Science.gov

Sample records for global n-acetyl aspartate

  1. Medial temporal N-acetyl aspartate in pediatric major depression

    PubMed Central

    MacMaster, Frank P.; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S. Preeya; Buhagiar, Christian; Rosenberg, David R.

    2008-01-01

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD-case control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  2. Medial temporal N-acetyl-aspartate in pediatric major depression.

    PubMed

    MacMaster, Frank P; Moore, Gregory J; Russell, Aileen; Mirza, Yousha; Taormina, S Preeya; Buhagiar, Christian; Rosenberg, David R

    2008-10-30

    The medial temporal cortex (MTC) has been implicated in the pathogenesis of pediatric major depressive disorder (MDD). Eleven MDD case-control pairs underwent proton magnetic resonance spectroscopic imaging. N-acetyl-aspartate was lower in the left MTC (27%) in MDD patients versus controls. Lower N-acetyl-aspartate concentrations in MDD patients may reflect reduced neuronal viability. PMID:18703320

  3. In vivo differentiation of N-acetyl aspartyl glutamate from N-acetyl aspartate at 3 Tesla.

    PubMed

    Edden, Richard A E; Pomper, Martin G; Barker, Peter B

    2007-06-01

    A method is described that allows the in vivo differentiation of N-acetyl aspartate (NAA) from N-acetyl aspartyl glutamate (NAAG) by in vivo MR spectroscopy (MRS) at 3 Tesla (3T). The method, which is based on MEGA-point-resolved spectroscopy (PRESS) editing, selectively targets the aspartyl spin system of one species while deliberately removing the other species from the spectrum. This allows quantitative measurements of NAA and NAAG without the need for fitting of unresolved peaks. White matter concentrations of NAA (6.7 +/- 0.3 mM) and NAAG (2.2 +/- 0.3 mM) were measured in 10 healthy volunteers to demonstrate the method. PMID:17534922

  4. The effect of N-acetyl-aspartyl-glutamate and N-acetyl-aspartate on white matter oligodendrocytes.

    PubMed

    Kolodziejczyk, Karolina; Hamilton, Nicola B; Wade, Anna; Káradóttir, Ragnhildur; Attwell, David

    2009-06-01

    Elevations of the levels of N-acetyl-aspartyl-glutamate (NAAG) and N-acetyl-aspartate (NAA) are associated with myelin loss in the leucodystrophies Canavan's disease and Pelizaeus-Merzbacher-like disease. NAAG and NAA can activate and antagonize neuronal N-methyl-D-aspartate (NMDA) receptors, and also act on group II metabotropic glutamate receptors. Oligodendrocytes and their precursors have recently been shown to express NMDA receptors, and activation of these receptors in ischaemia leads to the death of oligodendrocyte precursors and the loss of myelin. This raises the possibility that the failure to develop myelin, or demyelination, occurring in the leucodystrophies could reflect an action of NAAG or NAA on oligodendrocyte NMDA receptors. However, since the putative subunit composition of NMDA receptors on oligodendrocytes differs from that of neuronal NMDA receptors, the effects of NAAG and NAA on them are unknown. We show that NAAG, but not NAA, evokes an inward membrane current in cerebellar white matter oligodendrocytes, which is reduced by NMDA receptor block (but not by block of metabotropic glutamate receptors). The size of the current evoked by NAAG, relative to that evoked by NMDA, was much smaller in oligodendrocytes than in neurons, and NAAG induced a rise in [Ca(2+)](i) in neurons but not in oligodendrocytes. These differences in the effect of NAAG on oligodendrocytes and neurons may reflect the aforementioned difference in receptor subunit composition. In addition, as a major part of the response in oligodendrocytes was blocked by tetrodotoxin (TTX), much of the NAAG-evoked current in oligodendrocytes is a secondary consequence of activating neuronal NMDA receptors. Six hours exposure to 1 mM NAAG did not lead to the death of cells in the white matter. We conclude that an action of NAAG on oligodendrocyte NMDA receptors is unlikely to be a major contributor to white matter damage in the leucodystrophies. PMID:19383832

  5. Measuring N-acetyl aspartate synthesis in vivo using proton magnetic resonance spectroscopy

    PubMed Central

    Xu, Su; Yang, Jehoon; Shen, Jun

    2008-01-01

    N-acetyl aspartate (NAA) is an important marker of neuronal function and viability that can be measured using magnetic resonance spectroscopy (MRS). In this paper, we proposed a method to measure NAA synthesis using proton MRS with infusion of uniformly 13C-labeled glucose, and demonstrated its feasibility in an in vivo study of the rat brain. The rate of 13C-label incorporation into the acetyl group of NAA was measured using a localized, long echo-time proton MRS method. Signals from the 13C satellites of the main NAA methyl protons at 2.02 ppm were continuously monitored for 10 hours. Quantification of the data based on a linear kinetic model showed that NAA synthesis rate in isoflurane-anesthetized rats was 0.19 ± 0.02 µmol/g/h (mean ± standard deviation, n = 12). PMID:18486230

  6. Lithium citrate reduces excessive intra-cerebral N-acetyl aspartate in Canavan disease.

    PubMed

    Assadi, Mitra; Janson, Christopher; Wang, Dah-Jyuu; Goldfarb, Olga; Suri, Neeti; Bilaniuk, Larissa; Leone, Paola

    2010-07-01

    Our group has previously reported the first clinical application of lithium in a child affected by Canavan disease. In this study, we aimed to assess the effects of lithium on N-acetyl aspartate (NAA) as well as other end points in a larger cohort. Six patients with clinical, laboratory and genetic confirmation of Canavan disease were recruited and underwent treatment with lithium. The battery of safety and efficacy testing performed before and after sixty days of treatment included Gross Motor Function Testing (GMFM), Magnetic Resonance Imaging (MRI) Proton Magnetic Spectroscopy (H-MRS) as well as blood work. The medication was safe without any clinical or laboratory evidence for toxicity. Parental reports indicated improvement in alertness and social interactions. GMFM did not show statistically significant improvement in motor development. H-MRS documented an overall drop in NAA which was statistically significant in the basal ganglia. T1 measurements recorded on MRI studies suggested a mild improvement in myelination in the frontal white matter after treatment. Diffusion Tensor Imaging was available in two patients and suggested micro-structural improvement in the corpus callosum. The results suggest that lithium administration may be beneficial in patients with Canavan disease. PMID:20034825

  7. The relationship between Gulf war illness, brain N-acetyl aspartate and post-traumatic stress disorder

    PubMed Central

    Weiner, Michael W.; Meyerhoff, Dieter J.; Neylan, Thomas C.; Hlavin, Jennifer; Ramage, Erin R.; McCoy, Daniel; Studholme, Colin; Cardenas, Valerie; Marmar, Charles; Truran, Diana; Chu, Philip W.; Kornak, John; Furlong, Clement E.; McCarthy, Charles

    2012-01-01

    A previous study (1) suggested that individuals with Gulf War Illness (GWI) had reduced quantities of the neuronal marker N-acetyl aspartate (NAA) in the basal ganglia and pons. This study aimed to determine whether NAA is reduced in these regions and to investigate correlations with other possible causes of GWI, such as psychological response to stress in a large cohort of Gulf war veterans. Individuals underwent tests to determine their physical and psychological health and to identify veterans with (n=81) and without (n=97) GWI. When concentrations of NAA and ratios of NAA to creatine- and choline-containing metabolites were measured in the basal ganglia and pons, no significant differences were found between veterans with or without GWI, suggesting that GWI is not associated with reduced NAA in these regions. Veterans with GWI had significantly higher rates of Post Traumatic Stress Disorder (PTSD), supporting the idea that GWI symptoms are stress-related. PMID:21882779

  8. Lower "N"-Acetyl-Aspartate Levels in Prefrontal Cortices in Pediatric Bipolar Disorder: A (Superscript 1]H Magnetic Resonance Spectroscopy Study

    ERIC Educational Resources Information Center

    Caetano, Sheila C.; Olvera, Rene L.; Hatch, John P.; Sanches, Marsal; Chen, Hua Hsuan; Nicoletti, Mark; Stanley, Jeffrey A.; Fonseca, Manoela; Hunter, Kristina; Lafer, Beny; Pliszka, Steven R.; Soares, Jair C.

    2011-01-01

    Objective: The few studies applying single-voxel [superscript 1]H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low "N"-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol/phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study…

  9. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate.

