, Ryota; Noda, Tomoya; Aoyama, Hajime; Kita, Naonori; Matsuyama, Tomoyuki; Flagello, Donis
2013-04-01
This work describes freeform source optimization considering mask error enhancement factor (MEEF), optical proximity effect (OPE), process window, and hardware-specific constraints. Our algorithm allows users to define maximum allowed MEEF and OPE error as constraints without defining weights among the metrics. We also consider hardware specific constraints, so that the optimized source is suitable to be realized in Nikon's Intelligent Illumination hardware. Our approach utilizes a global optimization procedure to arrive at a freeform source shape solution, and since each source grid-point is assigned as variable, the source solution encompasses the maximum amount of degrees of freedom.
Electronic neural networks for global optimization
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Moopenn, A. W.; Eberhardt, S.
1990-01-01
An electronic neural network with feedback architecture, implemented in analog custom VLSI is described. Its application to problems of global optimization for dynamic assignment is discussed. The convergence properties of the neural network hardware are compared with computer simulation results. The neural network's ability to provide optimal or near optimal solutions within only a few neuron time constants, a speed enhancement of several orders of magnitude over conventional search methods, is demonstrated. The effect of noise on the circuit dynamics and the convergence behavior of the neural network hardware is also examined.
Some comments on global-local analyses
NASA Technical Reports Server (NTRS)
Atluri, Satya N.
1989-01-01
The main theme concerns methods that may be classified as global (approximate) and local (exact). Some specific applications of these methods are found in: fracture and fatigue analysis of structures with 3-D surface flaws; large-deformation, post-buckling analysis of large space trusses and space frames, and their control; and stresses around holes in composite laminates.
Global Education and Local School Change.
ERIC Educational Resources Information Center
Otero, George
1983-01-01
Change strategies that focus on improving local schools' abilities to manage change are described, and examples of how the strategies can be applied to help the schools prepare students for life in a global society are furnished. Specific strategies are based on the work of Las Palomas de Taos, an agency promoting change in the Southwest. (PP)
Exploring Local to Global Leadership Education Assessment
ERIC Educational Resources Information Center
Dugan, John P.
2012-01-01
From individual student learning outcomes to full-scale program enhancement, assessment is critical in developing and sustaining leadership education. This chapter will look at assessment techniques and trends spanning from local to global frameworks. International Leadership Association overarching Outcomes and Assessment Guiding Question: "What…
Strategies for Global Optimization of Temporal Preferences
NASA Technical Reports Server (NTRS)
Morris, Paul; Morris, Robert; Khatib, Lina; Ramakrishnan, Sailesh
2004-01-01
A temporal reasoning problem can often be naturally characterized as a collection of constraints with associated local preferences for times that make up the admissible values for those constraints. Globally preferred solutions to such problems emerge as a result of well-defined operations that compose and order temporal assignments. The overall objective of this work is a characterization of different notions of global preference, and to identify tractable sub-classes of temporal reasoning problems incorporating these notions. This paper extends previous results by refining the class of useful notions of global temporal preference that are associated with problems that admit of tractable solution techniques. This paper also answers the hitherto open question of whether problems that seek solutions that are globally preferred from a Utilitarian criterion for global preference can be found tractably.
A Novel Particle Swarm Optimization Algorithm for Global Optimization
Wang, Chun-Feng; Liu, Kui
2016-01-01
Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms. PMID:26955387
A Novel Particle Swarm Optimization Algorithm for Global Optimization.
Wang, Chun-Feng; Liu, Kui
2016-01-01
Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms. PMID:26955387
Global search algorithm for optimal control
NASA Technical Reports Server (NTRS)
Brocker, D. H.; Kavanaugh, W. P.; Stewart, E. C.
1970-01-01
Random-search algorithm employs local and global properties to solve two-point boundary value problem in Pontryagin maximum principle for either fixed or variable end-time problems. Mixed boundary value problem is transformed to an initial value problem. Mapping between initial and terminal values utilizes hybrid computer.
Global time optimal motions of robotic manipulators in the presence of obstacles
NASA Technical Reports Server (NTRS)
Shiller, Zvi; Dubowsky, Steven
1988-01-01
A practical method to obtain the global time optimal motions of robotic manipulators is presented. This method takes into account the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. Previously developed methods of optimizing manipulator motions along given paths and a local path optimization are utilized. A set of best paths is obtained first in a global search over the manipulator workspace, using graph search and hierarchical pruning techniques. These paths are used as initial conditions for a continuous path optimization to yield the global optimal motion. Examples of optimized motions of a six-degree-of-freedom manipulator, operating in a three-dimensional space with obstacles, are presented.
Localizing global hedgehogs on the brane
NASA Astrophysics Data System (ADS)
Cho, Inyong
2004-10-01
We investigate the localization of 4D topological global defects on the brane embedded in 5D. The defects are induced by 5D scalar fields with a symmetry-breaking potential. Taking an Ansatz which separates the scalar field into the 4D and the extra-D part, we find that the static-hedgehog configuration is accomplished and the defects are formed only in the AdS4/AdS5 background. In the extra dimension, the localization amplitude for the 4D defects is high where the warp factor is high.
Localizing global hedgehogs on the brane
Cho, Inyong
2004-10-15
We investigate the localization of 4D topological global defects on the brane embedded in 5D. The defects are induced by 5D scalar fields with a symmetry-breaking potential. Taking an Ansatz which separates the scalar field into the 4D and the extra-D part, we find that the static-hedgehog configuration is accomplished and the defects are formed only in the AdS{sub 4}/AdS{sub 5} background. In the extra dimension, the localization amplitude for the 4D defects is high where the warp factor is high.
From local perception to global perspective
NASA Astrophysics Data System (ADS)
Lehner, Flavio; Stocker, Thomas F.
2015-08-01
Recent sociological studies show that over short time periods the large day-to-day, month-to-month or year-to-year variations in weather at a specific location can influence and potentially bias our perception of climate change, a more long-term and global phenomenon. By weighting local temperature anomalies with the number of people that experience them and considering longer time periods, we illustrate that the share of the world population exposed to warmer-than-normal temperatures has steadily increased during the past few decades. Therefore, warming is experienced by an increasing number of individuals, counter to what might be simply inferred from global mean temperature anomalies. This behaviour is well-captured by current climate models, offering an opportunity to increase confidence in future projections of climate change irrespective of the personal local perception of weather.
Global optimization algorithm for heat exchanger networks
Quesada, I.; Grossmann, I.E. )
1993-03-01
This paper deals with the global optimization of heat exchanger networks with fixed topology. It is shown that if linear area cost functions are assumed, as well as arithmetic mean driving force temperature differences in networks with isothermal mixing, the corresponding nonlinear programming (NLP) optimization problem involves linear constraints and a sum of linear fractional functions in the objective which are nonconvex. A rigorous algorithm is proposed that is based on a convex NLP underestimator that involves linear and nonlinear estimators for fractional and bilinear terms which provide a tight lower bound to the global optimum. This NLP problem is used within a spatial branch and bound method for which branching rules are given. Basic properties of the proposed method are presented, and its application is illustrated with several example problems. The results show that the proposed method only requires few nodes in the branch and bound search.
Global optimization of bilinear engineering design models
Grossmann, I.; Quesada, I.
1994-12-31
Recently Quesada and Grossmann have proposed a global optimization algorithm for solving NLP problems involving linear fractional and bilinear terms. This model has been motivated by a number of applications in process design. The proposed method relies on the derivation of a convex NLP underestimator problem that is used within a spatial branch and bound search. This paper explores the use of alternative bounding approximations for constructing the underestimator problem. These are applied in the global optimization of problems arising in different engineering areas and for which different relaxations are proposed depending on the mathematical structure of the models. These relaxations include linear and nonlinear underestimator problems. Reformulations that generate additional estimator functions are also employed. Examples from process design, structural design, portfolio investment and layout design are presented.
Competing intelligent search agents in global optimization
Streltsov, S.; Vakili, P.; Muchnik, I.
1996-12-31
In this paper we present a new search methodology that we view as a development of intelligent agent approach to the analysis of complex system. The main idea is to consider search process as a competition mechanism between concurrent adaptive intelligent agents. Agents cooperate in achieving a common search goal and at the same time compete with each other for computational resources. We propose a statistical selection approach to resource allocation between agents that leads to simple and efficient on average index allocation policies. We use global optimization as the most general setting that encompasses many types of search problems, and show how proposed selection policies can be used to improve and combine various global optimization methods.
Thinking Globally, Acting Locally: Using the Local Environment to Explore Global Issues.
ERIC Educational Resources Information Center
Simmons, Deborah
1994-01-01
Asserts that water pollution is a global problem and presents statistics indicating how much of the world's water is threatened. Presents three elementary school classroom activities on water quality and local water resources. Includes a figure describing the work of the Global Rivers Environmental Education Network. (CFR)
Solving global optimization problems on GPU cluster
NASA Astrophysics Data System (ADS)
Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya
2016-06-01
The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.
Global optimization of actively morphing flapping wings
NASA Astrophysics Data System (ADS)
Ghommem, Mehdi; Hajj, Muhammad R.; Mook, Dean T.; Stanford, Bret K.; Beran, Philip S.; Snyder, Richard D.; Watson, Layne T.
2012-08-01
We consider active shape morphing to optimize the flight performance of flapping wings. To this end, we combine a three-dimensional version of the unsteady vortex lattice method (UVLM) with a deterministic global optimization algorithm to identify the optimal kinematics that maximize the propulsive efficiency under lift and thrust constraints. The UVLM applies only to incompressible, inviscid flows where the separation lines are known a priori. Two types of morphing parameterization are investigated here—trigonometric and spline-based. The results show that the spline-based morphing, which requires specification of more design variables, yields a significant improvement in terms of propulsive efficiency. Furthermore, we remark that the average value of the lift coefficient in the optimized kinematics remained equal to the value in the baseline case (without morphing). This indicates that morphing is most efficiently used to generate thrust and not to increase lift beyond the basic value obtained by flapping only. Besides, our study gives comparable optimal efficiencies to those obtained from previous studies based on gradient-based optimization, but completely different design points (especially for the spline-based morphing), which would indicate that the design space associated with the flapping kinematics is very complex.
Evolution of local and global monopole networks
Martins, C. J. A. P.; Achucarro, A.
2008-10-15
We present an extension of the velocity-dependent one-scale model for cosmic string evolution, which is suitable for describing the evolution of local and global monopole networks. We discuss the key dynamical features that need to be accounted for, in particular, the fact that the driving force is due to the other monopoles (rather than being due to local curvature as in the case of extended objects) and new forms of energy-loss terms due to monopole-antimonopole capture and annihilation. For the case of local monopoles we recover and generalize the results of Preskill, suggesting that the scaling law for the monopole correlation length is very sensitive to the annihilation rate. On the other hand, for global monopoles the long-range forces generically lead to linear scaling (just like in the case of local cosmic strings). In this case we also find good qualitative agreement between our results and the numerical simulations of Bennett and Rhie and Yamaguchi, although future high-resolution simulations will be needed for quantitative comparisons.
Efficient global optimization of a limited parameter antenna design
NASA Astrophysics Data System (ADS)
O'Donnell, Teresa H.; Southall, Hugh L.; Kaanta, Bryan
2008-04-01
Efficient Global Optimization (EGO) is a competent evolutionary algorithm suited for problems with limited design parameters and expensive cost functions. Many electromagnetics problems, including some antenna designs, fall into this class, as complex electromagnetics simulations can take substantial computational effort. This makes simple evolutionary algorithms such as genetic algorithms or particle swarms very time-consuming for design optimization, as many iterations of large populations are usually required. When physical experiments are necessary to perform tradeoffs or determine effects which may not be simulated, use of these algorithms is simply not practical at all due to the large numbers of measurements required. In this paper we first present a brief introduction to the EGO algorithm. We then present the parasitic superdirective two-element array design problem and results obtained by applying EGO to obtain the optimal element separation and operating frequency to maximize the array directivity. We compare these results to both the optimal solution and results obtained by performing a similar optimization using the Nelder-Mead downhill simplex method. Our results indicate that, unlike the Nelder-Mead algorithm, the EGO algorithm did not become stuck in local minima but rather found the area of the correct global minimum. However, our implementation did not always drill down into the precise minimum and the addition of a local search technique seems to be indicated.
p-MEMPSODE: Parallel and irregular memetic global optimization
NASA Astrophysics Data System (ADS)
Voglis, C.; Hadjidoukas, P. E.; Parsopoulos, K. E.; Papageorgiou, D. G.; Lagaris, I. E.; Vrahatis, M. N.
2015-12-01
A parallel memetic global optimization algorithm suitable for shared memory multicore systems is proposed and analyzed. The considered algorithm combines two well-known and widely used population-based stochastic algorithms, namely Particle Swarm Optimization and Differential Evolution, with two efficient and parallelizable local search procedures. The sequential version of the algorithm was first introduced as MEMPSODE (MEMetic Particle Swarm Optimization and Differential Evolution) and published in the CPC program library. We exploit the inherent and highly irregular parallelism of the memetic global optimization algorithm by means of a dynamic and multilevel approach based on the OpenMP tasking model. In our case, tasks correspond to local optimization procedures or simple function evaluations. Parallelization occurs at each iteration step of the memetic algorithm without affecting its searching efficiency. The proposed implementation, for the same random seed, reaches the same solution irrespectively of being executed sequentially or in parallel. Extensive experimental evaluation has been performed in order to illustrate the speedup achieved on a shared-memory multicore server.
Tabu search method with random moves for globally optimal design
NASA Astrophysics Data System (ADS)
Hu, Nanfang
1992-09-01
Optimum engineering design problems are usually formulated as non-convex optimization problems of continuous variables. Because of the absence of convexity structure, they can have multiple minima, and global optimization becomes difficult. Traditional methods of optimization, such as penalty methods, can often be trapped at a local optimum. The tabu search method with random moves to solve approximately these problems is introduced. Its reliability and efficiency are examined with the help of standard test functions. By the analysis of the implementations, it is seen that this method is easy to use, and no derivative information is necessary. It outperforms the random search method and composite genetic algorithm. In particular, it is applied to minimum weight design examples of a three-bar truss, coil springs, a Z-section and a channel section. For the channel section, the optimal design using the tabu search method with random moves saved 26.14 percent over the weight of the SUMT method.
Combinatorics of locally optimal RNA secondary structures.
Fusy, Eric; Clote, Peter
2014-01-01
It is a classical result of Stein and Waterman that the asymptotic number of RNA secondary structures is 1.104366∙n-3/2∙2.618034n. Motivated by the kinetics of RNA secondary structure formation, we are interested in determining the asymptotic number of secondary structures that are locally optimal, with respect to a particular energy model. In the Nussinov energy model, where each base pair contributes -1 towards the energy of the structure, locally optimal structures are exactly the saturated structures, for which we have previously shown that asymptotically, there are 1.07427∙n-3/2∙2.35467n many saturated structures for a sequence of length n. In this paper, we consider the base stacking energy model, a mild variant of the Nussinov model, where each stacked base pair contributes -1 toward the energy of the structure. Locally optimal structures with respect to the base stacking energy model are exactly those secondary structures, whose stems cannot be extended. Such structures were first considered by Evers and Giegerich, who described a dynamic programming algorithm to enumerate all locally optimal structures. In this paper, we apply methods from enumerative combinatorics to compute the asymptotic number of such structures. Additionally, we consider analogous combinatorial problems for secondary structures with annotated single-stranded, stacking nucleotides (dangles). PMID:23263300
A novel support vector machine with globality-locality preserving.
Ma, Cheng-Long; Yuan, Yu-Bo
2014-01-01
Support vector machine (SVM) is regarded as a powerful method for pattern classification. However, the solution of the primal optimal model of SVM is susceptible for class distribution and may result in a nonrobust solution. In order to overcome this shortcoming, an improved model, support vector machine with globality-locality preserving (GLPSVM), is proposed. It introduces globality-locality preserving into the standard SVM, which can preserve the manifold structure of the data space. We complete rich experiments on the UCI machine learning data sets. The results validate the effectiveness of the proposed model, especially on the Wine and Iris databases; the recognition rate is above 97% and outperforms all the algorithms that were developed from SVM. PMID:25045750
Potential Representation - Global vs. Local Trial Functions
NASA Astrophysics Data System (ADS)
Michel, Volker
2014-05-01
Many systems of trial functions are available for representing potential fields on the sphere or parts of the sphere. We distinguish global trial functions (such as spherical harmonics) from localized trial functions (such as spline basis functions, scaling functions, wavelets, and Slepian functions). All these systems have their own pros and cons. We discuss the advantages and disadvantages of several selected systems of trial functions and propose criteria for their applicability. Moreover, we present an algorithm which is able to combine different types of trial functions. This yields a sparser solution which combines the features of the different basis systems which are used.
NASA Technical Reports Server (NTRS)
Dong, Stanley B.
1989-01-01
An important consideration in the global local finite-element method (GLFEM) is the availability of global functions for the given problem. The role and mathematical requirements of these global functions in a GLFEM analysis of localized stress states in prismatic structures are discussed. A method is described for determining these global functions. Underlying this method are theorems due to Toupin and Knowles on strain energy decay rates, which are related to a quantitative expression of Saint-Venant's principle. It is mentioned that a mathematically complete set of global functions can be generated, so that any arbitrary interface condition between the finite element and global subregions can be represented. Convergence to the true behavior can be achieved with increasing global functions and finite-element degrees of freedom. Specific attention is devoted to mathematically two-dimensional and three-dimensional prismatic structures. Comments are offered on the GLFEM analysis of NASA flat panel with a discontinuous stiffener. Methods for determining global functions for other effects are also indicated, such as steady-state dynamics and bodies under initial stress.
Automated parameterization of intermolecular pair potentials using global optimization techniques
NASA Astrophysics Data System (ADS)
Krämer, Andreas; Hülsmann, Marco; Köddermann, Thorsten; Reith, Dirk
2014-12-01
In this work, different global optimization techniques are assessed for the automated development of molecular force fields, as used in molecular dynamics and Monte Carlo simulations. The quest of finding suitable force field parameters is treated as a mathematical minimization problem. Intricate problem characteristics such as extremely costly and even abortive simulations, noisy simulation results, and especially multiple local minima naturally lead to the use of sophisticated global optimization algorithms. Five diverse algorithms (pure random search, recursive random search, CMA-ES, differential evolution, and taboo search) are compared to our own tailor-made solution named CoSMoS. CoSMoS is an automated workflow. It models the parameters' influence on the simulation observables to detect a globally optimal set of parameters. It is shown how and why this approach is superior to other algorithms. Applied to suitable test functions and simulations for phosgene, CoSMoS effectively reduces the number of required simulations and real time for the optimization task.
Local and global superconductivity in bismuth
NASA Astrophysics Data System (ADS)
Baring, Luis A.; da Silva, Robson R.; Kopelevich, Yakov
2011-10-01
We performed magnetization M(H, T) and magnetoresistance R(T, H) measurements on powdered (grain size ˜149 μm) as well as highly oriented rhombohedral (A7) bismuth (Bi) samples consisting of single crystalline blocks of size ˜1 × 1 mm in the plane perpendicular to the trigonal c axis. The obtained results revealed the occurrence of (1) local superconductivity in powdered samples with Tc(0) = (8.75 ± 0.05) K, and (2) global superconductivity at Tc(0) = (7.3 ± 0.1) K in polycrystalline Bi triggered by low-resistance ohmic contacts with silver (Ag) normal metal. The results provide evidence that the superconductivity in Bi is localized in a tiny volume fraction, probably at intergrain or Ag/Bi interfaces. On the other hand, the occurrence of global superconductivity observed for polycrystalline Bi can be accounted for by enhancement of the superconducting order parameter phase stiffness induced by the normal metal contacts, the scenario proposed in the context of "pseudogap regime" in cuprates [E. Berg et al., Phys. Rev. B 78, 094509 (2008)].
Global-local methodologies and their application to nonlinear analysis
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1989-01-01
An assessment is made of the potential of different global-local analysis strategies for predicting the nonlinear and postbuckling responses of structures. Two postbuckling problems of composite panels are used as benchmarks and the application of different global-local methodologies to these benchmarks is outlined. The key elements of each of the global-local strategies are discussed and future research areas needed to realize the full potential of global-local methodologies are identified.
Anderson localization makes adiabatic quantum optimization fail
Altshuler, Boris; Krovi, Hari; Roland, Jérémie
2010-01-01
Understanding NP-complete problems is a central topic in computer science (NP stands for nondeterministic polynomial time). This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer’s Hamiltonian. We show that the statistics of the gaps can be analyzed in a novel way, borrowed from the study of quantum disordered systems in statistical mechanics. It turns out that due to a phenomenon similar to Anderson localization, exponentially small gaps appear close to the end of the adiabatic algorithm for large random instances of NP-complete problems. This implies that unfortunately, adiabatic quantum optimization fails: The system gets trapped in one of the numerous local minima. PMID:20616043
Multi-fidelity global design optimization including parallelization potential
NASA Astrophysics Data System (ADS)
Cox, Steven Edward
The DIRECT global optimization algorithm is a relatively new space partitioning algorithm designed to determine the globally optimal design within a designated design space. This dissertation examines the applicability of the DIRECT algorithm to two classes of design problems: unimodal functions where small amplitude, high frequency fluctuations in the objective function make optimization difficult; and multimodal functions where multiple local optima are formed by the underlying physics of the problem (as opposed to minor fluctuations in the analysis code). DIRECT is compared with two other multistart local optimization techniques on two polynomial test problems and one engineering conceptual design problem. Three modifications to the DIRECT algorithm are proposed to increase the effectiveness of the algorithm. The DIRECT-BP algorithm is presented which alters the way DIRECT searches the neighborhood of the current best point as optimization progresses. The algorithm reprioritizes which points to analyze at each iteration. This is to encourage analysis of points that surround the best point but that are farther away than the points selected by the DIRECT algorithm. This increases the robustness of the DIRECT search and provides more information on the characteristics of the neighborhood of the point selected as the global optimum. A multifidelity version of the DIRECT algorithm is proposed to reduce the cost of optimization using DIRECT. By augmenting expensive high-fidelity analysis with cheap low-fidelity analysis, the optimization can be performed with fewer high-fidelity analyses. Two correction schemes are examined using high- and low-fidelity results at one point to correct the low-fidelity result at a nearby point. This corrected value is then used in place of a high-fidelity analysis by the DIRECT algorithm. In this way the number of high-fidelity analyses required is reduced and the optimization became less expensive. Finally the DIRECT algorithm is
Global versus local quantum squeezing in composite systems
Yang Yang; Wang Xiaoguang; Liu Wanfang; Sun Zhe
2009-05-15
We investigate relations between the global squeezing of composite systems and the local squeezing of subsystems. For the pure symmetric product states, the global squeezing parameter is found to be equal to the local one for both spin and bosonic systems. Hence, a pure symmetric state is entangled if the global parameter is not equal to the local one. Two origins of the global squeezing are identified: one is from the local squeezing and the other from quantum correlations. For both spin and bosonic systems, we find that the entanglement can lead to a smaller global squeezing parameter; namely, the global squeezing is enhanced.
Optimal Jammer Placement in Wireless Localization Systems
NASA Astrophysics Data System (ADS)
Gezici, Sinan; Bayram, Suat; Kurt, Mehmet Necip; Gholami, Mohammad Reza
2016-09-01
In this study, the optimal jammer placement problem is proposed and analyzed for wireless localization systems. In particular, the optimal location of a jammer node is obtained by maximizing the minimum of the Cramer-Rao lower bounds (CRLBs) for a number of target nodes under location related constraints for the jammer node. For scenarios with more than two target nodes, theoretical results are derived to specify conditions under which the jammer node is located as close to a certain target node as possible, or the optimal location of the jammer node is determined by two of the target nodes. Also, explicit expressions are provided for the optimal location of the jammer node in the presence of two target nodes. In addition, in the absence of distance constraints for the jammer node, it is proved, for scenarios with more than two target nodes, that the optimal jammer location lies on the convex hull formed by the locations of the target nodes and is determined by two or three of the target nodes, which have equalized CRLBs. Numerical examples are presented to provide illustrations of the theoretical results in different scenarios.
Optimizing low latency LIGO-Virgo localization
NASA Astrophysics Data System (ADS)
Chen, Hsin-Yu; Holz, Daniel
2015-04-01
Fast and effective localization of gravitational wave (GW) events could play a crucial role in identifying possible electromagnetic counterparts, and thereby help usher in an era of GW multi-messenger astronomy. We discuss an algorithm for accurate and very low latency (<< 1 second) localization of GW sources using only the time of arrival and signal-to-noise ratio at each detector. The algorithm is independent of distances, masses, and waveform templates of the sources to leading order, and applies to all discrete sources detected by ground-based detector networks. For the two detector configuration (LIGO Hanford+Livingston) expected in late 2015 we find a median 50% localization of 150 deg2 for binary neutron stars (for SNR threshold of 12), consistent with previous findings. We explore the improvement in localization resulting from high SNR events, finding that the loudest out of the first four events reduces the median sky localization area by a factor of 1.8. We also discuss some strategies to optimize electromagnetic follow-up of GW events. We specifically explore the case of multi-messenger joint detections coming from independent (and possibly highly uncertain) localizations, such as for short gamma-ray bursts observed by Fermi GBM and neutrinos captured by IceCube.
On computational schemes for global-local stress analysis
NASA Technical Reports Server (NTRS)
Reddy, J. N.
1989-01-01
An overview is given of global-local stress analysis methods and associated difficulties and recommendations for future research. The phrase global-local analysis is understood to be an analysis in which some parts of the domain or structure are identified, for reasons of accurate determination of stresses and displacements or for more refined analysis than in the remaining parts. The parts of refined analysis are termed local and the remaining parts are called global. Typically local regions are small in size compared to global regions, while the computational effort can be larger in local regions than in global regions.
Globally optimal surface mapping for surfaces with arbitrary topology.
Li, Xin; Bao, Yunfan; Guo, Xiaohu; Jin, Miao; Gu, Xianfeng; Qin, Hong
2008-01-01
Computing smooth and optimal one-to-one maps between surfaces of same topology is a fundamental problem in computer graphics and such a method provides us a ubiquitous tool for geometric modeling and data visualization. Its vast variety of applications includes shape registration/matching, shape blending, material/data transfer, data fusion, information reuse, etc. The mapping quality is typically measured in terms of angular distortions among different shapes. This paper proposes and develops a novel quasi-conformal surface mapping framework to globally minimize the stretching energy inevitably introduced between two different shapes. The existing state-of-the-art inter-surface mapping techniques only afford local optimization either on surface patches via boundary cutting or on the simplified base domain, lacking rigorous mathematical foundation and analysis. We design and articulate an automatic variational algorithm that can reach the global distortion minimum for surface mapping between shapes of arbitrary topology, and our algorithm is sorely founded upon the intrinsic geometry structure of surfaces. To our best knowledge, this is the first attempt towards numerically computing globally optimal maps. Consequently, our mapping framework offers a powerful computational tool for graphics and visualization tasks such as data and texture transfer, shape morphing, and shape matching. PMID:18467756
Global network influences on local functional connectivity
Snyder, Adam C.; Morais, Michael J.; Willis, Cory M.; Smith, Matthew A.
2015-01-01
A central neuroscientific pursuit is understanding neuronal interactions that support computations underlying cognition and behavior. Although neurons interact across disparate scales – from cortical columns to whole-brain networks – research has been restricted to one scale at a time. We measured local interactions through multi-neuronal recordings while accessing global networks using scalp EEG in rhesus macaques. We measured spike count correlation, an index of functional connectivity with computational relevance, and EEG oscillations, which have been linked to various cognitive functions. We found a surprising non-monotonic relationship between EEG oscillation amplitude and spike count correlation, contrary to the intuitive expectation of a direct relationship. With a widely-used network model we replicated these findings by incorporating a private signal targeting inhibitory neurons, a common mechanism proposed for gain modulation. Finally, we report that spike count correlation explains nonlinearities in the relationship between EEG oscillations and response time in a spatial selective attention task. PMID:25799040
Optimal design of auxetic hexachiral metamaterials with local resonators
NASA Astrophysics Data System (ADS)
Bacigalupo, Andrea; Lepidi, Marco; Gnecco, Giorgio; Gambarotta, Luigi
2016-05-01
A parametric beam lattice model is formulated to analyze the propagation properties of elastic in-plane waves in an auxetic material based on a hexachiral topology of the periodic cell, equipped with inertial local resonators. The Floquet–Bloch boundary conditions are imposed on a low-order linear model, suitably reduced to the only dynamically active degrees-of-freedom through a quasistatic stiffness condensation. Since the resonators can be designed to open and shift band gaps, an optimal design, focused on the largest possible gap in the low-frequency range, is achieved by solving a maximization problem in the bounded space of the significant geometrical and mechanical parameters. A local optimized solution, for the lowest pair of consecutive dispersion curves, is found by employing the globally convergent version of the method of moving asymptotes, combined with Monte Carlo and quasi-Monte Carlo multi-start techniques.
LDRD Final Report: Global Optimization for Engineering Science Problems
HART,WILLIAM E.
1999-12-01
For a wide variety of scientific and engineering problems the desired solution corresponds to an optimal set of objective function parameters, where the objective function measures a solution's quality. The main goal of the LDRD ''Global Optimization for Engineering Science Problems'' was the development of new robust and efficient optimization algorithms that can be used to find globally optimal solutions to complex optimization problems. This SAND report summarizes the technical accomplishments of this LDRD, discusses lessons learned and describes open research issues.
Local empathy provides global minimization of congestion in communication networks
NASA Astrophysics Data System (ADS)
Meloni, Sandro; Gómez-Gardeñes, Jesús
2010-11-01
We present a mechanism to avoid congestion in complex networks based on a local knowledge of traffic conditions and the ability of routers to self-coordinate their dynamical behavior. In particular, routers make use of local information about traffic conditions to either reject or accept information packets from their neighbors. We show that when nodes are only aware of their own congestion state they self-organize into a hierarchical configuration that delays remarkably the onset of congestion although leading to a sharp first-order-like congestion transition. We also consider the case when nodes are aware of the congestion state of their neighbors. In this case, we show that empathy between nodes is strongly beneficial to the overall performance of the system and it is possible to achieve larger values for the critical load together with a smooth, second-order-like, transition. Finally, we show how local empathy minimize the impact of congestion as much as global minimization. Therefore, here we present an outstanding example of how local dynamical rules can optimize the system’s functioning up to the levels reached using global knowledge.
Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.; Hinckley, David
2016-01-01
Low-thrust interplanetary space missions are highly complex and there can be many locally optimal solutions. While several techniques exist to search for globally optimal solutions to low-thrust trajectory design problems, they are typically limited to unconstrained trajectories. The operational design community in turn has largely avoided using such techniques and has primarily focused on accurate constrained local optimization combined with grid searches and intuitive design processes at the expense of efficient exploration of the global design space. This work is an attempt to bridge the gap between the global optimization and operational design communities by presenting a mathematical framework for global optimization of low-thrust trajectories subject to complex constraints including the targeting of planetary landing sites, a solar range constraint to simplify the thermal design of the spacecraft, and a real-world multi-thruster electric propulsion system that must switch thrusters on and off as available power changes over the course of a mission.
Global Optimization Techniques for Fluid Flow and Propulsion Devices
NASA Technical Reports Server (NTRS)
Shyy, Wei; Papila, Nilay; Vaidyanathan, Raj; Tucker, Kevin; Griffin, Lisa; Dorney, Dan; Huber, Frank; Tran, Ken; Turner, James E. (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of global optimization techniques for fluid flow and propulsion devices. Details are given on the need, characteristics, and techniques for global optimization. The techniques include response surface methodology (RSM), neural networks and back-propagation neural networks, design of experiments, face centered composite design (FCCD), orthogonal arrays, outlier analysis, and design optimization.
GenMin: An enhanced genetic algorithm for global optimization
NASA Astrophysics Data System (ADS)
Tsoulos, Ioannis G.; Lagaris, I. E.
2008-06-01
A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional, multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The accompanying software accepts objective functions coded either in Fortran 77 or in C++. Program summaryProgram title: GenMin Catalogue identifier: AEAR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 810 No. of bytes in distributed program, including test data, etc.: 436 613 Distribution format: tar.gz Programming language: GNU-C++, GNU-C, GNU Fortran 77 Computer: The tool is designed to be portable in all systems running the GNU C++ compiler Operating system: The tool is designed to be portable in all systems running the GNU C++ compiler RAM: 200 KB Word size: 32 bits Classification: 4.9 Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Solution method: Grammatical evolution and a stopping rule. Running time: Depending on the
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2009-01-01
.We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments
Daily, Jeffrey A.
2016-02-10
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less
Multi-organ localization with cascaded global-to-local regression and shape prior.
Gauriau, Romane; Cuingnet, Rémi; Lesage, David; Bloch, Isabelle
2015-07-01
We propose a method for fast, accurate and robust localization of several organs in medical images. We generalize the global-to-local cascade of regression random forest to multiple organs. A first regressor encodes the global relationships between organs, learning simultaneously all organs parameters. Then subsequent regressors refine the localization of each organ locally and independently for improved accuracy. By combining the regression vote distribution and the organ shape prior (through probabilistic atlas representation) we compute confidence maps that are organ-dedicated probability maps. They are used within the cascade itself, to better select the test voxels for the second set of regressors, and to provide richer information than the classical bounding boxes result thanks to the shape prior. We propose an extensive study of the different learning and testing parameters, showing both their robustness to reasonable perturbations and their influence on the final algorithm accuracy. Finally we demonstrate the robustness and accuracy of our approach by evaluating the localization of six abdominal organs (liver, two kidneys, spleen, gallbladder and stomach) on a large and diverse database of 130 CT volumes. Moreover, the comparison of our results with two existing methods shows significant improvements brought by our approach and our deep understanding and optimization of the parameters. PMID:25974326
NASA Astrophysics Data System (ADS)
Paasche, H.; Tronicke, J.
2012-04-01
In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto
A unified approach to global and local beam position feedback
Chung, Y.
1994-08-01
The Advanced Photon Source (APS) will implement both global and local beam position feedback systems to stabilize the particle and X-ray beams for the storage ring. The global feedback system uses 40 BPMs and 40 correctors per plane. Singular value decomposition (SVD) of the response matrix is used for closed orbit correction. The local feedback system uses two X-ray BPMS, two rf BPMS, and the four-magnet local bump to control the angle and displacement of the X-ray beam from a bending magnet or an insertion device. Both the global and local feedback systems are based on digital signal processing (DSP) running at 4-kHz sampling rate with a proportional, integral, and derivative (PID) control algorithm. In this paper, we will discuss resolution of the conflict among multiple local feedback systems due to local bump closure error and decoupling of the global and local feedback systems to maximize correction efficiency. In this scheme, the global feedback system absorbs the local bump closure error and the local feedback systems compensate for the effect of global feedback on the local beamlines. The required data sharing between the global and local feedback systems is done through the fiber-optically networked reflective memory.
Local Optimization Strategies in Urban Vehicular Mobility.
Mastroianni, Pierpaolo; Monechi, Bernardo; Liberto, Carlo; Valenti, Gaetano; Servedio, Vito D P; Loreto, Vittorio
2015-01-01
The comprehension of vehicular traffic in urban environments is crucial to achieve a good management of the complex processes arising from people collective motion. Even allowing for the great complexity of human beings, human behavior turns out to be subject to strong constraints--physical, environmental, social, economic--that induce the emergence of common patterns. The observation and understanding of those patterns is key to setup effective strategies to optimize the quality of life in cities while not frustrating the natural need for mobility. In this paper we focus on vehicular mobility with the aim to reveal the underlying patterns and uncover the human strategies determining them. To this end we analyze a large dataset of GPS vehicles tracks collected in the Rome (Italy) district during a month. We demonstrate the existence of a local optimization of travel times that vehicle drivers perform while choosing their journey. This finding is mirrored by two additional important facts, i.e., the observation that the average vehicle velocity increases by increasing the travel length and the emergence of a universal scaling law for the distribution of travel times at fixed traveled length. A simple modeling scheme confirms this scenario opening the way to further predictions. PMID:26656106
Local Optimization Strategies in Urban Vehicular Mobility
Mastroianni, Pierpaolo; Monechi, Bernardo; Liberto, Carlo; Valenti, Gaetano; Servedio, Vito D. P.; Loreto, Vittorio
2015-01-01
The comprehension of vehicular traffic in urban environments is crucial to achieve a good management of the complex processes arising from people collective motion. Even allowing for the great complexity of human beings, human behavior turns out to be subject to strong constraints—physical, environmental, social, economic—that induce the emergence of common patterns. The observation and understanding of those patterns is key to setup effective strategies to optimize the quality of life in cities while not frustrating the natural need for mobility. In this paper we focus on vehicular mobility with the aim to reveal the underlying patterns and uncover the human strategies determining them. To this end we analyze a large dataset of GPS vehicles tracks collected in the Rome (Italy) district during a month. We demonstrate the existence of a local optimization of travel times that vehicle drivers perform while choosing their journey. This finding is mirrored by two additional important facts, i.e., the observation that the average vehicle velocity increases by increasing the travel length and the emergence of a universal scaling law for the distribution of travel times at fixed traveled length. A simple modeling scheme confirms this scenario opening the way to further predictions. PMID:26656106
Fusing global and local features for face verification
NASA Astrophysics Data System (ADS)
Zhou, Ji; Xiao, Biahua; Wang, Chunheng; Cai, Xinyuan; Chen, Xue
2013-07-01
In the literature of neurophysiology and computer vision, global and local features have both been demonstrated to be complementary for robust face recognition and verification. In this paper, we propose an approach for face verification by fusing global and local discriminative features. In this method, global features are extracted from whole face images by Fourier transform and local features are extracted from ten different component patches by a new image representation method named Histogram of Local Phase Quantization Ordinal Measures (HOLPQOM). Experimental results on the Labeled Face in Wild (LFW) benchmark show the robustness of the proposed local descriptor, compared with other often-used descriptors.
Think Globally, Act Locally (Focus on Teaching).
ERIC Educational Resources Information Center
Vesper, Joan F.
1994-01-01
Describes a project, carried out jointly between a business communication class and a local chamber of commerce, that brings students into partnership with international merchants in the local community. (SR)
Optimizing a global alignment of protein interaction networks
Chindelevitch, Leonid; Ma, Cheng-Yu; Liao, Chung-Shou; Berger, Bonnie
2013-01-01
Motivation: The global alignment of protein interaction networks is a widely studied problem. It is an important first step in understanding the relationship between the proteins in different species and identifying functional orthologs. Furthermore, it can provide useful insights into the species’ evolution. Results: We propose a novel algorithm, PISwap, for optimizing global pairwise alignments of protein interaction networks, based on a local optimization heuristic that has previously demonstrated its effectiveness for a variety of other intractable problems. PISwap can begin with different types of network alignment approaches and then iteratively adjust the initial alignments by incorporating network topology information, trading it off for sequence information. In practice, our algorithm efficiently refines other well-studied alignment techniques with almost no additional time cost. We also show the robustness of the algorithm to noise in protein interaction data. In addition, the flexible nature of this algorithm makes it suitable for different applications of network alignment. This algorithm can yield interesting insights into the evolutionary dynamics of related species. Availability: Our software is freely available for non-commercial purposes from our Web site, http://piswap.csail.mit.edu/. Contact: bab@csail.mit.edu or csliao@ie.nthu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24048352
New Algorithms for Global Optimization and Reaction Path Determination.
Weber, D; Bellinger, D; Engels, B
2016-01-01
We present new schemes to improve the convergence of an important global optimization problem and to determine reaction pathways (RPs) between identified minima. Those methods have been implemented into the CAST program (Conformational Analysis and Search Tool). The first part of this chapter shows how to improve convergence of the Monte Carlo with minimization (MCM, also known as Basin Hopping) method when applied to optimize water clusters or aqueous solvation shells using a simple model. Since the random movement on the potential energy surface (PES) is an integral part of MCM, we propose to employ a hydrogen bonding-based algorithm for its improvement. We show comparisons of the results obtained for random dihedral and for the proposed random, rigid-body water molecule movement, giving evidence that a specific adaption of the distortion process greatly improves the convergence of the method. The second part is about the determination of RPs in clusters between conformational arrangements and for reactions. Besides standard approaches like the nudged elastic band method, we want to focus on a new algorithm developed especially for global reaction path search called Pathopt. We started with argon clusters, a typical benchmark system, which possess a flat PES, then stepwise increase the magnitude and directionality of interactions. Therefore, we calculated pathways for a water cluster and characterize them by frequency calculations. Within our calculations, we were able to show that beneath local pathways also additional pathways can be found which possess additional features. PMID:27497166
Global/local methods research using the CSM testbed
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. Hayden, Jr.; Thompson, Danniella M.
1990-01-01
Research activities in global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.
Global smoothing and continuation for large-scale molecular optimization
More, J.J.; Wu, Zhijun
1995-10-01
We discuss the formulation of optimization problems that arise in the study of distance geometry, ionic systems, and molecular clusters. We show that continuation techniques based on global smoothing are applicable to these molecular optimization problems, and we outline the issues that must be resolved in the solution of large-scale molecular optimization problems.
Not National but Local and Global
ERIC Educational Resources Information Center
Rosenberg, David
2008-01-01
The author describes the theory and practice of a project that took place in Summer 2007 in four classes within three inner city primary schools, that brought together History, Geography and Global citizenship within a progressive educational framework.
Global/local stress analysis of composite panels
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.; Knight, Norman F., Jr.
1989-01-01
A method for performing a global/local stress analysis is described, and its capabilities are demonstrated. The method employs spline interpolation functions which satisfy the linear plate bending equation to determine displacements and rotations from a global model which are used as boundary conditions for the local model. Then, the local model is analyzed independent of the global model of the structure. This approach can be used to determine local, detailed stress states for specific structural regions using independent, refined local models which exploit information from less-refined global models. The method presented is not restricted to having a priori knowledge of the location of the regions requiring local detailed stress analysis. This approach also reduces the computational effort necessary to obtain the detailed stress state. Criteria for applying the method are developed. The effectiveness of the method is demonstrated using a classical stress concentration problem and a graphite-epoxy blade-stiffened panel with a discontinuous stiffener.
Gradient gravitational search: An efficient metaheuristic algorithm for global optimization.
Dash, Tirtharaj; Sahu, Prabhat K
2015-05-30
The adaptation of novel techniques developed in the field of computational chemistry to solve the concerned problems for large and flexible molecules is taking the center stage with regard to efficient algorithm, computational cost and accuracy. In this article, the gradient-based gravitational search (GGS) algorithm, using analytical gradients for a fast minimization to the next local minimum has been reported. Its efficiency as metaheuristic approach has also been compared with Gradient Tabu Search and others like: Gravitational Search, Cuckoo Search, and Back Tracking Search algorithms for global optimization. Moreover, the GGS approach has also been applied to computational chemistry problems for finding the minimal value potential energy of two-dimensional and three-dimensional off-lattice protein models. The simulation results reveal the relative stability and physical accuracy of protein models with efficient computational cost. PMID:25779670
Parallel global optimization with the particle swarm algorithm
Schutte, J. F.; Reinbolt, J. A.; Fregly, B. J.; Haftka, R. T.; George, A. D.
2007-01-01
SUMMARY Present day engineering optimization problems often impose large computational demands, resulting in long solution times even on a modern high-end processor. To obtain enhanced computational throughput and global search capability, we detail the coarse-grained parallelization of an increasingly popular global search method, the particle swarm optimization (PSO) algorithm. Parallel PSO performance was evaluated using two categories of optimization problems possessing multiple local minima—large-scale analytical test problems with computationally cheap function evaluations and medium-scale biomechanical system identification problems with computationally expensive function evaluations. For load-balanced analytical test problems formulated using 128 design variables, speedup was close to ideal and parallel efficiency above 95% for up to 32 nodes on a Beowulf cluster. In contrast, for load-imbalanced biomechanical system identification problems with 12 design variables, speedup plateaued and parallel efficiency decreased almost linearly with increasing number of nodes. The primary factor affecting parallel performance was the synchronization requirement of the parallel algorithm, which dictated that each iteration must wait for completion of the slowest fitness evaluation. When the analytical problems were solved using a fixed number of swarm iterations, a single population of 128 particles produced a better convergence rate than did multiple independent runs performed using sub-populations (8 runs with 16 particles, 4 runs with 32 particles, or 2 runs with 64 particles). These results suggest that (1) parallel PSO exhibits excellent parallel performance under load-balanced conditions, (2) an asynchronous implementation would be valuable for real-life problems subject to load imbalance, and (3) larger population sizes should be considered when multiple processors are available. PMID:17891226
Academic Inbreeding: Local Challenge, Global Problem
ERIC Educational Resources Information Center
Altbach, Philip G.; Yudkevich, Maria; Rumbley, Laura E.
2015-01-01
"Academic inbreeding"--involving the appointment of faculty members who graduated from the institution employing them--is considered a small and peripheral aspect of the academic profession but is quite widespread globally. This paper analyzes the nature of inbreeding and its impact on universities. Data from eight countries where…
Think Globally, Act Locally: A Library Perspective
ERIC Educational Resources Information Center
Clausen, Beth E.
2015-01-01
In this article, the author presents observations learned while "on loan" from Northwestern University (NU), Evanston, Illinois, to the campus library in Doha, Qatar, (NU-Q) Middle East. The author's ongoing experience is helping her see how important global exposure can be to a library professional's attaining a deeper and wider level…
Global Optimization and Broadband Analysis Software for Interstellar Chemistry (GOBASIC)
NASA Astrophysics Data System (ADS)
Rad, Mary L.; Zou, Luyao; Sanders, James L.; Widicus Weaver, Susanna L.
2016-01-01
Context. Broadband receivers that operate at millimeter and submillimeter frequencies necessitate the development of new tools for spectral analysis and interpretation. Simultaneous, global, multimolecule, multicomponent analysis is necessary to accurately determine the physical and chemical conditions from line-rich spectra that arise from sources like hot cores. Aims: We aim to provide a robust and efficient automated analysis program to meet the challenges presented with the large spectral datasets produced by radio telescopes. Methods: We have written a program in the MATLAB numerical computing environment for simultaneous global analysis of broadband line surveys. The Global Optimization and Broadband Analysis Software for Interstellar Chemistry (GOBASIC) program uses the simplifying assumption of local thermodynamic equilibrium (LTE) for spectral analysis to determine molecular column density, temperature, and velocity information. Results: GOBASIC achieves simultaneous, multimolecule, multicomponent fitting for broadband spectra. The number of components that can be analyzed at once is only limited by the available computational resources. Analysis of subsequent sets of molecules or components is performed iteratively while taking the previous fits into account. All features of a given molecule across the entire window are fitted at once, which is preferable to the rotation diagram approach because global analysis is less sensitive to blended features and noise features in the spectra. In addition, the fitting method used in GOBASIC is insensitive to the initial conditions chosen, the fitting is automated, and fitting can be performed in a parallel computing environment. These features make GOBASIC a valuable improvement over previously available LTE analysis methods. A copy of the sofware is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A23
Global-local finite element analysis of composite structures
Deibler, J.E.
1992-06-01
The development of layered finite elements has facilitated analysis of laminated composite structures. However, the analysis of a structure containing both isotropic and composite materials remains a difficult problem. A methodology has been developed to conduct a ``global-local`` finite element analysis. A ``global`` analysis of the entire structure is conducted at the appropriate loads with the composite portions replaced with an orthotropic material of equivalent materials properties. A ``local`` layered composite analysis is then conducted on the region of interest. The displacement results from the ``global`` analysis are used as loads to the ``local`` analysis. the laminate stresses and strains can then be examined and failure criteria evaluated.
Global-local finite element analysis of composite structures
Deibler, J.E.
1992-06-01
The development of layered finite elements has facilitated analysis of laminated composite structures. However, the analysis of a structure containing both isotropic and composite materials remains a difficult problem. A methodology has been developed to conduct a global-local'' finite element analysis. A global'' analysis of the entire structure is conducted at the appropriate loads with the composite portions replaced with an orthotropic material of equivalent materials properties. A local'' layered composite analysis is then conducted on the region of interest. The displacement results from the global'' analysis are used as loads to the local'' analysis. the laminate stresses and strains can then be examined and failure criteria evaluated.
