Science.gov

Sample records for global mass estimates

  1. Estimating global specific leaf area from MODIS leaf area index and model-simulated foliage mass

    NASA Astrophysics Data System (ADS)

    Baruah, P. J.; Yasuoka, Y.; Ito, A.; Dye, D.

    2006-12-01

    Specific leaf area (SLA) is an important leaf trait that is universally correlated positively to leaf nitrogen, leaf turnover rates, relative growth rate and most importantly, photosynthetic capacity. Though SLA is genetically encoded, it is often spatially variable within a species and within a single biome due to variable environmental conditions. However, without a global SLA map, global ecosystem models that use SLA, generally fix a single value for a particular biome. In this study, we develop a methodology to estimate global SLA from a remote sensing-derived key ecosystem variable, leaf area index and foliage mass estimated by a terrestrial ecosystem model SimCYCLE. SimCYCLE uses climatic inputs, land-cover data and biomass-allocation to estimate leaf biomass in a process-based scheme. Model-estimated foliage mass and MODIS leaf area index are assumed to represent the most-accurate ground condition to estimate SLA for the entire globe at 0.5 degree resolution. Validation of estimated specific leaf area is done with a published field-sampled global dataset, and additional field-sampled SLA data collected from published literatures. The validation data is also used for rectification of unrealistic values of estimated SLA to produce a global SLA map, which we strongly believe, would be valuable to improve estimates of carbon dynamic across individual biomes upon assimilation with the ecosystem models.

  2. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates

    NASA Astrophysics Data System (ADS)

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, C. P. Mick; Polglase, P. J.

    2016-05-01

    Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on `consumed biomass', which is an approximation to the biogeochemically correct `burnt carbon' approach. Here we show that applying the `consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the `burnt carbon' approach. The required correction is significant and represents ~9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the `burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon.

  3. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates.

    PubMed

    Surawski, N C; Sullivan, A L; Roxburgh, S H; Meyer, C P Mick; Polglase, P J

    2016-01-01

    Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on 'consumed biomass', which is an approximation to the biogeochemically correct 'burnt carbon' approach. Here we show that applying the 'consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the 'burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the 'burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon. PMID:27146785

  4. Total land water storage change over 2003-2013 estimated from a global mass budget approach

    NASA Astrophysics Data System (ADS)

    Dieng, Habib B.; Champollion, Nicolas; Cazenave, Anny; Wada, Yoshihide; Schrama, Ernst; Meyssignac, Benoit

    2016-04-01

    We estimate the total land water storage (LWS) change between 2003 and 2013 using a global water mass budget approach. Hereby we compare the ocean mass change (estimated from GRACE space gravimetry on the one hand, and from the satellite altimetry-based global mean sea level corrected for steric effects on the other hand) to the sum of the main water mass components of the climate system: glaciers, Greenland and Antarctica ice sheets, atmospheric water and LWS(the latter being the unknown quantity to be estimated). For glaciers and ice sheets, we use published estimates of ice mass trends based on various types of observations covering different time spans between 2003 and 2013. From the mass budget equation, we derive a net LWS trend over the study period. The mean trend amounts to+0.30 ± 0.18mmyr‑1 in sea level equivalent. This corresponds to a net decrease of ‑108 ± 64 km3 yr‑1 in LWS over the 2003-2013 decade. We also estimate the rate of change in LWS and find no significant acceleration over the study period. The computed mean global LWS trend over the study period is shown to be explained mainly by direct anthropogenic effects on land hydrology, i.e. the net effect of groundwater depletion and impoundment of water in man-made reservoirs, and to a lesser extent the effect of naturally-forced land hydrology variability. Our results compare well with independent estimates of human-induced changes in global land hydrology.

  5. Total Land Water Storage Change over 2003 - 2013 Estimated from a Global Mass Budget Approach

    NASA Technical Reports Server (NTRS)

    Dieng, H. B.; Champollion, N.; Cazenave, A.; Wada, Y.; Schrama, E.; Meyssignac, B.

    2015-01-01

    We estimate the total land water storage (LWS) change between 2003 and 2013 using a global water mass budget approach. Hereby we compare the ocean mass change (estimated from GRACE space gravimetry on the one hand, and from the satellite altimetry-based global mean sea level corrected for steric effects on the other hand) to the sum of the main water mass components of the climate system: glaciers, Greenland and Antarctica ice sheets, atmospheric water and LWS (the latter being the unknown quantity to be estimated). For glaciers and ice sheets, we use published estimates of ice mass trends based on various types of observations covering different time spans between 2003 and 2013. From the mass budget equation, we derive a net LWS trend over the study period. The mean trend amounts to +0.30 +/- 0.18 mm/yr in sea level equivalent. This corresponds to a net decrease of -108 +/- 64 cu km/yr in LWS over the 2003-2013 decade. We also estimate the rate of change in LWS and find no significant acceleration over the study period. The computed mean global LWS trend over the study period is shown to be explained mainly by direct anthropogenic effects on land hydrology, i.e. the net effect of groundwater depletion and impoundment of water in man-made reservoirs, and to a lesser extent the effect of naturally-forced land hydrology variability. Our results compare well with independent estimates of human-induced changes in global land hydrology.

  6. Total land water storage change over 2003-2013 estimated from a global mass budget approach

    NASA Astrophysics Data System (ADS)

    Dieng, H. B.; Champollion, N.; Cazenave, A.; Wada, Y.; Schrama, E.; Meyssignac, B.

    2015-12-01

    We estimate the total land water storage (LWS) change between 2003 and 2013 using a global water mass budget approach. Hereby we compare the ocean mass change (estimated from GRACE space gravimetry on the one hand, and from the satellite altimetry-based global mean sea level corrected for steric effects on the other hand) to the sum of the main water mass components of the climate system: glaciers, Greenland and Antarctica ice sheets, atmospheric water and LWS (the latter being the unknown quantity to be estimated). For glaciers and ice sheets, we use published estimates of ice mass trends based on various types of observations covering different time spans between 2003 and 2013. From the mass budget equation, we derive a net LWS trend over the study period. The mean trend amounts to +0.30 ± 0.18 mm yr-1 in sea level equivalent. This corresponds to a net decrease of -108 ± 64 km3 yr-1 in LWS over the 2003-2013 decade. We also estimate the rate of change in LWS and find no significant acceleration over the study period. The computed mean global LWS trend over the study period is shown to be explained mainly by direct anthropogenic effects on land hydrology, i.e. the net effect of groundwater depletion and impoundment of water in man-made reservoirs, and to a lesser extent the effect of naturally-forced land hydrology variability. Our results compare well with independent estimates of human-induced changes in global land hydrology.

  7. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates

    PubMed Central

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, C.P. Mick; Polglase, P. J.

    2016-01-01

    Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on ‘consumed biomass', which is an approximation to the biogeochemically correct ‘burnt carbon' approach. Here we show that applying the ‘consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the ‘burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the ‘burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon. PMID:27146785

  8. Global Mass Flux Solutions from GRACE: A Comparison of Parameter Estimation Strategies - Mass Concentrations Versus Stokes Coefficients

    NASA Technical Reports Server (NTRS)

    Rowlands, D. D.; Luthcke, S. B.; McCarthy J. J.; Klosko, S. M.; Chinn, D. S.; Lemoine, F. G.; Boy, J.-P.; Sabaka, T. J.

    2010-01-01

    The differences between mass concentration (mas con) parameters and standard Stokes coefficient parameters in the recovery of gravity infonnation from gravity recovery and climate experiment (GRACE) intersatellite K-band range rate data are investigated. First, mascons are decomposed into their Stokes coefficient representations to gauge the range of solutions available using each of the two types of parameters. Next, a direct comparison is made between two time series of unconstrained gravity solutions, one based on a set of global equal area mascon parameters (equivalent to 4deg x 4deg at the equator), and the other based on standard Stokes coefficients with each time series using the same fundamental processing of the GRACE tracking data. It is shown that in unconstrained solutions, the type of gravity parameter being estimated does not qualitatively affect the estimated gravity field. It is also shown that many of the differences in mass flux derivations from GRACE gravity solutions arise from the type of smoothing being used and that the type of smoothing that can be embedded in mas con solutions has distinct advantages over postsolution smoothing. Finally, a 1 year time series based on global 2deg equal area mascons estimated every 10 days is presented.

  9. Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge

    PubMed Central

    Syed, Tajdarul H.; Famiglietti, James S.; Chambers, Don P.; Willis, Josh K.; Hilburn, Kyle

    2010-01-01

    Freshwater discharge from the continents is a key component of Earth’s water cycle that sustains human life and ecosystem health. Surprisingly, owing to a number of socioeconomic and political obstacles, a comprehensive global river discharge observing system does not yet exist. Here we use 13 years (1994–2006) of satellite precipitation, evaporation, and sea level data in an ocean mass balance to estimate freshwater discharge into the global ocean. Results indicate that global freshwater discharge averaged 36,055 km3/y for the study period while exhibiting significant interannual variability driven primarily by El Niño Southern Oscillation cycles. The method described here can ultimately be used to estimate long-term global discharge trends as the records of sea level rise and ocean temperature lengthen. For the relatively short 13-year period studied here, global discharge increased by 540 km3/y2, which was largely attributed to an increase of global-ocean evaporation (768 km3/y2). Sustained growth of these flux rates into long-term trends would provide evidence for increasing intensity of the hydrologic cycle. PMID:20921364

  10. Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge.

    PubMed

    Syed, Tajdarul H; Famiglietti, James S; Chambers, Don P; Willis, Josh K; Hilburn, Kyle

    2010-10-19

    Freshwater discharge from the continents is a key component of Earth's water cycle that sustains human life and ecosystem health. Surprisingly, owing to a number of socioeconomic and political obstacles, a comprehensive global river discharge observing system does not yet exist. Here we use 13 years (1994-2006) of satellite precipitation, evaporation, and sea level data in an ocean mass balance to estimate freshwater discharge into the global ocean. Results indicate that global freshwater discharge averaged 36,055 km(3)/y for the study period while exhibiting significant interannual variability driven primarily by El Niño Southern Oscillation cycles. The method described here can ultimately be used to estimate long-term global discharge trends as the records of sea level rise and ocean temperature lengthen. For the relatively short 13-year period studied here, global discharge increased by 540 km(3)/y(2), which was largely attributed to an increase of global-ocean evaporation (768 km(3)/y(2)). Sustained growth of these flux rates into long-term trends would provide evidence for increasing intensity of the hydrologic cycle. PMID:20921364

  11. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon

    NASA Astrophysics Data System (ADS)

    Wang, X.; Heald, C. L.; Ridley, D. A.; Schwarz, J. P.; Spackman, J. R.; Perring, A. E.; Coe, H.; Liu, D.; Clarke, A. D.

    2014-10-01

    Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the absorption enhancement associated with BC coating and separately treat both the aging and physical properties of fossil-fuel and biomass-burning BC. In addition we develop a global simulation of brown carbon (BrC) from both secondary (aromatic) and primary (biomass burning and biofuel) sources. The global mean lifetime of BC in this simulation (4.4 days) is substantially lower compared to the AeroCom I model means (7.3 days), and as a result, this model captures both the mass concentrations measured in near-source airborne field campaigns (ARCTAS, EUCAARI) and surface sites within 30%, and in remote regions (HIPPO) within a factor of 2. We show that the new BC optical properties together with the inclusion of BrC reduces the model bias in absorption aerosol optical depth (AAOD) at multiple wavelengths by more than 50% at AERONET sites worldwide. However our improved model still underestimates AAOD by a factor of 1.4 to 2.8 regionally, with the largest underestimates in regions influenced by fire. Using the RRTMG model integrated with GEOS-Chem we estimate that the all-sky top-of-atmosphere DRF of BC is +0.13 Wm-2 (0.08 Wm-2 from anthropogenic sources and 0.05 Wm-2 from biomass burning). If we scale our model to match AERONET AAOD observations we estimate the DRF of BC is +0.21 Wm-2, with an additional +0.11 Wm-2 of warming from BrC. Uncertainties in size, optical properties, observations, and emissions suggest an overall uncertainty in BC DRF of -80%/+140%. Our estimates are at the lower end of the 0.2-1.0 Wm-2 range from previous studies, and substantially less than the +0.6 Wm-2 DRF estimated in the IPCC 5th Assessment Report. We suggest that the DRF of BC has previously been overestimated due to the overestimation of the BC lifetime (including the

  12. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon

    NASA Astrophysics Data System (ADS)

    Wang, X.; Heald, C. L.; Ridley, D. A.; Schwarz, J. P.; Spackman, J. R.; Perring, A. E.; Coe, H.; Liu, D.; Clarke, A. D.

    2014-06-01

    Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the absorption enhancement associated with BC coating and separately treat both the aging and physical properties of fossil fuel and biomass burning BC. In addition we develop a global simulation of Brown Carbon (BrC) from both secondary (aromatic) and primary (biomass burning and biofuel) sources. The global mean lifetime of BC in this simulation (4.4 days) is substantially lower compared to the AeroCom I model means (7.3 days), and as a result, this model captures both the mass concentrations measured in near-source airborne field campaigns (ARCTAS, EUCAARI) and surface sites within 30%, and in remote regions (HIPPO) within a factor of two. We show that the new BC optical properties together with the inclusion of BrC reduces the model bias in Absorption Aerosol Optical Depth (AAOD) at multiple wavelengths by more than 50% at AERONET sites worldwide. However our improved model still underestimates AAOD by a factor of 1.4 to 2.8 regionally, with largest underestimates in regions influenced by fire. Using the RRTMG model integrated with GEOS-Chem we estimate that the all-sky top-of-atmosphere DRF of BC is +0.13 W m-2 (0.08 W m-2 from anthropogenic sources and 0.05 W m-2 from biomass burning). If we scale our model to match AERONET AAOD observations we estimate the DRF of BC is +0.21 W m-2, with an additional +0.11 W m-2 of warming from BrC. Uncertainties in size, optical properties, observations, and emissions suggest an overall uncertainty in BC DRF of -80% / +140%. Our estimates are at the lower end of the 0.2-1.0 W m-2 range from previous studies, and substantially less than the +0.6 W m-2 DRF estimated in the IPCC 5th Assessment Report. We suggest that the DRF of BC has previously been overestimated due to the overestimation of the BC lifetime and the

  13. Global Warming Estimation from MSU

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, Robert, Jr.

    1999-01-01

    In this study, we have developed time series of global temperature from 1980-97 based on the Microwave Sounding Unit (MSU) Ch 2 (53.74 GHz) observations taken from polar-orbiting NOAA operational satellites. In order to create these time series, systematic errors (approx. 0.1 K) in the Ch 2 data arising from inter-satellite differences are removed objectively. On the other hand, smaller systematic errors (approx. 0.03 K) in the data due to orbital drift of each satellite cannot be removed objectively. Such errors are expected to remain in the time series and leave an uncertainty in the inferred global temperature trend. With the help of a statistical method, the error in the MSU inferred global temperature trend resulting from orbital drifts and residual inter-satellite differences of all satellites is estimated to be 0.06 K decade. Incorporating this error, our analysis shows that the global temperature increased at a rate of 0.13 +/- 0.06 K decade during 1980-97.

  14. Spacecraft telecommunications system mass estimates

    NASA Technical Reports Server (NTRS)

    Yuen, J. H.; Sakamoto, L. L.

    1988-01-01

    Mass is the most important limiting parameter for present-day planetary spacecraft design, In fact, the entire design can be characterized by mass. The more efficient the design of the spacecraft, the less mass will be required. The communications system is an essential and integral part of planetary spacecraft. A study is presented of the mass attributable to the communications system for spacecraft designs used in recent missions in an attempt to help guide future design considerations and research and development efforts. The basic approach is to examine the spacecraft by subsystem and allocate a portion of each subsystem to telecommunications. Conceptually, this is to divide the spacecraft into two parts, telecommunications and nontelecommunications. In this way, it is clear what the mass attributable to the communications system is. The percentage of mass is calculated using the actual masses of the spacecraft parts, except in the case of CRAF. In that case, estimated masses are used since the spacecraft was not yet built. The results show that the portion of the spacecraft attributable to telecommunications is substantial. The mass fraction for Voyager, Galileo, and CRAF (Mariner Mark 2) is 34, 19, and 18 percent, respectively. The large reduction of telecommunications mass from Voyager to Galileo is mainly due to the use of a deployable antenna instead of the solid antenna on Voyager.

  15. Global Acceleration of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Lara, Alejandro; Lepping, Ronald; Kaiser, Michael; Berdichevsky, Daniel; St. Cyr, O. Chris; Lazarus, Al

    1999-01-01

    Using the observed relation between speeds of coronal mass ejections (CMEs) near the Sun and in the solar wind, we estimate a global acceleration acting on the CMEs. Our study quantifies the qualitative results of Gosling [1997] and numerical simulations that CMEs at 1 AU with speeds closer to the solar wind. We found a linear relation between the global acceleration and the initial speed of the CMEs and the absolute value of the acceleration is similar to the slow solar wind acceleration. Our study naturally divides CMEs into fast and slow ones, the dividing line being the solar wind speed. Our results have important implications to space weather prediction models which need to incorporate this effect in estimating the CME arrival time at 1 AU. We show that the arrival times of CMEs at 1 AU are drastically different from the zero acceleration case.

  16. APPROACH FOR ESTIMATING GLOBAL LANDFILL METHANE EMISSIONS

    EPA Science Inventory

    The report is an overview of available country-specific data and modeling approaches for estimating global landfill methane. Current estimates of global landfill methane indicate that landfills account for between 4 and 15% of the global methane budget. The report describes an ap...

  17. Global Warming Estimation from MSU

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, Robert; Yoo, Jung-Moon

    1998-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz) from sequential, sun-synchronous, polar-orbiting NOAA satellites contain small systematic errors. Some of these errors are time-dependent and some are time-independent. Small errors in Ch 2 data of successive satellites arise from calibration differences. Also, successive NOAA satellites tend to have different Local Equatorial Crossing Times (LECT), which introduce differences in Ch 2 data due to the diurnal cycle. These two sources of systematic error are largely time independent. However, because of atmospheric drag, there can be a drift in the LECT of a given satellite, which introduces time-dependent systematic errors. One of these errors is due to the progressive chance in the diurnal cycle and the other is due to associated chances in instrument heating by the sun. In order to infer global temperature trend from the these MSU data, we have eliminated explicitly the time-independent systematic errors. Both of the time-dependent errors cannot be assessed from each satellite. For this reason, their cumulative effect on the global temperature trend is evaluated implicitly. Christy et al. (1998) (CSL). based on their method of analysis of the MSU Ch 2 data, infer a global temperature cooling trend (-0.046 K per decade) from 1979 to 1997, although their near nadir measurements yield near zero trend (0.003 K/decade). Utilising an independent method of analysis, we infer global temperature warmed by 0.12 +/- 0.06 C per decade from the observations of the MSU Ch 2 during the period 1980 to 1997.

  18. Surface term effects on mass estimators

    NASA Astrophysics Data System (ADS)

    Membrado, M.; Pacheco, A. F.

    2016-05-01

    Context. We propose a way of estimating the mass contained in the volume occupied by a sample of galaxies in a virialized system. Aims: We analyze the influence of surface effects and the contribution of the cosmological constant terms on our mass estimations of galaxy systems. Methods: We propose two equations that contain surface terms to estimate galaxy sample masses. When the surface terms are neglected, these equations provide the so-called virial and projected masses. Both equations lead to a single equation that allows sample masses to be estimated without the need for calculating surface terms. Sample masses for some nearest galaxy groups are estimated and compared with virialized masses determined from turn-around radii and results of a spherical infall model. Results: Surface effects have a considerable effect on the mass estimations of the studied galaxy groups. According to our results, they lead sample masses of some groups to being less than half the virial mass estimations and even less than 10% of projected mass estimations. However, the contributions of cosmological constant terms to mass estimations are smaller than 2% for the majority of the virialized groups studied. Our estimations are in agreement with virialized masses calculated from turn-around radii. Virialized masses for complexes were found to be: (8.9 ± 2.8) × 1011 M⊙ for the Milky Way - M 31; (12.5 ± 2.5) × 1011 M⊙ for M 81 - NGC 2403; (21.5 ± 7.7) × 1011 M⊙. for Cantaurs A - M 83; and (7.9 ± 2.6) × 1011 M⊙. for IC 324 - Maffei. Conclusions: The nearest galaxy groups located inside a sphere of 5 Mpc have been addressed to explore the performance of our mass estimator. We have seen that surface effects make mass estimations of galaxy groups rather smaller than both virial and projected masses. In mass calculations, cosmological constant terms can be neglected; nevertheless, the collapse of cold dark matter leading to virialized structures is strongly affected by the

  19. Mass Transport in Global Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1999-01-01

    Mass transports occurring in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, tides, hydrological water redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. With only a few exceptions on the Earth surface, the temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have the capability of monitoring certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. These techniques include the very-long-baseline interferometry, satellite laser ranging and Doppler tracking, and the Global Positioning System, all entail global observational networks. While considerable advances have been made in observing and understanding of the dynamics of Earth's rotation, only the lowest-degree gravitational variations have been observed and limited knowledge of geocenter motion obtained. New space missions, projects and initiatives promise to further improve the measurements and hence our knowledge about the global mass transports. The latter contributes to our understanding and modeling capability of the geophysical processes that produce and regulate the mass transports, as well as the solid Earth's response to such changes in constraining the modeling of Earth's mechanical properties.

  20. Global Response to Local Ionospheric Mass Ejection

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Fok, M.-C.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.

    2010-01-01

    We revisit a reported "Ionospheric Mass Ejection" using prior event observations to guide a global simulation of local ionospheric outflows, global magnetospheric circulation, and plasma sheet pressurization, and comparing our results with the observed global response. Our simulation framework is based on test particle motions in the Lyon-Fedder-Mobarry (LFM) global circulation model electromagnetic fields. The inner magnetosphere is simulated with the Comprehensive Ring Current Model (CRCM) of Fok and Wolf, driven by the transpolar potential developed by the LFM magnetosphere, and includes an embedded plasmaspheric simulation. Global circulation is stimulated using the observed solar wind conditions for the period 24-25 Sept 1998. This period begins with the arrival of a Coronal Mass Ejection, initially with northward, but later with southward interplanetary magnetic field. Test particles are launched from the ionosphere with fluxes specified by local empirical relationships of outflow to electrodynamic and particle precipitation imposed by the MIlD simulation. Particles are tracked until they are lost from the system downstream or into the atmosphere, using the full equations of motion. Results are compared with the observed ring current and a simulation of polar and auroral wind outflows driven globally by solar wind dynamic pressure. We find good quantitative agreement with the observed ring current, and reasonable qualitative agreement with earlier simulation results, suggesting that the solar wind driven global simulation generates realistic energy dissipation in the ionosphere and that the Strangeway relations provide a realistic local outflow description.

  1. Estimating Global Precipitation for Science and Application

    NASA Technical Reports Server (NTRS)

    Huffman, George J.

    2013-01-01

    Over the past two decades there has been vigorous development in the satellite assets and the algorithms necessary to estimate precipitation around the globe. In particular the highly successful joint NASAJAXA Tropical Rainfall Measuring Mission (TRMM) and the upcoming Global Precipitation Measurement (GPM) mission, also joint between NASA and JAXA, have driven these issues. At the same time, the long-running Global Precipitation Climatology Project (GPCP) continues to extend a stable, climate-oriented view of global precipitation. This talk will provide an overview of these projects and the wider international community of precipitation datasets, sketch plans for next-generation products, and provide some examples of the best use for the different products. One key lesson learned is that different data sets are needed to address the variety of issues that need precipitation data, including detailed 3-D views of hurricanes, flash flood forecasting, drought analysis, and global change.

  2. Volcanism, global catastrophe and mass mortality

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Burke, K.

    1988-01-01

    The effects of very large volcanic eruptions are well documented in many studies, mostly based on observations made on three historic eruptions, Laki 1783; Tambora 1815 and Krakatau 1883. Such eruptions have effects that are catastrophic locally and measurable globally, but it is not clear that even the largest volcanic eruptions have had global catastrophic effects, nor caused mass extinctions. Two different types of volcanic eruption were considered as likely to have the most serious widespread effects: large silicic explosive eruptions producing hundreds or thousands of cubic kilometers of pyroclastic materials, and effusive basaltic eruptions producing of approximately 100 cubic kilometers of lava. In both cases, the global effects are climatic, and attributable to production of stratospheric aerosols. Other possibilities need to be explored. Recent research on global change has emphasized the extreme sensitivity of the links between oceanic circulation, atmospheric circulation and climate. In particular, it was argued that the pattern of ocean current circulation (which strongly influences climate) is unstable; it may rapidly flip from one pattern to a different one, with global climatic consequences. If volcanism has been a factor in global environmental change and a cause of mass extinctions, it seems most likely that it has done so by providing a trigger to other processes, for example by driving oceanic circulation from one mode to another.

  3. Black Hole Mass Estimation: How Good is the Virial Estimate?

    NASA Astrophysics Data System (ADS)

    Yong, Suk Yee; Webster, Rachel L.; King, Anthea L.

    2016-03-01

    Black hole mass is a key factor in determining how a black hole interacts with its environment. However, the determination of black hole masses at high redshifts depends on secondary mass estimators, which are based on empirical relationships and broad approximations. A dynamical disk wind broad line region model (BLR) of active galactic nuclei is built in order to test the impact of different BLR geometries and inclination angles on the black hole mass estimation. Monte Carlo simulations of two disk wind models are constructed to recover the virial scale factor, f, at various inclination angles. The resulting f values strongly correlate with inclination angle, with large f values associated with small inclination angles (close to face-on) and small f values with large inclination angles (close to edge-on). The recovered f factors are consistent with previously determined f values, found from empirical relationships. Setting f as a constant may introduce a bias into virial black hole mass estimates for a large sample of active galactic nuclei. However, the extent of the bias depends on the line width characterisation (e.g. full width at half maximum or line dispersion). Masses estimated using f_{FWHM} tend to be biased towards larger masses, but this can generally be corrected by calibrating for the width or shape of the emission line.

  4. Orientation and quasar black hole mass estimation

    NASA Astrophysics Data System (ADS)

    Brotherton, Michael S.; Singh, Vikram; Runnoe, Jessie

    2015-12-01

    We have constructed a sample of 386 radio-loud quasars with z < 0.75 from the Sloan Digital Sky Survey in order to investigate orientation effects on black hole mass estimates. Orientation is estimated using radio core dominance measurements based on FIRST survey maps. Black hole masses are estimated from virial-based scaling relationships using Hβ, and compared to the stellar velocity dispersion (σ*), predicted using the full width at half maximum (FWHM) of [O III] λ5007, which tracks mass via the M-σ* relation. We find that the FWHM of Hβ correlates significantly with radio core dominance and biases black hole mass determinations that use it, but that this is not the case for σ* based on [O III] λ5007. The ratio of black hole masses predicted using orientation-biased and unbiased estimates, which can be determined for radio-quiet as well as radio-loud quasars, is significantly correlated with radio core dominance. Although there is significant scatter, this mass ratio calculated in this way may in fact serve as an orientation estimator. We additionally note the existence of a small population of radio core-dominated quasars with extremely broad Hβ emission lines that we hypothesize may represent recent black hole mergers.

  5. Estimating pre-industrial global temperature

    NASA Astrophysics Data System (ADS)

    Hawkins, Ed; Ortega, Pablo; Suckling, Emma; Schurer, Andrew; Hegerl, Gabi; Jones, Phil; Joshi, Manoj; Osborn, Tim; Mignot, Juliette; Thorne, Peter; van Oldenborgh, Geert Jan

    2016-04-01

    The United Nations Framework Convention on Climate Change (UNFCCC) process has recently agreed to try and limit global temperature rise to `well below 2°C above pre-industrial levels'. But what period is `pre-industrial'? Remarkably, perhaps, this is not defined within the UNFCCC or its many agreements and protocols. Neither was the term used in the IPCC's fifth assessment report (AR5) when discussing when particular temperature levels might be reached, due to the lack of a robust definition. Here, we discuss the important factors to consider when defining a period to call pre-industrial, based on estimates of historical radiative forcings and the availability of climate observations. There is no perfect period to choose, but we suggest that 1720-1800 is the optimal choice. We also attempt to estimate the change in global temperatures since this pre-industrial period using a range of approaches based on observations, radiative forcings, global climate model simulations and proxy evidence. We discuss how such an assessment might be improved in future and conclude that 2015 was likely the first year in which global temperatures were more than 1°C above pre-industrial levels.

  6. Global estimates of fresh submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Luijendijk, Elco; Gleeson, Tom; Moosdorf, Nils

    2016-04-01

    Fresh submarine groundwater discharge, the flow of fresh groundwater to oceans, may be a significant contributor to the water and chemical budgets of the world's oceans. We present new estimates of the flux of fresh groundwater to the world's oceans. We couple density-dependent numerical simulations of generic models of coastal basins with geospatial databases of hydrogeological parameters and topography to resolve the rate of terrestrially-derived submarine groundwater discharge globally. We compare the model results to a new global compilation of submarine groundwater discharge observations. The results show that terrestrially-derived SGD is highly sensitive to permeability. In most watersheds only a small fraction of groundwater recharge contributes to submarine groundwater discharge, with most recharge instead contributing to terrestrial discharge in the form of baseflow or evapotranspiration. Fresh submarine groundwater discharge is only significant in watersheds that contain highly permeable sediments, such as coarse-grained siliciclastic sediments, karstic carbonates or volcanic deposits. Our estimates of global submarine groundwater discharge are much lower than most previous estimates. However, many tropical and volcanic islands are hotspots of submarine groundwater discharge and solute fluxes towards the oceans. The comparison of model results and data highlights the spatial variability of SGD and the difficulty of scaling up observations.

  7. Estimates of doses from global fallout.

    PubMed

    Bouville, André; Simon, Steven L; Miller, Charles W; Beck, Harold L; Anspaugh, Lynn R; Bennett, Burton G

    2002-05-01

    This paper summarizes information about external and internal doses resulting from global fallout and presents preliminary estimates of doses resulting from intermediate fallout in the contiguous United States. Most of the data on global fallout were extracted from the reports of the United Nations Scientific Committee on the Effects of Atomic Radiation, in which the radiation exposures from fallout have been extensively reviewed at regular intervals. United Nations Scientific Committee on the Effects of Atomic Radiation estimated the average effective doses received by the world's population before 2000 to be about 0.4 mSv from external irradiation and 0.6 mSv from internal irradiation, the main radionuclide contributing to the effective dose being 137Cs. Effective doses received beyond 2000 result mainly from the environmentally mobile, long-lived 14C and amount to about 2.5 mSv summed over present and future generations. Specific information about the doses from fallout received by the United States population is based on the preliminary results of a study requested by the U.S. Congress and conducted jointly by the Centers for Disease Control and Prevention and the National Cancer Institute. Separate calculations were made for the tests conducted at the Nevada Test Site and for the high-yield tests conducted mainly by the United States and the former Soviet Union at sites far away from the contiguous United States (global tests). The estimated average doses from external irradiation received by the United States population were about 0.5 mGy for Nevada Test Site fallout and about 0.7 mGy for global fallout. These values vary little from one organ or tissue of the body to another. In contrast, the average doses from internal irradiation vary markedly from one organ or tissue to another; estimated average thyroid doses to children born in 1951 were about 30 mGy from Nevada Test Site fallout and about 2 mGy from global fallout. PMID:12003019

  8. Global Civil Aviation Black Carbon Particle Mass and Number Emissions

    NASA Astrophysics Data System (ADS)

    Stettler, M. E. J.

    2015-12-01

    Black carbon (BC) is a product of incomplete combustion emitted by aircraft engines. In the atmosphere, BC particles strongly absorb incoming solar radiation and influence cloud formation processes leading to highly uncertain, but likely net positive warming of the earth's atmosphere. At cruise altitude, BC particle number emissions can influence the concentration of ice nuclei that can lead to contrail formation, with significant and highly uncertainty climate impacts. BC particles emitted by aircraft engines also degrade air quality in the vicinity of airports and globally. A significant contribution to the uncertainty in environmental impacts of aviation BC emissions is the uncertainty in emissions inventories. Previous work has shown that global aviation BC mass emissions are likely to have been underestimated by a factor of three. In this study, we present an updated global BC particle number inventory and evaluate parameters that contribute to uncertainty using global sensitivity analysis techniques. The method of calculating particle number from mass utilises a description of the mobility of fractal aggregates and uses the geometric mean diameter, geometric standard deviation, mass-mobility exponent, primary particle diameter and material density to relate the particle number concentration to the total mass concentration. Model results show good agreement with existing measurements of aircraft BC emissions at ground level and at cruise altitude. It is hoped that the results of this study can be applied to estimate direct and indirect climate impacts of aviation BC emissions in future studies.

  9. Modern Estimates of Global Water Cycle Fluxes

    NASA Astrophysics Data System (ADS)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T. S.; Olson, W. S.

    2014-12-01

    The goal of the first phase of the NASA Energy and Water Cycle Study (NEWS) Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. Here we describe results of the water cycle assessment, including mean annual and monthly fluxes over continents and ocean basins during the first decade of the millennium. To the extent possible, the water flux estimates are based on (1) satellite measurements and (2) data-integrating models. A careful accounting of uncertainty in each flux was applied within a routine that enforced multiple water and energy budget constraints simultaneously in a variational framework, in order to produce objectively-determined, optimized estimates. Simultaneous closure of the water and energy budgets caused the ocean evaporation and precipitation terms to increase by about 10% and 5% relative to the original estimates, mainly because the energy budget required turbulent heat fluxes to be substantially larger in order to balance net radiation. In the majority of cases, the observed annual, surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are a non-issue. Fluxes are poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian Islands, leading to reliance on atmospheric analysis estimates. Other details of the study and future directions will be discussed.

  10. CORONAL MASS EJECTION MASS, ENERGY, AND FORCE ESTIMATES USING STEREO

    SciTech Connect

    Carley, Eoin P.; Gallagher, Peter T.; McAteer, R. T. James

    2012-06-10

    Understanding coronal mass ejection (CME) energetics and dynamics has been a long-standing problem, and although previous observational estimates have been made, such studies have been hindered by large uncertainties in CME mass. Here, the two vantage points of the Solar Terrestrial Relations Observatory (STEREO) COR1 and COR2 coronagraphs were used to accurately estimate the mass of the 2008 December 12 CME. Acceleration estimates derived from the position of the CME front in three dimensions were combined with the mass estimates to calculate the magnitude of the kinetic energy and driving force at different stages of the CME evolution. The CME asymptotically approaches a mass of 3.4 {+-} 1.0 Multiplication-Sign 10{sup 15} g beyond {approx}10 R{sub Sun }. The kinetic energy shows an initial rise toward 6.3 {+-} 3.7 Multiplication-Sign 10{sup 29} erg at {approx}3 R{sub Sun }, beyond which it rises steadily to 4.2 {+-} 2.5 Multiplication-Sign 10{sup 30} erg at {approx}18 R{sub Sun }. The dynamics are described by an early phase of strong acceleration, dominated by a force of peak magnitude of 3.4 {+-} 2.2 Multiplication-Sign 10{sup 14} N at {approx}3 R{sub Sun }, after which a force of 3.8 {+-} 5.4 Multiplication-Sign 10{sup 13} N takes effect between {approx}7 and 18 R{sub Sun }. These results are consistent with magnetic (Lorentz) forces acting at heliocentric distances of {approx}<7 R{sub Sun }, while solar wind drag forces dominate at larger distances ({approx}>7 R{sub Sun }).

  11. Atmospheric methyl bromide: Trends and global mass balance

    SciTech Connect

    Khalil, M.A.K.; Rasmussen, R.A.; Gunawardena, R. )

    1993-02-20

    Atmospheric methyl bromide is of considerable environmental importance as the largest reservoir of gaseous bromine in the atmosphere. Bromine gases can catalytically destroy stratospheric ozone. Since agricultural activities, automobiles, biomass burning, and other human activities produce CH[sub 3]Br, it is of interest to know its global mass balance and particularly the specific sources and sinks. In this paper the authors provide a decadal time series of global CH[sub 3]Br concentrations in the Earth's atmosphere. The data show that average concentrations are about 10 pptv and during the last 4 years may be increasing at 0.3 [plus minus] 0.1 pptv/yr (3%/yr [plus minus] 1%/yr). They estimate that the atmospheric lifetime of CH[sub 3]Br that is due to reaction with OH, is about 2 years, resulting in a calculated global emission rate of about 100 Gy/yr. Ocean supersaturations of 140-180% are observed, and atmospheric concentrations over the open oceans are higher than at comparably located coastal sites. The ocean source is estimated to be about 35 Gg/yr. The remaining emissions must come from other natural sources and anthropogenic activities. The results are based on some 2,200 samples obtained over more than a decade. Mass balance calculations explain most aspects of the present data but other implications are not easily reconciled, leaving open the possibility of undiscovered sources and sinks. 20 refs., 5 figs., 4 tabs.