    PubMed

    Janik, Rafal; Thomason, Lynsie A M; Stanisz, Andrew M; Forsythe, Paul; Bienenstock, John; Stanisz, Greg J

    2016-01-15

    The gut microbiome has been shown to regulate the development and functions of the enteric and central nervous systems. Its involvement in the regulation of behavior has attracted particular attention because of its potential translational importance in clinical disorders, however little is known about the pathways involved. We previously have demonstrated that administration of Lactobacillus rhamnosus (JB-1) to healthy male BALB/c mice, promotes consistent changes in GABA-A and -B receptor sub-types in specific brain regions, accompanied by reductions in anxiety and depression-related behaviors. In the present study, using magnetic resonance spectroscopy (MRS), we quantitatively assessed two clinically validated biomarkers of brain activity and function, glutamate+glutamine (Glx) and total N-acetyl aspartate+N-acetyl aspartyl glutamic acid (tNAA), as well as GABA, the chief brain inhibitory neurotransmitter. Mice received 1×10(9) cfu of JB-1 per day for 4weeks and were subjected to MRS weekly and again 4weeks after cessation of treatment to ascertain temporal changes in these neurometabolites. Baseline concentrations for Glx, tNAA and GABA were equal to 10.4±0.3mM, 8.7±0.1mM, and 1.2±0.1mM, respectively. Delayed increases were first seen for Glx (~10%) and NAA (~37%) at 2weeks which persisted only to the end of treatment. However, Glx was still elevated 4weeks after treatment had ceased. Significantly elevated GABA (~25%) was only seen at 4weeks. These results suggest specific metabolic pathways in our pursuit of mechanisms of action of psychoactive bacteria. They also offer through application of standard clinical neurodiagnostic techniques, translational opportunities to assess biomarkers accompanying behavioral changes induced by alterations in the gut microbiome. PMID:26577887

  10. The ratio of N-acetyl aspartate to glutamate correlates with disease duration of amyotrophic lateral sclerosis.

    PubMed

    Sako, Wataru; Abe, Takashi; Izumi, Yuishin; Harada, Masafumi; Kaji, Ryuji

    2016-05-01

    Glutamate (Glu)-induced excitotoxicity has been implicated in the neuronal loss of amyotrophic lateral sclerosis. To test the hypothesis that Glu in the primary motor cortex contributes to disease severity and/or duration, the Glu level was investigated using MR spectroscopy. Seventeen patients with amyotrophic lateral sclerosis were diagnosed according to the El Escorial criteria for suspected, possible, probable or definite amyotrophic lateral sclerosis, and enrolled in this cross-sectional study. We measured metabolite concentrations, including N-acetyl aspartate (NAA), creatine, choline, inositol, Glu and glutamine, and performed partial correlation between each metabolite concentration or NAA/Glu ratio and disease severity or duration using age as a covariate. Considering our hypothesis that Glu is associated with neuronal cell death in amyotrophic lateral sclerosis, we investigated the ratio of NAA to Glu, and found a significant correlation between NAA/Glu and disease duration (r=-0.574, p=0.02). The "suspected" amyotrophic lateral sclerosis patients showed the same tendency as possible, probable and definite amyotrophic lateral sclerosis patients in regard to correlation of NAA/Glu ratio with disease duration. The other metabolites showed no significant correlation. Our findings suggested that glutamatergic neurons are less vulnerable compared to other neurons and this may be because inhibitory receptors are mainly located presynaptically, which supports the notion of Glu-induced excitotoxicity. PMID:26765768

  11. Direct determination of the N-acetyl-L-aspartate synthesis rate in the human brain by (13)C MRS and [1-(13)C]glucose infusion.

    PubMed

    Moreno, A; Ross, B D; Blüml, S

    2001-04-01

    A non-invasive (13)C magnetic resonance spectroscopy (MRS) technique is described for the determination of the N-acetyl-L-aspartate (NAA) synthesis rate, V(NAA), in the human brain in vivo. In controls, the mean V(NAA) was 9.2 +/- 3.9 nmol/min/g. In Canavan disease, where [NAA] is increased (p < 0.001) and [aspartate] is deceased (p < 0.001), V(NAA) was significantly reduced to 3.6 +/- 0.1 nmol/min/g (p < 0.001). These rates are in close agreement with the activity of the biosynthetic enzyme measured in vitro in animals, and with the rate of urinary excretion of NAA in human subjects with Canavan disease. The present result is consistent with the regulation of NAA synthesis by the activity of a single enzyme, L-aspartate-N-acetyltransferase, in vivo, and with its control in Canavan disease by limited substrate supply and/or product inhibition. The (13)C MRS technique provides the means for further determination of abnormal rates of neuronal NAA synthesis among neurological disorders in which low cerebral [NAA] has been identified. PMID:11279290

  12. The age dependence of T2 relaxation times of N-acetyl aspartate, creatine and choline in the human brain at 3 and 4T.

    PubMed

    Jiru, F; Skoch, A; Wagnerova, D; Dezortova, M; Viskova, J; Profant, O; Syka, J; Hajek, M

    2016-03-01

    Knowledge of the T2 age dependence is of importance for MRS clinical studies involving subject groups with a wide age range. A number of studies have focused on the age dependence of T2 values in the human brain, with rather conflicting results. The aim of this study was to analyze the age dependence of T2 values of N-acetyl aspartate (NAA), creatine (Cr) and choline (Cho) in the human brain using data acquired at 3T and 4T and to assess the influence of the macromolecule (MM) baseline handling on the obtained results. Two distinct groups of young and elderly controls have been measured at 3T (TE = 30-540 ms, 9 young and 11 elderly subjects) and 4T (TE = 10-180 ms, 18 young and 14 elderly subjects) using single-voxel spectroscopy. In addition, MM spectra were measured from two subjects using the inversion-recovery technique at 4T. All spectra were processed with LCModel using basis sets with different MM signals (measured or simulated) and also with MM signals included for a different TE range. Individual estimated T2 values were statistically analyzed using the R programming language for the age dependence of T2 values as well as the influence of the MM baseline handling. A significant decrease of T2 values of NAA and Cr in elderly subjects compared with young subjects was confirmed. The same trend was observed for Cho. Significantly higher T2 values calculated using the measured MM baseline for all studied metabolites at 4T were observed for both young and elderly subjects. To conclude, while the handling of MM and lipid signals may have a significant effect on estimated T2 values, we confirmed the age dependence of T2 values of NAA and Cr and the same trend for Cho in the human brain. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26752593

  13. Pitfalls and advantages of different strategies for the absolute quantification of N-acetyl aspartate, creatine and choline in white and grey matter by 1H-MRS.

    PubMed

    Malucelli, E; Manners, D N; Testa, C; Tonon, C; Lodi, R; Barbiroli, B; Iotti, S

    2009-12-01

    This study extensively investigates different strategies for the absolute quantitation of N-acetyl aspartate, creatine and choline in white and grey matter by (1)H-MRS at 1.5 T. The main focus of this study was to reliably estimate metabolite concentrations while reducing the scan time, which remains as one of the main problems in clinical MRS. Absolute quantitation was based on the water-unsuppressed concentration as the internal standard. We compared strategies based on various experimental protocols and post-processing strategies. Data were obtained from 30 control subjects using a PRESS sequence at several TE to estimate the transverse relaxation time, T(2), of the metabolites. Quantitation was performed with the algorithm QUEST using two different metabolite signal basis sets: a whole-metabolite basis set (WhoM) and a basis set in which the singlet signals were split from the coupled signals (MSM). The basis sets were simulated in vivo for each TE used. Metabolites' T(2)s were then determined by fitting the estimated signal amplitudes of the metabolites obtained at different TEs. Then the absolute concentrations (mM) of the metabolites were assessed for each subject using the estimated signal amplitudes and either the mean estimated relaxation times of all subjects (mean protocol, MP) or the T(2) estimated from the spectra derived from the same subject (individual protocol, IP). Results showed that MP represents a less time-consuming alternative to IP in the quantitation of brain metabolites by (1)H-MRS in both grey and white matter, with a comparable accuracy when performed by MSM. It was also shown that the acquisition time might be further reduced by using a variant of MP, although with reduced accuracy. In this variant, only one water-suppressed and one water-unsuppressed spectra were acquired, drastically reducing the duration of the entire MRS examination. However, statistical analysis highlights the reduced accuracy of MP when performed using Who

  14. Evaluation of the Lactate-to-N-Acetyl-aspartate Ratio Defined With Magnetic Resonance Spectroscopic Imaging Before Radiation Therapy as a New Predictive Marker of the Site of Relapse in Patients With Glioblastoma Multiforme

    SciTech Connect

    Deviers, Alexandra; Ken, Soléakhéna; Filleron, Thomas; Rowland, Benjamin; Laruelo, Andrea; Catalaa, Isabelle; Lubrano, Vincent; Celsis, Pierre; and others