MEASUREMENT AND OPTIMIZATION OF LOCAL COUPLING FROM RHIC BPM DATA.
CALAGA, R.; ABEYTUNGE, S.; BAI, M.; FISCHER, W.; ET AL.
2005-05-16
Global coupling in RHIC is routinely corrected by using three skew quadrupole families to minimize the tune split ({Delta}Q{sub min}). In this paper we propose to re-optimize transverse coupling by minimizing the resonance driving terms (RDT's) and the coupling matrix (|{bar C}|/{gamma}{sup 2}) in two steps: (1) Identify locations with coupling sources by inspection of the driving terms and the C-matrix around the ring and minimize the discontinuities and (2) Find the best configuration of the three skew quadrupole families to minimize both {Delta}Q{sub min} and RDTs (f{sub 1001}). The measurements of f{sub 1001} and |{bar C}|/{gamma}{sup 2} at injection and top energy to identify local coupling sources are presented.
Governing the global commons with local institutions.
Bodnar, Todd; Salathé, Marcel
2012-01-01
Most problems faced by modern human society have two characteristics in common--they are tragedy-of-the-commons type of problems, and they are global problems. Tragedy-of-the-commons type of problems are those where a commonly shared resource is overexploited by free riders at the expense of everyone sharing the resource. The exploitation of global resources such as clean air and water, political stability and peace, etc. underlies many of the most pressing human problems. Punishment of free riding behavior is one of the most frequently used strategies to combat the problem, but the spatial reach of sanctioning institutions is often more limited than the spatial effects of overexploitation. Here, we analyze a general game theoretical model to assess under what circumstances sanctioning institutions with limited reach can maintain the larger commons. We find that the effect of the spatial reach has a strong effect on whether and how the commons can be maintained, and that the transitions between those outcomes are characterized by phase transitions. The latter indicates that a small change in the reach of sanctioning systems can profoundly change the way the global commons can be managed. PMID:22509269
Contextualizing the global relevance of local land change observations
NASA Astrophysics Data System (ADS)
Magliocca, N. R.; Ellis, E. C.; Oates, T.; Schmill, M.
2014-02-01
To understand global changes in the Earth system, scientists must generalize globally from observations made locally and regionally. In land change science (LCS), local field-based observations are costly and time consuming, and generally obtained by researchers working at disparate local and regional case-study sites chosen for different reasons. As a result, global synthesis efforts in LCS tend to be based on non-statistical inferences subject to geographic biases stemming from data limitations and fragmentation. Thus, a fundamental challenge is the production of generalized knowledge that links evidence of the causes and consequences of local land change to global patterns and vice versa. The GLOBE system was designed to meet this challenge. GLOBE aims to transform global change science by enabling new scientific workflows based on statistically robust, globally relevant integration of local and regional observations using an online social-computational and geovisualization system. Consistent with the goals of Digital Earth, GLOBE has the capability to assess the global relevance of local case-study findings within the context of over 50 global biophysical, land-use, climate, and socio-economic datasets. We demonstrate the implementation of one such assessment - a representativeness analysis - with a recently published meta-study of changes in swidden agriculture in tropical forests. The analysis provides a standardized indicator to judge the global representativeness of the trends reported in the meta-study, and a geovisualization is presented that highlights areas for which sampling efforts can be reduced and those in need of further study. GLOBE will enable researchers and institutions to rapidly share, compare, and synthesize local and regional studies within the global context, as well as contributing to the larger goal of creating a Digital Earth.
Global/local methods for probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.
1993-01-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Optimizing global liver function in radiation therapy treatment planning
NASA Astrophysics Data System (ADS)
Wu, Victor W.; Epelman, Marina A.; Wang, Hesheng; Romeijn, H. Edwin; Feng, Mary; Cao, Yue; Ten Haken, Randall K.; Matuszak, Martha M.
2016-09-01
Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver function (e.g. due to degree of cirrhosis and/or prior treatment) and radiosensitivity, leading to high variability in potential liver toxicity with similar doses. This work investigates three treatment planning optimization models that minimize risk of toxicity: two consider both voxel-based pre-treatment liver function and local-function-based radiosensitivity with dose; one considers only dose. Each model optimizes different objective functions (varying in complexity of capturing the influence of dose on liver function) subject to the same dose constraints and are tested on 2D synthesized and 3D clinical cases. The normal-liver-based objective functions are the linearized equivalent uniform dose (\\ell \\text{EUD} ) (conventional ‘\\ell \\text{EUD} model’), the so-called perfusion-weighted \\ell \\text{EUD} (\\text{fEUD} ) (proposed ‘fEUD model’), and post-treatment global liver function (GLF) (proposed ‘GLF model’), predicted by a new liver-perfusion-based dose-response model. The resulting \\ell \\text{EUD} , fEUD, and GLF plans delivering the same target \\ell \\text{EUD} are compared with respect to their post-treatment function and various dose-based metrics. Voxel-based portal venous liver perfusion, used as a measure of local function, is computed using DCE-MRI. In cases used in our experiments, the GLF plan preserves up to 4.6 % ≤ft(7.5 % \\right) more liver function than the fEUD (\\ell \\text{EUD} ) plan does in 2D cases, and up to 4.5 % ≤ft(5.6 % \\right) in 3D cases. The GLF and fEUD plans worsen in \\ell \\text{EUD} of functional liver on average by 1.0 Gy and 0.5 Gy in 2D and 3D cases, respectively. Liver perfusion information can be used during treatment planning to minimize the risk of toxicity by improving expected GLF; the degree of benefit varies with perfusion pattern. Although fEUD model optimization is computationally inexpensive and
Optimizing global liver function in radiation therapy treatment planning.
Wu, Victor W; Epelman, Marina A; Wang, Hesheng; Edwin Romeijn, H; Feng, Mary; Cao, Yue; Ten Haken, Randall K; Matuszak, Martha M
2016-09-01
Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver function (e.g. due to degree of cirrhosis and/or prior treatment) and radiosensitivity, leading to high variability in potential liver toxicity with similar doses. This work investigates three treatment planning optimization models that minimize risk of toxicity: two consider both voxel-based pre-treatment liver function and local-function-based radiosensitivity with dose; one considers only dose. Each model optimizes different objective functions (varying in complexity of capturing the influence of dose on liver function) subject to the same dose constraints and are tested on 2D synthesized and 3D clinical cases. The normal-liver-based objective functions are the linearized equivalent uniform dose ([Formula: see text]) (conventional '[Formula: see text] model'), the so-called perfusion-weighted [Formula: see text] ([Formula: see text]) (proposed 'fEUD model'), and post-treatment global liver function (GLF) (proposed 'GLF model'), predicted by a new liver-perfusion-based dose-response model. The resulting [Formula: see text], fEUD, and GLF plans delivering the same target [Formula: see text] are compared with respect to their post-treatment function and various dose-based metrics. Voxel-based portal venous liver perfusion, used as a measure of local function, is computed using DCE-MRI. In cases used in our experiments, the GLF plan preserves up to [Formula: see text] more liver function than the fEUD ([Formula: see text]) plan does in 2D cases, and up to [Formula: see text] in 3D cases. The GLF and fEUD plans worsen in [Formula: see text] of functional liver on average by 1.0 Gy and 0.5 Gy in 2D and 3D cases, respectively. Liver perfusion information can be used during treatment planning to minimize the risk of toxicity by improving expected GLF; the degree of benefit varies with perfusion pattern. Although fEUD model optimization is computationally inexpensive and often
ABCluster: the artificial bee colony algorithm for cluster global optimization.
Zhang, Jun; Dolg, Michael
2015-10-01
Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters. PMID:26327507
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems
Cao, Leilei; Xu, Lihong; Goodman, Erik D.
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.
Cao, Leilei; Xu, Lihong; Goodman, Erik D
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421
Modeling and Global Optimization of DNA separation
Fahrenkopf, Max A.; Ydstie, B. Erik; Mukherjee, Tamal; Schneider, James W.
2014-01-01
We develop a non-convex non-linear programming problem that determines the minimum run time to resolve different lengths of DNA using a gel-free micelle end-labeled free solution electrophoresis separation method. Our optimization framework allows for efficient determination of the utility of different DNA separation platforms and enables the identification of the optimal operating conditions for these DNA separation devices. The non-linear programming problem requires a model for signal spacing and signal width, which is known for many DNA separation methods. As a case study, we show how our approach is used to determine the optimal run conditions for micelle end-labeled free-solution electrophoresis and examine the trade-offs between a single capillary system and a parallel capillary system. Parallel capillaries are shown to only be beneficial for DNA lengths above 230 bases using a polydisperse micelle end-label otherwise single capillaries produce faster separations. PMID:24764606
Modeling and Global Optimization of DNA separation.
Fahrenkopf, Max A; Ydstie, B Erik; Mukherjee, Tamal; Schneider, James W
2014-05-01
We develop a non-convex non-linear programming problem that determines the minimum run time to resolve different lengths of DNA using a gel-free micelle end-labeled free solution electrophoresis separation method. Our optimization framework allows for efficient determination of the utility of different DNA separation platforms and enables the identification of the optimal operating conditions for these DNA separation devices. The non-linear programming problem requires a model for signal spacing and signal width, which is known for many DNA separation methods. As a case study, we show how our approach is used to determine the optimal run conditions for micelle end-labeled free-solution electrophoresis and examine the trade-offs between a single capillary system and a parallel capillary system. Parallel capillaries are shown to only be beneficial for DNA lengths above 230 bases using a polydisperse micelle end-label otherwise single capillaries produce faster separations. PMID:24764606
Global and local pitch perception in children with developmental dyslexia.
Ziegler, Johannes C; Pech-Georgel, Catherine; George, Florence; Foxton, Jessica M
2012-03-01
This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global condition). Compared to normally developing children, dyslexics showed robust pitch perception deficits in the local but not the global condition. This finding was replicated in a simple pitch direction task, which minimizes sequencing and short term memory. Results are consistent with a left-hemisphere deficit in dyslexia because local pitch changes are supposedly processed by the left hemisphere, whereas global pitch changes are processed by the right hemisphere. The present data suggest a link between impaired pitch processing and abnormal phonological development in children with dyslexia, which makes pitch pattern processing a potent tool for early diagnosis and remediation of dyslexia. PMID:22204845
Local Ionospheric Modeling Using the Localized Global Ionospheric Map and Terrestrial GPS
NASA Astrophysics Data System (ADS)
Sharifi, Mohammad Ali; Farzaneh, Saeed
2016-02-01
Global ionosphere maps are generated on a daily basis at CODE using data from about 200 GPS/GLONASS sites of the IGS and other institutions. The vertical total electron content is modeled in a solar-geomagnetic reference frame using a spherical harmonics expansion up to degree and order 15. The spherical Slepian basis is a set of bandlimited functions which have the majority of their energy concentrated by optimization inside an arbitrarily defined region, yet remain orthogonal within the spatial region of interest. Hence, they are suitable for decomposing the spherical harmonic models into the portions that have significant strength only in the selected areas. In this study, the converted spherical harmonics to the Slepian bases were updated by the terrestrial GPS observations by use of the least-squares estimation with weighted parameters for local ionospheric modeling. Validations show that the approach adopted in this study is highly capable of yielding reliable results.
NASA Astrophysics Data System (ADS)
Verburg, P.; Eitelberg, D.; Ornetsmueller, C.; van Vliet, J.
2015-12-01
Global land use models are driven by demands for food and urban space. However, at the same time many transitions in land use and land cover are driven by societal changes and the demand for a wide range of landscape functions or ecosystem services, including the conservation of biodiversity, regulation of climate and floods, and recreation. Some of these demands lead to tele-connected land use change through the transport of good and services, others are place-based and shape the local realities of land system change. Most current land use change models focus on land cover changes alone and ignore the importance of changes in land management and landscape configuration that affect climate, biodiversity and the provisioning of ecosystem services. This talk will present an alternative approach to global land use modelling based on the simulation of changes in land systems in response to a wide set of ecosystem service demands. Simulations at global scale illustrate that accounting for demands for livestock products, carbon sequestration and biological conservation (following the Aichi targets) leads to different outcomes of land change models and allows the identification of synergies between carbon and biodiversity targets. An application in Laos indicates the complex transitions in land systems and landscapes that occur upon the transition from shifting cultivation to permanent agriculture and tree-crop plantations. We discuss the implications of such land system representations for Earth system modelling.
The Implications of the Local Context in Global Online Education
ERIC Educational Resources Information Center
Rye, Stale Angen; Stokken, Anne Marie
2012-01-01
This paper investigates how features in students' everyday life influence their participation in online global collaboration, and it suggests that students' local context should be recognised as a significant part of their educational space. In this exploratory case study of students engaged in a global online master's programme, the discussion is…
Cultural Variations in Global versus Local Processing: A Developmental Perspective
ERIC Educational Resources Information Center
Oishi, Shigehiro; Jaswal, Vikram K.; Lillard, Angeline S.; Mizokawa, Ai; Hitokoto, Hidefumi; Tsutsui, Yoshiro
2014-01-01
We conducted 3 studies to explore cultural differences in global versus local processing and their developmental trajectories. In Study 1 ("N" = 363), we found that Japanese college students were less globally oriented in their processing than American or Argentine participants. We replicated this effect in Study 2 ("N" =…
Contextual Cueing in Naturalistic Scenes: Global and Local Contexts
ERIC Educational Resources Information Center
Brockmole, James R.; Castelhano, Monica S.; Henderson, John M.
2006-01-01
In contextual cueing, the position of a target within a group of distractors is learned over repeated exposure to a display with reference to a few nearby items rather than to the global pattern created by the elements. The authors contrasted the role of global and local contexts for contextual cueing in naturalistic scenes. Experiment 1 showed…
Nonlinear Global Optimization Using Curdling Algorithm
Energy Science and Technology Software Center (ESTSC)
1996-03-01
An algorithm for performing curdling optimization which is a derivative-free, grid-refinement approach to nonlinear optimization was developed and implemented in software. This approach overcomes a number of deficiencies in existing approaches. Most notably, it finds extremal regions rather than only single external extremal points. The program is interactive and collects information on control parameters and constraints using menus. For up to four dimensions, function convergence is displayed graphically. Because the algorithm does not compute derivatives,more » gradients or vectors, it is numerically stable. It can find all the roots of a polynomial in one pass. It is an inherently parallel algorithm. Constraints are handled as being initially fuzzy, but become tighter with each iteration.« less
Neural network training with global optimization techniques.
Yamazaki, Akio; Ludermir, Teresa B
2003-04-01
This paper presents an approach of using Simulated Annealing and Tabu Search for the simultaneous optimization of neural network architectures and weights. The problem considered is the odor recognition in an artificial nose. Both methods have produced networks with high classification performance and low complexity. Generalization has been improved by using the backpropagation algorithm for fine tuning. The combination of simple and traditional search methods has shown to be very suitable for generating compact and efficient networks. PMID:12923920
Global and Local Pitch Perception in Children with Developmental Dyslexia
ERIC Educational Resources Information Center
Ziegler, Johannes C.; Pech-Georgel, Catherine; George, Florence; Foxton, Jessica M.
2012-01-01
This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global…
Turkish Elementary School Students' Perceptions of Local and Global Terrorism
ERIC Educational Resources Information Center
Aricak, Tolga; Bekci, Banu; Siyahhan, Sinem; Martinez, Rebecca
2008-01-01
Introduction: Historically, terrorism has occurred in various regions of the world and has been considered a local problem until the September, 11 terrorist attacks on the United States in 2001. After 9/11, terrorism has become a global concern. The definition of terrorism has changed from a violent act of a group of local people against their…
Dispositional optimism and terminal decline in global quality of life.
Zaslavsky, Oleg; Palgi, Yuval; Rillamas-Sun, Eileen; LaCroix, Andrea Z; Schnall, Eliezer; Woods, Nancy F; Cochrane, Barbara B; Garcia, Lorena; Hingle, Melanie; Post, Stephen; Seguin, Rebecca; Tindle, Hilary; Shrira, Amit
2015-06-01
We examined whether dispositional optimism relates to change in global quality of life (QOL) as a function of either chronological age or years to impending death. We used a sample of 2,096 deceased postmenopausal women from the Women's Health Initiative clinical trials who were enrolled in the 2005-2010 Extension Study and for whom at least 1 global QOL and optimism measure were analyzed. Growth curve models were examined. Competing models were contrasted using model fit criteria. On average, levels of global QOL decreased with both higher age and closer proximity to death (e.g., M(score) = 7.7 eight years prior to death vs. M(score) = 6.1 one year prior to death). A decline in global QOL was better modeled as a function of distance to death (DtD) than as a function of chronological age (Bayesian information criterion [BIC](DtD) = 22,964.8 vs. BIC(age) = 23,322.6). Optimism was a significant correlate of both linear (estimate(DtD) = -0.01, SE(DtD) = 0.005; ρ = 0.004) and quadratic (estimate(DtD) = -0.006, SE(DtD) = 0.002; ρ = 0.004) terminal decline in global QOL so that death-related decline in global QOL was steeper among those with a high level of optimism than those with a low level of optimism. We found that dispositional optimism helps to maintain positive psychological perspective in the face of age-related decline. Optimists maintain higher QOL compared with pessimists when death-related trajectories were considered; however, the gap between those with high optimism and those with low optimism progressively attenuated with closer proximity to death, to the point that is became nonsignificant at the time of death. PMID:25938553
From local to global changes in proteins: a network view.
Vuillon, Laurent; Lesieur, Claire
2015-04-01
To fulfill the biological activities in living organisms, proteins are endowed with dynamics, robustness and adaptability. The three properties co-exist because they allow global changes in structure to arise from local perturbations (dynamics). Robustness refers to the ability of the protein to incur such changes without suffering loss of function; adaptability is the emergence of a new biological activity. Since loss of function may jeopardize the survival of the organism and lead to disease, adaptability may occur through the combination of two local perturbations that together rescue the initial function. The review highlights the relevancy of computational network analysis to understand how a local change produces global changes. PMID:25791607
Global localization from monocular SLAM on a mobile phone.
Ventura, Jonathan; Arth, Clemens; Reitmayr, Gerhard; Schmalstieg, Dieter
2014-04-01
We propose the combination of a keyframe-based monocular SLAM system and a global localization method. The SLAM system runs locally on a camera-equipped mobile client and provides continuous, relative 6DoF pose estimation as well as keyframe images with computed camera locations. As the local map expands, a server process localizes the keyframes with a pre-made, globally-registered map and returns the global registration correction to the mobile client. The localization result is updated each time a keyframe is added, and observations of global anchor points are added to the client-side bundle adjustment process to further refine the SLAM map registration and limit drift. The end result is a 6DoF tracking and mapping system which provides globally registered tracking in real-time on a mobile device, overcomes the difficulties of localization with a narrow field-of-view mobile phone camera, and is not limited to tracking only in areas covered by the offline reconstruction. PMID:24650980
Local, Optimization-based Simplicial Mesh Smoothing
Energy Science and Technology Software Center (ESTSC)
1999-12-09
OPT-MS is a C software package for the improvement and untangling of simplicial meshes (triangles in 2D, tetrahedra in 3D). Overall mesh quality is improved by iterating over the mesh vertices and adjusting their position to optimize some measure of mesh quality, such as element angle or aspect ratio. Several solution techniques (including Laplacian smoothing, "Smart" Laplacian smoothing, optimization-based smoothing and several combinations thereof) and objective functions (for example, element angle, sin (angle), and aspectmore » ratio) are available to the user for both two and three-dimensional meshes. If the mesh contains invalid elements (those with negative area) a different optimization algorithm for mesh untangling is provided.« less
Geophysical Inversion With Multi-Objective Global Optimization Methods
NASA Astrophysics Data System (ADS)
Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin
2016-04-01
We are investigating the use of Pareto multi-objective global optimization (PMOGO) methods to solve numerically complicated geophysical inverse problems. PMOGO methods can be applied to highly nonlinear inverse problems, to those where derivatives are discontinuous or simply not obtainable, and to those were multiple minima exist in the problem space. PMOGO methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. This allows a more complete assessment of the possibilities and provides opportunities to calculate statistics regarding the likelihood of particular model features. We are applying PMOGO methods to four classes of inverse problems. The first are discrete-body problems where the inversion determines values of several parameters that define the location, orientation, size and physical properties of an anomalous body represented by a simple shape, for example a sphere, ellipsoid, cylinder or cuboid. A PMOGO approach can determine not only the optimal shape parameters for the anomalous body but also the optimal shape itself. Furthermore, when one expects several anomalous bodies in the subsurface, a PMOGO inversion approach can determine an optimal number of parameterized bodies. The second class of inverse problems are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The third class of problems are lithological inversions, which are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the fourth class, surface geometry inversions, we consider a fundamentally different type of problem in which a model comprises wireframe surfaces representing contacts between rock units. The physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. Surface geometry inversion can be
Local and global contributions to hemodynamic activity in mouse cortex.
Pisauro, M Andrea; Benucci, Andrea; Carandini, Matteo
2016-06-01
Imaging techniques such as functional magnetic resonance imaging seek to estimate neural signals in local brain regions through measurements of hemodynamic activity. However, hemodynamic activity is accompanied by large vascular fluctuations of unclear significance. To characterize these fluctuations and their impact on estimates of neural signals, we used optical imaging in visual cortex of awake mice. We found that hemodynamic activity can be expressed as the sum of two components, one local and one global. The local component reflected presumed neural signals driven by visual stimuli in the appropriate retinotopic region. The global component constituted large fluctuations shared by larger cortical regions, which extend beyond visual cortex. These fluctuations varied from trial to trial, but they did not constitute noise; they correlated with pupil diameter, suggesting that they reflect variations in arousal or alertness. Distinguishing local and global contributions to hemodynamic activity may help understand neurovascular coupling and interpret measurements of hemodynamic responses. PMID:26984421
Local and global contributions to hemodynamic activity in mouse cortex
Pisauro, M. Andrea; Benucci, Andrea
2016-01-01
Imaging techniques such as functional magnetic resonance imaging seek to estimate neural signals in local brain regions through measurements of hemodynamic activity. However, hemodynamic activity is accompanied by large vascular fluctuations of unclear significance. To characterize these fluctuations and their impact on estimates of neural signals, we used optical imaging in visual cortex of awake mice. We found that hemodynamic activity can be expressed as the sum of two components, one local and one global. The local component reflected presumed neural signals driven by visual stimuli in the appropriate retinotopic region. The global component constituted large fluctuations shared by larger cortical regions, which extend beyond visual cortex. These fluctuations varied from trial to trial, but they did not constitute noise; they correlated with pupil diameter, suggesting that they reflect variations in arousal or alertness. Distinguishing local and global contributions to hemodynamic activity may help understand neurovascular coupling and interpret measurements of hemodynamic responses. PMID:26984421
Optimizing human activity patterns using global sensitivity analysis
Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.
2014-01-01
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080
Optimizing human activity patterns using global sensitivity analysis
Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.
2013-12-10
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.
Optimal Object Localization Using Dual Number Quaternions
NASA Astrophysics Data System (ADS)
Walker, Michael W.; Shao, Lejun; Volz, Richard A.
1989-03-01
This paper presents a new algorithm for determining the position and orientation of objects. The problem is formulated as an optimization problem using dual number quaternions. It is shown that this reduces to an eigenvalue problem for which standard software library routines can be used to obtain the solution.
Nallasivam, Ulaganathan; Shah, Vishesh H.; Shenvi, Anirudh A.; Huff, Joshua; Tawarmalani, Mohit; Agrawal, Rakesh
2016-02-10
We present a general Global Minimization Algorithm (GMA) to identify basic or thermally coupled distillation configurations that require the least vapor duty under minimum reflux conditions for separating any ideal or near-ideal multicomponent mixture into a desired number of product streams. In this algorithm, global optimality is guaranteed by modeling the system using Underwood equations and reformulating the resulting constraints to bilinear inequalities. The speed of convergence to the globally optimal solution is increased by using appropriate feasibility and optimality based variable-range reduction techniques and by developing valid inequalities. As a result, the GMA can be coupled with already developedmore » techniques that enumerate basic and thermally coupled distillation configurations, to provide for the first time, a global optimization based rank-list of distillation configurations.« less
Autonomous Modelling of X-ray Spectra Using Robust Global Optimization Methods
NASA Astrophysics Data System (ADS)
Rogers, Adam; Safi-Harb, Samar; Fiege, Jason
2015-08-01
The standard approach to model fitting in X-ray astronomy is by means of local optimization methods. However, these local optimizers suffer from a number of problems, such as a tendency for the fit parameters to become trapped in local minima, and can require an involved process of detailed user intervention to guide them through the optimization process. In this work we introduce a general GUI-driven global optimization method for fitting models to X-ray data, written in MATLAB, which searches for optimal models with minimal user interaction. We directly interface with the commonly used XSPEC libraries to access the full complement of pre-existing spectral models that describe a wide range of physics appropriate for modelling astrophysical sources, including supernova remnants and compact objects. Our algorithm is powered by the Ferret genetic algorithm and Locust particle swarm optimizer from the Qubist Global Optimization Toolbox, which are robust at finding families of solutions and identifying degeneracies. This technique will be particularly instrumental for multi-parameter models and high-fidelity data. In this presentation, we provide details of the code and use our techniques to analyze X-ray data obtained from a variety of astrophysical sources.
Communication: Optimal parameters for basin-hopping global optimization based on Tsallis statistics
Shang, C. Wales, D. J.
2014-08-21
A fundamental problem associated with global optimization is the large free energy barrier for the corresponding solid-solid phase transitions for systems with multi-funnel energy landscapes. To address this issue we consider the Tsallis weight instead of the Boltzmann weight to define the acceptance ratio for basin-hopping global optimization. Benchmarks for atomic clusters show that using the optimal Tsallis weight can improve the efficiency by roughly a factor of two. We present a theory that connects the optimal parameters for the Tsallis weighting, and demonstrate that the predictions are verified for each of the test cases.
Incremental triangulation by way of edge swapping and local optimization
NASA Technical Reports Server (NTRS)
Wiltberger, N. Lyn
1994-01-01
This document is intended to serve as an installation, usage, and basic theory guide for the two dimensional triangulation software 'HARLEY' written for the Silicon Graphics IRIS workstation. This code consists of an incremental triangulation algorithm based on point insertion and local edge swapping. Using this basic strategy, several types of triangulations can be produced depending on user selected options. For example, local edge swapping criteria can be chosen which minimizes the maximum interior angle (a MinMax triangulation) or which maximizes the minimum interior angle (a MaxMin or Delaunay triangulation). It should be noted that the MinMax triangulation is generally only locally optical (not globally optimal) in this measure. The MaxMin triangulation, however, is both locally and globally optical. In addition, Steiner triangulations can be constructed by inserting new sites at triangle circumcenters followed by edge swapping based on the MaxMin criteria. Incremental insertion of sites also provides flexibility in choosing cell refinement criteria. A dynamic heap structure has been implemented in the code so that once a refinement measure is specified (i.e., maximum aspect ratio or some measure of a solution gradient for the solution adaptive grid generation) the cell with the largest value of this measure is continually removed from the top of the heap and refined. The heap refinement strategy allows the user to specify either the number of cells desired or refine the mesh until all cell refinement measures satisfy a user specified tolerance level. Since the dynamic heap structure is constantly updated, the algorithm always refines the particular cell in the mesh with the largest refinement criteria value. The code allows the user to: triangulate a cloud of prespecified points (sites), triangulate a set of prespecified interior points constrained by prespecified boundary curve(s), Steiner triangulate the interior/exterior of prespecified boundary curve
Global and local music perception in children with Williams syndrome.
Deruelle, Christine; Schön, Daniele; Rondan, Cécilie; Mancini, Josette
2005-04-25
Musical processing can be decomposed into the appreciation of global and local elements. This global/local dissociation was investigated with the processing of contour-violated and interval-violated melodies. Performance of a group of 16 children with Williams syndrome and a group of 16 control children were compared in a same-different task. Control participants were more accurate in detecting differences in the contour-violated than in the interval-violated condition while Williams syndrome individuals performed equally well in both conditions. This finding suggests that global precedence may occur at an early perceptual stage in normally developing children. In contrast, no such global precedence is observed in the Williams syndrome population. These data are discussed in the context of atypical cognitive profiles of individuals with Williams syndrome. PMID:15812322
Emergence of global preferential attachment from local interaction
NASA Astrophysics Data System (ADS)
Li, Menghui; Gao, Liang; Fan, Ying; Wu, Jinshan; Di, Zengru
2010-04-01
Global degree/strength-based preferential attachment is widely used as an evolution mechanism of networks. But it is hard to believe that any individual can get global information and shape the network architecture based on it. In this paper, it is found that the global preferential attachment emerges from the local interaction models, including the distance-dependent preferential attachment (DDPA) evolving model of weighted networks (Li et al 2006 New J. Phys. 8 72), the acquaintance network model (Davidsen et al 2002 Phys. Rev. Lett. 88 128701) and the connecting nearest-neighbor (CNN) model (Vázquez 2003 Phys. Rev. E 67 056104). For the DDPA model and the CNN model, the attachment rate depends linearly on the degree or vertex strength, whereas for the acquaintance network model, the dependence follows a sublinear power law. It implies that for the evolution of social networks, local contact could be more fundamental than the presumed global preferential attachment.
Global search acceleration in the nested optimization scheme
NASA Astrophysics Data System (ADS)
Grishagin, Vladimir A.; Israfilov, Ruslan A.
2016-06-01
Multidimensional unconstrained global optimization problem with objective function under Lipschitz condition is considered. For solving this problem the dimensionality reduction approach on the base of the nested optimization scheme is used. This scheme reduces initial multidimensional problem to a family of one-dimensional subproblems being Lipschitzian as well and thus allows applying univariate methods for the execution of multidimensional optimization. For two well-known one-dimensional methods of Lipschitz optimization the modifications providing the acceleration of the search process in the situation when the objective function is continuously differentiable in a vicinity of the global minimum are considered and compared. Results of computational experiments on conventional test class of multiextremal functions confirm efficiency of the modified methods.
On computing the global time-optimal motions of robotic manipulators in the presence of obstacles
NASA Technical Reports Server (NTRS)
Shiller, Zvi; Dubowsky, Steven
1991-01-01
A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.
Kiran, M; Nagarajaram, H A
2016-08-16
Hubs, the highly connected nodes in protein-protein interaction networks (PPINs), are associated with several characteristic properties and are known to perform vital roles in cells. We defined two classes of hubs, global (housekeeping) and local (tissue-specific) hubs. These two categories of hubs are distinct from each other with respect to their abundance, structure and function. However, how distinct are the spatial expression pattern and other characteristics of their interacting partners is still not known. Our investigations revealed that the partners of the local hubs compared with those of global hubs are conserved across the tissues in which they are expressed. Partners of local hubs show diverse subcellular localizations as compared with the partners of global hubs. We examined the nature of interacting domains in both categories of hubs and found that they are promiscuous in global hubs but not so in local hubs. Deletion of some of the local and global hubs has an impact on the characteristic path length of the network indicating that those hubs are inter-modular in nature. Our present study has, therefore, shed further light on the characteristic features of the local and global hubs in human PPIN. This knowledge of different topological aspects of hubs with regard to their types and subtypes is essential as it helps in better understanding of roles of hub proteins in various cellular processes under various conditions including those caused by host-pathogen interactions and therefore useful in prioritizing targets for drug design and repositioning. PMID:27400769
Optimizing human activity patterns using global sensitivity analysis
Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.
2013-12-10
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less
Managing for interactions between local and global stressors of ecosystems.
Brown, Christopher J; Saunders, Megan I; Possingham, Hugh P; Richardson, Anthony J
2013-01-01
Global stressors, including climate change, are a major threat to ecosystems, but they cannot be halted by local actions. Ecosystem management is thus attempting to compensate for the impacts of global stressors by reducing local stressors, such as overfishing. This approach assumes that stressors interact additively or synergistically, whereby the combined effect of two stressors is at least the sum of their isolated effects. It is not clear, however, how management should proceed for antagonistic interactions among stressors, where multiple stressors do not have an additive or greater impact. Research to date has focussed on identifying synergisms among stressors, but antagonisms may be just as common. We examined the effectiveness of management when faced with different types of interactions in two systems--seagrass and fish communities--where the global stressor was climate change but the local stressors were different. When there were synergisms, mitigating local stressors delivered greater gains, whereas when there were antagonisms, management of local stressors was ineffective or even degraded ecosystems. These results suggest that reducing a local stressor can compensate for climate change impacts if there is a synergistic interaction. Conversely, if there is an antagonistic interaction, management of local stressors will have the greatest benefits in areas of refuge from climate change. A balanced research agenda, investigating both antagonistic and synergistic interaction types, is needed to inform management priorities. PMID:23776542
Combined discriminative global and generative local models for visual tracking
NASA Astrophysics Data System (ADS)
Zhao, Liujun; Zhao, Qingjie; Chen, Yanming; Lv, Peng
2016-03-01
It is a challenging task to develop an effective visual tracking algorithm due to factors such as pose variation, rotation, and so on. Combined discriminative global and generative local appearance models are proposed to address this problem. Specifically, we develop a compact global object representation by extracting the low-frequency coefficients of the color and texture of the object based on two-dimensional discrete cosine transform. Then, with the global appearance representation, we learn a discriminative metric classifier in an online fashion to differentiate the target object from its background, which is very important to robustly indicate the changes in appearance. Second, we develop a new generative local model that exploits the scale invariant feature transform and its spatial geometric information. To make use of the advantages of the global discriminative model and the generative local model, we incorporate them into Bayesian inference framework. In this framework, the complementary models help the tracker locate the target more accurately. Furthermore, we use different mechanisms to update global and local templates to capture appearance changes. The experimental results demonstrate that the proposed approach performs favorably against state-of-the-art methods in terms of accuracy.
NASA Astrophysics Data System (ADS)
Yang, Dixiong; Liu, Zhenjun; Zhou, Jilei
2014-04-01
Chaos optimization algorithms (COAs) usually utilize the chaotic map like Logistic map to generate the pseudo-random numbers mapped as the design variables for global optimization. Many existing researches indicated that COA can more easily escape from the local minima than classical stochastic optimization algorithms. This paper reveals the inherent mechanism of high efficiency and superior performance of COA, from a new perspective of both the probability distribution property and search speed of chaotic sequences generated by different chaotic maps. The statistical property and search speed of chaotic sequences are represented by the probability density function (PDF) and the Lyapunov exponent, respectively. Meanwhile, the computational performances of hybrid chaos-BFGS algorithms based on eight one-dimensional chaotic maps with different PDF and Lyapunov exponents are compared, in which BFGS is a quasi-Newton method for local optimization. Moreover, several multimodal benchmark examples illustrate that, the probability distribution property and search speed of chaotic sequences from different chaotic maps significantly affect the global searching capability and optimization efficiency of COA. To achieve the high efficiency of COA, it is recommended to adopt the appropriate chaotic map generating the desired chaotic sequences with uniform or nearly uniform probability distribution and large Lyapunov exponent.
Zou, Feng; Chen, Debao; Wang, Jiangtao
2016-01-01
An improved teaching-learning-based optimization with combining of the social character of PSO (TLBO-PSO), which is considering the teacher's behavior influence on the students and the mean grade of the class, is proposed in the paper to find the global solutions of function optimization problems. In this method, the teacher phase of TLBO is modified; the new position of the individual is determined by the old position, the mean position, and the best position of current generation. The method overcomes disadvantage that the evolution of the original TLBO might stop when the mean position of students equals the position of the teacher. To decrease the computation cost of the algorithm, the process of removing the duplicate individual in original TLBO is not adopted in the improved algorithm. Moreover, the probability of local convergence of the improved method is decreased by the mutation operator. The effectiveness of the proposed method is tested on some benchmark functions, and the results are competitive with respect to some other methods. PMID:27057157
Zou, Feng; Chen, Debao; Wang, Jiangtao
2016-01-01
An improved teaching-learning-based optimization with combining of the social character of PSO (TLBO-PSO), which is considering the teacher's behavior influence on the students and the mean grade of the class, is proposed in the paper to find the global solutions of function optimization problems. In this method, the teacher phase of TLBO is modified; the new position of the individual is determined by the old position, the mean position, and the best position of current generation. The method overcomes disadvantage that the evolution of the original TLBO might stop when the mean position of students equals the position of the teacher. To decrease the computation cost of the algorithm, the process of removing the duplicate individual in original TLBO is not adopted in the improved algorithm. Moreover, the probability of local convergence of the improved method is decreased by the mutation operator. The effectiveness of the proposed method is tested on some benchmark functions, and the results are competitive with respect to some other methods. PMID:27057157
The study to enhance the mask global CD uniformity by removing local CD variation
NASA Astrophysics Data System (ADS)
Choi, Yongkyoo; Kim, Munsik; Han, Oscar
2007-03-01
As pattern size is shrinking, required mask CD specification is tighter and its effect on wafer patterning is more severe. Recent study showed that the effect of mask local CD variation of mask on wafer is much smaller than that of global CD variation.[1] To enhance the device performance, wafer CD uniformity should be enhanced and controlled by mask global CD uniformity. Mask global CD uniformity usually can be enhanced by mask process and optimal fogging effect correction. To enhance the mask global CD uniformity on mask, resist process and FEC (Fogging Effect Correction), reliable CD measurement tool and methods are necessary. Recently, group CD using OCD(Spectroscopic Ellipsometer) or AIMS(Aerial Image Measurement and Simulation) or polynomial fitting method is introduced to represent global CD variation on mask.[2][3][4] These methods are removing local CD variation on mask. The local CD variation will be remained as residual CD after approximation. In this paper, local CD variation of mask and wafer is evaluated and 2 kinds of methods are used to measure CD on mask and wafer, and the correlation of global CD of mask and field CD of wafer are evaluated. And the repeatability of field to field CD uniformity of wafer is evaluated to correct the fields CD uniformity of wafer by controlling the selective changing of transmittance of mask or to feed back to mask process. Higher correlation between fields of wafer, more accurate correction can be possible.
Motion Estimation for Dynamic Texture Videos Based on Locally and Globally Varying Models.
Sakaino, Hidetomo
2015-11-01
Motion estimation, i.e., optical flow, of fluid-like and dynamic texture (DT) images/videos is an important challenge, particularly for understanding outdoor scene changes created by objects and/or natural phenomena. Most optical flow models use smoothness-based constraints using terms such as fluidity from the fluid dynamics framework, with constraints typically being incompressibility and low Reynolds numbers (Re ). Such constraints are assumed to impede the clear capture of locally abrupt image intensity and motion changes, i.e., discontinuities and/or high Re over time. This paper exploits novel physics-based optical flow models/constraints for both smooth and discontinuous changes using a wave generation theory that imposes no constraint on Re or compressibility of an image sequence. Iterated two-step optimization between local and global optimization is also used: first, an objective function with varying multiple sine/cosine bases with new local image properties, i.e., orientation and frequency, and with a novel transformed dispersion relationship equation are used. Second, the statistical property of image features is used to globally optimize model parameters. Experiments on synthetic and real DT image sequences with smooth and discontinuous motions demonstrate that the proposed locally and globally varying models outperform the previous optical flow models. PMID:26099146
NASA Astrophysics Data System (ADS)
Lin, Juan; Liu, Chenglian; Guo, Yongning
2014-10-01
The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.
A global optimization paradigm based on change of measures.
Sarkar, Saikat; Roy, Debasish; Vasu, Ram Mohan
2015-07-01
A global optimization framework, COMBEO (Change Of Measure Based Evolutionary Optimization), is proposed. An important aspect in the development is a set of derivative-free additive directional terms, obtainable through a change of measures en route to the imposition of any stipulated conditions aimed at driving the realized design variables (particles) to the global optimum. The generalized setting offered by the new approach also enables several basic ideas, used with other global search methods such as the particle swarm or the differential evolution, to be rationally incorporated in the proposed set-up via a change of measures. The global search may be further aided by imparting to the directional update terms additional layers of random perturbations such as 'scrambling' and 'selection'. Depending on the precise choice of the optimality conditions and the extent of random perturbation, the search can be readily rendered either greedy or more exploratory. As numerically demonstrated, the new proposal appears to provide for a more rational, more accurate and, in some cases, a faster alternative to many available evolutionary optimization schemes. PMID:26587268
Simple proof of the global optimality of the Hohmann transfer
NASA Technical Reports Server (NTRS)
Prussing, John E.
1992-01-01
The case of two-impulse transfer between coplanar circular orbits is considered. The global optimality of the Hohmann transfer among the class of two-impulse transfers is proved via ordinary calculus by using the familiar orbital elements, eccentricity e and parameter (semilatus rectum) p. It is noted that this proof is simpler than existing proofs in the literature.
Global Optimal Trajectory in Chaos and NP-Hardness
NASA Astrophysics Data System (ADS)
Latorre, Vittorio; Gao, David Yang
This paper presents an unconventional theory and method for solving general nonlinear dynamical systems. Instead of the direct iterative methods, the discretized nonlinear system is first formulated as a global optimization problem via the least squares method. A newly developed canonical duality theory shows that this nonconvex minimization problem can be solved deterministically in polynomial time if a global optimality condition is satisfied. The so-called pseudo-chaos produced by linear iterative methods are mainly due to the intrinsic numerical error accumulations. Otherwise, the global optimization problem could be NP-hard and the nonlinear system can be really chaotic. A conjecture is proposed, which reveals the connection between chaos in nonlinear dynamics and NP-hardness in computer science. The methodology and the conjecture are verified by applications to the well-known logistic equation, a forced memristive circuit and the Lorenz system. Computational results show that the canonical duality theory can be used to identify chaotic systems and to obtain realistic global optimal solutions in nonlinear dynamical systems. The method and results presented in this paper should bring some new insights into nonlinear dynamical systems and NP-hardness in computational complexity theory.
A global optimization paradigm based on change of measures
Sarkar, Saikat; Roy, Debasish; Vasu, Ram Mohan
2015-01-01
A global optimization framework, COMBEO (Change Of Measure Based Evolutionary Optimization), is proposed. An important aspect in the development is a set of derivative-free additive directional terms, obtainable through a change of measures en route to the imposition of any stipulated conditions aimed at driving the realized design variables (particles) to the global optimum. The generalized setting offered by the new approach also enables several basic ideas, used with other global search methods such as the particle swarm or the differential evolution, to be rationally incorporated in the proposed set-up via a change of measures. The global search may be further aided by imparting to the directional update terms additional layers of random perturbations such as ‘scrambling’ and ‘selection’. Depending on the precise choice of the optimality conditions and the extent of random perturbation, the search can be readily rendered either greedy or more exploratory. As numerically demonstrated, the new proposal appears to provide for a more rational, more accurate and, in some cases, a faster alternative to many available evolutionary optimization schemes. PMID:26587268
Global processing takes time: A meta-analysis on local-global visual processing in ASD.
Van der Hallen, Ruth; Evers, Kris; Brewaeys, Katrien; Van den Noortgate, Wim; Wagemans, Johan
2015-05-01
What does an individual with autism spectrum disorder (ASD) perceive first: the forest or the trees? In spite of 30 years of research and influential theories like the weak central coherence (WCC) theory and the enhanced perceptual functioning (EPF) account, the interplay of local and global visual processing in ASD remains only partly understood. Research findings vary in indicating a local processing bias or a global processing deficit, and often contradict each other. We have applied a formal meta-analytic approach and combined 56 articles that tested about 1,000 ASD participants and used a wide range of stimuli and tasks to investigate local and global visual processing in ASD. Overall, results show no enhanced local visual processing nor a deficit in global visual processing. Detailed analysis reveals a difference in the temporal pattern of the local-global balance, that is, slow global processing in individuals with ASD. Whereas task-dependent interaction effects are obtained, gender, age, and IQ of either participant groups seem to have no direct influence on performance. Based on the overview of the literature, suggestions are made for future research. PMID:25420221
Improved Particle Swarm Optimization for Global Optimization of Unimodal and Multimodal Functions
NASA Astrophysics Data System (ADS)
Basu, Mousumi
2015-07-01
Particle swarm optimization (PSO) performs well for small dimensional and less complicated problems but fails to locate global minima for complex multi-minima functions. This paper proposes an improved particle swarm optimization (IPSO) which introduces Gaussian random variables in velocity term. This improves search efficiency and guarantees a high probability of obtaining the global optimum without significantly impairing the speed of convergence and the simplicity of the structure of particle swarm optimization. The algorithm is experimentally validated on 17 benchmark functions and the results demonstrate good performance of the IPSO in solving unimodal and multimodal problems. Its high performance is verified by comparing with two popular PSO variants.
Efficient algorithms for multidimensional global optimization in genetic mapping of complex traits
Ljungberg, Kajsa; Mishchenko, Kateryna; Holmgren, Sverker
2010-01-01
We present a two-phase strategy for optimizing a multidimensional, nonconvex function arising during genetic mapping of quantitative traits. Such traits are believed to be affected by multiple so called quantitative trait loci (QTL), and searching for d QTL results in a d-dimensional optimization problem with a large number of local optima. We combine the global algorithm DIRECT with a number of local optimization methods that accelerate the final convergence, and adapt the algorithms to problem-specific features. We also improve the evaluation of the QTL mapping objective function to enable exploitation of the smoothness properties of the optimization landscape. Our best two-phase method is demonstrated to be accurate in at least six dimensions and up to ten times faster than currently used QTL mapping algorithms. PMID:21918629
Global equilibrium and local thermodynamics in stationary spacetimes
NASA Astrophysics Data System (ADS)
Panerai, Rodolfo
2016-05-01
In stationary spacetimes global equilibrium states can be defined, applying the maximum entropy principle, by the introduction of local thermodynamic fields determined solely by geometry. As an example, we study a class of equilibrium states for a scalar field in Einstein's static universe, characterized by inhomogeneous thermodynamic properties and nonvanishing angular momentum.
Designing for Local and Global Meanings of Randomness
ERIC Educational Resources Information Center
Paparistodemou, Efi; Noss, Richard
2004-01-01
This research aims to study the ways in which "local" events of randomness, based on experiencing the outcome of individual events, can be developed into "global" understandings that focus on an aggregated view of probability (e.g. probability of an event). The findings reported in the paper are part of a broader study that adopted a strategy of…
Global and Local Collaborators: A Study of Scientific Collaboration.
ERIC Educational Resources Information Center
Pao, Miranda Lee
1992-01-01
Describes an empirical study that was conducted to examine the relationship among scientific co-authorship (i.e., collaboration), research funding, and productivity. Bibliographic records from the MEDLINE database that used the subject heading for schistosomiasis are analyzed, global and local collaborators are discussed, and scientific…
Local and Global Processing: Observations from a Remote Culture
ERIC Educational Resources Information Center
Davidoff, Jules; Fonteneau, Elisabeth; Fagot, Joel
2008-01-01
In Experiment 1, a normal adult population drawn from a remote culture (Himba) in northern Namibia made similarity matches to [Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. "Cognitive Psychology", 9, 353-383] hierarchical figures. The Himba showed a local bias stronger than that has been previously…
Factors Affecting the Comprehension of Global and Local Main Idea
ERIC Educational Resources Information Center
Wang, Danhua
2009-01-01
This study investigated factors that would affect a reader's understanding of the main idea at the global level and explicit and implicit main ideas at the local level. Fifty-seven first-year university students taking a college reading course took a comprehension test on an expository text. Statistical analyses revealed that text structure had a…
Global and Local Sensitivity Analysis Methods for a Physical System
ERIC Educational Resources Information Center
Morio, Jerome
2011-01-01
Sensitivity analysis is the study of how the different input variations of a mathematical model influence the variability of its output. In this paper, we review the principle of global and local sensitivity analyses of a complex black-box system. A simulated case of application is given at the end of this paper to compare both approaches.…
WATER CONSERVATION: LOCAL SOLUTIONS TO A GLOBAL PROBLEM
Water conservation issues are discussed. Local solutions to a global problem include changing old habits relating to the usage and abuse of water resources. While the suggested behavioral changes may not solve the world's pending water crisis, they may ease the impact of the l...