  12. Climatology of globally averaged thermospheric mass density

    NASA Astrophysics Data System (ADS)

    Emmert, J. T.; Picone, J. M.

    2010-09-01

    We present a climatological analysis of daily globally averaged density data, derived from orbit data and covering the years 1967-2007, along with an empirical Global Average Mass Density Model (GAMDM) that encapsulates the 1986-2007 data. The model represents density as a function of the F10.7 solar radio flux index, the day of year, and the Kp geomagnetic activity index. We discuss in detail the dependence of the data on each of the input variables, and demonstrate that all of the terms in the model represent consistent variations in both the 1986-2007 data (on which the model is based) and the independent 1967-1985 data. We also analyze the uncertainty in the results, and quantify how the variance in the data is apportioned among the model terms. We investigate the annual and semiannual variations of the data and quantify the amplitude, height dependence, solar cycle dependence, and interannual variability of these oscillatory modes. The auxiliary material includes Fortran 90 code for evaluating GAMDM.

  13. A reconciled estimate of ice-sheet mass balance.

    PubMed

    Shepherd, Andrew; Ivins, Erik R; A, Geruo; Barletta, Valentina R; Bentley, Mike J; Bettadpur, Srinivas; Briggs, Kate H; Bromwich, David H; Forsberg, René; Galin, Natalia; Horwath, Martin; Jacobs, Stan; Joughin, Ian; King, Matt A; Lenaerts, Jan T M; Li, Jilu; Ligtenberg, Stefan R M; Luckman, Adrian; Luthcke, Scott B; McMillan, Malcolm; Meister, Rakia; Milne, Glenn; Mouginot, Jeremie; Muir, Alan; Nicolas, Julien P; Paden, John; Payne, Antony J; Pritchard, Hamish; Rignot, Eric; Rott, Helmut; Sørensen, Louise Sandberg; Scambos, Ted A; Scheuchl, Bernd; Schrama, Ernst J O; Smith, Ben; Sundal, Aud V; van Angelen, Jan H; van de Berg, Willem J; van den Broeke, Michiel R; Vaughan, David G; Velicogna, Isabella; Wahr, John; Whitehouse, Pippa L; Wingham, Duncan J; Yi, Donghui; Young, Duncan; Zwally, H Jay

    2012-11-30

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods--especially in Greenland and West Antarctica--and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 ± 49, +14 ± 43, -65 ± 26, and -20 ± 14 gigatonnes year(-1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year(-1) to the rate of global sea-level rise. PMID:23197528

  14. A Reconciled Estimate of Ice-Sheet Mass Balance

    NASA Technical Reports Server (NTRS)

    Shepherd, Andrew; Ivins, Erik R.; Geruo, A.; Barletta, Valentia R.; Bentley, Mike J.; Bettadpur, Srinivas; Briggs, Kate H.; Bromwich, David H.; Forsberg, Rene; Galin, Natalia; Horwath, Martin; Jacobs, Stan; Joughin, Ian; King, Matt A.; Lenaerts, Jan T. M.; Li, Jilu; Ligtenberg, Stefan R. M.; Luckman, Adrian; Luthcke, Scott B.; McMillan, Malcolm; Meister, Rakia; Milne, Glenn; Mouginot, Jeremie; Muir, Alan; Nicolas,Julien P.; Paden, John; Payne, Antony J.; Pritchard, Hamish; Rignot, Eric; Rott, Helmut; Sorensen, Louise Sandberg; Scambos, Ted A.; Yi, Dohngui; Zwally, H. Jay

    2012-01-01

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods-especially in Greenland and West Antarctica-and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 plus or minus 49, +14 plus or minus 43, -65 plus or minus 26, and -20 plus or minus 14 gigatonnes year(sup -1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 plus or minus 0.20 millimeter year(sup -1) to the rate of global sea-level rise.

  15. Lean body mass estimation by creatinine kinetics.

    PubMed

    Keshaviah, P R; Nolph, K D; Moore, H L; Prowant, B; Emerson, P F; Meyer, M; Twardowski, Z J; Khanna, R; Ponferrada, L; Collins, A

    1994-01-01

    A new technique for estimating lean body mass (LBM) from creatinine kinetics has been developed. It is based on the principle that creatinine production is proportional to LBM and that, in the steady state, creatinine production is equal to the sum of creatinine excretion (urinary and dialytic) and metabolic degradation. This technique was applied to 17 normal subjects, 26 stable, chronic hemodialysis (HD) patients, and 71 stable, chronic peritoneal dialysis (PD) patients. In the HD group, LBM was also determined by bioimpedance in 11 patients and calculated from total body water, measured as the volume of urea distribution of a sterile urea infusion, in 15 patients. In normal subjects and in the PD group, LBM was assessed by creatinine kinetics as well as by bioimpedance, near infrared, and anthropometric techniques. In the HD patients, LBM by creatinine kinetics correlated significantly with LBM from total body water and the bioimpedance technique. There was no statistical difference between the total body water and creatinine kinetics techniques, but the bioimpedance values were systematically higher than those obtained by the kinetic technique. In the PD group and in normal volunteers, LBM values by creatinine kinetics correlated significantly with the other methods but were lower. Forty-seven percent of the HD patients and 66% of the PD patients had significantly lower LBM by creatinine kinetics than expected for their sex and age. Estimation of LBM by creatinine kinetics is proposed as a simple and convenient technique for the routine nutritional assessment of dialysis patients. PMID:8161729

  16. A Global Assessment of Accelerations in Mass Transport of Surface Geophysical Fluid

    NASA Astrophysics Data System (ADS)

    Wu, X.; Heflin, M. B.

    2015-12-01

    Mass transport in the Earth's surface geophysical fluid layer has complex spatiotemporal patterns. The GRACE gravity mission provides an unprecedented global capability to monitor this important process with high accuracy and resolution. Accurate assessments of global mass transport patterns and budget also depend critically on changes in degree-1 coefficients (geocenter motion) and in Earth's dynamic oblateness coefficient J2. We combine GRACE measurements, time series of GNSS data, JPL's ECCO ocean bottom pressure model, and high-resolution loose a priori models of mass variation regimes to derive complete spherical harmonic spectra of detrended mass variations up to degree and order 180. Mass accelerations are estimated along with linear, annual, semiannual, and the 161-day tidal aliasing components from coefficient time series. The appropriateness of a priori information and estimate uncertainties are further evaluated by variance component estimation and residual statistics of fitting the time series. During the GRACE data period of 2002.2-2015.0, accelerations in mass transport are geographically uneven with significant positive or negative accelerations in various parts of the world. While Greenland and West Antarctica show strong accelerated mass losses, Alaska and the Arctic Ocean have significant positive accelerations with reversals of earlier mass loss trends. No evidence of non-Arctic global mean sea level acceleration due to mass has been found. Depending on region, some estimated accelerations are also not steady over time due to large irregular and interannual variations.

  17. Global Warming Estimation From Microwave Sounding Unit

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Dalu, G.

    1998-01-01

    Microwave Sounding Unit (MSU) Ch 2 data sets, collected from sequential, polar-orbiting, Sun-synchronous National Oceanic and Atmospheric Administration operational satellites, contain systematic calibration errors that are coupled to the diurnal temperature cycle over the globe. Since these coupled errors in MSU data differ between successive satellites, it is necessary to make compensatory adjustments to these multisatellite data sets in order to determine long-term global temperature change. With the aid of the observations during overlapping periods of successive satellites, we can determine such adjustments and use them to account for the coupled errors in the long-term time series of MSU Ch 2 global temperature. In turn, these adjusted MSU Ch 2 data sets can be used to yield global temperature trend. In a pioneering study, Spencer and Christy (SC) (1990) developed a procedure to derive the global temperature trend from MSU Ch 2 data. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedure, the magnitude of the coupled errors is not determined explicitly. Furthermore, based on some assumptions, these coupled errors are eliminated in three separate steps. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedures. Based on our analysis, we find there is a global warming of 0.23+/-0.12 K between 1980 and 1991. Also, in this study, the time series of global temperature anomalies constructed by removing the global mean annual temperature cycle compares favorably with a similar

  18. RSMASS: A simple model for estimating reactor/shield masses

    NASA Technical Reports Server (NTRS)

    Marshall, Albert C.

    1987-01-01

    A comparison was completed of the reactor/shield masses obtained from detailed calculations by the proposers of space power reactors. This comparison included a variety of liquid metal cooled, gas cooled and thermionic reactors. An initial goal for agreement between RSMASS (reactor/shield mass model) calculated masses and the masses obtained from detailed calculations was chosen to be a factor of 2. The preliminary comparison demonstrated that the reactor/shield masses estimated by RSMASS agree with the masses obtained from detailed calculations within 50 percent. It can be concluded that RSMASS can provide good estimates of reactor/shield masses for a broad variety of reactor concepts proposed for MMW space power applications. RSMASS is being used to compare the masses of various reactor types and is providing some insights into the mass advantages and disadvantages for the various concepts as a function of operating conditions and reactor or shield parameters. Some mass estimates obtained with RSMASS are presented.

  19. The effects of missing data on global ozone estimates

    NASA Technical Reports Server (NTRS)

    Drewry, J. W.; Robbins, J. L.

    1981-01-01

    The effects of missing data and model truncation on estimates of the global mean, zonal distribution, and global distribution of ozone are considered. It is shown that missing data can introduce biased estimates with errors that are not accounted for in the accuracy calculations of empirical modeling techniques. Data-fill techniques are introduced and used for evaluating error bounds and constraining the estimate in areas of sparse and missing data. It is found that the accuracy of the global mean estimate is more dependent on data distribution than model size. Zonal features can be accurately described by 7th order models over regions of adequate data distribution. Data variance accounted for by higher order models appears to represent climatological features of columnar ozone rather than pure error. Data-fill techniques can prevent artificial feature generation in regions of sparse or missing data without degrading high order estimates over dense data regions.

  20. Integrated Estimates of Global Terrestrial Carbon Sequestration

    SciTech Connect

    Thomson, Allison M.; Izaurralde, R Cesar; Smith, Steven J.; Clarke, Leon E.

    2008-02-01

    Assessing the contribution of terrestrial carbon sequestration to international climate change mitigation requires integration across scientific and disciplinary boundaries. As part of a scenario analysis for the US Climate Change Technology Program, measurements and geographic data were used to develop terrestrial carbon sequestration estimates for agricultural soil carbon, reforestation and pasture management. These estimates were then applied in the MiniCAM integrated assessment model to evaluate mitigation strategies within policy and technology scenarios aimed at achieving atmospheric CO2 stabilization by 2100. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. Terrestrial sequestration reach a peak combined rate of 0.5 to 0.7 Gt carbon yr-1 in mid-century with contributions from agricultural soil (0.21 Gt carbon yr-1), reforestation (0.31 Gt carbon yr-1) and pasture (0.15 Gt carbon yr-1). Sequestration rates vary over time period and with different technology and policy scenarios. The combined contribution of terrestrial sequestration over the next century ranges from 31 to 41 GtC. The contribution of terrestrial sequestration to mitigation is highest early in the century, reaching up to 20% of total carbon mitigation. This analysis provides insight into the behavior of terrestrial carbon mitigation options in the presence and absence of climate change mitigation policies.

  1. Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission

    NASA Technical Reports Server (NTRS)

    Boy, J.-P.; Rowlands, D. D.; Sabaka, T. J.; Luthcke, S. B.; Lemoine, F. G.

    2011-01-01

    Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project.

  2. ESTIMATE OF GLOBAL METHANE EMISSIONS FROM LANDFILLS AND OPEN DUMPS

    EPA Science Inventory

    The report presents an empirical model to estimate global methane (CH4) emissions from landfills and open dumps based on EPA data from landfill gas (LFG) recovery projects. The EPA CH4 estimates for 1990 range between 19 and 40 teragrams (10 to the 12th power) per year (Tg/yr), w...

  3. Mass and volume contributions to twentieth-century global sea level rise.

    PubMed

    Miller, Laury; Douglas, Bruce C

    2004-03-25

    The rate of twentieth-century global sea level rise and its causes are the subjects of intense controversy. Most direct estimates from tide gauges give 1.5-2.0 mm yr(-1), whereas indirect estimates based on the two processes responsible for global sea level rise, namely mass and volume change, fall far below this range. Estimates of the volume increase due to ocean warming give a rate of about 0.5 mm yr(-1) (ref. 8) and the rate due to mass increase, primarily from the melting of continental ice, is thought to be even smaller. Therefore, either the tide gauge estimates are too high, as has been suggested recently, or one (or both) of the mass and volume estimates is too low. Here we present an analysis of sea level measurements at tide gauges combined with observations of temperature and salinity in the Pacific and Atlantic oceans close to the gauges. We find that gauge-determined rates of sea level rise, which encompass both mass and volume changes, are two to three times higher than the rates due to volume change derived from temperature and salinity data. Our analysis supports earlier studies that put the twentieth-century rate in the 1.5-2.0 mm yr(-1) range, but more importantly it suggests that mass increase plays a larger role than ocean warming in twentieth-century global sea level rise. PMID:15042085

  4. Estimates of global research productivity in virology.

    PubMed

    Falagas, Matthew E; Karavasiou, Antonia I; Bliziotis, Ioannis A

    2005-06-01

    The quantity and quality of published research in the field of Virology by different world regions was estimated in this study. Using the PubMed database, articles from journals included in the "Virology" category of the "Journal Citation Reports" database of the Institute for Scientific Information for the period 1995-2003 were retrieved. The world was divided into nine regions based on geographic, economic, and scientific criteria. Data on the country of origin of the research was available for 33,425 out of 33,712 articles (99.2% of all articles from the included journals). USA exceeds all other world regions in research production for the period studied (42% of total articles), with Western Europe ranking second (35.7%). The mean impact factor in articles published in Virology journals was highest for the USA (4.60), while it was 3.90 for Western Europe and 3.22 for the rest of the world (seven regions combined). USA and Canada ranked first in research productivity when both gross national income per capita (GNIPC) and population were taken into account. The results of this analysis show a distressing fact; the absolute and relative production of research in the field of Virology by the developing regions is very low, although viral diseases cause considerable morbidity and mortality in these areas. It is evident from this study that developing regions need more help from the developed regions to enhance research infrastructure. PMID:15834885

  5. Recursive least square vehicle mass estimation based on acceleration partition

    NASA Astrophysics Data System (ADS)

    Feng, Yuan; Xiong, Lu; Yu, Zhuoping; Qu, Tong

    2014-05-01

    Vehicle mass is an important parameter in vehicle dynamics control systems. Although many algorithms have been developed for the estimation of mass, none of them have yet taken into account the different types of resistance that occur under different conditions. This paper proposes a vehicle mass estimator. The estimator incorporates road gradient information in the longitudinal accelerometer signal, and it removes the road grade from the longitudinal dynamics of the vehicle. Then, two different recursive least square method (RLSM) schemes are proposed to estimate the driving resistance and the mass independently based on the acceleration partition under different conditions. A 6 DOF dynamic model of four In-wheel Motor Vehicle is built to assist in the design of the algorithm and in the setting of the parameters. The acceleration limits are determined to not only reduce the estimated error but also ensure enough data for the resistance estimation and mass estimation in some critical situations. The modification of the algorithm is also discussed to improve the result of the mass estimation. Experiment data on a sphalt road, plastic runway, and gravel road and on sloping roads are used to validate the estimation algorithm. The adaptability of the algorithm is improved by using data collected under several critical operating conditions. The experimental results show the error of the estimation process to be within 2.6%, which indicates that the algorithm can estimate mass with great accuracy regardless of the road surface and gradient changes and that it may be valuable in engineering applications. This paper proposes a recursive least square vehicle mass estimation method based on acceleration partition.

  6. Axion mass estimates from resonant Josephson junctions

    NASA Astrophysics Data System (ADS)

    Beck, Christian

    2015-03-01

    Recently it has been proposed that dark matter axions from the galactic halo can produce a small Shapiro step-like signal in Josephson junctions whose Josephson frequency resonates with the axion mass (Beck, 2013). Here we show that the axion field equations in a voltage-driven Josephson junction environment allow for a nontrivial solution where the axion-induced electrical current manifests itself as an oscillating supercurrent. The linear change of phase associated with this nontrivial solution implies the formal existence of a large magnetic field in a tiny surface area of the weak link region of the junction which makes incoming axions decay into microwave photons. We derive a condition for the design of Josephson junction experiments so that they can act as optimum axion detectors. Four independent recent experiments are discussed in this context. The observed Shapiro step anomalies of all four experiments consistently point towards an axion mass of (110±2) μeV. This mass value is compatible with the recent BICEP2 results and implies that Peccei-Quinn symmetry breaking was taking place after inflation.

  7. A global assessment of accelerations in surface mass transport

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Heflin, Michael B.

    2015-08-01

    Water mass transport in the Earth's dynamic surface layer of atmosphere, cryosphere, and hydrosphere driven by various global change processes has complex spatiotemporal patterns. Here we determine global patterns and regional mean values of accelerations in surface mass variations during the Gravity Recovery and Climate Experiment (GRACE) mission's data span from 2002.2 to 2015.0. GRACE gravity data are supplemented by surface deformation from 607 Global Navigation Satellite System stations, an ocean bottom pressure model, satellite laser ranging, and loose a priori knowledge on mass variation regimes incorporating high-resolution geographic boundaries. While Greenland and West Antarctica have strong negative accelerations, Alaska and the Arctic Ocean show significant positive accelerations. In addition, the accelerations are not constant in time with some regions showing considerable variability due to irregular interannual changes. No evidence of significant nonsteric mean sea level acceleration has been found, but the uncertainty is quite large.

  8. Globalization, commodification and mass transplant of nurses: Part 1.

    PubMed

    Cutcliffe, John R; Yarbrough, Susan

    The world is currently facing a shortage of nurses and this is predicted to worsen as a result of the looming en masse retirement of the so-called 'baby-boom' generation. Moreover, this problem is foreseen to be far more pronounced in Western countries where the post-Second World War 'baby-boom' demographic was (and is) most prominent. Data collected by various international organizations illustrates a corresponding recent increase in nurse migration and that such mass transplantation inevitably involves the unidirectional movement of nurses from developing countries to developed Western countries. As a result, this two-part article examines this mass transplantation within the context of globalization. Part one provides compelling international data regarding the global shortage of nurses and the corresponding increase in nurse migration from 'underdeveloped' to 'Western' countries. It then situates the phenomenon in the context of global health and highlights the extent of the debate so far, such as it is. PMID:17851350

  9. Precise determination of earth's center of mass using measurements from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Vigue, Yvonne; Lichten, Stephen M.; Blewitt, Geoffrey; Heflin, Michael B.; Malla, Rajendra P.

    1992-01-01

    Global Positioning System (GPS) data from a worldwide geodetic experiment were collected during a 3-week period early in 1991. Geocentric station coordinates were estimated using the GPS data, thus defining a dynamically determined reference frame origin which should coincide with the earth center of mass, or geocenter. The 3-week GPS average geocenter estimates agree to 7-13 cm with geocenter estimates determined from satellite laser ranging, a well-established technique. The RMS of daily GPS geocenter estimates were 4 cm for x and y, and 30 cm for z.

  10. RSMASS: A simple model for estimating reactor and shield masses

    SciTech Connect

    Marshall, A.C.; Aragon, J.; Gallup, D.

    1987-01-01

    A simple mathematical model (RSMASS) has been developed to provide rapid estimates of reactor and shield masses for space-based reactor power systems. Approximations are used rather than correlations or detailed calculations to estimate the reactor fuel mass and the masses of the moderator, structure, reflector, pressure vessel, miscellaneous components, and the reactor shield. The fuel mass is determined either by neutronics limits, thermal/hydraulic limits, or fuel damage limits, whichever yields the largest mass. RSMASS requires the reactor power and energy, 24 reactor parameters, and 20 shield parameters to be specified. This parametric approach should be applicable to a very broad range of reactor types. Reactor and shield masses calculated by RSMASS were found to be in good agreement with the masses obtained from detailed calculations.

  11. Estimation of lipids and lean mass of migrating sandpipers

    USGS Publications Warehouse

    Skagen, Susan K.; Knopf, Fritz L.; Cade, Brian S.

    1993-01-01

    Estimation of lean mass and lipid levels in birds involves the derivation of predictive equations that relate morphological measurements and, more recently, total body electrical conductivity (TOBEC) indices to known lean and lipid masses. Using cross-validation techniques, we evaluated the ability of several published and new predictive equations to estimate lean and lipid mass of Semipalmated Sandpipers (Calidris pusilla) and White-rumped Sandpipers (C. fuscicollis). We also tested ideas of Morton et al. (1991), who stated that current statistical approaches to TOBEC methodology misrepresent precision in estimating body fat. Three published interspecific equations using TOBEC indices predicted lean and lipid masses of our sample of birds with average errors of 8-28% and 53-155%, respectively. A new two-species equation relating lean mass and TOBEC indices revealed average errors of 4.6% and 23.2% in predicting lean and lipid mass, respectively. New intraspecific equations that estimate lipid mass directly from body mass, morphological measurements, and TOBEC indices yielded about a 13% error in lipid estimates. Body mass and morphological measurements explained a substantial portion of the variance (about 90%) in fat mass of both species. Addition of TOBEC indices improved the predictive model more for the smaller than for the larger sandpiper. TOBEC indices explained an additional 7.8% and 2.6% of the variance in fat mass and reduced the minimum breadth of prediction intervals by 0.95 g (32%) and 0.39 g (13%) for Semipalmated and White-rumped Sandpipers, respectively. The breadth of prediction intervals for models used to predict fat levels of individual birds must be considered when interpreting the resultant lipid estimates.

  12. Inclination Dependence of Estimated Galaxy Masses and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Hernandez, Betsy; Maller, Ariyeh; McKernan, Barry; Ford, Saavik

    2016-01-01

    We examine the inclination dependence of inferred star formation rates and galaxy mass estimates in the Sloan Digital Sky Survey by combining the disk/bulge de-convolved catalog of Simard et al 2011 with stellar mass estimates catalog of Mendel et al 2014 and star formation rates measured from spectra by Brinchmann et al 2004. We know that optical star formation indicators are reddened by dust, but calculated star formation rates and stellar mass estimates should account for this. However, we find that face-on galaxies have a higher calculated average star formation rates than edge-on galaxies. We also find edge-on galaxies have ,on average, slightly smaller but similar estimated masses to face-on galaxies, suggesting that there are issues with the applied dust corrections for both models.

  13. Estimating the true global burden of mental illness.

    PubMed

    Vigo, Daniel; Thornicroft, Graham; Atun, Rifat

    2016-02-01

    We argue that the global burden of mental illness is underestimated and examine the reasons for under-estimation to identify five main causes: overlap between psychiatric and neurological disorders; the grouping of suicide and self-harm as a separate category; conflation of all chronic pain syndromes with musculoskeletal disorders; exclusion of personality disorders from disease burden calculations; and inadequate consideration of the contribution of severe mental illness to mortality from associated causes. Using published data, we estimate the disease burden for mental illness to show that the global burden of mental illness accounts for 32·4% of years lived with disability (YLDs) and 13·0% of disability-adjusted life-years (DALYs), instead of the earlier estimates suggesting 21·2% of YLDs and 7·1% of DALYs. Currently used approaches underestimate the burden of mental illness by more than a third. Our estimates place mental illness a distant first in global burden of disease in terms of YLDs, and level with cardiovascular and circulatory diseases in terms of DALYs. The unacceptable apathy of governments and funders of global health must be overcome to mitigate the human, social, and economic costs of mental illness. PMID:26851330

  14. Global estimate of net annual carbon flow to phenylpropanoid metabolism

    SciTech Connect

    Walton, A.B.; Norman, E.G.; Turpin, D.H. )

    1993-05-01

    The steady increase in the concentration of CO[sub 2] in the atmosphere is the focus of renewed interest in the global carbon cycle. Current research is centered upon modeling the effects of the increasing CO[sub 2] concentrations, and thus global warning, on global plant homeostasis. It has been estimated that the annual net primary production (NPP) values for terrestrial and oceanic biomes are 59.9 and 35 Pg C-yr[sup [minus]1], respectively (Melillo et al., 1990). Based on these NPP values, we have estimated the annual C flow to phenlpropanoid metabolism. In our calculation, lignin was used as a surrogate for phenylpropanoid compounds, as lignin is the second most abundant plant polymer. This approach means that our estimate defines the lower limit of C flow to phenylpropanoid metabolism. Each biome was considered separately to determine the percent of the NPP which was directed to the biosynthesis of leaves, stems/branches, and roots. From published values of the lignin content of these organs, the total amount of C directed to the biosynthesis of lignin in each biome was determined. This was used to obtain a global value. Implications of these estimates will be discussed with reference to plant carbon and nitrogen metabolism.

  15. Global Building Inventory for Earthquake Loss Estimation and Risk Management

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, David; Porter, Keith

    2010-01-01

    We develop a global database of building inventories using taxonomy of global building types for use in near-real-time post-earthquake loss estimation and pre-earthquake risk analysis, for the U.S. Geological Survey’s Prompt Assessment of Global Earthquakes for Response (PAGER) program. The database is available for public use, subject to peer review, scrutiny, and open enhancement. On a country-by-country level, it contains estimates of the distribution of building types categorized by material, lateral force resisting system, and occupancy type (residential or nonresidential, urban or rural). The database draws on and harmonizes numerous sources: (1) UN statistics, (2) UN Habitat’s demographic and health survey (DHS) database, (3) national housing censuses, (4) the World Housing Encyclopedia and (5) other literature.

  16. Challenges and Approaches for Data Quality in Global Precipitation Estimation

    NASA Astrophysics Data System (ADS)

    Huffman, G. J.

    2011-12-01

    It is a substantial challenge to estimate the global distribution of precipitation at the finest scales because the retrieval problem is highly underdetermined, given the available satellite and surface data and the approximations that are needed to compute solutions. Sampling is improved by combining precipitation estimates from as many precipitation-relevant satellites as possible, but this step introduces the necessity of coping with differing retrieval capabilities from the various satellites. The usual response is to inter-calibrate the satellite estimates, usually choosing one satellite as a standard and performing histogram matching with coincident data for all the other satellites. Such matching requires numerous design decisions for practical use. As well, it has been shown that monthly accumulations of surface precipitation gauge data can be used to reduce bias and improve patterns of occurrence for monthly accumulations of satellite data, and short-interval satellite estimates can be improved with a simple scaling such that they sum to the monthly satellite-gauge combination. However, the quality of the short-interval estimates is still dominated by the random errors. Spatial and/or temporal averaging improve the random-error content of the estimates, although not the bias. This observation has a profound implication for the perceived utility of the precipitation data: applications that entail explicit or implicit averaging usually tolerate higher levels of random error than applications requiring skill in the full-resolution estimates. The presentation will consider some of the current issues confronting the analysis of error and quality for global precipitation. These include consideration of: how best to estimate the error for fine-scale precipitation estimates, particularly in areas where the precipitation estimate is zero; the impact of high- and low-end thresholds in estimators; and metrics that are appropriate to the fine-scale, discontinuous

  17. Further improvements on a global nuclear mass model

    SciTech Connect

    Liu Min; Wang Ning; Deng Yangge; Wu Xizhen

    2011-07-15

    The semi-empirical macroscopic-microscopic mass formula is further improved by considering some residual corrections. The rms deviation from 2149 known nuclear masses is significantly reduced to 336 keV, even lower than that achieved with the best of the Duflo-Zuker models. The {alpha}-decay energies of super-heavy nuclei, the Garvey-Kelson relations, and the isobaric multiplet mass equation (IMME) can be reproduced remarkably well with the model, and the predictive power of the mass model is good. With a systematic study of 17 global nuclear mass models, we find that the quadratic form of the IMME is closely related to the accuracy of nuclear mass calculations when the Garvey-Kelson relations are reproduced reasonably well. Fulfilling both the IMME and the Garvey-Kelson relations seem to be two necessary conditions for improving the quality of the model prediction. Furthermore, the {alpha}-decay energies of super-heavy nuclei should be used as an additional constraint on global nuclear mass models.

  18. CALIBRATING C-IV-BASED BLACK HOLE MASS ESTIMATORS

    SciTech Connect

    Park, Daeseong; Woo, Jong-Hak; Shin, Jaejin; Denney, Kelly D. E-mail: woo@astro.snu.ac.kr E-mail: kelly@dark-cosmology.dk

    2013-06-20

    We present the single-epoch black hole mass estimators based on the C IV {lambda}1549 broad emission line, using the updated sample of the reverberation-mapped active galactic nuclei and high-quality UV spectra. By performing multi-component spectral fitting analysis, we measure the C IV line widths (FWHM{sub C{sub IV}} and line dispersion, {sigma}{sub C{sub IV}}) and the continuum luminosity at 1350 A (L{sub 1350}) to calibrate the C-IV-based mass estimators. By comparing with the H{beta} reverberation-based masses, we provide new mass estimators with the best-fit relationships, i.e., M{sub BH}{proportional_to}L{sub 1350}{sup 0.50{+-}0.07}{sigma}{sub C{sub IV}{sup 2}} and M{sub BH}{proportional_to}L{sub 1350}{sup 0.52{+-}0.09} FWHM{sub C{sub IV}{sup 0.56{+-}0.48}}. The new C-IV-based mass estimators show significant mass-dependent systematic difference compared to the estimators commonly used in the literature. Using the published Sloan Digital Sky Survey QSO catalog, we show that the black hole mass of high-redshift QSOs decreases on average by {approx}0.25 dex if our recipe is adopted.

  19. Estimating impacts of lichens and bryophytes on global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Porada, Philipp; Weber, Bettina; Elbert, Wolfgang; Pöschl, Ulrich; Kleidon, Axel

    2014-02-01

    Lichens and bryophytes may significantly affect global biogeochemical cycles by fixation of nitrogen and biotic enhancement of surface weathering rates. Most of the studies suggesting these effects, however, are either conceptual or rely on upscaling of regional estimates to obtain global numbers. Here we use a different method, based on estimates of net carbon uptake, to quantify the impacts of lichens and bryophytes on biogeochemical cycles at the global scale. We focus on three processes, namely, nitrogen fixation, phosphorus uptake, and chemical weathering. Our estimates have the form of potential rates, which means that we quantify the amount of nitrogen and phosphorus needed by the organisms to build up biomass, also accounting for resorption and leaching of nutrients. Subsequently, we use potential phosphorus uptake on bare ground to estimate chemical weathering by the organisms, assuming that they release weathering agents to obtain phosphorus. The predicted requirement for nitrogen ranges from 3.5 to 34 Tgyr-1 and for phosphorus it ranges from 0.46 to 4.6 Tgyr-1. Estimates of chemical weathering are between 0.058 and 1.1 km3 yr-1 of rock. These values seem to have a realistic order of magnitude, and they support the notion that lichens and bryophytes have the potential to play an important role for biogeochemical cycles.

  20. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  1. Stacked Weak Lensing Mass Calibration: Estimators, Systematics, and Impact on Cosmological Parameter Constraints

    SciTech Connect

    Rozo, Eduardo; Wu, Hao-Yi; Schmidt, Fabian; /Caltech

    2011-11-04

    When extracting the weak lensing shear signal, one may employ either locally normalized or globally normalized shear estimators. The former is the standard approach when estimating cluster masses, while the latter is the more common method among peak finding efforts. While both approaches have identical signal-to-noise in the weak lensing limit, it is possible that higher order corrections or systematic considerations make one estimator preferable over the other. In this paper, we consider the efficacy of both estimators within the context of stacked weak lensing mass estimation in the Dark Energy Survey (DES). We find that the two estimators have nearly identical statistical precision, even after including higher order corrections, but that these corrections must be incorporated into the analysis to avoid observationally relevant biases in the recovered masses. We also demonstrate that finite bin-width effects may be significant if not properly accounted for, and that the two estimators exhibit different systematics, particularly with respect to contamination of the source catalog by foreground galaxies. Thus, the two estimators may be employed as a systematic cross-check of each other. Stacked weak lensing in the DES should allow for the mean mass of galaxy clusters to be calibrated to {approx}2% precision (statistical only), which can improve the figure of merit of the DES cluster abundance experiment by a factor of {approx}3 relative to the self-calibration expectation. A companion paper investigates how the two types of estimators considered here impact weak lensing peak finding efforts.

  2. Evaluation of Black Carbon Estimations in Global Aerosol Models

    SciTech Connect

    Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

    2009-11-27

    range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models.

  3. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  4. Estimating the mass of mutagens in indeterminate mixtures

    SciTech Connect

    Schaeffer, D.J.; Kerster, H.W.

    1985-10-01

    A method is shown for estimating the quantity (mass) of genotoxic compounds in complex mixtures without prior identification of components. This method uses fractiles of the probability distribution of responses from the assay of interest and dose-response of the mixture. The method depends upon the assumption of additivity, on average, in the interaction of mutagens and on lognormality of the distribution of mutagen molecular weights. Mass estimates are necessary for hazard characterization, risk estimation, and risk assessment. The method is illustrated using Ames assay results from a coke plant wastewater.

  5. Global Evapotranspiration Estimates using the Land Information System

    NASA Astrophysics Data System (ADS)

    Houser, P. R.; Peters-Lidard, C. D.; Rodell, M.

    2005-05-01

    The Global Land Data Assimilation System (GLDAS) is being used extensively by the research community for studies ranging from climate and weather forecast initialization to the improvement of hydrologic decision support systems. The goal of the GLDAS is to ingest satellite- and ground-based observational data products, using advanced land surface modeling and data assimilation techniques, in order to generate optimal fields of land surface states and fluxes (Rodell et al., 2004). The GLDAS software, which has been streamlined and parallelized by the Land Information System (LIS) software infrastructure, drives multiple, offline (not coupled to the atmosphere) land surface models, integrates a huge quantity of observation based data, executes on a global domain at high spatial resolutions (2.5° to 1 km), and is capable of producing results in near-real time. A vegetation-based "tiling" approach is used to simulate sub-grid scale variability, with a 1 km global vegetation dataset as its basis. Soil and elevation parameters are based on high-resolution global datasets. Observation-based precipitation and downward radiation products, as well as output fields from the best available global coupled atmospheric data assimilation systems, are employed to force the models. The international research community is using GLDAS to help assess global land surface conditions as part of the Global Energy and Water Cycle Experiment (GEWEX) Coordinated Enhanced Observing Period (CEOP), and GLDAS has been identified as NASA's land surface contribution to the Joint Center for Satellite Data Assimilation (JCSDA) enabling better use of remote sensing data in operational weather and climate forecasting. The global 1km resolution capability of LIS allows it to take advantage of the latest satellite observations, such as MODIS leaf area index and surface temperature, at their full resolution. In this presentation we will critically evaluate global LIS-based evapotranspiration estimates at

  6. On optical mass estimation methods for galaxy groups

    NASA Astrophysics Data System (ADS)

    Pearson, R. J.; Ponman, T. J.; Norberg, P.; Robotham, A. S. G.; Farr, W. M.

    2015-05-01

    We examine the performance of a variety of different estimators for the mass of galaxy groups, based on their galaxy distribution alone. We draw galaxies from the Sloan Digital Sky Survey for a set of groups and clusters for which hydrostatic mass estimates based on high-quality Chandra X-ray data are available. These are used to calibrate the galaxy-based mass proxies, and to test their performance. Richness, luminosity, galaxy overdensity, rms radius and dynamical mass proxies are all explored. These different mass indicators all have their merits, and we argue that using them in combination can provide protection against being misled by the effects of dynamical disturbance or variations in star formation efficiency. Using them in this way leads us to infer the presence of significant non-statistical scatter in the X-ray based mass estimates we employ. We apply a similar analysis to a set of mock groups derived from applying a semi-analytic galaxy formation code to the Millennium dark matter simulation. The relations between halo mass and the mass proxies differ significantly in some cases from those seen in the observational groups, and we discuss possible reasons for this.