    2014-10-01

    Purpose: Because lactate accumulation is considered a surrogate for hypoxia and tumor radiation resistance, we studied the spatial distribution of the lactate-to-N-acetyl-aspartate ratio (LNR) before radiation therapy (RT) with 3D proton magnetic resonance spectroscopic imaging (3D-{sup 1}H-MRSI) and assessed its impact on local tumor control in glioblastoma (GBM). Methods and Materials: Fourteen patients with newly diagnosed GBM included in a phase 2 chemoradiation therapy trial constituted our database. Magnetic resonance imaging (MRI) and MRSI data before RT were evaluated and correlated to MRI data at relapse. The optimal threshold for tumor-associated LNR was determined with receiver-operating-characteristic (ROC) curve analysis of the pre-RT LNR values and MRI characteristics of the tumor. This threshold was used to segment pre-RT normalized LNR maps. Two spatial analyses were performed: (1) a pre-RT volumetric comparison of abnormal LNR areas with regions of MRI-defined lesions and a choline (Cho)-to- N-acetyl-aspartate (NAA) ratio ≥2 (CNR2); and (2) a voxel-by-voxel spatial analysis of 4,186,185 voxels with the intention of evaluating whether pre-RT abnormal LNR areas were predictive of the site of local recurrence. Results: A LNR of ≥0.4 (LNR-0.4) discriminated between tumor-associated and normal LNR values with 88.8% sensitivity and 97.6% specificity. LNR-0.4 voxels were spatially different from those of MRI-defined lesions, representing 44% of contrast enhancement, 64% of central necrosis, and 26% of fluid-attenuated inversion recovery (FLAIR) abnormality volumes before RT. They extended beyond the overlap with CNR2 for most patients (median: 20 cm{sup 3}; range: 6-49 cm{sup 3}). LNR-0.4 voxels were significantly predictive of local recurrence, regarded as contrast enhancement at relapse: 71% of voxels with a LNR-0.4 before RT were contrast enhanced at relapse versus 10% of voxels with a normal LNR (P<.01). Conclusions: Pre-RT LNR-0.4 in GBM

  15. Brain lithium, N-acetyl aspartate and myo-inositol levels in older adults with bipolar disorder treated with lithium: a lithium-7 and proton magnetic resonance spectroscopy study

    PubMed Central

    Forester, Brent P; Finn, Chelsea T; Berlow, Yosef A; Wardrop, Megan; Renshaw, Perry F; Moore, Constance M

    2014-01-01

    Objectives We investigated the relationship between brain lithium levels and the metabolites N-acetyl aspartate (NAA) and myo-inositol (myo-Ino) in the anterior cingulate cortex of a group of older adults with bipolar disorder (BD). Methods This cross-sectional assessment included nine subjects (six males and three females) with bipolar I disorder and currently treated with lithium, who were examined at McLean Hospital’s Geriatric Psychiatry Research Program and Brain Imaging Center. The subjects’ ages ranged from 56 to 85 years (66.0 ± 9.7 years) and all subjects had measurements of serum and brain lithium levels. Brain lithium levels were assessed using lithium magnetic resonance spectroscopy. All subjects also had proton magnetic resonance spectroscopy to obtain measurements of NAA and myo-Ino. Results Brain lithium levels were associated with higher NAA levels [df = (1, 8), B = 12.53, t = 4.09, p < 0.005] and higher myo-Ino levels [df = (1, 7), F = 16.81, p < 0.006]. There were no significant effects of serum lithium levels on any of the metabolites. Conclusion Our findings of a relationship between higher brain lithium levels and elevated NAA levels in older adult subjects with BD may support previous evidence of lithium’s neuroprotective, neurotrophic, and mitochondrial function-enhancing effects. Elevated myo-Ino related to elevated brain lithium levels may reflect increased inositol monophosphatase (IMPase) activity, which would lead to an increase in myo-Ino levels. This is the first study to demonstrate alterations in NAA and myo-Ino in a sample of older adults with BD treated with lithium. PMID:18837863

  16. No change in N-acetyl aspartate in first episode of moderate depression after antidepressant treatment: 1H magnetic spectroscopy study of left amygdala and left dorsolateral prefrontal cortex

    PubMed Central

    Bajs Janović, Maja; Kalember, Petra; Janović, Špiro; Hrabač, Pero; Folnegović Grošić, Petra; Grošić, Vladimir; Radoš, Marko; Henigsberg, Neven

    2014-01-01

    Background The role of brain metabolites as biological correlates of the intensity, symptoms, and course of major depression has not been determined. It has also been inconclusive whether the change in brain metabolites, measured with proton magnetic spectroscopy, could be correlated with the treatment outcome. Methods Proton magnetic spectroscopy was performed in 29 participants with a first episode of moderate depression occurring in the left dorsolateral prefrontal cortex and left amygdala at baseline and after 8 weeks of antidepressant treatment with escitalopram. The Montgomery-Asberg Depression Rating Scale, the Hamilton Rating Scale for Depression, and the Beck Depression Inventory were used to assess the intensity of depression at baseline and at the endpoint of the study. At endpoint, the participants were identified as responders (n=17) or nonresponders (n=12) to the antidepressant therapy. Results There was no significant change in the N-acetyl aspartate/creatine ratio (NAA/Cr) after treatment with antidepressant medication. The baseline and endpoint NAA/Cr ratios were not significantly different between the responder and nonresponder groups. The correlation between NAA/Cr and changes in the scores of clinical scales were not significant in either group. Conclusion This study could not confirm any significant changes in NAA after antidepressant treatment in the first episode of moderate depression, or in regard to therapy response in the left dorsolateral prefrontal cortex or left amygdala. Further research is necessary to conclude whether NAA alterations in the first episode of depression could possibly be different from chronic or late-onset depression, and whether NAA alterations in stress-induced (reactive) depression are different from endogenous depression. The potential role of NAA as a biomarker of a treatment effect has yet to be established. PMID:25278754

  17. Comparative analysis of pharmacological treatments with N-acetyl-dl-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. PMID:26607469

  18. The Structure- and Metal-dependent Activity of Escherichia coli PgaB Provides Insight into the Partial De-N-acetylation of Poly-β-1,6-N-acetyl-d-glucosamine*

    PubMed Central

    Little, Dustin J.; Poloczek, Joanna; Whitney, John C.; Robinson, Howard; Nitz, Mark; Howell, P. Lynne

    2012-01-01

    Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In Escherichia coli, partial de-N-acetylation of the exopolysaccharide poly-β-1,6-N-acetyl-d-glucosamine (PNAG) by the periplasmic protein PgaB is required for polysaccharide intercellular adhesin-dependent biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of PgaB in complex with Ni2+ and Fe3+ have been determined to 1.9 and 2.1 Å resolution, respectively, and its activity on β-1,6-GlcNAc oligomers has been characterized. The structure of PgaB reveals two (β/α)x barrel domains: a metal-binding de-N-acetylase that is a member of the family 4 carbohydrate esterases (CE4s) and a domain structurally similar to glycoside hydrolases. PgaB displays de-N-acetylase activity on β-1,6-GlcNAc oligomers but not on the β-1,4-(GlcNAc)4 oligomer chitotetraose and is the first CE4 member to exhibit this substrate specificity. De-N-acetylation occurs in a length-dependent manor, and specificity is observed for the position of de-N-acetylation. A key aspartic acid involved in de-N-acetylation, normally seen in other CE4s, is missing in PgaB, suggesting that the activity of PgaB is attenuated to maintain the low levels of de-N-acetylation of PNAG observed in vivo. The metal dependence of PgaB is different from most CE4s, because PgaB shows increased rates of de-N-acetylation with Co2+ and Ni2+ under aerobic conditions, and Co2+, Ni2+ and Fe2+ under anaerobic conditions, but decreased activity with Zn2+. The work presented herein will guide inhibitor design to combat biofilm formation by E. coli and potentially a wide range of medically relevant bacteria producing polysaccharide intercellular adhesin-dependent biofilms. PMID:22810235

  19. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false N-Acetyl-L-methionine. 172.372 Section 172.372 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.372 N-Acetyl-L-methionine....

  20. In vivo N-acetyl cysteine reduce hepatocyte death by induced acetaminophen

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ju; Li, Feng-Chieh; Wang, Sheng-Shun; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2011-07-01

    Acetaminophen (APAP) is the famous drug in global, and taking overdose Acetaminophen will intake hepatic cell injure. Desptie substantial progress in our understanding of the mechanism of hepatocellular injury during the last 40 years, many aspects of the pathophysiology are still unknown or controversial.1 In this study, mice are injected APAP overdose to damage hepatocyte. APAP deplete glutathione and ATP of cell, N-Acetyl Cysteine (NAC) plays an important role to protect hepatocytes be injury. N-Acetyl Cysteine provides mitochondrial to produce glutathione to release drug effect hepatocyte. By 6-carboxyfluorescein diacetate (6-CFDA) metabolism in vivo, glutathione keep depleting to observe the hepatocyte morphology in time. Without NAC, cell necrosis increase to plasma membrane damage to release 6-CFDA, that's rupture. After 6-CFDA injection, fluorescence will be retained in hepatocyte. For cell retain with NAC and without NAC are almost the same. With NAC, the number of cell rupture decreases about 75%.