Global/local finite element analysis for textile composites
NASA Technical Reports Server (NTRS)
Woo, Kyeongsik; Whitcomb, John
1993-01-01
Conventional analysis of textile composites is impractical because of the complex microstructure. Global/local methodology combined with special macro elements is proposed herein as a practical alternative. Initial tests showed dramatic reductions in the computational effort with only small loss in accuracy.
A Comparison of Local and Global Formulations of Thermodynamics
ERIC Educational Resources Information Center
DeVoe, Howard
2013-01-01
Several educators have advocated teaching thermodynamics using a"global" approach in place of the conventional "local" approach. This article uses four examples of experiments to illustrate the two formulations and the definitions of heat and work associated with them. Advantages and disadvantages of both approaches are…
ICCE/ICCAI 2000 Full & Short Papers (Globalization vs. Localization).
ERIC Educational Resources Information Center
2000
This document contains two papers on globalization versus localization from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction). The first paper, "Implementing Modern Approaches to Teaching Computer Science: A Cross-Cultural Perspective" (Jill Slay and Kam W. Li), examines…
Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen
2014-09-01
For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. PMID:24929345
Obstetricians’ Opinions of the Optimal Caesarean Rate: A Global Survey
Cavallaro, Francesca L.; Cresswell, Jenny A.; Ronsmans, Carine
2016-01-01
Background The debate surrounding the optimal caesarean rate has been ongoing for several decades, with the WHO recommending an “acceptable” rate of 5–15% since 1997, despite a weak evidence base. Global expert opinion from obstetric care providers on the optimal caesarean rate has not been documented. The objective of this study was to examine providers’ opinions of the optimal caesarean rate worldwide, among all deliveries and within specific sub-groups of deliveries. Methods A global online survey of medical doctors who had performed at least one caesarean in the last five years was conducted between August 2013 and January 2014. Respondents were asked to report their opinion of the optimal caesarean rate—defined as the caesarean rate that would minimise poor maternal and perinatal outcomes—at the population level and within specific sub-groups of deliveries (including women with demographic and clinical risk factors for caesareans). Median reported optimal rates and corresponding inter-quartile ranges (IQRs) were calculated for the sample, and stratified according to national caesarean rate, institutional caesarean rate, facility level, and respondent characteristics. Results Responses were collected from 1,057 medical doctors from 96 countries. The median reported optimal caesarean rate was 20% (IQR: 15–30%) for all deliveries. Providers in private for-profit facilities and in facilities with high institutional rates reported optimal rates of 30% or above, while those in Europe, in public facilities and in facilities with low institutional rates reported rates of 15% or less. Reported optimal rates were lowest among low-risk deliveries and highest for Absolute Maternal Indications (AMIs), with wide IQRs observed for most categories other than AMIs. Conclusions Three-quarters of respondents reported an optimal caesarean rate above the WHO 15% upper threshold. There was substantial variation in responses, highlighting a lack of consensus around
Electronic-structure calculation for metals by local optimization
Woodward, C.; Min, B.I.; Benedek, R.; Garner, J.
1989-03-15
Recent work by Car and Parrinello has generated considerable interest in the calculation of electronic structure by nonlinear optimization. The technique introduced by these authors, dynamical simulated annealing, is designed for problems that involve energy barriers. When local optimization suffices to determine the energy minimum, more direct methods are available. In this paper we apply the algorithm suggested by Williams and Soler to calculate the electronic structure of metals, using a plane-wave expansion for the electronic orbitals and an electron-ion pseudopotential of the Kleinman-Bylander form. Radial pseudopotentials were taken from the compilation of Bachelet, Hamann, and Schlueter. Calculations are performed to optimize the electronic structure (i) with fixed atomic configuration, or (ii) with the atomic volume being optimized simultaneously. It is found that the dual optimization (ii) converges in essentially the same number of steps as the static lattice optimization (i). Numerical results are presented for Li, K, Al, and simple-cubic P.
Hybrid methods using genetic algorithms for global optimization.
Renders, J M; Flasse, S P
1996-01-01
This paper discusses the trade-off between accuracy, reliability and computing time in global optimization. Particular compromises provided by traditional methods (Quasi-Newton and Nelder-Mead's simplex methods) and genetic algorithms are addressed and illustrated by a particular application in the field of nonlinear system identification. Subsequently, new hybrid methods are designed, combining principles from genetic algorithms and "hill-climbing" methods in order to find a better compromise to the trade-off. Inspired by biology and especially by the manner in which living beings adapt themselves to their environment, these hybrid methods involve two interwoven levels of optimization, namely evolution (genetic algorithms) and individual learning (Quasi-Newton), which cooperate in a global process of optimization. One of these hybrid methods appears to join the group of state-of-the-art global optimization methods: it combines the reliability properties of the genetic algorithms with the accuracy of Quasi-Newton method, while requiring a computation time only slightly higher than the latter. PMID:18263027
Global optimization in systems biology: stochastic methods and their applications.
Balsa-Canto, Eva; Banga, J R; Egea, J A; Fernandez-Villaverde, A; de Hijas-Liste, G M
2012-01-01
Mathematical optimization is at the core of many problems in systems biology: (1) as the underlying hypothesis for model development, (2) in model identification, or (3) in the computation of optimal stimulation procedures to synthetically achieve a desired biological behavior. These problems are usually formulated as nonlinear programing problems (NLPs) with dynamic and algebraic constraints. However the nonlinear and highly constrained nature of systems biology models, together with the usually large number of decision variables, can make their solution a daunting task, therefore calling for efficient and robust optimization techniques. Here, we present novel global optimization methods and software tools such as cooperative enhanced scatter search (eSS), AMIGO, or DOTcvpSB, and illustrate their possibilities in the context of modeling including model identification and stimulation design in systems biology. PMID:22161343
Globally Optimal Segmentation of Permanent-Magnet Systems
NASA Astrophysics Data System (ADS)
Insinga, A. R.; Bjørk, R.; Smith, A.; Bahl, C. R. H.
2016-06-01
Permanent-magnet systems are widely used for generation of magnetic fields with specific properties. The reciprocity theorem, an energy-equivalence principle in magnetostatics, can be employed to calculate the optimal remanent flux density of the permanent-magnet system, given any objective functional that is linear in the magnetic field. This approach, however, yields a continuously varying remanent flux density, while in practical applications, magnetic assemblies are realized by combining uniformly magnetized segments. The problem of determining the optimal shape of each of these segments remains unsolved. We show that the problem of optimal segmentation of a two-dimensional permanent-magnet assembly with respect to a linear objective functional can be reduced to the problem of piecewise linear approximation of a plane curve by perimeter maximization. Once the problem has been cast into this form, the globally optimal solution can be easily computed employing dynamic programming.
The Tunneling Method for Global Optimization in Multidimensional Scaling.
ERIC Educational Resources Information Center
Groenen, Patrick J. F.; Heiser, Willem J.
1996-01-01
A tunneling method for global minimization in multidimensional scaling is introduced and adjusted for multidimensional scaling with general Minkowski distances. The method alternates a local search step with a tunneling step in which a different configuration is sought with the same STRESS implementation. (SLD)
Globally consistent registration of terrestrial laser scans via graph optimization
NASA Astrophysics Data System (ADS)
Theiler, Pascal Willy; Wegner, Jan Dirk; Schindler, Konrad
2015-11-01
In this paper we present a framework for the automatic registration of multiple terrestrial laser scans. The proposed method can handle arbitrary point clouds with reasonable pairwise overlap, without knowledge about their initial orientation and without the need for artificial markers or other specific objects. The framework is divided into a coarse and a fine registration part, which each start with pairwise registration and then enforce consistent global alignment across all scans. While we put forward a complete, functional registration system, the novel contribution of the paper lies in the coarse global alignment step. Merging multiple scans into a consistent network creates loops along which the relative transformations must add up. We pose the task of finding a global alignment as picking the best candidates from a set of putative pairwise registrations, such that they satisfy the loop constraints. This yields a discrete optimization problem that can be solved efficiently with modern combinatorial methods. Having found a coarse global alignment in this way, the framework proceeds by pairwise refinement with standard ICP, followed by global refinement to evenly spread the residual errors. The framework was tested on six challenging, real-world datasets. The discrete global alignment step effectively detects, removes and corrects failures of the pairwise registration procedure, finally producing a globally consistent coarse scan network which can be used as initial guess for the highly non-convex refinement. Our overall system reaches success rates close to 100% at acceptable runtimes < 1 h, even in challenging conditions such as scanning in the forest.
An adaptive metamodel-based global optimization algorithm for black-box type problems
NASA Astrophysics Data System (ADS)
Jie, Haoxiang; Wu, Yizhong; Ding, Jianwan
2015-11-01
In this article, an adaptive metamodel-based global optimization (AMGO) algorithm is presented to solve unconstrained black-box problems. In the AMGO algorithm, a type of hybrid model composed of kriging and augmented radial basis function (RBF) is used as the surrogate model. The weight factors of hybrid model are adaptively selected in the optimization process. To balance the local and global search, a sub-optimization problem is constructed during each iteration to determine the new iterative points. As numerical experiments, six standard two-dimensional test functions are selected to show the distributions of iterative points. The AMGO algorithm is also tested on seven well-known benchmark optimization problems and contrasted with three representative metamodel-based optimization methods: efficient global optimization (EGO), GutmannRBF and hybrid and adaptive metamodel (HAM). The test results demonstrate the efficiency and robustness of the proposed method. The AMGO algorithm is finally applied to the structural design of the import and export chamber of a cycloid gear pump, achieving satisfactory results.
Global Design Optimization for Aerodynamics and Rocket Propulsion Components
NASA Technical Reports Server (NTRS)
Shyy, Wei; Papila, Nilay; Vaidyanathan, Rajkumar; Tucker, Kevin; Turner, James E. (Technical Monitor)
2000-01-01
Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage where they can provide substantial insight into engineering processes involving fluid flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date, the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search algorithms. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables, and methods for predicting the model performance. In this article, we review recent progress made in establishing suitable global optimization techniques employing neural network and polynomial-based response surface methodologies. Issues addressed include techniques for construction of the response surface, design of experiment techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynamics, turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the issues involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design
NASA Astrophysics Data System (ADS)
Gough, Noel
2002-11-01
This paper critically appraises a number of approaches to 'thinking globally' in environmental education, with particular reference to popular assumptions about the universal applicability of Western science. Although the transnational character of many environmental issues demands that we 'think globally', I argue that the contribution of Western science to understanding and resolving environmental problems might be enhanced by seeing it as one among many local knowledge traditions. The production of a 'global knowledge economy' in/for environmental education can then be understood as creating transnational 'spaces' in which local knowledge traditions can be performed together, rather than as creating a 'common market' in which representations of local knowledge must be translated into (or exchanged for) the terms of a universal discourse.
A deterministic global optimization using smooth diagonal auxiliary functions
NASA Astrophysics Data System (ADS)
Sergeyev, Yaroslav D.; Kvasov, Dmitri E.
2015-04-01
In many practical decision-making problems it happens that functions involved in optimization process are black-box with unknown analytical representations and hard to evaluate. In this paper, a global optimization problem is considered where both the goal function f (x) and its gradient f‧ (x) are black-box functions. It is supposed that f‧ (x) satisfies the Lipschitz condition over the search hyperinterval with an unknown Lipschitz constant K. A new deterministic 'Divide-the-Best' algorithm based on efficient diagonal partitions and smooth auxiliary functions is proposed in its basic version, its convergence conditions are studied and numerical experiments executed on eight hundred test functions are presented.
Imperialist competitive algorithm combined with chaos for global optimization
NASA Astrophysics Data System (ADS)
Talatahari, S.; Farahmand Azar, B.; Sheikholeslami, R.; Gandomi, A. H.
2012-03-01
A novel chaotic improved imperialist competitive algorithm (CICA) is presented for global optimization. The ICA is a new meta-heuristic optimization developed based on a socio-politically motivated strategy and contains two main steps: the movement of the colonies and the imperialistic competition. Here different chaotic maps are utilized to improve the movement step of the algorithm. Seven different chaotic maps are investigated and the Logistic and Sinusoidal maps are found as the best choices. Comparing the new algorithm with the other ICA-based methods demonstrates the superiority of the CICA for the benchmark functions.
Global optimization using the y-ybar diagram
NASA Astrophysics Data System (ADS)
Brown, Daniel M.
1991-12-01
Software is under development at Teledyne Brown Engineering to represent a lens configuration as a y-ybar or Delano diagram. The program determines third-order Seidel and chromatic aberrations for each configuration. It performs a global search through all valid permutations of configuration space and determines, to within a step increment of the space, the configuration with smallest third-order aberrations. The program was developed to generate first-order optical layouts which promised to reach global minima during subsequent conventional optimization. Other operations allowed by the program are: add or delete surfaces, couple surfaces (for Mangin mirrors), shift the stop position, and display first-order properties and the optical layout (surface radii and thicknesses) for subsequent entry into a conventional lens-design program with automatic optimization. Algorithms for performing some of the key functions, not covered by previous authors, are discussed in this paper.
Geometrical optimization of a local ballistic magnetic sensor
Kanda, Yuhsuke; Hara, Masahiro; Nomura, Tatsuya; Kimura, Takashi
2014-04-07
We have developed a highly sensitive local magnetic sensor by using a ballistic transport property in a two-dimensional conductor. A semiclassical simulation reveals that the sensitivity increases when the geometry of the sensor and the spatial distribution of the local field are optimized. We have also experimentally demonstrated a clear observation of a magnetization process in a permalloy dot whose size is much smaller than the size of an optimized ballistic magnetic sensor fabricated from a GaAs/AlGaAs two-dimensional electron gas.
Local origin of global contact numbers in frictional ellipsoid packings.
Schaller, Fabian M; Neudecker, Max; Saadatfar, Mohammad; Delaney, Gary W; Schröder-Turk, Gerd E; Schröter, Matthias
2015-04-17
In particulate soft matter systems the average number of contacts Z of a particle is an important predictor of the mechanical properties of the system. Using x-ray tomography, we analyze packings of frictional, oblate ellipsoids of various aspect ratios α, prepared at different global volume fractions ϕg. We find that Z is a monotonically increasing function of ϕg for all α. We demonstrate that this functional dependence can be explained by a local analysis where each particle is described by its local volume fraction ϕl computed from a Voronoi tessellation. Z can be expressed as an integral over all values of ϕl: Z(ϕg,α,X)=∫Zl(ϕl,α,X)P(ϕl|ϕg)dϕl. The local contact number function Zl(ϕl,α,X) describes the relevant physics in term of locally defined variables only, including possible higher order terms X. The conditional probability P(ϕl|ϕg) to find a specific value of ϕl given a global packing fraction ϕg is found to be independent of α and X. Our results demonstrate that for frictional particles a local approach is not only a theoretical requirement but also feasible. PMID:25933340
Local Origin of Global Contact Numbers in Frictional Ellipsoid Packings
NASA Astrophysics Data System (ADS)
Schaller, Fabian M.; Neudecker, Max; Saadatfar, Mohammad; Delaney, Gary W.; Schröder-Turk, Gerd E.; Schröter, Matthias
2015-04-01
In particulate soft matter systems the average number of contacts Z of a particle is an important predictor of the mechanical properties of the system. Using x-ray tomography, we analyze packings of frictional, oblate ellipsoids of various aspect ratios α , prepared at different global volume fractions ϕg. We find that Z is a monotonically increasing function of ϕg for all α . We demonstrate that this functional dependence can be explained by a local analysis where each particle is described by its local volume fraction ϕl computed from a Voronoi tessellation. Z can be expressed as an integral over all values of ϕl: Z (ϕg,α ,X )=∫Zl(ϕl,α ,X )P (ϕl|ϕg)d ϕl . The local contact number function Zl(ϕl,α ,X ) describes the relevant physics in term of locally defined variables only, including possible higher order terms X . The conditional probability P (ϕl|ϕg) to find a specific value of ϕl given a global packing fraction ϕg is found to be independent of α and X . Our results demonstrate that for frictional particles a local approach is not only a theoretical requirement but also feasible.
The local and global effects of African deforestation
NASA Astrophysics Data System (ADS)
Werth, David; Avissar, Roni
2005-06-01
Using a global climate model (GCM), we simulate the effects of the total deforestation of equatorial Africa, looking specifically at the local and remote precipitation changes caused by such a land-use change. We observe a strong local effect, with a large reduction in African precipitation during the dry season, and little change during either of the two rainy seasons. The effects of African deforestation extend throughout the Tropics and also reach into the midlatitudes. The remote effect is caused by the African geopotential changes being spread beyond the deforested area by the large-scale winds.
Global and Local Distortion Inference During Embedded Zerotree Wavelet Decompression
NASA Technical Reports Server (NTRS)
Huber, A. Kris; Budge, Scott E.
1996-01-01
This paper presents algorithms for inferring global and spatially local estimates of the squared-error distortion measures for the Embedded Zerotree Wavelet (EZW) image compression algorithm. All distortion estimates are obtained at the decoder without significantly compromising EZW's rate-distortion performance. Two methods are given for propagating distortion estimates from the wavelet domain to the spatial domain, thus giving individual estimates of distortion for each pixel of the decompressed image. These local distortion estimates seem to provide only slight improvement in the statistical characterization of EZW compression error relative to the global measure, unless actual squared errors are propagated. However, they provide qualitative information about the asymptotic nature of the error that may be helpful in wavelet filter selection for low bit rate applications.
Reconstruction of biofilm images: combining local and global structural parameters.
Resat, Haluk; Renslow, Ryan S; Beyenal, Haluk
2014-10-01
Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process. PMID:25377487
Emotional state and local versus global spatial memory.
Brunyé, Tad T; Mahoney, Caroline R; Augustyn, Jason S; Taylor, Holly A
2009-02-01
The present work investigated the effects of participant emotional state on global versus local memory for map-based information. Participants were placed into one of four emotion induction groups, crossing high and low arousal with positive and negative valence, or a control group. They then studied a university campus map and completed two memory tests, free recall and spatial statement verification. Converging evidence from these two tasks demonstrated that arousal amplifies symbolic distance effects and leads to a globally-focused spatial mental representation, partially at the expense of local knowledge. These results were found for both positively- and negatively-valenced affective states. The present study is the first investigation of emotional effects on spatial memory, and has implications for theories of emotion and spatial cognition. PMID:19100525
Reconstruction of biofilm images: combining local and global structural parameters
Resat, Haluk; Renslow, Ryan S.; Beyenal, Haluk
2014-11-07
Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.
Asynchronous global optimization techniques for medium and large inversion problems
Pereyra, V.; Koshy, M.; Meza, J.C.
1995-04-01
We discuss global optimization procedures adequate for seismic inversion problems. We explain how to save function evaluations (which may involve large scale ray tracing or other expensive operations) by creating a data base of information on what parts of parameter space have already been inspected. It is also shown how a correct parallel implementation using PVM speeds up the process almost linearly with respect to the number of processors, provided that the function evaluations are expensive enough to offset the communication overhead.
Optimization of cascade blade mistuning. II - Global optimum and numerical optimization
NASA Technical Reports Server (NTRS)
Nissim, E.; Haftka, R. T.
1985-01-01
The values of the mistuning which yield the most stable eigenvectors are analytically determined, using the simplified equations of motion which were developed in Part I of this work. It is shown that random mistunings, if large enough, may lead to the maximal stability, whereas the alternate mistunings cannot. The problem of obtaining maximum stability for minimal mistuning is formulated, based on numerical optimization techniques. Several local minima are obtained using different starting mistuning vectors. The starting vectors which lead to the global minimum are identified. It is analytically shown that all minima appear in multiplicities which are equal to the number of compressor blades. The effect of mistuning on the flutter speed is studied using both an optimum mistuning vector and an alternate mistuning vector. Effects of mistunings in elastic axis locations are shown to have a negligible effect on the eigenvalues. Finally, it is shown that any general two-dimensional bending-torsion system can be reduced to an equivalent uncoupled torsional system.
Lens Design: An Attempt to Use `Escape Function' as a Tool in Global Optimization
NASA Astrophysics Data System (ADS)
Isshiki, Masaki; Ono, Hiroki; Nakadate, Suezou
1995-01-01
In designing lenses with the damped least squares method, the solution obtained by optimization routine is a local minimum of the merit function. To get out of this and seek a different solution, we propose to use an ‘escape function’ as an additional operand of the lens system, to be controlled. Experiments were made on simple models of merit function and the advantage of this technique was ascertained. We also planted this algorithm into OSLO SIX (lens design software by Sinclair Optics) by means of CCL (C-compatible language) and applied it to actual lens design. Experiments convinced us that the method would be an effective tool for global optimization.
Learning Human Actions by Combining Global Dynamics and Local Appearance.
Luo, Guan; Yang, Shuang; Tian, Guodong; Yuan, Chunfeng; Hu, Weiming; Maybank, Stephen J
2014-12-01
In this paper, we address the problem of human action recognition through combining global temporal dynamics and local visual spatio-temporal appearance features. For this purpose, in the global temporal dimension, we propose to model the motion dynamics with robust linear dynamical systems (LDSs) and use the model parameters as motion descriptors. Since LDSs live in a non-Euclidean space and the descriptors are in non-vector form, we propose a shift invariant subspace angles based distance to measure the similarity between LDSs. In the local visual dimension, we construct curved spatio-temporal cuboids along the trajectories of densely sampled feature points and describe them using histograms of oriented gradients (HOG). The distance between motion sequences is computed with the Chi-Squared histogram distance in the bag-of-words framework. Finally we perform classification using the maximum margin distance learning method by combining the global dynamic distances and the local visual distances. We evaluate our approach for action recognition on five short clips data sets, namely Weizmann, KTH, UCF sports, Hollywood2 and UCF50, as well as three long continuous data sets, namely VIRAT, ADL and CRIM13. We show competitive results as compared with current state-of-the-art methods. PMID:26353152
Hurricanes and Climate Change: Global Systems and Local Impacts
NASA Astrophysics Data System (ADS)
Santer, J.
2011-12-01
With funding from NOAA, the Miami Science Museum has been working with exhibit software developer Ideum to create an interactive exhibit exploring the global dimensions and local impacts of climate change. A particular focus is on climate-related impacts on coastal communities, including the potential effects on South Florida of ocean acidification, rising sea level, and the possibility of more intense hurricanes. The exhibit is using a 4-foot spherical display system in conjunction with a series of touchscreen kiosks and accompanying flat screens to create a user-controlled, multi-user interface that lets visitors control the sphere and choose from a range of global and local content they wish to explore. The exhibit has been designed to promote engagement of diverse, multigenerational audiences through development of a fully bilingual user interface that promotes social interaction and conversation among visitors as they trade off control of global content on the sphere and related local content on the flat screens. The open-source learning module will be adaptable by other museums, to explore climate impacts specific to their region.
Global and local obstacle avoidance technique for an autonomous vehicle
NASA Astrophysics Data System (ADS)
Gray, Keith W.; Saunders, Kevin S.
1999-07-01
The Center for Self-Organizing and Intelligent Systems (CSOIS) is engaged in developing autonomous ground vehicles. A significant problem for such vehicles is obstacle detection and avoidance. After studying various methods of detection, a scanning laser system was chosen that can detect objects at a distance of up to thirty feet while traveling between five and ten miles per hour. Once an object is detected, the vehicle must avoid it. The project employs a mission-level path planner that predetermines the path of a vehicle. One avoidance scheme is to inform the path planner of the obstacle and then let it re-plan the path. This is the global approach to the problem, which allows the use of existing software for maneuvering the vehicle. However, replanning is time consuming and lacks knowledge of the entire obstacle. An alternative approach is to use local avoidance, whereby a vehicle determines how to get by an obstacle without help from the path planner. This approach offers faster response without requiring the computing resource of the path planner. The disadvantage is that during local avoidance the vehicle ignores the global map of known obstacles and does not know to turn control back to the path planner if mission efficiency is adversely affected. This paper will describe a method for combining the current global path planner with a local obstacle avoidance technique to efficiently complete required tasks in a partially unknown environment.
A Localization Method for Multistatic SAR Based on Convex Optimization
2015-01-01
In traditional localization methods for Synthetic Aperture Radar (SAR), the bistatic range sum (BRS) estimation and Doppler centroid estimation (DCE) are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R) pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function’s maximum is on the circumference of the ellipse which is the iso-range for its model function’s T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment. PMID:26566031
A Localization Method for Multistatic SAR Based on Convex Optimization.
Zhong, Xuqi; Wu, Junjie; Yang, Jianyu; Sun, Zhichao; Huang, Yuling; Li, Zhongyu
2015-01-01
In traditional localization methods for Synthetic Aperture Radar (SAR), the bistatic range sum (BRS) estimation and Doppler centroid estimation (DCE) are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R) pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function's maximum is on the circumference of the ellipse which is the iso-range for its model function's T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment. PMID:26566031
NASA Technical Reports Server (NTRS)
Jaunky, N.; Ambur, D. R.; Knight, N. F., Jr.
1998-01-01
A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and strength constraints was developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory was used for the global analysis. Local buckling of skin segments were assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments were also assessed. Constraints on the axial membrane strain in the skin and stiffener segments were imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study were the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence and stiffening configuration, where stiffening configuration is a design variable that indicates the combination of axial, transverse and diagonal stiffener in the grid-stiffened cylinder. The design optimization process was adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configurations.
NASA Technical Reports Server (NTRS)
Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.
1998-01-01
A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and, strength constraints is developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory is used for the global analysis. Local buckling of skin segments are assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments are also assessed. Constraints on the axial membrane strain in the skin and stiffener segments are imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study are the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence, and stiffening configuration, where herein stiffening configuration is a design variable that indicates the combination of axial, transverse, and diagonal stiffener in the grid-stiffened cylinder. The design optimization process is adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads, and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configuration.
Global and local curvature in density functional theory
NASA Astrophysics Data System (ADS)
Zhao, Qing; Ioannidis, Efthymios I.; Kulik, Heather J.
2016-08-01
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.
Global and local curvature in density functional theory.
Zhao, Qing; Ioannidis, Efthymios I; Kulik, Heather J
2016-08-01
Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide. PMID:27497541
Multidisciplinary optimization of controlled space structures with global sensitivity equations
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.
1991-01-01
A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.
NASA Astrophysics Data System (ADS)
Shabbir, Faisal; Omenzetter, Piotr
2014-04-01
Much effort is devoted nowadays to derive accurate finite element (FE) models to be used for structural health monitoring, damage detection and assessment. However, formation of a FE model representative of the original structure is a difficult task. Model updating is a branch of optimization which calibrates the FE model by comparing the modal properties of the actual structure with these of the FE predictions. As the number of experimental measurements is usually much smaller than the number of uncertain parameters, and, consequently, not all uncertain parameters are selected for model updating, different local minima may exist in the solution space. Experimental noise further exacerbates the problem. The attainment of a global solution in a multi-dimensional search space is a challenging problem. Global optimization algorithms (GOAs) have received interest in the previous decade to solve this problem, but no GOA can ensure the detection of the global minimum either. To counter this problem, a combination of GOA with sequential niche technique (SNT) has been proposed in this research which systematically searches the whole solution space. A dynamically tested full scale pedestrian bridge is taken as a case study. Two different GOAs, namely particle swarm optimization (PSO) and genetic algorithm (GA), are investigated in combination with SNT. The results of these GOA are compared in terms of their efficiency in detecting global minima. The systematic search enables to find different solutions in the search space, thus increasing the confidence of finding the global minimum.
Proposal of Evolutionary Simplex Method for Global Optimization Problem
NASA Astrophysics Data System (ADS)
Shimizu, Yoshiaki
To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.
Pneumothorax detection in chest radiographs using local and global texture signatures
NASA Astrophysics Data System (ADS)
Geva, Ofer; Zimmerman-Moreno, Gali; Lieberman, Sivan; Konen, Eli; Greenspan, Hayit
2015-03-01
A novel framework for automatic detection of pneumothorax abnormality in chest radiographs is presented. The suggested method is based on a texture analysis approach combined with supervised learning techniques. The proposed framework consists of two main steps: at first, a texture analysis process is performed for detection of local abnormalities. Labeled image patches are extracted in the texture analysis procedure following which local analysis values are incorporated into a novel global image representation. The global representation is used for training and detection of the abnormality at the image level. The presented global representation is designed based on the distinctive shape of the lung, taking into account the characteristics of typical pneumothorax abnormalities. A supervised learning process was performed on both the local and global data, leading to trained detection system. The system was tested on a dataset of 108 upright chest radiographs. Several state of the art texture feature sets were experimented with (Local Binary Patterns, Maximum Response filters). The optimal configuration yielded sensitivity of 81% with specificity of 87%. The results of the evaluation are promising, establishing the current framework as a basis for additional improvements and extensions.
Local, Global or Globalized? Child Development and International Child Rights Legislation.
ERIC Educational Resources Information Center
Burman, Erica
1996-01-01
Analyzes three conceptions of children's rights and explores the tensions between them as realized in the U.N. Convention on the Rights of the Child and the development of the "best interest" principle. Advocates reconceptualization of the debate to see local perspectives as functioning in relation to--rather than opposed to--global ones, thus…
Wu, Zong-Sheng; Fu, Wei-Ping; Xue, Ru
2015-01-01
Teaching-learning-based optimization (TLBO) algorithm is proposed in recent years that simulates the teaching-learning phenomenon of a classroom to effectively solve global optimization of multidimensional, linear, and nonlinear problems over continuous spaces. In this paper, an improved teaching-learning-based optimization algorithm is presented, which is called nonlinear inertia weighted teaching-learning-based optimization (NIWTLBO) algorithm. This algorithm introduces a nonlinear inertia weighted factor into the basic TLBO to control the memory rate of learners and uses a dynamic inertia weighted factor to replace the original random number in teacher phase and learner phase. The proposed algorithm is tested on a number of benchmark functions, and its performance comparisons are provided against the basic TLBO and some other well-known optimization algorithms. The experiment results show that the proposed algorithm has a faster convergence rate and better performance than the basic TLBO and some other algorithms as well. PMID:26421005
Local and global responses in complex gene regulation networks
NASA Astrophysics Data System (ADS)
Tsuchiya, Masa; Selvarajoo, Kumar; Piras, Vincent; Tomita, Masaru; Giuliani, Alessandro
2009-04-01
An exacerbated sensitivity to apparently minor stimuli and a general resilience of the entire system stay together side-by-side in biological systems. This apparent paradox can be explained by the consideration of biological systems as very strongly interconnected network systems. Some nodes of these networks, thanks to their peculiar location in the network architecture, are responsible for the sensitivity aspects, while the large degree of interconnection is at the basis of the resilience properties of the system. One relevant feature of the high degree of connectivity of gene regulation networks is the emergence of collective ordered phenomena influencing the entire genome and not only a specific portion of transcripts. The great majority of existing gene regulation models give the impression of purely local ‘hard-wired’ mechanisms disregarding the emergence of global ordered behavior encompassing thousands of genes while the general, genome wide, aspects are less known. Here we address, on a data analysis perspective, the discrimination between local and global scale regulations, this goal was achieved by means of the examination of two biological systems: innate immune response in macrophages and oscillating growth dynamics in yeast. Our aim was to reconcile the ‘hard-wired’ local view of gene regulation with a global continuous and scalable one borrowed from statistical physics. This reconciliation is based on the network paradigm in which the local ‘hard-wired’ activities correspond to the activation of specific crucial nodes in the regulation network, while the scalable continuous responses can be equated to the collective oscillations of the network after a perturbation.
Global versus local effects on climate change in Asia
NASA Astrophysics Data System (ADS)
Paeth, Heiko; Müller, Markus; Mannig, Birgit
2015-10-01
Regional climate change arises from two processes which, in the real climate system, cannot be separated from each other: local radiative forcing and advection of air masses from regions which themselves have been subject to climate change. In this study, we present an experimental design based on a regional climate model allowing for the assessment of global and local effects on future climate change in Asia. We carry out two runs which are characterized by increasing greenhouse gas concentrations within the model domain, but one (the control run) is one-way nested into a global control run at the lateral and oceanic boundaries while the other (the forced run) is one-way nested into a consistently forced global simulation. The aim is to improve our understanding of the mechanisms of climate change in a regional context. It turns out that temperature and precipitation changes in Asia are indeed mostly related to changes in the advected air masses which enter along the lateral boundaries. Regionally confined greenhouse forcing only affects the atmospheric heating rate while precipitation and atmospheric circulation features remain more or less unchanged. Temperature changes in the forced experiment are partly governed by warmer air masses penetrating the lateral boundaries and partly by a modification of atmospheric circulation processes, including a tendency towards a double-trough structure over Central Asia and changing temperature advection. The trend pattern of precipitation is much more heterogeneous in space but can partly be attributed to changes in horizontal wind divergence and vertical velocity.
Global effects of land use on local terrestrial biodiversity
NASA Astrophysics Data System (ADS)
Newbold, Tim; Hudson, Lawrence N.; Hill, Samantha L. L.; Contu, Sara; Lysenko, Igor; Senior, Rebecca A.; Börger, Luca; Bennett, Dominic J.; Choimes, Argyrios; Collen, Ben; Day, Julie; de Palma, Adriana; Díaz, Sandra; Echeverria-Londoño, Susy; Edgar, Melanie J.; Feldman, Anat; Garon, Morgan; Harrison, Michelle L. K.; Alhusseini, Tamera; Ingram, Daniel J.; Itescu, Yuval; Kattge, Jens; Kemp, Victoria; Kirkpatrick, Lucinda; Kleyer, Michael; Correia, David Laginha Pinto; Martin, Callum D.; Meiri, Shai; Novosolov, Maria; Pan, Yuan; Phillips, Helen R. P.; Purves, Drew W.; Robinson, Alexandra; Simpson, Jake; Tuck, Sean L.; Weiher, Evan; White, Hannah J.; Ewers, Robert M.; Mace, Georgina M.; Scharlemann, Jörn P. W.; Purvis, Andy
2015-04-01
Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.
Global effects of land use on local terrestrial biodiversity.
Newbold, Tim; Hudson, Lawrence N; Hill, Samantha L L; Contu, Sara; Lysenko, Igor; Senior, Rebecca A; Börger, Luca; Bennett, Dominic J; Choimes, Argyrios; Collen, Ben; Day, Julie; De Palma, Adriana; Díaz, Sandra; Echeverria-Londoño, Susy; Edgar, Melanie J; Feldman, Anat; Garon, Morgan; Harrison, Michelle L K; Alhusseini, Tamera; Ingram, Daniel J; Itescu, Yuval; Kattge, Jens; Kemp, Victoria; Kirkpatrick, Lucinda; Kleyer, Michael; Correia, David Laginha Pinto; Martin, Callum D; Meiri, Shai; Novosolov, Maria; Pan, Yuan; Phillips, Helen R P; Purves, Drew W; Robinson, Alexandra; Simpson, Jake; Tuck, Sean L; Weiher, Evan; White, Hannah J; Ewers, Robert M; Mace, Georgina M; Scharlemann, Jörn P W; Purvis, Andy
2015-04-01
Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status. PMID:25832402
Global structual optimizations of surface systems with a genetic algorithm
Chuang, Feng-Chuan
2005-05-01
Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al{sub n} (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of {radical}3 x {radical}3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems.
A global optimization approach to multi-polarity sentiment analysis.
Li, Xinmiao; Li, Jing; Wu, Yukeng
2015-01-01
Following the rapid development of social media, sentiment analysis has become an important social media mining technique. The performance of automatic sentiment analysis primarily depends on feature selection and sentiment classification. While information gain (IG) and support vector machines (SVM) are two important techniques, few studies have optimized both approaches in sentiment analysis. The effectiveness of applying a global optimization approach to sentiment analysis remains unclear. We propose a global optimization-based sentiment analysis (PSOGO-Senti) approach to improve sentiment analysis with IG for feature selection and SVM as the learning engine. The PSOGO-Senti approach utilizes a particle swarm optimization algorithm to obtain a global optimal combination of feature dimensions and parameters in the SVM. We evaluate the PSOGO-Senti model on two datasets from different fields. The experimental results showed that the PSOGO-Senti model can improve binary and multi-polarity Chinese sentiment analysis. We compared the optimal feature subset selected by PSOGO-Senti with the features in the sentiment dictionary. The results of this comparison indicated that PSOGO-Senti can effectively remove redundant and noisy features and can select a domain-specific feature subset with a higher-explanatory power for a particular sentiment analysis task. The experimental results showed that the PSOGO-Senti approach is effective and robust for sentiment analysis tasks in different domains. By comparing the improvements of two-polarity, three-polarity and five-polarity sentiment analysis results, we found that the five-polarity sentiment analysis delivered the largest improvement. The improvement of the two-polarity sentiment analysis was the smallest. We conclude that the PSOGO-Senti achieves higher improvement for a more complicated sentiment analysis task. We also compared the results of PSOGO-Senti with those of the genetic algorithm (GA) and grid search method. From
A Global Optimization Approach to Multi-Polarity Sentiment Analysis
Li, Xinmiao; Li, Jing; Wu, Yukeng
2015-01-01
Following the rapid development of social media, sentiment analysis has become an important social media mining technique. The performance of automatic sentiment analysis primarily depends on feature selection and sentiment classification. While information gain (IG) and support vector machines (SVM) are two important techniques, few studies have optimized both approaches in sentiment analysis. The effectiveness of applying a global optimization approach to sentiment analysis remains unclear. We propose a global optimization-based sentiment analysis (PSOGO-Senti) approach to improve sentiment analysis with IG for feature selection and SVM as the learning engine. The PSOGO-Senti approach utilizes a particle swarm optimization algorithm to obtain a global optimal combination of feature dimensions and parameters in the SVM. We evaluate the PSOGO-Senti model on two datasets from different fields. The experimental results showed that the PSOGO-Senti model can improve binary and multi-polarity Chinese sentiment analysis. We compared the optimal feature subset selected by PSOGO-Senti with the features in the sentiment dictionary. The results of this comparison indicated that PSOGO-Senti can effectively remove redundant and noisy features and can select a domain-specific feature subset with a higher-explanatory power for a particular sentiment analysis task. The experimental results showed that the PSOGO-Senti approach is effective and robust for sentiment analysis tasks in different domains. By comparing the improvements of two-polarity, three-polarity and five-polarity sentiment analysis results, we found that the five-polarity sentiment analysis delivered the largest improvement. The improvement of the two-polarity sentiment analysis was the smallest. We conclude that the PSOGO-Senti achieves higher improvement for a more complicated sentiment analysis task. We also compared the results of PSOGO-Senti with those of the genetic algorithm (GA) and grid search method. From
On Vertically Global, Horizontally Local Models for Astrophysical Disks
NASA Astrophysics Data System (ADS)
McNally, Colin P.; Pessah, Martin E.
2015-10-01
Disks with a barotropic equilibrium structure, for which the pressure is only a function of the density, rotate on cylinders in the presence of a gravitational potential, so that the angular frequency of such a disk is independent of height. Such disks with barotropic equilibria can be approximately modeled using the shearing box framework, representing a small disk volume with height-independent angular frequency. If the disk is in baroclinic equilibrium, the angular frequency does generally depend on height, and it is thus necessary to go beyond the standard shearing box approach. In this paper, we show that given a global disk model, it is possible to develop approximate models that are local in horizontal planes without an expansion in height with shearing-periodic boundary conditions. We refer to the resulting framework as the vertically global shearing box (VGSB). These models can be non-axisymmetric for globally barotropic equilibria but should be axisymmetric for globally baroclinic equilibria. We provide explicit equations for this VGSB which can be implemented in standard magnetohydrodynamic codes by generalizing the shearing-periodic boundary conditions to allow for a height-dependent angular frequency and shear rate. We also discuss the limitations that result from the radial approximations that are needed in order to impose height-dependent shearing periodic boundary conditions. We illustrate the potential of this framework by studying a vertical shear instability and examining the modes associated with the magnetorotational instability.
Competition between global and local online social networks.
Kleineberg, Kaj-Kolja; Boguñá, Marián
2016-01-01
The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability. PMID:27117826
Competition between global and local online social networks
Kleineberg, Kaj-Kolja; Boguñá, Marián
2016-01-01
The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability. PMID:27117826
Competition between global and local online social networks
NASA Astrophysics Data System (ADS)
Kleineberg, Kaj-Kolja; Boguñá, Marián
2016-04-01
The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability.
Effects of local and global network connectivity on synergistic epidemics
NASA Astrophysics Data System (ADS)
Broder-Rodgers, David; Pérez-Reche, Francisco J.; Taraskin, Sergei N.
2015-12-01
Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected neighbors. The connectivity effects are studied by constructing networks of different topology, starting with lattices with only local connectivity and then with networks that have both local and global connectivity obtained by random bond-rewiring to nodes within a certain distance. The susceptible-infected-removed epidemics were found to exhibit several interesting effects: (i) for epidemics with strong constructive synergy spreading in networks with high local connectivity, the bond rewiring has a negative role in epidemic spread, i.e., it reduces invasion probability; (ii) in contrast, for epidemics with destructive or weak constructive synergy spreading on networks of arbitrary local connectivity, rewiring helps epidemics to spread; (iii) and, finally, rewiring always enhances the spread of epidemics, independent of synergy, if the local connectivity is low.
A global/local affinity graph for image segmentation.
Xiaofang Wang; Yuxing Tang; Masnou, Simon; Liming Chen
2015-04-01
Construction of a reliable graph capturing perceptual grouping cues of an image is fundamental for graph-cut based image segmentation methods. In this paper, we propose a novel sparse global/local affinity graph over superpixels of an input image to capture both short- and long-range grouping cues, and thereby enabling perceptual grouping laws, including proximity, similarity, continuity, and to enter in action through a suitable graph-cut algorithm. Moreover, we also evaluate three major visual features, namely, color, texture, and shape, for their effectiveness in perceptual segmentation and propose a simple graph fusion scheme to implement some recent findings from psychophysics, which suggest combining these visual features with different emphases for perceptual grouping. In particular, an input image is first oversegmented into superpixels at different scales. We postulate a gravitation law based on empirical observations and divide superpixels adaptively into small-, medium-, and large-sized sets. Global grouping is achieved using medium-sized superpixels through a sparse representation of superpixels' features by solving a ℓ0-minimization problem, and thereby enabling continuity or propagation of local smoothness over long-range connections. Small- and large-sized superpixels are then used to achieve local smoothness through an adjacent graph in a given feature space, and thus implementing perceptual laws, for example, similarity and proximity. Finally, a bipartite graph is also introduced to enable propagation of grouping cues between superpixels of different scales. Extensive experiments are carried out on the Berkeley segmentation database in comparison with several state-of-the-art graph constructions. The results show the effectiveness of the proposed approach, which outperforms state-of-the-art graphs using four different objective criteria, namely, the probabilistic rand index, the variation of information, the global consistency error, and the
Solving Globally-Optimal Threading Problems in ''Polynomial-Time''
Uberbacher, E.C.; Xu, D.; Xu, Y.
1999-04-12
Computational protein threading is a powerful technique for recognizing native-like folds of a protein sequence from a protein fold database. In this paper, we present an improved algorithm (over our previous work) for solving the globally-optimal threading problem, and illustrate how the computational complexity and the fold recognition accuracy of the algorithm change as the cutoff distance for pairwise interactions changes. For a given fold of m residues and M core secondary structures (or simply cores) and a protein sequence of n residues, the algorithm guarantees to find a sequence-fold alignment (threading) that is globally optimal, measured collectively by (1) the singleton match fitness, (2) pairwise interaction preference, and (3) alignment gap penalties, in O(mn + MnN{sup 1.5C-1}) time and O(mn + nN{sup C-1}) space. C, the topological complexity of a fold as we term, is a value which characterizes the overall structure of the considered pairwise interactions in the fold, which are typically determined by a specified cutoff distance between the beta carbon atoms of a pair of amino acids in the fold. C is typically a small positive integer. N represents the maximum number of possible alignments between an individual core of the fold and the protein sequence when its neighboring cores are already aligned, and its value is significantly less than n. When interacting amino acids are required to see each other, C is bounded from above by a small integer no matter how large the cutoff distance is. This indicates that the protein threading problem is polynomial-time solvable if the condition of seeing each other between interacting amino acids is sufficient for accurate fold recognition. A number of extensions have been made to our basic threading algorithm to allow finding a globally-optimal threading under various constraints, which include consistencies with (1) specified secondary structures (both cores and loops), (2) disulfide bonds, (3) active sites, etc.
PROSPECT: A Computer System for Globally-Optimal Threading
Xu, D.; Xu, Y.
1999-08-06
This paper presents a new computer system, PROSPECT, for protein threading. PROSPECT employs an energy function that consists of three additive terms: (1) a singleton fitness term, (2) a distance-dependent pairwise-interaction preference term, and (3) alignment gap penalty; and currently uses FSSP as its threading template database. PROSPECT uses a divide-and-conquer algorithm to find an alignment between a query protein sequence and a protein fold template, which is guaranteed to be globally optimal for its energy function. The threading algorithm presented here significantly improves the computational efficiency of our previously-published algorithm, which makes PROSPECT a practical tool even for large protein threading problems. Mathematically, PROSPECT finds a globally-optimal threading between a query sequence of n residues and a fold template of m residues and M core secondary structures in O(nm + MnN{sup 1.5C{minus}1}) time and O(nm + nN{sup C{minus}1}) space, where C, the topological complexity of the template fold as we term, is a value which characterizes the overall structure of the considered pairwise interactions in the fold; and N represents the maximum number of possible alignments between an individual core of the fold and the query sequence when its neighboring cores are already aligned. PROSPECT allows a user to incorporate known biological constraints about the query sequence during the threading process. For given constraints, the system finds a globally-optimal threading which satisfies the constraints. Currently PROSPECT can deal with constraints which reflect geometrical relationships among residues of disulfide bonds, active sites, or determined by the NOE constraints of (low-resolution) NMR spectral data.
Global optimization of minority game by intelligent agents
NASA Astrophysics Data System (ADS)
Xie, Yan-Bo; Wang, Bing-Hong; Hu, Chin-Kun; Zhou, Tao
2005-10-01
We propose a new model of minority game with intelligent agents who use trail and error method to make a choice such that the standard deviation σ2 and the total loss in this model reach the theoretical minimum values in the long time limit and the global optimization of the system is reached. This suggests that the economic systems can self-organize into a highly optimized state by agents who make decisions based on inductive thinking, limited knowledge, and capabilities. When other kinds of agents are also present, the simulation results and analytic calculations show that the intelligent agent can gain profits from producers and are much more competent than the noise traders and conventional agents in original minority games proposed by Challet and Zhang.
An Adaptive Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-11-03
In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.
A Unified Differential Evolution Algorithm for Global Optimization
Qiang, Ji; Mitchell, Chad
2014-06-24
Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.
Local versus global scales of organization in auditory cortex.
Kanold, Patrick O; Nelken, Israel; Polley, Daniel B
2014-09-01
Topographic organization is a hallmark of sensory cortical organization. Topography is robust at spatial scales ranging from hundreds of microns to centimeters, but can dissolve at the level of neighboring neurons or subcellular compartments within a neuron. This dichotomous spatial organization is especially pronounced in the mouse auditory cortex, where an orderly tonotopic map can arise from heterogeneous frequency tuning between local neurons. Here, we address a debate surrounding the robustness of tonotopic organization in the auditory cortex that has persisted in some form for over 40 years. Drawing from various cortical areas, cortical layers, recording methodologies, and species, we describe how auditory cortical circuitry can simultaneously support a globally systematic, yet locally heterogeneous representation of this fundamental sound property. PMID:25002236
Local versus global scales of organization in auditory cortex
Kanold, Patrick O.; Nelken, Israel; Polley, Daniel B.