  7. Estimated Global Mortality Attributable to Smoke from Landscape Fires

    PubMed Central

    Henderson, Sarah B.; Chen, Yang; Randerson, James T.; Marlier, Miriam; DeFries, Ruth S.; Kinney, Patrick; Bowman, David M.J.S.; Brauer, Michael

    2012-01-01

    Background: Forest, grass, and peat fires release approximately 2 petagrams of carbon into the atmosphere each year, influencing weather, climate, and air quality. Objective: We estimated the annual global mortality attributable to landscape fire smoke (LFS). Methods: Daily and annual exposure to particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) from fire emissions was estimated globally for 1997 through 2006 by combining outputs from a chemical transport model with satellite-based observations of aerosol optical depth. In World Health Organization (WHO) subregions classified as sporadically affected, the daily burden of mortality was estimated using previously published concentration–response coefficients for the association between short-term elevations in PM2.5 from LFS (contrasted with 0 μg/m3 from LFS) and all-cause mortality. In subregions classified as chronically affected, the annual burden of mortality was estimated using the American Cancer Society study coefficient for the association between long-term PM2.5 exposure and all-cause mortality. The annual average PM2.5 estimates were contrasted with theoretical minimum (counterfactual) concentrations in each chronically affected subregion. Sensitivity of mortality estimates to different exposure assessments, counterfactual estimates, and concentration–response functions was evaluated. Strong La Niña and El Niño years were compared to assess the influence of interannual climatic variability. Results: Our principal estimate for the average mortality attributable to LFS exposure was 339,000 deaths annually. In sensitivity analyses the interquartile range of all tested estimates was 260,000–600,000. The regions most affected were sub-Saharan Africa (157,000) and Southeast Asia (110,000). Estimated annual mortality during La Niña was 262,000, compared with 532,000 during El Niño. Conclusions: Fire emissions are an important contributor to global mortality. Adverse health outcomes

  8. Estimation of global anthropogenic dust aerosol using CALIOP satellite

    NASA Astrophysics Data System (ADS)

    Chen, B.; Huang, J.; Liu, J.

    2014-12-01

    Anthropogenic dust aerosols are those produced by human activity, which mainly come from cropland, pasture, and urban in this paper. Because understanding of the emissions of anthropogenic dust is still very limited, a new technique for separating anthropogenic dust from natural dustusing CALIPSO dust and planetary boundary layer height retrievalsalong with a land use dataset is introduced. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 22.3% of the global continentaldust load. Of these anthropogenic dust aerosols, more than 52.5% come from semi-arid and semi-wet regions. On the whole, anthropogenic dust emissions from East China and India are higher than other regions.

  9. Optimizing weak lensing mass estimates for cluster profile uncertainty

    SciTech Connect

    Gruen, D.; Bernstein, G. M.; Lam, T. Y.; Seitz, S.

    2011-09-11

    Weak lensing measurements of cluster masses are necessary for calibrating mass-observable relations (MORs) to investigate the growth of structure and the properties of dark energy. However, the measured cluster shear signal varies at fixed mass M200m due to inherent ellipticity of background galaxies, intervening structures along the line of sight, and variations in the cluster structure due to scatter in concentrations, asphericity and substructure. We use N-body simulated halos to derive and evaluate a weak lensing circular aperture mass measurement Map that minimizes the mass estimate variance <(Map - M200m)2> in the presence of all these forms of variability. Depending on halo mass and observational conditions, the resulting mass estimator improves on Map filters optimized for circular NFW-profile clusters in the presence of uncorrelated large scale structure (LSS) about as much as the latter improve on an estimator that only minimizes the influence of shape noise. Optimizing for uncorrelated LSS while ignoring the variation of internal cluster structure puts too much weight on the profile near the cores of halos, and under some circumstances can even be worse than not accounting for LSS at all. As a result, we discuss the impact of variability in cluster structure and correlated structures on the design and performance of weak lensing surveys intended to calibrate cluster MORs.

  10. Optimizing weak lensing mass estimates for cluster profile uncertainty

    DOE PAGESBeta

    Gruen, D.; Bernstein, G. M.; Lam, T. Y.; Seitz, S.

    2011-09-11

    Weak lensing measurements of cluster masses are necessary for calibrating mass-observable relations (MORs) to investigate the growth of structure and the properties of dark energy. However, the measured cluster shear signal varies at fixed mass M200m due to inherent ellipticity of background galaxies, intervening structures along the line of sight, and variations in the cluster structure due to scatter in concentrations, asphericity and substructure. We use N-body simulated halos to derive and evaluate a weak lensing circular aperture mass measurement Map that minimizes the mass estimate variance <(Map - M200m)2> in the presence of all these forms of variability. Dependingmore » on halo mass and observational conditions, the resulting mass estimator improves on Map filters optimized for circular NFW-profile clusters in the presence of uncorrelated large scale structure (LSS) about as much as the latter improve on an estimator that only minimizes the influence of shape noise. Optimizing for uncorrelated LSS while ignoring the variation of internal cluster structure puts too much weight on the profile near the cores of halos, and under some circumstances can even be worse than not accounting for LSS at all. As a result, we discuss the impact of variability in cluster structure and correlated structures on the design and performance of weak lensing surveys intended to calibrate cluster MORs.« less

  11. Global estimates of boreal forest carbon stocks and flux

    NASA Astrophysics Data System (ADS)

    Bradshaw, Corey J. A.; Warkentin, Ian G.

    2015-05-01

    The boreal ecosystem is an important global reservoir of stored carbon and a haven for diverse biological communities. The natural disturbance dynamics there have historically been driven by fire and insects, with human-mediated disturbances increasing faster than in other biomes globally. Previous research on the total boreal carbon stock and predictions of its future flux reveal high uncertainty in regional patterns. We reviewed and standardised this extensive body of quantitative literature to provide the most up-to-date and comprehensive estimates of the global carbon balance in the boreal forest. We also compiled century-scale predictions of the carbon budget flux. Our review and standardisation confirmed high uncertainty in the available data, but there is evidence that the region's total carbon stock has been underestimated. We found a total carbon store of 367.3 to 1715.8 Pg (1015 g), the mid-point of which (1095 Pg) is between 1.3 and 3.8 times larger than any previous mean estimates. Most boreal carbon resides in its soils and peatlands, although estimates are highly uncertain. We found evidence that the region might become a net carbon source following a reduction in carbon uptake rate from at least the 1980s. Given that the boreal potentially constitutes the largest terrestrial carbon source in the world, in one of the most rapidly warming parts of the globe (Walsh, 2014), how we manage these stocks will be influential on future climate dynamics.

  12. Estimation of gross primary production capacity from global satellite observations

    NASA Astrophysics Data System (ADS)

    Muramatsu, Kanako; Thanyapraneedkul, Juthasinee; Furumi, Shinobu; Soyama, Noriko; Daigo, Motomasa

    2012-10-01

    To estimate gross primary production (GPP), the process of photosynthesis was considered as two separate phases: capacity and reduction. The reduction phase is influenced by environmental conditions such as soil moisture and weather conditions such as vapor pressure differences. For a particular leaf, photosynthetic capacity mainly depends on the amount of chlorophyll and the RuBisCO enzyme. The chlorophyll content can be estimated by the color of the leaf, and leaf color can be detected by optical sensors. We used the chlorophyll content of leaves to estimate the level of GPP. A previously developed framework for GPP capacity estimation employs a chlorophyll index. The index is based on the linear relationship between the chlorophyll content of a leaf and the maximum photosynthesis at PAR =2000 (μmolm -2s-1) on a light-response curve under low stress conditions. As a first step, this study examined the global distribution of the index and found that regions with high chlorophyll index values in winter corresponded to tropical rainforest areas. The seasonal changes in the chlorophyll index differed from those shown by the normalized difference vegetation index. Next, the capacity of GPP was estimated from the light-response curve using the index. Most regions exhibited a higher GPP capacity than that estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, except in areas of tropical rainforest, where the GPP capacity and the MODIS GPP estimates were almost identical.

  13. A New Method for Deriving Global Estimates of Maternal Mortality.

    PubMed

    Wilmoth, John R; Mizoguchi, Nobuko; Oestergaard, Mikkel Z; Say, Lale; Mathers, Colin D; Zureick-Brown, Sarah; Inoue, Mie; Chou, Doris

    2012-07-13

    Maternal mortality is widely regarded as a key indicator of population health and of social and economic development. Its levels and trends are monitored closely by the United Nations and others, inspired in part by the UN's Millennium Development Goals (MDGs), which call for a three-fourths reduction in the maternal mortality ratio between 1990 and 2015. Unfortunately, the empirical basis for such monitoring remains quite weak, requiring the use of statistical models to obtain estimates for most countries. In this paper we describe a new method for estimating global levels and trends in maternal mortality. For countries lacking adequate data for direct calculation of estimates, we employed a parametric model that separates maternal deaths related to HIV/AIDS from all others. For maternal deaths unrelated to HIV/AIDS, the model consists of a hierarchical linear regression with three predictors and variable intercepts for both countries and regions. The uncertainty of estimates was assessed by simulating the estimation process, accounting for variability both in the data and in other model inputs. The method was used to obtain the most recent set of UN estimates, published in September 2010. Here, we provide a concise description and explanation of the approach, including a new analysis of the components of variability reflected in the uncertainty intervals. Final estimates provide evidence of a more rapid decline in the global maternal mortality ratio than suggested by previous work, including another study published in April 2010. We compare findings from the two recent studies and discuss topics for further research to help resolve differences. PMID:24416714

  14. A TRMM-Calibrated Infrared Technique for Global Rainfall Estimation

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.

    2002-01-01

    The development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale is presented. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics during 2001. The technique is calibrated separately over land and ocean, making ingenious use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The low sampling rate of TRMM PR imposes limitations on calibrating IR-based techniques; however, our research shows that PR observations can be applied to improve IR-based techniques significantly by selecting adequate calibration areas and calibration length. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of non-raining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the latter being important for the calculation of vertical profiles of latent heating.

  15. A TRMM-Calibrated Infrared Technique for Global Rainfall Estimation

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming

    2003-01-01

    This paper presents the development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics during summer 2001. The technique is calibrated separately over land and ocean, making ingenious use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The low sampling rate of TRMM PR imposes limitations on calibrating IR- based techniques; however, our research shows that PR observations can be applied to improve IR-based techniques significantly by selecting adequate calibration areas and calibration length. The diurnal cycle of rainfall, as well as the division between convective and t i f m rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of non-raining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the latter being important for the calculation of vertical profiles of latent heating.

  16. SAGE and SAM II measurements of global stratospheric aerosol optical depth and mass loading

    NASA Technical Reports Server (NTRS)

    Kent, G. S.; Mccormick, M. P.

    1984-01-01

    Several volcanic eruptions between November 1979 and April 1981 have injected material into the stratosphere. The SAGE and SAM II satellite systems have measured, with global coverage, the 1-micron extinction produced by this material, and examples of the data product are shown in the form of global maps of stratospheric optical depth and altitude-latitude plots of zonal mean extinction. These data, and that for the volcanically quiet period in early 1979, have been used to determine the changes in the total stratospheric mass loading. Estimates have also been made of the contribution to the total aerosol mass from each eruption. It has been found that between 1979 and mid-1981, the total stratospheric aerosol mass increased from a background level of approximately 570,000 metric tons to a peak of approximately 1,300,000 metric tons.

  17. Estimates of mass and angular momentum in the oort cloud.

    PubMed

    Marochnik, L S; Mukhin, L M; Sagdeev, R Z

    1988-10-28

    Estimates can be made of unseen mass (in the form of cometary nuclei) at the heliocentric distances between 3 x 10(3) and 2 x 10(4) astronomical units(AU) under the assumptions (i) that the Oort cloud is a rarefied halo surrounding the core (dense, inner cometary cloud) and (ii) that the mass and albedo of comet Halley is typical for comets both in the core and the Oort cloud populations. The mass appears to be approximately 0.03 solar masses, with angular momentum of the order of 10(52) to 10(53) g-cm(2)/s. This mass is of the order of the total mass of the planetary system before the loss of volatiles. This leads to an estimate of a mass M(o) approximately 100 M( plus sign in circle) (where M( plus sign in circle) is the mass of Earth) concentrated in the Oort cloud (r > 2 x 10(4) AU) with an angular momentum that may exceed the present angular momentum of the whole planetary system by one order of magnitude. The present angular momentum of the Oort cloud appears to be of the same order as the total angular momentum of the planetary system before the loss of volatiles. PMID:17815893

  18. A Global Estimate of the Number of Coral Reef Fishers.

    PubMed

    Teh, Louise S L; Teh, Lydia C L; Sumaila, U Rashid

    2013-01-01

    Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world's small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale. PMID:23840327

  19. A Global Estimate of the Number of Coral Reef Fishers

    PubMed Central

    Teh, Louise S. L.; Teh, Lydia C. L.; Sumaila, U. Rashid

    2013-01-01

    Overfishing threatens coral reefs worldwide, yet there is no reliable estimate on the number of reef fishers globally. We address this data gap by quantifying the number of reef fishers on a global scale, using two approaches - the first estimates reef fishers as a proportion of the total number of marine fishers in a country, based on the ratio of reef-related to total marine fish landed values. The second estimates reef fishers as a function of coral reef area, rural coastal population, and fishing pressure. In total, we find that there are 6 million reef fishers in 99 reef countries and territories worldwide, of which at least 25% are reef gleaners. Our estimates are an improvement over most existing fisher population statistics, which tend to omit accounting for gleaners and reef fishers. Our results suggest that slightly over a quarter of the world’s small-scale fishers fish on coral reefs, and half of all coral reef fishers are in Southeast Asia. Coral reefs evidently support the socio-economic well-being of numerous coastal communities. By quantifying the number of people who are employed as reef fishers, we provide decision-makers with an important input into planning for sustainable coral reef fisheries at the appropriate scale. PMID:23840327

  20. Atmospheric methyl bromide - Trends and global mass balance

    NASA Technical Reports Server (NTRS)

    Khalil, M. A. K.; Rasmussen, R. A.; Gunawardena, R.

    1993-01-01

    A decadal time series of global CH3Br concentrations in the earth's atmosphere is presented. It is shown that average concentrations are about 10 pptv and during the last 4 yr may be increasing at 0.3 +/- 0.1 pptv/yr. It is estimated that the atmospheric lifetime of CH3Br that is due to reaction with OH is about 2 yr, which results in a calculated global emission rate of about 100 Gg/yr. Ocean supersaturations of 140-180 percent are observed, and atmospheric concentrations over the open oceans are higher than at comparably located coastal sites. The ocean source is estimated to be about 35 Gg/yr. The remaining emissions must come from other natural sources and anthropogenic activities.

  1. Redefinition and global estimation of basal ecosystem respiration rate

    USGS Publications Warehouse

    Yuan, W.; Luo, Y.; Li, X.; Liu, S.; Yu, G.; Zhou, T.; Bahn, M.; Black, A.; Desai, A.R.; Cescatti, A.; Marcolla, B.; Jacobs, C.; Chen, J.; Aurela, M.; Bernhofer, C.; Gielen, B.; Bohrer, G.; Cook, D.R.; Dragoni, D.; Dunn, A.L.; Gianelle, D.; Grnwald, T.; Ibrom, A.; Leclerc, M.Y.; Lindroth, A.; Liu, H.; Marchesini, L.B.; Montagnani, L.; Pita, G.; Rodeghiero, M.; Rodrigues, A.; Starr, G.; Stoy, P.C.

    2011-01-01

    Basal ecosystem respiration rate (BR), the ecosystem respiration rate at a given temperature, is a common and important parameter in empirical models for quantifying ecosystem respiration (ER) globally. Numerous studies have indicated that BR varies in space. However, many empirical ER models still use a global constant BR largely due to the lack of a functional description for BR. In this study, we redefined BR to be ecosystem respiration rate at the mean annual temperature. To test the validity of this concept, we conducted a synthesis analysis using 276 site-years of eddy covariance data, from 79 research sites located at latitudes ranging from ???3S to ???70N. Results showed that mean annual ER rate closely matches ER rate at mean annual temperature. Incorporation of site-specific BR into global ER model substantially improved simulated ER compared to an invariant BR at all sites. These results confirm that ER at the mean annual temperature can be considered as BR in empirical models. A strong correlation was found between the mean annual ER and mean annual gross primary production (GPP). Consequently, GPP, which is typically more accurately modeled, can be used to estimate BR. A light use efficiency GPP model (i.e., EC-LUE) was applied to estimate global GPP, BR and ER with input data from MERRA (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate resolution Imaging Spectroradiometer). The global ER was 103 Pg C yr -1, with the highest respiration rate over tropical forests and the lowest value in dry and high-latitude areas. Copyright 2011 by the American Geophysical Union.

  2. Predictive Attitude Estimation Using Global Positioning System Signals

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Markley, F. Landis; Lightsey, E. Glenn; Ketchum, Eleanor

    1997-01-01

    In this paper, a new algorithm is developed for attitude estimation using Global Positioning System (GPS) signals. The new algorithm is based on a predictive filtering scheme designed for spacecraft without rate measuring devices. The major advantage of this new algorithm over traditional Kalman filter approaches is that the model error is not assumed to represented by an unbiased Gaussian noise process with known covariance, but instead is determined during the estimation process. This is achieved by simultaneously solving system optimality conditions and an output error constraint. This approach is well suited for GPS attitude estimation since some error sources that contribute to attitude inaccuracy, such as signal multipath, are known to be non-Gaussian processes. Also, the predictive filter scheme can use either GPS signals or vector observations or a combination of both for attitude estimation, so that performance characteristics can be maintained during periods of GPS attitude sensor outage. The performance of the new algorithm is tested using flight data from the REX-2 spacecraft. Results are shown using the predictive filter to estimate the attitude from both GPS signals and magnetometer measurements, and comparing that solution to a magnetometer-only based solution. Results using the new estimation algorithm indicate that GPS-based solutions are verified to within 2 degrees using the magnetometer cross-check for the REX-2 spacecraft. GPS attitude accuracy of better than 1 degree is expected per axis, but cannot be reliably proven due to inaccuracies in the magnetic field model.

  3. Progress toward Consensus Estimates of Regional Glacier Mass Balances for IPCC AR5

    NASA Astrophysics Data System (ADS)

    Arendt, A. A.; Gardner, A. S.; Cogley, J. G.

    2011-12-01

    Glaciers are potentially large contributors to rising sea level. Since the last IPCC report in 2007 (AR4), there has been a widespread increase in the use of geodetic observations from satellite and airborne platforms to complement field observations of glacier mass balance, as well as significant improvements in the global glacier inventory. Here we summarize our ongoing efforts to integrate data from multiple sources to arrive at a consensus estimate for each region, and to quantify uncertainties in those estimates. We will use examples from Alaska to illustrate methods for combining Gravity Recovery and Climate Experiment (GRACE), elevation differencing and field observations into a single time series with related uncertainty estimates. We will pay particular attention to reconciling discrepancies between GRACE estimates from multiple processing centers. We will also investigate the extent to which improvements in the glacier inventory affect the accuracy of our regional mass balances.

  4. TRMM: Status of Precipitation Estimates, Science Highlights, and 3-Hour Global, Tropical Precipitation Estimates

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) has completed more than three years in orbit. A summary of research highlights will be presented focusing on application of TRMM data to topics ranging from climate analysis, through improving forecasts, to microphysical research. Examples and plans for operational use of TRMM data in tropical cyclone and other applications will be given. The status of precipitation estimates from different instruments and algorithms will be described. Monthly surface rainfall estimates over the ocean based on different instruments on TRMM currently differ by 20% in overall mean. In addition, time changes in global ocean rainfall between El Nino and La Nina conditions show a difference in sign between the active and passive microwave products. These differences are not surprising considering the different type of observations available for the first time from TRMM with both the passive and active microwave sensors. Resolving the differences will strengthen the validity and utility of ocean rainfall estimates. The TRMM rainfall estimates are intercompared among themselves and with other estimates, including those of the standard, monthly Global Precipitation Climatology Project (GPCP) analysis. The GPCP analysis agrees roughly in magnitude with the passive microwave-based TRMM estimates which is not surprising considering GPCP over-ocean estimates are based on passive microwave observations. A three-year TRMM rainfall climatology is presented, including anomaly fields related to the changing ENSO situation during the mission. Results of using TRMM information to calibrate other passive microwave observations and geosynchronous infrared rainfall estimates and then merging them those estimates into a global, tropical 3-hour time resolution analysis will also be described.

  5. Mass storage estimates for the digital mapping era.

    USGS Publications Warehouse

    Light, D.L.

    1986-01-01

    Proponents of the digital era recognize that a break-through in mass storage technology may be required to attain a reasonable degree of computerization of the cartographic mapping and data management process. This paper provides the rationale for estimating that about 1014 bits of digital mass storage are needed for developing a digital 1:24 000-scale topographic data base of the US. Also, it will discuss the optical disk as a leading candidate for handling the mass storage dilemma.-from Author

  6. Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent

    NASA Astrophysics Data System (ADS)

    Marzeion, B.; Leclercq, P. W.; Cogley, J. G.; Jarosch, A. H.

    2015-12-01

    Recent estimates of the contribution of glaciers to sea-level rise during the 20th century are strongly divergent. Advances in data availability have allowed revisions of some of these published estimates. Here we show that outside of Antarctica, the global estimates of glacier mass change obtained from glacier-length-based reconstructions and from a glacier model driven by gridded climate observations are now consistent with each other, and also with an estimate for the years 2003-2009 that is mostly based on remotely sensed data. This consistency is found throughout the entire common periods of the respective data sets. Inconsistencies of reconstructions and observations persist in estimates on regional scales.

  7. Brief Communication: Global glacier mass loss reconstructions during the 20th century are consistent

    NASA Astrophysics Data System (ADS)

    Marzeion, B.; Leclercq, P. W.; Cogley, J. G.; Jarosch, A. H.

    2015-07-01

    Estimates of the contribution of glaciers to sea-level rise during the 20th century that were published in recent years are strongly divergent. Advances in data availability have allowed revisions of some of these published estimates. Here we show that outside of Antarctica, the global estimates of glacier mass loss obtained from glacier-length-based reconstructions and from a glacier model driven by gridded climate observations are now consistent with each other, and also with an estimate for the years 2003-2009 that is mostly based on remotely sensed data. This consistency is found throughout the entire common periods of the respective data sets. Inconsistencies of reconstructions and observations persist in estimates on regional scales.

  8. Convex-hull mass estimates of the dodo (Raphus cucullatus): application of a CT-based mass estimation technique

    PubMed Central

    O’Mahoney, Thomas G.; Kitchener, Andrew C.; Manning, Phillip L.; Sellers, William I.

    2016-01-01

    The external appearance of the dodo (Raphus cucullatus, Linnaeus, 1758) has been a source of considerable intrigue, as contemporaneous accounts or depictions are rare. The body mass of the dodo has been particularly contentious, with the flightless pigeon alternatively reconstructed as slim or fat depending upon the skeletal metric used as the basis for mass prediction. Resolving this dichotomy and obtaining a reliable estimate for mass is essential before future analyses regarding dodo life history, physiology or biomechanics can be conducted. Previous mass estimates of the dodo have relied upon predictive equations based upon hind limb dimensions of extant pigeons. Yet the hind limb proportions of dodo have been found to differ considerably from those of their modern relatives, particularly with regards to midshaft diameter. Therefore, application of predictive equations to unusually robust fossil skeletal elements may bias mass estimates. We present a whole-body computed tomography (CT) -based mass estimation technique for application to the dodo. We generate 3D volumetric renders of the articulated skeletons of 20 species of extant pigeons, and wrap minimum-fit ‘convex hulls’ around their bony extremities. Convex hull volume is subsequently regressed against mass to generate predictive models based upon whole skeletons. Our best-performing predictive model is characterized by high correlation coefficients and low mean squared error (a = − 2.31, b = 0.90, r2 = 0.97, MSE = 0.0046). When applied to articulated composite skeletons of the dodo (National Museums Scotland, NMS.Z.1993.13; Natural History Museum, NHMUK A.9040 and S/1988.50.1), we estimate eviscerated body masses of 8–10.8 kg. When accounting for missing soft tissues, this may equate to live masses of 10.6–14.3 kg. Mass predictions presented here overlap at the lower end of those previously published, and support recent suggestions of a relatively slim dodo. CT-based reconstructions provide a

  9. Estimating maximum global wind power availability and associated climatic consequences

    NASA Astrophysics Data System (ADS)

    Miller, Lee; Gans, Fabian; Kleidon, Axel

    2010-05-01

    Estimating maximum global wind power availability and associated climatic consequences Wind speed reflects the continuous generation of kinetic energy and its dissipation, primarily in the atmospheric boundary layer. When wind turbines extract kinetic wind energy, less kinetic energy remains in the atmosphere in the mean state. While this effect does not play a significant role for a single turbine, it becomes a critical factor for the estimation of large-scale wind power availability. This extraction of kinetic energy by turbines also competes with the natural processes of kinetic energy dissipation, thus setting fundamental limits on extractability that are not considered in previous large-scale studies [1,2,3]. Our simple momentum balance model using ECMWF climate data illustrates a fundamental limit to global wind power extractability and thereby electricity potential (93TW). This is independent of engineering advances in turbine design and wind farm layout. These results are supported by similar results using a global climate model of intermediate complexity. Varying the surface drag coefficient with different simulations allows us to directly relate changes in atmospheric and boundary layer dissipation with resulting climate indices and wind power potential. These new estimates of the maximum power generation by wind turbines are well above the currently installed capacity. Hence, present day installations are unlikely to have a global impact. However, when compared to the current human energy demand of 17TW combined with plans by the US and EU to drastically increase onshore and offshore wind turbine installations [4,5,6], understanding the climatic response and ultimate limitations of wind power as a large-scale renewable energy source is critical. [1] Archer, C., and M.Z. Jacobson, (2005) Evaluation of global wind power, J. Geophys. Res. 110:D12110. [2] Lu, X., M.B. McElroy, and J. Kiviluoma, (2009) Global potential for wind-generated electricity, Proc

  10. Estimation of global snow cover using passive microwave data

    NASA Astrophysics Data System (ADS)

    Chang, Alfred T. C.; Kelly, Richard E.; Foster, James L.; Hall, Dorothy K.

    2003-04-01

    This paper describes an approach to estimate global snow cover using satellite passive microwave data. Snow cover is detected using the high frequency scattering signal from natural microwave radiation, which is observed by passive microwave instruments. Developed for the retrieval of global snow depth and snow water equivalent using Advanced Microwave Scanning Radiometer EOS (AMSR-E), the algorithm uses passive microwave radiation along with a microwave emission model and a snow grain growth model to estimate snow depth. The microwave emission model is based on the Dense Media Radiative Transfer (DMRT) model that uses the quasi-crystalline approach and sticky particle theory to predict the brightness temperature from a single layered snowpack. The grain growth model is a generic single layer model based on an empirical approach to predict snow grain size evolution with time. Gridding to the 25 km EASE-grid projection, a daily record of Special Sensor Microwave Imager (SSM/I) snow depth estimates was generated for December 2000 to March 2001. The estimates are tested using ground measurements from two continental-scale river catchments (Nelson River and the Ob River in Russia). This regional-scale testing of the algorithm shows that for passive microwave estimates, the average daily snow depth retrieval standard error between estimated and measured snow depths ranges from 0 cm to 40 cm of point observations. Bias characteristics are different for each basin. A fraction of the error is related to uncertainties about the grain growth initialization states and uncertainties about grain size changes through the winter season that directly affect the parameterization of the snow depth estimation in the DMRT model. Also, the algorithm does not include a correction for forest cover and this effect is clearly observed in the retrieval. Finally, error is also related to scale differences between in situ ground measurements and area-integrated satellite estimates. With AMSR

  11. Approaches and Data Quality for Global Precipitation Estimation

    NASA Astrophysics Data System (ADS)

    Huffman, G. J.; Bolvin, D. T.; Nelkin, E. J.

    2015-12-01

    The space and time scales on which precipitation varies are small compared to the satellite coverage that we have, so it is necessary to merge "all" of the available satellite estimates. Differing retrieval capabilities from the various satellites require inter-calibration for the satellite estimates, while "morphing", i.e., Lagrangian time interpolation, is used to lengthen the period over which time interpolation is valid. Additionally, estimates from geostationary-Earth-orbit infrared data are plentiful, but of sufficiently lower quality compared to low-Earth-orbit passive microwave estimates that they are only used when needed. Finally, monthly surface precipitation gauge data can be used to reduce bias and improve patterns of occurrence for monthly satellite data, and short-interval satellite estimates can be improved with a simple scaling such that they sum to the monthly satellite-gauge combination. The presentation will briefly consider some of the design decisions for practical computation of the Global Precipitation Measurement (GPM) mission product Integrated Multi-satellitE Retrievals for GPM (IMERG), then examine design choices that maximize value for end users. For example, data fields are provided in the output file that provide insight into the basis for the estimated precipitation, including error, sensor providing the estimate, precipitation phase (solid/liquid), and intermediate precipitation estimates. Another important initiative is successive computations for the same data date/time at longer latencies as additional data are received, which for IMERG is currently done at 6 hours, 16 hours, and 3 months after observation time. Importantly, users require long records for each latency, which runs counter to the data archiving practices at most archive sites. As well, the assignment of Digital Object Identifiers (DOI's) for near-real-time data sets (at 6 and 16 hours for IMERG) is not a settled issue.

  12. Global Rotation Estimation Using Weighted Iterative Lie Algebraic Averaging

    NASA Astrophysics Data System (ADS)

    Reich, M.; Heipke, C.

    2015-08-01

    In this paper we present an approach for a weighted rotation averaging to estimate absolute rotations from relative rotations between two images for a set of multiple overlapping images. The solution does not depend on initial values for the unknown parameters and is robust against outliers. Our approach is one part of a solution for a global image orientation. Often relative rotations are not free from outliers, thus we use the redundancy in available pairwise relative rotations and present a novel graph-based algorithm to detect and eliminate inconsistent rotations. The remaining relative rotations are input to a weighted least squares adjustment performed in the Lie algebra of the rotation manifold SO(3) to obtain absolute orientation parameters for each image. Weights are determined using the prior information we derived from the estimation of the relative rotations. Because we use the Lie algebra of SO(3) for averaging no subsequent adaptation of the results has to be performed but the lossless projection to the manifold. We evaluate our approach on synthetic and real data. Our approach often is able to detect and eliminate all outliers from the relative rotations even if very high outlier rates are present. We show that we improve the quality of the estimated absolute rotations by introducing individual weights for the relative rotations based on various indicators. In comparison with the state-of-the-art in recent publications to global image orientation we achieve best results in the examined datasets.

  13. Global parameter estimation for thermodynamic models of transcriptional regulation.

    PubMed

    Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N

    2013-07-15

    Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. PMID:23726942

  14. Body mass estimates of an exceptionally complete Stegosaurus (Ornithischia: Thyreophora): comparing volumetric and linear bivariate mass estimation methods

    PubMed Central

    Brassey, Charlotte A.; Maidment, Susannah C. R.; Barrett, Paul M.

    2015-01-01

    Body mass is a key biological variable, but difficult to assess from fossils. Various techniques exist for estimating body mass from skeletal parameters, but few studies have compared outputs from different methods. Here, we apply several mass estimation methods to an exceptionally complete skeleton of the dinosaur Stegosaurus. Applying a volumetric convex-hulling technique to a digital model of Stegosaurus, we estimate a mass of 1560 kg (95% prediction interval 1082–2256 kg) for this individual. By contrast, bivariate equations based on limb dimensions predict values between 2355 and 3751 kg and require implausible amounts of soft tissue and/or high body densities. When corrected for ontogenetic scaling, however, volumetric and linear equations are brought into close agreement. Our results raise concerns regarding the application of predictive equations to extinct taxa with no living analogues in terms of overall morphology and highlight the sensitivity of bivariate predictive equations to the ontogenetic status of the specimen. We emphasize the significance of rare, complete fossil skeletons in validating widely applied mass estimation equations based on incomplete skeletal material and stress the importance of accurately determining specimen age prior to further analyses. PMID:25740841

  15. Body mass estimates of an exceptionally complete Stegosaurus (Ornithischia: Thyreophora): comparing volumetric and linear bivariate mass estimation methods.

    PubMed

    Brassey, Charlotte A; Maidment, Susannah C R; Barrett, Paul M

    2015-03-01

    Body mass is a key biological variable, but difficult to assess from fossils. Various techniques exist for estimating body mass from skeletal parameters, but few studies have compared outputs from different methods. Here, we apply several mass estimation methods to an exceptionally complete skeleton of the dinosaur Stegosaurus. Applying a volumetric convex-hulling technique to a digital model of Stegosaurus, we estimate a mass of 1560 kg (95% prediction interval 1082-2256 kg) for this individual. By contrast, bivariate equations based on limb dimensions predict values between 2355 and 3751 kg and require implausible amounts of soft tissue and/or high body densities. When corrected for ontogenetic scaling, however, volumetric and linear equations are brought into close agreement. Our results raise concerns regarding the application of predictive equations to extinct taxa with no living analogues in terms of overall morphology and highlight the sensitivity of bivariate predictive equations to the ontogenetic status of the specimen. We emphasize the significance of rare, complete fossil skeletons in validating widely applied mass estimation equations based on incomplete skeletal material and stress the importance of accurately determining specimen age prior to further analyses. PMID:25740841

  16. Global positioning system watches for estimating energy expenditure.

    PubMed

    Hongu, Nobuko; Orr, Barron J; Roe, Denise J; Reed, Rebecca G; Going, Scott B

    2013-11-01

    Global positioning system (GPS) watches have been introduced commercially, converting frequent measurements of time, location, speed (pace), and elevation into energy expenditure (EE) estimates. The purpose of this study was to compare EE estimates of 4 different GPS watches (Forerunner, Suunto, Polar, Adeo), at various walking speeds, with EE estimate from a triaxial accelerometer (RT3), which was used as a reference measure in this study. Sixteen healthy young adults completed the study. Participants wore 4 different GPS watches and an RT3 accelerometer and walked at 6-minute intervals on an outdoor track at 3 speeds (3, 5, and 7 km/hr). The statistical significance of differences in EE between the 3 watches was assessed using linear contrasts of the coefficients from the overall model. Reliability across trials for a given device was assessed using intraclass correlation coefficients as estimated in the mixed model. The GPS watches demonstrated lower reliability (intraclass correlation coefficient) across trials when compared with the RT3, particularly at the higher speed, 7 km/hr. Three GPS watches (Forerunner, Polar, and Suunto) significantly and consistently underestimated EE compared with the reference EE given by the RT3 accelerometer (average mean difference: Garmin, -50.5%; Polar, -41.7%; and Suunto, -41.7%; all p < 0.001). Results suggested that caution should be exercised when using commercial GPS watches to estimate EE in athletes during field-based testing and training. PMID:23439338

  17. A New Method to Estimate Halo Mass of Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Yang, Xiaohu; Shen, Shiyin

    2015-08-01

    Reliable halo mass estimation for a given galaxy system plays an important role both in cosmology and galaxy formation studies. Here we set out to find the way that can improve the halo mass estimation for those galaxy systems with limited brightest member galaxies been observed. Using four mock galaxy samples constructed from semi-analytical formation models, the subhalo abundance matching method and the conditional luminosity functions, respectively, we find that the luminosity gap between the brightest and the subsequent brightest member galaxies in a halo (group) can be used to significantly reduce the scatter in the halo mass estimation based on the luminosity of the brightest galaxy alone. Tests show that these corrections can significantly reduce the scatter in the halo mass estimations by $\\sim 50\\%$ to $\\sim 70\\%$ in massive halos depending on which member galaxies are considered. Comparing to the traditional ranking method, we find that this method works better for groups with less than five members, or in observations with very bright magnitude cut.

  18. Nitrogen trifluoride global emissions estimated from updated atmospheric measurements

    PubMed Central

    Arnold, Tim; Harth, Christina M.; Mühle, Jens; Manning, Alistair J.; Salameh, Peter K.; Kim, Jooil; Ivy, Diane J.; Steele, L. Paul; Petrenko, Vasilii V.; Severinghaus, Jeffrey P.; Baggenstos, Daniel; Weiss, Ray F.