  1. Quantification of N-Acetyl Aspartyl Glutamate in Human Brain using Proton Magnetic Resonance Spectroscopy at 7 T

    NASA Astrophysics Data System (ADS)

    Elywa, M.

    2015-07-01

    The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.

  2. Chitosan Molecular Structure as a Function of N-Acetylation

    SciTech Connect

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  3. [Spectrophotometric evaluation of N-acetyl-beta-glucosaminidase in urine].

    PubMed

    Potere, C; Di Cosmo, C; Riario-Sforza, G; Di Silverio, F; Albertazzi, A; Cappelli, P

    1982-01-01

    A spectrophotometric method for the assay of N-Acetyl-beta-Glucosaminidase activity in human undiluted urines is described. The application of this method is recommended for its sensitivity (2,6 X 10(-4)M) and its rapid performance, because it represents a good alternative to current methods and essentially to the fluorimetric technique with which it has a significant statistical correlation. Estimates of normal individuals aged between 1-70 years are reported. PMID:7168631

  4. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  5. Decoupling of N-acetyl-aspartate and Glutamate Within the Dorsolateral Prefrontal Cortex in Schizophrenia

    PubMed Central

    Coughlin, Jennifer M.; Tanaka, Teppei; Marsman, Anouk; Wang, Hongxing; Bonekamp, Susanne; Kim, Pearl K.; Higgs, Cecilia; Varvaris, Mark; Edden, Richard A.E.; Pomper, Martin; Schretlen, David; Barker, Peter B.; Sawa, Akira

    2015-01-01

    Aberrant function of glutamatergic pathways is likely to underlie the pathology of schizophrenia. Evidence of oxidative stress in the disease pathology has also been reported. N-Acetylaspartate (NAA) is metabolically linked to both cascades and may be a key marker in exploring the interconnection of glutamatergic pathways and oxidative stress. Several studies have reported positive correlation between the levels of NAA and Glx (the sum of glutamate and glutamine) in several brain regions in healthy subjects, by using proton magnetic resonance spectroscopy ([1H]MRS). Interestingly, one research group recently reported decoupling of the relationship between NAA and Glx in the hippocampus of patients with schizophrenia. Here we report levels of NAA and Glx measured using [1H]MRS, relative to the level of creatine (Cr) as an internal control. The dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) in 25 patients with schizophrenia and 17 matched healthy controls were studied. In DLPFC, NAA/Cr and Glx/Cr were significantly positively correlated in healthy controls after correction for the effect of age and smoking status and after correction for multiple comparisons (r= 0.63, P= 0.017). However, in patients with schizophrenia, the positive correlation between NAA/Cr and Glx/Cr was not observed even after correcting for these two variables (r= −0.33, P= 0.124). Positive correlation between NAA/Cr and Glx/Cr was not observed in the ACC in both groups. Decoupling of NAA and Glx in the DLPFC may reflect the interconnection of glutamatergic pathways and oxidative stress in the pathology of schizophrenia, and may possibly be a biomarker of the disease. PMID:25732147

  6. N-acetyl-aspartyl-glutamate and inhibition of glutamate carboxypeptidases protects against soman-induced neuropathology.

    PubMed

    Guo, Huifu; Liu, Jiong; Van Shura, Kerry; Chen, HuaZhen; Flora, Michael N; Myers, Todd M; McDonough, John H; McCabe, Joseph T

    2015-05-01

    N-acetyl-aspartyl-glutamate (NAAG) is the most abundant neuropeptide in the mammalian brain. In a variety of animal models of brain injury, the administration of NAAG-related compounds, or inhibitors of glutamate carboxypeptidases (GCPs; the enzymes that hydrolyze NAAG), were shown to be neuroprotective. This study determined the impact of the administration of three NAAG-related compounds, NAAG, β-NAAG (a NAAG homologue resistant to degradation), and 2-phosphonomethyl pentanedioic acid (2-PMPA; an inhibitor of GCP enzymes), on the neuropathology that develops following exposure to the nerve agent, soman. When given 1 min after soman exposure, NAAG-related drug treatments did not alter the survival rate or body weight loss seen 24 h after rats were exposed to soman. Likewise, brain levels of both NAAG and its metabolite, N-acetyl-aspartate (NAA), were substantially decreased 24 h after soman, and in particularly vulnerable brain regions the drug treatments were unable to attenuate the reduction in NAA and NAAG levels. Histochemical study indicated there was a dramatic increase in Fluoro-Jade C (FJC) staining, indicative of neuron cell death, 24 h after soman exposure. However, in the amygdala and in the entorhinal and piriform limbic cortex, which sustained severe neuropathology following soman intoxication, single or combined injections of NAAG compounds and 2-PMPA significantly reduced the number of FJC-positive cells, and effect size estimates suggest that in some brain regions the treatments were effective. The findings suggest that NAAG neurotransmission in the central nervous system is significantly altered by soman exposure, and that the administration of NAAG-related compounds and 2-PMPA reduces neuron cell death in brain regions that sustain severe damage. PMID:25825357

  7. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users.

    PubMed

    Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M

    2014-01-01

    Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be

  8. Efficacy of N-Acetyl Cysteine in Traumatic Brain Injury

    PubMed Central

    Eakin, Katharine; Baratz-Goldstein, Renana; Pick, Chiam G.; Zindel, Ofra; Balaban, Carey D.; Hoffer, Michael E.; Lockwood, Megan; Miller, Jonathan; Hoffer, Barry J.

    2014-01-01

    In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting [1], to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30–60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man. PMID:24740427

  9. Central N-acetyl aspartylglutamate deficit: a possible pathogenesis of schizophrenia.

    PubMed

    Tsai, Shih-Jen

    2005-09-01

    The "glutamate hypothesis" of schizophrenia has emerged from the finding that phencyclidine (PCP) induces psychotic-like behaviors in rodents, possibly by blocking the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor, thereby causing increased glutamate release. N-acetyl aspartylglutamate (NAAG), an endogenous peptide abundant in mammalian nervous systems, is localized in certain brain cells, including cortical and hippocampal pyramidal neurons. NAAG is synthesized from N-acetylaspartate (NAA) and glutamate, and NAA availability may limit the rate of NAAG synthesis. Although NAAG is known to have some neurotransmitter-like functions, NAA does not. NAAG is a highly selective agonist of the type 3 metabotropic glutamate receptor (mGluR3, a presynaptic autoreceptor) and can inhibit glutamate release. In addition, at low levels, NAAG is an NMDA receptor antagonist, and blocking of NMDA receptors may increase glutamate release. Taken together, low central NAAG levels may antagonize the effect of glutamate at NMDA receptors and decrease its agonistic effect on presynaptic mGluR3; both activities could increase glutamate release, similar to the increase demonstrated in the PCP model of schizophrenia. In this report, it is suggested that the central NAAG deficit, possibly through decreased synthesis or increased degradation of NAAG, may play a role in the pathogenesis of schizophrenia. Evidence is presented and discussed from magnetic resonance, postmortem, animal model, schizophrenia treatment, and genetic studies. The central NAAG deficit model of schizophrenia could explain the disease process, from the perspectives of both neurodevelopment and neurodegeneration, and may point to potential treatments for schizophrenia. PMID:16127367

  10. Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients.

    PubMed

    Lavoie, Suzie; Murray, Micah M; Deppen, Patricia; Knyazeva, Maria G; Berk, Michael; Boulat, Olivier; Bovet, Pierre; Bush, Ashley I; Conus, Philippe; Copolov, David; Fornari, Eleonora; Meuli, Reto; Solida, Alessandra; Vianin, Pascal; Cuénod, Michel; Buclin, Thierry; Do, Kim Q

    2008-08-01

    In schizophrenia patients, glutathione dysregulation at the gene, protein and functional levels, leads to N-methyl-D-aspartate (NMDA) receptor hypofunction. These patients also exhibit deficits in auditory sensory processing that manifests as impaired mismatch negativity (MMN), which is an auditory evoked potential (AEP) component related to NMDA receptor function. N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients to determine whether increased levels of brain glutathione would improve MMN and by extension NMDA function. A randomized, double-blind, cross-over protocol was conducted, entailing the administration of NAC (2 g/day) for 60 days and then placebo for another 60 days (or vice versa). 128-channel AEPs were recorded during a frequency oddball discrimination task at protocol onset, at the point of cross-over, and at the end of the study. At the onset of the protocol, the MMN of patients was significantly impaired compared to sex- and age- matched healthy controls (p=0.003), without any evidence of concomitant P300 component deficits. Treatment with NAC significantly improved MMN generation compared with placebo (p=0.025) without any measurable effects on the P300 component. MMN improvement was observed in the absence of robust changes in assessments of clinical severity, though the latter was observed in a larger and more prolonged clinical study. This pattern suggests that MMN enhancement may precede changes to indices of clinical severity, highlighting the possible utility AEPs as a biomarker of treatment efficacy. The improvement of this functional marker may indicate an important pathway towards new therapeutic strategies that target glutathione dysregulation in schizophrenia. PMID:18004285

  11. 40 CFR 180.1089 - Poly-N-acetyl-D-glucosamine; exemption from the requirement of tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Poly-N-acetyl-D-glucosamine; exemption... FOOD Exemptions From Tolerances § 180.1089 Poly-N-acetyl-D-glucosamine; exemption from the requirement... biochemical nematicide poly-N-acetyl-D-glucosamine on a variety of agricultural crops....