2014-01-01
Topographic organization is a hallmark of sensory cortical organization. Topography is robust at spatial scales ranging from hundreds of microns to centimeters, but can dissolve at the level of neighboring neurons or subcellular compartments within a neuron. This dichotomous spatial organization is especially pronounced in the mouse auditory cortex, where an orderly tonotopic map can arise from heterogeneous frequency tuning between local neurons. Here, we address a debate surrounding the robustness of tonotopic organization in the auditory cortex that has persisted in some form for over forty years. Drawing from various cortical areas, cortical layers, recording methodologies, and species, we describe how auditory cortical circuitry can simultaneously support a globally systematic, yet locally heterogeneous representation of this fundamental sound property. PMID:25002236
Optimal allocation of file servers in a local network environment
NASA Technical Reports Server (NTRS)
Woodside, C. M.; Tripathi, S. K.
1986-01-01
Files associated with workstations in a local area network are to be allocated among two or more file servers. Assuming statistically identical workstations and file servers and a performance model which is a closed multiclass separable queueing network, an optimal allocation is found. It is shown that all the files of each workstation should be placed on one file server, with the workstations divided as equally as possible among the file servers.
Protein tertiary structure recognition using optimized Hamiltonians with local interactions.
Goldstein, R A; Luthey-Schulten, Z A; Wolynes, P G
1992-01-01
Protein folding codes embodying local interactions including surface and secondary structure propensities and residue-residue contacts are optimized for a set of training proteins by using spin-glass theory. A screening method based on these codes correctly matches the structure of a set of test proteins with proteins of similar topology with 100% accuracy, even with limited sequence similarity between the test proteins and the structural homologs and the absence of any structurally similar proteins in the training set. PMID:1409599
Local to global avalanches in sheared granular materials
NASA Astrophysics Data System (ADS)
Weng, Dengming; Wang, Dong; Bertrand, Thibault; Bares, Jonathan; Berhinger, Bob
2015-11-01
Commonly, granular materials yield or flow if sufficiently large shear stress is applied, leading to avalanche-like behavior. Rearrangement phenomenon can produce dramatic events like snow avalanches, land-slides or earthquakes. For experimentally sheared media, we seek to understand the dynamics of the grain rearrangements from the local to the global scale. In this work, force networks and displacement fields are measured on two-dimensional sheared material for cyclically sheared photoelastic circular particles. Avalanches, their size, location and duration are extracted at the global scale from the rapid variation of the macroscopic energy stored in the system whereas at the local scale they are measured from the energy drop, displacement and rotation of each particle. Statistics of those different quantities are computed and correlated to test their intrinsic entanglement and analyze their universal dynamics. These results are quantitatively different from what has been observed for different analytic coarse-grained approaches and permit a clear measurement of the effect of the packing fraction and inter-particle friction coefficient on the statistical behavior.
Local and Global Limits on Visual Processing in Schizophrenia
Tibber, Marc S.; Anderson, Elaine J.; Bobin, Tracy; Carlin, Patricia; Shergill, Sukhwinder S.; Dakin, Steven C.
2015-01-01
Schizophrenia has been linked to impaired performance on a range of visual processing tasks (e.g. detection of coherent motion and contour detection). It has been proposed that this is due to a general inability to integrate visual information at a global level. To test this theory, we assessed the performance of people with schizophrenia on a battery of tasks designed to probe voluntary averaging in different visual domains. Twenty-three outpatients with schizophrenia (mean age: 40±8 years; 3 female) and 20 age-matched control participants (mean age 39±9 years; 3 female) performed a motion coherence task and three equivalent noise (averaging) tasks, the latter allowing independent quantification of local and global limits on visual processing of motion, orientation and size. All performance measures were indistinguishable between the two groups (ps>0.05, one-way ANCOVAs), with one exception: participants with schizophrenia pooled fewer estimates of local orientation than controls when estimating average orientation (p = 0.01, one-way ANCOVA). These data do not support the notion of a generalised visual integration deficit in schizophrenia. Instead, they suggest that distinct visual dimensions are differentially affected in schizophrenia, with a specific impairment in the integration of visual orientation information. PMID:25689281
Global, regional and local health impacts of civil aviation emissions
NASA Astrophysics Data System (ADS)
Yim, Steve H. L.; Lee, Gideon L.; Lee, In Hwan; Allroggen, Florian; Ashok, Akshay; Caiazzo, Fabio; Eastham, Sebastian D.; Malina, Robert; Barrett, Steven R. H.
2015-03-01
Aviation emissions impact surface air quality at multiple scales—from near-airport pollution peaks associated with airport landing and take off (LTO) emissions, to intercontinental pollution attributable to aircraft cruise emissions. Previous studies have quantified aviation’s air quality impacts around a specific airport, in a specific region, or at the global scale. However, no study has assessed the air quality and human health impacts of aviation, capturing effects on all aforementioned scales. This study uses a multi-scale modeling approach to quantify and monetize the air quality impact of civil aviation emissions, approximating effects of aircraft plume dynamics-related local dispersion (˜1 km), near-airport dispersion (˜10 km), regional (˜1000 km) and global (˜10 000 km) scale chemistry and transport. We use concentration-response functions to estimate premature deaths due to population exposure to aviation-attributable PM2.5 and ozone, finding that aviation emissions cause ˜16 000 (90% CI: 8300-24 000) premature deaths per year. Of these, LTO emissions contribute a quarter. Our estimate shows that premature deaths due to long-term exposure to aviation-attributable PM2.5 and O3 lead to costs of ˜21 bn per year. We compare these costs to other societal costs of aviation and find that they are on the same order of magnitude as global aviation-attributable climate costs, and one order of magnitude larger than aviation-attributable accident and noise costs.
Teaching global and local environmental change through Remote Sensing
NASA Astrophysics Data System (ADS)
Mauri, Emanuela Paola; Rossi, Giovanni
2013-04-01
Human beings perceive the world primarily through their sense of sight. This can explain why the use of images is so important and common in educational materials, in particular for scientific subjects. The development of modern technologies for visualizing the scientific features of the Earth has provided new opportunities for communicating the increasing complexity of science both to the public and in school education. In particular, the use of Earth observation satellites for civil purposes, which started in the 70s, has opened new perspectives in the study of natural phenomena and human impact on the environment; this is particularly relevant for those processes developing on a long term period and on a global scale. Instruments for Remote Sensing increase the power of human sight, giving access to additional information about the physical world, which the human eye could not otherwise perceive. The possibility to observe from a remote perspective significant processes like climate change, ozone depletion, desertification, urban development, makes it possible for observers to better appreciate and experience the complexity of environment. Remote Sensing reveals the impact of human activities on ecosystems: this allows students to understand important concepts like global and local change in much more depth. This poster describes the role and effectiveness of Remote Sensing imagery in scientific education, and its importance towards a better global environmental awareness.
The global potential of local peri-urban food production
NASA Astrophysics Data System (ADS)
Kriewald, Steffen; Garcia Cantu Ros, Anselmo; Sterzel, Till; Kropp, Jürgen P.
2013-04-01
One big challenge for the rest of the 21st century will be the massive urbanisation. It is expected that more than 7 out of 10 persons will live in a city by the year 2050. Crucial developments towards a sustainable future will therefore take place in cities. One important approach for a sustainable city development is to re-localize food production and to close urban nutrient cycles through better waste management. The re-location of food production avoids CO2 emissions from transportation of food to cities and can also generate income for inhabitants. Cities are by definition locations where fertility accumulates. As cities are often built along rivers, their soils are often fertile. Furthermore, labour force and the possibility of producing fertilizer from human fecal matter within the city promises sustainable nutrients cycles. Although urban and peri-urban agriculture can be found in many cities worldwide and already have a substantial contribution to food supply, it has not jet been comprehensibly structured by research. We combine several worldwide data sets to determine the supply of cities with regional food production, where regional is defined as a production that occurs very close to the consumption within the peri-urban area. Therefore, urban areas are not defined by administrative boundaries but by connected built-up urban areas, and peri-urban area by the surrounding area with the same size multiplied with a scaling parameter. Both together accumulate to an urban-bio-region (UBR). With regard to national food consumption, a linear program achieves the best possible yield on agricultural areas and allows the computation of the fraction of population, which can be nourished. Additionally, several climate scenarios and different dietary patterns were considered. To close the gap between single case studies and to provide a quantitative overview of the global potential of peri-urban food production we used high resolution land-use data Global Land Cover
Damage localization using experimental modal parameters and topology optimization
NASA Astrophysics Data System (ADS)
Niemann, Hanno; Morlier, Joseph; Shahdin, Amir; Gourinat, Yves
2010-04-01
This work focuses on the development of a damage detection and localization tool using the topology optimization feature of MSC.Nastran. This approach is based on the correlation of a local stiffness loss and the change in modal parameters due to damages in structures. The loss in stiffness is accounted by the topology optimization approach for updating undamaged numerical models towards similar models with embedded damages. Hereby, only a mass penalization and the changes in experimentally obtained modal parameters are used as objectives. The theoretical background for the implementation of this method is derived and programmed in a Nastran input file and the general feasibility of the approach is validated numerically, as well as experimentally by updating a model of an experimentally tested composite laminate specimen. The damages have been introduced to the specimen by controlled low energy impacts and high quality vibration tests have been conducted on the specimen for different levels of damage. These supervised experiments allow to test the numerical diagnosis tool by comparing the result with both NDT technics and results of previous works (concerning shifts in modal parameters due to damage). Good results have finally been achieved for the localization of the damages by the topology optimization.
Local design optimization for composite transport fuselage crown panels
NASA Technical Reports Server (NTRS)
Swanson, G. D.; Ilcewicz, L. B.; Walker, T. H.; Graesser, D.; Tuttle, M.; Zabinsky, Z.
1992-01-01
Composite transport fuselage crown panel design and manufacturing plans were optimized to have projected cost and weight savings of 18 and 45 percent, respectively. These savings are close to those quoted as overall NASA Advanced Composite Technology (ACT) program goals. Three local optimization tasks were found to influence the cost and weight of fuselage crown panels. The effects are summarized of each task and the task associated with a design cost model is described in detail. Studies were performed to evaluate the relationship between manufacturing cost and design details. A design tool was developed to aid in these studies. The development of the design tool included combining cost and performance constraints with a random search optimization algorithm. The resulting software was used in a series of optimization studies that evaluated the sensitivity of design variables, guidelines, criteria, and material selection on cost. The effect of blending adjacent design points in a full scale panel subjected to changing load distributions and local variations was shown to be important. Technical issues and directions for future work were identified.
Local design optimization for composite transport fuselage crown panels
NASA Technical Reports Server (NTRS)
Swanson, G. D.; Ilcewicz, L. B.; Walker, T. H.; Graesser, D.; Tuttle, M.; Zabinsky, Z.
1992-01-01
Composite transport fuselage crown panel design and manufacturing plans were optimized to have projected cost and weight savings of 18 percent and 45 percent, respectively. These savings are close to those quoted as overall NASA ACT program goals. Three local optimization tasks were found to influence the cost and weight of fuselage crown panels. This paper summarizes the effect of each task and describes in detail the task associated with a design cost model. Studies were performed to evaluate the relationship between manufacturing cost and design details. A design tool was developed to aid in these investigations. The development of the design tool included combining cost and performance constraints with a random search optimization algorithm. The resulting software was used in a series of optimization studies that evaluated the sensitivity of design variables, guidelines, criteria, and material selection on cost. The effect of blending adjacent design points in a full scale panel subjected to changing load distributions and local variations was shown to be important. Technical issues and directions for future work were identified.
Spectral Approach to Optimal Estimation of the Global Average Temperature.
NASA Astrophysics Data System (ADS)
Shen, Samuel S. P.; North, Gerald R.; Kim, Kwang-Y.
1994-12-01
Making use of EOF analysis and statistical optimal averaging techniques, the problem of random sampling error in estimating the global average temperature by a network of surface stations has been investigated. The EOF representation makes it unnecessary to use simplified empirical models of the correlation structure of temperature anomalies. If an adjustable weight is assigned to each station according to the criterion of minimum mean-square error, a formula for this error can be derived that consists of a sum of contributions from successive EOF modes. The EOFs were calculated from both observed data and a noise-forced EBM for the problem of one-year and five-year averages. The mean square statistical sampling error depends on the spatial distribution of the stations, length of the averaging interval, and the choice of the weight for each station data stream. Examples used here include four symmetric configurations of 4 × 4, 6 × 4, 9 × 7, and 20 × 10 stations and the Angell-Korshover configuration. Comparisons with the 100-yr U.K. dataset show that correlations for the time series of the global temperature anomaly average between the full dataset and this study's sparse configurations are rather high. For example, the 63-station Angell-Korshover network with uniform weighting explains 92.7% of the total variance, whereas the same network with optimal weighting can lead to 97.8% explained total variance of the U.K. dataset.
Spectral approach to optimal estimation of the global average temperature
Shen, S.S.P.; North, G.R.; Kim, K.Y.
1994-12-01
Making use of EOF analysis and statistical optimal averaging techniques, the problem of random sampling error in estimating the global average temperature by a network of surface stations has been investigated. The EOF representation makes it unnecessary to use simplified empirical models of the correlation structure of temperature anomalies. If an adjustable weight is assigned to each station according to the criterion of minimum mean-square error, a formula for this error can be derived that consists of a sum of contributions from successive EOF modes. The EOFs were calculated from both observed data a noise-forced EBM for the problem of one-year and five-year averages. The mean square statistical sampling error depends on the spatial distribution of the stations, length of the averaging interval, and the choice of the weight for each station data stream. Examples used here include four symmetric configurations of 4 X 4, 5 X 4, 9 X 7, and 20 X 10 stations and the Angell-Korshover configuration. Comparisons with the 100-yr U.K. dataset show that correlations for the time series of the global temperature anomaly average between the full dataset and this study`s sparse configurations are rather high. For example, the 63-station Angell-Korshover network with uniform weighting explains 92.7% of the total variance, whereas the same network with optimal weighting can lead to 97.8% explained total variance of the U.K. dataset. 27 refs., 5 figs., 4 tabs.
ERIC Educational Resources Information Center
Blackmore, Jill
1999-01-01
Explores implications of the globalization/localization process for state feminism, focusing on Australia. Localization is one response to globalization, exemplified by devolution to self-managing schools. However, global/local relations have gendered effects that resonate cross-nationally. Problems will emerge as the state withdraws from its…
ERIC Educational Resources Information Center
Helton, William S.; Hayrynen, Lauren; Schaeffer, David
2009-01-01
Vision researchers have investigated the differences between global and local feature perception. No one has, however, examined the role of global and local feature discrimination in sustained attention tasks. In this experiment participants performed a sustained attention task requiring either global or local letter target discriminations or…
GMG: A Guaranteed, Efficient Global Optimization Algorithm for Remote Sensing.
D'Helon, CD
2004-08-18
The monocular passive ranging (MPR) problem in remote sensing consists of identifying the precise range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem may be set as a global optimization problem (GOP) whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. Using additional information about the error function between the predicted and observed radiances of the target, we developed GMG, a new algorithm to find the Global Minimum with a Guarantee. The new algorithm transforms the original continuous GOP into a discrete search problem, thereby guaranteeing to find the position of the global minimum in a reasonably short time. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions and then applied to various realizations of the MPR problem.
GMG - A guaranteed global optimization algorithm: Application to remote sensing
D'Helon, Cassius; Protopopescu, Vladimir A; Wells, Jack C; Barhen, Jacob
2007-01-01
We investigate the role of additional information in reducing the computational complexity of the global optimization problem (GOP). Following this approach, we develop GMG -- an algorithm to find the Global Minimum with a Guarantee. The new algorithm breaks up an originally continuous GOP into a discrete (grid) search problem followed by a descent problem. The discrete search identifies the basin of attraction of the global minimum after which the actual location of the minimizer is found upon applying a descent algorithm. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions. We then illustrate the performance of the the validated algorithm on a simple realization of the monocular passive ranging (MPR) problem in remote sensing, which consists of identifying the range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem is set as a GOP whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. We solve the GOP using GMG and report on the performance of the algorithm.
Sensitivity of Local Temperature CDFs to Global Climate Change
NASA Astrophysics Data System (ADS)
Stainforth, D.; Chapman, S. C.; Watkins, N. W.
2011-12-01
The sensitivity of climate to increasing atmospheric greenhouse gases at the global scale has been much studied [Knutti and Hegerl 2008, and references therein]. Scientific information to support climate change adaptation activities, however, is often sought at regional or local scales; the scales on which most adaptation decisions are made. Information on these scales is most often based on simulations of complex climate models [Murphy et al. 2009, Tebaldi et al. 2005] and have questionable reliability [Stainforth et al., 2007]. Rather than using data derived or obtained from models we focus on observational timeseries to evaluate the sensitivity of different parts of the local climatic distribution. Such an approach has many advantages: it avoids issues relating to model imperfections [Stainforth et al. 2007], it can be focused on decision relevant thresholds [e.g. Porter and Semenov, 2005], and it inherently integrates information relating to local climatic influences. Taking a timeseries of local daily temperatures for various locations across the United Kingdom we extract the changing cumulative distribution functions over time. We present a simple mathematical deconstruction of how two different observations from two different time periods can be assigned to the combination of natural variability and/or the consequences of climate change. Using this deconstruction we analyse the changing shape of the distributions and thus the sensitivity of different quartiles of the distribution. These sensitivities are found to be both regionally consistent and geographically varying across the United Kingdom; as one would expect given the different influences on local climate between, say, Western Scotland and South East England. We nevertheless find a common pattern of increased sensitivity in the 60th to 80th percentiles; above the mean but below the greatest extremes. The method has the potential to be applied to many other variables in addition to temperature and to
Proteins comparison through probabilistic optimal structure local alignment
Micale, Giovanni; Pulvirenti, Alfredo; Giugno, Rosalba; Ferro, Alfredo
2014-01-01
Multiple local structure comparison helps to identify common structural motifs or conserved binding sites in 3D structures in distantly related proteins. Since there is no best way to compare structures and evaluate the alignment, a wide variety of techniques and different similarity scoring schemes have been proposed. Existing algorithms usually compute the best superposition of two structures or attempt to solve it as an optimization problem in a simpler setting (e.g., considering contact maps or distance matrices). Here, we present PROPOSAL (PROteins comparison through Probabilistic Optimal Structure local ALignment), a stochastic algorithm based on iterative sampling for multiple local alignment of protein structures. Our method can efficiently find conserved motifs across a set of protein structures. Only the distances between all pairs of residues in the structures are computed. To show the accuracy and the effectiveness of PROPOSAL we tested it on a few families of protein structures. We also compared PROPOSAL with two state-of-the-art tools for pairwise local alignment on a dataset of manually annotated motifs. PROPOSAL is available as a Java 2D standalone application or a command line program at http://ferrolab.dmi.unict.it/proposal/proposal.html. PMID:25228906
A Framework for Parallel Nonlinear Optimization by Partitioning Localized Constraints
Xu, You; Chen, Yixin
2008-06-28
We present a novel parallel framework for solving large-scale continuous nonlinear optimization problems based on constraint partitioning. The framework distributes constraints and variables to parallel processors and uses an existing solver to handle the partitioned subproblems. In contrast to most previous decomposition methods that require either separability or convexity of constraints, our approach is based on a new constraint partitioning theory and can handle nonconvex problems with inseparable global constraints. We also propose a hypergraph partitioning method to recognize the problem structure. Experimental results show that the proposed parallel algorithm can efficiently solve some difficult test cases.
Response of Hypervelocity Boundary Layers to Global and Local Distortion
NASA Astrophysics Data System (ADS)
Flaherty, William; Austin, Joanna
2013-11-01
Concave surface curvature can impose significant distortion to compressible boundary layer flows due to multiple, potentially coupled, effects including an adverse pressure gradient, bulk flow compression, and possible centrifugal instabilities. Approximate methods provide insight into dominant mechanisms, however few strategies are capable of treating heat transfer effects and predictions diverge significantly from the available experimental data at larger pressure gradient. In this work, we examine the response of boundary layers to global and local distortions in hypervelocity flows where thermochemical energy exchange has significant impact on boundary layer structure and stability. Experiments are carried out in a novel expansion tube facility built at Illinois. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle, even at the conditions of greatest distortion. As a model problem to study the evolution of large-scale structures under strained conditions, streamwise vortices are imposed into the boundary layer. The impact of the additional local distortion is investigated. The heat transfer scaling is found to be robust even in the presence of the imposed structures.
Avoiding coral reef functional collapse requires local and global action.
Kennedy, Emma V; Perry, Chris T; Halloran, Paul R; Iglesias-Prieto, Roberto; Schönberg, Christine H L; Wisshak, Max; Form, Armin U; Carricart-Ganivet, Juan P; Fine, Maoz; Eakin, C Mark; Mumby, Peter J
2013-05-20
Coral reefs face multiple anthropogenic threats, from pollution and overfishing to the dual effects of greenhouse gas emissions: rising sea temperature and ocean acidification. While the abundance of coral has declined in recent decades, the implications for humanity are difficult to quantify because they depend on ecosystem function rather than the corals themselves. Most reef functions and ecosystem services are founded on the ability of reefs to maintain their three-dimensional structure through net carbonate accumulation. Coral growth only constitutes part of a reef's carbonate budget; bioerosion processes are influential in determining the balance between net structural growth and disintegration. Here, we combine ecological models with carbonate budgets and drive the dynamics of Caribbean reefs with the latest generation of climate models. Budget reconstructions using documented ecological perturbations drive shallow (6-10 m) Caribbean forereefs toward an increasingly fragile carbonate balance. We then projected carbonate budgets toward 2080 and contrasted the benefits of local conservation and global action on climate change. Local management of fisheries (specifically, no-take marine reserves) and the watershed can delay reef loss by at least a decade under "business-as-usual" rises in greenhouse gas emissions. However, local action must be combined with a low-carbon economy to prevent degradation of reef structures and associated ecosystem services. PMID:23664976
Global, quantitative and dynamic mapping of protein subcellular localization
Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg HH
2016-01-01
Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology. DOI: http://dx.doi.org/10.7554/eLife.16950.001 PMID:27278775
How the global informs the local: the Botswana Citizenship Case.
Dow, J U
2001-06-01
In this article I put forward the following positions. First is that women in Africa have not been involved in the formulation and/or interpretation and or implementation of what are now accepted norms and concepts that inform current notions of human rights, democracy, and good governance. Second, women's contact with systems that are traditionally viewed as the bedrock of democracy and good governance have been from a position of weakness, in roles of servants, objects, and exceptions to the general rule. Third, women have not been participants, on an equal basis with men, in the negotiation, formulation, development, and implementation of national constitutions. Fourth, many national constitutions fail to guarantee women equal rights with men under the law. Fifth, I suggest that only when women are equal actors in the process can there be a legitimate claim that Africa is on the road to democracy. Finally, the local cannot remain isolated and exclusively self-informing, and, consequently, the global must inform and influence the local. Such influence is legitimate, justified, and necessary if women are to gain their human rights at the local level. I use my case, that is, the case of The Attorney General of the Republic of Botswana v Unity Dow Civil Appeal No. 4/91, often referred to as the Citizenship Case, or the Dow Case, to demonstrate these positions. This is a case in which I successfully challenged the Citizenship Act of 1984 on the grounds that it discriminated against women. PMID:11813782
Hybridization of decomposition and local search for multiobjective optimization.
Ke, Liangjun; Zhang, Qingfu; Battiti, Roberto
2014-10-01
Combining ideas from evolutionary algorithms, decomposition approaches, and Pareto local search, this paper suggests a simple yet efficient memetic algorithm for combinatorial multiobjective optimization problems: memetic algorithm based on decomposition (MOMAD). It decomposes a combinatorial multiobjective problem into a number of single objective optimization problems using an aggregation method. MOMAD evolves three populations: 1) population P(L) for recording the current solution to each subproblem; 2) population P(P) for storing starting solutions for Pareto local search; and 3) an external population P(E) for maintaining all the nondominated solutions found so far during the search. A problem-specific single objective heuristic can be applied to these subproblems to initialize the three populations. At each generation, a Pareto local search method is first applied to search a neighborhood of each solution in P(P) to update P(L) and P(E). Then a single objective local search is applied to each perturbed solution in P(L) for improving P(L) and P(E), and reinitializing P(P). The procedure is repeated until a stopping condition is met. MOMAD provides a generic hybrid multiobjective algorithmic framework in which problem specific knowledge, well developed single objective local search and heuristics and Pareto local search methods can be hybridized. It is a population based iterative method and thus an anytime algorithm. Extensive experiments have been conducted in this paper to study MOMAD and compare it with some other state-of-the-art algorithms on the multiobjective traveling salesman problem and the multiobjective knapsack problem. The experimental results show that our proposed algorithm outperforms or performs similarly to the best so far heuristics on these two problems. PMID:25222724
NASA Astrophysics Data System (ADS)
Hamza, Karim; Shalaby, Mohamed
2014-09-01
This article presents a framework for simulation-based design optimization of computationally expensive problems, where economizing the generation of sample designs is highly desirable. One popular approach for such problems is efficient global optimization (EGO), where an initial set of design samples is used to construct a kriging model, which is then used to generate new 'infill' sample designs at regions of the search space where there is high expectancy of improvement. This article attempts to address one of the limitations of EGO, where generation of infill samples can become a difficult optimization problem in its own right, as well as allow the generation of multiple samples at a time in order to take advantage of parallel computing in the evaluation of the new samples. The proposed approach is tested on analytical functions, and then applied to the vehicle crashworthiness design of a full Geo Metro model undergoing frontal crash conditions.
What does global mean temperature tell us about local climate?
Sutton, Rowan; Suckling, Emma; Hawkins, Ed
2015-01-01
The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies. PMID:26438282
Local and Global Illumination in the Volume Rendering Integral
Max, N; Chen, M
2005-10-21
This article is intended as an update of the major survey by Max [1] on optical models for direct volume rendering. It provides a brief overview of the subject scope covered by [1], and brings recent developments, such as new shadow algorithms and refraction rendering, into the perspective. In particular, we examine three fundamentals aspects of direct volume rendering, namely the volume rendering integral, local illumination models and global illumination models, in a wavelength-independent manner. We review the developments on spectral volume rendering, in which visible light are considered as a form of electromagnetic radiation, optical models are implemented in conjunction with representations of spectral power distribution. This survey can provide a basis for, and encourage, new efforts for developing and using complex illumination models to achieve better realism and perception through optical correctness.
Global optimization approaches for finding the atomic structure of surfaces and nanowires
NASA Astrophysics Data System (ADS)
Ciobanu, Cristian
2007-03-01
In the cluster structure community, global optimization methods are common tools for seeking the structure of molecular and atomic clusters. The large number of local minima of the potential energy surface (PES) of these clusters, and the fact that these local minima proliferate exponentially with the number of atoms in the cluster simply demands the use of fast stochastic methods to find the optimum atomic configuration. Therefore, most of the development work has come from (and mostly stayed within) the cluster structure community. Partly due to wide availability and landmark successes of scanning tunneling microscopy (STM) and other high resolution microscopy techniques, finding the structure of periodically reconstructed semiconductor surfaces was not generally posed as a problem of stochastic optimization until recently [1], when we have shown that high-index semiconductor surfaces can have a rather large number of local minima with such low surface energies that the identification of the global minimum becomes problematic. We have therefore set out to develop global optimization methods for systems other than clusters, focusing on periodic systems in one- and two- dimensions as such systems currently occupy a central place in the field of nanoscience. In this talk, we review some of our recent work on global optimization methods (the parallel-tempering Monte Carlo method [1] and the genetic algorithm [2]) and show examples/results from two main problem categories: (a) the two-dimensional problem of determining the atomic configuration of clean semiconductor surfaces [1,2], and (b) finding the structure of freestanding nanowires [3]. While focused on mainly on atomic structure, our account will show examples of how these development efforts contributed to elucidating several physical problems and we will attempt to make a case for widespread use of these methods for structural problems in one and two dimenstions. [1]C.V. Ciobanu and C. Predescu, Reconstruction
The Global and Local Characters of Mars Perihelion Cloud Trails
NASA Astrophysics Data System (ADS)
Clancy, R. T.; Wolff, M. J.; Smith, M. D.; Cantor, B. A.; Spiga, A.
2014-12-01
We present the seasonal and spatial distribution of Mars perihelion cloud trails as mapped from Mars Reconnaissance Orbiter (MRO) MARCI (Mars Color Imager) imaging observations in 2 ultraviolet and 3 visible filters. The extended 2007-2013 period of MARCI daily global image maps reveals the widespread distribution of these high altitude clouds, which are somewhat paradoxically associated with specific surface regions. They appear as longitudinally extended (300-700 km) cloud trails with distinct leading plumes of substantial ice cloud optical depths (0.02-0.2) for such high altitudes of occurrence (40-50 km, from cloud surface shadow measurements). These plumes generate small ice particles (Reff~1 to <0.2 microns) that become entrained in the strong westward mesospheric zonal wind regime of the perihelion (southern summer ) season, although the specific dynamics and cloud microphysics for these plumes are not determined. They are clearly tied to maximum surface heating on Mars, in terms of season (perihelion), local time (early afternoon), and surface latitude/albedo/elevation. The most persistent expressions of these clouds are found in association with two Valles Marineris locations (Clancy et al., 2009). However, a broader survey of MARCI observations reveals many specific regions of occurrence over Ls=200-300. Furthermore, MRO CRISM limb observations indicate a haze of such fine water ice particles characterizes the full southern hemisphere mesosphere at this time. Hence, the behavior of perihelion cloud trails appears to reflect locally elevated mesospheric water ice formation that may impact the global expression of mesospheric water ice aerosols.
Reinforcement active learning in the vibrissae system: optimal object localization.
Gordon, Goren; Dorfman, Nimrod; Ahissar, Ehud
2013-01-01
Rats move their whiskers to acquire information about their environment. It has been observed that they palpate novel objects and objects they are required to localize in space. We analyze whisker-based object localization using two complementary paradigms, namely, active learning and intrinsic-reward reinforcement learning. Active learning algorithms select the next training samples according to the hypothesized solution in order to better discriminate between correct and incorrect labels. Intrinsic-reward reinforcement learning uses prediction errors as the reward to an actor-critic design, such that behavior converges to the one that optimizes the learning process. We show that in the context of object localization, the two paradigms result in palpation whisking as their respective optimal solution. These results suggest that rats may employ principles of active learning and/or intrinsic reward in tactile exploration and can guide future research to seek the underlying neuronal mechanisms that implement them. Furthermore, these paradigms are easily transferable to biomimetic whisker-based artificial sensors and can improve the active exploration of their environment. PMID:22789551
Global dispersion and local diversification of the methane seep microbiome
Ruff, S. Emil; Biddle, Jennifer F.; Teske, Andreas P.; Knittel, Katrin; Boetius, Antje
2015-01-01
Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reservoirs. The microorganisms inhabiting methane seeps transform the chemical energy in methane to products that sustain rich benthic communities around the gas leaks. Despite the biogeochemical relevance of microbial methane removal at seeps, the global diversity and dispersion of seep microbiota remain unknown. Here we determined the microbial diversity and community structure of 23 globally distributed methane seeps and compared these to the microbial communities of 54 other seafloor ecosystems, including sulfate–methane transition zones, hydrothermal vents, coastal sediments, and deep-sea surface and subsurface sediments. We found that methane seep communities show moderate levels of microbial richness compared with other seafloor ecosystems and harbor distinct bacterial and archaeal taxa with cosmopolitan distribution and key biogeochemical functions. The high relative sequence abundance of ANME (anaerobic methanotrophic archaea), as well as aerobic Methylococcales, sulfate-reducing Desulfobacterales, and sulfide-oxidizing Thiotrichales, matches the most favorable microbial metabolisms at methane seeps in terms of substrate supply and distinguishes the seep microbiome from other seafloor microbiomes. The key functional taxa varied in relative sequence abundance between different seeps due to the environmental factors, sediment depth and seafloor temperature. The degree of endemism of the methane seep microbiome suggests a high local diversification in these heterogeneous but long-lived ecosystems. Our results indicate that the seep microbiome is structured according to metacommunity processes and that few cosmopolitan microbial taxa mediate the bulk of methane oxidation, with global relevance to methane emission in the ocean. PMID:25775520
Local and global uncertainty analyses of a methane flame model.
Zádor, Judit; Zsély, István Gy; Turányi, Tamás; Ratto, Marco; Tarantola, Stefano; Saltelli, Andrea
2005-11-01
Local and global uncertainty analyses of a flat, premixed, stationary, laminar methane flame model were carried out using the Leeds methane oxidation mechanism at lean (phi = 0.70), stoichiometric (phi = 1.00), and rich (phi = 1.20) equivalence ratios. Uncertainties of laminar flame velocity, maximal flame temperature, and maximal concentrations of radicals H, O, OH, CH, and CH(2) were investigated. Global uncertainty analysis methods included the Morris method, the Monte Carlo analysis with Latin hypercube sampling, and an improved version of the Sobol' method. Assumed probability density functions (pdf's) were assigned to the rate coefficients of all the 175 reactions and to the enthalpies of formation of the 37 species. The analyses provided the following answers: approximate pdf's and standard deviations of the model results, minimum and maximum values of the results at any physically realistic parameter combination, and the contribution of the uncertainty of each parameter to the uncertainty of the model result. The uncertainty of a few rate parameters and a few enthalpies of formation causes most of the uncertainty of the model results. Most uncertainty comes from the inappropriate knowledge of kinetic data, but the uncertainty caused by thermodynamic data is also significant. PMID:16833293
NASA Astrophysics Data System (ADS)
Beckers, J.-M.; Barth, A.; Tomazic, I.; Alvera-Azcárate, A.
2014-03-01
We present a method in which the optimal interpolation of multi-scale processes can be untangled into a succession of simpler interpolations. First, we prove how the optimal analysis of a superposition of two processes can be obtained by different mathematical formulations involving iterations and analysis focusing on a single process. From the different mathematical equivalent formulations we then select the most efficient ones by analyzing the behavior of the different possibilities in a simple and well controlled test case. The clear guidelines deduced from this experiment are then applied in a real situation in which we combine large-scale analysis of hourly SEVIRI satellite images using DINEOF with a local optimal interpolation using a Gaussian covariance. It is shown that the optimal combination indeed provides the best reconstruction and can therefore be exploited to extract the maximum amount of useful information from the original data.
Adjusting process count on demand for petascale global optimization
Sosonkina, Masha; Watson, Layne T.; Radcliffe, Nicholas R.; Haftka, Rafael T.; Trosset, Michael W.
2012-11-23
There are many challenges that need to be met before efficient and reliable computation at the petascale is possible. Many scientific and engineering codes running at the petascale are likely to be memory intensive, which makes thrashing a serious problem for many petascale applications. One way to overcome this challenge is to use a dynamic number of processes, so that the total amount of memory available for the computation can be increased on demand. This paper describes modifications made to the massively parallel global optimization code pVTdirect in order to allow for a dynamic number of processes. In particular, the modified version of the code monitors memory use and spawns new processes if the amount of available memory is determined to be insufficient. The primary design challenges are discussed, and performance results are presented and analyzed.
Two-level global optimization for image segmentation
NASA Astrophysics Data System (ADS)
Pan, He-Ping
Domain-independent image segmentation is considered here as a global optimization problem: to seek the simplest description of a given input image in terms of coherent closed regions. The approach consists of two levels of processing: pixel-level and region-level, both based on the Minimum-Description-Length principle. Pixel-level processing leads to forming the atomic regions that are then labelled. In region-level processing neighbouring regions are merged into larger ones using an explicit attributed graph evolution mechanism. Both level processings are stopped automatically without using any heuristic control parameters. Experiments are carried out with a number of images of different scene types. Parallel implementation of region-level processing is the most difficult problem to be solved for the operational application of this approach.
Automation of a reclaimer using global and local range-finding systems
NASA Astrophysics Data System (ADS)
Ahn, Hyun S.; Choi, Chin T.; Lee, Kwan H.; Ha, Yeong-Ho
1996-02-01
A reclaimer is used to dig raw material from a pile and transfer it to the blast furnaces in a steel making company. We propose a range finding vision system consisting of global and local range finders to fully automate the reclaimer. A global range sensor attached to the top of the reclaimer enables scanning more than 270 degrees and detecting a three dimensional profile of a pile. The sensor uses Ladar containing a range finder and one axis scan mirror. We added a motor to rotate Ladar for another axis scanning. A height map is obtained from the acquired range data by geometric transformation. Linear interpolation is applied between neighboring range data pixels because the initial height map is represented as a group of sparsely shaped points. By thresholding and edge following, we can calculate the optimal job path which avoids overload and maximizes digging efficiency. A local range finder attached at the end of the boom detects range data between the pile and bucket. The world coordinates are computed by three-dimensional translation and rotation of local range data. The local range data is used for renewing the height map after picking up some part of the pile. In this way, we obtain pile management and reclaimer automation.
WFH: closing the global gap--achieving optimal care.
Skinner, Mark W
2012-07-01
For 50 years, the World Federation of Hemophilia (WFH) has been working globally to close the gap in care and to achieve Treatment for All patients, men and women, with haemophilia and other inherited bleeding disorders, regardless of where they might live. The WFH estimates that more than one in 1000 men and women has a bleeding disorder equating to 6,900,000 worldwide. To close the gap in care between developed and developing nations a continued focus on the successful strategies deployed heretofore will be required. However, in response to the rapid advances in treatment and emerging therapeutic advances on the horizon it will also require fresh approaches and renewed strategic thinking. It is difficult to predict what each therapeutic advance on the horizon will mean for the future, but there is no doubt that we are in a golden age of research and development, which has the prospect of revolutionizing treatment once again. An improved understanding of "optimal" treatment is fundamental to the continued evolution of global care. The challenges of answering government and payer demands for evidence-based medicine, and cost justification for the introduction and enhancement of treatment, are ever-present and growing. To sustain and improve care it is critical to build the body of outcome data for individual patients, within haemophilia treatment centers (HTCs), nationally, regionally and globally. Emerging therapeutic advances (longer half-life therapies and gene transfer) should not be justified or brought to market based only on the notion that they will be economically more affordable, although that may be the case, but rather more importantly that they will be therapeutically more advantageous. Improvements in treatment adherence, reductions in bleeding frequency (including microhemorrhages), better management of trough levels, and improved health outcomes (including quality of life) should be the foremost considerations. As part of a new WFH strategic plan
Helix/Coil Nucleation: A Local Response to Global Demands
Vorov, Oleg K.; Livesay, Dennis R.; Jacobs, Donald J.
2009-01-01
Abstract A complete description of protein structure and function must include a proper treatment of mechanisms that lead to cooperativity. The helix/coil transition serves as a simple example of a cooperative folding process, commonly described by a nucleation-propagation mechanism. The prevalent view is that coil structure must first form a short segment of helix in a localized region despite paying a free energy cost (nucleation). Afterward, helical structure propagates outward from the nucleation site. Both processes entail enthalpy-entropy compensation that derives from the loss in conformational entropy on helix formation with concomitant gain in favorable interactions. Nucleation-propagation models inherently assume that cooperativity arises from a sequential series of local events. An alternative distance constraint model asserts there is a direct link between available degrees of freedom and cooperativity through the nonadditivity in conformational entropy. That is, helix nucleation is a concerted manifestation of rigidity propagating through atomic structure. The link between network rigidity and nonadditivity of conformational entropy is shown in this study by solving the distance constraint model using a simple global constraint counting approximation. Cooperativity arises from competition between excess and deficiency in available degrees of freedom in the coil and helix states respectively. PMID:19948130
Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization
NASA Astrophysics Data System (ADS)
López-Ibáñez, Manuel; Paquete, Luís; Stützle, Thomas
This chapter introduces two Perl programs that implement graphical tools for exploring the performance of stochastic local search algorithms for biobjective optimization problems. These tools are based on the concept of the empirical attainment function (EAF), which describes the probabilistic distribution of the outcomes obtained by a stochastic algorithm in the objective space. In particular, we consider the visualization of attainment surfaces and differences between the first-order EAFs of the outcomes of two algorithms. This visualization allows us to identify certain algorithmic behaviors in a graphical way. We explain the use of these visualization tools and illustrate them with examples arising from practice.
A graph-based approach for local and global panorama imaging in cystoscopy
NASA Astrophysics Data System (ADS)
Bergen, Tobias; Wittenberg, Thomas; Münzenmayer, Christian; Chen, Chi Chiung Grace; Hager, Gregory D.
2013-03-01
Inspection of the urinary bladder with an endoscope (cystoscope) is the usual procedure for early detection of bladder cancer. The very limited field of view provided by the endoscope makes it challenging to ensure, that the interior bladder wall has been examined completely. Panorama imaging techniques can be used to assist the surgeon and provide a larger view field. Different approaches have been proposed, but generating a panorama image of the entire bladder from real patient data is still a challenging research topic. We propose a graph-based and hierarchical approach to assess this problem to first generate several local panorama images, followed by a global textured three-dimensional reconstruction of the organ. In this contribution, we address details of the first level of the approach including a graph-based algorithm to deal with the challenging condition of in-vivo data. This graph strategy gives rise to a robust relocalization strategy in case of tracking failure, an effective keyframe selection process as well as the concept of building locally optimized sub-maps, which lay the ground for a global optimization process. Our results show the successful application of the method to four in-vivo data sets.
Asymptotically optimal data analysis for rejecting local realism
Zhang, Yanbao; Glancy, Scott; Knill, Emanuel
2011-12-15
Reliable experimental demonstrations of violations of local realism are highly desirable for fundamental tests of quantum mechanics. One can quantify the violation witnessed by an experiment in terms of a statistical p value, which can be defined as the maximum probability according to local realism of a violation at least as high as that witnessed. Thus, high violation corresponds to small p value. We propose a prediction-based-ratio (PBR) analysis protocol whose p values are valid even if the prepared quantum state varies arbitrarily and local realistic models can depend on previous measurement settings and outcomes. It is therefore not subject to the memory loophole [J. Barrett et al., Phys. Rev. A 66, 042111 (2002)]. If the prepared state does not vary in time, the p values are asymptotically optimal. For comparison, we consider protocols derived from the number of standard deviations of violation of a Bell inequality and from martingale theory [R. Gill, e-print arXiv:quant-ph/0110137]. We find that the p values of the former can be too small and are therefore not statistically valid, while those derived from the latter are suboptimal. PBR p values do not require a predetermined Bell inequality and can be used to compare results from different tests of local realism independent of experimental details.
Asymptotically optimal data analysis for rejecting local realism
NASA Astrophysics Data System (ADS)
Zhang, Yanbao; Glancy, Scott; Knill, Emanuel
2011-12-01
Reliable experimental demonstrations of violations of local realism are highly desirable for fundamental tests of quantum mechanics. One can quantify the violation witnessed by an experiment in terms of a statistical p value, which can be defined as the maximum probability according to local realism of a violation at least as high as that witnessed. Thus, high violation corresponds to small p value. We propose a prediction-based-ratio (PBR) analysis protocol whose p values are valid even if the prepared quantum state varies arbitrarily and local realistic models can depend on previous measurement settings and outcomes. It is therefore not subject to the memory loophole [J. Barrett , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.66.042111 66, 042111 (2002)]. If the prepared state does not vary in time, the p values are asymptotically optimal. For comparison, we consider protocols derived from the number of standard deviations of violation of a Bell inequality and from martingale theory [R. Gill, e-print arXiv:quant-ph/0110137]. We find that the p values of the former can be too small and are therefore not statistically valid, while those derived from the latter are suboptimal. PBR p values do not require a predetermined Bell inequality and can be used to compare results from different tests of local realism independent of experimental details.
Vector direction of filled function method on solving unconstrained global optimization problem
NASA Astrophysics Data System (ADS)
Napitupulu, Herlina; Mohd, Ismail Bin
2016-02-01
Filled function method is one of deterministic methods for solving global minimization problems. Filled function algorithm method generally contains of two main phases. First phase is to obtain local minimizer of objective function, second is to obtain minimizer or saddle point of filled function. In the second phase, vector direction plays an important role on finding stationary point of filled function, by assist in escaping from neighborhood of current minimizer of objective function of the first phase. In this paper, we introduce parameter free filled function and some typical vector direction to be applied in filled function algorithm. The algorithm method is implemented into some benchmark test functions. General computational and numerical results are presented to show the performance of each vector direction on filled function method for solving two dimensional unconstrained global optimization problems.
"Glocalization": Going beyond the Dichotomy of Global versus Local through Additive Multilingualism
ERIC Educational Resources Information Center
Joseph, Michael; Ramani, Esther
2012-01-01
This article interrogates the notion of "glocalization" (Moja, 2004, based on Castells, 2001) as a concept that seeks to integrate the local and the global to address both the need for social justice and the need to participate in a global market economy. The article argues that the relation between the global and the local cannot be explored…
Restarted local search algorithms for continuous black box optimization.
Pošík, Petr; Huyer, Waltraud
2012-01-01
Several local search algorithms for real-valued domains (axis parallel line search, Nelder-Mead simplex search, Rosenbrock's algorithm, quasi-Newton method, NEWUOA, and VXQR) are described and thoroughly compared in this article, embedding them in a multi-start method. Their comparison aims (1) to help the researchers from the evolutionary community to choose the right opponent for their algorithm (to choose an opponent that would constitute a hard-to-beat baseline algorithm), (2) to describe individual features of these algorithms and show how they influence the algorithm on different problems, and (3) to provide inspiration for the hybridization of evolutionary algorithms with these local optimizers. The recently proposed Comparing Continuous Optimizers (COCO) methodology was adopted as the basis for the comparison. The results show that in low dimensional spaces, the old method of Nelder and Mead is still the most successful among those compared, while in spaces of higher dimensions, it is better to choose an algorithm based on quadratic modeling, such as NEWUOA or a quasi-Newton method. PMID:22779407
Lee, JongHyup; Pak, Dohyun
2016-01-01
For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743
Inversion of seismological data using a controlled random search global optimization technique
NASA Astrophysics Data System (ADS)
Shanker, K.; Mohan, C.; Khattri, K. N.
1991-11-01
Inversion problems in seismology deal with the estimation of the location and the time of occurrence of an earthquake from observations of the arrival time of the body waves. These problems can be regarded as non-linear optimization problems in which the objective function to be minimized is the discrepancy between the recorded arrival times and the calculated arrival times at a prescribed set of observation stations, as a function of the hypocentral parameters and the wave speed structure of the Earth. The objective of the present paper is to demonstrate the effectiveness of a controlled random search algorithm of global optimization (Shanker and Mohan, 1987; Mohan and Shanker, 1988) in solving such types of inversion problems. The performance of the algorithm has been tested on earthquake arrival time data of earthquakes recorded in the vicinity of local networks in the Garhwal Kumaon region of the Himalayas.
Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka
2013-01-01
Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted. PMID:24324383
Coupled effects of local movement and global interaction on contagion
NASA Astrophysics Data System (ADS)
Zhong, Li-Xin; Xu, Wen-Juan; Chen, Rong-Da; Qiu, Tian; Shi, Yong-Dong; Zhong, Chen-Yang
2015-10-01
By incorporating segregated spatial domain and individual-based linkage into the SIS (susceptible-infected-susceptible) model, we propose a generalized epidemic model which can change from the territorial epidemic model to the networked epidemic model. The role of the individual-based linkage between different spatial domains is investigated. As we adjust the timescale parameter τ from 0 to unity, which represents the degree of activation of the individual-based linkage, three regions are found. Within the region of 0 < τ < 0.02, the epidemic is determined by local movement and is sensitive to the timescale τ. Within the region of 0.02 < τ < 0.5, the epidemic is insensitive to the timescale τ. Within the region of 0.5 < τ < 1, the outbreak of the epidemic is determined by the structure of the individual-based linkage. As we keep an eye on the first region, the role of activating the individual-based linkage in the present model is similar to the role of the shortcuts in the two-dimensional small world network. Only activating a small number of the individual-based linkage can prompt the outbreak of the epidemic globally. The role of narrowing segregated spatial domain and reducing mobility in epidemic control is checked. These two measures are found to be conducive to curbing the spread of infectious disease only when the global interaction is suppressed. A log-log relation between the change in the number of infected individuals and the timescale τ is found. By calculating the epidemic threshold and the mean first encounter time, we heuristically analyze the microscopic characteristics of the propagation of the epidemic in the present model.