    2013-01-01

    Nitrogen trifluoride (NF3) has potential to make a growing contribution to the Earth’s radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a revision of our previous calibration and using an expanded set of atmospheric measurements together with an atmospheric model and inverse method, we estimate that the global emissions of NF3 in 2011 were 1.18 ± 0.21 Gg⋅y−1, or ∼20 Tg CO2-eq⋅y−1 (carbon dioxide equivalent emissions based on a 100-y global warming potential of 16,600 for NF3). The 2011 global mean tropospheric dry air mole fraction was 0.86 ± 0.04 parts per trillion, resulting from an average emissions growth rate of 0.09 Gg⋅y−2 over the prior decade. In terms of CO2 equivalents, current NF3 emissions represent between 17% and 36% of the emissions of other long-lived fluorinated compounds from electronics manufacture. We also estimate that the emissions benefit of using NF3 over hexafluoroethane (C2F6) in electronics manufacture is significant—emissions of between 53 and 220 Tg CO2-eq⋅y−1 were avoided during 2011. Despite these savings, total NF3 emissions, currently ∼10% of production, are still significantly larger than expected assuming global implementation of ideal industrial practices. As such, there is a continuing need for improvements in NF3 emissions reduction strategies to keep pace with its increasing use and to slow its rising contribution to anthropogenic climate forcing. PMID:23341630

  19. Estimating Mass of Inflatable Aerodynamic Decelerators Using Dimensionless Parameters

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    This paper describes a technique for estimating mass for inflatable aerodynamic decelerators. The technique uses dimensional analysis to identify a set of dimensionless parameters for inflation pressure, mass of inflation gas, and mass of flexible material. The dimensionless parameters enable scaling of an inflatable concept with geometry parameters (e.g., diameter), environmental conditions (e.g., dynamic pressure), inflation gas properties (e.g., molecular mass), and mass growth allowance. This technique is applicable for attached (e.g., tension cone, hypercone, and stacked toroid) and trailing inflatable aerodynamic decelerators. The technique uses simple engineering approximations that were developed by NASA in the 1960s and 1970s, as well as some recent important developments. The NASA Mars Entry and Descent Landing System Analysis (EDL-SA) project used this technique to estimate the masses of the inflatable concepts that were used in the analysis. The EDL-SA results compared well with two independent sets of high-fidelity finite element analyses.

  20. Global Solutions of the Boltzmann Equation Over {{R}^D} Near Global Maxwellians with Small Mass

    NASA Astrophysics Data System (ADS)

    Bardos, Claude; Gamba, Irene M.; Golse, François; Levermore, C. David

    2016-07-01

    We study the dynamics defined by the Boltzmann equation set in the Euclidean space {{R}^D} in the vicinity of global Maxwellians with finite mass. A global Maxwellian is a special solution of the Boltzmann equation for which the collision integral vanishes identically. In this setting, the dispersion due to the advection operator quenches the dissipative effect of the Boltzmann collision integral. As a result, the large time limit of solutions of the Boltzmann equation in this regime is given by noninteracting, freely transported states and can be described with the tools of scattering theory.

  1. Estimating the Global Burden of Endemic Canine Rabies

    PubMed Central

    Hampson, Katie; Coudeville, Laurent; Lembo, Tiziana; Sambo, Maganga; Kieffer, Alexia; Attlan, Michaël; Barrat, Jacques; Blanton, Jesse D.; Briggs, Deborah J.; Cleaveland, Sarah; Costa, Peter; Freuling, Conrad M.; Hiby, Elly; Knopf, Lea; Leanes, Fernando; Meslin, François-Xavier; Metlin, Artem; Miranda, Mary Elizabeth; Müller, Thomas; Nel, Louis H.; Recuenco, Sergio; Rupprecht, Charles E.; Schumacher, Carolin; Taylor, Louise; Vigilato, Marco Antonio Natal; Zinsstag, Jakob; Dushoff, Jonathan

    2015-01-01

    Background Rabies is a notoriously underreported and neglected disease of low-income countries. This study aims to estimate the public health and economic burden of rabies circulating in domestic dog populations, globally and on a country-by-country basis, allowing an objective assessment of how much this preventable disease costs endemic countries. Methodology/Principal Findings We established relationships between rabies mortality and rabies prevention and control measures, which we incorporated into a model framework. We used data derived from extensive literature searches and questionnaires on disease incidence, control interventions and preventative measures within this framework to estimate the disease burden. The burden of rabies impacts on public health sector budgets, local communities and livestock economies, with the highest risk of rabies in the poorest regions of the world. This study estimates that globally canine rabies causes approximately 59,000 (95% Confidence Intervals: 25-159,000) human deaths, over 3.7 million (95% CIs: 1.6-10.4 million) disability-adjusted life years (DALYs) and 8.6 billion USD (95% CIs: 2.9-21.5 billion) economic losses annually. The largest component of the economic burden is due to premature death (55%), followed by direct costs of post-exposure prophylaxis (PEP, 20%) and lost income whilst seeking PEP (15.5%), with only limited costs to the veterinary sector due to dog vaccination (1.5%), and additional costs to communities from livestock losses (6%). Conclusions/Significance This study demonstrates that investment in dog vaccination, the single most effective way of reducing the disease burden, has been inadequate and that the availability and affordability of PEP needs improving. Collaborative investments by medical and veterinary sectors could dramatically reduce the current large, and unnecessary, burden of rabies on affected communities. Improved surveillance is needed to reduce uncertainty in burden estimates and to

  2. Estimating global chlorophyll changes over the past century

    NASA Astrophysics Data System (ADS)

    Boyce, Daniel G.; Dowd, Michael; Lewis, Marlon R.; Worm, Boris

    2014-03-01

    Marine phytoplankton account for approximately half of the production of organic matter on earth, support virtually all marine ecosystems, constrain fisheries yields, and influence climate and weather. Despite this importance, long-term trajectories of phytoplankton abundance or biomass are difficult to estimate, and the extent of changes is unresolved. Here, we use a new, publicly-available database of historical shipboard oceanographic measurements to estimate long-term changes in chlorophyll concentration (Chl; a widely used proxy for phytoplankton biomass) from 1890 to 2010. This work builds upon an earlier analysis (Boyce et al., 2010) by taking published criticisms into account, and by using recalibrated data, and novel analysis methods. Rates of long-term chlorophyll change were estimated using generalized additive models within a multi-model inference framework, and post hoc sensitivity analyses were undertaken to test the robustness of results. Our analysis revealed statistically significant Chl declines over 62% of the global ocean surface area where data were present, and in 8 of 11 large ocean regions. While Chl increases have occurred in many locations, weighted syntheses of local- and regional-scale estimates confirmed that average chlorophyll concentrations have declined across the majority of the global ocean area over the past century. Sensitivity analyses indicate that these changes do not arise from any bias between data types, nor do they depend upon the method of spatial or temporal aggregation, nor the use of a particular statistical model. The wider consequences of this long-term decline of marine phytoplankton are presently unresolved, but will need to be considered in future studies of marine ecosystem structure, geochemical cycling, and fishery yields.

  3. Mass support for global climate agreements depends on institutional design.

    PubMed

    Bechtel, Michael M; Scheve, Kenneth F

    2013-08-20

    Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation--costs and distribution, participation, and enforcement--affect individuals' willingness to support these international efforts. We find that design features have significant effects on public support. Specifically, our results indicate that support is higher for global climate agreements that involve lower costs, distribute costs according to prominent fairness principles, encompass more countries, and include a small sanction if a country fails to meet its emissions reduction targets. In contrast to well-documented baseline differences in public support for climate mitigation efforts, opinion responds similarly to changes in climate policy design in all four countries. We also find that the effects of institutional design features can bring about decisive changes in the level of public support for a global climate agreement. Moreover, the results appear consistent with the view that the sensitivity of public support to design features reflects underlying norms of reciprocity and individuals' beliefs about the potential effectiveness of specific agreements. PMID:23886666

  4. Mass support for global climate agreements depends on institutional design

    PubMed Central

    Bechtel, Michael M.; Scheve, Kenneth F.

    2013-01-01

    Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation—costs and distribution, participation, and enforcement—affect individuals’ willingness to support these international efforts. We find that design features have significant effects on public support. Specifically, our results indicate that support is higher for global climate agreements that involve lower costs, distribute costs according to prominent fairness principles, encompass more countries, and include a small sanction if a country fails to meet its emissions reduction targets. In contrast to well-documented baseline differences in public support for climate mitigation efforts, opinion responds similarly to changes in climate policy design in all four countries. We also find that the effects of institutional design features can bring about decisive changes in the level of public support for a global climate agreement. Moreover, the results appear consistent with the view that the sensitivity of public support to design features reflects underlying norms of reciprocity and individuals’ beliefs about the potential effectiveness of specific agreements. PMID:23886666

  5. Global Water Resources Under Future Changes: Toward an Improved Estimation

    NASA Astrophysics Data System (ADS)

    Islam, M.; Agata, Y.; Hanasaki, N.; Kanae, S.; Oki, T.

    2005-05-01

    Global water resources availability in the 21st century is going to be an important concern. Despite its international recognition, however, until now there are very limited global estimates of water resources, which considered the geographical linkage between water supply and demand, defined by runoff and its passage through river network. The available studies are again insufficient due to reasons like different approaches in defining water scarcity, simply based on annual average figures without considering the inter-annual or seasonal variability, absence of the inclusion of virtual water trading, etc. In this study, global water resources under future climate change associated with several socio-economic factors were estimated varying over both temporal and spatial scale. Global runoff data was derived from several land surface models under the GSWP2 (Global Soil Wetness Project) project, which was further processed through TRIP (Total Runoff Integrated Pathways) river routing model to produce a 0.5x0.5 degree grid based figure. Water abstraction was estimated for the same spatial resolution for three sectors as domestic, industrial and agriculture. GCM outputs from CCSR and MRI were collected to predict the runoff changes. Socio-economic factors like population and GDP growth, affected mostly the demand part. Instead of simply looking at annual figures, monthly figures for both supply and demand was considered. For an average year, such a seasonal variability can affect the crop yield significantly. In other case, inter-annual variability of runoff can cause for an absolute drought condition. To account for vulnerabilities of a region to future changes, both inter-annual and seasonal effects were thus considered. At present, the study assumed the future agricultural water uses to be unchanged under climatic changes. In this connection, EPIC model is underway to use for estimating future agricultural water demand under climatic changes on a monthly basis. From

  6. Global-mean marine δ13C and its uncertainty in a glacial state estimate

    NASA Astrophysics Data System (ADS)

    Gebbie, Geoffrey; Peterson, Carlye D.; Lisiecki, Lorraine E.; Spero, Howard J.

    2015-10-01

    A paleo-data compilation with 492 δ13C and δ18O observations provides the opportunity to better sample the Last Glacial Maximum (LGM) and infer its global properties, such as the mean δ13C of dissolved inorganic carbon. Here, the paleo-compilation is used to reconstruct a steady-state water-mass distribution for the LGM, that in turn is used to map the data onto a 3D global grid. A global-mean marine δ13C value and a self-consistent uncertainty estimate are derived using the framework of state estimation (i.e., combining a numerical model and observations). The LGM global-mean δ13C is estimated to be 0.14‰ ± 0.20‰ at the two standard error level, giving a glacial-to-modern change of 0.32‰ ± 0.20‰. The magnitude of the error bar is attributed to the uncertain glacial ocean circulation and the lack of observational constraints in the Pacific, Indian, and Southern Oceans. To halve the error bar, roughly four times more observations are needed, although strategic sampling may reduce this number. If dynamical constraints can be used to better characterize the LGM circulation, the error bar can also be reduced to 0.05 to 0.1‰, emphasizing that knowledge of the circulation is vital to accurately map δ13C in three dimensions.

  7. Fissile mass estimation by pulsed neutron source interrogation

    NASA Astrophysics Data System (ADS)

    Israelashvili, I.; Dubi, C.; Ettedgui, H.; Ocherashvili, A.; Pedersen, B.; Beck, A.; Roesgen, E.; Crochmore, J. M.; Ridnik, T.; Yaar, I.

    2015-06-01

    Passive methods for detecting correlated neutrons from spontaneous fissions (e.g. multiplicity and SVM) are widely used for fissile mass estimations. These methods can be used for fissile materials that emit a significant amount of fission neutrons (like plutonium). Active interrogation, in which fissions are induced in the tested material by an external continuous source or by a pulsed neutron source, has the potential advantages of fast measurement, alongside independence of the spontaneous fissions of the tested fissile material, thus enabling uranium measurement. Until recently, using the multiplicity method, for uranium mass estimation, was possible only for active interrogation made with continues neutron source. Pulsed active neutron interrogation measurements were analyzed with techniques, e.g. differential die away analysis (DDA), which ignore or implicitly include the multiplicity effect (self-induced fission chains). Recently, both, the multiplicity and the SVM techniques, were theoretically extended for analyzing active fissile mass measurements, made by a pulsed neutron source. In this study the SVM technique for pulsed neutron source is experimentally examined, for the first time. The measurements were conducted at the PUNITA facility of the Joint Research Centre in Ispra, Italy. First promising results, of mass estimation by the SVM technique using a pulsed neutron source, are presented.

  8. An empirical model for global earthquake fatality estimation

    USGS Publications Warehouse

    Jaiswal, Kishor; Wald, David

    2010-01-01

    We analyzed mortality rates of earthquakes worldwide and developed a country/region-specific empirical model for earthquake fatality estimation within the U. S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) system. The earthquake fatality rate is defined as total killed divided by total population exposed at specific shaking intensity level. The total fatalities for a given earthquake are estimated by multiplying the number of people exposed at each shaking intensity level by the fatality rates for that level and then summing them at all relevant shaking intensities. The fatality rate is expressed in terms of a two-parameter lognormal cumulative distribution function of shaking intensity. The parameters are obtained for each country or a region by minimizing the residual error in hindcasting the total shaking-related deaths from earthquakes recorded between 1973 and 2007. A new global regionalization scheme is used to combine the fatality data across different countries with similar vulnerability traits. [DOI: 10.1193/1.3480331

  9. Global Estimates of PBL Depth from Space-Borne LIDAR

    NASA Technical Reports Server (NTRS)

    McGrath-Spangler, Erica lynn; Denning, S.; Molod, A.; Ott, L.

    2012-01-01

    The planetary boundary layer (PBL) is responsible for communicating the exchange of energy, moisture, momentum, pollutants, and aerosols between the surface and the free atmosphere and is therefore crucial to many studies of the atmosphere. Unfortunately, there have historically been few observations of this important layer due to the complexity involved in its measurement. However, with the advent of more advanced satellites, global measurements of the PBL are now becoming possible. The PBL is often characterized by a high concentration of aerosols within the layer and low level clouds capping it and these are observable from space. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite was launched in 2006 with the intention of observing aerosols and clouds and was the first space-based LIDAR optimized for this purpose. CALIPSO observations are therefore well suited to observing the depth of the PBL. Since it was launched, CALIPSO has been making nearly continuous measurements enabling a global picture of PBL depth. We plan to present a global PBL depth product and how it evolves throughout the year. The product is able to identify deeper PBL depths in the summer hemisphere over land and deeper depths along the northern hemisphere oceanic storm tracks in winter associated with cold air traveling over warm water. Large seasonal cycles are also evident in the subtropical desert locations among other features. In addition, comparisons will be made between several estimates of PBL depth based on turbulent intensity, meteorology profiles, and aerosol profiles from the GEOS5 model.

  10. Global and regional emissions estimates for N2O

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Prinn, R. G.; Dlugokencky, E. J.; Ishijima, K.; Dutton, G. S.; Hall, B. D.; Langenfelds, R.; Tohjima, Y.; Machida, T.; Manizza, M.; Rigby, M. L.; Odoherty, S. J.; Patra, P. K.; Harth, C.; Weiss, R. F.; Krummel, P. B.; van der Schoot, M.; Fraser, P.; Steele, P.; Aoki, S.; Nakazawa, T.; Elkins, J. W.

    2013-12-01

    We present a comprehensive estimate of nitrous oxide (N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also discrete air samples collected in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute for Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7%yr-1, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally-gridded a priori N2O emissions over the 37 yr since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in the recent years, most likely due

  11. Global and regional emissions estimates for N2O

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Prinn, R. G.; Dlugokencky, E.; Ishijima, K.; Dutton, G. S.; Hall, B. D.; Langenfelds, R.; Tohjima, Y.; Machida, T.; Manizza, M.; Rigby, M.; O'Doherty, S.; Patra, P. K.; Harth, C. M.; Weiss, R. F.; Krummel, P. B.; van der Schoot, M.; Fraser, P. B.; Steele, L. P.; Aoki, S.; Nakazawa, T.; Elkins, J. W.

    2013-07-01

    We present a comprehensive estimate of nitrous oxide ( N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also discrete air samples collected in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute for Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7 % yr-1, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally-gridded a priori N2O emissions over the 37 yr since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in the recent years, most likely

  12. Global and regional emissions estimates for N2O

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Prinn, R. G.; Dlugokencky, E.; Ishijima, K.; Dutton, G. S.; Hall, B. D.; Langenfelds, R.; Tohjima, Y.; Machida, T.; Manizza, M.; Rigby, M.; O'Doherty, S.; Patra, P. K.; Harth, C. M.; Weiss, R. F.; Krummel, P. B.; van der Schoot, M.; Fraser, P. J.; Steele, L. P.; Aoki, S.; Nakazawa, T.; Elkins, J. W.

    2014-05-01

    We present a comprehensive estimate of nitrous oxide (N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also collected discrete air samples in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute of Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7% per year, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally gridded a priori N2O emissions over the 37 years since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in recent years, most likely

  13. Sensitivity of Model Estimates of Contemporary Global and Regional Sea-Level Changes to Geothermal Flow

    NASA Astrophysics Data System (ADS)

    Piecuch, Christopher; Heimbach, Patrick; Ponte, Rui; Forget, Gael

    2015-04-01

    An ocean general circulation model in a global configuration, constrained to observations over the period 1993-2010 as part of the ECCO (Estimating the Circulation and Climate of the Ocean) project, has been used to to infer the influence of geothermal flow on estimates of contemporary sea level changes. Two distinct simulations are compared, which differ only with regard to whether they apply geothermal flow as a bottom boundary condition. Geothermal flow forcing increases the global mean sea level trend over 1993-2010 by 0.11 mm yr-1 in the perturbation simulation relative to the control simulation with no geothermal forcing, mostly due to increased net thermal expansion in the deep ocean (below 2000 m). The Southern Ocean is particularly sensitive to geothermal flow, with differences between regional sea level trends from the perturbation and control simulations up to ±1 mm yr-1 in some places. More generally, it is suggested that ocean heat transports redistribute the geothermal input along constant pressure surfaces and constant surfaces of temperature or salinity. This redistribution of heat results in stronger (weaker) steric height trend differences between the two solutions over deeper (shallower) areas, and effects anomalous redistribution of ocean mass from deeper to shallower areas in the perturbation solution relative to the control solution. Given the sparsity of heat flow measurements, ocean state estimation could (in principle) be a means to the end of constraining solid Earth heat flow estimates over the global ocean.

  14. Global coupled sea ice-ocean state estimation

    NASA Astrophysics Data System (ADS)

    Fenty, Ian; Menemenlis, Dimitris; Zhang, Hong

    2015-09-01

    We study the impact of synthesizing ocean and sea ice concentration data with a global, eddying coupled sea ice-ocean configuration of the Massachusetts Institute of Technology general circulation model with the goal of reproducing the 2004 three-dimensional time-evolving ice-ocean state. This work builds on the state estimation framework developed in the Estimating the Circulation and Climate of the Ocean consortium by seeking a reconstruction of the global sea ice-ocean system that is simultaneously consistent with (1) a suite of in situ and remotely-sensed ocean and ice data and (2) the physics encoded in the numerical model. This dual consistency is successfully achieved here by adjusting only the model's initial hydrographic state and its atmospheric boundary conditions such that misfits between the model and data are minimized in a least-squares sense. We show that synthesizing both ocean and sea ice concentration data is required for the model to adequately reproduce the observed details of the sea ice annual cycle in both hemispheres. Surprisingly, only modest adjustments to our first-guess atmospheric state and ocean initial conditions are necessary to achieve model-data consistency, suggesting that atmospheric reanalysis products remain a leading source of errors for sea ice-ocean model hindcasts and reanalyses. The synthesis of sea ice data is found to ameliorate misfits in the high latitude ocean, especially with respect to upper ocean stratification, temperature, and salinity. Constraining the model to sea ice concentration modestly reduces ICESat-derived Arctic ice thickness errors by improving the temporal and spatial evolution of seasonal ice. Further increases in the accuracy of global sea ice thickness in the model likely require the direct synthesis of sea ice thickness data.

  15. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data

    USGS Publications Warehouse

    Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, Allen H.; Gianelle, D.; Rossi, F.; Suyker, A.E.; Verma, S.B.

    2010-01-01

    The simulation of gross primary production (GPP) at various spatial and temporal scales remains a major challenge for quantifying the global carbon cycle. We developed a light use efficiency model, called EC-LUE, driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux. The EC-LUE model may have the most potential to adequately address the spatial and temporal dynamics of GPP because its parameters (i.e., the potential light use efficiency and optimal plant growth temperature) are invariant across the various land cover types. However, the application of the previous EC-LUE model was hampered by poor prediction of Bowen ratio at the large spatial scale. In this study, we substituted the Bowen ratio with the ratio of evapotranspiration (ET) to net radiation, and revised the RS-PM (Remote Sensing-Penman Monteith) model for quantifying ET. Fifty-four eddy covariance towers, including various ecosystem types, were selected to calibrate and validate the revised RS-PM and EC-LUE models. The revised RS-PM model explained 82% and 68% of the observed variations of ET for all the calibration and validation sites, respectively. Using estimated ET as input, the EC-LUE model performed well in calibration and validation sites, explaining 75% and 61% of the observed GPP variation for calibration and validation sites respectively. Global patterns of ET and GPP at a spatial resolution of 0.5?? latitude by 0.6?? longitude during the years 2000-2003 were determined using the global MERRA dataset (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate Resolution Imaging Spectroradiometer). The global estimates of ET and GPP agreed well with the other global models from the literature, with the highest ET and GPP over tropical forests and the lowest values in dry and high latitude areas. However, comparisons with observed GPP

  16. Mass center estimation of a drag-free satellite

    NASA Technical Reports Server (NTRS)

    Sanz Fernandez De Cordova, S.; Debra, D. B.

    1975-01-01

    The mass center location of a spinning drag-free satellite can be estimated because there is control required to accelerate the mass center along the axis of spin as long as there is some nutation in the spinning motion. Linear and nonlinear models are compared and observability discussed. Online estimation fails when nutation is damped so an offline mechanization is proposed. A new sensor has been designed to permit greater relative motion than was possible on the drag-free satellite flown in 1972 (JH-1). Experimental laboratory results using a spinning vehicle with the new sensor mounted 30 cm from a spherical air bearing support are presented which confirm earlier simulation results.

  17. An Iterated Global Mascon Solution with Focus on Land Ice Mass Evolution

    NASA Technical Reports Server (NTRS)

    Luthcke, S. B.; Sabaka, T.; Rowlands, D. D.; Lemoine, F. G.; Loomis, B. D.; Boy, J. P.

    2012-01-01

    Land ice mass evolution is determined from a new GRACE global mascon solution. The solution is estimated directly from the reduction of the inter-satellite K-band range rate observations taking into account the full noise covariance, and formally iterating the solution. The new solution increases signal recovery while reducing the GRACE KBRR observation residuals. The mascons are estimated with 10-day and 1-arc-degree equal area sampling, applying anisotropic constraints for enhanced temporal and spatial resolution of the recovered land ice signal. The details of the solution are presented including error and resolution analysis. An Ensemble Empirical Mode Decomposition (EEMD) adaptive filter is applied to the mascon solution time series to compute timing of balance seasons and annual mass balances. The details and causes of the spatial and temporal variability of the land ice regions studied are discussed.

  18. [Automatic Measurement of the Stellar Atmospheric Parameters Based Mass Estimation].

    PubMed

    Tu, Liang-ping; Wei, Hui-ming; Luo, A-li; Zhao, Yong-heng

    2015-11-01

    We have collected massive stellar spectral data in recent years, which leads to the research on the automatic measurement of stellar atmospheric physical parameters (effective temperature Teff, surface gravity log g and metallic abundance [Fe/ H]) become an important issue. To study the automatic measurement of these three parameters has important significance for some scientific problems, such as the evolution of the universe and so on. But the research of this problem is not very widely, some of the current methods are not able to estimate the values of the stellar atmospheric physical parameters completely and accurately. So in this paper, an automatic method to predict stellar atmospheric parameters based on mass estimation was presented, which can achieve the prediction of stellar effective temperature Teff, surface gravity log g and metallic abundance [Fe/H]. This method has small amount of computation and fast training speed. The main idea of this method is that firstly it need us to build some mass distributions, secondly the original spectral data was mapped into the mass space and then to predict the stellar parameter with the support vector regression (SVR) in the mass space. we choose the stellar spectral data from the United States SDSS-DR8 for the training and testing. We also compared the predicted results of this method with the SSPP and achieve higher accuracy. The predicted results are more stable and the experimental results show that the method is feasible and can predict the stellar atmospheric physical parameters effectively. PMID:26978937

  19. Estimation of left ventricular mass in conscious dogs

    NASA Technical Reports Server (NTRS)

    Coleman, Bernell; Cothran, Laval N.; Ison-Franklin, E. L.; Hawthorne, E. W.

    1986-01-01

    A method for the assessment of the development or the regression of left ventricular hypertrophy (LVH) in a conscious instrumented animal is described. First, the single-slice short-axis area-length method for estimating the left-ventricular mass (LVM) and volume (LVV) was validated in 24 formaldehyde-fixed canine hearts, and a regression equation was developed that could be used in the intact animal to correct the sonomicrometrically estimated LVM. The LVM-assessment method, which uses the combined techniques of echocardiography and sonomicrometry (in conjunction with the regression equation), was shown to provide reliable and reproducible day-to-day estimates of LVM and LVV, and to be sensitive enough to detect serial changes during the development of LVH.

  20. Spectral Approach to Optimal Estimation of the Global Average Temperature.

    NASA Astrophysics Data System (ADS)

    Shen, Samuel S. P.; North, Gerald R.; Kim, Kwang-Y.

    1994-12-01

    Making use of EOF analysis and statistical optimal averaging techniques, the problem of random sampling error in estimating the global average temperature by a network of surface stations has been investigated. The EOF representation makes it unnecessary to use simplified empirical models of the correlation structure of temperature anomalies. If an adjustable weight is assigned to each station according to the criterion of minimum mean-square error, a formula for this error can be derived that consists of a sum of contributions from successive EOF modes. The EOFs were calculated from both observed data and a noise-forced EBM for the problem of one-year and five-year averages. The mean square statistical sampling error depends on the spatial distribution of the stations, length of the averaging interval, and the choice of the weight for each station data stream. Examples used here include four symmetric configurations of 4 × 4, 6 × 4, 9 × 7, and 20 × 10 stations and the Angell-Korshover configuration. Comparisons with the 100-yr U.K. dataset show that correlations for the time series of the global temperature anomaly average between the full dataset and this study's sparse configurations are rather high. For example, the 63-station Angell-Korshover network with uniform weighting explains 92.7% of the total variance, whereas the same network with optimal weighting can lead to 97.8% explained total variance of the U.K. dataset.

  1. Spectral approach to optimal estimation of the global average temperature

    SciTech Connect

    Shen, S.S.P.; North, G.R.; Kim, K.Y.

    1994-12-01

    Making use of EOF analysis and statistical optimal averaging techniques, the problem of random sampling error in estimating the global average temperature by a network of surface stations has been investigated. The EOF representation makes it unnecessary to use simplified empirical models of the correlation structure of temperature anomalies. If an adjustable weight is assigned to each station according to the criterion of minimum mean-square error, a formula for this error can be derived that consists of a sum of contributions from successive EOF modes. The EOFs were calculated from both observed data a noise-forced EBM for the problem of one-year and five-year averages. The mean square statistical sampling error depends on the spatial distribution of the stations, length of the averaging interval, and the choice of the weight for each station data stream. Examples used here include four symmetric configurations of 4 X 4, 5 X 4, 9 X 7, and 20 X 10 stations and the Angell-Korshover configuration. Comparisons with the 100-yr U.K. dataset show that correlations for the time series of the global temperature anomaly average between the full dataset and this study`s sparse configurations are rather high. For example, the 63-station Angell-Korshover network with uniform weighting explains 92.7% of the total variance, whereas the same network with optimal weighting can lead to 97.8% explained total variance of the U.K. dataset. 27 refs., 5 figs., 4 tabs.

  2. TOPEX/POSEIDON tides estimated using a global inverse model

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.; Bennett, Andrew F.; Foreman, Michael G. G.

    1994-01-01

    Altimetric data from the TOPEX/POSEIDON mission will be used for studies of global ocean circulation and marine geophysics. However, it is first necessary to remove the ocean tides, which are aliased in the raw data. The tides are constrained by the two distinct types of information: the hydrodynamic equations which the tidal fields of elevations and velocities must satisfy, and direct observational data from tide gauges and satellite altimetry. Here we develop and apply a generalized inverse method, which allows us to combine rationally all of this information into global tidal fields best fitting both the data and the dynamics, in a least squares sense. The resulting inverse solution is a sum of the direct solution to the astronomically forced Laplace tidal equations and a linear combination of the representers for the data functionals. The representer functions (one for each datum) are determined by the dynamical equations, and by our prior estimates of the statistics or errors in these equations. Our major task is a direct numerical calculation of these representers. This task is computationally intensive, but well suited to massively parallel processing. By calculating the representers we reduce the full (infinite dimensional) problem to a relatively low-dimensional problem at the outset, allowing full control over the conditioning and hence the stability of the inverse solution. With the representers calculated we can easily update our model as additional TOPEX/POSEIDON data become available. As an initial illustration we invert harmonic constants from a set of 80 open-ocean tide gauges. We then present a practical scheme for direct inversion of TOPEX/POSEIDON crossover data. We apply this method to 38 cycles of geophysical data records (GDR) data, computing preliminary global estimates of the four principal tidal constituents, M(sub 2), S(sub 2), K(sub 1) and O(sub 1). The inverse solution yields tidal fields which are simultaneously smoother, and in better

  3. A global synthesis of survival estimates for microbats

    PubMed Central

    Lentini, Pia E.; Bird, Tomas J.; Griffiths, Stephen R.; Godinho, Lisa N.; Wintle, Brendan A.

    2015-01-01

    Accurate survival estimates are needed to construct robust population models, which are a powerful tool for understanding and predicting the fates of species under scenarios of environmental change. Microbats make up 17% of the global mammalian fauna, yet the processes that drive differences in demographics between species are poorly understood. We collected survival estimates for 44 microbat species from the literature and constructed a model to determine the effects of reproductive, feeding and demographic traits on survival. Our trait-based model indicated that bat species which produce more young per year exhibit lower apparent annual survival, as do males and juveniles compared with females and adults, respectively. Using 8 years of monitoring data for two Australian species, we demonstrate how knowledge about the effect of traits on survival can be incorporated into Bayesian survival analyses. This approach can be applied to any group and is not restricted to bats or even mammals. The incorporation of informative priors based on traits can allow for more timely construction of population models to support management decisions and actions. PMID:26246334

  4. Leishmaniasis Worldwide and Global Estimates of Its Incidence

    PubMed Central

    Vélez, Iván D.; Bern, Caryn; Herrero, Mercé; Desjeux, Philippe; Cano, Jorge; Jannin, Jean

    2012-01-01

    As part of a World Health Organization-led effort to update the empirical evidence base for the leishmaniases, national experts provided leishmaniasis case data for the last 5 years and information regarding treatment and control in their respective countries and a comprehensive literature review was conducted covering publications on leishmaniasis in 98 countries and three territories (see ‘Leishmaniasis Country Profiles Text S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31, S32, S33, S34, S35, S36, S37, S38, S39, S40, S41, S42, S43, S44, S45, S46, S47, S48, S49, S50, S51, S52, S53, S54, S55, S56, S57, S58, S59, S60, S61, S62, S63, S64, S65, S66, S67, S68, S69, S70, S71, S72, S73, S74, S75, S76, S77, S78, S79, S80, S81, S82, S83, S84, S85, S86, S87, S88, S89, S90, S91, S92, S93, S94, S95, S96, S97, S98, S99, S100, S101’). Additional information was collated during meetings conducted at WHO regional level between 2007 and 2011. Two questionnaires regarding epidemiology and drug access were completed by experts and national program managers. Visceral and cutaneous leishmaniasis incidence ranges were estimated by country and epidemiological region based on reported incidence, underreporting rates if available, and the judgment of national and international experts. Based on these estimates, approximately 0.2 to 0.4 cases and 0.7 to 1.2 million VL and CL cases, respectively, occur each year. More than 90% of global VL cases occur in six countries: India, Bangladesh, Sudan, South Sudan, Ethiopia and Brazil. Cutaneous leishmaniasis is more widely distributed, with about one-third of cases occurring in each of three epidemiological regions, the Americas, the Mediterranean basin, and western Asia from the Middle East to Central Asia. The ten countries with the highest estimated case counts, Afghanistan, Algeria, Colombia, Brazil, Iran, Syria, Ethiopia, North Sudan, Costa

  5. A global estimate of the Earth's magnetic crustal thickness

    NASA Astrophysics Data System (ADS)

    Vervelidou, Foteini; Thébault, Erwan

    2014-05-01

    The Earth's lithosphere is considered to be magnetic only down to the Curie isotherm. Therefore the Curie isotherm can, in principle, be estimated by analysis of magnetic data. Here, we propose such an analysis in the spectral domain by means of a newly introduced regional spatial power spectrum. This spectrum is based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism (Thébault et al., 2006). We briefly discuss its properties and its relationship with the Spherical Harmonic spatial power spectrum. This relationship allows us to adapt any theoretical expression of the lithospheric field power spectrum expressed in Spherical Harmonic degrees to the regional formulation. We compared previously published statistical expressions (Jackson, 1994 ; Voorhies et al., 2002) to the recent lithospheric field models derived from the CHAMP and airborne measurements and we finally developed a new statistical form for the power spectrum of the Earth's magnetic lithosphere that we think provides more consistent results. This expression depends on the mean magnetization, the mean crustal thickness and a power law value that describes the amount of spatial correlation of the sources. In this study, we make a combine use of the R-SCHA surface power spectrum and this statistical form. We conduct a series of regional spectral analyses for the entire Earth. For each region, we estimate the R-SCHA surface power spectrum of the NGDC-720 Spherical Harmonic model (Maus, 2010). We then fit each of these observational spectra to the statistical expression of the power spectrum of the Earth's lithosphere. By doing so, we estimate the large wavelengths of the magnetic crustal thickness on a global scale that are not accessible directly from the magnetic measurements due to the masking core field. We then discuss these results and compare them to the results we obtained by conducting a similar spectral analysis, but this time in the cartesian coordinates, by means of a published

  6. Center of Mass Estimation for a Spinning Spacecraft Using Doppler Shift of the GPS Carrier Frequency

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.

    2016-01-01

    A sequential filter is presented for estimating the center of mass (CM) of a spinning spacecraft using Doppler shift data from a set of onboard Global Positioning System (GPS) receivers. The advantage of the proposed method is that it is passive and can be run continuously in the background without using commanded thruster firings to excite spacecraft dynamical motion for observability. The NASA Magnetospheric Multiscale (MMS) mission is used as a test case for the CM estimator. The four MMS spacecraft carry star cameras for accurate attitude and spin rate estimation. The angle between the spacecraft nominal spin axis (for MMS this is the geometric body Z-axis) and the major principal axis of inertia is called the coning angle. The transverse components of the estimated rate provide a direct measure of the coning angle. The coning angle has been seen to shift slightly after every orbit and attitude maneuver. This change is attributed to a small asymmetry in the fuel distribution that changes with each burn. This paper shows a correlation between the apparent mass asymmetry deduced from the variations in the coning angle and the CM estimates made using the GPS Doppler data. The consistency between the changes in the coning angle and the CM provides validation of the proposed GPS Doppler method for estimation of the CM on spinning spacecraft.