  12. Adjunctive N-acetyl-L-cysteine in treatment of murine pneumococcal meningitis.

    PubMed

    Högen, Tobias; Demel, Cornelia; Giese, Armin; Angele, Barbara; Pfister, Hans-Walter; Koedel, Uwe; Klein, Matthias

    2013-10-01

    Despite antibiotic therapy, acute and long-term complications are still frequent in pneumococcal meningitis. One important trigger of these complications is oxidative stress, and adjunctive antioxidant treatment with N-acetyl-l-cysteine was suggested to be protective in experimental pneumococcal meningitis. However, studies of effects on neurological long-term sequelae are limited. Here, we investigated the impact of adjunctive N-acetyl-l-cysteine on long-term neurological deficits in a mouse model of meningitis. C57BL/6 mice were intracisternally infected with Streptococcus pneumoniae. Eighteen hours after infection, mice were treated with a combination of ceftriaxone and placebo or ceftriaxone and N-acetyl-l-cysteine, respectively. Two weeks after infection, neurologic deficits were assessed using a clinical score, an open field test (explorative activity), a t-maze test (memory function), and auditory brain stem responses (hearing loss). Furthermore, cochlear histomorphological correlates of hearing loss were assessed. Adjunctive N-acetyl-l-cysteine reduced hearing loss after pneumococcal meningitis, but the effect was minor. There was no significant benefit of adjunctive N-acetyl-l-cysteine treatment in regard to other long-term complications of pneumococcal meningitis. Cochlear morphological correlates of meningitis-associated hearing loss were not reduced by adjunctive N-acetyl-l-cysteine. In conclusion, adjunctive therapy with N-acetyl-l-cysteine at a dosage of 300 mg/kg of body weight intraperitoneally for 4 days reduced hearing loss but not other neurologic deficits after pneumococcal meningitis in mice. These results make a clinical therapeutic benefit of N-acetyl-l-cysteine in the treatment of patients with pneumococcal meningitis questionable. PMID:23877681

  13. N-acetyl-l-tryptophan, but not N-acetyl-d-tryptophan, rescues neuronal cell death in models of amyotrophic lateral sclerosis.

    PubMed

    Sirianni, Ana C; Jiang, Jiying; Zeng, Jiang; Mao, Lilly L; Zhou, Shuanhu; Sugarbaker, Peter; Zhang, Xinmu; Li, Wei; Friedlander, Robert M; Wang, Xin

    2015-09-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss. Evidence suggests that mitochondrial dysfunction, apoptosis, oxidative stress, inflammation, glutamate excitotoxicity, and proteasomal dysfunction are all responsible for ALS pathogenesis. N-acetyl-tryptophan has been identified as an inhibitor of mitochondrial cytochrome c release and therefore is a potential neuroprotective agent. By quantifying cell death, we demonstrate that N-acetyl-l-tryptophan (L-NAT) and N-acetyl-DL-tryptophan are neuroprotective in NSC-34 motor neuron-like cells and/or primary motor neurons, while their isomer N-acetyl-d-tryptophan has no protective effect. These findings are consistent with energy minimization and molecular modeling analysis, confirming that L-NAT generates the most stable complex with the neurokinin-1 receptor (NK-1R). L-NAT inhibits the secretion of Substance P and IL-1β (Enzyme-Linked Immunosorbent Assay and/or dot blots) and mitochondrial dysfunction by effectively inhibiting the release of cytochrome c/Smac/AIF from mitochondria into the cytoplasm and activation of apoptotic pathways, including the activation of caspase-1, -9, and -3, as well as proteasomal dysfunction through restoring chymotrypsin-like, trypsin-like, and caspase-like proteasome activity. These data provide insight into the molecular mechanisms by which L-NAT offers neuroprotection in models of ALS and suggest its potential as a novel therapeutic strategy for ALS. We demonstrate that L-NAT (N-acetyl-l-tryptophan), but not D-NAT, rescues NSC-34 cells and primary motor neurons from cell death. L-NAT inhibits the secretion of Substance P and IL-1β, and caspase-1 activation, the release of cytochrome c/Smac/AIF, and the activation of caspase -9, and -3, as well as proteasomal dysfunction. The data suggest the potential of L-NAT as a novel therapeutic strategy for amyotrophic lateral sclerosis (ALS). AIF, apoptosis-inducing factor. PMID

  14. Radiolysis of N-acetyl amino acids as model compounds for radiation degradation of polypeptides

    NASA Astrophysics Data System (ADS)

    Wayne Garrett, R.; Hill, David J. T.; Ho, Sook-Ying; O'Donnell, James H.; O'Sullivan, Paul W.; Pomery, Peter J.

    Radiation chemical yields of (i) the volatile radiolysis products and (ii) the trapped free radicals from the y-radiolysis of the N-acetyl derivatives of glycine, L-valine, L-phenylalanine and L-tyrosine in the polycrystalline state have been determined at room temperature (303 K). Carbon dioxide was found to be the major molecular product for all these compounds with G(CO 2) varying from 0.36 for N-acetyl-L-tyrosine to 8 for N-acetyl-L-valine. There was evidence for some scission of the N-C α bond, indicated by the production of acetamide and the corresponding aliphatic acid, but the determination reaction was found to be of much lesser importance than the decarboxylation reaction. A protective effect of the aromatic ring in N-acetyl-L-phenylalanine and in N-acetyl-L-tyrosine was indicated by the lower yields of volatile products for these compounds. The yields of trapped free radicals were found to vary with the nature of the amino acid side chain, increasing with chain length and chain branching. The radical yields were decreased by incorporation of an aromatic moiety in the side chain, this effect being greater for the tyrosyl side chain than for the phenyl side chain. The G(R·) values showed a good correlation with G(CO 2) indicating that a common reaction may be involved in radical production and carbon dioxide formation.

  15. Determination of DNA damage in experimental liver intoxication and role of N-acetyl cysteine.

    PubMed

    Aksit, Hasan; Bildik, Aysegül

    2014-11-01

    The present study aimed at detecting DNA damage and fragmentation as well as histone acetylation depending on oxidative stress caused by CCl4 intoxication. Also, the protective role of N-acetyl cysteine, a precursor for GSH, in DNA damage is investigated. Sixty rats were used in this study. In order to induce liver toxicity, CCl4 in was dissolved in olive oil (1/1) and injected intraperitoneally as a single dose (2 ml/kg). N-acetyl cysteine application (intraperitoneal, 50 mg/kg/day) was started 3 days prior to CCl4 injection and continued during the experimental period. Control groups were given olive oil and N-acetyl cysteine. After 6 and 72 h of CCl4 injection, blood and liver tissue were taken under ether anesthesia. Nuclear extracts were prepared from liver. Changes in serum AST and ALT activities as well as MDA, TAS, and TOS levels showed that CCl4 caused lipid peroxidation and liver damage. However, lipid peroxidation and liver damage were reduced in the N-acetyl cysteine group. Increased levels in 8-hydroxy-2-deoxy guanosine and histone acetyltransferase activities, decreased histone deacetylase activities, and DNA breakage detected in nuclear extracts showed that CCl4 intoxication induces oxidative stress and apoptosis in rat liver. The results of the present study indicate that N-acetyl cysteine has a protective effect on CCl4-induced DNA damage. PMID:24819310

  16. Conformational studies of bacterial peptidoglycan: structure and stereochemistry of N-acetyl-β- D-glucosamine and N-acetyl-β- D-muramic acid

    NASA Astrophysics Data System (ADS)

    Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.

    1989-03-01

    The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.