Local and global perspectives on the virtual water trade
NASA Astrophysics Data System (ADS)
Tamea, S.; Allamano, P.; Carr, J. A.; Claps, P.; Laio, F.; Ridolfi, L.
2013-03-01
Recent studies on fluxes of virtual water are showing how the global food and goods trade interconnects the water resources of different and distant countries, conditioning the local water balances. This paper presents and discusses the assessment of virtual water fluxes between a single country and its network of trading partners, delineating a country's virtual water budget in space and time (years 1986-2010). The fluxes between the country under study and its importing/exporting partners are visualized with a geographical representation shaping the trade network as a virtual river/delta. Time variations of exchanged fluxes are quantified to show possible trends in the virtual water balance, while characterizing the time evolution of the trade network and its composition in terms of product categories (plant-based, animal-based, luxury food, and non-edible). The average distance traveled by virtual water to arrive to the place of consumption is also introduced as a new measure for the analysis of globalization of the virtual water trade. Using Italy as an example, we find that food trade has a steadily growing importance compared to domestic production, with a major component represented by plant-based products, and luxury products taking an increasingly larger share (26% in 2010). In 2010 Italy had an average net import of 55 km3 of virtual water (38 km3 in 1986), a value which poses the country among the top net importers in the world. On average each cubic meter of virtual water travels nearly 4000 km before entering Italy, while export goes to relatively closer countries (average distance: 2600 km), with increasing trends in time which are almost unique among the world countries. Analyses proposed for Italy are replicated for 10 other world countries, triggering similar investigations on different socio-economic actualities.
Local and global perspectives on the virtual water trade
NASA Astrophysics Data System (ADS)
Tamea, S.; Allamano, P.; Carr, J. A.; Claps, P.; Laio, F.; Ridolfi, L.
2012-11-01
Recent studies on fluxes of virtual water are showing how the global food and goods trade interconnects the water resources of different and distant countries, conditioning the local water balances. This paper presents and discusses the assessment of virtual water fluxes between a single country and its network of trading partners, delineating a country's virtual water budget in space and time (years 1986-2010). The fluxes between the country under study and its importing/exporting partners are visualized with a geographical representation shaping the trade network as a virtual river/delta. Time variations of exchanged fluxes are quantified to show possible trends in the virtual water balance, while characterizing the time evolution of the trade network and its composition in terms of product categories (plant-based, animal-based, luxury and non-edible). The average distance traveled by virtual water to arrive to the place of consumption is also introduced as a new measure for the analysis of globalization of the virtual water trade. Using Italy as an example, we find that food trade has a steadily growing importance compared to domestic production, with a major component represented by plan-based products, and luxury products taking an increasingly larger share (26% in 2010). In 2010 Italy had an average net import of 55 km3 of virtual water (38 km3 in 1986), a value which poses the country among the top net importers in the world. On average each cubic meter of virtual water travels nearly 4000 km before entering Italy, while export goes to relatively closer countries (average distance: 2600 km), with increasing trends in time which are almost unique among the world countries. Analyses proposed for Italy are replicated for 10 other world countries, triggering similar investigations on different socio-economic actualities.
Onset of granular flows by local and global forcing
NASA Astrophysics Data System (ADS)
Toiya, Masahiro
This thesis focuses on the onset of granular flows and memory effects in granular materials under local and global forcing conditions. Global flows are induced in a shear cell of Taylor-Couette type by moving a boundary wall. We find that how a granular shear flow starts depends strongly on the prior shear direction. We observe that when the shear direction is reversed, the material goes through a transient period during which the material compacts, the shear force is small, and the shear band is wide. Three dimensional confocal imaging of particle rearrangements during shear reversal shows that bulk and surface flows are comparable. Local flows are induced by forcing a rod into a fluid immersed granular bed with various preparation methods. Particle rearrangements are observed in 3D by confocal microscopy and by moving a laser sheet through the sample. Image analysis indicates that rearrangements spread farthest not directly under the penetrometer but in a ring around the penetrometer. In addition, the direction of preformed stress chains in the material influences the particle rearrangements. Material compressed from one side exhibits anisotropic particle rearrangements under penetrometer testing. Particle rearrangements that do not lead to steady flows but overall increase in the packing fraction have also been investigated. Vibration-induced compaction of spherical grains indicates that in addition to the cage motion there are rare "jump" events in which a single particle moves significantly more compared to its neighbors. Although rare, such "jumps" play a significant role in the compaction of the material as a whole. Temperature cycling experiments show similar results. Compaction of material has also been observed in the Couette cell. Repeated reversals or oscillations of the shear direction lead to additional compaction, which can be described by a stretched exponential, similar to compaction induced by tapping. For 3D imaging of dry and non
The local, remote, and global consequences of climate feedbacks
NASA Astrophysics Data System (ADS)
Feldl, Nicole
Climate feedbacks offer a powerful framework for revealing the energetic pathways by which the system adjusts to an imposed forcing, such as an increase in atmospheric CO2. We investigate how local atmospheric feedbacks, such as those associated with Arctic sea ice and the Walker circulation, affect both global climate sensitivity and spatial patterns of warming. Emphasis is placed on a general circulation model with idealized boundary conditions, for the clarity it provides. For this aquaplanet simulation, we account for rapid tropospheric adjustments to CO2 and explicitly diagnose feedbacks (using radiative kernels) and forcing for this precise model set-up. In particular, a detailed closure of the energy budget within a clean experimental set-up allows us to consider nonlinear interactions between feedbacks. The inclusion of a tropical Walker circulation is found to prime the Hadley Circulation for a larger deceleration under CO2 doubling, by altering subtropical stratus decks and the meridional feedback gradient. We perform targeted experiments to isolate the atmospheric processes responsible for the variability in climate sensitivity, with implications for high-sensitivity paleoclimates. The local climate response is characterized in terms of the meridional structure of feedbacks, atmospheric heat transport, nonlinearities, and forcing. Our results display a combination of positive subtropical feedbacks and polar amplified warming. These two factors imply a critical role for transport and nonlinear effects, with the latter acting to substantially reduce global climate sensitivity. At the hemispheric scale, a rich picture emerges: anomalous divergence of heat flux away from positive feedbacks in the subtropics; clear-sky nonlinearities that reinforce the pattern of tropical cooling and high-latitude warming tendencies; and strong ice-line feedbacks that drive further amplification of polar warming. These results have implications for regional climate
Local optimization of thruster configuration based on a synthesized positioning capability criterion
NASA Astrophysics Data System (ADS)
Xu, Shengwen; Wang, Lei; Wang, Xuefeng
2015-11-01
DPCap analysis can assist in determining the maximum environmental forces the DP system can counteract for a given heading. DPCap analysis results are highly affected by the thrust forces provided by the thrust system which consists of several kinds of thrusters. The thrust forces and moment are determined by the maximum thrust of the thrusters as well as the thruster configuration. In this paper, a novel local optimization of thruster configuration based on a synthesized positioning capability criterion is proposed. The combination of the discrete locations of the thrusters forms the thruster configuration and is the input, and the synthesized positioning capability is the output. The quantified synthesized positioning capability of the corresponding thruster configuration can be generated as the output. The optimal thruster configuration is the one which makes the vessel has the best positioning capability. A software program was developed based on the present study. A local optimization of thruster configuration for a supply vessel was performed to demonstrate the effectiveness and efficiency of the program. Even though the program cannot find the global optimal thruster configuration, its high efficiency makes it essentially practical in an engineering point. It may be used as a marine research tool and give guidance to the designer of the thrust system.
Local and global navigational coordinate systems in desert ants.
Collett, Matthew; Collett, Thomas S
2009-04-01
While foraging, the desert ant Cataglyphis fortis keeps track of its position with respect to its nest through a process of path integration (PI). Once it finds food, it can then follow a direct home vector to its nest. Furthermore, it remembers the coordinates of a food site, and uses these coordinates to return to the site. Previous studies suggest, however, that it does not associate any coordinates remembered from previous trips with familiar views such that it can produce a home vector when displaced to a familiar site. We ask here whether a desert ant uses any association between PI coordinates and familiar views to ensure consistent PI coordinates as it travels along a habitual route. We describe an experiment in which we manipulated the PI coordinates an ant has when reaching a distinctive point along a habitual route on the way to a feeder. The subsequent home vectors of the manipulated ants, when displaced from the food-site to a test ground, show that also when a route memory is evoked at a significant point on the way to a food site, C. fortis does not reset its PI coordinates to those it normally has at that point. We use this result to argue that local vector memories, which encode the metric properties of a segment of a habitual route, must be encoded in a route-based coordinate system that is separate from the nest-based global coordinates. We propose a model for PI-based guidance that can account for several puzzling observations, and that naturally produces the route-based coordinate system required for learning and following local vectors. PMID:19282486
ERIC Educational Resources Information Center
De Joux, Neil; Russell, Paul N.; Helton, William S.
2013-01-01
Despite a long history of vigilance research, the role of global and local feature discrimination in vigilance tasks has been relatively neglected. In this experiment participants performed a sustained attention task requiring either global or local shape stimuli discrimination. Reaction time to local feature discriminations was characterized by a…
The L_infinity constrained global optimal histogram equalization technique for real time imaging
NASA Astrophysics Data System (ADS)
Ren, Qiongwei; Niu, Yi; Liu, Lin; Jiao, Yang; Shi, Guangming
2015-08-01
Although the current imaging sensors can achieve 12 or higher precision, the current display devices and the commonly used digital image formats are still only 8 bits. This mismatch causes significant waste of the sensor precision and loss of information when storing and displaying the images. For better usage of the precision-budget, tone mapping operators have to be used to map the high-precision data into low-precision digital images adaptively. In this paper, the classic histogram equalization tone mapping operator is reexamined in the sense of optimization. We point out that the traditional histogram equalization technique and its variants are fundamentally improper by suffering from local optimum problems. To overcome this drawback, we remodel the histogram equalization tone mapping task based on graphic theory which achieves the global optimal solutions. Another advantage of the graphic-based modeling is that the tone-continuity is also modeled as a vital constraint in our approach which suppress the annoying boundary artifacts of the traditional approaches. In addition, we propose a novel dynamic programming technique to solve the histogram equalization problem in real time. Experimental results shows that the proposed tone-preserved global optimal histogram equalization technique outperforms the traditional approaches by exhibiting more subtle details in the foreground while preserving the smoothness of the background.
A Globally Optimal Particle Tracking Technique for Stereo Imaging Velocimetry Experiments
NASA Technical Reports Server (NTRS)
McDowell, Mark
2008-01-01
An important phase of any Stereo Imaging Velocimetry experiment is particle tracking. Particle tracking seeks to identify and characterize the motion of individual particles entrained in a fluid or air experiment. We analyze a cylindrical chamber filled with water and seeded with density-matched particles. In every four-frame sequence, we identify a particle track by assigning a unique track label for each camera image. The conventional approach to particle tracking is to use an exhaustive tree-search method utilizing greedy algorithms to reduce search times. However, these types of algorithms are not optimal due to a cascade effect of incorrect decisions upon adjacent tracks. We examine the use of a guided evolutionary neural net with simulated annealing to arrive at a globally optimal assignment of tracks. The net is guided both by the minimization of the search space through the use of prior limiting assumptions about valid tracks and by a strategy which seeks to avoid high-energy intermediate states which can trap the net in a local minimum. A stochastic search algorithm is used in place of back-propagation of error to further reduce the chance of being trapped in an energy well. Global optimization is achieved by minimizing an objective function, which includes both track smoothness and particle-image utilization parameters. In this paper we describe our model and present our experimental results. We compare our results with a nonoptimizing, predictive tracker and obtain an average increase in valid track yield of 27 percent
Global versus Local Conservation Focus of U.S. State Agency Endangered Bird Species Lists
Wells, Jeffrey V.; Robertson, Bruce; Rosenberg, Kenneth V.; Mehlman, David W.
2010-01-01
The development of species priorities for conservation at local or regional scales (for example, within a state or province) poses an interesting paradox. One the one hand, locally or regionally-derived species priorities may lead to greater interest in and resources directed to biodiversity conservation by local or regional institutions. On the other hand, locally or regionally-derived species priorities could overlook national or global priorities. We assessed U.S. state government agency endangered-threatened bird lists to determine the comparative representation of species of global versus local conservation significance on them. State lists tended to be represented primarily by species of low global risk-low global responsibility (range: 15–100%; mean 51%) and high global risk-high global responsibility (range: 0–73%; mean 35%). In 25 states, more than half of the species on the state lists were in the low global risk-low global responsibility category. Most U.S. state agency lists represent a combined strategy of highlighting species of both local and global conservation significance. Even with this combined local-global strategy, most state lists were predominated by species that represent local but not global conservation significance. Such a strategy could have profound negative consequences for many species that are not formally recognized under national endangered species protections but that are also left off of state-level endangered species lists. PMID:20062538
Guo, Chengan; Yang, Qingshan
2015-07-01
Finding the optimal solution to the constrained l0 -norm minimization problems in the recovery of compressive sensed signals is an NP-hard problem and it usually requires intractable combinatorial searching operations for getting the global optimal solution, unless using other objective functions (e.g., the l1 norm or lp norm) for approximate solutions or using greedy search methods for locally optimal solutions (e.g., the orthogonal matching pursuit type algorithms). In this paper, a neurodynamic optimization method is proposed to solve the l0 -norm minimization problems for obtaining the global optimum using a recurrent neural network (RNN) model. For the RNN model, a group of modified Gaussian functions are constructed and their sum is taken as the objective function for approximating the l0 norm and for optimization. The constructed objective function sets up a convexity condition under which the neurodynamic system is guaranteed to obtain the globally convergent optimal solution. An adaptive adjustment scheme is developed for improving the performance of the optimization algorithm further. Extensive experiments are conducted to test the proposed approach in this paper and the output results validate the effectiveness of the new method. PMID:25122603
NASA Astrophysics Data System (ADS)
Baulac, Marine; Defrance, Jérôme; Jean, Philippe
2007-02-01
This research work aims at developing a new multi-criteria optimization method dedicated to complex road noise barriers. Numerical simulations of the acoustical propagation have been achieved using MICADO, a 2D boundary element method (BEM) code developed at CSTB. The optimization part is carried out with the help of a Nelder-Mead algorithm (direct local search method) coupled with an evolutionary strategy in order to globalize the approach. A first application of this combination between an outdoor sound propagation numerical code and an optimization algorithm concerns the optimization of noise barrier caps with the following varying parameters: the cap size, its shape and its surface impedance. The cost function to be minimized is defined through a mean value of the insertion loss due to the added crowning compared to the straight, rigid barrier solution of same overall height, averaged on several receiver points within the barrier shadow zone. Final results show a significant improvement of the efficiency of a multiple edge noise barrier by optimizing values of both size and impedance.
CH4 parameter estimation in CLM4.5bgc using surrogate global optimization
NASA Astrophysics Data System (ADS)
Müller, J.; Paudel, R.; Shoemaker, C. A.; Woodbury, J.; Wang, Y.; Mahowald, N.
2015-10-01
Over the anthropocene methane has increased dramatically. Wetlands are one of the major sources of methane to the atmosphere, but the role of changes in wetland emissions is not well understood. The Community Land Model (CLM) of the Community Earth System Models contains a module to estimate methane emissions from natural wetlands and rice paddies. Our comparison of CH4 emission observations at 16 sites around the planet reveals, however, that there are large discrepancies between the CLM predictions and the observations. The goal of our study is to adjust the model parameters in order to minimize the root mean squared error (RMSE) between model predictions and observations. These parameters have been selected based on a sensitivity analysis. Because of the cost associated with running the CLM simulation (15 to 30 min on the Yellowstone Supercomputing Facility), only relatively few simulations can be allowed in order to find a near-optimal solution within an acceptable time. Our results indicate that the parameter estimation problem has multiple local minima. Hence, we use a computationally efficient global optimization algorithm that uses a radial basis function (RBF) surrogate model to approximate the objective function. We use the information from the RBF to select parameter values that are most promising with respect to improving the objective function value. We show with pseudo data that our optimization algorithm is able to make excellent progress with respect to decreasing the RMSE. Using the true CH4 emission observations for optimizing the parameters, we are able to significantly reduce the overall RMSE between observations and model predictions by about 50 %. The methane emission predictions of the CLM using the optimized parameters agree better with the observed methane emission data in northern and tropical latitudes. With the optimized parameters, the methane emission predictions are higher in northern latitudes than when the default parameters are
Local and global visual processing and eating disorder traits: An event-related potential study.
Moynihan, Jennifer; Rose, Mark; van Velzen, Jose; de Fockert, Jan
2016-03-01
Recent studies have suggested that individuals with eating disorders show a stronger local processing bias and/or a weaker global bias in visual processing than typical individuals. In this study, healthy participants with varying scores on the Eating Disorder Examination Questionnaire (EDE-Q) performed the Navon task, a standard task of local and global visual processing, whilst electrophysiological measures were recorded. Global stimuli were presented that were made up of many local parts, and the information between levels was either compatible or incompatible. Participants were instructed to report the identity of either a global or a local target shape, while ignoring the other level. Higher EDE-Q scores were associated with enhanced amplitude of the P3 component during local visual processing, as well as greater P1 amplitude during local incompatible trials. These findings support the claim that eating disorders are associated with differences in local and global visual processing. PMID:26777337
Chaotic Teaching-Learning-Based Optimization with Lévy Flight for Global Numerical Optimization.
He, Xiangzhu; Huang, Jida; Rao, Yunqing; Gao, Liang
2016-01-01
Recently, teaching-learning-based optimization (TLBO), as one of the emerging nature-inspired heuristic algorithms, has attracted increasing attention. In order to enhance its convergence rate and prevent it from getting stuck in local optima, a novel metaheuristic has been developed in this paper, where particular characteristics of the chaos mechanism and Lévy flight are introduced to the basic framework of TLBO. The new algorithm is tested on several large-scale nonlinear benchmark functions with different characteristics and compared with other methods. Experimental results show that the proposed algorithm outperforms other algorithms and achieves a satisfactory improvement over TLBO. PMID:26941785
Chaotic Teaching-Learning-Based Optimization with Lévy Flight for Global Numerical Optimization
He, Xiangzhu; Huang, Jida; Rao, Yunqing; Gao, Liang
2016-01-01
Recently, teaching-learning-based optimization (TLBO), as one of the emerging nature-inspired heuristic algorithms, has attracted increasing attention. In order to enhance its convergence rate and prevent it from getting stuck in local optima, a novel metaheuristic has been developed in this paper, where particular characteristics of the chaos mechanism and Lévy flight are introduced to the basic framework of TLBO. The new algorithm is tested on several large-scale nonlinear benchmark functions with different characteristics and compared with other methods. Experimental results show that the proposed algorithm outperforms other algorithms and achieves a satisfactory improvement over TLBO. PMID:26941785
NASA Astrophysics Data System (ADS)
Tsoulos, Ioannis G.; Lagaris, Isaac E.
2006-01-01
A new stochastic method for locating the global minimum of a multidimensional function inside a rectangular hyperbox is presented. A sampling technique is employed that makes use of the procedure known as grammatical evolution. The method can be considered as a "genetic" modification of the Controlled Random Search procedure due to Price. The user may code the objective function either in C++ or in Fortran 77. We offer a comparison of the new method with others of similar structure, by presenting results of computational experiments on a set of test functions. Program summaryTitle of program: GenPrice Catalogue identifier:ADWP Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWP Program available from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: the tool is designed to be portable in all systems running the GNU C++ compiler Installation: University of Ioannina, Greece Programming language used: GNU-C++, GNU-C, GNU Fortran-77 Memory required to execute with typical data: 200 KB No. of bits in a word: 32 No. of processors used: 1 Has the code been vectorized or parallelized?: no No. of lines in distributed program, including test data, etc.:13 135 No. of bytes in distributed program, including test data, etc.: 78 512 Distribution format: tar. gz Nature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a "least squares" type of objective, one may encounter many local minima that do not correspond to solutions, i.e. minima with values
Towards optimal design of locally resonant acoustic metamaterials
NASA Astrophysics Data System (ADS)
Krushynska, A. O.; Kouznetsova, V. G.; Geers, M. G. D.
2014-11-01
The paper presents an in-depth analysis of solid locally resonant acoustic metamaterials (LRAMs) consisting of rubber-coated inclusions. Dispersion properties of two-dimensional LRAMs are studied by means of finite-element modal analysis. For an incompressible rubber, only one practically important spectral band gap is found for in-plane modes in a low-frequency range. This result is in striking contrast with the compressible coating case, previously studied in the literature. For inclusions with a circular cross-section, the lower bound of the band gap can be evaluated exactly by means of the derived analytical solution, which is also valid for compressible coatings and can therefore be used to determine lower bounds of higher band gaps as well. The influence of geometric and material parameters, filling fraction and inclusion shape on the width of the lowest band gap is investigated in detail. Based on the results of this analysis, an optimal microstructure of LRAMs yielding the widest low-frequency band gap is proposed. To achieve the band gap at the lowest possible frequencies in LRAMs suitable for practical applications, the use of the tungsten core material is advised, as a safe and economically viable alternative to commonly considered lead and gold. Two configurations of LRAM with various sizes of coated tungsten cylindrical inclusions with circular cross-section are considered. The evolution of dispersion spectra due to the presence of different inclusions is investigated, and the parameters for optimal design of LRAMs are determined.
Moon, Sojin; Bannen, Ryan M; Rutkoski, Thomas J; Phillips, George N; Bae, Euiyoung
2014-10-01
Local structural entropy (LSE) is a descriptor for the extent of conformational heterogeneity in short protein sequences that is computed from structural information derived from the Protein Data Bank. Reducing the LSE of a protein sequence by introducing amino acid mutations can result in fewer conformational states and thus a more stable structure, indicating that LSE optimization can be used as a protein stabilization method. Here, we describe a series of LSE optimization experiments designed to stabilize mesophilic and thermophilic adenylate kinases (AKs) and report crystal structures of LSE-optimized AK variants. In the mesophilic AK, thermal stabilization by LSE reduction was effective but limited. Structural analyses of the LSE-optimized mesophilic AK variants revealed a strong correlation between LSE and the apolar buried surface area. Additional mutations designed to introduce noncovalent interactions between distant regions of the polypeptide resulted in further stabilization. Unexpectedly, optimizing the LSE of the thermophilic AK resulted in a decrease in thermal stability. This destabilization was reduced when charged residues were excluded from the possible substitutions during LSE optimization. These observations suggest that stabilization by LSE reduction may result from the optimization of local hydrophobic contacts. The limitations of this process are likely due to ignorance of other interactions that bridge distant regions in a given amino acid sequence. Our results illustrate the effectiveness and limitations of LSE optimization as a protein stabilization strategy and highlight the importance and complementarity of local conformational stability and global interactions in protein thermal stability. PMID:24931334
Assessing Significance of Global Climate Change in Local Climate Time Series
NASA Astrophysics Data System (ADS)
Livezey, M. M.; Bair, A.; Livezey, R.; Hollingshead, A.; Horsfall, F. M. C.; Meyers, J. C.
2014-12-01
A common question by users to NOAA National Weather Service (NWS) local offices is how significant is global climate change in their local area. The scientific community provides copious information on global climate change, including assessments, for large regions. However, most decisions are made at the local level, where little or no information typically exists. To address this need, NOAA NWS released operationally the Local Climate Analysis Tool (LCAT) in 2013 and specifically incorporated a capability into the tool to determine the local Rate of Change (ROC). Although ROC provides answers to some questions, we have seen an additional need for clarification on the significance of the ROC, such as whether or not it differentiates natural variability from a real signal of longer-term climate change. This question becomes very important for decision makers in consideration of their long term planning efforts to build local resilience to changes in climate. LCAT uses three trend adjustment methods in computing ROC: Hinge, Optimal Climate Normals (OCN), and Exponentially Weighted Moving Average (EWMA). The Hinge tracks changes in climate time series, and OCN and EWMS track changes in climate normals. ROC is the slope of the straight line fit of the trend. Standard statistical methodology in use provides guidance for confidence intervals of the slope parameter (von Storch and Zwiers, 1999), which works well for a linear regression fit and can be used for ROCs of OCN and EWMA. However the Hinge, which is a linear fit anchored on one end, needs some additional adjustments and most likely will have smaller confidence intervals than those estimated by the statistical method. An additional way to look at the problem is to assess how the climate change signal compares to climate variability in the local time series. Livezey et al. (2007) suggested the use of the signal to noise ratio to estimate the significance of the rate of climate change. The signal to noise ratio of
Optimal Localization of Ocean Acoustic Sources in AN Uncertain Environment
NASA Astrophysics Data System (ADS)
Richardson, Anthony Merle
1990-01-01
In this paper, a method for determining the position of an underwater acoustic source from observations of the associated acoustic field and information about the acoustic environment is presented. This algorithm, unlike matched field processing algorithms, does not require complete knowledge of the acoustic environment, but can determine source position even with uncertain or imprecise information about the environment. The algorithm is termed the optimum uncertain field processing algorithm. Parameter estimation theory is utilized to derive the new algorithm. This provides a systematic, optimal approach to the problem, and allows environmental uncertainty to be easily incorporated into the algorithm. In addition to estimating source position, estimates of parameters of the acoustic environment can also be calculated. This makes simultaneous source localization and acoustic tomographic estimation of ocean parameters possible. A detailed discussion of the acoustic propagation models used in the research is presented. The defining equation for the optimum uncertain field processor is then derived. It is shown that the algorithm reduces to a popular matched field processing technique for the special case in which the environment is completely known. A series of studies that illustrate the robust performance of the uncertain field processor, relative to the performance of matched field processing methods, is made. Estimation of ocean acoustic parameters is also illustrated. The affects of environmental uncertainty, source position, and frequency on localization performance are examined.
Optimization of collective enzyme activity via spatial localization
NASA Astrophysics Data System (ADS)
Buchner, Alexander; Tostevin, Filipe; Hinzpeter, Florian; Gerland, Ulrich
2013-10-01
The spatial organization of enzymes often plays a crucial role in the functionality and efficiency of enzymatic pathways. To fully understand the design and operation of enzymatic pathways, it is therefore crucial to understand how the relative arrangement of enzymes affects pathway function. Here we investigate the effect of enzyme localization on the flux of a minimal two-enzyme pathway within a reaction-diffusion model. We consider different reaction kinetics, spatial dimensions, and loss mechanisms for intermediate substrate molecules. Our systematic analysis of the different regimes of this model reveals both universal features and distinct characteristics in the phenomenology of these different systems. In particular, the distribution of the second pathway enzyme that maximizes the reaction flux undergoes a generic transition from co-localization with the first enzyme when the catalytic efficiency of the second enzyme is low, to an extended profile when the catalytic efficiency is high. However, the critical transition point and the shape of the extended optimal profile is significantly affected by specific features of the model. We explain the behavior of these different systems in terms of the underlying stochastic reaction and diffusion processes of single substrate molecules.
First-principle optimal local pseudopotentials construction via optimized effective potential method
NASA Astrophysics Data System (ADS)
Mi, Wenhui; Zhang, Shoutao; Wang, Yanchao; Ma, Yanming; Miao, Maosheng
2016-04-01
The local pseudopotential (LPP) is an important component of orbital-free density functional theory, a promising large-scale simulation method that can maintain information on a material's electron state. The LPP is usually extracted from solid-state density functional theory calculations, thereby it is difficult to assess its transferability to cases involving very different chemical environments. Here, we reveal a fundamental relation between the first-principles norm-conserving pseudopotential (NCPP) and the LPP. On the basis of this relationship, we demonstrate that the LPP can be constructed optimally from the NCPP for a large number of elements using the optimized effective potential method. Specially, our method provides a unified scheme for constructing and assessing the LPP within the framework of first-principles pseudopotentials. Our practice reveals that the existence of a valid LPP with high transferability may strongly depend on the element.
Global and local mapping of motor blocks liners roughness for the analysis of honing performance
NASA Astrophysics Data System (ADS)
Cabanettes, F.; Fahlgren, L.; Hoering, T.; Rosén, B.-G.
2014-03-01
The manufacturing and finishing (honing) of cylinder liners for the automotive industry is a constant challenge in order to reduce friction losses and oil consumption. A better knowledge of surfaces generated during plateau honing is then required for optimization of the process. Despite a well-known and controlled honing process, variations in surface roughness appear at both global (due to honing tool wear) and local (TDC, middle stroke, BDC) scales and need to be mapped and analysed. The following paper proposes to map the global and local variations in roughness by using a confocal 3D measuring equipment able to measure and scan any area of a cylinder liner. Six motor blocks (five liners each) are evaluated with twenty topography measurements per liner. In total, six hundred 3D measurements of size 1×1 mm are performed and roughness parameters are computed. The results show that some parameters do correlate with the honing tool wear specific to each cylinder. Experimental models could be built. Furthermore surface roughness varies significantly over the axial length of the liners due to waviness deviations combined with a lack of flexibility of the honing tool in axial direction.
Contributions of projected land use to global radiative forcing ascribed to local sources
NASA Astrophysics Data System (ADS)
Ward, D. S.; Mahowald, N. M.; Kloster, S.
2013-12-01
With global demand for food expected to dramatically increase and put additional pressures on natural lands, there is a need to understand the environmental impacts of land use and land cover change (LULCC). Previous studies have shown that the magnitude and even the sign of the radiative forcing (RF) of biogeophysical effects from LULCC depends on the latitude and forest ecology of the disturbed region. Here we ascribe the contributions to the global RF by land-use related anthropogenic activities to their local sources, organized on a grid of 1.9 degrees latitude by 2.5 degrees longitude. We use RF estimates for the year 2100, using five future LULCC projections, computed from simulations with the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. Our definition of the LULCC RF includes changes to terrestrial carbon storage, methane and nitrous oxide emissions, atmospheric chemistry, aerosol emissions, and surface albedo. We ascribe the RF to gridded locations based on LULCC-related emissions of relevant trace gases and aerosols, including emissions from fires. We find that the largest contributions to the global RF in year 2100 from LULCC originate in the tropics for all future scenarios. In fact, LULCC is the largest tropical source of anthropogenic RF. The LULCC RF in the tropics is dominated by emissions of CO2 from deforestation and methane emissions from livestock and soils. Land surface albedo change is rarely the dominant forcing agent in any of the future LULCC projections, at any location. By combining the five future scenarios we find that deforested area at a specific tropical location can be used to predict the contribution to global RF from LULCC at that location (the relationship does not hold as well in the extratropics). This information could support global efforts like REDD (Reducing Emissions from Deforestation and Forest Degradation), that aim to reduce greenhouse gas
A Novel Image Quality Assessment With Globally and Locally Consilient Visual Quality Perception.
Bae, Sung-Ho; Kim, Munchurl
2016-05-01
Computational models for image quality assessment (IQA) have been developed by exploring effective features that are consistent with the characteristics of a human visual system (HVS) for visual quality perception. In this paper, we first reveal that many existing features used in computational IQA methods can hardly characterize visual quality perception for local image characteristics and various distortion types. To solve this problem, we propose a new IQA method, called the structural contrast-quality index (SC-QI), by adopting a structural contrast index (SCI), which can well characterize local and global visual quality perceptions for various image characteristics with structural-distortion types. In addition to SCI, we devise some other perceptually important features for our SC-QI that can effectively reflect the characteristics of HVS for contrast sensitivity and chrominance component variation. Furthermore, we develop a modified SC-QI, called structural contrast distortion metric (SC-DM), which inherits desirable mathematical properties of valid distance metricability and quasi-convexity. So, it can effectively be used as a distance metric for image quality optimization problems. Extensive experimental results show that both SC-QI and SC-DM can very well characterize the HVS's properties of visual quality perception for local image characteristics and various distortion types, which is a distinctive merit of our methods compared with other IQA methods. As a result, both SC-QI and SC-DM have better performances with a strong consilience of global and local visual quality perception as well as with much lower computation complexity, compared with the state-of-the-art IQA methods. The MATLAB source codes of the proposed SC-QI and SC-DM are publicly available online at https://sites.google.com/site/sunghobaecv/iqa. PMID:27046873
Globalizing Education, Educating the Local: How Method Made Us Mad
ERIC Educational Resources Information Center
Stronach, Ian
2011-01-01
This book offers a critical and deconstructive account of global discourses on education, arguing that these overblown "hypernarratives" are neither economically, technically nor philosophically defensible. Nor even sane. Their "mythic economic instrumentalism" mimic rather than meet the economic needs of global capitalism in ways that the Crash…
Local Collective Identity Enculturation with a Global Media Consumption Culture.
ERIC Educational Resources Information Center
Choi, Chul-Byung
2002-01-01
Argues that shift from modern nation-state collective identity to postmodern globally constructed collective identify is influenced by a global electronic media and television consumption culture. Illustrates shift on three levels: socioeconomic, socialization, and the production of symbolic goods. (Contains 76 references.) (PKP)
NASA Technical Reports Server (NTRS)
Duval, W. M. B.; Singh, N. B.; Glicksman, M. E.
1996-01-01
The local bifurcation of the flow field, during physical vapor transport for a parametric range of experimental interest, shows that its dynamical state ranges from steady to aperiodic. Comparison of computationally predicted velocity profiles with laser doppler velocimetry measurements shows reasonable agreement in both magnitude and planform. Correlation of experimentally measured crystal quality with the predicted dynamical state of the flow field shows a degradation of quality with an increase in Rayleigh number. The global bifurcation of the flow field corresponding to low crystal quality indicates the presence of a traveling wave for Ra = 1.09 x 10(exp 5). For this Rayleigh number threshold a chaotic transport state occurs. However, a microgravity environment for this case effectively stabilizes the flow to diffusive-advective and provides the setting to grow crystals with optimal quality.
Eckermann, Simon; Willan, Andrew R
2013-05-01
Risk sharing arrangements relate to adjusting payments for new health technologies given evidence of their performance over time. Such arrangements rely on prospective information regarding the incremental net benefit of the new technology, and its use in practice. However, once the new technology has been adopted in a particular jurisdiction, randomized clinical trials within that jurisdiction are likely to be infeasible and unethical in the cases where they would be most helpful, i.e. with current evidence of positive while uncertain incremental health and net monetary benefit. Informed patients in these cases would likely be reluctant to participate in a trial, preferring instead to receive the new technology with certainty. Consequently, informing risk sharing arrangements within a jurisdiction is problematic given the infeasibility of collecting prospective trial data. To overcome such problems, we demonstrate that global trials facilitate trialling post adoption, leading to more complete and robust risk sharing arrangements that mitigate the impact of costs of reversal on expected value of information in jurisdictions who adopt while a global trial is undertaken. More generally, optimally designed global trials offer distinct advantages over locally optimal solutions for decision makers and manufacturers alike: avoiding opportunity costs of delay in jurisdictions that adopt; overcoming barriers to evidence collection; and improving levels of expected implementation. Further, the greater strength and translatability of evidence across jurisdictions inherent in optimal global trial design reduces barriers to translation across jurisdictions characteristic of local trials. Consequently, efficiently designed global trials better align the interests of decision makers and manufacturers, increasing the feasibility of risk sharing and the expected strength of evidence over local trials, up until the point that current evidence is globally sufficient. PMID:23529209
Global optimization of fuel consumption in rendezvous scenarios by the method of interval analysis
NASA Astrophysics Data System (ADS)
Ma, Hongliang; Xu, Shijie
2015-03-01
To reduce the optimal but large Δv of the fixed-short-time two impulse Lambert rendezvous between two spacecrafts along two coplanar circular orbits, the three-impulse Lambert rendezvous optimized via the optimization algorithm-interval analysis (IA) is proposed in this paper. The purpose of optimization is to minimize the velocity increment of the fixed-short-time three-impulse Lambert rendezvous. The optimization algorithm IA is given for solving the rendezvous optimization problem with multiple uncertain variables, and strong nonlinearity and nonconvexity. Numerical examples of the time-open, coplanar-circular-orbit, multiple-revolution Lambert rendezvous with a parking time optimized via the optimization algorithm IA are firstly undertaken to validate the feasibility of the optimization algorithm IA by comparing the optimization results with those of the globally optimal Hohmann transfer. The results indicate that the globally optimal parameters of the time-open coplanar-circular-orbit multiple-revolution Lambert rendezvous can be obtained by the optimization algorithm IA, and the initial separation angle of two spacecrafts with different orbit radius can be adjusted to obtain the globally optimal and small Δv by distributing an optimal parking time. After that, for the fixed-short-time two-impulse Lambert rendezvous problem without sufficient time to adjust the separation angle by distributing a parking time like the open-time Lambert rendezvous problem, three-impulse Lambert rendezvous involving multiple optimization variables is given and the variables are optimized by the optimization algorithm IA to obtain an optimal and small Δv. Numerical simulation indicates that the optimal and small Δv of the fixed short time, three-impulse Lambert rendezvous can be obtained using the optimization algorithm IA.
Auditory global-local processing: effects of attention and musical experience.
Ouimet, Tia; Foster, Nicholas E V; Hyde, Krista L
2012-10-01
In vision, global (whole) features are typically processed before local (detail) features ("global precedence effect"). However, the distinction between global and local processing is less clear in the auditory domain. The aims of the present study were to investigate: (i) the effects of directed versus divided attention, and (ii) the effect musical training on auditory global-local processing in 16 adult musicians and 16 non-musicians. Participants were presented with short nine-tone melodies, each comprised of three triplet sequences (three-tone units). In a "directed attention" task, participants were asked to focus on either the global or local pitch pattern and had to determine if the pitch pattern went up or down. In a "divided attention" task, participants judged whether the target pattern (up or down) was present or absent. Overall, global structure was perceived faster and more accurately than local structure. The global precedence effect was observed regardless of whether attention was directed to a specific level or divided between levels. Musicians performed more accurately than non-musicians overall, but non-musicians showed a more pronounced global advantage. This study provides evidence for an auditory global precedence effect across attention tasks, and for differences in auditory global-local processing associated with musical experience. PMID:23039447
Fournier, René; Mohareb, Amir
2016-01-14
We devised a global optimization (GO) strategy for optimizing molecular properties with respect to both geometry and chemical composition. A relative index of thermodynamic stability (RITS) is introduced to allow meaningful energy comparisons between different chemical species. We use the RITS by itself, or in combination with another calculated property, to create an objective function F to be minimized. Including the RITS in the definition of F ensures that the solutions have some degree of thermodynamic stability. We illustrate how the GO strategy works with three test applications, with F calculated in the framework of Kohn-Sham Density Functional Theory (KS-DFT) with the Perdew-Burke-Ernzerhof exchange-correlation. First, we searched the composition and configuration space of CmHnNpOq (m = 0-4, n = 0-10, p = 0-2, q = 0-2, and 2 ≤ m + n + p + q ≤ 12) for stable molecules. The GO discovered familiar molecules like N2, CO2, acetic acid, acetonitrile, ethane, and many others, after a small number (5000) of KS-DFT energy evaluations. Second, we carried out a GO of the geometry of CumSnn (+) (m = 1, 2 and n = 9-12). A single GO run produced the same low-energy structures found in an earlier study where each CumSnn (+) species had been optimized separately. Finally, we searched bimetallic clusters AmBn (3 ≤ m + n ≤ 6, A,B= Li, Na, Al, Cu, Ag, In, Sn, Pb) for species and configurations having a low RITS and large highest occupied Molecular Orbital (MO) to lowest unoccupied MO energy gap (Eg). We found seven bimetallic clusters with Eg > 1.5 eV. PMID:26772561
NASA Astrophysics Data System (ADS)
Fournier, René; Mohareb, Amir
2016-01-01
We devised a global optimization (GO) strategy for optimizing molecular properties with respect to both geometry and chemical composition. A relative index of thermodynamic stability (RITS) is introduced to allow meaningful energy comparisons between different chemical species. We use the RITS by itself, or in combination with another calculated property, to create an objective function F to be minimized. Including the RITS in the definition of F ensures that the solutions have some degree of thermodynamic stability. We illustrate how the GO strategy works with three test applications, with F calculated in the framework of Kohn-Sham Density Functional Theory (KS-DFT) with the Perdew-Burke-Ernzerhof exchange-correlation. First, we searched the composition and configuration space of CmHnNpOq (m = 0-4, n = 0-10, p = 0-2, q = 0-2, and 2 ≤ m + n + p + q ≤ 12) for stable molecules. The GO discovered familiar molecules like N2, CO2, acetic acid, acetonitrile, ethane, and many others, after a small number (5000) of KS-DFT energy evaluations. Second, we carried out a GO of the geometry of Cu m Snn + (m = 1, 2 and n = 9-12). A single GO run produced the same low-energy structures found in an earlier study where each Cu m S nn + species had been optimized separately. Finally, we searched bimetallic clusters AmBn (3 ≤ m + n ≤ 6, A,B= Li, Na, Al, Cu, Ag, In, Sn, Pb) for species and configurations having a low RITS and large highest occupied Molecular Orbital (MO) to lowest unoccupied MO energy gap (Eg). We found seven bimetallic clusters with Eg > 1.5 eV.
Global/Local Processing in Autism: Not a Disability, but a Disinclination
ERIC Educational Resources Information Center
Koldewyn, Kami; Jiang, Yuhong V.; Weigelt, Sarah; Kanwisher, Nancy
2013-01-01
It is widely suggested that ASD is characterized by atypical local/global processing, but the published findings are contradictory. In an effort to resolve this question, we tested a large group of children on both a free-choice task and an instructed task using hierarchical local-global stimuli. We find that although children with autism showed a…
The Development of Global and Local Processing: A Comparison of Children to Adults
ERIC Educational Resources Information Center
Peterson, Eric; Peterson, Robin L.
2014-01-01
In light of the adult model of a hemispheric asymmetry of global and local processing, we compared children (M [subscript age] = 8.4 years) to adults in a global-local reaction time (RT) paradigm. Hierarchical designs (large shapes made of small shapes) were presented randomly to each visual field, and participants were instructed to identify…
Global/local methods research using a common structural analysis framework
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. H., Jr.; Thompson, Danniella M.
1991-01-01
Methodologies for global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.
Local and Global Cross-Modal Influences between Vision and Hearing, Tasting, Smelling, or Touching
ERIC Educational Resources Information Center
Forster, Jens
2011-01-01
It is suggested that the distinction between global versus local processing styles exists across sensory modalities. Activation of one-way of processing in one modality should affect processing styles in a different modality. In 12 studies, auditory, haptic, gustatory or olfactory global versus local processing was induced, and participants were…
Iterative local-global energy minimization for automatic extraction of objects of interest.
Hua, Gang; Liu, Zicheng; Zhang, Zhengyou; Wu, Ying
2006-10-01
We propose a novel global-local variational energy to automatically extract objects of interest from images. Previous formulations only incorporate local region potentials, which are sensitive to incorrectly classified pixels during iteration. We introduce a global likelihood potential to achieve better estimation of the foreground and background models and, thus, better extraction results. Extensive experiments demonstrate its efficacy. PMID:16986550
Acting Locally in a Flat World: Global Citizenship and the Democratic Practice of Service-Learning
ERIC Educational Resources Information Center
Battistoni, Richard M.; Longo, Nicholas V.; Jayanandhan, Stephanie Raill
2009-01-01
This article suggests ways to frame the democratic practice of service-learning in the context of a global society, and reports on emerging efforts at three universities to act globally through local community engagement. The article concludes with practical lessons for promoting global citizenship through service-learning in higher education.…
Exploring the Global/Local Boundary in Education in Developing Countries: The Case of the Caribbean
ERIC Educational Resources Information Center
George, June; Lewis, Theodore
2011-01-01
This article focuses on education in developing countries in the context of globalization and with specific reference to the Caribbean. It examines the concept of globalization and related concepts and positions developing countries within this context. It explores the possibility of the creation of a third space where the local and the global can…
Local/Global Cognitive Interfaces within Industrial Districts: An Italian Case Study
ERIC Educational Resources Information Center
Grandinetti, Roberto
2011-01-01
Purpose: With the advance of globalization the competitive chances of industrial districts depends increasingly on their ability to connect to the cognitive circuits of the global economy. This challenge demands the presence of local actors capable of acting as cognitive interfaces between the district context and the global environment. The paper…
NASA Astrophysics Data System (ADS)
Law, Wing-Wah
2004-11-01
The past two decades have witnessed three important international trends: an increase in the number of democratic states; economic globalization; and educational reforms in light of the challenges of the new millennium. A great deal of research has addressed educational change in relation to either globalization or democratization, but little has been said about the complex interactions among all three processes. In view of recent educational reforms in Hong Kong and Taiwan, the present contribution examines the local nature of education policy in a globalized age. It challenges those globalization theories which minimize the role of the state and exaggerate the power of globalization over local factors. In particular, it explores how the governments of these two Chinese societies have employed democratization to generate and legitimate reform proposals and have used economic globalization to justify educational reforms. The study concludes by discussing the complex interrelations of these processes, including tensions between global and local concerns in educational reform.
Implications for local and global climate of alternative forest management strategies in Norway
NASA Astrophysics Data System (ADS)
Bright, Ryan M.; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Hammer Strømman, Anders
2014-05-01
We applied a mix of observation and empirical models to evaluate both local and global climate effects of three realistic alternative forest management scenarios in the boreal forests of Norway's largest logging region. The alternative management scenarios embraced strategies aimed at increasing harvest intensities and allowing harvested conifer sites to regenerate naturally with broadleaved species. Stand-level analysis was firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across coniferous, deciduous, and clear-cut sites. Relative to a coniferous site, we observed a slight local cooling of 0.13 °C at a deciduous site and 0.25 °C at a clear-cut site over a 6-year period which was mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes - despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies simultaneously promoted an enhanced material supply over business-as-usual levels. While additional climate impact linked to changes in life-cycle emissions and to changes in the global supply and demand of timber products ought to be factored into any mitigation-oriented climate policy involving the forestry sector, our analysis demonstrates that - within the boundaries of the managed forest ecosystem - excluding important biogeophysical considerations like surface albedo change may lead to sub-optimal climate policy.
NASA Astrophysics Data System (ADS)
Zhou, Li; Bi, Du-Yan; He, Lin-Yuan
2015-01-01
The visibility of images captured in foggy conditions is impaired severely by a decrease in the contrasts of objects and veiling with a characteristic gray hue, which may limit the performance of visual applications out of doors. Contrast enhancement together with color restoration is a challenging mission for conventional fog-removal methods, as the degrading effect of fog is largely dependent on scene depth information. Nowadays, people change their minds by establishing a variational framework for contrast enhancement based on a physically based analytical model, unexpectedly resulting in color distortion, dark-patch distortion, or fuzzy features of local regions. Unlike previous work, our method treats an atmospheric veil as a scattering disturbance and formulates a foggy image as an energy functional minimization to estimate direct attenuation, originating from the work of image denoising. In addition to a global contrast measurement based on a total variation norm, an additional local measurement is designed in that optimal problem for the purpose of digging out more local details as well as suppressing dark-patch distortion. Moreover, we estimate the airlight precisely by maximization with a geometric constraint and a natural image prior in order to protect the faithfulness of the scene color. With the estimated direct attenuation and airlight, the fog-free image can be restored. Finally, our method is tested on several benchmark and realistic images evaluated by two assessment approaches. The experimental results imply that our proposed method works well compared with the state-of-the-art defogging methods.
Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors.
Türetken, Engin; González, Germán; Blum, Christian; Fua, Pascal
2011-09-01
We present a novel probabilistic approach to fully automated delineation of tree structures in noisy 2D images and 3D image stacks. Unlike earlier methods that rely mostly on local evidence, ours builds a set of candidate trees over many different subsets of points likely to belong to the optimal tree and then chooses the best one according to a global objective function that combines image evidence with geometric priors. Since the best tree does not necessarily span all the points, the algorithm is able to eliminate false detections while retaining the correct tree topology. Manually annotated brightfield micrographs, retinal scans and the DIADEM challenge datasets are used to evaluate the performance of our method. We used the DIADEM metric to quantitatively evaluate the topological accuracy of the reconstructions and showed that the use of the geometric regularization yields a substantial improvement. PMID:21573886
CH4 parameter estimation in CLM4.5bgc using surrogate global optimization
NASA Astrophysics Data System (ADS)
Müller, J.; Paudel, R.; Shoemaker, C. A.; Woodbury, J.; Wang, Y.; Mahowald, N.