  7. New Method of Estimating Binary's Mass Ratios by Using Superhumps

    NASA Astrophysics Data System (ADS)

    Kato, Taichi; Osaki, Yoji

    2013-12-01

    We propose a new dynamical method of estimating binary's mass ratios by using the period of superhumps in SU UMa-type dwarf novae during the growing stage (the stage A superhumps). This method is based on the working hypothesis that the period of superhumps in the growing stage is determined by the dynamical precession rate at the 3:1 resonance radius, and is suggested in our new interpretation of the superhump period evolution during a superoutburst (2013, PASJ, 65, 95). By comparing objects having known mass ratios, we show that our method can provide sufficiently accurate mass ratios comparable to those obtained by eclipse observations in quiescence. One of the advantages of this method is that it requires neither an eclipse nor any experimental calibration. It is particularly suitable for exploring the low mass-ratio end of the evolution of cataclysmic variables, where the secondary is not detectable by conventional methods. Our analysis suggests that previous determinations of the mass ratio by using superhump periods during a superoutburst were systematically underestimated for low mass-ratio systems, and we provided a new calibration. It reveals that most WZ Sge-type dwarf novae have either secondaries close to the border of the lower main-sequence or brown dwarfs, and most of the objects have not yet reached the evolutionary stage of period bouncers. Our results are not in contradiction with an assumption that an observed minimum period (˜77 min) of ordinary hydrogen-rich cataclysmic variables is indeed the minimum period. We highlight how important the early observation of stage A superhumps is, and propose an effective future strategy of observation.

  8. Mass Loss and Surface Displacement Estimates in Greenland from GRACE

    NASA Astrophysics Data System (ADS)

    Jensen, Tim; Forsberg, Rene

    2015-04-01

    The estimation of ice sheet mass changes from GRACE is basically an inverse problem, the solution is non-unique and several procedures for determining the mass distribution exists. We present Greenland mass loss results from two such procedures, namely a direct spherical harmonic inversion procedure possible through a thin layer assumption, and a generalized inverse masscon procedure. These results are updated to the end of 2014, including the unusual 2013 mass gain anomaly, and show a good agreement when taking into account leakage from the Canadian Icecaps. The GRACE mass changes are further compared to GPS uplift data on the bedrock along the edge of the ice sheet. The solid Earth deformation is assumed to consist of an elastic deformation of the crust and an anelastic deformation of the underlying mantle (GIA). The crustal deformation is due to current surface loading effects and therefore contains a strong seasonal component of variation, superimposed on a secular trend. The majority of the anelastic GIA deformation of the mantle is believed to be approximately constant. An accelerating secular trend and seasonal changes, as seen in Greenland, is therefore assumed to be due to elastic deformation from changes in surface mass loading from the ice sheet. The GRACE and GPS comparison is only valid by assuring that the signal content of the two observables are consistent. The GPS receivers are measuring movement at a single point on the bedrock surface, and therefore sensitive to a limited loading footprint, while the GRACE satellites on the other hand measures a filtered, attenuated gravitational field, at an altitude of approximately 500 km, making it sensitive to a much larger area. Despite this, the seasonal loading signal in the two observables show a reasonably good agreement.

  9. Utilizing Ion-Mobility Data to Estimate Molecular Masses

    NASA Technical Reports Server (NTRS)

    Duong, Tuan; Kanik, Isik

    2008-01-01

    A method is being developed for utilizing readings of an ion-mobility spectrometer (IMS) to estimate molecular masses of ions that have passed through the spectrometer. The method involves the use of (1) some feature-based descriptors of structures of molecules of interest and (2) reduced ion mobilities calculated from IMS readings as inputs to (3) a neural network. This development is part of a larger effort to enable the use of IMSs as relatively inexpensive, robust, lightweight instruments to identify, via molecular masses, individual compounds or groups of compounds (especially organic compounds) that may be present in specific environments or samples. Potential applications include detection of organic molecules as signs of life on remote planets, modeling and detection of biochemicals of interest in the pharmaceutical and agricultural industries, and detection of chemical and biological hazards in industrial, homeland-security, and industrial settings.

  10. Estimation of brassylic acid by gas chromatography-mass spectrometry

    SciTech Connect

    Mohammed J. Nasrullah, Erica N. Pfarr, Pooja Thapliyal, Nicholas S. Dusek, Kristofer L. Schiele, Christy Gallagher-Lein, and James A. Bahr

    2010-10-29

    The main focus of this work is to estimate Brassylic Acid (BA) using gas chromatography-mass spectrometry (GC-MS). BA is a product obtained from the oxidative cleavage of Erucic Acid (EA). BA has various applications for making nylons and high performance polymers. BA is a 13 carbon compound with two carboxylic acid functional groups at the terminal end. BA has a long hydrocarbon chain that makes the molecule less sensitive to some of the characterization techniques. Although BA can be characterized by NMR, both the starting material (EA) and products BA and nonanoic acid (NA) have peaks at similar {delta}, ppm values. Hence it becomes difficult for the quick estimation of BA during its synthesis.

  11. Catastrophic Expenditure to Pay for Surgery: A Global Estimate

    PubMed Central

    Shrime, Mark G.; Dare, Anna J.; Alkire, Blake C.; O'Neill, Kathleen; Meara, John G.

    2015-01-01

    Purpose Approximately 150 million individuals face catastrophic expenditure each year from medical costs alone, and many more from the nonmedical costs of accessing care. The proportion of this expenditure arising from surgical conditions is unknown. Because World Bank has proposed eliminating medical impoverishment by 2030, the impact of surgical conditions on financial catastrophe must be quantified so that any financial risk protection mechanisms can appropriately incorporate surgery. Methods To determine the global incidence of catastrophic expenditure due to surgery, a stochastic model was built. The income distribution of each country, the probability of requiring surgery, and the medical and nonmedical costs faced for surgery were incorporated. Sensitivity analyses were run to test model robustness. Findings 3.7 billion people risk catastrophic expenditure if they need surgery. Every year, 33 million of them are driven to financial catastrophe from the costs of surgery alone, and 48 million from nonmedical costs, leading to 81 million cases worldwide. The burden of catastrophic expenditure is highest in low- and middle-income countries; within any country, it falls on the poor. Estimates are sensitive to the definition of catastrophic expenditure and the costs of care. The inequitable burden distribution is robust to model assumptions. Interpretation Half the global population is at risk of financial catastrophe from surgery. Annually, 81 million individuals, especially the poor, face catastrophic expenditure due to surgical conditions, of which less than half is attributable to medical costs. These findings highlight the need for financial risk protection for surgery in health system design. Funding Partial funding for Dr. Shrime from NIH/NCI R25CA92203. PMID:25926319

  12. Global estimation of potential unreported plutonium in thermal research reactors

    SciTech Connect

    Dreicer, J.S.; Rutherford, D.A.

    1996-09-01

    As of November, 1993, 303 research reactors (research, test, training, prototype, and electricity producing) were operational worldwide; 155 of these were in non-nuclear weapon states. Of these 155 research reactors, 80 are thermal reactors that have a power rating of 1 MW(th) or greater and could be utilized to produce plutonium. A previously published study on the unreported plutonium production of six research reactors indicates that a minimum reactor power of 40 MW (th) is required to make a significant quantity (SQ), 8 kg, of fissile plutonium per year by unreported irradiations. As part of the Global Nuclear Material Control Model effort, we determined an upper bound on the maximum possible quantity of plutonium that could be produced by the 80 thermal research reactors in the non-nuclear weapon states (NNWS). We estimate that in one year a maximum of roughly one quarter of a metric ton (250 kg) of plutonium could be produced in these 80 NNWS thermal research reactors based on their reported power output. We have calculated the quantity of plutonium and the number of years that would be required to produce an SQ of plutonium in the 80 thermal research reactors and aggregated by NNWS. A safeguards approach for multiple thermal research reactors that can produce less than 1 SQ per year should be conducted in association with further developing a safeguards and design information reverification approach for states that have multiple research reactors.

  13. Global cost estimates of reducing carbon emissions through avoided deforestation

    PubMed Central

    Kindermann, Georg; Obersteiner, Michael; Sohngen, Brent; Sathaye, Jayant; Andrasko, Kenneth; Rametsteiner, Ewald; Schlamadinger, Bernhard; Wunder, Sven; Beach, Robert

    2008-01-01

    Tropical deforestation is estimated to cause about one-quarter of anthropogenic carbon emissions, loss of biodiversity, and other environmental services. United Nations Framework Convention for Climate Change talks are now considering mechanisms for avoiding deforestation (AD), but the economic potential of AD has yet to be addressed. We use three economic models of global land use and management to analyze the potential contribution of AD activities to reduced greenhouse gas emissions. AD activities are found to be a competitive, low-cost abatement option. A program providing a 10% reduction in deforestation from 2005 to 2030 could provide 0.3–0.6 Gt (1 Gt = 1 × 105 g) CO2·yr−1 in emission reductions and would require $0.4 billion to $1.7 billion·yr−1 for 30 years. A 50% reduction in deforestation from 2005 to 2030 could provide 1.5–2.7 Gt CO2·yr−1 in emission reductions and would require $17.2 billion to $28.0 billion·yr−1. Finally, some caveats to the analysis that could increase costs of AD programs are described. PMID:18650377

  14. Estimated impact of global population growth on future wilderness extent

    NASA Astrophysics Data System (ADS)

    Dumont, E.

    2012-06-01

    Wilderness areas in the world are threatened by the environmental impacts of the growing global human population. This study estimates the impact of birth rate on the future surface area of biodiverse wilderness and on the proportion of this area without major extinctions. The following four drivers are considered: human population growth (1), agricultural efficiency (2), groundwater drawdown by irrigation (3), and non-agricultural space used by humans (buildings, gardens, roads, etc.) (4). This study indicates that the surface area of biodiverse unmanaged land will reduce with about 5.4% between 2012 and 2050. Further, it indicates that the biodiverse land without major extinctions will reduce with about 10.5%. These percentages are based on a commonly used population trajectory which assumes that birth rates across the globe will reduce in a similar way as has occurred in the past in many developed countries. Future birth rate is however very uncertain. Plausible future birth rates lower than the expected rates lead to much smaller reductions in surface area of biodiverse unmanaged land (0.7% as opposed to 5.4%), and a reduction in the biodiverse land without major extinctions of about 5.6% (as opposed to 10.5%). This indicates that birth rate is an important factor influencing the quality and quantity of wilderness remaining in the future.

  15. Externally driven global Alfvén eigenmodes applied for effective mass number measurement on TCABR

    SciTech Connect

    Puglia, P. G. P. P.; Elfimov, A. G.; Ruchko, L. F.; Galvão, R. M. O.; Guimarães-Filho, Z.; Ronchi, G.

    2014-12-15

    The excitation and detection of Global Alfvén Eigenmodes on TCABR for diagnostic purposes are presented. The modes can be excited with one or two in-vessel antennae, with up to 15 A of current in each, in the frequency range from 2 to 4 MHz. This scheme allows the estimation of the effective mass number at the plasma center, which value is affected by impurity concentration in the core. An amplifier based on MOSFETs is used to excite the waves driven by low power, in order to not change the basic plasma parameters. The variation of the GAE with density is verified and the location of the mode resonance at the plasma center is confirmed by the sawtooth beating, so that the correspondingly beating phase inversion improves the precision on the resonant condition determination. The toroidal parity of the modes N = 1,2 is determined by use of two opposite located antennae with different phase of the RF current. Knowledge of toroidal mode number is important as it identifies GAE location and defines the estimated effective mass value. The estimated value for A{sub eff} is ∼1.4–1.5, corresponding to 5–7% of carbon impurity concentration. The measured value of A{sub eff} is used to estimate Z{sub eff}, which is compared to older TCA experiments and the value obtained by the Spitzer conductivity.

  16. Target prices for mass production of tyrosine kinase inhibitors for global cancer treatment

    PubMed Central

    Hill, Andrew; Gotham, Dzintars; Fortunak, Joseph; Meldrum, Jonathan; Erbacher, Isabelle; Martin, Manuel; Shoman, Haitham; Levi, Jacob; Powderly, William G; Bower, Mark

    2016-01-01

    Objective To calculate sustainable generic prices for 4 tyrosine kinase inhibitors (TKIs). Background TKIs have proven survival benefits in the treatment of several cancers, including chronic myeloid leukaemia, breast, liver, renal and lung cancer. However, current high prices are a barrier to treatment. Mass production of low-cost generic antiretrovirals has led to over 13 million people being on HIV/AIDS treatment worldwide. This analysis estimates target prices for generic TKIs, assuming similar methods of mass production. Methods Four TKIs with patent expiry dates in the next 5 years were selected for analysis: imatinib, erlotinib, lapatinib and sorafenib. Chemistry, dosing, published data on per-kilogram pricing for commercial transactions of active pharmaceutical ingredient (API), and quotes from manufacturers were used to estimate costs of production. Analysis included costs of excipients, formulation, packaging, shipping and a 50% profit margin. Target prices were compared with current prices. Global numbers of patients eligible for treatment with each TKI were estimated. Results API costs per kg were $347–$746 for imatinib, $2470 for erlotinib, $4671 for lapatinib, and $3000 for sorafenib. Basing on annual dose requirements, costs of formulation/packaging and a 50% profit margin, target generic prices per person-year were $128–$216 for imatinib, $240 for erlotinib, $1450 for sorafenib, and $4020 for lapatinib. Over 1 million people would be newly eligible to start treatment with these TKIs annually. Conclusions Mass generic production of several TKIs could achieve treatment prices in the range of $128–$4020 per person-year, versus current US prices of $75161–$139 138. Generic TKIs could allow significant savings and scaling-up of treatment globally, for over 1 million eligible patients. PMID:26817636

  17. On the uncertainties of stellar mass estimates via colour measurements

    NASA Astrophysics Data System (ADS)

    Roediger, Joel C.; Courteau, Stéphane

    2015-09-01

    Mass-to-light versus colour relations (MLCRs), derived from stellar population synthesis models, are widely used to estimate galaxy stellar masses (M*), yet a detailed investigation of their inherent biases and limitations is still lacking. We quantify several potential sources of uncertainty, using optical and near-infrared (NIR) photometry for a representative sample of nearby galaxies from the Virgo cluster. Our method for combining multiband photometry with MLCRs yields robust stellar masses, while errors in M* decrease as more bands are simultaneously considered. The prior assumptions in one's stellar population modelling dominate the error budget, creating a colour-dependent bias of up to 0.6 dex if NIR fluxes are used (0.3 dex otherwise). This matches the systematic errors associated with the method of spectral energy distribution (SED) fitting, indicating that MLCRs do not suffer from much additional bias. Moreover, MLCRs and SED fitting yield similar degrees of random error (˜0.1-0.14 dex) when applied to mock galaxies and, on average, equivalent masses for real galaxies with M* ˜ 108-11 M⊙. The use of integrated photometry introduces additional uncertainty in M* measurements, at the level of 0.05-0.07 dex. We argue that using MLCRs, instead of time-consuming SED fits, is justified in cases with complex model parameter spaces (involving, for instance, multiparameter star formation histories) and/or for large data sets. Spatially resolved methods for measuring M* should be applied for small sample sizes and/or when accuracies less than 0.1 dex are required. An appendix provides our MLCR transformations for 10 colour permutations of the grizH filter set.

  18. Galaxy cluster mass estimation from stacked spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Farahi, Arya; Evrard, August E.; Rozo, Eduardo; Rykoff, Eli S.; Wechsler, Risa H.

    2016-08-01

    We use simulated galaxy surveys to study: (i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and (ii) the accuracy of a mean dynamical cluster mass, Mσ(λ), derived from stacked pairwise spectroscopy of clusters with richness λ. Using ˜130 000 galaxy pairs patterned after the Sloan Digital Sky Survey (SDSS) redMaPPer cluster sample study of Rozo et al., we show that the pairwise velocity probability density function of central-satellite pairs with mi < 19 in the simulation matches the form seen in Rozo et al. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes ˜60 per cent of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. to the velocity normalization matches, to within a few per cent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with miscentring and galaxy velocity bias corrections, to estimate the log-mean matched halo mass at z = 0.2 of SDSS redMaPPer clusters. Employing the velocity bias constraints of Guo et al., we find = ln (M30) + αm ln (λ/30) with M30 = 1.56 ± 0.35 × 1014 M⊙ and αm = 1.31 ± 0.06stat ± 0.13sys. Systematic uncertainty in the velocity bias of satellite galaxies overwhelmingly dominates the error budget.

  19. Water mass age and aging driving chromophoric dissolved organic matter in the dark global ocean

    NASA Astrophysics Data System (ADS)

    Catalá, T. S.; Reche, I.; Álvarez, M.; Khatiwala, S.; Guallart, E. F.; Benítez-Barrios, V. M.; Fuentes-Lema, A.; Romera-Castillo, C.; Nieto-Cid, M.; Pelejero, C.; Fraile-Nuez, E.; Ortega-Retuerta, E.; Marrasé, C.; Álvarez-Salgado, X. A.

    2015-07-01

    The omnipresence of chromophoric dissolved organic matter (CDOM) in the open ocean enables its use as a tracer for biochemical processes throughout the global overturning circulation. We made an inventory of CDOM optical properties, ideal water age (τ), and apparent oxygen utilization (AOU) along the Atlantic, Indian, and Pacific Ocean waters sampled during the Malaspina 2010 expedition. A water mass analysis was applied to obtain intrinsic, hereinafter archetypal, values of τ, AOU, oxygen utilization rate (OUR), and CDOM absorption coefficients, spectral slopes and quantum yield for each one of the 22 water types intercepted during this circumnavigation. Archetypal values of AOU and OUR have been used to trace the differential influence of water mass aging and aging rates, respectively, on CDOM variables. Whereas the absorption coefficient at 325 nm (a325) and the fluorescence quantum yield at 340 nm (Φ340) increased, the spectral slope over the wavelength range 275-295 nm (S275-295) and the ratio of spectral slopes over the ranges 275-295 nm and 350-400 nm (SR) decreased significantly with water mass aging (AOU). Combination of the slope of the linear regression between archetypal AOU and a325 with the estimated global OUR allowed us to obtain a CDOM turnover time of 634 ± 120 years, which exceeds the flushing time of the dark ocean (>200 m) by 46%. This positive relationship supports the assumption of in situ production and accumulation of CDOM as a by-product of microbial metabolism as water masses turn older. Furthermore, our data evidence that global-scale CDOM quantity (a325) is more dependent on aging (AOU), whereas CDOM quality (S275-295, SR, Φ340) is more dependent on aging rate (OUR).

  20. Estimation of Particulate Mass and Manganese Exposure Levels among Welders

    PubMed Central

    Hobson, Angela; Seixas, Noah; Sterling, David; Racette, Brad A.

    2011-01-01

    Background: Welders are frequently exposed to Manganese (Mn), which may increase the risk of neurological impairment. Historical exposure estimates for welding-exposed workers are needed for epidemiological studies evaluating the relationship between welding and neurological or other health outcomes. The objective of this study was to develop and validate a multivariate model to estimate quantitative levels of welding fume exposures based on welding particulate mass and Mn concentrations reported in the published literature. Methods: Articles that described welding particulate and Mn exposures during field welding activities were identified through a comprehensive literature search. Summary measures of exposure and related determinants such as year of sampling, welding process performed, type of ventilation used, degree of enclosure, base metal, and location of sampling filter were extracted from each article. The natural log of the reported arithmetic mean exposure level was used as the dependent variable in model building, while the independent variables included the exposure determinants. Cross-validation was performed to aid in model selection and to evaluate the generalizability of the models. Results: A total of 33 particulate and 27 Mn means were included in the regression analysis. The final model explained 76% of the variability in the mean exposures and included welding process and degree of enclosure as predictors. There was very little change in the explained variability and root mean squared error between the final model and its cross-validation model indicating the final model is robust given the available data. Conclusions: This model may be improved with more detailed exposure determinants; however, the relatively large amount of variance explained by the final model along with the positive generalizability results of the cross-validation increases the confidence that the estimates derived from this model can be used for estimating welder exposures

  1. Moving towards a new paradigm for global flood risk estimation

    NASA Astrophysics Data System (ADS)

    Troy, Tara J.; Devineni, Naresh; Lima, Carlos; Lall, Upmanu

    2013-04-01

    model is implemented at a finer resolution (<=1km) in order to more accurately model streamflow under flood conditions and estimate inundation. This approach allows for efficient computational simulation of the hydrology when not under potential for flooding with high-resolution flood wave modeling when there is flooding potential. We demonstrate the results of this flood risk estimation system for the Ohio River basin in the United States, a large river basin that is historically prone to flooding, with the intention of using it to do global flood risk assessment.

  2. Sequential estimation of surface water mass changes from daily satellite gravimetry data

    NASA Astrophysics Data System (ADS)

    Ramillien, G. L.; Frappart, F.; Gratton, S.; Vasseur, X.

    2015-03-01

    We propose a recursive Kalman filtering approach to map regional spatio-temporal variations of terrestrial water mass over large continental areas, such as South America. Instead of correcting hydrology model outputs by the GRACE observations using a Kalman filter estimation strategy, regional 2-by-2 degree water mass solutions are constructed by integration of daily potential differences deduced from GRACE K-band range rate (KBRR) measurements. Recovery of regional water mass anomaly averages obtained by accumulation of information of daily noise-free simulated GRACE data shows that convergence is relatively fast and yields accurate solutions. In the case of cumulating real GRACE KBRR data contaminated by observational noise, the sequential method of step-by-step integration provides estimates of water mass variation for the period 2004-2011 by considering a set of suitable a priori error uncertainty parameters to stabilize the inversion. Spatial and temporal averages of the Kalman filter solutions over river basin surfaces are consistent with the ones computed using global monthly/10-day GRACE solutions from official providers CSR, GFZ and JPL. They are also highly correlated to in situ records of river discharges (70-95 %), especially for the Obidos station where the total outflow of the Amazon River is measured. The sparse daily coverage of the GRACE satellite tracks limits the time resolution of the regional Kalman filter solutions, and thus the detection of short-term hydrological events.

  3. Hardware architecture design of a fast global motion estimation method

    NASA Astrophysics Data System (ADS)

    Liang, Chaobing; Sang, Hongshi; Shen, Xubang

    2015-12-01

    VLSI implementation of gradient-based global motion estimation (GME) faces two main challenges: irregular data access and high off-chip memory bandwidth requirement. We previously proposed a fast GME method that reduces computational complexity by choosing certain number of small patches containing corners and using them in a gradient-based framework. A hardware architecture is designed to implement this method and further reduce off-chip memory bandwidth requirement. On-chip memories are used to store coordinates of the corners and template patches, while the Gaussian pyramids of both the template and reference frame are stored in off-chip SDRAMs. By performing geometric transform only on the coordinates of the center pixel of a 3-by-3 patch in the template image, a 5-by-5 area containing the warped 3-by-3 patch in the reference image is extracted from the SDRAMs by burst read. Patched-based and burst mode data access helps to keep the off-chip memory bandwidth requirement at the minimum. Although patch size varies at different pyramid level, all patches are processed in term of 3x3 patches, so the utilization of the patch-processing circuit reaches 100%. FPGA implementation results show that the design utilizes 24,080 bits on-chip memory and for a sequence with resolution of 352x288 and frequency of 60Hz, the off-chip bandwidth requirement is only 3.96Mbyte/s, compared with 243.84Mbyte/s of the original gradient-based GME method. This design can be used in applications like video codec, video stabilization, and super-resolution, where real-time GME is a necessity and minimum memory bandwidth requirement is appreciated.

  4. Using nonlinear programming to correct leakage and estimate mass change from GRACE observation and its application to Antarctica

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Cheng, Haowen; Liu, Lin

    2012-11-01

    The Gravity Recovery And Climate Experiment (GRACE) mission has been providing high quality observations since its launch in 2002. Over the years, fruitful achievements have been obtained and the temporal gravity field has revealed the ongoing geophysical, hydrological and other processes. These discoveries help the scientists better understand various aspects of the Earth. However, errors exist in high degree and order spherical harmonics, which need to be processed before use. Filtering is one of the most commonly used techniques to smooth errors, yet it attenuates signals and also causes leakage of gravity signal into surrounding areas. This paper reports a new method to estimate the true mass change on the grid (expressed in equivalent water height or surface density). The mass change over the grid can be integrated to estimate regional or global mass change. This method assumes the GRACE-observed apparent mass change is only caused by the mass change on land. By comparing the computed and observed apparent mass change, the true mass change can be iteratively adjusted and estimated. The problem is solved with nonlinear programming (NLP) and yields solutions which are in good agreement with other GRACE-based estimates.

  5. Regional GRACE-based estimates of water mass variations over Australia: validation and interpretation

    NASA Astrophysics Data System (ADS)

    Seoane, L.; Ramillien, G.; Frappart, F.; Leblanc, M.

    2013-04-01

    Time series of regional 2°-by-2° GRACE solutions have been computed from 2003 to 2011 with a 10 day resolution by using an energy integral method over Australia [112° E 156° E; 44° S 10° S]. This approach uses the dynamical orbit analysis of GRACE Level 1 measurements, and specially accurate along-track K Band Range Rate (KBRR) residuals (1 μm s-1 level of error) to estimate the total water mass over continental regions. The advantages of regional solutions are a significant reduction of GRACE aliasing errors (i.e. north-south stripes) providing a more accurate estimation of water mass balance for hydrological applications. In this paper, the validation of these regional solutions over Australia is presented as well as their ability to describe water mass change as a reponse of climate forcings such as El Niño. Principal component analysis of GRACE-derived total water storage maps show spatial and temporal patterns that are consistent with independent datasets (e.g. rainfall, climate index and in-situ observations). Regional TWS show higher spatial correlations with in-situ water table measurements over Murray-Darling drainage basin (80-90%), and they offer a better localization of hydrological structures than classical GRACE global solutions (i.e. Level 2 GRGS products and 400 km ICA solutions as a linear combination of GFZ, CSR and JPL GRACE solutions).

  6. A Revised Estimate of 20th Century Global Mean Sea Level

    NASA Astrophysics Data System (ADS)

    Hay, C.; Morrow, E.; Kopp, R. E., III; Mitrovica, J. X.

    2014-12-01

    One of the primary goals of paleo-sea level research is to assess the stability of ice sheets and glaciers in warming climates. In this context, the 20th century may be thought of as the most recent, recorded, and studied of all past episodes of warming. Over the past decade, a consensus has emerged in the literature that 20th century global mean sea level (GMSL), inferred from tide gauge records, rose at a mean rate of 1.6-1.9 mm/yr. This sea-level rise can be attributed to multiple sources, including thermal expansion of the oceans, ice sheet and glacier mass flux, and anthropogenic changes in land water storage. The Fifth Assessment Report of the IPCC summarized the estimated contributions of these sources over 1901-1990 and computed a total rate, using a bottom-up approach, of ~1.0 mm/yr, which falls significantly short of the rate inferred from tide gauge records. Using two independent probabilistic approaches that utilize models of glacial isostatic adjustment, ocean dynamics, and the sea-level fingerprints of rapid land-ice melt to analyze tide gauge records (Kalman smoothing and Gaussian process regression), we are able to close the 20th century sea-level budget and resolve the above enigma. Our revised estimate for the rate of GMSL rise during 1901-1990 is 1.1-1.3 mm/yr (90% credible interval). This value, which is ~20-30% less than previous estimates, suggests that the change in the GMSL rate from the 20th century to the last two decades (2.7 ± 0.4 mm/yr, consistent with past estimates) was greater than previous estimates. Moreover, since some forward projections of GMSL change into the next century are based in part on past estimates of GMSL change, our revised rate may impact projections of GMSL rise for the 21st century and beyond.

  7. Mass Influx of Cosmic Dust Estimated From Vertical Transport of Meteoric Metals

    NASA Astrophysics Data System (ADS)

    Liu, Alan Z.; Guo, Yafang; Gardner, Chester S.

    2016-04-01

    The mesospheric metal layers are formed by the vaporization of high-speed cosmic dust particles in the lower thermosphere and upper mesosphere. The vaporized atoms and ions are transported downward by waves and turbulence to chemical sinks below 85 km, where they form stable compounds. These compounds condense onto meteoric smoke particles and are then transported to the winter pole where they eventually settle onto the surface. The downward fluxes of the metal atoms are directly related to their meteoric influxes and chemical loss rates. In this paper we use Doppler lidar measurements of Na and Fe fluxes made by the University of Illinois and University of Colorado groups, and a chemical ablation model (CABMOD) developed at the University of Leeds, to constrain the velocity/mass distribution of the meteoroids entering the atmosphere and to derive an improved estimate for the global influx of cosmic dust. We find that the particles responsible for injecting a large fraction of the ablated material into the Earth's upper atmosphere, enter at relatively slow speeds and originate primarily from the Jupiter Family of Comets. The global mean Na influx is 21,500±1,100 atoms/cm2/s, which equals 372±18 kg/d for the global input of Na vapor and 186±24 t/d for the global influx of cosmic dust. The global mean Fe influx is 131,000±36,000 atoms/cm2/s, which equals 5.5±1.5 t/d for the global input of Na vapor.

  8. Estimated global nitrogen deposition using NO2 column density

    USGS Publications Warehouse

    Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao

    2013-01-01

    Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.

  9. 3D viscosity maps for Greenland and effect on GRACE mass balance estimates

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Xu, Zheng

    2016-04-01

    The GRACE satellite mission measures mass loss of the Greenland ice sheet. To correct for glacial isostatic adjustment numerical models are used. Although generally found to be a small signal, the full range of possible GIA models has not been explored yet. In particular, low viscosities due to a wet mantle and high temperatures due to the nearby Iceland hotspot could have a significant effect on GIA gravity rates. The goal of this study is to present a range of possible viscosity maps, and investigate the effect on GRACE mass balance estimates. Viscosity is derived using flow laws for olivine. Mantle temperature is computed from global seismology models, based on temperature derivatives for different mantle compositions. An indication for grain sizes is obtained by xenolith findings at a few locations. We also investigate the weakening effect of the presence of melt. To calculate gravity rates, we use a finite-element GIA model with the 3D viscosity maps and the ICE-5G loading history. GRACE mass balances for mascons in Greenland are derived with a least-squares inversion, using separate constraints for the inland and coastal areas in Greenland. Biases in the least-squares inversion are corrected using scale factors estimated from a simulation based on a surface mass balance model (Xu et al., submitted to The Cryosphere). Model results show enhanced gravity rates in the west and south of Greenland with 3D viscosity maps, compared to GIA models with 1D viscosity. The effect on regional mass balance is up to 5 Gt/year. Regional low viscosity can make present-day gravity rates sensitivity to ice thickness changes in the last decades. Therefore, an improved ice loading history for these time scales is needed.

  10. ESTIMATE OF GLOBAL METHANE EMISSIONS FROM COAL MINES

    EPA Science Inventory

    Country-specific emissions of methane (CH4) from underground coal mines, surface coal mines, and coal crushing and transport operations are estimated for 1989. Emissions for individual countries are estimated by using two sets of regression equations (R2 values range from 0.56 to...

  11. Global distribution of soil organic carbon - Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world

    NASA Astrophysics Data System (ADS)

    Köchy, M.; Hiederer, R.; Freibauer, A.

    2015-04-01

    The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD's bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm-3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of -56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".

  12. Estimates of Ice Sheet Mass Balance from Satellite Altimetry: Past and Future

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the 20% uncertainty in current mass balance corresponds to 1.6 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. A principal purpose of obtaining ice sheet elevation changes from satellite altimetry has been estimation of the current ice sheet mass balance. Limited information on ice sheet elevation change and their implications about mass balance have been reported by several investigators from radar altimetry (Seasat, Geosat, ERS-1&2). Analysis of ERS-1&2 data over Greenland for 7 years from 1992 to 1999 shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. Observed seasonal and interannual variations in ice surface elevation are larger than previously expected because of seasonal and interannUal variations in precipitation, melting, and firn compaction. In the accumulation zone, the variations in firn compaction are modeled as a function of temperature leaving variations in precipitation and the mass balance trend. Significant interannual variations in elevation in some locations, in particular the difference in trends from 1992 to 1995 compared to 1995 to 1999, can be explained by changes in precipitation over Greenland. Over the 7 years, trends in elevation are mostly positive at higher elevations and negative at lower elevations. In addition, trends for the winter seasons (from a trend analysis through the average winter elevations) are more positive than the corresponding trends for the summer. At lower elevations, the 7-year trends in some locations are strongly negative for summer and near zero or slightly positive for winter. These

  13. Secondary metabolomics: natural products mass spectrometry goes global.

    PubMed

    Kersten, Roland D; Dorrestein, Pieter C

    2009-08-21

    A global LC-MS metabolite analysis of wild-type Pseudomonas auerigunosa and mutants targeting the natural product pyochelin revealed the production of previously unknown metabolites, the 2-alkyl-4,5-dihydrothiazole-4-carboxylates. PMID:19817465

  14. Zero-Point Calibration for AGN Black-Hole Mass Estimates

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Onken, C. A.

    2004-01-01

    We discuss the measurement and associated uncertainties of AGN reverberation-based black-hole masses, since these provide the zero-point calibration for scaling relationships that allow black-hole mass estimates for quasars. We find that reverberation-based mass estimates appear to be accurate to within a factor of about 3.

  15. Global flood hazard mapping using statistical peak flow estimates

    NASA Astrophysics Data System (ADS)

    Herold, C.; Mouton, F.

    2011-01-01

    Our aim is to produce a world map of flooded areas for a 100 year return period, using a method based on large rivers peak flow estimates derived from mean monthly discharge time-series. Therefore, the map is supposed to represent flooding that affects large river floodplains, but not events triggered by specific conditions like coastal or flash flooding for instance. We first generate for each basin a set of hydromorphometric, land cover and climatic variables. In case of an available discharge record station at the basin outlet, we base the hundred year peak flow estimate on the corresponding time-series. Peak flow magnitude for basin outlets without gauging stations is estimated by statistical means, performing several regressions on the basin variables. These peak flow estimates enable the computation of corresponding flooded areas using hydrologic GIS processing on digital elevation model.

  16. The initial mass function and global rates of mass, momentum, and energy input to the interstellar medium via stellar winds

    NASA Technical Reports Server (NTRS)

    Van Buren, D.

    1985-01-01

    Published observational data are compiled and analyzed, using theoretical stellar-evolution models to determine the global rates of mass, momentum, and energy injected into the interstellar medium (ISM) by stellar winds. Expressions derived include psi = 0.00054 x (M to the -1.03) stars formed/sq kpc yr log M (where M is the initial mass function in solar mass units) and mass-loss = (2 x 10 to the -13th) x (L to the 1.25) solar mass/yr (with L in solar luminosity units). It is found that the wind/supernova injection of energy into the ISM and the mass loss from stars of 5 solar mass or more are approximately balanced by the dissipation of energy by cloud-cloud collisions and the formation of stars, respectively.

  17. Global parameter estimation methods for stochastic biochemical systems

    PubMed Central

    2010-01-01

    Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness) or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data. Results Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality. Conclusions The parameter estimation methodologies

  18. Estimating Black Hole Masses in Hundreds of Quasars

    NASA Astrophysics Data System (ADS)

    Hernitschek, Nina; Rix, Hans-Walter; Bovy, Jo; Morganson, Eric

    2015-03-01

    We explore the practical feasibility of active galactic nucleus (AGN) broadband reverberation mapping and present first results. We lay out and apply a rigorous approach for the stochastic reverberation mapping of unevenly sampled multi-broadband flux measurements, assuming that the broad-line region (BLR) line flux is contributing up to 15% in some bands, and is directly constrained by one spectroscopical epoch. The approach describes variations of the observed flux as the continuum, modeled as a stochastic Gaussian process, and emission line contribution, modeled as a scaled, smoothed, and delayed version of the continuum. This approach can be used not only to interpolate in time between measurements, but also to determine confidence limits on continuum—line emission delays. This approach is applied to Sloan Digital Sky Survey observations in Stripe 82 (S82), providing flux measurements that are precise to 2% at ~60 epochs over ~10 yr. The strong annual variations in the epoch sampling prove a serious limitation in practice. In addition, suitable redshift ranges must be identified where strong, broad emission lines contribute to one filter, but not to another. By generating and evaluating problem-specific mock data, we verify that S82-like data can constrain τdelay for a simple transfer function model. In application to real data, we estimate τdelay for 323 AGNs with 0.225 < z < 0.846, combining information for different objects through the ensemble-scaling relationships for BLR size and black hole mass. Our analysis tentatively indicates a 1.7 times larger BLR size of Hα and Mg II compared to Kaspi et al. and Vestergaard, but the seasonal data sampling casts doubt on the robustness of the inference.