  17. Catalytic Depolymerization of Chitin with Retention of N-Acetyl Group.

    PubMed

    Yabushita, Mizuho; Kobayashi, Hirokazu; Kuroki, Kyoichi; Ito, Shogo; Fukuoka, Atsushi

    2015-11-01

    Chitin, a polymer of N-acetylglucosamine units with β-1,4-glycosidic linkages, is the most abundant marine biomass. Chitin monomers containing N-acetyl groups are useful precursors to various fine chemicals and medicines. However, the selective conversion of robust chitin to N-acetylated monomers currently requires a large excess of acid or a long reaction time, which limits its application. We demonstrate a fast catalytic transformation of chitin to monomers with retention of N-acetyl groups by combining mechanochemistry and homogeneous catalysis. Mechanical-force-assisted depolymerization of chitin with a catalytic amount of H2SO4 gave soluble short-chain oligomers. Subsequent hydrolysis of the ball-milled sample provided N-acetylglucosamine in 53% yield, and methanolysis afforded 1-O-methyl-N-acetylglucosamine in yields of up to 70%. Our process can greatly reduce the use of acid compared to the conventional process. PMID:26538108

  18. Structural Basis for the De-N-acetylation of Poly-β-1,6-N-acetyl-d-glucosamine in Gram-positive Bacteria*

    PubMed Central

    Little, Dustin J.; Bamford, Natalie C.; Pokrovskaya, Varvara; Robinson, Howard; Nitz, Mark; Howell, P. Lynne

    2014-01-01

    Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In staphylococci, partial de-N-acetylation of the exopolysaccharide poly-β-1,6-N-acetyl-d-glucosamine (PNAG) by the extracellular protein IcaB is required for biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of IcaB from Ammonifex degensii (IcaBAd) has been determined to 1.7 Å resolution. The structure of IcaBAd reveals a (β/α)7 barrel common to the family four carbohydrate esterases (CE4s) with the canonical motifs circularly permuted. The metal dependence of IcaBAd is similar to most CE4s showing the maximum rates of de-N-acetylation with Ni2+, Co2+, and Zn2+. From docking studies with β-1,6-GlcNAc oligomers and structural comparison to PgaB from Escherichia coli, the Gram-negative homologue of IcaB, we identify Arg-45, Tyr-67, and Trp-180 as key residues for PNAG binding during catalysis. The absence of these residues in PgaB provides a rationale for the requirement of a C-terminal domain for efficient deacetylation of PNAG in Gram-negative species. Mutational analysis of conserved active site residues suggests that IcaB uses an altered catalytic mechanism in comparison to other characterized CE4 members. Furthermore, we identified a conserved surface-exposed hydrophobic loop found only in Gram-positive homologues of IcaB. Our data suggest that this loop is required for membrane association and likely anchors IcaB to the membrane during polysaccharide biosynthesis. The work presented herein will help guide the design of IcaB inhibitors to combat biofilm formation by staphylococci. PMID:25359777

  19. Quantitative measurement of N-acetyl-aspartyl-glutamate at 3 T using TE-averaged PRESS spectroscopy and regularized lineshape deconvolution.

    PubMed

    Zhang, Yan; Li, Shizhe; Marenco, Stefano; Shen, Jun

    2011-08-01

    This article introduces regularized lineshape deconvolution in conjunction with TE-averaged PRESS spectroscopy to measure N-acetyl-aspartyl-glutamate (NAAG). Averaging different echo times suppressed the signals of multiplets from strongly coupled spin systems near 2 ppm; thus, minimizing the interfering signals to detect the acetyl proton signal of NAAG. Signal distortion was corrected by lineshape deconvolution, and Tikhonov regularization was introduced to reduce noise amplification arising from deconvolution; as a result, spectral resolution was enhanced without significantly sacrificing signal-to-noise ratio (SNR). This new approach was used to measure NAAG in the two regions of interest of healthy volunteers, dominated by gray matter and white matter, respectively. The acetyl proton signal of NAAG was directly quantified by fitting the deconvoluted spectra to a Voigt-lineshape spectral model function, yielding the NAAG-N-acetyl-aspartate (NAA) ratios of 0.11±0.02 for the gray matter voxels (n=8) and 0.18±0.02 for the white matter voxels (n=12). PMID:21656565

  20. Mucolipidosis III β-N-acetyl-d-hexosaminidase A. Purification and properties

    PubMed Central

    Kress, Barry C.; Hirani, Shirish; Freeze, Hudson H.; Little, Laureen; Miller, Arnold L.

    1982-01-01

    Mucolipidosis III acid hydrolases possess an altered carbohydrate recognition marker needed for their lysosomal localization. As a result of this alteration, a portion of these enzymes is secreted from the cell to the extracellular spaces. The structural changes that may have occurred to one of these secreted enzymes, β-N-acetyl-d-hexosaminidase A (EC 3.2.1.52) were investigated. Normal and mucolipidosis III urinary β-N-acetyl-d-hexosaminidase A were purified to apparent homogeneity by using affinity [Sepharose-2-acetamido-N-(ε-aminocaproyl)-2-deoxy-β- d-glucopyranosylamine] and ion-exchange (DEAE- and CM-cellulose) chromatography. Sodium dodecyl sulphate/polyacrylamide-slab-gel electrophoresis showed that both enzymes had similar subunit patterns consisting of apparent mol.wts. of 68000, 60000–58000, 55000 and 29000. Differences, however, were noted in the relative proportions of the protein bands where the normal urinary β-N-acetyl-d-hexosaminidase A contained predominantly the smaller subunits, whereas the mucolipidosis III enzyme had a predominance of the larger subunits. The binding of mucolipidosis III β-N-acetyl-d-hexosaminidase A to Ricinus communis lectin and concanavalin A with and without endo-β-N-acetyl-d-glucosaminidase H treatment indicated that the mutation leads to a modification of a portion of the normally occurring high-mannose-type oligosaccharide units to the complex-type. This was further supported by carbohydrate compositional analysis, which revealed a mannose/galactose ratio of 2.1 for the mucolipidosis III β-N-acetyl-d-hexosaminidase A compared with a ratio of 3.5 for the normal enzyme. Our results indicate that as a result of their inability to be properly localized to the lysosome the majority of the mucolipidosis III lysosomal hydrolase high-mannose oligosaccharide units are further processed to the complex-type before secretion of predominantly higher-molecular-weight subunits from the cell. ImagesFig. 1. PMID:6219664

  1. Analysis of urinary N-acetyl-beta-D-glucosaminidase using 2,4-dinitrophenyl-1-thio N-acetyl-beta-D-glucosaminide as the substrate.

    PubMed

    Yamada, Magohei; Fujita, Toshio

    2003-01-01

    2,4-Dinitrophenyl-1-thio N-acetyl-beta-D-glucosaminide was examined as a new substrate for analyzing the level of N-acetyl-beta-D-glucosaminidase in the urine of patients suffering from renal diseases. The analysis is based on the fact that the substrate, when hydrolyzed in the presence of N-acetyl-beta-D-glucosaminidase, liberates 2,4-dinitrothiophenol as the chromogen. The optimum pH for the enzyme reaction is 4.6, which is covered by the optimal range for the UV absorbance of the chromogen. The first-order rate of increase of the absorbance at this pH was linear to the enzyme concentration up to 600 U/L, with a high sensitivity. Analytical reagents with glucosaminides of 2,4-dinitrophenol and 2-chloro-4-nitrophenol are less stable than the reagent with glucosaminide of 2,4-dinitrothiophenol. The optimum pH for the absorbance of p-nitrophenol and 2-chloro-4-nitrophenol does not match that for the enzyme reaction. PMID:12784261

  2. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, a Review of Effectiveness in Reducing HIV Progression

    PubMed Central

    Hummelen, Ruben; Hemsworth, Jaimie; Reid, Gregor

    2010-01-01

    Low serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics, and prebiotics has considerable potential, but the evidence needs to be further substantiated. Vitamin A, iron, and zinc have been associated with adverse effects and caution is warranted for their use. PMID:22254046

  3. Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro

    SciTech Connect

    O'Brien, Timothy M. Oliveira, Paulo J.; Wallace, Kendall B.

    2008-03-01

    N-alkyl perfluorooctane sulfonamides have been widely used as surfactants on fabrics and papers, fire retardants, and anti-corrosion agents, among many other commercial applications. The global distribution and environmental persistence of these compounds has generated considerable interest regarding potential toxic effects. We have previously reported that perfluorooctanesulfonamidoacetate (FOSAA) and N-ethylperfluorooctanesulfonamidoacetate (N-EtFOSAA) induce the mitochondrial permeability transition (MPT) in vitro. In this study we tested the hypothesis that FOSAA and N-EtFOSAA interact with the adenine nucleotide translocator (ANT) resulting in a functional inhibition of the translocator and induction of the MPT. Respiration and membrane potential of freshly isolated liver mitochondria from Sprague-Dawley rats were measured using an oxygen electrode and a tetraphenylphosphonium-selective (TPP{sup +}) electrode, respectively. Mitochondrial swelling was measured spectrophotometrically. The ANT ligands bongkregkic acid (BKA) and carboxyatractyloside (cATR) inhibited uncoupling of mitochondrial respiration caused by 10 {mu}M N-EtFOSAA, 40 {mu}M FOSAA, and the positive control 8 {mu}M oleic acid. ADP-stimulated respiration and depolarization of mitochondrial membrane potential were inhibited by cATR, FOSAA, N-EtFOSAA, and oleic acid, but not by FCCP. BKA inhibited calcium-dependent mitochondrial swelling induced by FOSAA, N-EtFOSAA, and oleic acid. Seventy-five micromolar ADP also inhibited swelling induced by the test compounds, but cATR induced swelling was not inhibited by ADP. Results of this investigation indicate that N-acetyl perfluorooctane sulfonamides interact directly with the ANT to inhibit ADP translocation and induce the MPT, one or both of which may account for the metabolic dysfunction observed in vivo.