2015-01-01
Over the anthropocene methane has increased dramatically. Wetlands are one of the major sources of methane to the atmosphere, but the role of changes in wetland emissions is not well understood. The Community Land Model (CLM) of the Community Earth System Models contains a module to estimate methane emissions from natural wetlands and rice paddies. Our comparison of CH4 emission observations at 16 sites around the planet reveals, however, that there are large discrepancies between the CLM predictions and the observations. The goal of our study is to adjust the model parameters in order to minimize the root mean squared error (RMSE) between model predictions and observations. These parameters have been selected based on a sensitivity analysis. Because of the cost associated with running the CLM simulation (15 to 30 min on the Yellowstone Supercomputing Facility), only relatively few simulations can be allowed in order to find a near optimal solution within an acceptable time. Our results indicate that the parameter estimation problem has multiple local minima. Hence, we use a computationally efficient global optimization algorithm that uses a radial basis function (RBF) surrogate model to approximate the objective function. We use the information from the RBF to select parameter values that are most promising with respect to improving the objective function value. We show with pseudo data that our optimization algorithm is able to make excellent progress with respect to decreasing the RMSE. Using the true CH4 emission observations for optimizing the parameters, we are able to significantly reduce the overall RMSE between observations and model predictions by about 50%. The CLM predictions with the optimized parameters agree for northern and tropical latitudes more with the observed data than when using the default parameters and the emission predictions are higher than with default settings in northern latitudes and lower than default settings in the tropics.
Global/local stress analysis of composite structures. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.
1989-01-01
A method for performing a global/local stress analysis is described and its capabilities are demonstrated. The method employs spline interpolation functions which satisfy the linear plate bending equation to determine displacements and rotations from a global model which are used as boundary conditions for the local model. Then, the local model is analyzed independent of the global model of the structure. This approach can be used to determine local, detailed stress states for specific structural regions using independent, refined local models which exploit information from less-refined global models. The method presented is not restricted to having a priori knowledge of the location of the regions requiring local detailed stress analysis. This approach also reduces the computational effort necessary to obtain the detailed stress state. Criteria for applying the method are developed. The effectiveness of the method is demonstrated using a classical stress concentration problem and a graphite-epoxy blade-stiffened panel with a discontinuous stiffener.
NASA Astrophysics Data System (ADS)
Zhang, X.; Cai, X.; Zhu, T.
2013-12-01
Biofuels is booming in recent years due to its potential contributions to energy sustainability, environmental improvement and economic opportunities. Production of biofuels not only competes for land and water with food production, but also directly pushes up food prices when crops such as maize and sugarcane are used as biofuels feedstock. Meanwhile, international trade of agricultural commodities exports and imports water and land resources in a virtual form among different regions, balances overall water and land demands and resource endowment, and provides a promising solution to the increasingly severe food-energy competition. This study investigates how to optimize water and land resources uses for overall welfare at global scale in the framework of 'virtual resources'. In contrast to partial equilibrium models that usually simulate trades year-by-year, this optimization model explores the ideal world where malnourishment is minimized with optimal resources uses and trade flows. Comparing the optimal production and trade patterns with historical data can provide meaningful implications regarding how to utilize water and land resources more efficiently and how the trade flows would be changed for overall welfare at global scale. Valuable insights are obtained in terms of the interactions among food, water and bioenergy systems. A global hydro-economic optimization model is developed, integrating agricultural production, market demands (food, feed, fuel and other), and resource and environmental constraints. Preliminary results show that with the 'free market' mechanism and land as well as water resources use optimization, the malnourished population can be reduced by as much as 65%, compared to the 2000 historical value. Expected results include: 1) optimal trade paths to achieve global malnourishment minimization, 2) how water and land resources constrain local supply, 3) how policy affects the trade pattern as well as resource uses. Furthermore, impacts of
Modified patch-based locally optimal Wiener method for interferometric SAR phase filtering
NASA Astrophysics Data System (ADS)
Wang, Yang; Huang, Haifeng; Dong, Zhen; Wu, Manqing
2016-04-01
This paper presents a modified patch-based locally optimal Wiener (PLOW) method for interferometric synthetic aperture radar (InSAR) phase filtering. PLOW is a linear minimum mean squared error (LMMSE) estimator based on a Gaussian additive noise condition. It jointly estimates moments, including mean and covariance, using a non-local technique. By using similarities between image patches, this method can effectively filter noise while preserving details. When applied to InSAR phase filtering, three modifications are proposed based on spatial variant noise. First, pixels are adaptively clustered according to their coherence magnitudes. Second, rather than a global estimator, a locally adaptive estimator is used to estimate noise covariance. Third, using the coherence magnitudes as weights, the mean of each cluster is estimated, using a weighted mean to further reduce noise. The performance of the proposed method is experimentally verified using simulated and real data. The results of our study demonstrate that the proposed method is on par or better than the non-local interferometric SAR (NL-InSAR) method.
Nonlinear Global Optimization Using Curdling Algorithm in Mathematica Environmet
Energy Science and Technology Software Center (ESTSC)
1997-08-05
An algorithm for performing optimization which is a derivative-free, grid-refinement approach to nonlinear optimization was developed and implemented in software as OPTIMIZE. This approach overcomes a number of deficiencies in existing approaches. Most notably, it finds extremal regions rather than only single extremal points. the program is interactive and collects information on control parameters and constraints using menus. For up to two (and potentially three) dimensions, function convergence is displayed graphically. Because the algorithm doesmore » not compute derivatives, gradients, or vectors, it is numerically stable. It can find all the roots of a polynomial in one pass. It is an inherently parallel algorithm. OPTIMIZE-M is a modification of OPTIMIZE designed for use within the Mathematica environment created by Wolfram Research.« less
New Tabu Search based global optimization methods outline of algorithms and study of efficiency.
Stepanenko, Svetlana; Engels, Bernd
2008-04-15
The study presents two new nonlinear global optimization routines; the Gradient Only Tabu Search (GOTS) and the Tabu Search with Powell's Algorithm (TSPA). They are based on the Tabu-Search strategy, which tries to determine the global minimum of a function by the steepest descent-mildest ascent strategy. The new algorithms are explained and their efficiency is compared with other approaches by determining the global minima of various well-known test functions with varying dimensionality. These tests show that for most tests the GOTS possesses a much faster convergence than global optimizer taken from the literature. The efficiency of the TSPA compares to the efficiency of genetic algorithms. PMID:17910004
From Local to Global Processing: The Development of Illusory Contour Perception
Nayar, Kritika; Franchak, John; Adolph, Karen; Kiorpes, Lynne
2015-01-01
Global visual processing is important for segmenting scenes, extracting form from background, and recognizing objects. Local processing involves attention to the local elements, contrast, and boundaries of an image at the expense of extracting a global percept. Previous work is inconclusive regarding the relative development of local and global processing. Some studies suggest that global perception is already present by 8 months of age, whereas others suggest that the ability arises in childhood and continues to develop in adolescence. We used a novel method to assess the development of global processing in 3- to 10-year-old children and an adult comparison group. We used Kanizsa illusory contours as an assay of global perception and measured responses on a touch screen while monitoring eye position with a head-mounted eye tracker. Participants were tested using a similarity match-to-sample paradigm. Using converging measures, we found a clear developmental progression with age such that the youngest children performed near chance on the illusory contour discrimination whereas 7- to 8-year-olds performed nearly perfectly, as did adults. There was clear evidence of a gradual shift from a local to a global processing strategy: Young children looked predominantly at and touched the pacman inducers of the illusory form, whereas older children and adults looked predominantly at and touched the middle of the form. These data show a prolonged developmental trajectory in appreciation of global form, with a transition from local to global visual processing between 4 and 7 years of age. PMID:25514785
NASA Astrophysics Data System (ADS)
Vaz, Miguel; Luersen, Marco A.; Muñoz-Rojas, Pablo A.; Trentin, Robson G.
2016-04-01
Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.
Global order and local disorder in brain maps.
Rothschild, Gideon; Mizrahi, Adi
2015-07-01
Maps serve as a ubiquitous organizing principle in the mammalian brain. In several sensory systems, such as audition, vision, and somatosensation, topographic maps are evident throughout multiple levels of brain pathways. Topographic maps, like retinotopy and tonotopy, persist from the receptor surface up to the cortex. Other maps, such as those of orientation preference in the visual cortex, are first created in the cortex itself. Despite the prevalence of topographic maps, it is still not clear what function they subserve. Although maps are topographically smooth at the macroscale, they are often locally heterogeneous. Here, we review studies describing the anatomy and physiology of topographic maps across various spatial scales, from the smooth macroscale to the heterogeneous local microarchitecture, with emphasis on maps of the visual and auditory systems. We discuss the potential advantages of local heterogeneity in brain maps, how they reflect complex cortical connectivity, and how they may impact sensory coding and local computations. PMID:25897872
LOCAL AND GLOBAL DYNAMICS OF POLYLACTIDES. (R826733)
Polylactides (PLAs) are a family of degradable plastics having a component of the dipole moment both perpendicular and parallel to the polymer backbone (i.e. is a type-A polymer). We have studied the sub-glass, segmental and global chain dynamics in a series of fully amorphous...
Global History from the Local Perspective: An Instructional Technique.
ERIC Educational Resources Information Center
Maiewskij-Hay, Valentina
1999-01-01
Presents a genealogy/migration assignment that encourages students to recognize how their individual histories fit into the global world. Expounds that the students traced the migration of their ancestors from the Eastern Hemisphere to the United States and then within the United States to the Appalachian region. (CMK)
The Local Community and Global Awareness. An Occasional Paper.
ERIC Educational Resources Information Center
Truhan, Deborah L.
The paper presents ways in which students and teachers can identify social, cultural, and economic relationships that they have with the world. The activities are aimed at high school level, but many can be modified for use at lower grades. They are designed in the belief that global awareness can be developed through realization of shared…
Global English and Local Language Policies: What Denmark Needs.
ERIC Educational Resources Information Center
Phillipson, Robert
2001-01-01
Analyzes the mythology and imagery underpinning global English, the many labels used to describe English, and the transition from an imperialist language into one that meshes with ongoing processes of Europeanization and Americanization, largely through the influence of transnational corporations. Implications are drawn for Danish, in Denmark, a…
Local Action for Global Change. World Education Reports, Number 29.
ERIC Educational Resources Information Center
Garb, Gillian, Ed.; Baltz, Davis, Ed.
1991-01-01
This issue contains five articles that address environmental concerns. "Poverty and Environmental Decline" (Alan Durning) analyzes accelerating environmental decline and discusses the need for action at every level to reverse global deterioration. "Integrated Pest Management (IPM) Made Easy" (Cesar Galvan, Peter Kenmore) explains how Filipino…
Cultural Globalization and Teacher Education: A Local Perspective
ERIC Educational Resources Information Center
Stephenson, Maxine; Rio, Nane; Anderson, Helen; Millward, Pam
2008-01-01
This article examines the nature of cultural globalization and its effects as experienced and confronted in a teacher education program that is located in New Zealand's most ethnically diverse and fastest growing city. The students in the program bring a wide range of cultural, social, and experiential perspectives to their tertiary study, and are…
Migration and Adult Language Learning: Global Flows and Local Transpositions
ERIC Educational Resources Information Center
Burns, Anne; Roberts, Celia
2010-01-01
In the 21st century, global flows politically, socially, economically, and environmentally are creating widespread movements of people around the world and giving rise to increased resettlements of immigrants and refugees internationally. The reality in most countries worldwide is that contemporary populations are multifaceted, multicultural,…
Global versus local quantum correlations in the Grover search algorithm
NASA Astrophysics Data System (ADS)
Batle, J.; Ooi, C. H. Raymond; Farouk, Ahmed; Alkhambashi, M. S.; Abdalla, S.
2016-02-01
Quantum correlations are thought to be the reason why certain quantum algorithms overcome their classical counterparts. Since the nature of this resource is still not fully understood, we shall investigate how entanglement and nonlocality among register qubits vary as the Grover search algorithm is run. We shall encounter pronounced differences between the measures employed as far as bipartite and global correlations are concerned.
Persisting Inequalities: Childhood between Global Influences and Local Traditions
ERIC Educational Resources Information Center
Buhler-Niederberger, Doris; Van Kreiken, Robert
2008-01-01
This article analyses the central themes running through the collection of papers in this special issue of Childhood, which were all given as papers at the XVI Durban World Congress of Sociology, 23-29 July 2006. These themes encompass the ways in which global processes of social change combining modernity with tradition have become important for…
Optimal Detection of Global Warming using Temperature Profiles
NASA Technical Reports Server (NTRS)
Leroy, Stephen S.
1997-01-01
Optimal fingerprinting is applied to estimate the amount of time it would take to detect warming by increased concentrations of carbon dioxide in monthly averages of temperature profiles over the Indian Ocean.
On a global aerodynamic optimization of a civil transport aircraft
NASA Technical Reports Server (NTRS)
Savu, G.; Trifu, O.
1991-01-01
An aerodynamic optimization procedure developed to minimize the drag to lift ratio of an aircraft configuration: wing - body - tail, in accordance with engineering restrictions, is described. An algorithm developed to search a hypersurface with 18 dimensions, which define an aircraft configuration, is discussed. The results, when considered from the aerodynamic point of view, indicate the optimal configuration is one that combines a lifting fuselage with a canard.
Efficient Parallel Global Optimization for High Resolution Hydrologic and Climate Impact Models
NASA Astrophysics Data System (ADS)
Shoemaker, C. A.; Mueller, J.; Pang, M.
2013-12-01
High Resolution hydrologic models are typically computationally expensive, requiring many minutes or perhaps hours for one simulation. Optimization can be used with these models for parameter estimation or for analyzing management alternatives. However Optimization of these computationally expensive simulations requires algorithms that can obtain accurate answers with relatively few simulations to avoid infeasibly long computation times. We have developed a number of efficient parallel algorithms and software codes for optimization of expensive problems with multiple local minimum. This is open source software we are distributing. It runs in Matlab and Python, and has been run on Yellowstone supercomputer. The talk will quickly discuss the characteristics of the problem (e.g. the presence of integer as well as continuous variables, the number of dimensions, the availability of parallel/grid computing, the number of simulations that can be allowed to find a solution, etc. ) that determine which algorithms are most appropriate for each type of problem. A major application of this optimization software is for parameter estimation for nonlinear hydrologic models, including contaminant transport in subsurface (e.g. for groundwater remediation or multi-phase flow for carbon sequestration), nutrient transport in watersheds, and climate models. We will present results for carbon sequestration plume monitoring (multi-phase, multi-constiuent), for groundwater remediation, and for the CLM climate model. The carbon sequestration example is based on the Frio CO2 field site and the groundwater example is for a 50,000 acre remediation site (with model requiring about 1 hour per simulation). Parallel speed-ups are excellent in most cases, and our serial and parallel algorithms tend to outperform alternative methods on complex computationally expensive simulations that have multiple global minima.
A study of local anisotropy in globally isotropic incompressible MHD
NASA Astrophysics Data System (ADS)
Milano, L. J.; Dmitruk, P.; Matthaeus, W. H.; Montgomery, D.
2000-10-01
It is a well known fact that in presence of a DC applied field, MHD turbulence develops spectral anisotropy from an isotropic initial condition [1]. Typically, the reduced spectrum is steeper in the direction of the magnetic field than it is in any transverse direction. Theoretical insight into the origin of this effect has been derived from simulations in which there is a uniform DC magnetic field, but suggestions of a similar anisotropy is seen in various laboratory devices and also in the solar wind [2,3]. One might expect that a DC field is not essential, and it is the local mean field that is responsible. Here we investigate the occurence of local anisotropy in 3 dimensional MHD, i.e. we search for a local version of the spectral anisotropy effect. We perform 3D MHD pseudo-spectral incompressible relaxation simulations, and compute structure functions accumulated according to whether the separation is parallel to, or transverse to, the local magnetic field. Preliminary results show that correlations decay slower in the locally averaged magnetic field direction. [1] J. Shebalin, W. Matthaeus and D. Montgomery, J. Plasma Phys. 29, 525 (1983) [2] W.H. Matthaeus, M.L. Goldsteon and D.A. Roberts, J. Geophys. Res. 95, 20 673 (1990) [3] J. Armstrong, W. Coles, M. Kojima and B. Rickett, Ap. J. 358, 685 (1990)
The ecology of dust: local- to global-scale perspectives
Whicker, Jeffrey J; Field, Jason P; Belnap, Jayne; Breshears, David D; Neff, Jason; Okin, Gregory S; Painter, Thomas H; Ravi, Sujith; Reheis, Marith C; Reynolds, Richard L
2009-01-01
Emission and redistribution of dust due to wind erosion in drylands drives major biogeochemical dynamics and provides important aeolian environmental connectivity at scales from individual plants up to the global scale. Yet, perhaps because most relevant research on aeolian processes has been presented in a geosciences rather than ecological context, most ecological studies do not explicitly consider dust-driven processes. To bridge this disciplinary gap, we provide a general overview of the ecological importance of dust, examine complex interactions between wind erosion and ecosystem dynamics from the plant-interspace scale to regional and global scales, and highlight specific examples of how disturbance affects these interactions and their consequences. Changes in climate and intensification of land use will both likely lead to increased dust production. To address these challenges, environmental scientists, land managers and policy makers need to more explicitly consider dust in resource management decisions.
Land System Science: between global challenges and local realities.
Verburg, Peter H; Erb, Karl-Heinz; Mertz, Ole; Espindola, Giovana
2013-10-01
This issue of Current Opinion in Environmental Sustainability provides an overview of recent advances in Land System Science while at the same time setting the research agenda for the Land System Science community. Land System Science is not just representing land system changes as either a driver or a consequence of global environmental change. Land systems also offer solutions to global change through adaptation and mitigation and can play a key role in achieving a sustainable future earth. The special issue assembles 14 articles that entail different perspectives on land systems and their dynamics, synthesizing current knowledge, highlighting currently under-researched topics, exploring scientific frontiers and suggesting ways ahead, integrating a plethora of scientific disciplines. PMID:24851141
NASA Astrophysics Data System (ADS)
Shao, H.; Huang, Y.; Kolditz, O.
2015-12-01
Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in
NASA Astrophysics Data System (ADS)
Younis, Adel; Dong, Zuomin
2012-07-01
Surrogate-based modeling is an effective search method for global design optimization over well-defined areas using complex and computationally intensive analysis and simulation tools. However, indentifying the appreciate surrogate models and their suitable areas remains a challenge that requires extensive human intervention. In this work, a new global optimization algorithm, namely Mixed Surrogate and Space Elimination (MSSE) method, is introduced. Representative surrogate models, including Quadratic Response Surface, Radial Basis function, and Kriging, are mixed with different weight ratios to form an adaptive metamodel with best tested performance. The approach divides the field of interest into several unimodal regions; identifies and ranks the regions that likely contain the global minimum; fits the weighted surrogate models over each promising region using additional design experiment data points from Latin Hypercube Designs and adjusts the weights according to the performance of each model; identifies its minimum and removes the processed region; and moves to the next most promising region until all regions are processed and the global optimum is identified. The proposed algorithm was tested using several benchmark problems for global optimization and compared with several widely used space exploration global optimization algorithms, showing reduced computation efforts, robust performance and comparable search accuracy, making the proposed method an excellent tool for computationally intensive global design optimization problems.
Alpine hydropower in a low carbon economy: Assessing the local implication of global policies
NASA Astrophysics Data System (ADS)
Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo
2016-04-01
In the global transition towards a more efficient and low-carbon economy, renewable energy plays a major role in displacing fossil fuels, meeting global energy demand while reducing carbon dioxide emissions. In Europe, Variable Renewable Sources (VRS), such as wind and solar power sources, are becoming a relevant share of the generation portfolios in many countries. Beside the indisputable social and environmental advantages of VRS, on the short medium term the VRS-induced lowering energy prices and increasing price's volatility might challenge traditional power sources and, among them, hydropower production, because of smaller incomes and higher maintenance costs associated to a more flexible operation of power systems. In this study, we focus on the Swiss hydropower sector analysing how different low-carbon targets and strategies established at the Swiss and European level might affect energy price formation and thus impact - through hydropower operation - water availability and ecosystems services at the catchment scale. We combine a hydrological model to simulate future water availability and an electricity market model to simulate future evolution of energy prices based on official Swiss and European energy roadmaps and CO2 price trends in the European Union. We use Multi-Objective optimization techniques to design alternative hydropower reservoir operation strategies, aiming to maximise the hydropower companies' income or to provide reliable energy supply with respect to the energy demand. This integrated model allows analysing to which extent global low-carbon policies impact reservoir operation at the local scale, and to gain insight on how to prioritise compensation measures and/or adaptation strategies to mitigate the impact of VRS on hydropower companies in increasingly water constrained settings. Numerical results are shown for a real-world case study in the Swiss Alps.
Global and local processing of incidental information and memory retrieval at 6 months.
Bhatt, R S; Rovee-Collier, C; Shyi, G C
1994-04-01
In five experiments, we examined the role of global and local cues in memory retrieval in infancy. Six-month-old infants were trained at home in a distinctive context (playpen liner) to kick to move a mobile. The liners were yellow and displayed either green stripes, green squares aligned vertically in stripe-like columns, or green squares in a grid pattern. The stripes and columns liners had a similar global configuration but different local components; the columns and grid liners had identical local components but different global configurations. When infants were tested 24 h after training in the presence of context liners that differed from the training context in either global configurations or local features, their memory retrieval was disrupted (Experiments 1 and 2). However, a change from stripes to columns failed to disrupt memory retrieval, even though the reverse change, from columns to stripes, did. Experiments 3, 4, and 5 revealed that this asymmetry was due to the fact that, when discriminative local information is not directly associated with training, a postperceptual strategy enables infants to disregard a mismatch in local information between training and test contexts and to generalize on the basis of a match in global information during the 24-h retention test. Thus, infants encode and remember for substantial periods of time both global configuration information and local component information in the incidental context in which an event occurs and flexibly utilize this information when responding to new events. PMID:8169579
Teaching Geography through "Chinatowns": Global Connections and Local Spaces
ERIC Educational Resources Information Center
Ho, Li-Ching; Seow, Tricia
2013-01-01
Chinatowns are familiar emblems of "Chineseness" in many countries and are among the most visible and tangible spatial manifestations of Chinese migration. Large and well-established Chinatowns can be found in diverse locales, including New York, San Francisco, Vancouver, Paris, Sydney, and Singapore. Despite sharing numerous easily recognizable…
They Thought Globally, But Now Colleges Push Online Programs Locally
ERIC Educational Resources Information Center
Parry, Marc
2009-01-01
For years, some universities have dreamed of border-defying online programs that vacuum up tuition dollars far beyond local students. But now a growing number of institutions are ramping up their efforts to attract working adults in their own backyards. Commuter-serving urban universities can not match the marketing muscle of faster-growing,…
Conflict in Context: Understanding Local to Global Security.
ERIC Educational Resources Information Center
Mertz, Gayle; Lieber, Carol Miller
This multidisciplinary guide provides middle and high school teachers and students with inquiry-based tools to support their exploration of emerging local, national, international, and transboundary security issues. Students are introduced to critical thinking, problem solving, and peacemaking strategies that will help them better understand…
Think Global, Act Local--A Power Generation Case Study
ERIC Educational Resources Information Center
Dugdale, Pam
2012-01-01
This paper describes an exercise completed by sixth form college students to compare the power output from a local coal fired power station with the potential power output from renewable sources including wind farms, solar farms, and the proposed Mersey Tidal Barrage scheme. (Contains 1 figure, 1 table, and 3 photos.)
Protein structure prediction using global optimization by basin-hopping with NMR shift restraints
NASA Astrophysics Data System (ADS)
Hoffmann, Falk; Strodel, Birgit
2013-01-01
Computational methods that utilize chemical shifts to produce protein structures at atomic resolution have recently been introduced. In the current work, we exploit chemical shifts by combining the basin-hopping approach to global optimization with chemical shift restraints using a penalty function. For three peptides, we demonstrate that this approach allows us to find near-native structures from fully extended structures within 10 000 basin-hopping steps. The effect of adding chemical shift restraints is that the α and β secondary structure elements form within 1000 basin-hopping steps, after which the orientation of the secondary structure elements, which produces the tertiary contacts, is driven by the underlying protein force field. We further show that our chemical shift-restraint BH approach also works for incomplete chemical shift assignments, where the information from only one chemical shift type is considered. For the proper implementation of chemical shift restraints in the basin-hopping approach, we determined the optimal weight of the chemical shift penalty energy with respect to the CHARMM force field in conjunction with the FACTS solvation model employed in this study. In order to speed up the local energy minimization procedure, we developed a function, which continuously decreases the width of the chemical shift penalty function as the minimization progresses. We conclude that the basin-hopping approach with chemical shift restraints is a promising method for protein structure prediction.
Overview: Global and Local Impact of Antibiotic Resistance.
Watkins, Richard R; Bonomo, Robert A
2016-06-01
The rapid and ongoing spread of antibiotic resistance poses a serious threat to global public health. The indiscriminant use of antibiotics in agriculture and human medicine along with increasingly connected societies has fueled the distribution of antibiotic-resistant bacteria. These factors together have led to rising numbers of infections caused by multidrug-resistant and pan-resistant bacteria, with increases in morbidity and mortality. This article summarizes the trends in antibiotic resistance, discusses the impact of antibiotic resistance on society, and reviews the use of antibiotics in agriculture. Feasible ways to tackle antibiotic resistance to avert a post-antibiotic era are suggested. PMID:27208761
Localized D-dimensional global k-defects
NASA Astrophysics Data System (ADS)
Avelino, P. P.; Bazeia, D.; Menezes, R.; Ramos, J. G. G. S.
2011-06-01
We explicitly demonstrate the existence of static global defect solutions of arbitrary dimensionality whose energy does not diverge at spatial infinity, by considering maximally symmetric solutions described by an action with non-standard kinetic terms in a D+1 dimensional Minkowski space-time. We analytically determine the defect profile both at small and large distances from the defect centre. We study the stability of such solutions and discuss possible implications of our findings, in particular for dark matter and charge fractionalization in graphene.
Global/local interlaminar stress analysis of a grid-stiffened composite panel
NASA Astrophysics Data System (ADS)
Wiggenraad, J. F. M.; Bauld, N. R., Jr.
1991-05-01
A global/local procedure for the computation of the interlaminar stress components at the skin wrap, skin core, and wrap core interfaces for an advanced concept stiffened panel, is described. The procedure consists of a global model of two dimensional shell elements that is used to design a grid stiffened panel with blade type stiffeners, a local model of three dimensional solid elements that is used to compute interlaminar stress components, and a scheme devised to assign displacement boundary conditions for a local model that are based on displacement and rotation data of a few nodes of the global model. A global panel was designed according to strength, stiffness, and stability criteria associated with the design of traditional aircraft wing panels. Interlaminar normal and shearing stress components, computed via the local model, were found to be well below typical tensile normal and shearing strengths of a graphite epoxy material.
Global/local interlaminar stress analysis of a grid-stiffened composite panel
NASA Astrophysics Data System (ADS)
Wiggenraad, J. F. M.; Bauld, N. R., Jr.
1993-02-01
A global/local procedure for the computation of the interlaminar stress components at the skin wrap, skin core, and wrap core interfaces for an advanced concept stiffened panel, is described. The procedure consists of a global model of two dimensional shell elements that is used to design a grid stiffened panel with blade type stiffeners, a local model of three dimensional solid elements that is used to compute interlaminar stress components, and a scheme devised to assign displacement boundary conditions for a local model that are based on displacement and rotation data of a few nodes of the global model. A global panel was designed according to strength, stiffness, and stability criteria associated with the design of traditional aircraft wing panels. Interlaminar normal and shearing stress components, computed via the local model, were found to be well below typical tensile normal and shearing strengths of a graphite epoxy material.
Global/local interlaminar stress analysis of a grid-stiffened composite panel
Wiggenraad, J.F.M.; Bauld, N.R. Jr. Clemson Univ., SC )
1993-02-01
A global/local procedure for the computation of the interlaminar stress components at the skin wrap, skin core, and wrap core interfaces for an advanced concept stiffened panel, is described. The procedure consists of a global model of two dimensional shell elements that is used to design a grid stiffened panel with blade type stiffeners, a local model of three dimensional solid elements that is used to compute interlaminar stress components, and a scheme devised to assign displacement boundary conditions for a local model that are based on displacement and rotation data of a few nodes of the global model. A global panel was designed according to strength, stiffness, and stability criteria associated with the design of traditional aircraft wing panels. Interlaminar normal and shearing stress components, computed via the local model, were found to be well below typical tensile normal and shearing strengths of a graphite epoxy material. 8 refs.
Global/local interlaminar stress analysis of a grid-stiffened composite panel
NASA Technical Reports Server (NTRS)
Wiggenraad, J. F. M.; Bauld, N. R., Jr.
1993-01-01
A global/local procedure for the computation of the interlaminar stress components at the skin wrap, skin core, and wrap core interfaces for an advanced concept stiffened panel, is described. The procedure consists of a global model of two dimensional shell elements that is used to design a grid stiffened panel with blade type stiffeners, a local model of three dimensional solid elements that is used to compute interlaminar stress components, and a scheme devised to assign displacement boundary conditions for a local model that are based on displacement and rotation data of a few nodes of the global model. A global panel was designed according to strength, stiffness, and stability criteria associated with the design of traditional aircraft wing panels. Interlaminar normal and shearing stress components, computed via the local model, were found to be well below typical tensile normal and shearing strengths of a graphite epoxy material.
The global, the local, and the science curriculum: a struggle for balance in Cyprus
NASA Astrophysics Data System (ADS)
Zembylas, Michalinos
2002-05-01
In documenting educational reforms in the science curriculum of developing countries, a number of tensions become apparent as a result of struggles to preserve local values while incorporating global trends. This article describes and analyses these tensions and paradoxes, and discusses the intersections of cultural, economic, administrative and educational history of elementary school science curriculum development in Cyprus since its independence from the British in 1960. Using a combination of methodological tools that range from document analysis, historical research and ethnographic methods of collecting data, it is argued that the global and the local can be viewed spatially in terms of linking people, spaces and diverse knowledges. In order to ensure that local values in science curriculum development can be sustained without being absorbed by globalization curriculum developers in developing countries need to create spaces in which the local can be performed together with the global.
NASA Astrophysics Data System (ADS)
Chiang, Yen-Sheng
2015-11-01
Inequality measures are widely used in both the academia and public media to help us understand how incomes and wealth are distributed. They can be used to assess the distribution of a whole society-global inequality-as well as inequality of actors' referent networks-local inequality. How different is local inequality from global inequality? Formalizing the structure of reference groups as a network, the paper conducted a computational experiment to see how the structure of complex networks influences the difference between global and local inequality assessed by a selection of inequality measures. It was found that local inequality tends to be higher than global inequality when population size is large; network is dense and heterophilously assorted, and income distribution is less dispersed. The implications of the simulation findings are discussed.
How does mass loading impact local versus global control on dayside reconnection?
NASA Astrophysics Data System (ADS)
Zhang, B.; Brambles, O. J.; Wiltberger, M.; Lotko, W.; Ouellette, J. E.; Lyon, J. G.
2016-03-01
This paper investigates the effects of magnetospheric mass loading on the control of dayside magnetic reconnection using global magnetospheric simulations. The study iys motivated by a recent debate on whether the integrated dayside magnetic reconnection rate is solely controlled by local processes (local-control theory) or global merging processes (global-control theory). The local-control theory suggests that the integrated dayside reconnection rate is controlled by the local plasma parameters. The global-control theory argues that the integrated rate is determined by the net force acting on the flow in the magnetosheath rather than the local microphysics. Controlled numerical simulations using idealized ionospheric outflow specifications suggest a possible mixed-control theory, that is, (1) a small amount of mass loading at the dayside magnetopause only redistributes local reconnection rate without a significant change in the integrated reconnection rate and (2) a large amount of mass loading reduces both local reconnection rates and the integrated reconnection rate on the dayside. The transition between global-control- and local-control-dominated regimes depends on (but not limited to) the source region, the amount, the location, and the spatial extension of the mass loading at the dayside magnetopause.
Measuring capital market efficiency: Global and local correlations structure
NASA Astrophysics Data System (ADS)
Kristoufek, Ladislav; Vosvrda, Miloslav
2013-01-01
We introduce a new measure for capital market efficiency. The measure takes into consideration the correlation structure of the returns (long-term and short-term memory) and local herding behavior (fractal dimension). The efficiency measure is taken as a distance from an ideal efficient market situation. The proposed methodology is applied to a portfolio of 41 stock indices. We find that the Japanese NIKKEI is the most efficient market. From a geographical point of view, the more efficient markets are dominated by the European stock indices and the less efficient markets cover mainly Latin America, Asia and Oceania. The inefficiency is mainly driven by a local herding, i.e. a low fractal dimension.
Think globally, research locally: paradigms and place in agroecological research.
Reynolds, Heather L; Smith, Alex A; Farmer, James R
2014-10-01
Conducting science for practical ends implicates scientists, whether they wish it or not, as agents in social-ecological systems, raising ethical, economic, environmental, and political issues. Considering these issues helps scientists to increase the relevance and sustainability of research outcomes. As we rise to the worthy call to connect basic research with food production, scientists have the opportunity to evaluate alternative food production paradigms and consider how our research funds and efforts are best employed. In this contribution, we review some of the problems produced by science conducted in service of industrial agriculture and its associated economic growth paradigm. We discuss whether the new concept of "ecological intensification" can rescue the industrial agriculture/growth paradigm and present an emerging alternative paradigm of decentralized, localized, biodiversity-promoting agriculture for a steady-state economy. This "custom fit" agriculture engages constructively with complex and highly localized ecosystems, and we draw from examples of published work to demonstrate how ecologists can contribute by using approaches that acknowledge local agricultural practices and draw on community participation. PMID:25326612
ERIC Educational Resources Information Center
Chen-Hafteck, Lily; Zhuoya, X. U.
2008-01-01
Educators in China are facing challenges as a tug-of-war between local culture and global influences in Chinese early childhood music educations plays out. By exploring the situations of Hong Kong and Nanjing, the authors demonstrate a wide gap between policy and practice. The top-down policy from government officials is based on global views of…
Commercial Complexity and Local and Global Involvement in Programs: Effects on Viewer Responses.
ERIC Educational Resources Information Center
Oberman, Heiko; Thorson, Esther
A study investigated the effects of local (momentary) and global (whole program) involvement in program context and the effects of message complexity on the retention of television commercials. Sixteen commercials, categorized as simple video/simple audio through complex video/complex audio were edited into two globally high- and two globally…
Climate-soil Interactions: Global Change, Local Properties, and Ecological Sites
Technology Transfer Automated Retrieval System (TEKTRAN)
Global climate change is predicted to alter historic patterns of precipitation and temperature in rangelands globally. Vegetation community response to altered weather patterns will be mediated at the site level by local-scale properties that govern ecological potential, including geology, topograph...
Zmigrod, Sharon; Zmigrod, Leor; Hommel, Bernhard
2015-01-01
While recent studies have investigated how processes underlying human creativity are affected by particular visual-attentional states, we tested the impact of more stable attention-related preferences. These were assessed by means of Navon's global-local task, in which participants respond to the global or local features of large letters constructed from smaller letters. Three standard measures were derived from this task: the sizes of the global precedence effect, the global interference effect (i.e., the impact of incongruent letters at the global level on local processing), and the local interference effect (i.e., the impact of incongruent letters at the local level on global processing). These measures were correlated with performance in a convergent-thinking creativity task (the Remote Associates Task), a divergent-thinking creativity task (the Alternate Uses Task), and a measure of fluid intelligence (Raven's matrices). Flexibility in divergent thinking was predicted by the local interference effect while convergent thinking was predicted by intelligence only. We conclude that a stronger attentional bias to visual information about the "bigger picture" promotes cognitive flexibility in searching for multiple solutions. PMID:26579030
Zmigrod, Sharon; Zmigrod, Leor; Hommel, Bernhard
2015-01-01
While recent studies have investigated how processes underlying human creativity are affected by particular visual-attentional states, we tested the impact of more stable attention-related preferences. These were assessed by means of Navon’s global-local task, in which participants respond to the global or local features of large letters constructed from smaller letters. Three standard measures were derived from this task: the sizes of the global precedence effect, the global interference effect (i.e., the impact of incongruent letters at the global level on local processing), and the local interference effect (i.e., the impact of incongruent letters at the local level on global processing). These measures were correlated with performance in a convergent-thinking creativity task (the Remote Associates Task), a divergent-thinking creativity task (the Alternate Uses Task), and a measure of fluid intelligence (Raven’s matrices). Flexibility in divergent thinking was predicted by the local interference effect while convergent thinking was predicted by intelligence only. We conclude that a stronger attentional bias to visual information about the “bigger picture” promotes cognitive flexibility in searching for multiple solutions. PMID:26579030
Comparisons between global and local gyrokinetic simulations of an ASDEX Upgrade H-mode plasma
NASA Astrophysics Data System (ADS)
Navarro, Alejandro Bañón; Told, Daniel; Jenko, Frank; Görler, Tobias; Happel, Tim
2016-04-01
We investigate by means of local and global nonlinear gyrokinetic GENE simulations an ASDEX Upgrade H-mode plasma. We find that for the outer core positions (i.e., ρ tor ≈ 0.5 - 0.7 ), nonlocal effects are important. For nominal input parameters local simulations over-predict the experimental heat fluxes by a large factor, while a good agreement is found with global simulations. This was a priori not expected, since the values of 1 / ρ ⋆ were large enough that global and local simulations should have been in accordance. Nevertheless, due to the high sensitivity of the heat fluxes with respect to the input parameters, it is still possible to match the heat fluxes in local simulations with the experimental and global results by varying the ion temperature gradient within the experimental uncertainties. In addition to that, once an agreement in the transport quantities between local (flux-matched) and global simulations is achieved, an agreement for other quantities, such as density and temperature fluctuations, is also found. The case presented here clearly shows that even in the presence of global size-effects, the local simulation approach is still a valid and accurate approach.
Global stability and optimal control of an SIRS epidemic model on heterogeneous networks
NASA Astrophysics Data System (ADS)
Chen, Lijuan; Sun, Jitao
2014-09-01
In this paper, we consider an SIRS epidemic model with vaccination on heterogeneous networks. By constructing suitable Lyapunov functions, global stability of the disease-free equilibrium and the endemic equilibrium of the model is investigated. Also we firstly study an optimally controlled SIRS epidemic model on complex networks. We show that an optimal control exists for the control problem. Finally some examples are presented to show the global stability and the efficiency of this optimal control. These results can help in adopting pragmatic treatment upon diseases in structured populations.
Cultures in orbit: Satellite technologies, global media and local practice
NASA Astrophysics Data System (ADS)
Parks, Lisa Ann
Since the launch of Sputnik in 1957, satellite technologies have had a profound impact upon cultures around the world. "Cultures in Orbit" examines these seemingly disembodied, distant relay machines in relation to situated social and cultural processes on earth. Drawing upon a range of materials including NASA and UNESCO documents, international satellite television broadcasts, satellite 'development' projects, documentary and science fiction films, remote sensing images, broadcast news footage, World Wide Web sites, and popular press articles I delineate and analyze a series of satellite mediascapes. "Cultures in Orbit" analyzes uses of satellites for live television relay, surveillance, archaeology and astronomy. The project examines such satellite media as the first live global satellite television program Our World, Elvis' Aloha from Hawaii concert, Aboriginal Australian satellite programs, and Star TV's Asian music videos. In addition, the project explores reconnaissance images of mass graves in Bosnia, archaeological satellite maps of Cleopatra's underwater palace in Egypt, and Hubble Space Telescope images. These case studies are linked by a theoretical discussion of the satellite's involvement in shifting definitions of time, space, vision, knowledge and history. The satellite fosters an aesthetic of global realism predicated on instantaneous transnational connections. It reorders linear chronologies by revealing traces of the ancient past on the earth's surface and by searching in deep space for the "edge of time." On earth, the satellite is used to modernize and develop "primitive" societies. Satellites have produced new electronic spaces of international exchange, but they also generate strategic maps that advance Western political and cultural hegemony. By technologizing human vision, the satellite also extends the epistemologies of the visible, the historical and the real. It allows us to see artifacts and activities on earth from new vantage points
Local and global dynamics of warped astrophysical discs
NASA Astrophysics Data System (ADS)
Ogilvie, Gordon I.; Latter, Henrik N.
2013-08-01
Astrophysical discs are warped whenever a misalignment is present in the system, or when a flat disc is made unstable by external forces. The evolution of the shape and mass distribution of a warped disc is driven not only by external influences but also by an internal torque, which transports angular momentum through the disc. This torque depends on internal flows driven by the oscillating pressure gradient associated with the warp, and on physical processes operating on smaller scales, which may include instability and turbulence. We introduce a local model for the detailed study of warped discs. Starting from the shearing sheet of Goldreich and Lynden-Bell, we impose the oscillating geometry of the orbital plane by means of a coordinate transformation. This warped shearing sheet (or box) is suitable for analytical and computational treatments of fluid dynamics, magnetohydrodynamics, etc., and it can be used to compute the internal torque that drives the large-scale evolution of the disc. The simplest hydrodynamic states in the local model are horizontally uniform laminar flows that oscillate at the orbital frequency. These correspond to the non-linear solutions for warped discs found in previous work by Ogilvie, and we present an alternative derivation and generalization of that theory. In a companion paper, we show that these laminar flows are often linearly unstable, especially if the disc is nearly Keplerian and of low viscosity. The local model can be used in future work to determine the non-linear outcome of the hydrodynamic instability of warped discs, and its interaction with others such as the magnetorotational instability.
Quadruped Robot Locomotion using a Global Optimization Stochastic Algorithm
NASA Astrophysics Data System (ADS)
Oliveira, Miguel; Santos, Cristina; Costa, Lino; Ferreira, Manuel
2011-09-01
The problem of tuning nonlinear dynamical systems parameters, such that the attained results are considered good ones, is a relevant one. This article describes the development of a gait optimization system that allows a fast but stable robot quadruped crawl gait. We combine bio-inspired Central Patterns Generators (CPGs) and Genetic Algorithms (GA). CPGs are modelled as autonomous differential equations, that generate the necessar y limb movement to perform the required walking gait. The GA finds parameterizations of the CPGs parameters which attain good gaits in terms of speed, vibration and stability. Moreover, two constraint handling techniques based on tournament selection and repairing mechanism are embedded in the GA to solve the proposed constrained optimization problem and make the search more efficient. The experimental results, performed on a simulated Aibo robot, demonstrate that our approach allows low vibration with a high velocity and wide stability margin for a quadruped slow crawl gait.
Entanglement and discord: Accelerated observations of local and global modes
NASA Astrophysics Data System (ADS)
Doukas, Jason; Brown, Eric G.; Dragan, Andrzej; Mann, Robert B.
2013-01-01
We investigate the amount of entanglement and quantum discord extractable from a two-mode squeezed state as considered from the viewpoint of two observers, Alice (inertial) and Rob (accelerated). We find that using localized modes produces qualitatively different correlation properties for large accelerations than do Unruh modes. Specifically, the entanglement undergoes a sudden death as a function of acceleration, and the discord asymptotes to zero in the limit of infinite acceleration. We conclude that the previous Unruh mode analyses do not determine the acceleration-dependent entanglement and discord degradation of a given quantum state.
Flow-based local optimization for image-to-geometry projection.
Dellepiane, Matteo; Marroquim, Ricardo; Callieri, Marco; Cignoni, Paolo; Scopigno, Roberto
2012-03-01
The projection of a photographic data set on a 3D model is a robust and widely applicable way to acquire appearance information of an object. The first step of this procedure is the alignment of the images on the 3D model. While any reconstruction pipeline aims at avoiding misregistration by improving camera calibrations and geometry, in practice a perfect alignment cannot always be reached. Depending on the way multiple camera images are fused on the object surface, remaining misregistrations show up either as ghosting or as discontinuities at transitions from one camera view to another. In this paper we propose a method, based on the computation of Optical Flow between overlapping images, to correct the local misalignment by determining the necessary displacement. The goal is to correct the symptoms of misregistration, instead of searching for a globally consistent mapping, which might not exist. The method scales up well with the size of the data set (both photographic and geometric) and is quite independent of the characteristics of the 3D model (topology cleanliness, parametrization, density). The method is robust and can handle real world cases that have different characteristics: low level geometric details and images that lack enough features for global optimization or manual methods. It can be applied to different mapping strategies, such as texture or per-vertex attribute encoding. PMID:21519108
Multi-site evaluation of the JULES land surface model using global and local data
NASA Astrophysics Data System (ADS)
Slevin, D.; Tett, S. F. B.; Williams, M.
2014-08-01
Changes in atmospheric carbon dioxide and water vapour change the energy balance of the atmosphere and thus climate. One important influence on these greenhouse gases is the land surface. Land Surface Models (LSMs) represent the interaction between the atmosphere and terrestrial biosphere in Global Climate Models (GCMs). As LSMs become more advanced, there is a need to test their accuracy. Uncertainty from LSMs contributes towards uncertainty in carbon cycle simulations and thus uncertainty in future climate change. In this study, we evaluate the ability of the JULES LSM to simulate photosynthesis using local and global datasets at 12 FLUXNET sites. Model parameters include site-specific (local) values for each flux tower site and the default parameters used in the Hadley Centre Global Environmental Model (HadGEM) climate model. Firstly, we compare Gross Primary Productivity (GPP) estimates from driving JULES with data derived from local site measurements with driving JULES with data derived from global parameter and atmospheric reanalysis (on scales of 100 km or so). We find that when using local data, a negative bias is introduced into model simulations with yearly GPP underestimated by 16% on average compared to observations while when using global data, model performance decreases further with yearly GPP underestimated by 30% on average. Secondly, we drive the model using global meteorological data and local parameters and find that global data can be used in place of FLUXNET data with only a 7% reduction in total annual simulated GPP. Thirdly, we compare the global meteorological datasets, WFDEI and PRINCETON, to local data and find that the WATCH dataset more closely matches the local meteorological measurements (FLUXNET). Finally, we compare the results from forcing JULES with the remote sensing product MODIS Leaf Area Index (LAI). JULES was modified to accept MODIS LAI at daily timesteps. We show that forcing the model with daily satellite LAI results in
Resource redistribution in polydomous ant nest networks: local or global?
Franks, Daniel W.; Robinson, Elva J.H.
2014-01-01
An important problem facing organisms in a heterogeneous environment is how to redistribute resources to where they are required. This is particularly complex in social insect societies as resources have to be moved both from the environment into the nest and between individuals within the nest. Polydomous ant colonies are split between multiple spatially separated, but socially connected, nests. Whether, and how, resources are redistributed between nests in polydomous colonies is unknown. We analyzed the nest networks of the facultatively polydomous wood ant Formica lugubris. Our results indicate that resource redistribution in polydomous F. lugubris colonies is organized at the local level between neighboring nests and not at the colony level. We found that internest trails connecting nests that differed more in their amount of foraging were stronger than trails between nests with more equal foraging activity. This indicates that resources are being exchanged directly from nests with a foraging excess to nests that require resources. In contrast, we found no significant relationships between nest properties, such as size and amount of foraging, and network measures such as centrality and connectedness. This indicates an absence of a colony-level resource exchange. This is a clear example of a complex behavior emerging as a result of local interactions between parts of a system. PMID:25214755
Development and verification of global/local analysis techniques for laminated composites
NASA Technical Reports Server (NTRS)
Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.