  19. Organic Mass to Organic Carbon ratio in Atmospheric Aerosols: Observations and Global Simulations

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Kanakidou, M.; Daskalakis, N.

    2012-12-01

    Organic compounds play an important role in atmospheric chemistry and affect Earth's climate through their impact on oxidants and aerosol formation (e.g. O3 and organic aerosols (OA)). Due to the complexity of the mixture of organics in the atmosphere, the organic-mass-to-organic-carbon ratio (OM/OC) is often used to characterize the organic component in atmospheric aerosols. This ratio varies dependant on the aerosol origin and the chemical processing in the atmosphere. Atmospheric observations have shown that as OA and its precursor gases age in the atmosphere, it leads to the formation of more oxidized (O:C atomic ratio 0.6 to 0.8), less volatile and less hydrophobic compounds (particle growth factor at 95% relative humidity of 0.16 to 0.20) that have more similar properties than fresh aerosols. While reported OM:OC ratios observed over USA range between 1.29 and 1.95, indicating significant contribution of local pollution sources to the OC in that region, high O/C ratio associated with a high OM/OC ratio of 2.2 has been also observed for the summertime East Mediterranean aged aerosol. In global models, the OM/OC ratio is either calculated for specific compounds or estimated for compound groups. In the present study, we review OM/OC observations and compare them with simulations from a variety of models that contributed to the AEROCOM exercise. We evaluate the chemical processing level of atmospheric aerosols simulated by the models. A total of 32 global chemistry transport models are considered in this study with variable complexity of the representation of OM/OC ratio in the OA. The analysis provides an integrated view of the OM/OC ratio in the global atmosphere and of the accuracy of its representation in the global models. Implications for atmospheric chemistry and climate simulations are discussed.

  20. Global Intercomparison of 12 Land Surface Heat Flux Estimates

    NASA Technical Reports Server (NTRS)

    Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S. I.; McCabe, M. F.; Wood, E. F.; Rossow, W. B.; Balsamo, G.; Betts, A. K.; Dirmeyer, P. A.; Fisher, J. B.; Jung, M.; Kanamitsu, M.; Reichle, R. H.; Reichstein, M.; Rodell, M.; Sheffield, J.; Tu, K.; Wang, K.

    2011-01-01

    A global intercomparison of 12 monthly mean land surface heat flux products for the period 1993-1995 is presented. The intercomparison includes some of the first emerging global satellite-based products (developed at Paris Observatory, Max Planck Institute for Biogeochemistry, University of California Berkeley, University of Maryland, and Princeton University) and examples of fluxes produced by reanalyses (ERA-Interim, MERRA, NCEP-DOE) and off-line land surface models (GSWP-2, GLDAS CLM/ Mosaic/Noah). An intercomparison of the global latent heat flux (Q(sub le)) annual means shows a spread of approx 20 W/sq m (all-product global average of approx 45 W/sq m). A similar spread is observed for the sensible (Q(sub h)) and net radiative (R(sub n)) fluxes. In general, the products correlate well with each other, helped by the large seasonal variability and common forcing data for some of the products. Expected spatial distributions related to the major climatic regimes and geographical features are reproduced by all products. Nevertheless, large Q(sub le)and Q(sub h) absolute differences are also observed. The fluxes were spatially averaged for 10 vegetation classes. The larger Q(sub le) differences were observed for the rain forest but, when normalized by mean fluxes, the differences were comparable to other classes. In general, the correlations between Q(sub le) and R(sub n) were higher for the satellite-based products compared with the reanalyses and off-line models. The fluxes were also averaged for 10 selected basins. The seasonality was generally well captured by all products, but large differences in the flux partitioning were observed for some products and basins.

  1. The global and local stellar mass assembly histories of galaxies from the MaNGA survey

    NASA Astrophysics Data System (ADS)

    Ibarra-Medel, H. J.; Sánchez,, S. F.; Avila-Reese, V.; Hernández-Toledo, H. M., J.

    2016-06-01

    By means of the fossil record method implemented through Pipe3D we reconstruct the global and radial stellar mass growth histories (MGHs) of a large sample of galaxies in the mass range 10^{8.5}M⊙-10^{11.5}M⊙ from the MaNGA survey. We find that: (1) The main driver of the global MGHs is mass, with more massive galaxies assembling their masses earlier (downsizing). (2) For most galaxies in their late evolutionary stages, the innermost regions formed earlier than the outermost ones (inside-out). This behaviour is stronger for blue/late-type galaxies.

  2. On the Global Transport of Moisture: Comparison of Different Estimators

    NASA Technical Reports Server (NTRS)

    Haskins, R.; Fetzer, E.; Barnett, T.; Tyree, M.; Roeckner, E.

    1996-01-01

    An intercomparison is made between vertically integrated water vapor flux estimates from the NASA reanalysis product, and from two versions of an atmospheric general circulation model (AGCM) forced only by observed sea surface temperature (SST). The period of comparison was from March 1985-February 1991 plus data from the U.S. flood in 1993.

  3. Optimal Estimates of Global Terrestrial GPP from Fluorescence and DGVMs

    NASA Astrophysics Data System (ADS)

    Parazoo, Nicholas; Bowman, Kevin; Fisher, Joshua; Frankenberg, Christian; Jones, Dylan; Cescatti, Alessandro; Perez-Priego, Oscar; Wohlfahrt, Georg; Montagnani, Leonardo

    2014-05-01

    Changes in the processes that control terrestrial carbon uptake are highly uncertain but likely to have a significant influence on future atmospheric CO2 levels. RECCAP aims to improve process understanding by reconciling fluxes from top-down CO2 inversions and bottom-up estimates from an ensemble of DGVMs. As these models are typically used in projections of climate change a key part of this effort is benchmarking models and evaluating drivers of net carbon exchange within the current climate. Of particular importance are the spatial distribution and time rate of change of GPP. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence opens up a new possibility to directly measure planetary photosynthesis on spatially resolved scales. Here, we discuss a new methodology for estimating GPP and uncertainty from an optimal combination of an ensemble of DGVMs from the TRENDY project with satellite-based fluorescence observations from GOSAT. Prior uncertainty is estimated from the spread of DGVMs and updated through assimilation of fluorescence. We evaluate optimized fluxes against flux tower data in N. America, Europe, and S. America, benchmark TRENDY models using updated uncertainty estimates, and examine changes in the structure of the seasonal cycle. We find this methodology provides a novel way to evaluate models used in climate projections.

  4. Improved Estimates of the Milky Way's Stellar Mass and Star Formation Rate from Hierarchical Bayesian Meta-Analysis

    NASA Astrophysics Data System (ADS)

    Licquia, Timothy C.; Newman, Jeffrey A.

    2015-06-01

    We present improved estimates of several global properties of the Milky Way, including its current star formation rate (SFR), the stellar mass contained in its disk and bulge+bar components, as well as its total stellar mass. We do so by combining previous measurements from the literature using a hierarchical Bayesian (HB) statistical method that allows us to account for the possibility that any value may be incorrect or have underestimated errors. We show that this method is robust to a wide variety of assumptions about the nature of problems in individual measurements or error estimates. Ultimately, our analysis yields an SFR for the Galaxy of {{\\dot{M}}\\star }=1.65+/- 0.19 {{M}⊙ } y{{r}-1}, assuming a Kroupa initial mass function (IMF). By combining HB methods with Monte Carlo simulations that incorporate the latest estimates of the Galactocentric radius of the Sun, R0, the exponential scale length of the disk, Ld, and the local surface density of stellar mass, {{Σ}\\star }({{R}0}), we show that the mass of the Galactic bulge+bar is M\\star B=0.91+/- 0.07× {{10}10} {{M}⊙ }, the disk mass is M\\star D=5.17+/- 1.11× {{10}10} {{M}⊙ }, and their combination yields a total stellar mass of {{M}\\star }=6.08+/- 1.14× {{10}10} {{M}⊙ } (assuming a Kroupa IMF and an exponential disk profile). This analysis is based upon a new compilation of literature bulge mass estimates, normalized to common assumptions about the stellar IMF and Galactic disk properties, presented herein. We additionally find a bulge-to-total mass ratio for the Milky Way of B/T=0.150-0.019+0.028 and a specific SFR of {{\\dot{M}}\\star }/{{M}\\star }=2.71+/- 0.59× {{10}-11} yr-1.

  5. The estimation of masses of individual galaxies in clusters of galaxies.

    NASA Technical Reports Server (NTRS)

    Wolf, R. A.; Bahcall, J. N.

    1972-01-01

    Three different methods of estimating masses are discussed. The 'density method' is based on the analysis of the density distribution of galaxies around the object whose mass is to be found. The 'bound-galaxy method' gives estimates of the mass of a double, triple, or quadruple system from analysis of the orbital motion of the components. The 'virial method' utilizes the formulas derived for the second method to obtain estimates of the virial-theorem masses of whole clusters, and thus to obtain upper limits on the mass of an individual galaxy in a cluster. The analytic formulas are developed and compared with computer experiments, and some applications are given.

  6. Mass and Composition of the Continental Crust Estimated Using the CRUST2.0 Model

    NASA Astrophysics Data System (ADS)

    Peterson, B. T.; Depaolo, D. J.

    2007-12-01

    The mass, age, and chemical composition of the continental crust are fundamental data for understanding Earth differentiation. The inaccessibility of most of the volume of the crust requires that inferences be made about geochemistry using seismic and heat flow data, with additional constraints provided by scarce lower crustal samples (Rudnick and Fountain, Rev. Geophys., 1995; Rudnick and Gao, Treatise on Geochem., 2003). The global crustal seismic database CRUST2.0 (Bassin, et al., EOS, 2000; Mooney, et al., JGR, 1998; hereafter C2) provides a useful template with which the size and composition of the continents can be assessed, and may be a useful vehicle to organize and analyze diverse geochemical data. We have used C2 to evaluate the modern mass and composition of the continental crust and their uncertainties, and explored our results in the context of global mass balances, such as continents versus depleted mantle. The major source of uncertainty comes from the definition of "continent." The ultimate constraint is the total mass of Earth's crust (oceanic + continental), which, from C2, is 2.77 (in units of 1022 kg). Using crustal thickness as a definition of continent, the mass of continental crust (CC) is 2.195 if the minimum thickness is 12-18km, 2.085 for 22.5km, 2.002 for 25km, and 1.860 for 30km. These numbers include all sediment as continental crust. Using C2 definitions to distinguish oceanic and continental crust (and including oceanic plateaus which contain some continental crust), we calculate the CC mass as 2.171. To estimate chemical composition, we use the C2 reservoir masses. For minimum thickness of 22.5km, C2 yields the proportions 0.016 oceanic sediment, 0.038 continental sediment, 0.321 upper crust, 0.326 middle crust, 0.299 lower crust. Upper, middle, and lower crust are assigned compositions from Rudnick and Gao (2003), continental sediments are assigned upper crust composition, and oceanic sediments are assigned GLOSS composition (Plank

  7. Estimation of Subdaily Polar Motion with the Global Positioning System During the Spoch '92 Campaign

    NASA Technical Reports Server (NTRS)

    Ibanez-Meier, R.; Freedman, A. P.; Herring, T. A.; Gross, R. S.; Lichten, S. M.; Lindqwister, U. J.

    1994-01-01

    Data collected over six days from a worldwide Global Positioning System (GPS) tracking network during the Epoch '92 campaign are used to estimate variations of the Earth's pole position every 30 minutes.

  8. Uncertainty Estimation of Global Precipitation Measurement through Objective Validation Strategy

    NASA Astrophysics Data System (ADS)

    KIM, H.; Utsumi, N.; Seto, S.; Oki, T.

    2014-12-01

    Since Tropical Rainfall Measuring Mission (TRMM) has been launched in 1997 as the first satellite mission dedicated to measuring precipitation, the spatiotemporal gaps of precipitation observation have been filled significantly. On February 27th, 2014, Dual-frequency Precipitation Radar (DPR) satellite has been launched as a core observatory of Global Precipitation Measurement (GPM), an international multi-satellite mission aiming to provide the global three hourly map of rainfall and snowfall. In addition to Ku-band, Ka-band radar is newly equipped, and their combination is expected to introduce higher precision than the precipitation measurement of TRMM/PR. In this study, the GPM level-2 orbit products are evaluated comparing to various precipitation observations which include TRMM/PR, in-situ data, and ground radar. In the preliminary validation over intercross orbits of DPR and TRMM, Ku-band measurements in both satellites shows very close spatial pattern and intensity, and the DPR is capable to capture broader range of precipitation intensity than of the TRMM. Furthermore, we suggest a validation strategy based on 'objective classification' of background atmospheric mechanisms. The Japanese 55-year Reanalysis (JRA-55) and auxiliary datasets (e.g., tropical cyclone best track) is used to objectively determine the types of precipitation. Uncertainty of abovementioned precipitation products is quantified as their relative differences and characterized for different precipitation mechanism. Also, it is discussed how the uncertainty affects the synthesis of TRMM and GPM for a long-term satellite precipitation observation records which is internally consistent.

  9. Non-Tidal Non-Seasonal Oceanic Mass Redistribution Estimated from the TOPEX/Poseidon Observation

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Au, A. Y.; Chen, Jian-Li; Smith, David E. (Technical Monitor)

    2000-01-01

    Topex/Poseidon altimetry data are used to estimate the non-tidal mass redistribution as a function of space-time. The goal is to study the contribution of ocean circulations in the geodynamic effects including Earth's rotational and gravitational variations. We examine the non-seasonal anomalies at monthly sampling rate over the T/P span of eight years, concentrating especially on interannual variabilities. Since the sea-surface height data obtained from altimetry is the combined effect of steric change (primarily thermal effect) and the mass flux, and because the former has zero contribution to the geodynamic effects, one needs to do a so-called steric correction by removing from the altimetry data the steric contributions. We achieve it using multiyear monthly sea-surface temperature maps, together with monthly "climatology" for mixed-layer depth maps for mean-months of the year. We analyze both sets of the altimetry data and the steric correction data using the empirical orthogonal function/principal component analysis (in which we take care of issues associated with the area-weighting and non-zero mean), and examine the most important modes, either globally or regionally. In particular, the ENSO in the tropical Pacific/Indian Oceans exhibits the most prominent pattern. The net mass transport after the steric correction can then be compared with: (1) ocean general circulation model outputs for the same period of time (such as from POCM-4B); (2) non-atmospheric Earth rotation variations obtained from space geodesy data and atmospheric angular momentum data; (3) non-atmospheric low-degree gravitational variations from satellite-laser-ranging observations and global atmospheric data.

  10. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution

    PubMed Central

    Brauer, Michael; Amann, Markus; Burnett, Rick T.; Cohen, Aaron; Dentener, Frank; Ezzati, Majid; Henderson, Sarah B.; Krzyzanowski, Michal; Martin, Randall V.; Van Dingenen, Rita; van Donkelaar, Aaron; Thurston, George D.

    2014-01-01

    Ambient air pollution is associated with numerous adverse health impacts. Previous assessments of global attributable disease burden have been limited to urban areas or by coarse spatial resolution of concentration estimates. Recent developments in remote sensing, global chemical-transport models, and improvements in coverage of surface measurements facilitate virtually complete spatially resolved global air pollutant concentration estimates. We combined these data to generate global estimates of long- term average ambient concentrations of fine particles (PM2.5) and ozone at 0.1° × 0.1° spatial resolution for 1990 and 2005. In 2005, 89% of the world’s population lived in areas where the World Health Organization Air Quality Guideline of 10 μg/m3 PM2.5 (annual average) was exceeded. Globally, 32% of the population lived in areas exceeding the WHO Level 1 Interim Target of 35 μg/m3; driven by high proportions in East (76%) and South (26%) Asia. The highest seasonal ozone levels were found in North and Latin America, Europe, South and East Asia, and parts of Africa. Between 1990 and 2005 a 6% increase in global population-weighted PM2.5 and a 1% decrease in global population- weighted ozone concentrations was apparent, highlighted by increased concentrations in East, South and Southeast Asia and decreases in North America and Europe. Combined with spatially resolved population distributions, these estimates expand the evaluation of the global health burden associated with outdoor air pollution. PMID:22148428

  11. Estimated global exportations of Zika virus infections via travellers from Brazil from 2014 to 2015.

    PubMed

    Quam, Mikkel B; Wilder-Smith, Annelies

    2016-06-01

    The ongoing Zika pandemic in Latin America illustrates a potential source for further globalized spread. Here, we assessed global travel-related Zika virus exportations from Brazil during the initial year of the epidemic. Similar to subsequent national notifications, we estimated 584-1786 exported Zika cases from Brazil occurred September 2014-August 2015. PMID:27601533

  12. Similar negative impacts of temperature on global wheat yield estimated by three independent methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential impact of global temperature change on global wheat production has recently been assessed with different methods, scaling and aggregation approaches. Here we show that grid-based simulations, point-based simulations, and statistical regressions produce similar estimates of temperature ...

  13. A Global Ocean State Estimate at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Amrhein, D. E.; Wunsch, C. I.

    2015-12-01

    Many features of Earth's climate at the Last Glacial Maximum (LGM, ca. 20,000 years ago) remain a mystery, including the role of the ocean circulation in transporting thermal energy, salinity, and other tracers. Most efforts at reconstructing the ocean state during the LGM have relied either upon integrations of general circulation models under prescribed LGM boundary conditions or the interpretation of climate proxy records without explicit physical constraints. Here we describe a global, primitive equation simulation of the LGM ocean with boundary conditions (wind, surface air temperature, and other atmospheric variables) and mixing parameters derived by a least-squares fit of an ocean general circulation model to observations of deep ocean stable isotopes and sea surface temperatures at the LGM.

  14. Assimilation of GRACE-derived oceanic mass distributions with a global ocean circulation model

    NASA Astrophysics Data System (ADS)

    Saynisch, J.; Bergmann-Wolf, I.; Thomas, M.

    2015-02-01

    To study the sub-seasonal distribution and generation of ocean mass anomalies, Gravity Recovery and Climate Experiment (GRACE) observations of daily and monthly resolution are assimilated into a global ocean circulation model with an ensemble-based Kalman-Filter technique. The satellite gravimetry observations are processed to become time-variable fields of ocean mass distribution. Error budgets for the observations and the ocean model's initial state are estimated which contain the full covariance information. The consistency of the presented approach is demonstrated by increased agreement between GRACE observations and the ocean model. Furthermore, the simulations are compared with independent observations from 54 bottom pressure recorders. The assimilation improves the agreement to high-latitude recorders by up to 2 hPa. The improvements are caused by assimilation-induced changes in the atmospheric wind forcing, i.e., quantities not directly observed by GRACE. Finally, the use of the developed Kalman-Filter approach as a destriping filter to remove artificial noise contaminating the GRACE observations is presented.

  15. Estimates of radiated energy from global shallow subduction zone earthquakes

    NASA Astrophysics Data System (ADS)

    Bilek, S. L.; Lay, T.; Ruff, L.

    2002-12-01

    Previous studies used seismic energy to moment ratios for datasets of large earthquakes as a useful discriminant for tsunami earthquakes. We extend this idea of a "slowness" discriminant to a large dataset of subduction zone underthrusting earthquakes. We determined estimates of energy release in these shallow earthquakes using a large dataset of source time functions. This dataset contains source time functions for 418 shallow (< 70 km depth) earthquakes ranging from Mw 5.5 - 8.0 from 14 circum-Pacific subduction zones. Also included are tsunami earthquakes for which source time functions are available. We calculate energy using two methods, a substitution of a simplified triangle and integration of the original source time function. In the first method, we use a triangle substitution of peak moment and duration to find a minimum estimate of energy. The other method incorporates more of the source time function information and can be influenced by source time function complexity. We examine patterns in source time function complexity with respect to the energy estimates. For comparison with other earthquake parameters, it is useful to remove the effect of seismic moment on the energy estimates. We use the seismic energy to moment ratio (E/Mo) to highlight variations with depth, moment, and subduction zone. There is significant scatter in this ratio using both methods of energy calculation. We observe a slight increase in E/Mo with increasing Mw. There is not much variation in E/Mo with depth seen in entire dataset. However, a slight increase in E/Mo with depth is apparent in a few subduction zones such as Alaska, Central America, and Peru. An average E/Mo of 5x10e-6 roughly characterizes this shallow earthquake dataset, although with a factor of 10 scatter. This value is within about a factor of 2 of E/Mo ratios determined by Choy and Boatwright (1995). Tsunami earthquakes suggest an average E/Mo of 2x10e-7, significantly lower than the average for the shallow

  16. Anthropogenic CO2 estimates in the Southern Ocean: Storage partitioning in the different water masses

    NASA Astrophysics Data System (ADS)

    Pardo, Paula C.; Pérez, F. F.; Khatiwala, S.; Ríos, A. F.

    2014-01-01

    The role of the Southern Ocean (SO) remains a key issue in our understanding of the global carbon cycle and for predicting future climate change. A number of recent studies suggest that 30 to 40% of ocean uptake of anthropogenic carbon (CANT) occurs in the SO, accompanied by highly efficient transport of CANT by intermediate-depth waters out of that region. In contrast, storage of CANT in deep and bottom layers is still an open question. Significant discrepancies can be found between results from several indirect techniques and ocean models. Even though reference methodologies state that CANT concentrations in deep and bottom layers of the SO are negligible, recent results from tracer-based methods and ocean models as well as accurate measurements of 39Ar, CCl4 and CFCs along the continental slope and in the Antarctic deep and bottom waters contradict this conclusion. The role of the SO in the uptake, storage and transport of CANT has proved to be really important for the global ocean and there is a need for agreement between the different techniques. A CO2-data-based ("back-calculation") method, the CT0 method, was developed with the aim of obtaining more accurate CANT concentration and inventory estimates in the SO region (south of 45°S). Data from the GLODAP (Global Ocean Data Analysis Project) and CARINA databases were used. The CT0 method tries to reduce at least two of the main caveats attributed to the back-calculation methods: the need for a better definition of water mass mixing and, most importantly, the unsteady state of the air-sea CO2 disequilibrium (ΔCdis) term. Water mass mixing was computed on the basis of results from an extended Optimum Multi-Parametric (eOMP) analysis applied to the main water masses of the SO. Recently published parameterizations were used to obtain more reliable values of ΔCdis and also of preformed alkalinity. The variability of the ΔCdis term (δCdis) was approximated using results from an ocean carbon cycle model

  17. Global surface density of water mass variations by using a two-step inversion by cumulating daily satellite gravity information

    NASA Astrophysics Data System (ADS)

    Ramillien, Guillaume; Frappart, Frédéric; Seoane, Lucia

    2016-04-01

    We propose a new method to produce time series of global maps of surface mass variations by progressive integration of daily geopotential variations measured by orbiting satellites. In the case of the GRACE mission, these geopotential variations can be determined from very accurate inter-satellite K-Band Range Rate (KBRR) measurements of 5-second daily orbits. In particular, the along-track gravity contribution of hydrological mass changes is extracted by removing de-aliasing models for static field, atmosphere, oceans mass variations (including periodical tides), as well as polar movements. Our determination of surface mass sources is composed of two successive dependent Kalman filter stages. The first one consists of reducing the satellite-based potential anomalies by adjusting the longest spatial wavelengths (i.e., low-degree spherical harmonics lower than 2). In the second stage, the residual potential anomalies from the previous stage are used to recover surface mass density changes - in terms of Equivalent-Water Height (EWH) - over a global network of juxtaposed triangular elements. These surface tiles of ~100,000 km x km (or equivalently 330 km by 330 km) are defined to be of equal areas over the terrestrial sphere. However they can be adapted to the local geometry of the surface mass. Our global approach was tested by inverting geopotential data, and successfully applied to estimate time-varying surface mass densities from real GRACE-based residuals. This strategy of combined Kalman filter-type inversions can also be useful for exploring the possibility of improving time and space resolutions for ocean and land studies that would be hopefully brought by future low altitude geodetic missions.

  18. New estimates of silicate weathering rates and their uncertainties in global rivers

    NASA Astrophysics Data System (ADS)

    Moon, Seulgi; Chamberlain, C. P.; Hilley, G. E.

    2014-06-01

    This study estimated the catchment- and global-scale weathering rates of silicate rocks from global rivers using global compilation datasets from the GEMS/Water and HYBAM. These datasets include both time-series of chemical concentrations of major elements and synchronous discharge. Using these datasets, we first examined the sources of uncertainties in catchment and global silicate weathering rates. Then, we proposed future sampling strategies and geochemical analyses to estimate accurate silicate weathering rates in global rivers and to reduce uncertainties in their estimates. For catchment silicate weathering rates, we considered uncertainties due to sampling frequency and variability in river discharge, concentration, and attribution of weathering to different chemical sources. Our results showed that uncertainties in catchment-scale silicate weathering rates were due mostly to the variations in discharge and cation fractions from silicate substrates. To calculate unbiased silicate weathering rates accounting for the variations from discharge and concentrations, we suggest that at least 10 and preferably ∼40 temporal chemical data points with synchronous discharge from each river are necessary. For the global silicate weathering rate, we examined uncertainties from infrequent sampling within an individual river, the extrapolation from limited rivers to a global flux, and the inverse model selections for source differentiation. For this weathering rate, we found that the main uncertainty came from the extrapolation to the global flux and the model configurations of source differentiation methods. This suggests that to reduce the uncertainties in the global silicate weathering rates, coverage of synchronous datasets of river chemistry and discharge to rivers from tectonically active regions and volcanic provinces must be extended, and catchment-specific silicate end-members for those rivers must be characterized. With current available synchronous datasets, we

  19. Estimating inter-annual runoff variability from global hydroclimatic data

    NASA Astrophysics Data System (ADS)

    Peel, Murray; McMahon, Thomas; Finlayson, Brian

    2016-04-01

    Inter-annual variability of runoff, measured by the coefficient of variation of annual runoff (RCv), is an important constraint on reservoir yield and storage size for water resources management. For a catchment with a fixed storage capacity, any increase in reservoir inflow RCv translates into reduced reservoir yield for a given reliability of supply. Developing an improved understanding of the physical influences on inter-annual runoff variability around the world and how these may change in future is of vital importance to achieving on-going robust water and catchment management. Here we take a large-scale Comparative Hydrology approach to develop empirical relationships for RCv using a global hydroclimatic data set of 588 catchments. Empirical RCv relationships are developed for the World and catchments experiencing predominantly (≥75% catchment area) tropical, arid, temperate or cold climate types. The RCv relationships are developed specifically using non-streamflow based predictor variables so they can be used for predicting RCv in ungauged basins (the PUB problem - Prediction in Ungauged Basins) and or ungauged climates (the PUC problem - Prediction in Ungauged Climates) if past or future projections of the required predictor variables are available. Empirical relationship predictor variables are based on precipitation, evaporative demand, vegetation and topography. Key variables that contribute to explaining RCv in each relationship will be assessed to identify the dominant drivers of RCv and how the contribution of those drivers varies between regions and climate types, with particular focus on inter-annual climate variability.

  20. Global Expanded Nutrient Supply (GENuS) Model: A New Method for Estimating the Global Dietary Supply of Nutrients.

    PubMed

    Smith, Matthew R; Micha, Renata; Golden, Christopher D; Mozaffarian, Dariush; Myers, Samuel S

    2016-01-01

    Insufficient data exist for accurate estimation of global nutrient supplies. Commonly used global datasets contain key weaknesses: 1) data with global coverage, such as the FAO food balance sheets, lack specific information about many individual foods and no information on micronutrient supplies nor heterogeneity among subnational populations, while 2) household surveys provide a closer approximation of consumption, but are often not nationally representative, do not commonly capture many foods consumed outside of the home, and only provide adequate information for a few select populations. Here, we attempt to improve upon these datasets by constructing a new model--the Global Expanded Nutrient Supply (GENuS) model--to estimate nutrient availabilities for 23 individual nutrients across 225 food categories for thirty-four age-sex groups in nearly all countries. Furthermore, the model provides historical trends in dietary nutritional supplies at the national level using data from 1961-2011. We determine supplies of edible food by expanding the food balance sheet data using FAO production and trade data to increase food supply estimates from 98 to 221 food groups, and then estimate the proportion of major cereals being processed to flours to increase to 225. Next, we estimate intake among twenty-six demographic groups (ages 20+, both sexes) in each country by using data taken from the Global Dietary Database, which uses nationally representative surveys to relate national averages of food consumption to individual age and sex-groups; for children and adolescents where GDD data does not yet exist, average calorie-adjusted amounts are assumed. Finally, we match food supplies with nutrient densities from regional food composition tables to estimate nutrient supplies, running Monte Carlo simulations to find the range of potential nutrient supplies provided by the diet. To validate our new method, we compare the GENuS estimates of nutrient supplies against independent

  1. Global Expanded Nutrient Supply (GENuS) Model: A New Method for Estimating the Global Dietary Supply of Nutrients

    PubMed Central

    Golden, Christopher D.; Mozaffarian, Dariush

    2016-01-01

    Insufficient data exist for accurate estimation of global nutrient supplies. Commonly used global datasets contain key weaknesses: 1) data with global coverage, such as the FAO food balance sheets, lack specific information about many individual foods and no information on micronutrient supplies nor heterogeneity among subnational populations, while 2) household surveys provide a closer approximation of consumption, but are often not nationally representative, do not commonly capture many foods consumed outside of the home, and only provide adequate information for a few select populations. Here, we attempt to improve upon these datasets by constructing a new model—the Global Expanded Nutrient Supply (GENuS) model—to estimate nutrient availabilities for 23 individual nutrients across 225 food categories for thirty-four age-sex groups in nearly all countries. Furthermore, the model provides historical trends in dietary nutritional supplies at the national level using data from 1961–2011. We determine supplies of edible food by expanding the food balance sheet data using FAO production and trade data to increase food supply estimates from 98 to 221 food groups, and then estimate the proportion of major cereals being processed to flours to increase to 225. Next, we estimate intake among twenty-six demographic groups (ages 20+, both sexes) in each country by using data taken from the Global Dietary Database, which uses nationally representative surveys to relate national averages of food consumption to individual age and sex-groups; for children and adolescents where GDD data does not yet exist, average calorie-adjusted amounts are assumed. Finally, we match food supplies with nutrient densities from regional food composition tables to estimate nutrient supplies, running Monte Carlo simulations to find the range of potential nutrient supplies provided by the diet. To validate our new method, we compare the GENuS estimates of nutrient supplies against independent

  2. Sensitivity of Simulated Global Ocean Carbon Flux Estimates to Forcing by Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.

    2015-01-01

    Reanalysis products from MERRA, NCEP2, NCEP1, and ECMWF were used to force an established ocean biogeochemical model to estimate air-sea carbon fluxes (FCO2) and partial pressure of carbon dioxide (pCO2) in the global oceans. Global air-sea carbon fluxes and pCO2 were relatively insensitive to the choice of forcing reanalysis. All global FCO2 estimates from the model forced by the four different reanalyses were within 20% of in situ estimates (MERRA and NCEP1 were within 7%), and all models exhibited statistically significant positive correlations with in situ estimates across the 12 major oceanographic basins. Global pCO2 estimates were within 1% of in situ estimates with ECMWF being the outlier at 0.6%. Basin correlations were similar to FCO2. There were, however, substantial departures among basin estimates from the different reanalysis forcings. The high latitudes and tropics had the largest ranges in estimated fluxes among the reanalyses. Regional pCO2 differences among the reanalysis forcings were muted relative to the FCO2 results. No individual reanalysis was uniformly better or worse in the major oceanographic basins. The results provide information on the characterization of uncertainty in ocean carbon models due to choice of reanalysis forcing.

  3. Global estimation of CO emissions using three sets of satellite data for burned area

    NASA Astrophysics Data System (ADS)

    Jain, Atul K.

    Using three sets of satellite data for burned areas together with the tree cover imagery and a biogeochemical component of the Integrated Science Assessment Model (ISAM) the global emissions of CO and associated uncertainties are estimated for the year 2000. The available fuel load (AFL) is calculated using the ISAM biogeochemical model, which accounts for the aboveground and surface fuel removed by land clearing for croplands and pasturelands, as well as the influence on fuel load of various ecosystem processes (such as stomatal conductance, evapotranspiration, plant photosynthesis and respiration, litter production, and soil organic carbon decomposition) and important feedback mechanisms (such as climate and fertilization feedback mechanism). The ISAM estimated global total AFL in the year 2000 was about 687 Pg AFL. All forest ecosystems account for about 90% of the global total AFL. The estimated global CO emissions based on three global burned area satellite data sets (GLOBSCAR, GBA, and Global Fire Emissions Database version 2 (GFEDv2)) for the year 2000 ranges between 320 and 390 Tg CO. Emissions from open fires are highest in tropical Africa, primarily due to forest cutting and burning. The estimated overall uncertainty in global CO emission is about ±65%, with the highest uncertainty occurring in North Africa and Middle East region (±99%). The results of this study suggest that the uncertainties in the calculated emissions stem primarily from the area burned data.

  4. Estimates of Particulate Mass in Multi Canister Overpacks (MCO)

    SciTech Connect

    SLOUGHTER, J.P.

    2000-02-16

    High, best estimate, and low values are developed for particulate inventories within MCO baskets that have been loaded with freshly cleaned fuel assemblies and scrap. These per-basket estimates are then applied to all anticipated MCO payload configurations to identify which configurations are bounding for each type of particulate. Finally the resulting bounding and nominal values for residual particulates are combined with corresponding values [from other documents] for particulates that may be generated by corrosion of exposed uranium after the fuel has been cleaned. The resulting rounded nominal estimate for a typical MCO after 40 years of storage is 8 kg. The estimate for a bounding total particulate case MCO is that it may contain up to 64 kg of particulate after 40 years of storage.

  5. An improved technique for global solar radiation estimation using numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Shamim, M. A.; Remesan, R.; Bray, M.; Han, D.

    2015-07-01

    Global solar radiation is the driving force in hydrological cycle especially for evapotranspiration (ET) and is quite infrequently measured. This has led to the reliance on indirect techniques of estimation for data scarce regions. This study presents an improved technique that uses information from a numerical weather prediction (NWP) model (National Centre for Atmospheric Research NCAR's Mesoscale Meteorological model version 5 MM5), for the determination of a cloud cover index (CI), a major factor in the attenuation of the incident solar radiation. The cloud cover index (CI) together with the atmospheric transmission factor (KT) and output from a global clear sky solar radiation were then used for the estimation of global solar radiation for the Brue catchment located in the southwest of England. The results clearly show an improvement in the estimated global solar radiation in comparison to the prevailing approaches.

  6. A Probabilistic Mass Estimation Algorithm for a Novel 7- Channel Capacitive Sample Verification Sensor

    NASA Technical Reports Server (NTRS)

    Wolf, Michael

    2012-01-01

    A document describes an algorithm created to estimate the mass placed on a sample verification sensor (SVS) designed for lunar or planetary robotic sample return missions. A novel SVS measures the capacitance between a rigid bottom plate and an elastic top membrane in seven locations. As additional sample material (soil and/or small rocks) is placed on the top membrane, the deformation of the membrane increases the capacitance. The mass estimation algorithm addresses both the calibration of each SVS channel, and also addresses how to combine the capacitances read from each of the seven channels into a single mass estimate. The probabilistic approach combines the channels according to the variance observed during the training phase, and provides not only the mass estimate, but also a value for the certainty of the estimate. SVS capacitance data is collected for known masses under a wide variety of possible loading scenarios, though in all cases, the distribution of sample within the canister is expected to be approximately uniform. A capacitance-vs-mass curve is fitted to this data, and is subsequently used to determine the mass estimate for the single channel s capacitance reading during the measurement phase. This results in seven different mass estimates, one for each SVS channel. Moreover, the variance of the calibration data is used to place a Gaussian probability distribution function (pdf) around this mass estimate. To blend these seven estimates, the seven pdfs are combined into a single Gaussian distribution function, providing the final mean and variance of the estimate. This blending technique essentially takes the final estimate as an average of the estimates of the seven channels, weighted by the inverse of the channel s variance.

  7. Estimation of body mass index from the metrics of the first metatarsal

    NASA Astrophysics Data System (ADS)

    Dunn, Tyler E.