  4. Effects of selective inhibition of N-acetylated-alpha-linked-acidic dipeptidase (NAALADase) on mice in learning and memory tasks.

    PubMed

    Lukawski, Krzysztof; Kamiński, Rafał M; Czuczwar, Stanisław J

    2008-01-28

    The purpose of the present study was to examine the effects of 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a selective inhibitor of N-acetylated-alpha-linked-acidic dipeptidase (NAALADase, glutamate carboxypeptidase II), an enzyme catalyzing the cleavage of glutamate from the neuropeptide N-acetyl-aspartyl-glutamate (NAAG), on memory processes in mice. Long-term memory was evaluated in step-through passive avoidance task while alternation behavior, as a measure involving spatial working memory, was assessed in Y-maze task. Additionally, horizontal activity was evaluated by means of electronically monitored locomotor activity system. The mice were treated with either 2-PMPA (50, 100 and 150 mg/kg i.p.) or N-methyl-d-aspartate (NMDA) receptor antagonist, (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo-hepten-5,10-imine hydrogen maleate (MK-801) at doses of: 0.05, 0.1, 0.15 and 0.2 mg/kg i.p., as a comparator. In the passive avoidance task, the drugs were administered once before or immediately after training, and before retention test. 2-PMPA at the doses used did not affect retention of passive avoidance; however, it increased the latency to enter the dark box during the training day. In the Y-maze task, 2-PMPA (150 mg/kg i.p.) impaired spontaneous alternation and reduced locomotion while the lower dose of 100 mg/kg was ineffective. In the locomotor activity test, 2-PMPA (100 and 150 mg/kg i.p.) did not significantly affect horizontal activity. MK-801 (0.2 mg/kg i.p.) injected before training reduced retention in the passive avoidance task. In the Y-maze task, MK-801 (0.1 mg/kg i.p.) impaired alternation behavior and considerably increased locomotion in the Y-maze and locomotor activity test. These results indicate that NAALADase inhibition may impair alternation behavior. PMID:18031726

  5. N-acetyl muramyl dipeptide stimulation of bone resorption in tissue culture.

    PubMed Central

    Dewhirst, F E

    1982-01-01

    N-Acetyl-muramyl-L-alanyl-D-isoglutamine (MDP), a structurally defined fragment of bacterial peptidoglycan, stimulated significant release of previously incorporated 45Ca from fetal rat bones in tissue culture over the concentration range of 0.1 to 10.0 micrograms/ml. MDP-Stimulated bone resorption was not inhibited by the addition of the prostaglandin synthetase inhibitor indomethacin to the culture medium. MDP was neither mitogenic for nor stimulated the release of osteoclast-activating factor from cultured human peripheral blood mononuclear cells. Thus, MDP-stimulated bone resorption in vitro is mediated by a mechanism which is not dependent upon prostaglandins or osteoclast-activating factor. 6-O-Stearoyl-N-acetyl-muramyl-L-alanyl-D-isoglutamine, a lipophilic analog of MDP, was slightly more potent than MDP. Two diastereomers of MDP, N-acetyl-muramyl-L-alanyl-L-isoglutamine and N-acetyl-muramyl-D-alanyl-D-isoglutamine, which are inactive as adjuvants, were at least 1,000 times less active than MDP in stimulating bone resorption. The stereochemical specificity for bone-resorptive activity paralleled that required for adjuvant activity, macrophage activation, and activation of the reticuloendothelial system. PMID:7054120

  6. Identification of the major endogenous leukotriene metabolite in the bile of rats as N-acetyl leukotriene E4

    SciTech Connect

    Hagmann, W.; Denzlinger, C.; Rapp, S.; Weckbecker, G.; Keppler, D.

    1986-02-01

    Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats in vivo after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of (/sup 3/H)LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenous N-acetyl-LTE4 elicited by endotoxin in vivo was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.

  7. N-acetylation of three aromatic amine hair dye precursor molecules eliminates their genotoxic potential.

    PubMed

    Zeller, Andreas; Pfuhler, Stefan

    2014-01-01

    N-acetylation has been described as a detoxification reaction for aromatic amines; however, there is only limited data available showing that this metabolic conversion step changes their genotoxicity potential. To extend this database, three aromatic amines, all widely used as precursors in oxidative hair dye formulations, were chosen for this study: p-phenylenediamine (PPD), 2,5-diaminotoluene (DAT) and 4-amino-2-hydroxytoluene (AHT). Aiming at a deeper mechanistic understanding of the interplay between activation and detoxification for this chemical class, we compared the genotoxicity profiles of the parent compounds with those of their N-acetylated metabolites. While PPD, DAT and AHT all show genotoxic potential in vitro, their N-acetylated metabolites completely lack genotoxic potential as shown in the Salmonella typhimurium reversion assay, micronucleus test with cultured human lymphocytes (AHT), chromosome aberration assay with V79 cells (DAT) and Comet assay performed with V79 cells. For the bifunctional aromatic amines studied (PPD and DAT), monoacetylation was sufficient to completely abolish their genotoxic potential. Detoxification through N-acetylation was further confirmed by comparing PPD, DAT and AHT in the Comet assay using standard V79 cells (N-acetyltransferase (NAT) deficient) and two NAT-proficient cell lines,V79NAT1*4 and HaCaT (human keratinocytes). Here we observed a clear shift of dose-response curves towards decreased genotoxicity of the parent aromatic amines in the NAT-proficient cells. These findings suggest that genotoxic effects will only be found at concentrations where the N-acetylation (detoxifying) capacity of the cells is overwhelmed, indicating that a 'first-pass' effect in skin could be taken into account for risk assessment of these topically applied aromatic amines. The findings also indicate that the use of liver S-9 preparations, which generally underestimate Phase II reactions, contributes to the generation of irrelevant

  8. Solution interactions between the uranyl cation [UO2(2+)] and histidine, N-acetyl-histidine, tyrosine, and N-acetyl-tyrosine.

    PubMed

    Xie, Wei; Badawi, Ahmed; Huang, Huan; Van Horn, J David

    2009-01-01

    Complexes of the uranyl cation [UO(2)(2+)] with histidine (His), N-acetyl-histidine (NAH), tyrosine (Tyr), and N-acetyl-tyrosine (NAT) were studied by UV-visible and NMR spectroscopy, and by potentiometric titration. Protonation constants for each ligand are reported, as are cumulative formation constants for uranyl-amino acid complexes. Coupling constant data (J(CH)) for uranyl-histidine complexes indicate that inner-sphere solution interactions between histidine and uranyl cation are solely at the carboxylate site. At 25 degrees C the major uranyl-histidine complex has a cumulative formation constant of logbeta(110)=8.53, and a proposed formula of [UO(2)HisH(2)(OH)(2)](+); the stepwise formation constant, logK(UL), is estimated to be 5.6 ( approximately 8.53-(-6.1)-(-6.1)-15.15). Outer-sphere interactions, H-bonding or electrostatic interactions, are proposed as contributing a significant portion of the stability to the ternary uranyl-hydroxo-amino acid complexes. The temperature dependent protonation constants of histidine and formation constants between uranyl cation and histidine are reported from 10 to 35 degrees C; at 25 degrees C, DeltaG=-43.3 kJ/mol. PMID:18947879

  9. Production of N-Acetyl-d-glucosamine from Mycelial Waste by a Combination of Bacterial Chitinases and an Insect N-Acetyl-d-glucosaminidase.