1991-01-01
A two-dimensional to three-dimensional global/local finite element approach was developed, verified, and applied to a laminated composite plate of finite width and length containing a central circular hole. The resulting stress fields for axial compression loads were examined for several symmetric stacking sequences and hole sizes. Verification was based on comparison of the displacements and the stress fields with those accepted trends from previous free edge investigations and a complete three-dimensional finite element solution of the plate. The laminates in the compression study included symmetric cross-ply, angle-ply and quasi-isotropic stacking sequences. The entire plate was selected as the global model and analyzed with two-dimensional finite elements. Displacements along a region identified as the global/local interface were applied in a kinematically consistent fashion to independent three-dimensional local models. Local areas of interest in the plate included a portion of the straight free edge near the hole, and the immediate area around the hole. Interlaminar stress results obtained from the global/local analyses compares well with previously reported trends, and some new conclusions about interlaminar stress fields in plates with different laminate orientations and hole sizes are presented for compressive loading. The effectiveness of the global/local procedure in reducing the computational effort required to solve these problems is clearly demonstrated through examination of the computer time required to formulate and solve the linear, static system of equations which result for the global and local analyses to those required for a complete three-dimensional formulation for a cross-ply laminate. Specific processors used during the analyses are described in general terms. The application of this global/local technique is not limited software system, and was developed and described in as general a manner as possible.
Klauer, Karl Christoph; Singmann, Henrik
2015-01-01
According to GLOMOsys (the GLObal versus LOcal processing MOdel, a systems account), an important distinction is that between a local and a global processing system: The former processes information in parts, the latter processes it globally. These systems can be activated by perceptual processing and carry over to subsequent conceptual processing, in particular to analytical and creative thought. A conceptual and a high-powered close replication of previously reported studies test predictions of GLOMOsys for analytical thought and for analytical and creative thought, respectively. The present studies found no evidence that processing style primed via the Navon letter task has an impact on creative or analytic thought. PMID:26469701
Identity Formation of American Indian Adolescents: Local, National, and Global Considerations
ERIC Educational Resources Information Center
Markstrom, Carol A.
2011-01-01
A conceptual model is presented that approaches identity formation of American Indian adolescents according to 3 levels of social contextual influence--local, national, and global--relative to types of identity, dynamics of identity, and sources of influence. Ethnic identity of American Indians is embedded within the local cultural milieu and…
Choice as a Global Language in Local Practice: A Mixed Model of School Choice in Taiwan
ERIC Educational Resources Information Center
Mao, Chin-Ju
2015-01-01
This paper uses school choice policy as an example to demonstrate how local actors adopt, mediate, translate, and reformulate "choice" as neo-liberal rhetoric informing education reform. Complex processes exist between global policy about school choice and the local practice of school choice. Based on the theoretical sensibility of…
Teaching and Learning Road Map for Schools: Global and yet Local!
ERIC Educational Resources Information Center
Mehrmohammadi, Mahmoud
2011-01-01
What is a viable theoretical scheme that can guide school curriculum deliberations, maintaining both a global and a local quality OR which curriculum theory has the power of being adopted universally and the versatility of being adapted locally? Can the notion of "Glocal" coined in the field of sociology (2010) be regarded as a meaningful and…
Self-Directed Learning Favors Local, Rather Than Global, Uncertainty.
Markant, Douglas B; Settles, Burr; Gureckis, Todd M
2016-01-01
Collecting (or "sampling") information that one expects to be useful is a powerful way to facilitate learning. However, relatively little is known about how people decide which information is worth sampling over the course of learning. We describe several alternative models of how people might decide to collect a piece of information inspired by "active learning" research in machine learning. We additionally provide a theoretical analysis demonstrating the situations under which these models are empirically distinguishable, and we report a novel empirical study that exploits these insights. Our model-based analysis of participants' information gathering decisions reveals that people prefer to select items which resolve uncertainty between two possibilities at a time rather than items that have high uncertainty across all relevant possibilities simultaneously. Rather than adhering to strictly normative or confirmatory conceptions of information search, people appear to prefer a "local" sampling strategy, which may reflect cognitive constraints on the process of information gathering. PMID:25789918
Absolute and relative pitch: Global versus local processing of chords
Ziv, Naomi; Radin, Shulamit
2014-01-01
Absolute pitch (AP) is the ability to identify or produce notes without any reference note. An ongoing debate exists regarding the benefits or disadvantages of AP in processing music. One of the main issues in this context is whether the categorical perception of pitch in AP possessors may interfere in processing tasks requiring relative pitch (RP). Previous studies, focusing mainly on melodic and interval perception, have obtained inconsistent results. The aim of the present study was to examine the effect of AP and RP separately, using isolated chords. Seventy-three musicians were categorized into four groups of high and low AP and RP, and were tested on two tasks: identifying chord types (Task 1), and identifying a single note within a chord (Task 2). A main effect of RP on Task 1 and an interaction between AP and RP in reaction times were found. On Task 2 main effects of AP and RP, and an interaction were found, with highest performance in participants with both high AP and RP. Results suggest that AP and RP should be regarded as two different abilities, and that AP may slow down reaction times for tasks requiring global processing. PMID:24855499
Sequence information signal processor for local and global string comparisons
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1997-01-01
A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure.
Absolute and relative pitch: Global versus local processing of chords.
Ziv, Naomi; Radin, Shulamit
2014-01-01
Absolute pitch (AP) is the ability to identify or produce notes without any reference note. An ongoing debate exists regarding the benefits or disadvantages of AP in processing music. One of the main issues in this context is whether the categorical perception of pitch in AP possessors may interfere in processing tasks requiring relative pitch (RP). Previous studies, focusing mainly on melodic and interval perception, have obtained inconsistent results. The aim of the present study was to examine the effect of AP and RP separately, using isolated chords. Seventy-three musicians were categorized into four groups of high and low AP and RP, and were tested on two tasks: identifying chord types (Task 1), and identifying a single note within a chord (Task 2). A main effect of RP on Task 1 and an interaction between AP and RP in reaction times were found. On Task 2 main effects of AP and RP, and an interaction were found, with highest performance in participants with both high AP and RP. Results suggest that AP and RP should be regarded as two different abilities, and that AP may slow down reaction times for tasks requiring global processing. PMID:24855499
Act global, but think local: accountability at the frontlines.
Freedman, Lynn P; Schaaf, Marta
2013-11-01
There is a worrying divergence between the way that sexual and reproductive health and rights problems and solutions are framed in advocacy at the global level and the complex reality that people experience in health services on the ground. An analysis of approaches to accountability used in advocacy at these different levels highlights the different assumptions at play as to how change happens. This paper makes the case for a reinvigorated approach to accountability that begins with the dynamics of power at the frontlines, where people encounter health providers and institutions. Conventional approaches to accountability avoid grappling with these dynamics, and as a result, many accountability efforts do not lead to transformative change. Implementation science and systems science are promising sources for fresh approaches, beginning with the understanding of health systems as complex adaptive systems embedded in the broader political dynamics of their societies. By drawing insights from disciplines such as political economy, ethnography, and organizational change management - and applying them creatively to the experience of people in health systems - the workings of power can begin to be uncovered and tackled, sharpening accountability towards those whose health and rights are at stake and generating meaningful change. PMID:24315067
Protein Surface Matching by Combining Local and Global Geometric Information
Ellingson, Leif; Zhang, Jinfeng
2012-01-01
Comparison of the binding sites of proteins is an effective means for predicting protein functions based on their structure information. Despite the importance of this problem and much research in the past, it is still very challenging to predict the binding ligands from the atomic structures of protein binding sites. Here, we designed a new algorithm, TIPSA (Triangulation-based Iterative-closest-point for Protein Surface Alignment), based on the iterative closest point (ICP) algorithm. TIPSA aims to find the maximum number of atoms that can be superposed between two protein binding sites, where any pair of superposed atoms has a distance smaller than a given threshold. The search starts from similar tetrahedra between two binding sites obtained from 3D Delaunay triangulation and uses the Hungarian algorithm to find additional matched atoms. We found that, due to the plasticity of protein binding sites, matching the rigid body of point clouds of protein binding sites is not adequate for satisfactory binding ligand prediction. We further incorporated global geometric information, the radius of gyration of binding site atoms, and used nearest neighbor classification for binding site prediction. Tested on benchmark data, our method achieved a performance comparable to the best methods in the literature, while simultaneously providing the common atom set and atom correspondences. PMID:22815760
Protein surface matching by combining local and global geometric information.
Ellingson, Leif; Zhang, Jinfeng
2012-01-01
Comparison of the binding sites of proteins is an effective means for predicting protein functions based on their structure information. Despite the importance of this problem and much research in the past, it is still very challenging to predict the binding ligands from the atomic structures of protein binding sites. Here, we designed a new algorithm, TIPSA (Triangulation-based Iterative-closest-point for Protein Surface Alignment), based on the iterative closest point (ICP) algorithm. TIPSA aims to find the maximum number of atoms that can be superposed between two protein binding sites, where any pair of superposed atoms has a distance smaller than a given threshold. The search starts from similar tetrahedra between two binding sites obtained from 3D Delaunay triangulation and uses the Hungarian algorithm to find additional matched atoms. We found that, due to the plasticity of protein binding sites, matching the rigid body of point clouds of protein binding sites is not adequate for satisfactory binding ligand prediction. We further incorporated global geometric information, the radius of gyration of binding site atoms, and used nearest neighbor classification for binding site prediction. Tested on benchmark data, our method achieved a performance comparable to the best methods in the literature, while simultaneously providing the common atom set and atom correspondences. PMID:22815760
Local thermodynamic equilibrium for globally disequilibrium open systems under stress
NASA Astrophysics Data System (ADS)
Podladchikov, Yury
2016-04-01
Predictive modeling of far and near equilibrium processes is essential for understanding of patterns formation and for quantifying of natural processes that are never in global equilibrium. Methods of both equilibrium and non-equilibrium thermodynamics are needed and have to be combined. For example, predicting temperature evolution due to heat conduction requires simultaneous use of equilibrium relationship between internal energy and temperature via heat capacity (the caloric equation of state) and disequilibrium relationship between heat flux and temperature gradient. Similarly, modeling of rocks deforming under stress, reactions in system open for the porous fluid flow, or kinetic overstepping of the equilibrium reaction boundary necessarily needs both equilibrium and disequilibrium material properties measured under fundamentally different laboratory conditions. Classical irreversible thermodynamics (CIT) is the well-developed discipline providing the working recipes for the combined application of mutually exclusive experimental data such as density and chemical potential at rest under constant pressure and temperature and viscosity of the flow under stress. Several examples will be presented.
Local flow regulation and irrigation raise global human water consumption and footprint.
Jaramillo, Fernando; Destouni, Georgia
2015-12-01
Flow regulation and irrigation alter local freshwater conditions, but their global effects are highly uncertain. We investigated these global effects from 1901 to 2008, using hydroclimatic observations in 100 large hydrological basins. Globally, we find consistent and dominant effects of increasing relative evapotranspiration from both activities, and decreasing temporal runoff variability from flow regulation. The evapotranspiration effect increases the long-term average human consumption of fresh water by 3563 ± 979 km(3)/year from 1901-1954 to 1955-2008. This increase raises a recent estimate of the current global water footprint of humanity by around 18%, to 10,688 ± 979 km(3)/year. The results highlight the global impact of local water-use activities and call for their relevant account in Earth system modeling. PMID:26785489
Local flow regulation and irrigation raise global human water consumption and footprint
NASA Astrophysics Data System (ADS)
Jaramillo, Fernando; Destouni, Georgia
2015-12-01
Flow regulation and irrigation alter local freshwater conditions, but their global effects are highly uncertain. We investigated these global effects from 1901 to 2008, using hydroclimatic observations in 100 large hydrological basins. Globally, we find consistent and dominant effects of increasing relative evapotranspiration from both activities, and decreasing temporal runoff variability from flow regulation. The evapotranspiration effect increases the long-term average human consumption of fresh water by 3563 ± 979 km3/year from 1901-1954 to 1955-2008. This increase raises a recent estimate of the current global water footprint of humanity by around 18%, to 10,688 ± 979 km3/year. The results highlight the global impact of local water-use activities and call for their relevant account in Earth system modeling.
Mardakheh, Faraz K.; Paul, Angela; Kümper, Sandra; Sadok, Amine; Paterson, Hugh; Mccarthy, Afshan; Yuan, Yinyin; Marshall, Christopher J.
2015-01-01
Summary Polarization of cells into a protrusive front and a retracting cell body is the hallmark of mesenchymal-like cell migration. Many mRNAs are localized to protrusions, but it is unclear to what degree mRNA localization contributes toward protrusion formation. We performed global quantitative analysis of the distributions of mRNAs, proteins, and translation rates between protrusions and the cell body by RNA sequencing (RNA-seq) and quantitative proteomics. Our results reveal local translation as a key determinant of protein localization to protrusions. Accordingly, inhibition of local translation destabilizes protrusions and inhibits mesenchymal-like morphology. Interestingly, many mRNAs localized to protrusions are translationally repressed. Specific cis-regulatory elements within mRNA UTRs define whether mRNAs are locally translated or repressed. Finally, RNAi screening of RNA-binding proteins (RBPs) enriched in protrusions revealed trans-regulators of localized translation that are functionally important for protrusions. We propose that by deciphering the localized mRNA UTR code, these proteins regulate protrusion stability and mesenchymal-like morphology. PMID:26555054
ERIC Educational Resources Information Center
Phillips, Daniel W.; Montello, Daniel R.
2015-01-01
Previous research has examined heuristics--simplified decision-making rules-of-thumb--for geospatial reasoning. This study examined at two locations the influence of beliefs about local coastline orientation on estimated directions to local and distant places; estimates were made immediately or after fifteen seconds. This study goes beyond…
NASA Astrophysics Data System (ADS)
Farooq, M. U.; Villaurrutia, R.; MacLaren, I.; Kungl, H.; Hoffmann, M. J.; Fundenberger, J.-J.; Bouzy, E.
2008-08-01
Reliable automated orientation mapping of 90° domains in a tetragonal perovskite has been achieved for the first time using both EBSD and TEM-Kikuchi pattern analysis. This has been used to compare local measurements of c/a ratios in PZT with global measurements by X-ray diffraction. The local c/a rations are in broad agreement with the global measurements, but further work is needed to determine whether the small discrepancies are real local variations or are caused by experimental factors.
Optimal Estimates of Global Terrestrial GPP from Fluorescence and DGVMs
NASA Astrophysics Data System (ADS)
Parazoo, Nicholas; Bowman, Kevin; Fisher, Joshua; Frankenberg, Christian; Jones, Dylan; Cescatti, Alessandro; Perez-Priego, Oscar; Wohlfahrt, Georg; Montagnani, Leonardo
2014-05-01
Changes in the processes that control terrestrial carbon uptake are highly uncertain but likely to have a significant influence on future atmospheric CO2 levels. RECCAP aims to improve process understanding by reconciling fluxes from top-down CO2 inversions and bottom-up estimates from an ensemble of DGVMs. As these models are typically used in projections of climate change a key part of this effort is benchmarking models and evaluating drivers of net carbon exchange within the current climate. Of particular importance are the spatial distribution and time rate of change of GPP. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence opens up a new possibility to directly measure planetary photosynthesis on spatially resolved scales. Here, we discuss a new methodology for estimating GPP and uncertainty from an optimal combination of an ensemble of DGVMs from the TRENDY project with satellite-based fluorescence observations from GOSAT. Prior uncertainty is estimated from the spread of DGVMs and updated through assimilation of fluorescence. We evaluate optimized fluxes against flux tower data in N. America, Europe, and S. America, benchmark TRENDY models using updated uncertainty estimates, and examine changes in the structure of the seasonal cycle. We find this methodology provides a novel way to evaluate models used in climate projections.
Redding, David W.; Mooers, Arne O.; Şekercioğlu, Çağan H.; Collen, Ben
2015-01-01
Understanding how to prioritize among the most deserving imperilled species has been a focus of biodiversity science for the past three decades. Though global metrics that integrate evolutionary history and likelihood of loss have been successfully implemented, conservation is typically carried out at sub-global scales on communities of species rather than among members of complete taxonomic assemblages. Whether and how global measures map to a local scale has received little scrutiny. At a local scale, conservation-relevant assemblages of species are likely to be made up of relatively few species spread across a large phylogenetic tree, and as a consequence there are potentially relatively large amounts of evolutionary history at stake. We ask to what extent global metrics of evolutionary history are useful for conservation priority setting at the community level by evaluating the extent to which three global measures of evolutionary isolation (evolutionary distinctiveness (ED), average pairwise distance (APD) and the pendant edge or unique phylogenetic diversity (PD) contribution) capture community-level phylogenetic and trait diversity for a large sample of Neotropical and Nearctic bird communities. We find that prioritizing the most ED species globally safeguards more than twice the total PD of local communities on average, but that this does not translate into increased local trait diversity. By contrast, global APD is strongly related to the APD of those same species at the community level, and prioritizing these species also safeguards local PD and trait diversity. The next step for biologists is to understand the variation in the concordance of global and local level scores and what this means for conservation priorities: we need more directed research on the use of different measures of evolutionary isolation to determine which might best capture desirable aspects of biodiversity. PMID:25561674
Whitten, Steven T.; García-Moreno E., Bertrand; Hilser, Vincent J.
2005-01-01
Local conformational fluctuations in proteins can affect the coupling between ligand binding and global structural transitions. This finding was established by monitoring quantitatively how the population distribution in the ensemble of microstates of staphylococcal nuclease was affected by proton binding. Analysis of acid unfolding and proton-binding data with an ensemble-based model suggests that local fluctuations: (i) can be effective modulators of ligand-binding affinities, (ii) are important determinants of the cooperativity of ligand-driven global structural transitions, and (iii) are well represented thermodynamically as local unfolding processes. These studies illustrate how an ensemble-based description of proteins can be used to describe quantitatively the interdependence of local conformational fluctuations, ligand-binding processes, and global structural transitions. This level of understanding of the relationship between conformation, energy, and dynamics is required for a detailed mechanistic understanding of allostery, cooperativity, and other complex functional and regulatory properties of macromolecules. PMID:15767576
Magnetomechanical local-global effects in magnetostrictive composite materials
NASA Astrophysics Data System (ADS)
Elhajjar, Rani F.; Law, Chiu T.
2015-10-01
A constitutive model for magnetostrictive composite materials (MCMs) that describes the relations among stress, strain, magnetic field, and magnetization Liu and Zheng (2005 Acta Mech. Sin. 21 278-85) is implemented for multiphysics simulation for analysis of non-periodic or non-uniform microstructure effects. The multiphysics models that capture designed and actual microstructural details are used for predicting the responses of magnetostrictive composite materials under various mechanical and magnetic loading conditions. The approach overcomes the limitation with strain gages in the investigation of magnetostrictive strain due to stress localization around magnetostrictive phases. Three-dimensional digital image correlation (3D-DIC) is used to measure the displacements and strain in the composites under fluctuating magnetic fields. The specimens are prepared using epoxy and particulate magnetostrictive materials with the particles in the range of approximately 20 to 300 microns range. We examine the displacement and strain fields obtained and compare the results to those obtained from fiber Bragg grating (FBG) measurements. The coupling coefficients obtained from this method were in agreement with those measured using other techniques. The validated model allows us to predict the effect of curing, preload, microstructure alignment and particle shape on the magnetostrictive strains.
Optimization modeling of U.S. renewable electricity deployment using local input variables
NASA Astrophysics Data System (ADS)
Bernstein, Adam
For the past five years, state Renewable Portfolio Standard (RPS) laws have been a primary driver of renewable electricity (RE) deployments in the United States. However, four key trends currently developing: (i) lower natural gas prices, (ii) slower growth in electricity demand, (iii) challenges of system balancing intermittent RE within the U.S. transmission regions, and (iv) fewer economical sites for RE development, may limit the efficacy of RPS laws over the remainder of the current RPS statutes' lifetime. An outsized proportion of U.S. RE build occurs in a small number of favorable locations, increasing the effects of these variables on marginal RE capacity additions. A state-by-state analysis is necessary to study the U.S. electric sector and to generate technology specific generation forecasts. We used LP optimization modeling similar to the National Renewable Energy Laboratory (NREL) Renewable Energy Development System (ReEDS) to forecast RE deployment across the 8 U.S. states with the largest electricity load, and found state-level RE projections to Year 2031 significantly lower than thoseimplied in the Energy Information Administration (EIA) 2013 Annual Energy Outlook forecast. Additionally, the majority of states do not achieve their RPS targets in our forecast. Combined with the tendency of prior research and RE forecasts to focus on larger national and global scale models, we posit that further bottom-up state and local analysis is needed for more accurate policy assessment, forecasting, and ongoing revision of variables as parameter values evolve through time. Current optimization software eliminates much of the need for algorithm coding and programming, allowing for rapid model construction and updating across many customized state and local RE parameters. Further, our results can be tested against the empirical outcomes that will be observed over the coming years, and the forecast deviation from the actuals can be attributed to discrete parameter
Coevolution of competing systems: local cooperation and global inhibition
NASA Astrophysics Data System (ADS)
Albornoz, J. M.; Parravano, A.
2010-03-01
Using a set of heterogeneous competing systems with intra-system cooperation and inter-system aggression, we show how the coevolution of the system parameters (degree of organization and conditions for aggression) depends on the rate of supply of resources dot{S}. The model consists of a number of units grouped into systems that compete for the resource S; within each system several units can be aggregated into cooperative arrangements whose size is a measure of the degree of organization in the system. Aggression takes place when the systems release inhibitors that impair the performance of other systems. Using a mean field approximation we show that i) even in the case of identical systems there are stable inhomogeneous solutions; ii) a system steadily producing inhibitors needs large perturbations to leave this regime; and iii) aggression may give comparative advantages. A discrete model is used in order to examine how the particular configuration of the units within a system determines its performance in the presence of aggression. We find that full-scale, one sided aggression is only profitable for less-organized systems, and that systems with a mixture of degrees of organization exhibit robustness against aggression. By using a genetic algorithm we find that, in terms of the full-occupation resource supply rate dot{S}F, the coevolution of the set of systems displays the following behavior: i) for dot{S}< dot{S}F/10 aggressions are irrelevant and most systems exhibit a high degree of organization; ii) For dot{S}F/10 < dot{S} < dot{S}F/3 aggressions are frequent, making systems with a low degree of organization competitive; iii) for dot{S}F/3 < dot{S} < dot{S}F/2 the systems display global evolutive transitions between periods of calm (few aggressions and high degree of organization) and periods of belligerence (frequent aggressions and low degree of organization); iv) for dot{S} > dot{S}F/2 the periods of aggression becomes progressively rarer and shorter
NASA Astrophysics Data System (ADS)
Lin, Shiwei; Wu, Ruidong; Hua, Chaolang; Ma, Jianzhong; Wang, Wenli; Yang, Feiling; Wang, Junjun
2016-05-01
Protecting wilderness areas (WAs) is a crucial proactive approach to sustain biodiversity. However, studies identifying local-scale WAs for on-ground conservation efforts are still very limited. This paper investigated the spatial patterns of wilderness in a global biodiversity hotspot – Three Parallel Rivers Region (TPRR) in southwest China. Wilderness was classified into levels 1 to 10 based on a cluster analysis of five indicators, namely human population density, naturalness, fragmentation, remoteness, and ruggedness. Only patches characterized by wilderness level 1 and ≥1.0 km2 were considered WAs. The wilderness levels in the northwest were significantly higher than those in the southeast, and clearly increased with the increase in elevation. The WAs covered approximately 25% of TPRR’s land, 89.3% of which was located in the >3,000 m elevation zones. WAs consisted of 20 vegetation types, among which temperate conifer forest, cold temperate shrub and alpine ecosystems covered 79.4% of WAs’ total area. Most WAs were still not protected yet by existing reserves. Topography and human activities are the primary influencing factors on the spatial patterns of wilderness. We suggest establishing strictly protected reserves for most large WAs, while some sustainable management approaches might be more optimal solutions for many highly fragmented small WAs.
Lin, Shiwei; Wu, Ruidong; Hua, Chaolang; Ma, Jianzhong; Wang, Wenli; Yang, Feiling; Wang, Junjun
2016-01-01
Protecting wilderness areas (WAs) is a crucial proactive approach to sustain biodiversity. However, studies identifying local-scale WAs for on-ground conservation efforts are still very limited. This paper investigated the spatial patterns of wilderness in a global biodiversity hotspot – Three Parallel Rivers Region (TPRR) in southwest China. Wilderness was classified into levels 1 to 10 based on a cluster analysis of five indicators, namely human population density, naturalness, fragmentation, remoteness, and ruggedness. Only patches characterized by wilderness level 1 and ≥1.0 km2 were considered WAs. The wilderness levels in the northwest were significantly higher than those in the southeast, and clearly increased with the increase in elevation. The WAs covered approximately 25% of TPRR’s land, 89.3% of which was located in the >3,000 m elevation zones. WAs consisted of 20 vegetation types, among which temperate conifer forest, cold temperate shrub and alpine ecosystems covered 79.4% of WAs’ total area. Most WAs were still not protected yet by existing reserves. Topography and human activities are the primary influencing factors on the spatial patterns of wilderness. We suggest establishing strictly protected reserves for most large WAs, while some sustainable management approaches might be more optimal solutions for many highly fragmented small WAs. PMID:27181186
Lin, Shiwei; Wu, Ruidong; Hua, Chaolang; Ma, Jianzhong; Wang, Wenli; Yang, Feiling; Wang, Junjun
2016-01-01
Protecting wilderness areas (WAs) is a crucial proactive approach to sustain biodiversity. However, studies identifying local-scale WAs for on-ground conservation efforts are still very limited. This paper investigated the spatial patterns of wilderness in a global biodiversity hotspot - Three Parallel Rivers Region (TPRR) in southwest China. Wilderness was classified into levels 1 to 10 based on a cluster analysis of five indicators, namely human population density, naturalness, fragmentation, remoteness, and ruggedness. Only patches characterized by wilderness level 1 and ≥1.0 km(2) were considered WAs. The wilderness levels in the northwest were significantly higher than those in the southeast, and clearly increased with the increase in elevation. The WAs covered approximately 25% of TPRR's land, 89.3% of which was located in the >3,000 m elevation zones. WAs consisted of 20 vegetation types, among which temperate conifer forest, cold temperate shrub and alpine ecosystems covered 79.4% of WAs' total area. Most WAs were still not protected yet by existing reserves. Topography and human activities are the primary influencing factors on the spatial patterns of wilderness. We suggest establishing strictly protected reserves for most large WAs, while some sustainable management approaches might be more optimal solutions for many highly fragmented small WAs. PMID:27181186
A Global Optimization Methodology for Rocket Propulsion Applications
NASA Technical Reports Server (NTRS)
2001-01-01
While the response surface method is an effective method in engineering optimization, its accuracy is often affected by the use of limited amount of data points for model construction. In this chapter, the issues related to the accuracy of the RS approximations and possible ways of improving the RS model using appropriate treatments, including the iteratively re-weighted least square (IRLS) technique and the radial-basis neural networks, are investigated. A main interest is to identify ways to offer added capabilities for the RS method to be able to at least selectively improve the accuracy in regions of importance. An example is to target the high efficiency region of a fluid machinery design space so that the predictive power of the RS can be maximized when it matters most. Analytical models based on polynomials, with controlled level of noise, are used to assess the performance of these techniques.
The Role of Global and Local Visual Information during Gaze-Cued Orienting of Attention.
Munsters, Nicolette M; van den Boomen, Carlijn; Hooge, Ignace T C; Kemner, Chantal
2016-01-01
Gaze direction is an important social communication tool. Global and local visual information are known to play specific roles in processing socially relevant information from a face. The current study investigated whether global visual information has a primary role during gaze-cued orienting of attention and, as such, may influence quality of interaction. Adults performed a gaze-cueing task in which a centrally presented face cued (valid or invalid) the location of a peripheral target through a gaze shift. We measured brain activity (electroencephalography) towards the cue and target and behavioral responses (manual and saccadic reaction times) towards the target. The faces contained global (i.e. lower spatial frequencies), local (i.e. higher spatial frequencies), or a selection of both global and local (i.e. mid-band spatial frequencies) visual information. We found a gaze cue-validity effect (i.e. valid versus invalid), but no interaction effects with spatial frequency content. Furthermore, behavioral responses towards the target were in all cue conditions slower when lower spatial frequencies were not present in the gaze cue. These results suggest that whereas gaze-cued orienting of attention can be driven by both global and local visual information, global visual information determines the speed of behavioral responses towards other entities appearing in the surrounding of gaze cue stimuli. PMID:27560368
NASA Astrophysics Data System (ADS)
Nobi, Ashadun; Maeng, Seong Eun; Ha, Gyeong Gyun; Lee, Jae Woo
2013-02-01
We analyzed cross-correlations between price fluctuations of global financial indices (20 daily stock indices over the world) and local indices (daily indices of 200 companies in the Korean stock market) by using random matrix theory (RMT). We compared eigenvalues and components of the largest and the second largest eigenvectors of the cross-correlation matrix before, during, and after the global financial the crisis in the year 2008. We find that the majority of its eigenvalues fall within the RMT bounds [ λ -, λ +], where λ - and λ + are the lower and the upper bounds of the eigenvalues of random correlation matrices. The components of the eigenvectors for the largest positive eigenvalues indicate the identical financial market mode dominating the global and local indices. On the other hand, the components of the eigenvector corresponding to the second largest eigenvalue are positive and negative values alternatively. The components before the crisis change sign during the crisis, and those during the crisis change sign after the crisis. The largest inverse participation ratio (IPR) corresponding to the smallest eigenvector is higher after the crisis than during any other periods in the global and local indices. During the global financial the crisis, the correlations among the global indices and among the local stock indices are perturbed significantly. However, the correlations between indices quickly recover the trends before the crisis.
The Role of Global and Local Visual Information during Gaze-Cued Orienting of Attention
Munsters, Nicolette M.; van den Boomen, Carlijn; Hooge, Ignace T. C.; Kemner, Chantal
2016-01-01
Gaze direction is an important social communication tool. Global and local visual information are known to play specific roles in processing socially relevant information from a face. The current study investigated whether global visual information has a primary role during gaze-cued orienting of attention and, as such, may influence quality of interaction. Adults performed a gaze-cueing task in which a centrally presented face cued (valid or invalid) the location of a peripheral target through a gaze shift. We measured brain activity (electroencephalography) towards the cue and target and behavioral responses (manual and saccadic reaction times) towards the target. The faces contained global (i.e. lower spatial frequencies), local (i.e. higher spatial frequencies), or a selection of both global and local (i.e. mid-band spatial frequencies) visual information. We found a gaze cue-validity effect (i.e. valid versus invalid), but no interaction effects with spatial frequency content. Furthermore, behavioral responses towards the target were in all cue conditions slower when lower spatial frequencies were not present in the gaze cue. These results suggest that whereas gaze-cued orienting of attention can be driven by both global and local visual information, global visual information determines the speed of behavioral responses towards other entities appearing in the surrounding of gaze cue stimuli. PMID:27560368
A global/local analysis method for treating details in structural design
NASA Technical Reports Server (NTRS)
Aminpour, Mohammad A.; Mccleary, Susan L.; Ransom, Jonathan B.
1993-01-01
A method for analyzing global/local behavior of plate and shell structures is described. In this approach, a detailed finite element model of the local region is incorporated within a coarser global finite element model. The local model need not be nodally compatible (i.e., need not have a one-to-one nodal correspondence) with the global model at their common boundary; therefore, the two models may be constructed independently. The nodal incompatibility of the models is accounted for by introducing appropriate constraint conditions into the potential energy in a hybrid variational formulation. The primary advantage of this method is that the need for transition modeling between global and local models is eliminated. Eliminating transition modeling has two benefits. First, modeling efforts are reduced since tedious and complex transitioning need not be performed. Second, errors due to the mesh distortion, often unavoidable in mesh transitioning, are minimized by avoiding distorted elements beyond what is needed to represent the geometry of the component. The method is applied reduced to a plate loaded in tension and transverse bending. The plate has a central hole, and various hole sixes and shapes are studied. The method is also applied to a composite laminated fuselage panel with a crack emanating from a window in the panel. While this method is applied herein to global/local problems, it is also applicable to the coupled analysis of independently modeled components as well as adaptive refinement.
Impairment in local and global processing and set-shifting in body dysmorphic disorder
Kerwin, Lauren; Hovav, Sarit; Helleman, Gerhard; Feusner, Jamie D.
2014-01-01
Body dysmorphic disorder (BDD) is characterized by distressing and often debilitating preoccupations with misperceived defects in appearance. Research suggests that aberrant visual processing may contribute to these misperceptions. This study used two tasks to probe global and local visual processing as well as set shifting in individuals with BDD. Eighteen unmedicated individuals with BDD and 17 non-clinical controls completed two global-local tasks. The embedded figures task requires participants to determine which of three complex figures contained a simpler figure embedded within it. The Navon task utilizes incongruent stimuli comprised of a large letter (global level) made up of smaller letters (local level). The outcome measures were response time and accuracy rate. On the embedded figures task, BDD individuals were slower and less accurate than controls. On the Navon task, BDD individuals processed both global and local stimuli slower and less accurately than controls, and there was a further decrement in performance when shifting attention between the different levels of stimuli. Worse insight correlated with poorer performance on both tasks. Taken together, these results suggest abnormal global and local processing for non-appearance related stimuli among BDD individuals, in addition to evidence of poor set-shifting abilities. Moreover, these abnormalities appear to relate to the important clinical variable of poor insight. Further research is needed to explore these abnormalities and elucidate their possible role in the development and/or persistence of BDD symptoms. PMID:24972487
NASA Astrophysics Data System (ADS)
Daryanani, Aditya; Dangi, Shusil; Ben-Zikri, Yehuda Kfir; Linte, Cristian A.
2016-03-01
Magnetic Resonance Imaging (MRI) is a standard-of-care imaging modality for cardiac function assessment and guidance of cardiac interventions thanks to its high image quality and lack of exposure to ionizing radiation. Cardiac health parameters such as left ventricular volume, ejection fraction, myocardial mass, thickness, and strain can be assessed by segmenting the heart from cardiac MRI images. Furthermore, the segmented pre-operative anatomical heart models can be used to precisely identify regions of interest to be treated during minimally invasive therapy. Hence, the use of accurate and computationally efficient segmentation techniques is critical, especially for intra-procedural guidance applications that rely on the peri-operative segmentation of subject-specific datasets without delaying the procedure workflow. Atlas-based segmentation incorporates prior knowledge of the anatomy of interest from expertly annotated image datasets. Typically, the ground truth atlas label is propagated to a test image using a combination of global and local registration. The high computational cost of non-rigid registration motivated us to obtain an initial segmentation using global transformations based on an atlas of the left ventricle from a population of patient MRI images and refine it using well developed technique based on graph cuts. Here we quantitatively compare the segmentations obtained from the global and global plus local atlases and refined using graph cut-based techniques with the expert segmentations according to several similarity metrics, including Dice correlation coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.
Multi-site evaluation of the JULES land surface model using global and local data
NASA Astrophysics Data System (ADS)
Slevin, D.; Tett, S. F. B.; Williams, M.
2015-02-01
This study evaluates the ability of the JULES land surface model (LSM) to simulate photosynthesis using local and global data sets at 12 FLUXNET sites. Model parameters include site-specific (local) values for each flux tower site and the default parameters used in the Hadley Centre Global Environmental Model (HadGEM) climate model. Firstly, gross primary productivity (GPP) estimates from driving JULES with data derived from local site measurements were compared to observations from the FLUXNET network. When using local data, the model is biased with total annual GPP underestimated by 16% across all sites compared to observations. Secondly, GPP estimates from driving JULES with data derived from global parameter and atmospheric reanalysis (on scales of 100 km or so) were compared to FLUXNET observations. It was found that model performance decreases further, with total annual GPP underestimated by 30% across all sites compared to observations. When JULES was driven using local parameters and global meteorological data, it was shown that global data could be used in place of FLUXNET data with a 7% reduction in total annual simulated GPP. Thirdly, the global meteorological data sets, WFDEI and PRINCETON, were compared to local data to find that the WFDEI data set more closely matches the local meteorological measurements (FLUXNET). Finally, the JULES phenology model was tested by comparing results from simulations using the default phenology model to those forced with the remote sensing product MODIS leaf area index (LAI). Forcing the model with daily satellite LAI results in only small improvements in predicted GPP at a small number of sites, compared to using the default phenology model.
Method for using global optimization to the estimation of surface-consistent residual statics
Reister, David B.; Barhen, Jacob; Oblow, Edward M.
2001-01-01
An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.
NASA Astrophysics Data System (ADS)
Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer
2011-10-01
Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the "threat" set of spectra
GOSIM: A multi-scale iterative multiple-point statistics algorithm with global optimization
NASA Astrophysics Data System (ADS)
Yang, Liang; Hou, Weisheng; Cui, Chanjie; Cui, Jie
2016-04-01
Most current multiple-point statistics (MPS) algorithms are based on a sequential simulation procedure, during which grid values are updated according to the local data events. Because the realization is updated only once during the sequential process, errors that occur while updating data events cannot be corrected. Error accumulation during simulations decreases the realization quality. Aimed at improving simulation quality, this study presents an MPS algorithm based on global optimization, called GOSIM. An objective function is defined for representing the dissimilarity between a realization and the TI in GOSIM, which is minimized by a multi-scale EM-like iterative method that contains an E-step and M-step in each iteration. The E-step searches for TI patterns that are most similar to the realization and match the conditioning data. A modified PatchMatch algorithm is used to accelerate the search process in E-step. M-step updates the realization based on the most similar patterns found in E-step and matches the global statistics of TI. During categorical data simulation, k-means clustering is used for transforming the obtained continuous realization into a categorical realization. The qualitative and quantitative comparison results of GOSIM, MS-CCSIM and SNESIM suggest that GOSIM has a better pattern reproduction ability for both unconditional and conditional simulations. A sensitivity analysis illustrates that pattern size significantly impacts the time costs and simulation quality. In conditional simulations, the weights of conditioning data should be as small as possible to maintain a good simulation quality. The study shows that big iteration numbers at coarser scales increase simulation quality and small iteration numbers at finer scales significantly save simulation time.
Visual arts training is linked to flexible attention to local and global levels of visual stimuli.
Chamberlain, Rebecca; Wagemans, Johan
2015-10-01
Observational drawing skill has been shown to be associated with the ability to focus on local visual details. It is unclear whether superior performance in local processing is indicative of the ability to attend to, and flexibly switch between, local and global levels of visual stimuli. It is also unknown whether these attentional enhancements remain specific to observational drawing skill or are a product of a wide range of artistic activities. The current study aimed to address these questions by testing if flexible visual processing predicts artistic group membership and observational drawing skill in a sample of first-year bachelor's degree art students (n=23) and non-art students (n=23). A pattern of local and global visual processing enhancements was found in relation to artistic group membership and drawing skill, with local processing ability found to be specifically related to individual differences in drawing skill. Enhanced global processing and more fluent switching between local and global levels of hierarchical stimuli predicted both drawing skill and artistic group membership, suggesting that these are beneficial attentional mechanisms for art-making in a range of domains. These findings support a top-down attentional model of artistic expertise and shed light on the domain specific and domain-general attentional enhancements induced by proficiency in the visual arts. PMID:26372001
Connecting global and local energy distributions in quantum spin models on a lattice
NASA Astrophysics Data System (ADS)
Arad, Itai; Kuwahara, Tomotaka; Landau, Zeph
2016-03-01
Local interactions in many-body quantum systems are generally non-commuting and consequently the Hamiltonian of a local region cannot be measured simultaneously with the global Hamiltonian. The connection between the probability distributions of measurement outcomes of the local and global Hamiltonians will depend on the angles between the diagonalizing bases of these two Hamiltonians. In this paper we characterize the relation between these two distributions. On one hand, we upperbound the probability of measuring an energy τ in a local region, if the global system is in a superposition of eigenstates with energies ε <τ . On the other hand, we bound the probability of measuring a global energy ɛ in a bipartite system that is in a tensor product of eigenstates of its two subsystems. Very roughly, we show that due to the local nature of the governing interactions, these distributions are identical to what one encounters in the commuting cases, up to exponentially small corrections. Finally, we use these bounds to study the spectrum of a locally truncated Hamiltonian, in which the energies of a contiguous region have been truncated above some threshold energy. We show that the lower part of the spectrum of this Hamiltonian is exponentially close to that of the original Hamiltonian. A restricted version of this result in 1D was a central building block in a recent improvement of the 1D area-law.
Optimization of global model composed of radial basis functions using the term-ranking approach
Cai, Peng; Tao, Chao Liu, Xiao-Jun
2014-03-15
A term-ranking method is put forward to optimize the global model composed of radial basis functions to improve the predictability of the model. The effectiveness of the proposed method is examined by numerical simulation and experimental data. Numerical simulations indicate that this method can significantly lengthen the prediction time and decrease the Bayesian information criterion of the model. The application to real voice signal shows that the optimized global model can capture more predictable component in chaos-like voice data and simultaneously reduce the predictable component (periodic pitch) in the residual signal.
Lihoreau, Mathieu; Ings, Thomas C; Chittka, Lars; Reynolds, Andy M
2016-01-01
Simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a search space. It is frequently implemented in computers working on complex optimization problems but until now has not been directly observed in nature as a searching strategy adopted by foraging animals. We analysed high-speed video recordings of the three-dimensional searching flights of bumblebees (Bombus terrestris) made in the presence of large or small artificial flowers within a 0.5 m(3) enclosed arena. Analyses of the three-dimensional flight patterns in both conditions reveal signatures of simulated annealing searches. After leaving a flower, bees tend to scan back-and forth past that flower before making prospecting flights (loops), whose length increases over time. The search pattern becomes gradually more expansive and culminates when another rewarding flower is found. Bees then scan back and forth in the vicinity of the newly discovered flower and the process repeats. This looping search pattern, in which flight step lengths are typically power-law distributed, provides a relatively simple yet highly efficient strategy for pollinators such as bees to find best quality resources in complex environments made of multiple ephemeral feeding sites with nutritionally variable rewards. PMID:27459948
Lihoreau, Mathieu; Ings, Thomas C.; Chittka, Lars; Reynolds, Andy M.
2016-01-01
Simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a search space. It is frequently implemented in computers working on complex optimization problems but until now has not been directly observed in nature as a searching strategy adopted by foraging animals. We analysed high-speed video recordings of the three-dimensional searching flights of bumblebees (Bombus terrestris) made in the presence of large or small artificial flowers within a 0.5 m3 enclosed arena. Analyses of the three-dimensional flight patterns in both conditions reveal signatures of simulated annealing searches. After leaving a flower, bees tend to scan back-and forth past that flower before making prospecting flights (loops), whose length increases over time. The search pattern becomes gradually more expansive and culminates when another rewarding flower is found. Bees then scan back and forth in the vicinity of the newly discovered flower and the process repeats. This looping search pattern, in which flight step lengths are typically power-law distributed, provides a relatively simple yet highly efficient strategy for pollinators such as bees to find best quality resources in complex environments made of multiple ephemeral feeding sites with nutritionally variable rewards. PMID:27459948
NASA Astrophysics Data System (ADS)
Lihoreau, Mathieu; Ings, Thomas C.; Chittka, Lars; Reynolds, Andy M.
2016-07-01
Simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a search space. It is frequently implemented in computers working on complex optimization problems but until now has not been directly observed in nature as a searching strategy adopted by foraging animals. We analysed high-speed video recordings of the three-dimensional searching flights of bumblebees (Bombus terrestris) made in the presence of large or small artificial flowers within a 0.5 m3 enclosed arena. Analyses of the three-dimensional flight patterns in both conditions reveal signatures of simulated annealing searches. After leaving a flower, bees tend to scan back-and forth past that flower before making prospecting flights (loops), whose length increases over time. The search pattern becomes gradually more expansive and culminates when another rewarding flower is found. Bees then scan back and forth in the vicinity of the newly discovered flower and the process repeats. This looping search pattern, in which flight step lengths are typically power-law distributed, provides a relatively simple yet highly efficient strategy for pollinators such as bees to find best quality resources in complex environments made of multiple ephemeral feeding sites with nutritionally variable rewards.
Ona, Ofelia; Facelli, Julio C.; Bazterra, Victor E.; Caputo, Maria C.; Ferraro, Marta B.
2005-11-15
The results of ab initio global optimizations of the structures of Si{sub n}H, n=4-10, atomic clusters using a parallel genetic algorithm are presented. Driving the global search with the parallel implementation of the genetic algorithm are presented and using the density functional theory as implemented in the Carr-Parinello molecular dynamics code to calculate atomic cluster energies and perform the local optimization of their structures, we have been able to demonstrate that it is possible to perform global optimizations of the structure of atomic clusters using ab initio methods. The results show that this approach is able to find many structures that were not previously reported in the literature. Moreover, in most cases the new structures have considerable lower energies than those previously known. The results clearly demonstrate that these calculations are now possible and in spite of their larger computational demands provide more reliable results.
Effect of Local Junction Losses in the Optimization of T-shaped Flow Channels
NASA Astrophysics Data System (ADS)
Kosaraju, Srinivas
2015-11-01
T-shaped channels are extensively used in flow distribution applications such as irrigation, chemical dispersion, gas pipelines and space heating and cooling. The geometry of T-shaped channels can be optimized to reduce the overall pressure drop in stem and branch sections. Results of such optimizations are in the form of geometric parameters such as the length and diameter ratios of the stem and branch sections. The traditional approach of this optimization accounts for the pressure drop across the stem and branch sections, however, ignores the pressure drop in the T-junction. In this paper, we conduct geometry optimization while including the effect of local junction losses in laminar flows. From the results, we are able to identify a non-dimensional parameter that can be used to predict the optimal geometric configurations. This parameter can also be used to identify the conditions in which the local junction losses can be ignored during the optimization.
NASA Astrophysics Data System (ADS)
Baumeler, ńmin; Feix, Adrien; Wolf, Stefan
2014-10-01
Quantum theory in a global spacetime gives rise to nonlocal correlations, which cannot be explained causally in a satisfactory way; this motivates the study of theories with reduced global assumptions. Oreshkov, Costa, and Brukner [Nat. Commun. 3, 1092 (2012), 10.1038/ncomms2076] proposed a framework in which quantum theory is valid locally but where, at the same time, no global spacetime, i.e., predefined causal order, is assumed beyond the absence of logical paradoxes. It was shown for the two-party case, however, that a global causal order always emerges in the classical limit. Quite naturally, it has been conjectured that the same also holds in the multiparty setting. We show that, counter to this belief, classical correlations locally compatible with classical probability theory exist that allow for deterministic signaling between three or more parties incompatible with any predefined causal order.
Shifts in winter distribution in birds: effects of global warming and local habitat change.
Valiela, Ivan; Bowen, Jennifer L
2003-11-01
As global warming intensified toward the end of the 20th century, there was a northward shift in winter ranges of bird species in Cape Cod, Massachusetts, USA. These poleward shifts were correlated to local increases in minimum winter temperatures and global temperature anomalies. This evidence, plus other recent results, suggests that during the last two decades global warming has led to massive and widespread biogeographic shifts with potentially major ecological and human consequences. Local habitat changes associated with urban sprawl affected mainly forest birds with more northern winter distributions. In Cape Cod, the effects of warming on bird distributions are more substantial at the start of the 21st century, than those of habitat alteration, but as urban sprawl continues its importance may rival that of global warming. PMID:14703907
Simulations of the Global Electrical Circuit coupled to local Potential Gradient measurements
NASA Astrophysics Data System (ADS)
Conceição, R.; Silva, H. G.
2015-10-01
There are several models describing the Global Electric Circuit of the Earth's atmosphere. Here it is used the common model and parameters of Global Electric Circuit to couple it with a local circuit less studied in literature. The first objective is to test different voltage sources describing thunderstorm activity and compare the output, Potential Gradient, with the known Carnegie Curve. Two sets of parameters are used, the first one from values found in literature and the second one from values tweaked to get the best agreement between the simulated Potential Gradient and the Carnegie Curve. This study is a first step in simulations regarding the coupling of the Global Electric Circuit (primary) to local electric circuit (secondary). One of the main objectives is to estimate the aerosol load on the local resistor in case of aerosol events, e.g. fires.