    Estimation of the biological profile from as many skeletal elements as possible is a necessity in both forensic and bioarchaeological contexts; this includes non-standard aspects of the biological profile, such as body mass index (BMI). BMI is a measure that allows for understanding of the composition of an individual and is traditionally divided into four groups: underweight, normal weight, overweight, and obese. BMI estimation incorporates both estimation of stature and body mass. The estimation of stature from skeletal elements is commonly included into the standard biological profile but the estimation of body mass needs to be further statistically validated to be consistently included. The bones of the foot, specifically the first metatarsal, may have the ability to estimate BMI given an allometric relationship to stature and the mechanical relationship to body mass. There are two commonly used methods for stature estimation, the anatomical method and the regression method. The anatomical method takes into account all of the skeletal elements that contribute to stature while the regression method relies on the allometric relationship between a skeletal element and living stature. A correlation between the metrics of the first metatarsal and living stature has been observed, and proposed as a method for valid stature estimation from the boney foot (Byers et al., 1989). Body mass estimation from skeletal elements relies on two theoretical frameworks: the morphometric and the mechanical approaches. The morphometric approach relies on the size relationship of the individual to body mass; the basic relationship between volume, density, and weight allows for body mass estimation. The body is thought of as a cylinder, and in order to understand the volume of this cylinder the diameter is needed. A commonly used proxy for this in the human body is skeletal bi-iliac breadth from rearticulated pelvic girdle. The mechanical method of body mass estimation relies on the

  8. Estimating mass of crushed limestone particles from 2D images

    NASA Astrophysics Data System (ADS)

    Banta, Larry E.; Cheng, Ken; Zaniewski, John P.

    2002-02-01

    In the construction of asphalt pavements, the stability of the asphalt is determined in large part by the gradation, or size distribution of the mineral aggregates that make up the matrix. Gradation is specified on the basis of sieve sizes and percent passing, where the latter is a cumulative measure of the mass of the aggregate passing the sieve as fraction of the total mass in the batch. In this paper, an approach for predicting particle mass based on 2D electronic images is explored. Images of crushed limestone aggregates were acquired using backlighting to create silhouettes. A morphological erosion process was used to separate touching and overlapping particles. Useful features of the particle silhouettes, such as area, centroid and shape descriptors were collected. Several dimensionless parameters were defined and were used as regressor variables in a multiple linear regression model to predict particle mass. Regressor coefficients were found by fitting to a sample of 501 particles ranging in size from 4.75 mm < particle sieve size < 25 mm. When tested against a different aggregate sample, the model predicted the mass of the batch to within +/- 2%.

  9. Mass screening for neuroblastoma and estimation of costs.

    PubMed

    Nishi, M; Miyake, H; Takeda, T; Takasugi, N; Hanai, J; Kawai, T

    1991-01-01

    On the basis of epidemiological data and medical costs for patients with neuroblastoma, we have calculated the cost of mass screening for neuroblastoma with high performance liquid chromatography (HPLC) compared to the cost when it is not performed. If the sensitivity of the mass screening is 80% and 22,000 infants are screened annually the cost will be 27,809,000 yen ($191,800). If mass is not performed, the cost will be 28,446,000 yen ($196,200). The difference in cost (637,000 yen or $4,400) is fairly small. If the sensitivity is 75% and 16,500 infants are screened, the difference is also small (174,000 yen or $1,200). Therefore, mass screening with the HPLC method will not be an undue financial burden. But re-screening at an older age will be done with less financially favorable results, considering that the sensitivity may not be as high as that of the first screening and that mothers are somewhat reluctant about re-screening. The balance of the cost of mass screening by qualitative methods may also be less favorable, since the detection rate is low. PMID:1957600

  10. Diagnostic Up-scaling of GPP from Eddy Covariance to Global Estimates

    NASA Astrophysics Data System (ADS)

    Tomelleri, E.; Beer, C.; Carvalhais, N.; Jung, M.; Papale, D.; Reichstein, M.; Ciais, P.; Peylin, P.; Pis, F.

    2009-12-01

    The uptake of atmospheric CO2 by plant photosynthesis is the largest global carbon flux and drives all terrestrial carbon cycle processes. While the photosynthesis processes at the leaf and canopy levels are quite well understood, so far only very crude estimates of its global integral, the Gross Primary Production (GPP) can be found in the literature. Existing estimates have been lacking sound empirical basis. Reasons for such limitations lie in the absence of direct estimates of ecosystem-level GPP and methodological difficulties in scaling local carbon flux measurements to global scale across heterogeneous vegetation. Here, we present global estimates of GPP based on different diagnostic approaches. All these up-scaling schemes integrated high-resolution remote sensing products, such as land cover, the fraction of photosynthetically active radiation (fAPAR) and leaf-area index, with carbon flux measurements from the global network of eddy covariance stations (FLUXNET). In addition, meteorological datasets from diverse sources and river runoff observations were used. All the above-mentioned approaches were also capable of estimating uncertainties. With six novel or newly parameterized and highly diverse up-scaling schemes we consistently estimated a global GPP of 122 Pg C y-1. This value is 5 % higher than estimates from inversions of 18O and CO2 atmospheric concentration. In the quantification of the total uncertainties, we considered uncertainties arising from the measurement technique and data processing (i.e. partitioning into GPP and respiration). Furthermore, we accounted for the uncertainties of drivers and the structural uncertainties of the extrapolation approach. The total propagation led to a global uncertainty of 15 % of the mean value. Although our mean GPP estimate of 122 Pg C y-1 is similar to the previous postulate by Intergovernmental Panel on Climate Change in 2001, we estimated a different variability among ecoregions. The tropics accounted for

  11. Estimating the Global Clinical Burden of Plasmodium falciparum Malaria in 2007

    PubMed Central

    Hay, Simon I.; Okiro, Emelda A.; Gething, Peter W.; Patil, Anand P.; Tatem, Andrew J.; Guerra, Carlos A.; Snow, Robert W.

    2010-01-01

    Background The epidemiology of malaria makes surveillance-based methods of estimating its disease burden problematic. Cartographic approaches have provided alternative malaria burden estimates, but there remains widespread misunderstanding about their derivation and fidelity. The aims of this study are to present a new cartographic technique and its application for deriving global clinical burden estimates of Plasmodium falciparum malaria for 2007, and to compare these estimates and their likely precision with those derived under existing surveillance-based approaches. Methods and Findings In seven of the 87 countries endemic for P. falciparum malaria, the health reporting infrastructure was deemed sufficiently rigorous for case reports to be used verbatim. In the remaining countries, the mapped extent of unstable and stable P. falciparum malaria transmission was first determined. Estimates of the plausible incidence range of clinical cases were then calculated within the spatial limits of unstable transmission. A modelled relationship between clinical incidence and prevalence was used, together with new maps of P. falciparum malaria endemicity, to estimate incidence in areas of stable transmission, and geostatistical joint simulation was used to quantify uncertainty in these estimates at national, regional, and global scales. Combining these estimates for all areas of transmission risk resulted in 451 million (95% credible interval 349–552 million) clinical cases of P. falciparum malaria in 2007. Almost all of this burden of morbidity occurred in areas of stable transmission. More than half of all estimated P. falciparum clinical cases and associated uncertainty occurred in India, Nigeria, the Democratic Republic of the Congo (DRC), and Myanmar (Burma), where 1.405 billion people are at risk. Recent surveillance-based methods of burden estimation were then reviewed and discrepancies in national estimates explored. When these cartographically derived national

  12. Added mass matrix estimation of beams partially immersed in water using measured dynamic responses

    NASA Astrophysics Data System (ADS)

    Liu, Fushun; Li, Huajun; Qin, Hongde; Liang, Bingchen

    2014-09-01

    An added mass matrix estimation method for beams partially immersed in water is proposed that employs dynamic responses, which are measured when the structure is in water and in air. Discrepancies such as mass and stiffness matrices between the finite element model (FEM) and real structure could be separated from the added mass of water by a series of correction factors, which means that the mass and stiffness of the FEM and the added mass of water could be estimated simultaneously. Compared with traditional methods, the estimated added mass correction factors of our approach will not be limited to be constant when FEM or the environment of the structure changed, meaning that the proposed method could reflect the influence of changes such as water depth, current, and so on. The greatest improvement is that the proposed method could estimate added mass of water without involving any water-related assumptions because all water influences are reflected in measured dynamic responses of the structure in water. A five degrees-of-freedom (dofs) mass-spring system is used to study the performance of the proposed scheme. The numerical results indicate that mass, stiffness, and added mass correction factors could be estimated accurately when noise-free measurements are used. Even when the first two modes are measured under the 5 percent corruption level, the added mass could be estimated properly. A steel cantilever beam with a rectangular section in a water tank at Ocean University of China was also employed to study the added mass influence on modal parameter identification and to investigate the performance of the proposed method. The experimental results demonstrated that the first two modal frequencies and mode shapes of the updated model match well with the measured values by combining the estimated added mass in the initial FEM.

  13. Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds

    PubMed Central

    Field, Daniel J.; Lynner, Colton; Brown, Christian; Darroch, Simon A. F.

    2013-01-01

    Scaling relationships between skeletal dimensions and body mass in extant birds are often used to estimate body mass in fossil crown-group birds, as well as in stem-group avialans. However, useful statistical measurements for constraining the precision and accuracy of fossil mass estimates are rarely provided, which prevents the quantification of robust upper and lower bound body mass estimates for fossils. Here, we generate thirteen body mass correlations and associated measures of statistical robustness using a sample of 863 extant flying birds. By providing robust body mass regressions with upper- and lower-bound prediction intervals for individual skeletal elements, we address the longstanding problem of body mass estimation for highly fragmentary fossil birds. We demonstrate that the most precise proxy for estimating body mass in the overall dataset, measured both as coefficient determination of ordinary least squares regression and percent prediction error, is the maximum diameter of the coracoid’s humeral articulation facet (the glenoid). We further demonstrate that this result is consistent among the majority of investigated avian orders (10 out of 18). As a result, we suggest that, in the majority of cases, this proxy may provide the most accurate estimates of body mass for volant fossil birds. Additionally, by presenting statistical measurements of body mass prediction error for thirteen different body mass regressions, this study provides a much-needed quantitative framework for the accurate estimation of body mass and associated ecological correlates in fossil birds. The application of these regressions will enhance the precision and robustness of many mass-based inferences in future paleornithological studies. PMID:24312392

  14. A Simple Estimate of the Mass of the Positron.

    ERIC Educational Resources Information Center

    Jones, Goronwy Tudor

    1993-01-01

    Discusses a small part of the final state of a high-energy neutrino interaction: a head-on collision of a positron and a stationary electron. Provides a bubble chamber picture and describes the resulting particle effects. Uses momentum to determine the mass of the positron. (MVL)

  15. Significantly improving stellar mass and radius estimates: a new reference function for the Δν scaling relation

    NASA Astrophysics Data System (ADS)

    Guggenberger, Elisabeth; Hekker, Saskia; Basu, Sarbani; Bellinger, Earl

    2016-08-01

    The scaling relations between global asteroseismic observables and stellar properties are widely used to estimate masses and radii of stars exhibiting solar-like oscillations. Since the mass and radius of the Sun are known independently, the Sun is commonly used as a reference to scale to. However, the validity of the scaling relations depends on the homology between the star under study and the reference star. Solar-like oscillators span a wide range of masses and metallicities, as well as evolutionary phases. Most of these stars are therefore not homologous to the Sun. This leads to errors of up to 10% (5%) in mass (radius) when using the asteroseismic scaling relations with the Sun as the reference. In this paper we derive a reference function to replace the solar-reference value used in the large-frequency-separation scaling relation. Our function is the first that depends on both effective temperature and metallicity, and is applicable from the end of the main sequence to just above the bump on the red giant branch. This reference function improves the estimates of masses and radii determined through scaling relations by a factor of 2, i.e. allows masses and radii to be recovered with an accuracy of 5% and 2%, respectively.

  16. Significantly improving stellar mass and radius estimates: A new reference function for the Δν scaling relation

    NASA Astrophysics Data System (ADS)

    Guggenberger, Elisabeth; Hekker, Saskia; Basu, Sarbani; Bellinger, Earl

    2016-06-01

    The scaling relations between global asteroseismic observables and stellar properties are widely used to estimate masses and radii of stars exhibiting solar-like oscillations. Since the mass and radius of the Sun are known independently, the Sun is commonly used as a reference to scale to. However, the validity of the scaling relations depends on the homology between the star under study and the reference star. Solar-like oscillators span a wide range of masses and metallicities, as well as evolutionary phases. Most of these stars are therefore not homologous to the Sun. This leads to errors of up to 10% (5%) in mass (radius) when using the asteroseismic scaling relations with the Sun as the reference. In this paper we derive a reference function to replace the solar-reference value used in the large-frequency-separation scaling relation. Our function is the first that depends on both effective temperature and metallicity, and is applicable from the end of the main sequence to just above the bump on the red giant branch. This reference function improves the estimates of masses and radii determined through scaling relations by a factor of 2, i.e. allows masses and radii to be recovered with an accuracy of 5% and 2%, respectively.

  17. Significantly improving stellar mass and radius estimates: a new reference function for the Δν scaling relation

    NASA Astrophysics Data System (ADS)

    Guggenberger, Elisabeth; Hekker, Saskia; Basu, Sarbani; Bellinger, Earl

    2016-08-01

    The scaling relations between global asteroseismic observables and stellar properties are widely used to estimate masses and radii of stars exhibiting solar-like oscillations. Since the mass and radius of the Sun are known independently, the Sun is commonly used as a reference to scale to. However, the validity of the scaling relations depends on the homology between the star under study and the reference star. Solar-like oscillators span a wide range of masses and metallicities, as well as evolutionary phases. Most of these stars are therefore not homologous to the Sun. This leads to errors of up to 10 per cent (5 per cent) in mass (radius) when using the asteroseismic scaling relations with the Sun as the reference. In this paper, we derive a reference function to replace the solar-reference value used in the large-frequency separation scaling relation. Our function is the first that depends on both effective temperature and metallicity, and is applicable from the end of the main sequence to just above the bump on the red giant branch. This reference function improves the estimates of masses and radii determined through scaling relations by a factor of 2, i.e. allows masses and radii to be recovered with an accuracy of 5 per cent and 2 per cent, respectively.

  18. Estimates of Regional Equilibrium Line Altitudes and Net Mass Balance from MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Shea, J. M.; Menounos, B.; Moore, R. D.

    2011-12-01

    Glacier mass balance is a key variable used to assess the health of glaciers and ice sheets. Estimates of glacier mass balance are required to model the dynamic response of glaciers and ice sheets to climate change, estimate sea-level contribution from surface melt, and document the response of glaciers to climate forcing. Annually resolved estimates of regional mass balance for mountain ranges is often inferred from a sparse network of ground-based measurements of mass balance for individual glaciers. Given that net mass balance is highly correlated with the annual equilibrium line altitude (ELA), we develop an automated approach to estimate the ELA, and by inference net mass balance, on large glaciers and icefields using MODIS 250 m imagery (MOD02QKM). We discriminate areas of bare ice and snow/firn using the product of MODIS' red (0.620 - 0.670 μ m) and near infrared (0.841 - 0.876 μ m) bands. To assess the skill in estimating glacier ELAs, we compare ELAs derived from (1) manual delineation and (2) unsupervised classification of the band product to ground-based observations of ELA and net mass balance at seven long term mass-balance monitoring sites in western North America (Gulkana, Wolverine, Lemon Creek, Taku, Place, Peyto, and South Cascade). Spatial and temporal variations in MODIS-derived ELAs provide an opportunity to validate regional mass-balance models, estimate surface melt contributions to sea-level rise, and examine the cryospheric response to climate change.

  19. Global surface mass time variations by using a two-step inversion for cumulating daily satellite gravity information

    NASA Astrophysics Data System (ADS)

    Ramillien, Guillaume; Frappart, Frappart; Seoane, Lucia

    2015-04-01

    We propose a new method to produce time series of global maps of surface mass variations by progressive integration of daily geopotential variations measured by orbiting satellites. In the case of the GRACE mission (2002 - 2012), these geopotential variations can be determined from very accurate inter-satellite K-Band Range Rate (KBRR) measurements of 5-second daily orbits. In particular, the along-track gravity contribution of hydrology is extracted by removing de-aliasing models for static field, atmosphere, oceans mass variations (including periodical tides), as well as polar movements. Our determination of surface mass sources consists of two successive dependent Kalman filter stages. The first one consists of reducing the satellite-based potential anomalies by adjusting the longest spatial wavelengths (i.e., low-degree spherical harmonics less than 5-6). In the second stage, the residual potential anomalies from the previous stage are used to recover surface mass density changes - in terms of Equivalent-Water Height (EWH) - over a global network of juxtaposed triangular elements. These surface tiles of ~40,000 km x km are imposed to be identical and homogeneously-distributed over the terrestrial sphere, however they can be adapted to the local geometry of the surface mass. Our global approach was tested by inverting simulated hydrology-related geopotential data, and successfully applied to estimate time-varying surface mass densities from real GRACE-based residuals. This strategy of combined Kalman filter-type inversions can also be useful for exploring the possibility of reaching better time and space resolutions for hydrology, that would be hopefully brought by future low altitude geodetic missions.

  20. EFFECTS OF BIASES IN VIRIAL MASS ESTIMATION ON COSMIC SYNCHRONIZATION OF QUASAR ACCRETION

    SciTech Connect

    Steinhardt, Charles L.

    2011-09-01

    Recent work using virial mass estimates and the quasar mass-luminosity plane has yielded several new puzzles regarding quasar accretion, including a sub-Eddington boundary (SEB) on most quasar accretion, near-independence of the accretion rate from properties of the host galaxy, and a cosmic synchronization of accretion among black holes of a common mass. We consider how these puzzles might change if virial mass estimation turns out to have a systematic bias. As examples, we consider two recent claims of mass-dependent biases in Mg II masses. Under any such correction, the surprising cosmic synchronization of quasar accretion rates and independence from the host galaxy remain. The slope and location of the SEB are very sensitive to biases in virial mass estimation, and various mass calibrations appear to favor different possible physical explanations for feedback between the central black hole and its environment. The alternative mass estimators considered do not simply remove puzzling quasar behavior, but rather replace it with new puzzles that may be more difficult to solve than those using current virial mass estimators and the Shen et al. catalog.

  1. The 2006 William Feinberg lecture: shifting the paradigm from stroke to global vascular risk estimation.

    PubMed

    Sacco, Ralph L

    2007-06-01

    By the year 2010, it is estimated that 18.1 million people worldwide will die annually because of cardiovascular diseases and stroke. "Global vascular risk" more broadly includes the multiple overlapping disease silos of stroke, myocardial infarction, peripheral arterial disease, and vascular death. Estimation of global vascular risk requires consideration of a variety of variables including demographics, environmental behaviors, and risk factors. Data from multiple studies suggest continuous linear relationships between the physiological vascular risk modulators of blood pressure, lipids, and blood glucose rather than treating these conditions as categorical risk factors. Constellations of risk factors may be more relevant than individual categorical components. Exciting work with novel risk factors may also have predictive value in estimates of global vascular risk. Advances in imaging have led to the measurement of subclinical conditions such as carotid intima-media thickness and subclinical brain conditions such as white matter hyperintensities and silent infarcts. These subclinical measurements may be intermediate stages in the transition from asymptomatic to symptomatic vascular events, appear to be associated with the fundamental vascular risk factors, and represent opportunities to more precisely quantitate disease progression. The expansion of studies in molecular epidemiology and detection of genetic markers underlying vascular risks also promises to extend our precision of global vascular risk estimation. Global vascular risk estimation will require quantitative methods that bundle these multi-dimensional data into more precise estimates of future risk. The power of genetic information coupled with data on demographics, risk-inducing behaviors, vascular risk modulators, biomarkers, and measures of subclinical conditions should provide the most realistic approximation of an individual's future global vascular risk. The ultimate public health benefit

  2. Assessing global dietary habits: a comparison of national estimates from the FAO and the Global Dietary Database1234

    PubMed Central

    Del Gobbo, Liana C; Khatibzadeh, Shahab; Imamura, Fumiaki; Micha, Renata; Shi, Peilin; Smith, Matthew; Myers, Samuel S; Mozaffarian, Dariush

    2015-01-01

    Background: Accurate data on dietary habits are crucial for understanding impacts on disease and informing policy priorities. Nation-specific food balance sheets from the United Nations FAO provided the only available global dietary estimates but with uncertain validity. Objectives: We investigated how FAO estimates compared with nationally representative, individual-based dietary surveys from the Global Dietary Database (GDD) and developed calibration equations to improve the validity of FAO data to estimate dietary intakes. Design: FAO estimates were matched to GDD data for 113 countries across the following 9 major dietary metrics for 30 y of data (1980–2009): fruit, vegetables, beans and legumes, nuts and seeds, whole grains, red and processed meats, fish and seafood, milk, and total energy. Both absolute and percentage differences in FAO and GDD mean estimates were evaluated. Linear regression was used to evaluate whether FAO estimates predicted GDD dietary intakes and whether this prediction varied according to age, sex, region, and time. Calibration equations were developed to adjust FAO estimates to approximate national dietary surveys validated by using randomly split data sets. Results: For most food groups, FAO estimates substantially overestimated individual-based dietary intakes by 74.5% (vegetables) and 270% (whole grains) while underestimating beans and legumes (−50%) and nuts and seeds (−29%) (P < 0.05 for each). In multivariate regressions, these overestimations and underestimations for each dietary factor further varied by age, sex, region, and time (P < 0.001 for each). Split–data set calibration models, which accounted for country-level covariates and other sources of heterogeneity, effectively adjusted FAO estimates to approximate estimates from national survey data (r = 0.47–0.80) with small SEs of prediction (generally 1–5 g/d). Conclusions: For all food groups and total energy, FAO estimates substantially exceeded or

  3. Estimation of skeletal muscle mass from body creatine content

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.

    1982-01-01

    Procedures have been developed for studying the effect of changes in gravitational loading on skeletal muscle mass through measurements of the body creatine content. These procedures were developed for studies of gravitational scale effects in a four-species model, comprising the hamster, rat, guinea pig, and rabbit, which provides a sufficient range of body size for assessment of allometric parameters. Since intracellular muscle creatine concentration varies among species, and with age within a given species, the concentration values for metabolically mature individuals of these four species were established. The creatine content of the carcass, skin, viscera, smooth muscle, and skeletal muscle was determined for each species. In addition, the skeletal muscle mass of the major body components was determined, as well as the total and fat-free masses of the body and carcass, and the percent skeletal muscle in each. It is concluded that these procedures are particularly useful for studying the effect of gravitational loading on the skeletal muscle content of the animal carcass, which is the principal weight-bearing organ of the body.

  4. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization

    NASA Astrophysics Data System (ADS)

    Kolby Smith, W.; Reed, Sasha C.; Cleveland, Cory C.; Ballantyne, Ashley P.; Anderegg, William R. L.; Wieder, William R.; Liu, Yi Y.; Running, Steven W.

    2016-03-01

    Atmospheric mass balance analyses suggest that terrestrial carbon (C) storage is increasing, partially abating the atmospheric [CO2] growth rate, although the continued strength of this important ecosystem service remains uncertain. Some evidence suggests that these increases will persist owing to positive responses of vegetation growth (net primary productivity; NPP) to rising atmospheric [CO2] (that is, `CO2 fertilization’). Here, we present a new satellite-derived global terrestrial NPP data set, which shows a significant increase in NPP from 1982 to 2011. However, comparison against Earth system model (ESM) NPP estimates reveals a significant divergence, with satellite-derived increases (2.8 +/- 1.50%) less than half of ESM-derived increases (7.6 +/- 1.67%) over the 30-year period. By isolating the CO2 fertilization effect in each NPP time series and comparing it against a synthesis of available free-air CO2 enrichment data, we provide evidence that much of the discrepancy may be due to an over-sensitivity of ESMs to atmospheric [CO2], potentially reflecting an under-representation of climatic feedbacks and/or a lack of representation of nutrient constraints. Our understanding of CO2 fertilization effects on NPP needs rapid improvement to enable more accurate projections of future C cycle-climate feedbacks; we contend that better integration of modelling, satellite and experimental approaches offers a promising way forward.

  5. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization

    USGS Publications Warehouse

    Smith, W. Kolby; Reed, Sasha C.; Cleveland, Cory C.; Ballantyne, Ashley P; Anderegg, William R. L.; Wieder, William R.; Liu, Yi Y; Running, Steven W.

    2015-01-01

    Atmospheric mass balance analyses suggest that terrestrial carbon (C) storage is increasing, partially abating the atmospheric [CO2] growth rate, although the continued strength of this important ecosystem service remains uncertain. Some evidence suggests that these increases will persist owing to positive responses of vegetation growth (net primary productivity; NPP) to rising atmospheric [CO2] (that is, ‘CO2 fertilization’). Here, we present a new satellite-derived global terrestrial NPP data set, which shows a significant increase in NPP from 1982 to 2011. However, comparison against Earth system model (ESM) NPP estimates reveals a significant divergence, with satellite-derived increases (2.8 ± 1.50%) less than half of ESM-derived increases (7.6  ±  1.67%) over the 30-year period. By isolating the CO2 fertilization effect in each NPP time series and comparing it against a synthesis of available free-air CO2 enrichment data, we provide evidence that much of the discrepancy may be due to an over-sensitivity of ESMs to atmospheric [CO2], potentially reflecting an under-representation of climatic feedbacks and/or a lack of representation of nutrient constraints. Our understanding of CO2 fertilization effects on NPP needs rapid improvement to enable more accurate projections of future C cycle–climate feedbacks; we contend that better integration of modelling, satellite and experimental approaches offers a promising way forward.

  6. TRMM Science Highlights and 3-hr Quasi-global Precipitation Estimates

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Einaudi, Franco (Technical Monitor)

    2002-01-01

    The Tropical Rainfall Measuring Mission (TRMM) has completed more than four years in orbit. A summary of research highlights will be presented focusing on application of TRMM data to topics ranging over climate analysis, improving forecasts, precipitation processes and non-precipitation applications. One focus of the talk will be the quasi-global TRMM real-time merged rainfall analysis with 3-hr resolution, which uses TRMM to calibrate estimates from other polar-orbit and geosynchronous satellites. These rainfall estimates provide useful information for applications for assimilation into numerical models and for hydrological studies. The status of precipitation estimates from different TRMM instruments and algorithms will be described. Monthly surface rainfall estimates over the ocean based on different instruments on TRMM currently differ by 20% in overall mean. In addition, time changes in global ocean rainfall between El Nino and La Nina conditions show differences between the active and passive microwave products. Improved versions of algorithms will shortly resolve most of these differences. The TRMM rainfall estimates are intercompared among themselves and with other estimates, including those of the standard, monthly Global Precipitation Climatology Project (GPCP) analysis. A four-year TRMM rainfall climatology is presented, including anomaly fields related to the changing ENSO situation during the mission. The evolution of precipitation analysis incorporating Advanced Microwave Scanning Radiometer (AMSR) data on AQUA and ADEOS II and eventually data from the Global Precipitation Mission (GPM) will also be described.

  7. Bottom-up uncertainty estimates of global ammonia emissions from global agricultural production systems

    NASA Astrophysics Data System (ADS)

    Beusen, A. H. W.; Bouwman, A. F.; Heuberger, P. S. C.; Van Drecht, G.; Van Der Hoek, K. W.

    Here we present an uncertainty analysis of NH 3 emissions from agricultural production systems based on a global NH 3 emission inventory with a 5×5 min resolution. Of all results the mean is given with a range (10% and 90% percentile). The uncertainty range for the global NH 3 emission from agricultural systems is 27-38 (with a mean of 32) Tg NH 3-N yr -1, N fertilizer use contributing 10-12 (11) Tg yr -1 and livestock production 16-27 (21) Tg yr -1. Most of the emissions from livestock production come from animal houses and storage systems (31-55%); smaller contributions come from the spreading of animal manure (23-38%) and grazing animals (17-37%). This uncertainty analysis allows for identifying and improving those input parameters with a major influence on the results. The most important determinants of the uncertainty related to the global agricultural NH 3 emission comprise four parameters (N excretion rates, NH 3 emission rates for manure in animal houses and storage, the fraction of the time that ruminants graze and the fraction of non-agricultural use of manure) specific to mixed and landless systems, and total animal stocks. Nitrogen excretion rates and NH 3 emission rates from animal houses and storage systems are shown consistently to be the most important parameters in most parts of the world. Input parameters for pastoral systems are less relevant. However, there are clear differences between world regions and individual countries, reflecting the differences in livestock production systems.

  8. Estimating initial contaminant mass based on fitting mass-depletion functions to contaminant mass discharge data: Testing method efficacy with SVE operations data.

    PubMed

    Mainhagu, J; Brusseau, M L

    2016-09-01

    The mass of contaminant present at a site, particularly in the source zones, is one of the key parameters for assessing the risk posed by contaminated sites, and for setting and evaluating remediation goals and objectives. This quantity is rarely known and is challenging to estimate accurately. This work investigated the efficacy of fitting mass-depletion functions to temporal contaminant mass discharge (CMD) data as a means of estimating initial mass. Two common mass-depletion functions, exponential and power functions, were applied to historic soil vapor extraction (SVE) CMD data collected from 11 contaminated sites for which the SVE operations are considered to be at or close to essentially complete mass removal. The functions were applied to the entire available data set for each site, as well as to the early-time data (the initial 1/3 of the data available). Additionally, a complete differential-time analysis was conducted. The latter two analyses were conducted to investigate the impact of limited data on method performance, given that the primary mode of application would be to use the method during the early stages of a remediation effort. The estimated initial masses were compared to the total masses removed for the SVE operations. The mass estimates obtained from application to the full data sets were reasonably similar to the measured masses removed for both functions (13 and 15% mean error). The use of the early-time data resulted in a minimally higher variation for the exponential function (17%) but a much higher error (51%) for the power function. These results suggest that the method can produce reasonable estimates of initial mass useful for planning and assessing remediation efforts. PMID:27494132

  9. Estimating initial contaminant mass based on fitting mass-depletion functions to contaminant mass discharge data: Testing method efficacy with SVE operations data

    NASA Astrophysics Data System (ADS)

    Mainhagu, J.; Brusseau, M. L.

    2016-09-01

    The mass of contaminant present at a site, particularly in the source zones, is one of the key parameters for assessing the risk posed by contaminated sites, and for setting and evaluating remediation goals and objectives. This quantity is rarely known and is challenging to estimate accurately. This work investigated the efficacy of fitting mass-depletion functions to temporal contaminant mass discharge (CMD) data as a means of estimating initial mass. Two common mass-depletion functions, exponential and power functions, were applied to historic soil vapor extraction (SVE) CMD data collected from 11 contaminated sites for which the SVE operations are considered to be at or close to essentially complete mass removal. The functions were applied to the entire available data set for each site, as well as to the early-time data (the initial 1/3 of the data available). Additionally, a complete differential-time analysis was conducted. The latter two analyses were conducted to investigate the impact of limited data on method performance, given that the primary mode of application would be to use the method during the early stages of a remediation effort. The estimated initial masses were compared to the total masses removed for the SVE operations. The mass estimates obtained from application to the full data sets were reasonably similar to the measured masses removed for both functions (13 and 15% mean error). The use of the early-time data resulted in a minimally higher variation for the exponential function (17%) but a much higher error (51%) for the power function. These results suggest that the method can produce reasonable estimates of initial mass useful for planning and assessing remediation efforts.

  10. Towards an estimation of water masses formation areas from SMOS-based TS diagrams

    NASA Astrophysics Data System (ADS)

    Klockmann, Marlene; Sabia, Roberto; Fernandez-Prieto, Diego; Donlon, Craig; Font, Jordi

    2014-05-01

    Temperature-Salinity (TS) diagrams emphasize the mutual variability of ocean temperature and salinity values, relating them to the corresponding density. Canonically used in oceanography, they provide a means to characterize and trace ocean water masses. In [1], a first attempt to estimate surface-layer TS diagrams based on satellite measurements has been performed, profiting from the recent availability of spaceborne salinity data. In fact, the Soil Moisture and Ocean Salinity (SMOS, [2]) and the Aquarius/SAC-D [3] satellite missions allow to study the dynamical patterns of Sea Surface Salinity (SSS) for the first time on a global scale. In [4], given SMOS and Aquarius salinity estimates, and by also using Sea Surface Temperature (SST) from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA, [5]) effort, experimental satellite-based TS diagrams have been routinely derived for the year 2011. They have been compared with those computed from ARGO-buoys interpolated fields, referring to a customised partition of the global ocean into seven regions, according to the water masses classification of [6]. In [7], moreover, besides using TS diagrams as a diagnostic tool to evaluate the temporal variation of SST and SSS (and their corresponding density) as estimated by satellite measurements, the emphasis was on the interpretation of the geographical deviations with respect to the ARGO baseline (aiming at distinguishing between the SSS retrieval errors and the additional information contained in the satellite data with respect to ARGO). In order to relate these mismatches to identifiable oceanographic structures and processes, additional satellite datasets of ocean currents, evaporation/precipitation fluxes, and wind speed have been super-imposed. Currently, the main focus of the study deals with the exploitation of these TS diagrams as a prognostic tool to derive water masses formation areas. Firstly, following the approach described in [8], the surface

  11. Glaciers. Attribution of global glacier mass loss to anthropogenic and natural causes.

    PubMed

    Marzeion, Ben; Cogley, J Graham; Richter, Kristin; Parkes, David

    2014-08-22

    The ongoing global glacier retreat is affecting human societies by causing sea-level rise, changing seasonal water availability, and increasing geohazards. Melting glaciers are an icon of anthropogenic climate change. However, glacier response times are typically decades or longer, which implies that the present-day glacier retreat is a mixed response to past and current natural climate variability and current anthropogenic forcing. Here we show that only 25 ± 35% of the global glacier mass loss during the period from 1851 to 2010 is attributable to anthropogenic causes. Nevertheless, the anthropogenic signal is detectable with high confidence in glacier mass balance observations during 1991 to 2010, and the anthropogenic fraction of global glacier mass loss during that period has increased to 69 ± 24%. PMID:25123485

  12. Specific Mass Estimates for A Vapor Core Reactor With MHD

    SciTech Connect

    Knight, Travis; Smith, Blair; Anghaie, Samim

    2002-07-01

    This study investigated the development of a system concept for space power generation and nuclear electric propulsion based on a vapor core reactor (VCR) with magnetohydrodynamic (MHD) power conversion system, coupled to a magnetoplasma-dynamic (MPD) thruster. The VCR is a liquid-vapor core reactor concept operating with metallic uranium or uranium tetrafluoride (UF{sub 4}) vapor as the fissioning fuel and alkali metals or their fluorides as working fluid in a closed Rankine cycle with MHD energy conversion. Gaseous and liquid-vapor core reactors can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. This unique feature makes this reactor concept a very natural and attractive candidate for very high power (10 to 1000 MWe) and low specific mass (0.4 to 5 kg/kWe) nuclear electric propulsion (NEP) applications since the MHD output could be coupled with minimal power conditioning to MPD thrusters or other types of thruster for producing thrust at very high specific impulse (I{sub sp} 1500 to 10,000 s). The exceptional specific mass performance of an optimized VCRMHD- NEP system could lead to a dramatic reduction in the cost and duration of manned or robotic interplanetary as well as interstellar missions. The VCR-MHD-NEP system could enable very efficient Mars cargo transfers or short (<8 month) Mars round trips with less initial mass in low Earth orbit (IMLEO). The system could also enable highly efficient lunar cargo transfer and rapid missions to other destinations throughout the solar system. (authors)

  13. Dark Matter and neutrino masses from global U(1) B - L symmetry breaking

    NASA Astrophysics Data System (ADS)

    Lindner, Manfred; Schmidt, Daniel; Schwetz, Thomas

    2011-11-01

    We present a scenario where neutrino masses and Dark Matter are related due to a global U(1) B - L symmetry. Specifically we consider neutrino mass generation via the Zee-Babu two-loop mechanism, augmented by a scalar singlet whose VEV breaks the global U(1) B - L symmetry. In order to obtain a Dark Matter candidate we introduce two Standard Model singlet fermions. They form a Dirac particle and are stable because of a remnant Z2 symmetry. Hence, in this model the stability of Dark Matter follows from the global U(1) B - L symmetry. We discuss the Dark Matter phenomenology of the model, and compare it to similar models based on gauged U(1) B - L. We argue that in contrast to the gauged versions, the model based on the global symmetry does not suffer from severe constraints from Z‧ searches.