Romei, Vincenzo; Driver, Jon; Schyns, Philippe G.; Thut, Gregor
2011-01-01
Summary Neural networks underlying visual perception exhibit oscillations at different frequencies (e.g., [1–6]). But how these map onto distinct aspects of visual perception remains elusive. Recent electroencephalography data indicate that theta or beta frequencies at parietal sensors increase in amplitude when conscious perception is dominated by global or local features, respectively, of a reversible visual stimulus [6]. But this provides only correlative, noninterventional evidence. Here we show via transcranial magnetic stimulation (TMS) interventions that short rhythmic bursts of right-parietal TMS at theta or beta frequency can causally benefit processing of global or local levels, respectively, for hierarchical visual stimuli, especially in the context of salient incongruent distractors. This double dissociation between theta and beta TMS reveals distinct causal roles for particular frequencies in processing global versus local visual features. PMID:21315592
2D simulation of granular flow over irregular steep slopes using global and local coordinates
NASA Astrophysics Data System (ADS)
Juez, C.; Murillo, J.; García-Navarro, P.
2013-12-01
In this work approximate augmented Riemann solvers are formulated providing appropriate numerical schemes for mathematical models of granular flow on irregular steep slopes. Fluxes and source terms are discretized to ensure steady state configurations including correct modeling of start/stop flow conditions, both in a global and a local system of coordinates. The weak solutions presented involve the effect of bed slope in pressure distribution and frictional effects by means of the adequate gravity acceleration components. The numerical solvers proposed are first tested against 1D cases with exact solution and then their results are compared with experimental data in order to check the suitability of the mathematical models described in this work. Comparisons between results provided when using global and local system of coordinates are presented. The obtained results point out that both the global and the local system of coordinates can be used to predict faithfully the overall behavior of the phenomena considered in this work.
Chang, T H; Chen, N C
2006-07-01
The gyrotron traveling-wave amplifier employing the distributed-loss scheme is capable of very high gain and effective in suppressing the global absolute instabilities. This study systematically characterizes the local absolute instabilities and their transitional behavior. The local absolute instabilities are analyzed using a model that incorporates the penetration of the field from the copper section into the lossy section. The axial modes were characterized from the perspective of beam-wave interaction and were found to share many characteristics with the global modes. The transition from global modes to local modes as the distributed loss increases was demonstrated. The electron transit angle in the copper section, which determines the feedback criterion, governs the survivability of an oscillation. In addition, the oscillation thresholds predicted using this model are more accurate than those obtained using a simplified model. PMID:16907193
NASA Astrophysics Data System (ADS)
Manduca, C. A.; Mogk, D. W.
2002-12-01
One of the hallmarks of geoscience research is the process of moving between observations and interpretations on local and global scales to develop an integrated understanding of Earth processes. Understanding this interplay is an important aspect of student geoscience learning which leads to an understanding of the fundamental principles of science and geoscience and of the connections between local natural phenomena or human activity and global processes. Several techniques that engage students in inquiry and discovery (as recommended in the National Science Education Standards, NRC 1996, Shaping the Future of Undergraduate Earth Science Education, AGU, 1997) hold promise for helping students make these connections. These include the development of global data sets from local observations (e.g. GLOBE); studying small scale or local phenomenon in the context of global models (e.g. carbon storage in local vegetation and its role in the carbon cycle); or an analysis of local environmental issues in a global context (e.g. a comparison of local flooding to flooding in other countries and analysis in the context of weather, geology and development patterns). Research on learning suggests that data-rich activities linking the local and global have excellent potential for enhancing student learning because 1) students have already developed observations and interpretations of their local environment which can serve as a starting point for constructing new knowledge and 2) this context may motivate learning and develop understanding that can be transferred to other situations. (How People Learn, NRC, 2001). Faculty and teachers at two recent workshops confirm that projects that involve local or global data can engage students in learning by providing real world context, creating student ownership of the learning process, and developing scientific skills applicable to the complex problems that characterize modern science and society. Workshop participants called for
Global stability of travelling wave fronts for non-local diffusion equations with delay
NASA Astrophysics Data System (ADS)
Wang, X.; Lv, G.
2014-04-01
This paper is concerned with the global stability of travelling wave fronts for non-local diffusion equations with delay. We prove that the non-critical travelling wave fronts are globally exponentially stable under perturbations in some exponentially weighted L^\\infty-spaces. Moreover, we obtain the decay rates of \\sup_{x\\in{R}}\\vert u(x,t)-\\varphi(x+ct)\\vert using weighted energy estimates.
Towards Social Radiology as an Information Infrastructure: Reconciling the Local With the Global
2014-01-01
The current widespread use of medical images and imaging procedures in clinical practice and patient diagnosis has brought about an increase in the demand for sharing medical imaging studies among health professionals in an easy and effective manner. This article reveals the existence of a polarization between the local and global demands for radiology practice. While there are no major barriers for sharing such studies, when access is made from a (local) picture archive and communication system (PACS) within the domain of a healthcare organization, there are a number of impediments for sharing studies among health professionals on a global scale. Social radiology as an information infrastructure involves the notion of a shared infrastructure as a public good, affording a social space where people, organizations and technical components may spontaneously form associations in order to share clinical information linked to patient care and radiology practice. This article shows however, that such polarization establishes a tension between local and global demands, which hinders the emergence of social radiology as an information infrastructure. Based on an analysis of the social space for radiology practice, the present article has observed that this tension persists due to the inertia of a locally installed base in radiology departments, for which common teleradiology models are not truly capable of reorganizing as a global social space for radiology practice. Reconciling the local with the global signifies integrating PACS and teleradiology into an evolving, secure, heterogeneous, shared, open information infrastructure where the conceptual boundaries between (local) PACS and (global) teleradiology are transparent, signaling the emergence of social radiology as an information infrastructure. PMID:25600710
Asymmetrical white matter networks for attending to global versus local features
Chechlacz, Magdalena; Mantini, Dante; Gillebert, Celine R.; Humphreys, Glyn W.
2015-01-01
The ability to draw objects is a complex process depending on an array of cognitive mechanisms including routines for spatial coding, attention and the processing of both local and global features. Previous studies using both neuropsychological and neuroimaging data have reported hemispheric asymmetries in attending to local versus global features linked to a variety of cortical loci. However, it has not been examined to date whether such asymmetries exist at the level of white matter pathways sub-serving global/local attention. The current study provides a comprehensive analysis of brain-behaviour relationships in the processing of local versus global features based on data from a large cohort of sub-acute stroke patients (n = 248) and behavioural measures from a complex figure copy task. The data analysis used newly developed methods for automated delineation of stroke lesions combined with track-wise lesion deficits procedures. We found (i) that reproduction of local features in figure copying was supported by a neural network confined to the left hemisphere, consisting of cortical loci within parietal, occipital and insular lobes and interconnected by the inferior-fronto-occipital fasciculus (IFOF), and (ii) that global feature processing was associated with a right hemisphere network interconnected by the third branch of the superior longitudinal fasciculus and the long segment of the perisylvian network. The data support the argument that asymmetrical white matter disconnections within long–range association pathways predict poor complex figure drawing resulting from deficits in hierarchical representation. We conclude that hemispheric asymmetries in attending to local versus global features exist on the level of both cortical loci and the supporting white matter pathways. PMID:25727548
Relations between local and global perceptual image quality and visual masking
NASA Astrophysics Data System (ADS)
Alam, Md Mushfiqul; Patil, Pranita; Hagan, Martin T.; Chandler, Damon M.
2015-03-01
Perceptual quality assessment of digital images and videos are important for various image-processing applications. For assessing the image quality, researchers have often used the idea of visual masking (or distortion visibility) to design image-quality predictors specifically for the near-threshold distortions. However, it is still unknown that while assessing the quality of natural images, how the local distortion visibilities relate with the local quality scores. Furthermore, the summing mechanism of the local quality scores to predict the global quality scores is also crucial for better prediction of the perceptual image quality. In this paper, the local and global qualities of six images and six distortion levels were measured using subjective experiments. Gabor-noise target was used as distortion in the quality-assessment experiments to be consistent with our previous study [Alam, Vilankar, Field, and Chandler, Journal of Vision, 2014], in which the local root-mean-square contrast detection thresholds of detecting the Gabor-noise target were measured at each spatial location of the undistorted images. Comparison of the results of this quality-assessment experiment and the previous detection experiment shows that masking predicted the local quality scores more than 95% correctly above 15 dB threshold within 5% subject scores. Furthermore, it was found that an approximate squared summation of local-quality scores predicted the global quality scores suitably (Spearman rank-order correlation 0:97).
Self-Orientation Modulates the Neural Correlates of Global and Local Processing
Liddell, Belinda J.; Das, Pritha; Battaglini, Eva; Malhi, Gin S.; Felmingham, Kim L.; Whitford, Thomas J.; Bryant, Richard A.
2015-01-01
Differences in self-orientation (or “self-construal”) may affect how the visual environment is attended, but the neural and cultural mechanisms that drive this remain unclear. Behavioral studies have demonstrated that people from Western backgrounds with predominant individualistic values are perceptually biased towards local-level information; whereas people from non-Western backgrounds that support collectivist values are preferentially focused on contextual and global-level information. In this study, we compared two groups differing in predominant individualistic (N = 15) vs collectivistic (N = 15) self-orientation. Participants completed a global/local perceptual conflict task whilst undergoing functional Magnetic Resonance Imaging (fMRI) scanning. When participants high in individualistic values attended to the global level (ignoring the local level), greater activity was observed in the frontoparietal and cingulo-opercular networks that underpin attentional control, compared to the match (congruent) baseline. Participants high in collectivistic values activated similar attentional control networks o only when directly compared with global processing. This suggests that global interference was stronger than local interference in the conflict task in the collectivistic group. Both groups showed increased activity in dorsolateral prefrontal regions involved in resolving perceptual conflict during heightened distractor interference. The findings suggest that self-orientation may play an important role in driving attention networks to facilitate interaction with the visual environment. PMID:26270820
Self-Orientation Modulates the Neural Correlates of Global and Local Processing.
Liddell, Belinda J; Das, Pritha; Battaglini, Eva; Malhi, Gin S; Felmingham, Kim L; Whitford, Thomas J; Bryant, Richard A
2015-01-01
Differences in self-orientation (or "self-construal") may affect how the visual environment is attended, but the neural and cultural mechanisms that drive this remain unclear. Behavioral studies have demonstrated that people from Western backgrounds with predominant individualistic values are perceptually biased towards local-level information; whereas people from non-Western backgrounds that support collectivist values are preferentially focused on contextual and global-level information. In this study, we compared two groups differing in predominant individualistic (N = 15) vs collectivistic (N = 15) self-orientation. Participants completed a global/local perceptual conflict task whilst undergoing functional Magnetic Resonance Imaging (fMRI) scanning. When participants high in individualistic values attended to the global level (ignoring the local level), greater activity was observed in the frontoparietal and cingulo-opercular networks that underpin attentional control, compared to the match (congruent) baseline. Participants high in collectivistic values activated similar attentional control networks o only when directly compared with global processing. This suggests that global interference was stronger than local interference in the conflict task in the collectivistic group. Both groups showed increased activity in dorsolateral prefrontal regions involved in resolving perceptual conflict during heightened distractor interference. The findings suggest that self-orientation may play an important role in driving attention networks to facilitate interaction with the visual environment. PMID:26270820
Combining Global Tabu Search with Local Search for Solving Systems of Equalities and Inequalities
NASA Astrophysics Data System (ADS)
Ramadas, Gisela C. V.; Fernandes, Edite M. G. P.
2011-09-01
This papers aims at providing a combined strategy for solving systems of equalities and inequalities. The combined strategy uses two types of steps: a global search step and a local search step. The global step relies on a tabu search heuristic and the local step uses a deterministic search known as Hooke and Jeeves. The choice of step, at each iteration, is based on the level of reduction of the l2-norm of the error function observed in the equivalent system of equations, compared with the previous iteration.
Global-local visual processing impacts risk taking behaviors, but only at first
Lim, Stephen Wee Hun; Yuen, Alexander Y. L.; Tong, Eddie M. W.
2015-01-01
We investigated the impact of early visual processing on decision-making during unpredictable, risky situations. Participants undertook Navon’s (1977) task and attended to either global letters or local letters only, following which they completed the Balloon Analogue Risk Task (BART). It was observed that global-focused individuals made more balloon pumps during the BART (i.e., took more risk), whereas local-focused individuals took less risk, albeit only initially. The theory of predictive and reactive control systems (PARCS) provides an excellent account of the data. Implications and future directions are discussed. PMID:26379586
Global and Local Existence for the Dissipative Critical SQG Equation with Small Oscillations
NASA Astrophysics Data System (ADS)
Lazar, Omar
2015-09-01
This article is devoted to the study of the critical dissipative surface quasi-geostrophic ( SQG) equation in . For any initial data belonging to the space , we show that the critical (SQG) equation has at least one global weak solution in time for all 1/4 ≤ s ≤ 1/2 and at least one local weak solution in time for all 0 < s < 1/4. The proof for the global existence is based on a new energy inequality which improves the one obtain in Lazar (Commun Math Phys 322:73-93, 2013) whereas the local existence uses more refined energy estimates based on Besov space techniques.
Symmetrized local co-registration optimization for anomalous change detection
Wohlberg, Brendt E; Theiler, James P
2009-01-01
The goal of anomalous change detection (ACD) is to identify what unusual changes have occurred in a scene, based on two images of the scene taken at different times and under different conditions. The actual anomalous changes need to be distinguished from the incidental differences that occur throughout the imagery, and one of the most common and confounding of these incidental differences is due to the misregistration of the images, due to limitations of the registration pre-processing applied to the image pair. We propose a general method to compensate for residual misregistration in any ACD algorithm which constructs an estimate of the degree of 'anomalousness' for every pixel in the image pair. The method computes a modified misregistration-insensitive anomalousness by making local re-registration adjustments to minimize the local anomalousness. In this paper we describe a symmetrized version of our initial algorithm, and find significant performance improvements in the anomalous change detection ROC curves for a number of real and synthetic data sets.
Vlasak, Anna N
2006-01-01
Locating food and refuge is essential for an animal's survival. However, little is known how mammals navigate under natural conditions and cope with given environmental constraints. In a series of six experiments, I investigated landmark-based navigation in free-ranging Columbian ground squirrels (Spermophilus columbianus). Squirrels were trained individually to find a baited platform within an array of nine identical platforms and artificial landmarks set up on their territories. After animals learned the location of the food platform in the array, the position of the latter with respect to local artificial, local natural, and global landmarks was manipulated, and the animal's ability to find the food platform was tested. When only positions of local artificial landmarks were changed, squirrels located food with high accuracy. When the location of the array relative to global landmarks was altered, food-finding accuracy decreased but remained significant. In the absence of known global landmarks, the presence of a familiar route and natural local landmarks resulted in significant but not highly accurate performance. Squirrels likely relied on multiple types of cues when orienting towards a food platform. Local landmarks were used only as a secondary mechanism of navigation, and were not attended to when a familiar route and known global landmarks were present. This study provided insights into landmark use by a wild mammal in a natural situation, and it demonstrated that an array of platforms can be employed to investigate landmark-based navigation under such conditions. PMID:16163480
Local versus nonlocal boundary-layer diffusion in a global climate model
Holtslag, A.A.M. ); Boville, B.A. )
1993-10-01
The results of a local and a nonlocal scheme for vertical diffusion in the atmospheric boundary layer are compared within the context of a global climate model. The global model is an updated version of the NCAR Community Climate Model (CCM2). The local diffusion scheme uses an eddy diffusivity determined independently at each point in the vertical, based on local vertical gradients of wind and virtual potential temperature, similar to the usual approach in global atmospheric models. The nonlocal scheme determines an eddy-diffusivity profile based on a diagnosed boundary-layer height and a turbulent velocity scale. It also incorporates nonlocal (vertical) transport effects for heat and moisture. The two diffusion schemes are summarized, and their results are compared with independent radiosonde observations for a number of locations. The focus herein is on the temperature and humidity structure over ocean, where the surface temperatures are specified, since the boundary-layer scheme interacts strongly with the land-surface parameterization. Systematic differences are shown in global-climate simulations, with CCM2 using the two schemes. The nonlocal scheme transports moisture away from the surface more rapidly than the local scheme, and deposits the moisture at higher levels. The local scheme tends to saturate the lowest model levels unrealistically, which typically leads to clouds too low in the atmosphere. The nonlocal scheme has been chosen for CCM2 because of its more comprehensive representation of the physics of boundary-layer transport in dry convective conditions. 35 refs., 12 figs.
Global standards and local knowledge building: Upgrading small producers in developing countries
Perez-Aleman, Paola
2012-01-01
Local knowledge building is a crucial factor for upgrading small producers and improving their market competitiveness and livelihoods. The rise of global standards affecting food safety and environmental sustainability in agriculture sparks debates on the impact on smallholders in developing countries. This article presents a perspective on the links of international standards to knowledge and institution building for developing the capabilities of small producers. Interacting with global practices, indigenous private and public actors create local institutions to develop capabilities for product and process innovations that contribute to economic development and enhance food security. Local innovation depends on collective strategic efforts through increasing networks among small producers and other organizations, including firms, nongovernmental organizations, and government, that foster knowledge circulation and bring diverse resources and support to build local capabilities. PMID:21670309
NASA Astrophysics Data System (ADS)
Chandra, Rohitash; Rolland, Luc
2015-01-01
Memetic algorithms (MA) are evolutionary computation methods that employ local search to selected individuals of the population. This work presents global-local population MA for solving the forward kinematics of parallel manipulators. A real-coded generation algorithm with features of diversity is used in the global population and an evolutionary algorithm with parent-centric crossover operator which has local search features is used in the local population. The forward kinematics of the 3RPR and 6-6 leg manipulators are examined to test the performance of the proposed method. The results show that the proposed method improves the performance of the real-coded genetic algorithm and can obtain high-quality solutions similar to the previous methods for the 6-6 leg manipulator. The accuracy of the solutions and the optimisation time achieved by the methods in this work motivates for real-time implementation of the 3RPR parallel manipulator.
Global standards and local knowledge building: upgrading small producers in developing countries.
Perez-Aleman, Paola
2012-07-31
Local knowledge building is a crucial factor for upgrading small producers and improving their market competitiveness and livelihoods. The rise of global standards affecting food safety and environmental sustainability in agriculture sparks debates on the impact on smallholders in developing countries. This article presents a perspective on the links of international standards to knowledge and institution building for developing the capabilities of small producers. Interacting with global practices, indigenous private and public actors create local institutions to develop capabilities for product and process innovations that contribute to economic development and enhance food security. Local innovation depends on collective strategic efforts through increasing networks among small producers and other organizations, including firms, nongovernmental organizations, and government, that foster knowledge circulation and bring diverse resources and support to build local capabilities. PMID:21670309
Simulation to Support Local Search in Trajectory Optimization Planning
NASA Technical Reports Server (NTRS)
Morris, Robert A.; Venable, K. Brent; Lindsey, James
2012-01-01
NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and civil tilt rotors. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. One way to address the rotorcraft noise problem is by exploiting powerful search techniques coming from artificial intelligence coupled with simulation and field tests to design low-noise flight profiles which can be tested in simulation or through field tests. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints directly into the problem formulation that addresses passenger safety and comfort.
Optimizing Local Memory Allocation and Assignment through a Decoupled Approach
NASA Astrophysics Data System (ADS)
Diouf, Boubacar; Ozturk, Ozcan; Cohen, Albert
Software-controlled local memories (LMs) are widely used to provide fast, scalable, power efficient and predictable access to critical data. While many studies addressed LM management, keeping hot data in the LM continues to cause major headache. This paper revisits LM management of arrays in light of recent progresses in register allocation, supporting multiple live-range splitting schemes through a generic integer linear program. These schemes differ in the grain of decision points. The model can also be extended to address fragmentation, assigning live ranges to precise offsets. We show that the links between LM management and register allocation have been underexploited, leaving much fundamental questions open and effective applications to be explored.
Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis
2014-01-01
The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way. PMID:24977175
Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis
2014-01-01
The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way. PMID:24977175
An optimal sensing strategy for recognition and localization of 3-D natural quadric objects
NASA Technical Reports Server (NTRS)
Lee, Sukhan; Hahn, Hernsoo
1991-01-01
An optimal sensing strategy for an optical proximity sensor system engaged in the recognition and localization of 3-D natural quadric objects is presented. The optimal sensing strategy consists of the selection of an optimal beam orientation and the determination of an optimal probing plane that compose an optimal data collection operation known as an optimal probing. The decision of an optimal probing is based on the measure of discrimination power of a cluster of surfaces on a multiple interpretation image (MII), where the measure of discrimination power is defined in terms of a utility function computing the expected number of interpretations that can be pruned out by a probing. An object representation suitable for active sensing based on a surface description vector (SDV) distribution graph and hierarchical tables is presented. Experimental results are shown.
ERIC Educational Resources Information Center
Foster, Nicholas E. V.; Ouimet, Tia; Tryfon, Ana; Doyle-Thomas, Krissy; Anagnostou, Evdokia; Hyde, Krista L.
2016-01-01
In vision, typically-developing (TD) individuals perceive "global" (whole) before "local" (detailed) features, whereas individuals with autism spectrum disorder (ASD) exhibit a local bias. However, auditory global-local distinctions are less clear in ASD, particularly in terms of age and attention effects. To these aims, here…
Locally Optimally Emitting Clouds and the Variable Broad Emission Line Spectrum of NGC 5548
NASA Astrophysics Data System (ADS)
Korista, Kirk T.; Goad, Michael R.
2000-06-01
In recent work Baldwin et al. proposed that in the geometrically extended broad-line regions (BLRs) of quasars and active galactic nuclei, a range in line-emitting gas properties (e.g., density, column density) might exist at each radius and showed that under these conditions the broad emission line spectra of these objects may be dominated by selection effects introduced by the atomic physics and general radiative transfer within the large pool of line-emitting entities. In this picture, the light we see originates in a vast amalgam of emitters but is dominated by those emitters best able to reprocess the incident continuum into a particular emission line. We test this ``locally optimally emitting clouds'' (LOC) model against the extensive spectroscopic database of the Seyfert 1 galaxy NGC 5548. The time-averaged, integrated-light UV broad emission line spectrum from the 1993 Hubble Space Telescope (HST) monitoring campaign is reproduced via the optimization of three global geometric parameters: the outer radius, the index controlling the radial cloud covering fraction of the continuum source, and the integrated cloud covering fraction. We make an ad hoc selection from the range of successful models, and for a simple spherical BLR geometry we simulate the emission-line light curves for the 1989 IUE and 1993 HST campaigns, using the respective observed UV continuum light curves as drivers. We find good agreement between the predicted and observed light curves and lags-a demonstration of the LOC picture's viability as a means to understanding the BLR environment. Finally, we discuss the next step in developing the LOC picture, which involves the marriage of echo-mapping techniques with spectral simulation grids such as those presented here, using the constraints provided by a high-quality, temporally well-sampled spectroscopic data set.
Particle Swarm Optimization Applied to EEG Source Localization of Somatosensory Evoked Potentials.
Shirvany, Yazdan; Mahmood, Qaiser; Edelvik, Fredrik; Jakobsson, Stefan; Hedstrom, Anders; Persson, Mikael
2014-01-01
One of the most important steps in presurgical diagnosis of medically intractable epilepsy is to find the precise location of the epileptogenic foci. Electroencephalography (EEG) is a noninvasive tool commonly used at epilepsy surgery centers for presurgical diagnosis. In this paper, a modified particle swarm optimization (MPSO) method is used to solve the EEG source localization problem. The method is applied to noninvasive EEG recording of somatosensory evoked potentials (SEPs) for a healthy subject. A 1 mm hexahedra finite element volume conductor model of the subject's head was generated using T1-weighted magnetic resonance imaging data. Special consideration was made to accurately model the skull and cerebrospinal fluid. An exhaustive search pattern and the MPSO method were then applied to the peak of the averaged SEP data and both identified the same region of the somatosensory cortex as the location of the SEP source. A clinical expert independently identified the expected source location, further corroborating the source analysis methods. The MPSO converged to the global minima with significantly lower computational complexity compared to the exhaustive search method that required almost 3700 times more evaluations. PMID:24122569
Pletzer, Belinda; Petasis, Ourania; Cahill, Larry
2014-07-01
Sex differences in attentional selection of global and local components of stimuli have been hypothesized to underlie sex differences in cognitive strategy choice. A Navon figure paradigm was employed in 32 men, 41 naturally cycling women (22 follicular, 19 luteal) and 19 users of oral contraceptives (OCs) containing first to third generation progestins in their active pill phase. Participants were first asked to detect targets at any level (divided attention) and then at either the global or the local level only (focused attention). In the focused attention condition, luteal women showed reduced global advantage (i.e. faster responses to global vs. local targets) compared to men, follicular women and OC users. Accordingly, global advantage during the focused attention condition related significantly positively to testosterone levels and significantly negatively to progesterone, but not estradiol levels in a multiple regression model including all naturally cycling women and men. Interference (i.e. delayed rejection of stimuli displaying targets at the non-attended level) was significantly enhanced in OC users as compared to naturally cycling women and related positively to testosterone levels in all naturally cycling women and men. Remarkably, when analyzed separately for each group, the relationship of testosterone to global advantage and interference was reversed in women during their luteal phase as opposed to men and women during their follicular phase. As global processing is lateralized to the right and local processing to the left hemisphere, we speculate that these effects stem from a testosterone-mediated enhancement of right-hemisphere functioning as well as progesterone-mediated inter-hemispheric decoupling. PMID:24874173
Model-based synthesis of locally contingent responses to global market signals
NASA Astrophysics Data System (ADS)
Magliocca, N. R.
2015-12-01
Rural livelihoods and the land systems on which they depend are increasingly influenced by distant markets through economic globalization. Place-based analyses of land and livelihood system sustainability must then consider both proximate and distant influences on local decision-making. Thus, advancing land change theory in the context of economic globalization calls for a systematic understanding of the general processes as well as local contingencies shaping local responses to global signals. Synthesis of insights from place-based case studies of land and livelihood change is a path forward for developing such systematic knowledge. This paper introduces a model-based synthesis approach to investigating the influence of local socio-environmental and agent-level factors in mediating land-use and livelihood responses to changing global market signals. A generalized agent-based modeling framework is applied to six case-study sites that differ in environmental conditions, market access and influence, and livelihood settings. The largest modeled land conversions and livelihood transitions to market-oriented production occurred in sties with relatively productive agricultural land and/or with limited livelihood options. Experimental shifts in the distributions of agents' risk tolerances generally acted to attenuate or amplify responses to changes in global market signals. Importantly, however, responses of agents at different points in the risk tolerance distribution varied widely, with the wealth gap growing wider between agents with higher or lower risk tolerance. These results demonstrate model-based synthesis is a promising approach to overcome many of the challenges of current synthesis methods in land change science, and to identify generalized as well as locally contingent responses to global market signals.
Attention to local health burden and the global disparity of health research.
Evans, James A; Shim, Jae-Mahn; Ioannidis, John P A
2014-01-01
Most studies on global health inequality consider unequal health care and socio-economic conditions but neglect inequality in the production of health knowledge relevant to addressing disease burden. We demonstrate this inequality and identify likely causes. Using disability-adjusted life years (DALYs) for 111 prominent medical conditions, assessed globally and nationally by the World Health Organization, we linked DALYs with MEDLINE articles for each condition to assess the influence of DALY-based global disease burden, compared to the global market for treatment, on the production of relevant MEDLINE articles, systematic reviews, clinical trials and research using animal models vs. humans. We then explored how DALYs, wealth, and the production of research within countries correlate with this global pattern. We show that global DALYs for each condition had a small, significant negative relationship with the production of each type of MEDLINE articles for that condition. Local processes of health research appear to be behind this. Clinical trials and animal studies but not systematic reviews produced within countries were strongly guided by local DALYs. More and less developed countries had very different disease profiles and rich countries publish much more than poor countries. Accordingly, conditions common to developed countries garnered more clinical research than those common to less developed countries. Many of the health needs in less developed countries do not attract attention among developed country researchers who produce the vast majority of global health knowledge--including clinical trials--in response to their own local needs. This raises concern about the amount of knowledge relevant to poor populations deficient in their own research infrastructure. We recommend measures to address this critical dimension of global health inequality. PMID:24691431
Attention to Local Health Burden and the Global Disparity of Health Research
Evans, James A.; Shim, Jae-Mahn; Ioannidis, John P. A.
2014-01-01
Most studies on global health inequality consider unequal health care and socio-economic conditions but neglect inequality in the production of health knowledge relevant to addressing disease burden. We demonstrate this inequality and identify likely causes. Using disability-adjusted life years (DALYs) for 111 prominent medical conditions, assessed globally and nationally by the World Health Organization, we linked DALYs with MEDLINE articles for each condition to assess the influence of DALY-based global disease burden, compared to the global market for treatment, on the production of relevant MEDLINE articles, systematic reviews, clinical trials and research using animal models vs. humans. We then explored how DALYs, wealth, and the production of research within countries correlate with this global pattern. We show that global DALYs for each condition had a small, significant negative relationship with the production of each type of MEDLINE articles for that condition. Local processes of health research appear to be behind this. Clinical trials and animal studies but not systematic reviews produced within countries were strongly guided by local DALYs. More and less developed countries had very different disease profiles and rich countries publish much more than poor countries. Accordingly, conditions common to developed countries garnered more clinical research than those common to less developed countries. Many of the health needs in less developed countries do not attract attention among developed country researchers who produce the vast majority of global health knowledge—including clinical trials—in response to their own local needs. This raises concern about the amount of knowledge relevant to poor populations deficient in their own research infrastructure. We recommend measures to address this critical dimension of global health inequality. PMID:24691431
Mutation-Based Artificial Fish Swarm Algorithm for Bound Constrained Global Optimization
NASA Astrophysics Data System (ADS)
Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.
2011-09-01
The herein presented mutation-based artificial fish swarm (AFS) algorithm includes mutation operators to prevent the algorithm to falling into local solutions, diversifying the search, and to accelerate convergence to the global optima. Three mutation strategies are introduced into the AFS algorithm to define the trial points that emerge from random, leaping and searching behaviors. Computational results show that the new algorithm outperforms other well-known global stochastic solution methods.
NASA Astrophysics Data System (ADS)
Fan, Shu-Kai S.; Chang, Ju-Ming
2010-05-01
This article presents a novel parallel multi-swarm optimization (PMSO) algorithm with the aim of enhancing the search ability of standard single-swarm PSOs for global optimization of very large-scale multimodal functions. Different from the existing multi-swarm structures, the multiple swarms work in parallel, and the search space is partitioned evenly and dynamically assigned in a weighted manner via the roulette wheel selection (RWS) mechanism. This parallel, distributed framework of the PMSO algorithm is developed based on a master-slave paradigm, which is implemented on a cluster of PCs using message passing interface (MPI) for information interchange among swarms. The PMSO algorithm handles multiple swarms simultaneously and each swarm performs PSO operations of its own independently. In particular, one swarm is designated for global search and the others are for local search. The first part of the experimental comparison is made among the PMSO, standard PSO, and two state-of-the-art algorithms (CTSS and CLPSO) in terms of various un-rotated and rotated benchmark functions taken from the literature. In the second part, the proposed multi-swarm algorithm is tested on large-scale multimodal benchmark functions up to 300 dimensions. The results of the PMSO algorithm show great promise in solving high-dimensional problems.
D’Souza, Dean; Booth, Rhonda; Connolly, Monica; Happé, Francesca; Karmiloff-Smith, Annette
2015-01-01
Both Williams syndrome (WS) and Autism Spectrum Disorder (ASD) have been characterized as preferentially processing local information, whereas in Down syndrome (DS) the reported tendency is to process stimuli globally. We designed a cross-syndrome, cross-task comparison to reveal similarities and differences in local/global processing in these disorders. Our in-depth study compared local/global processing across modalities (auditory-verbal/visuo-spatial) and levels of processing (high/low) in the three syndromes. Despite claims in the literature, participants with ASD or WS failed to show a consistent local processing bias, while those with DS failed to show a reliable global processing bias. Depending on the nature of the stimuli and the task, both local and global processing biases were evident in all three neurodevelopmental disorders. These findings indicate that individuals with neurodevelopmental disorders cannot simply be characterized as local or global processors. PMID:26010432
D'Souza, Dean; Booth, Rhonda; Connolly, Monica; Happé, Francesca; Karmiloff-Smith, Annette
2016-05-01
Both Williams syndrome (WS) and Autism Spectrum Disorder (ASD) have been characterized as preferentially processing local information, whereas in Down syndrome (DS) the reported tendency is to process stimuli globally. We designed a cross-syndrome, cross-task comparison to reveal similarities and differences in local/global processing in these disorders. Our in-depth study compared local/global processing across modalities (auditory-verbal/visuo-spatial) and levels of processing (high/low) in the three syndromes. Despite claims in the literature, participants with ASD or WS failed to show a consistent local processing bias, while those with DS failed to show a reliable global processing bias. Depending on the nature of the stimuli and the task, both local and global processing biases were evident in all three neurodevelopmental disorders. These findings indicate that individuals with neurodevelopmental disorders cannot simply be characterized as local or global processors. PMID:26010432
Isolated particle swarm optimization with particle migration and global best adoption
NASA Astrophysics Data System (ADS)
Tsai, Hsing-Chih; Tyan, Yaw-Yauan; Wu, Yun-Wu; Lin, Yong-Huang
2012-12-01
Isolated particle swarm optimization (IPSO) segregates particles into several sub-swarms in order to improve the ability of the global optimization. In this study, particle migration and global best adoption (gbest adoption) are used to improve IPSO. Particle migration allows particles to travel among sub-swarms, based on the fitness of the sub-swarms. The use of gbest adoption allows sub-swarms to peep at the gbest proportionally or probably after a certain number of iterations, i.e. gbest replacing, and gbest sharing, respectively. Three well-known benchmark functions are utilized to determine the parameter settings of the IPSO. Then, 13 benchmark functions are used to study the performance of the designed IPSO. Computational experience demonstrates that the designed IPSO is superior to the original version of particle swarm optimization (PSO) in terms of the accuracy and stability of the results, when isolation phenomenon, particle migration and gbest sharing are involved.
Brand, John; Johnson, Aaron P
2014-01-01
In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks. PMID:25520675
Global effects of local food-production crises: a virtual water perspective.
Tamea, Stefania; Laio, Francesco; Ridolfi, Luca
2016-01-01
By importing food and agricultural goods, countries cope with the heterogeneous global water distribution and often rely on water resources available abroad. The virtual displacement of the water used to produce such goods (known as virtual water) connects together, in a global water system, all countries participating to the international trade network. Local food-production crises, having social, economic or environmental origin, propagate in this network, modifying the virtual water trade and perturbing local and global food availability, quantified in terms of virtual water. We analyze here the possible effects of local crises by developing a new propagation model, parsimonious but grounded on data-based and statistically-verified assumptions, whose effectiveness is proved on the Argentinean crisis in 2008-09. The model serves as the basis to propose indicators of crisis impact and country vulnerability to external food-production crises, which highlight that countries with largest water resources have the highest impact on the international trade, and that not only water-scarce but also wealthy and globalized countries are among the most vulnerable to external crises. The temporal analysis reveals that global average vulnerability has increased over time and that stronger effects of crises are now found in countries with low food (and water) availability. PMID:26804492
Global and Local Evaluations of Public Speaking Performance in Social Anxiety
Cody, Meghan W.; Teachman, Bethany A.
2012-01-01
Differences in the relative use of global and local information (seeing the forest versus the trees) may explain why people with social anxiety often do not benefit from corrective feedback, even though they pay close attention to details in social situations. In the current study, participants high (n = 43) or low (n = 47) in social anxiety symptoms gave a series of brief speeches, and then self-rated their speaking performance on items reflecting global and local performance indicators (self assessment) and also received standardized performance feedback from an experimenter. Participants then completed a questionnaire asking how they thought the experimenter would rate their performance based on the feedback provided (experimenter assessment). Participants completed the self and experimenter assessments again after three days, in addition to a measure of post-event processing (repetitive negative thinking) about their speech performance. Results showed that, as hypothesized, the high social anxiety group rated their performance more negatively than the low social anxiety group did. Moreover, the high social anxiety group’s ratings of global aspects of their performance became relatively more negative over time, compared to their ratings of local aspects and the low social anxiety group’s ratings. As expected, post-event processing mediated the relationship between social anxiety group status and worsening global performance evaluations. These findings point to a pattern of progressively more negative global evaluations over time for persons high in social anxiety. PMID:22035989
Compounding Local Invariant Features and Global Deformable Geometry for Medical Image Registration
Zhang, Jianhua; Chen, Lei; Wang, Xiaoyan; Teng, Zhongzhao; Brown, Adam J.; Gillard, Jonathan H.; Guan, Qiu; Chen, Shengyong
2014-01-01
Using deformable models to register medical images can result in problems of initialization of deformable models and robustness and accuracy of matching of inter-subject anatomical variability. To tackle these problems, a novel model is proposed in this paper by compounding local invariant features and global deformable geometry. This model has four steps. First, a set of highly-repeatable and highly-robust local invariant features, called Key Features Model (KFM), are extracted by an effective matching strategy. Second, local features can be matched more accurately through the KFM for the purpose of initializing a global deformable model. Third, the positional relationship between the KFM and the global deformable model can be used to precisely pinpoint all landmarks after initialization. And fourth, the final pose of the global deformable model is determined by an iterative process with a lower time cost. Through the practical experiments, the paper finds three important conclusions. First, it proves that the KFM can detect the matching feature points well. Second, the precision of landmark locations adjusted by the modeled relationship between KFM and global deformable model is greatly improved. Third, regarding the fitting accuracy and efficiency, by observation from the practical experiments, it is found that the proposed method can improve % of the fitting accuracy and reduce around 50% of the computational time compared with state-of-the-art methods. PMID:25165985
Global effects of local food-production crises: a virtual water perspective
Tamea, Stefania; Laio, Francesco; Ridolfi, Luca
2016-01-01
By importing food and agricultural goods, countries cope with the heterogeneous global water distribution and often rely on water resources available abroad. The virtual displacement of the water used to produce such goods (known as virtual water) connects together, in a global water system, all countries participating to the international trade network. Local food-production crises, having social, economic or environmental origin, propagate in this network, modifying the virtual water trade and perturbing local and global food availability, quantified in terms of virtual water. We analyze here the possible effects of local crises by developing a new propagation model, parsimonious but grounded on data-based and statistically-verified assumptions, whose effectiveness is proved on the Argentinean crisis in 2008–09. The model serves as the basis to propose indicators of crisis impact and country vulnerability to external food-production crises, which highlight that countries with largest water resources have the highest impact on the international trade, and that not only water-scarce but also wealthy and globalized countries are among the most vulnerable to external crises. The temporal analysis reveals that global average vulnerability has increased over time and that stronger effects of crises are now found in countries with low food (and water) availability. PMID:26804492
Connecting the dots: how local structure affects global integration in infants
Palomares, Melanie; Pettet, Mark; Vildavski, Vladimir; Hou, Chuan; Norcia, Anthony
2009-01-01
Glass patterns are moirés created from a sparse random dot field paired with its spatially-shifted copy. Because discrimination of these patterns is not based on local features, they have been used extensively to study global integration processes. Here, we investigated whether 4–5.5 month old infants are sensitive to the global structure of Glass patterns by measuring Visual Evoked Potentials (VEPs). Although we found strong responses to the appearance of the constituent dots, we found sensitivity to the global structure of the Glass patterns in the infants only over a very limited range of spatial separation. In contrast, we observed robust responses in the infants when we connected the dot pairs of the Glass pattern with lines. Moreover, both infants and adults showed differential responses to exchanges between line patterns portraying different global structures. A control study varying luminance contrast in adults suggests that infant sensitivity to global structure is not primarily limited by reduced element visibility. Together our results suggest that the insensitivity to structure in conventional Glass patterns is due to inefficiencies in extracting the local orientation cues generated by the dot pairs. Once the local orientations are made unambiguous or when the interpolation span is small, infants can integrate these signals over the image. PMID:19642888
Global and local evaluations of public speaking performance in social anxiety.
Cody, Meghan W; Teachman, Bethany A
2011-12-01
Differences in the relative use of global and local information (seeing the forest vs. the trees) may explain why people with social anxiety often do not benefit from corrective feedback, even though they pay close attention to details in social situations. In the current study, participants high (n=43) or low (n=47) in social anxiety symptoms gave a series of brief speeches, and then self-rated their speaking performance on items reflecting global and local performance indicators (self-assessment) and also received standardized performance feedback from an experimenter. Participants then completed a questionnaire asking how they thought the experimenter would rate their performance based on the feedback provided (experimenter assessment). Participants completed the self- and experimenter assessments again after 3 days, in addition to a measure of postevent processing (repetitive negative thinking) about their speech performance. Results showed that, as hypothesized, the High SA group rated their performance more negatively than the Low SA group. Moreover, the High SA group's ratings of global aspects of their performance became relatively more negative over time, compared to their ratings of local aspects and the Low SA group's ratings. As expected, postevent processing mediated the relationship between social anxiety group status and worsening global performance evaluations. These findings point to a pattern of progressively more negative global evaluations over time for persons high in social anxiety. PMID:22035989
Global effects of local food-production crises: a virtual water perspective
NASA Astrophysics Data System (ADS)
Tamea, Stefania; Laio, Francesco; Ridolfi, Luca
2016-01-01
By importing food and agricultural goods, countries cope with the heterogeneous global water distribution and often rely on water resources available abroad. The virtual displacement of the water used to produce such goods (known as virtual water) connects together, in a global water system, all countries participating to the international trade network. Local food-production crises, having social, economic or environmental origin, propagate in this network, modifying the virtual water trade and perturbing local and global food availability, quantified in terms of virtual water. We analyze here the possible effects of local crises by developing a new propagation model, parsimonious but grounded on data-based and statistically-verified assumptions, whose effectiveness is proved on the Argentinean crisis in 2008-09. The model serves as the basis to propose indicators of crisis impact and country vulnerability to external food-production crises, which highlight that countries with largest water resources have the highest impact on the international trade, and that not only water-scarce but also wealthy and globalized countries are among the most vulnerable to external crises. The temporal analysis reveals that global average vulnerability has increased over time and that stronger effects of crises are now found in countries with low food (and water) availability.
ERIC Educational Resources Information Center
Yemini, Miri; Bronshtein, Yifat
2016-01-01
Globalisation and technological advances in the twenty-first century have caused a blurring of national lines, which in the past were the basis of a nearly indisputable model of civic identity. This process has led to a noticeable trend of the globally oriented pressures within the national curricula, on top of the existing locally oriented…
Learning To Manage Change: Developing Regional Communities for a Local-Global Millennium.
ERIC Educational Resources Information Center
Falk, Ian, Ed.
This book illustrates the benefits of integrating different approaches to community and regional development for rural Australia. The key theme is community capacity building through lifelong learning, seen as integration of formal, nonformal, and informal education and training at all levels. Other foci include the local-global context, issues…
ERIC Educational Resources Information Center
Russell-Smith, Suzanna N.; Maybery, Murray T.; Bayliss, Donna M.
2010-01-01
Crespi and Badcock (2008) proposed that autism and psychosis represent two extremes on a cognitive spectrum with normality at its center. Their specific claim that autistic and positive schizophrenia traits contrastingly affect preference for local versus global processing was investigated by examining Embedded Figures Test performance in two…
Think Locally, Act Globally? The Transnationalization of Canadian Resource-Use Conflicts.
ERIC Educational Resources Information Center
Barker, Mary L.; Soyez, Dietrich
1994-01-01
Describes the reversal of the strategy to "think globally, act locally," whereby environmentalists and indigenous peoples of Canada, protesting environmentally unsound practices, have taken their protests to the countries most related to those practices. Issues discussed include logging in British Columbia, the James Bay hydroelectric project, and…
NASA Astrophysics Data System (ADS)
Harré, Michael S.
2013-02-01
Two aspects of modern economic theory have dominated the recent discussion on the state of the global economy: Crashes in financial markets and whether or not traditional notions of economic equilibrium have any validity. We have all seen the consequences of market crashes: plummeting share prices, businesses collapsing and considerable uncertainty throughout the global economy. This seems contrary to what might be expected of a system in equilibrium where growth dominates the relatively minor fluctuations in prices. Recent work from within economics as well as by physicists, psychologists and computational scientists has significantly improved our understanding of the more complex aspects of these systems. With this interdisciplinary approach in mind, a behavioural economics model of local optimisation is introduced and three general properties are proven. The first is that under very specific conditions local optimisation leads to a conventional macro-economic notion of a global equilibrium. The second is that if both global optimisation and economic growth are required then under very mild assumptions market catastrophes are an unavoidable consequence. Third, if only local optimisation and economic growth are required then there is sufficient parametric freedom for macro-economic policy makers to steer an economy around catastrophes without overtly disrupting local optimisation.
ERIC Educational Resources Information Center
Hubner, Ronald; Studer, Tobias
2009-01-01
Up to now functional hemispheric asymmetries for global/local processing have mainly been investigated with hierarchical letters as stimuli. In the present study, three experiments were conducted to examine whether corresponding visual-field (VF) effects can also be obtained with more naturalistic stimuli. To this end, images of animals with a…
Adolescents' Hopes for Personal, Local, and Global Future: Insights from Ukraine
ERIC Educational Resources Information Center
Nikolayenko, Olena
2011-01-01
This study explores adolescents' hopes for personal, local, and global future in postcommunist Ukraine. The research is based on a survey of 200 sixth-graders in the cities of Donetsk and Lviv in fall 2005. The analysis identifies six domains related to personal aspirations of adolescents: education, career, self-actualization, personal…
Perception of Shapes Targeting Local and Global Processes in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Grinter, Emma J.; Maybery, Murray T.; Pellicano, Elizabeth; Badcock, Johanna C.; Badcock, David R.
2010-01-01
Background: Several researchers have found evidence for impaired global processing in the dorsal visual stream in individuals with autism spectrum disorders (ASDs). However, support for a similar pattern of visual processing in the ventral visual stream is less consistent. Critical to resolving the inconsistency is the assessment of local and…
Comparative Education: The Dialectic of the Global and the Local. Third Edition
ERIC Educational Resources Information Center
Arnove, Robert F., Ed.; Torres, Carlos Alberto, Ed.
2007-01-01
This book brings together many of the outstanding scholars in the field of comparative and international education to provide new perspectives on the dynamic interplay of global, national, and local forces as they shape the functioning and outcomes of education systems in specific contexts. Various chapters in the book call for a rethinking of the…
Influence of Global Shapes on Children's Coding of Local Geometric Information in Small-Scale Spaces
ERIC Educational Resources Information Center
Chiang, Noelle C.
2013-01-01
This research uses enclosed whole shapes, rather than visual form fragments, to demonstrate that children's use of local geometric information is influenced by global shapes in small-scale spaces. Three- to six-year-old children and adults participated in two experiments with a table-top task. In Experiment 1, participants were presented with a…
ERIC Educational Resources Information Center
Michimata, Chikashi; Saneyoshi, Ayako; Okubo, Matia; Laeng, Bruno
2011-01-01
Participants made categorical or coordinate spatial judgments on the global or local elements of shapes. Stimuli were composed of a horizontal line and two dots. In the Categorical task, participants judged whether the line was above or below the dots. In the Coordinate task, they judged whether the line would fit between the dots. Stimuli were…
Coral reefs are highly valued ecosystems that are currently imperiled. Although the value of coral reefs to human societies is only just being investigated and better understood, for many local and global economies coral reefs are important providers of ecosystem services that su...
Reflections on the Local and the Global in Psychology: Innovation, Liberation and Testimonio
ERIC Educational Resources Information Center
Bakker, Terri M.
2009-01-01
This paper presents some reflections on the process of creating research, from the point of view of a psychologist working in an academic environment in a developing country which is undergoing social transformation. It explores some tensions between global and local concerns in research, and reflects on the relation between research, art,…