  14. MASS STORAGE ESTIMATES FOR THE DIGITAL MAPPING AREA.

    USGS Publications Warehouse

    Light, Donald L.

    1983-01-01

    Modern computer technology offers cartographers the potential for transition from conventional film-oriented methods to digital techniques as the way of mapping in the future. Traditional methods utilizing silver halide aerial and lithographic films for storage are time proven, and film is a very high density archival storage media. In view of this, proponents of the digital era recognize that a breakthrough in mass storage technology may be required to attain a reasonable degree of computerization of the cartographic mapping and data management process.

  15. A New Equation to Estimate Muscle Mass from Creatinine and Cystatin C

    PubMed Central

    Kim, Cheol-Ho; Kim, Kwang-il; Chin, Ho Jun; Lee, Hajeong

    2016-01-01

    Background With evaluation for physical performance, measuring muscle mass is an important step in detecting sarcopenia. However, there are no methods to estimate muscle mass from blood sampling. Methods To develop a new equation to estimate total-body muscle mass with serum creatinine and cystatin C level, we designed a cross-sectional study with separate derivation and validation cohorts. Total body muscle mass and fat mass were measured using dual-energy x-ray absorptiometry (DXA) in 214 adults aged 25 to 84 years who underwent physical checkups from 2010 to 2013 in a single tertiary hospital. Serum creatinine and cystatin C levels were also examined. Results Serum creatinine was correlated with muscle mass (P < .001), and serum cystatin C was correlated with body fat mass (P < .001) after adjusting glomerular filtration rate (GFR). After eliminating GFR, an equation to estimate total-body muscle mass was generated and coefficients were calculated in the derivation cohort. There was an agreement between muscle mass calculated by the novel equation and measured by DXA in both the derivation and validation cohort (P < .001, adjusted R2 = 0.829, β = 0.95, P < .001, adjusted R2 = 0.856, β = 1.03, respectively). Conclusion The new equation based on serum creatinine and cystatin C levels can be used to estimate total-body muscle mass. PMID:26849842

  16. Estimation of the mass outflow rates around rotating black holes

    NASA Astrophysics Data System (ADS)

    Aktar, Ramiz; Das, Santabrata

    We consider steady, advective, rotating, inviscid accretion disc around the spinning black holes to compute the mass outflow rate (R_{dot{m}}) defined as the ratio of mass flux of outflowing to the inflowing matter. Due to centrifugal barrier, accreting matter suffers discontinuous shock transition and because of shock compression, the post-shock matter becomes hot and denser than the pre-shock matter. We call the post-shock disc as Post Shock Corona (PSC). During accretion, a part of the inflowing matter deflects as bipolar outflows due to the presence of excess thermal gradient force at PSC. We find that R_{dot{m}}is directly correlated with the spin of the black hole (a_{k}) for the same set of inflow parameter, namely specific energy (E) and specific angular momentum (λ). We observe that the maximum outflow rate(R_{dot{m}}^{max}) weakly depends on spin (a_{k}) that lies in the range˜ 17% - 18% of the inflow rate.

  17. Estimating nutrient loadings using chemical mass balance approach.

    PubMed

    Jain, C K; Singhal, D C; Sharma, M K

    2007-11-01

    The river Hindon is one of the important tributaries of river Yamuna in western Uttar Pradesh (India) and carries pollution loads from various municipal and industrial units and surrounding agricultural areas. The main sources of pollution in the river include municipal wastes from Saharanpur, Muzaffarnagar and Ghaziabad urban areas and industrial effluents of sugar, pulp and paper, distilleries and other miscellaneous industries through tributaries as well as direct inputs. In this paper, chemical mass balance approach has been used to assess the contribution from non-point sources of pollution to the river. The river system has been divided into three stretches depending on the land use pattern. The contribution of point sources in the upper and lower stretches are 95 and 81% respectively of the total flow of the river while there is no point source input in the middle stretch. Mass balance calculations indicate that contribution of nitrate and phosphate from non-point sources amounts to 15.5 and 6.9% in the upper stretch and 13.1 and 16.6% in the lower stretch respectively. Observed differences in the load along the river may be attributed to uncharacterized sources of pollution due to agricultural activities, remobilization from or entrainment of contaminated bottom sediments, ground water contribution or a combination of these sources. PMID:17616829

  18. The Effect of Mergers on Galaxy Cluster Mass Estimates

    NASA Astrophysics Data System (ADS)

    Johnson, Ryan E.; Zuhone, John A.; Thorsen, Tessa; Hinds, Andre

    2015-08-01

    At vertices within the filamentary structure that describes the universal matter distribution, clusters of galaxies grow hierarchically through merging with other clusters. As such, the most massive galaxy clusters should have experienced many such mergers in their histories. Though we cannot see them evolve over time, these mergers leave lasting, measurable effects in the cluster galaxies' phase space. By simulating several different galaxy cluster mergers here, we examine how the cluster galaxies kinematics are altered as a result of these mergers. Further, we also examine the effect of our line of sight viewing angle with respect to the merger axis. In projecting the 6-dimensional galaxy phase space onto a 3-dimensional plane, we are able to simulate how these clusters might actually appear to optical redshift surveys. We find that for those optical cluster statistics which are most often used as a proxy for the cluster mass (variants of σv), the uncertainty due to an inprecise or unknown line of sight may alter the derived cluster masses moreso than the kinematic disturbance of the merger itself. Finally, by examining these, and several other clustering statistics, we find that significant events (such as pericentric crossings) are identifiable over a range of merger initial conditions and from many different lines of sight.

  19. A global review of species-specific shark-fin-to-body-mass ratios and relevant legislation.

    PubMed

    Biery, L; Pauly, D

    2012-04-01

    In this review, shark-fin-to-body-mass ratios, which have been legislated by several countries as a means of regulating and monitoring shark fisheries, have been compiled and reviewed. Observed and legislated wet-fin-mass-to-round-mass (M(fw) :M(r) ) ratios have been collected for 50 species and eight countries. Wet to dry-fin mass conversion factors have also been reviewed. Existing shark fishery legislation was compiled by political entity and regional fishery management organizations (RFMO). The mean observed M(fw) :M(r) ratio for all species was 3·0%, but actual fin to body-mass ratios varied considerably by species and location. Species-specific mean ratios ranged from 1·1 to 10·9%, and estimated mean ratios ranged from 1·5 to 6·1% by country, depending on fin-cutting practices and the mix of exploited species. The mean conversion factor for wet to dry-fin mass was 0·43. Shark-related legislation was found to exist in 37 countries and the 22 maritime members of the European Union, and shark-related regulations have been designated by nine RFMOs. Results suggest that currently regulated ratios may not be appropriate for all species and fin-cutting practices, and regulations based on generalized ratios for all sharks may be inadequate. Alternative policies may be necessary for the effective management of global shark fisheries. PMID:22497402

  20. The Effect of Antarctic Ice Mass Changes on Crustal Motion and Global Geodetic Observables

    NASA Technical Reports Server (NTRS)

    James, T. S.; Ivins, E. R.

    1995-01-01

    Glaciological estimates of the present-day ice mass balance of Antarctica vary widely, indicating the need for additional data to constrain mass-balance models. For example, recent studies find both a positive and a negative mass balance of the Antarctic ice sheet. Analysis of studies suggest that observations of present-day crustal motion, as obtained from a GPS survey could assist in defining models.

  1. How does mass loading impact local versus global control on dayside reconnection?

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Brambles, O. J.; Wiltberger, M.; Lotko, W.; Ouellette, J. E.; Lyon, J. G.

    2016-03-01

    This paper investigates the effects of magnetospheric mass loading on the control of dayside magnetic reconnection using global magnetospheric simulations. The study iys motivated by a recent debate on whether the integrated dayside magnetic reconnection rate is solely controlled by local processes (local-control theory) or global merging processes (global-control theory). The local-control theory suggests that the integrated dayside reconnection rate is controlled by the local plasma parameters. The global-control theory argues that the integrated rate is determined by the net force acting on the flow in the magnetosheath rather than the local microphysics. Controlled numerical simulations using idealized ionospheric outflow specifications suggest a possible mixed-control theory, that is, (1) a small amount of mass loading at the dayside magnetopause only redistributes local reconnection rate without a significant change in the integrated reconnection rate and (2) a large amount of mass loading reduces both local reconnection rates and the integrated reconnection rate on the dayside. The transition between global-control- and local-control-dominated regimes depends on (but not limited to) the source region, the amount, the location, and the spatial extension of the mass loading at the dayside magnetopause.

  2. Volcanism, Impacts and Mass Extinctions: A case study of the Deccan Traps and its global effects

    NASA Astrophysics Data System (ADS)

    Keller, G.

    2012-12-01

    The nature and causes of mass extinctions in the geological past have remained topics of intense scientific debate for the past three decades. Central to this debate is the question of whether one, or several large bolide impacts, the eruption of large igneous provinces (LIP) or a combination of the two were the primary mechanisms driving the environmental changes that are universally regarded as the proximate causes for four of the five major Phanerozoic extinction events. Recent years have seen a revolution in our understanding of interplanetary environments, LIP eruptions and their environmental effects such that the simple impact-kill scenario no longer seems an adequate explanation for the Cretaceous-Tertiary boundary (KTB) or any other mass extinction. The KTB is the only mass extinction associated with both impact (Chixculub) and flood basalts (Deccan Traps) and therefore an excellent case study to evaluate the potential causes and effects. Deccan eruptions likely occurred as "pulses", with some gigantic megaflows 1500 km across India and with estimated volumes >10,000 km3 that may have erupted over very short time intervals. For comparison, the largest historical basalt eruption in 1783 in Iceland (Laki) ejected some 15 km3 of lava in about a year. A single Deccan megaflow would have been equivalent to 667 Laki. The vast amount of carbon and sulphur dioxides injected into the atmosphere from just one Deccan megaflow would have been on the same order of magnitude as those estimated for the Chicxulub impact. Deccan Traps erupted in three main phases with 6% total Deccan volume in phase-1 (base C30n), 80% in phase-2 (C29r) and 14% in phase-3 (C29n). Phase-2 and phase-3 each produced four giant megaflows leading to the KTB mass extinction and the long delayed biotic recovery, respectively. Data from infra- and intertrappean sediments of these megaflows drilled in the Krishna-Godavari Basin by India's Oil and Natural Gas Corporation reveal swift and devastating

  3. Active galactic nucleus black hole mass estimates in the era of time domain astronomy

    SciTech Connect

    Kelly, Brandon C.; Treu, Tommaso; Pancoast, Anna; Malkan, Matthew; Woo, Jong-Hak

    2013-12-20

    We investigate the dependence of the normalization of the high-frequency part of the X-ray and optical power spectral densities (PSDs) on black hole mass for a sample of 39 active galactic nuclei (AGNs) with black hole masses estimated from reverberation mapping or dynamical modeling. We obtained new Swift observations of PG 1426+015, which has the largest estimated black hole mass of the AGNs in our sample. We develop a novel statistical method to estimate the PSD from a light curve of photon counts with arbitrary sampling, eliminating the need to bin a light curve to achieve Gaussian statistics, and we use this technique to estimate the X-ray variability parameters for the faint AGNs in our sample. We find that the normalization of the high-frequency X-ray PSD is inversely proportional to black hole mass. We discuss how to use this scaling relationship to obtain black hole mass estimates from the short timescale X-ray variability amplitude with precision ∼0.38 dex. The amplitude of optical variability on timescales of days is also anticorrelated with black hole mass, but with larger scatter. Instead, the optical variability amplitude exhibits the strongest anticorrelation with luminosity. We conclude with a discussion of the implications of our results for estimating black hole mass from the amplitude of AGN variability.

  4. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012

    PubMed Central

    Looker, Katharine J.; Magaret, Amalia S.; May, Margaret T.; Turner, Katherine M. E.; Vickerman, Peter; Gottlieb, Sami L.; Newman, Lori M.

    2015-01-01

    Background Herpes simplex virus type 1 (HSV-1) commonly causes orolabial ulcers, while HSV-2 commonly causes genital ulcers. However, HSV-1 is an increasing cause of genital infection. Previously, the World Health Organization estimated the global burden of HSV-2 for 2003 and for 2012. The global burden of HSV-1 has not been estimated. Methods We fitted a constant-incidence model to pooled HSV-1 prevalence data from literature searches for 6 World Health Organization regions and used 2012 population data to derive global numbers of 0-49-year-olds with prevalent and incident HSV-1 infection. To estimate genital HSV-1, we applied values for the proportion of incident infections that are genital. Findings We estimated that 3709 million people (range: 3440–3878 million) aged 0–49 years had prevalent HSV-1 infection in 2012 (67%), with highest prevalence in Africa, South-East Asia and Western Pacific. Assuming 50% of incident infections among 15-49-year-olds are genital, an estimated 140 million (range: 67–212 million) people had prevalent genital HSV-1 infection, most of which occurred in the Americas, Europe and Western Pacific. Conclusions The global burden of HSV-1 infection is huge. Genital HSV-1 burden can be substantial but varies widely by region. Future control efforts, including development of HSV vaccines, should consider the epidemiology of HSV-1 in addition to HSV-2, and especially the relative contribution of HSV-1 to genital infection. PMID:26510007

  5. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans

    PubMed Central

    Walker, Ann C.; O'Connor-Semmes, Robin L.; Leonard, Michael S.; Miller, Ram R.; Stimpson, Stephen A.; Turner, Scott M.; Ravussin, Eric; Cefalu, William T.; Hellerstein, Marc K.; Evans, William J.

    2014-01-01

    Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19–30 yr, 70–84 yr), 15 postmenopausal women (51–62 yr, 70–84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P < 0.0001), with less bias compared with lean body mass assessment by DXA, which overestimated muscle mass compared with MRI. The dilution of an oral D3-creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA. PMID:24764133

  6. A strategy for merging objective estimates of global daily precipitation from gauge observations, satellite estimates, and numerical predictions

    NASA Astrophysics Data System (ADS)

    Nie, Suping; Wu, Tongwen; Luo, Yong; Deng, Xueliang; Shi, Xueli; Wang, Zaizhi; Liu, Xiangwen; Huang, Jianbin

    2016-07-01

    This paper describes a strategy for merging daily precipitation information from gauge observations, satellite estimates (SEs), and numerical predictions at the global scale. The strategy is designed to remove systemic bias and random error from each individual daily precipitation source to produce a better gridded global daily precipitation product through three steps. First, a cumulative distribution function matching procedure is performed to remove systemic bias over gauge-located land areas. Then, the overall biases in SEs and model predictions (MPs) over ocean areas are corrected using a rescaled strategy based on monthly precipitation. Third, an optimal interpolation (OI)-based merging scheme (referred as the HL-OI scheme) is used to combine unbiased gauge observations, SEs, and MPs to reduce random error from each source and to produce a gauge—satellite-model merged daily precipitation analysis, called BMEP-d (Beijing Climate Center Merged Estimation of Precipitation with daily resolution), with complete global coverage. The BMEP-d data from a four-year period (2011-14) demonstrate the ability of the merging strategy to provide global daily precipitation of substantially improved quality. Benefiting from the advantages of the HL-OI scheme for quantitative error estimates, the better source data can obtain more weights during the merging processes. The BMEP-d data exhibit higher consistency with satellite and gauge source data at middle and low latitudes, and with model source data at high latitudes. Overall, independent validations against GPCP-1DD (GPCP one-degree daily) show that the consistencies between BMEP-d and GPCP-1DD are higher than those of each source dataset in terms of spatial pattern, temporal variability, probability distribution, and statistical precipitation events.

  7. Global well-posedness for the mass-critical nonlinear Schrödinger equation on T

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Wu, Yifei; Xu, Guixiang

    2011-03-01

    We consider the global well-posedness for the Cauchy problem of the mass-critical nonlinear Schrödinger equations in the periodic case. We show that it is globally well-posed in H(T) for any s>2/5. This improves the related work of Bourgain (2004) [2]. The key point is that we combine I-method with the resonant decomposition, which is developed in Colliander et al. (2008) [9], Li et al. (2011) [15], Miao et al. (2010) [16]. Another new ingredient here is that we obtain a bilinear Strichartz estimates in the periodic case which improves slightly the result given in De Silva et al. (2007) [11].

  8. The estimation of body mass index and physical attractiveness is dependent on the observer's own body mass index.

    PubMed Central

    Tovée, M J; Emery, J L; Cohen-Tovée, E M

    2000-01-01

    A disturbance in the evaluation of personal body mass and shape is a key feature of both anorexia and bulimia nervosa. However, it is uncertain whether overestimation is a causal factor in the development of these eating disorders or is merely a secondary effect of having a low body mass. Moreover, does this overestimation extend to the perception of other people's bodies? Since body mass is an important factor in the perception of physical attractiveness, we wanted to determine whether this putative overestimation of self body mass extended to include the perceived attractiveness of others. We asked 204 female observers (31 anorexic, 30 bulimic and 143 control) to estimate the body mass and rate the attractiveness of a set of 25 photographic images showing people of varying body mass index (BMI). BMI is a measure of weight scaled for height (kg m(- 2)). The observers also estimated their own BMI. Anorexic and bulimic observers systematically overestimated the body mass of both their own and other people's bodies, relative to controls, and they rated a significantly lower body mass to be optimally attractive. When the degree of overestimation is plotted against the BMI of the observer there is a strong correlation. Taken across all our observers, as the BMI of the observer declines, the overestimation of body mass increases. One possible explanation for this result is that the overestimation is a secondary effect caused by weight loss. Moreover, if the degree of body mass overestimation is taken into account, then there are no significant differences in the perceptions of attractiveness between anorexic and bulimic observers and control observers. Our results suggest a significant perceptual overestimation of BMI that is based on the observer's own BMI and not correlated with cognitive factors, and suggests that this overestimation in eating-disordered patients must be addressed directly in treatment regimes. PMID:11075712

  9. The estimation of body mass index and physical attractiveness is dependent on the observer's own body mass index.

    PubMed

    Tovée, M J; Emery, J L; Cohen-Tovée, E M

    2000-10-01

    A disturbance in the evaluation of personal body mass and shape is a key feature of both anorexia and bulimia nervosa. However, it is uncertain whether overestimation is a causal factor in the development of these eating disorders or is merely a secondary effect of having a low body mass. Moreover, does this overestimation extend to the perception of other people's bodies? Since body mass is an important factor in the perception of physical attractiveness, we wanted to determine whether this putative overestimation of self body mass extended to include the perceived attractiveness of others. We asked 204 female observers (31 anorexic, 30 bulimic and 143 control) to estimate the body mass and rate the attractiveness of a set of 25 photographic images showing people of varying body mass index (BMI). BMI is a measure of weight scaled for height (kg m(- 2)). The observers also estimated their own BMI. Anorexic and bulimic observers systematically overestimated the body mass of both their own and other people's bodies, relative to controls, and they rated a significantly lower body mass to be optimally attractive. When the degree of overestimation is plotted against the BMI of the observer there is a strong correlation. Taken across all our observers, as the BMI of the observer declines, the overestimation of body mass increases. One possible explanation for this result is that the overestimation is a secondary effect caused by weight loss. Moreover, if the degree of body mass overestimation is taken into account, then there are no significant differences in the perceptions of attractiveness between anorexic and bulimic observers and control observers. Our results suggest a significant perceptual overestimation of BMI that is based on the observer's own BMI and not correlated with cognitive factors, and suggests that this overestimation in eating-disordered patients must be addressed directly in treatment regimes. PMID:11075712

  10. Global and regional estimates of cancer mortality and incidence by site: II. results for the global burden of disease 2000

    PubMed Central

    Shibuya, Kenji; Mathers, Colin D; Boschi-Pinto, Cynthia; Lopez, Alan D; Murray, Christopher JL

    2002-01-01

    Background Mortality estimates alone are not sufficient to understand the true magnitude of cancer burden. We present the detailed estimates of mortality and incidence by site as the basis for the future estimation of cancer burden for the Global Burden of Disease 2000 study. Methods Age- and sex- specific mortality envelope for all malignancies by region was derived from the analysis of country life-tables and cause of death. We estimated the site-specific cancer mortality distributions from vital records and cancer survival model. The regional cancer mortality by site is estimated by disaggregating the regional cancer mortality envelope based on the mortality distribution. Estimated incidence-to-mortality rate ratios were used to back calculate the final cancer incidence estimates by site. Results In 2000, cancer accounted for over 7 million deaths (13% of total mortality) and there were more than 10 million new cancer cases world wide in 2000. More than 60% of cancer deaths and approximately half of new cases occurred in developing regions. Lung cancer was the most common cancers in the world, followed by cancers of stomach, liver, colon and rectum, and breast. There was a significant variations in the distribution of site-specific cancer mortality and incidence by region. Conclusions Despite a regional variation, the most common cancers are potentially preventable. Cancer burden estimation by taking into account both mortality and morbidity is an essential step to set research priorities and policy formulation. Also it can used for setting priorities when combined with data on costs of interventions against cancers. PMID:12502432

  11. Estimation of the mass center and dynamics of a spherical test mass for gravitational reference sensors

    NASA Astrophysics Data System (ADS)

    Conklin, John W.

    Exciting new fields of physics and precision inertial navigation can be realized by reducing test mass disturbances in drag-free spacecraft orders of magnitude below what has currently been demonstrated. The mass center of an ideal drag-free test mass is a reference point traveling along a pure geodesic. The purpose of the drag-free spacecraft is to shield the test mass from all external disturbances, and at the same time, not to introduce additional disturbances. A sphere has the advantage of invariance of orientation. A spherical test mass, therefore, requires no forcing on the part of the spacecraft to control the test mass orientation. With the need for actuation eliminated, the gap between the test mass and spacecraft can be opened up to sizes on the order of the sphere's radius. Elimination of test mass forcing and a large gap reduces, or all together eliminates, the largest disturbances acting on the test mass. Furthermore, spinning the sphere can spectrally shift body-fixed features to frequencies that do-not interfere with the drag-free control or the science mission. The angular momentum vector of the spinning sphere is a quantity that is robust against residual torques providing an orientation reference for the local inertial frame. In this dissertation a generic model for the output of a drag-free sensor with a spinning spherical test mass is developed. A measurable feature of the test mass (surface geometry with respect to the mass center, magnetic potential, etc.) is written as an expansion in spherical harmonics. The rigid body motion of the test mass relative to the sensor is assumed to obey Euler's equations on short time scales, with angular momentum decay and polhode damping due to residual disturbances modeled on longer time scales, greater than say one clay. The validity of this model is demonstrated to approximately 1% using the Gravity Probe B flight data spanning 1 year. The success of this model allows for the prediction of polhode

  12. Global Burden of Leptospirosis: Estimated in Terms of Disability Adjusted Life Years

    PubMed Central

    Torgerson, Paul R.; Hagan, José E.; Costa, Federico; Calcagno, Juan; Kane, Michael; Martinez-Silveira, Martha S.; Goris, Marga G. A.; Stein, Claudia; Ko, Albert I.; Abela-Ridder, Bernadette

    2015-01-01

    Background Leptospirosis, a spirochaetal zoonosis, occurs in diverse epidemiological settings and affects vulnerable populations, such as rural subsistence farmers and urban slum dwellers. Although leptospirosis can cause life-threatening disease, there is no global burden of disease estimate in terms of Disability Adjusted Life Years (DALYs) available. Methodology/Principal Findings We utilised the results of a parallel publication that reported global estimates of morbidity and mortality due to leptospirosis. We estimated Years of Life Lost (YLLs) from age and gender stratified mortality rates. Years of Life with Disability (YLDs) were developed from a simple disease model indicating likely sequelae. DALYs were estimated from the sum of YLLs and YLDs. The study suggested that globally approximately 2·90 million DALYs are lost per annum (UIs 1·25–4·54 million) from the approximately annual 1·03 million cases reported previously. Males are predominantly affected with an estimated 2·33 million DALYs (UIs 0·98–3·69) or approximately 80% of the total burden. For comparison, this is over 70% of the global burden of cholera estimated by GBD 2010. Tropical regions of South and South-east Asia, Western Pacific, Central and South America, and Africa had the highest estimated leptospirosis disease burden. Conclusions/Significance Leptospirosis imparts a significant health burden worldwide, which approach or exceed those encountered for a number of other zoonotic and neglected tropical diseases. The study findings indicate that highest burden estimates occur in resource-poor tropical countries, which include regions of Africa where the burden of leptospirosis has been under-appreciated and possibly misallocated to other febrile illnesses such as malaria. PMID:26431366

  13. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing

    PubMed Central

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-01-01

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model’s diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m2 to 11.6 mW/m2 for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8–20 mW/m2 for the air traffic in the year 2000. PMID:20974909

  14. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing.

    PubMed

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-11-01

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model's diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m(2) to 11.6 mW/m(2) for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8-20 mW/m(2) for the air traffic in the year 2000. PMID:20974909

  15. A GIS TECHNIQUE FOR ESTIMATING NATURAL ATTENUATION RATES AND MASS BALANCES: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-ADA-01308 Durant, ND, Srinivasan, P, Faust, CR, Burnell, DK, Klein, KL, and Burden*, D.S. A GIS Technique for Estimating Natural Attenuation Rates and Mass Balances. Battelle's Sixth International ...

  16. A GIS TECHNIQUE FOR ESTIMATING NATURAL ATTENUATION RATES AND MASS BALANCES

    EPA Science Inventory

    ABSTRACT: Regulatory approval of monitored natural attenuation (MNA) as a component for site remediation often requires a demonstration that contaminant mass has decreased significantly over time. Successful approval of MNA also typically requires an estimate of past and future n...

  17. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  18. Estimation of body mass index from the metrics of the first metatarsal

    NASA Astrophysics Data System (ADS)

    Dunn, Tyler E.

    Estimation of the biological profile from as many skeletal elements as possible is a necessity in both forensic and bioarchaeological contexts; this includes non-standard aspects of the biological profile, such as body mass index (BMI). BMI is a measure that allows for understanding of the composition of an individual and is traditionally divided into four groups: underweight, normal weight, overweight, and obese. BMI estimation incorporates both estimation of stature and body mass. The estimation of stature from skeletal elements is commonly included into the standard biological profile but the estimation of body mass needs to be further statistically validated to be consistently included. The bones of the foot, specifically the first metatarsal, may have the ability to estimate BMI given an allometric relationship to stature and the mechanical relationship to body mass. There are two commonly used methods for stature estimation, the anatomical method and the regression method. The anatomical method takes into account all of the skeletal elements that contribute to stature while the regression method relies on the allometric relationship between a skeletal element and living stature. A correlation between the metrics of the first metatarsal and living stature has been observed, and proposed as a method for valid stature estimation from the boney foot (Byers et al., 1989). Body mass estimation from skeletal elements relies on two theoretical frameworks: the morphometric and the mechanical approaches. The morphometric approach relies on the size relationship of the individual to body mass; the basic relationship between volume, density, and weight allows for body mass estimation. The body is thought of as a cylinder, and in order to understand the volume of this cylinder the diameter is needed. A commonly used proxy for this in the human body is skeletal bi-iliac breadth from rearticulated pelvic girdle. The mechanical method of body mass estimation relies on the

  19. New estimates of area and mass for the North American tektite strewn field

    NASA Technical Reports Server (NTRS)

    Koeberl, C.

    1989-01-01

    A revised estimate is given for the total mass of the North American tektite material, which is based on a concept of patches or rays of distribution rather than on a continuous tektite and microtektite blanket. This concept yields a total mass of about 3 x 10 to the 14th g, which is less than a third of previous estimates. The shape of the North American tektite strewn field is in agreement with other tektite strewn fields.

  20. A TRMM-Based System for Real-Time Quasi-Global Merged Precipitation Estimates

    NASA Technical Reports Server (NTRS)

    Starr, David OC. (Technical Monitor); Huffman, G. J.; Adler, R. F.; Stocker, E. F.; Bolvin, D. T.; Nelkin, E. J.

    2002-01-01

    A new processing system has been developed to combine IR and microwave data into 0.25 degree x 0.25 degree gridded precipitation estimates in near-real time over the latitude band plus or minus 50 degrees. Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) precipitation estimates are used to calibrate Special Sensor Microwave/Imager (SSM/I) estimates, and Advanced Microwave Sounding Unit (AMSU) and Advanced Microwave Scanning Radiometer (AMSR) estimates, when available. The merged microwave estimates are then used to create a calibrated IR estimate in a Probability-Matched-Threshold approach for each individual hour. The microwave and IR estimates are combined for each 3-hour interval. Early results will be shown, including typical tropical and extratropical storm evolution and examples of the diurnal cycle. Major issues will be discussed, including the choice of IR algorithm, the approach for merging the IR and microwave estimates, extension to higher latitudes, retrospective processing back to 1999, and extension to the GPCP One-Degree Daily product (for which the authors are responsible). The work described here provides one approach to using data from the future NASA Global Precipitation Measurement program, which is designed to provide Jill global coverage by low-orbit passive microwave satellites every three hours beginning around 2008.

  1. Applications of TRMM-based Multi-Satellite Precipitation Estimation for Global Runoff Simulation: Prototyping a Global Flood Monitoring System

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold

    2008-01-01

    Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.

  2. Estimation of cauliflower mass transfer parameters during convective drying

    NASA Astrophysics Data System (ADS)

    Sahin, Medine; Doymaz, İbrahim

    2016-05-01

    The study was conducted to evaluate the effect of pre-treatments such as citric acid and hot water blanching and air temperature on drying and rehydration characteristics of cauliflower slices. Experiments were carried out at four different drying air temperatures of 50, 60, 70 and 80 °C with the air velocity of 2.0 m/s. It was observed that drying and rehydration characteristics of cauliflower slices were greatly influenced by air temperature and pre-treatment. Six commonly used mathematical models were evaluated to predict the drying kinetics of cauliflower slices. The Midilli et al. model described the drying behaviour of cauliflower slices at all temperatures better than other models. The values of effective moisture diffusivities (D eff ) were determined using Fick's law of diffusion and were between 4.09 × 10-9 and 1.88 × 10-8 m2/s. Activation energy was estimated by an Arrhenius type equation and was 23.40, 29.09 and 26.39 kJ/mol for citric acid, blanch and control samples, respectively.

  3. Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation

    NASA Astrophysics Data System (ADS)

    Reed, Patrick; Minsker, Barbara; Valocchi, Albert J.

    2000-12-01

    A new methodology for sampling plan design has been developed to reduce the costs associated with long-term monitoring of sites with groundwater contamination. The method combines a fate-and-transport model, plume interpolation, and a genetic algorithm to identify cost-effective sampling plans that accurately quantify the total mass of dissolved contaminant. The plume interpolation methods considered were inverse-distance weighting, ordinary kriging, and a hybrid method that combines the two approaches. Application of the methodology to Hill Air Force Base indicated that sampling costs could be reduced by as much as 60% without significant loss in accuracy of the global mass estimates. Inverse-distance weighting was shown to be most effective as a screening tool for evaluating whether more comprehensive geostatistical modeling is warranted. The hybrid method was effective for implementing such a tiered approach, reducing computational time by more than 60% relative to kriging alone.

  4. Improving Global Mass Flux Solutions from Gravity Recovery and Climate Experiment (GRACE) Through Forward Modeling and Continuous Time Correlation

    NASA Technical Reports Server (NTRS)

    Sabaka, T. J.; Rowlands, D. D.; Luthcke, S. B.; Boy, J.-P.

    2010-01-01

    We describe Earth's mass flux from April 2003 through November 2008 by deriving a time series of mas cons on a global 2deg x 2deg equal-area grid at 10 day intervals. We estimate the mass flux directly from K band range rate (KBRR) data provided by the Gravity Recovery and Climate Experiment (GRACE) mission. Using regularized least squares, we take into account the underlying process dynamics through continuous space and time-correlated constraints. In addition, we place the mascon approach in the context of other filtering techniques, showing its equivalence to anisotropic, nonsymmetric filtering, least squares collocation, and Kalman smoothing. We produce mascon time series from KBRR data that have and have not been corrected (forward modeled) for hydrological processes and fmd that the former produce superior results in oceanic areas by minimizing signal leakage from strong sources on land. By exploiting the structure of the spatiotemporal constraints, we are able to use a much more efficient (in storage and computation) inversion algorithm based upon the conjugate gradient method. This allows us to apply continuous rather than piecewise continuous time-correlated constraints, which we show via global maps and comparisons with ocean-bottom pressure gauges, to produce time series with reduced random variance and full systematic signal. Finally, we present a preferred global model, a hybrid whose oceanic portions are derived using forward modeling of hydrology but whose land portions are not, and thus represent a pure GRACE-derived signal.

  5. Improvement of sub-pixel global motion estimation in UAV image stabilization

    NASA Astrophysics Data System (ADS)

    Li, Yingjuan; Ji, Ming; He, Junfeng; Zhen, Kang; Yang, Yizhou; Chen, Ying

    2016-01-01

    Global motion estimation within frames is very important in the UAV(unmanned aerial vehicle) image stabilization system. A fast algorithm based on phase correlation and image down-sampling in sub-pixel was proposed. First, down-sampling of the two frames to quantitatively reduce calculate data. Then, take the method based of phase correlation to realize the global motion estimation in integer-pixel. When it calculated out, chooses the overlapped area of the two frames and interpolated them with zero, then adopts the method based on phase correlation to achieve the global motion estimation in sub-pixel. At last, weighted calculate the result in integer-pixel and the result in sub-pixel, the global motion displacement in sub-pixel of the two images will be calculated out. Experimental results show that, using the proposed algorithm can not only achieve good robustness to the influence of noise, illumination and partially sheltered but also improve the accuracy of motion estimation and efficiency of computing significantly.

  6. A COMPARISON OF METHODS FOR ESTIMATING GLOBAL METHANE EMISSIONS FROM LANDFILLS

    EPA Science Inventory

    Landfills are a significant source of methane, ranking third in anthropogenic sources after rice paddies and ruminants. Estimating the contribution of landfills to global methane flux is hampered by a lack of accurate refuse and landfill data, and therefore depends heavily on the...

  7. A numerical study on dust devils with implications to global dust budget estimates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The estimates of the contribution of dust devils (DDs) to the global dust budget have large uncertainties because the dust emission mechanisms in DDs are not yet well understood. In this study, a large-eddy simulation model coupled with a dust scheme is used to investigate DD dust entrainment. DDs a...

  8. Adaptive global training set selection for spectral estimation of printed inks using reflectance modeling.

    PubMed

    Eckhard, Timo; Valero, Eva M; Hernández-Andrés, Javier; Schnitzlein, Markus

    2014-02-01

    The performance of learning-based spectral estimation is greatly influenced by the set of training samples selected to create the reconstruction model. Training sample selection schemes can be categorized into global and local approaches. Most of the previously proposed global training schemes aim to reduce the number of training samples, or a selection of representative samples, to maintain the generality of the training dataset. This work relates to printed ink reflectance estimation for quality assessment in in-line print inspection. We propose what we believe is a novel global training scheme that models a large population of realistic printable ink reflectances. Based on this dataset, we used a recursive top-down algorithm to reject clusters of training samples that do not enhance the performance of a linear least-square regression (pseudoinverse-based estimation) process. A set of experiments with real camera response data of a 12-channel multispectral camera system illustrate the advantages of this selection scheme over some other state-of-the-art algorithms. For our data, our method of global training sample selection outperforms other methods in terms of estimation quality and, more importantly, can quickly handle large datasets. Furthermore, we show that reflectance modeling is a reasonable, convenient tool to generate large training sets for print inspection applications. PMID:24514188

  9. Global-Scale Location and Distance Estimates: Common Representations and Strategies in Absolute and Relative Judgments

    ERIC Educational Resources Information Center

    Friedman, Alinda; Montello, Daniel R.

    2006-01-01

    The authors examined whether absolute and relative judgments about global-scale locations and distances were generated from common representations. At the end of a 10-week class on the regional geography of the United States, participants estimated the latitudes of 16 North American cities and all possible pairwise distances between them. Although…

  10. Global Land-surface Evaporation Estimated from Satellite-based Observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper outlines a new methodology to derive evaporation from satellite observations. The approach uses a variety of satellite-sensor products to estimate daily evaporation at a global scale, with a 0.25 degree spatial resolution. Central to this approach is the use of the Priestley and Taylor (P...