    PubMed

    Zhu, Weixing; Wang, Di; Liu, Tian; Yang, Qing

    2016-09-01

    N-Acetyl-d-glucosamine (GlcNAc) has great potential to be used as a food additive and medicine. The enzymatic degradation of chitin-containing biomass for producing GlcNAc is an eco-friendly approach but suffers from a high cost. The economical efficiency can be improved by both optimizing the member and ratio of the chitinolytic enzymes and using new inexpensive substrates. To address this, a novel combination of bacterial and insect chitinolytic enzymes was developed in this study to efficiently produce GlcNAc from the mycelia of Asperillus niger, a fermentation waste. This enzyme combination contained three bacterial chitinases (chitinase A from Serratia marcescens (SmChiA), SmChiB, SmChiC) and one insect N-acetyl-d-glucosaminidase from Ostrinia furnacalis (OfHex1) in a ratio of 39.1% of SmChiA, 26.7% of SmChiB, 32.9% of SmChiC, and 1.3% of OfHex1. A yield of 6.3 mM (1.4 mg/mL) GlcNAc with a purity of 95% can be obtained from 10 mg/mL mycelial powder in 24 h. The enzyme combination reported here exhibited 5.8-fold higher hydrolytic activity over the commercial chitinase preparation derived from Streptomyces griseus. PMID:27546481

  10. Inhibition of phagocytic activity by the N-acetyl-D-galactosamine-specific lectin from Amaranthus leucocarpus.

    PubMed

    Maldonado, G; Gorocica, P; Agundis, C; Pérez, A; Molina, J; Zenteno, E

    1998-06-01

    Amaranthus leucocarpus lectin (ALL), specific for N-acetyl-D-galactosamine, induces inhibition of the erythrophagocytic activity of resident murine peritoneal macrophages and of the macrophage-like cell line J-774. This effect was observed only in macrophages that were Mac-2 (CD11c/CD18 or CR4) negative, indicating that macrophage activation induces important modification to the glycosylation (mainly O-glycosylation) of the membrane. Receptors for IgM and C3b remain unaltered after lectin treatment. Ultrastructural analysis revealed (a) that ALL induced the formation of pinocytic vacuoles, and (b) a regular distribution over the macrophage membrane as well as endosomal vesicles of the gold labeled ALL. Our results suggest that macrophage membrane glycoproteins with constitutive N-acetyl-D-galactosamine residues participate in the regulation of pinocytic-phagocytic vacuole formation. PMID:9881768

  11. N-acetyl-L-leucine accelerates vestibular compensation after unilateral labyrinthectomy by action in the cerebellum and thalamus.

    PubMed

    Günther, Lisa; Beck, Roswitha; Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by

  12. N-Acetyl-L-Leucine Accelerates Vestibular Compensation after Unilateral Labyrinthectomy by Action in the Cerebellum and Thalamus

    PubMed Central

    Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by

  13. Kinetics of Mushroom Tyrosinase and Melanogenesis Inhibition by N-Acetyl-pentapeptides

    PubMed Central

    Lien, Ching-Yi; Chen, Ching-Yu; Lai, Shih-Ting

    2014-01-01

    We investigated the kinetics of 4N-acetyl-pentapeptides, Ac-P1, Ac-P2, Ac-P3, and Ac-P4, regarding inhibition of mushroom tyrosinase activity. The peptides sequences of Ac-P1, Ac-P2, Ac-P3, and Ac-P4 were Ac-RSRFK, Ac-KSRFR, Ac-KSSFR, and Ac-RSRFS, respectively. The 4N-acetyl-pentapeptides were able to reduce the oxidation of l-DOPA by tyrosinase in a dose-dependent manner. Of the 4N-acetyl-pentapeptides, only Ac-P4 exhibited lag time (80 s) at a concentration of 0.5 mg/mL. The tyrosinase inhibitory effects of Ac-P4 (IC50 0.29 mg/mL) were more effective than those of Ac-P1, Ac-P2, and Ac-P3, in which IC50s were 0.75 mg/mL, 0.78 mg/mL, and 0.81 mg/mL, respectively. Kinetic analysis demonstrated that all 4N-acetyl-pentapeptides were mixed-type tyrosinase inhibitors. Furthermore, 0.1 mg/mL of Ac-P4 exhibited significant melanogenesis inhibition on B16F10 melanoma cells and was more effective than kojic acid. The melanogenesis inhibition of Ac-P4 was dose-dependent and did not induce any cytotoxicity on B16F10 melanoma cells. PMID:25136665

  14. Inhibition of mucin glycosylation by aryl-N-acetyl-alpha-galactosaminides in human colon cancer cells

    SciTech Connect

    Kuan, S.F.; Byrd, J.C.; Basbaum, C.; Kim, Y.S. )

    1989-11-15

    Specific inhibitors of the glycosylation of O-glycosidically linked glycoproteins have not previously been described. When tested for their effects on mucin glycosylation in a mucin-producing colon cancer cell line, LS174T, benzyl-, phenyl-, and p-nitrophenyl-N-acetyl-alpha-galactosaminide inhibited the formation of fully glycosylated mucin in a dose-dependent manner. Free aryl-oligosaccharides were found in the medium of treated cells labeled with ({sup 3}H)glucosamine, ({sup 3}H)galactose, ({sup 3}H)fucose, ({sup 3}H)mannosamine, or phenyl-alpha-(6-{sup 3}H) N-acetylgalactosamine. UDP-Gal:GalNAc-beta 1,3-galactosyltransferase was inhibited by aryl-N-acetyl-alpha-galactosaminides but not by a number of other aryl-glycosides. Treatment with these inhibitors also causes reversible morphologic changes including formation of intercellular cysts. Aryl-N-acetyl-alpha-galactosaminides can be useful for the structural and functional studies of mucin macromolecules and other O-linked glycoproteins.

  15. N-acetylation and phosphorylation of Sec complex subunits in the ER membrane

    PubMed Central

    2012-01-01

    Background Covalent modifications of proteins provide a mechanism to control protein function. Here, we have investigated modifications of the heptameric Sec complex which is responsible for post-translational protein import into the endoplasmic reticulum (ER). It consists of the Sec61 complex (Sec61p, Sbh1p, Sss1p) which on its own mediates cotranslational protein import into the ER and the Sec63 complex (Sec63p, Sec62p, Sec71p, Sec72p). Little is known about the biogenesis and regulation of individual Sec complex subunits. Results We show that Sbh1p when it is part of the Sec61 complex is phosphorylated on T5 which is flanked by proline residues. The phosphorylation site is conserved in mammalian Sec61ß, but only partially in birds, and not in other vertebrates or unicellular eukaryotes, suggesting convergent evolution. Mutation of T5 to A did not affect the ability of mutant Sbh1p to complement the growth defect in a Δsbh1Δsbh2 strain, and did not result in a hypophosphorylated protein which shows that alternate sites can be used by the T5 kinase. A survey of yeast phosphoproteome data shows that Sbh1p can be phosphorylated on multiple sites which are organized in two patches, one at the N-terminus of its cytosolic domain, the other proximal to the transmembrane domain. Surprisingly, although N-acetylation has been shown to interfere with ER targeting, we found that both Sbh1p and Sec62p are cotranslationally N-acetylated by NatA, and N-acetyl-proteome data indicate that Sec61p is modified by the same enzyme. Mutation of the N-acetylation site, however, did not affect Sec62p function in posttranslational protein import into the ER. Disabling NatA resulted in growth retardation, but not in co- or posttranslational translocation defects or instability of Sec62p or Sbh1p. Conclusions We conclude that N-acetylation of transmembrane and tail-anchored proteins does not interfere with their ER-targeting, and that Sbh1p phosphorylation on T5, which is not present in

  16. A single mutation in the active site swaps the substrate specificity of N-acetyl-L-ornithine transcarbamylase and N-succinyl-L-ornithine transcarbamylase

    PubMed Central

    Shi, Dashuang; Yu, Xiaolin; Cabrera-Luque, Juan; Chen, Tony Y.; Roth, Lauren; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel

    2007-01-01

    Transcarbamylases catalyze the transfer of the carbamyl group from carbamyl phosphate (CP) to an amino group of a second substrate such as aspartate, ornithine, or putrescine. Previously, structural determination of a transcarbamylase from Xanthomonas campestris led to the discovery of a novel N-acetylornithine transcarbamylase (AOTCase) that catalyzes the carbamylation of N-acetylornithine. Recently, a novel N-succinylornithine transcarbamylase (SOTCase) from Bacteroides fragilis was identified. Structural comparisons of AOTCase from X. campestris and SOTCase from B. fragilis revealed that residue Glu92 (X. campestris numbering) plays a critical role in distinguishing AOTCase from SOTCase. Enzymatic assays of E92P, E92S, E92V, and E92A mutants of AOTCase demonstrate that each of these mutations converts the AOTCase to an SOTCase. Similarly, the P90E mutation in B. fragilis SOTCase (equivalent to E92 in X. campestris AOTCase) converts the SOTCase to AOTCase. Hence, a single amino acid substitution is sufficient to swap the substrate specificities of AOTCase and SOTCase. X-ray crystal structures of these mutants in complexes with CP and N-acetyl-L-norvaline (an analog of N-acetyl-L-ornithine) or N-succinyl-L-norvaline (an analog of N-succinyl-L-ornithine) substantiate this conversion. In addition to Glu92 (X. campestris numbering), other residues such as Asn185 and Lys30 in AOTCase, which are involved in binding substrates through bridging water molecules, help to define the substrate specificity of AOTCase. These results provide the correct annotation (AOTCase or SOTCase) for a set of the transcarbamylase-like proteins that have been erroneously annotated as ornithine transcarbamylase (OTCase, EC 2.1.3.3). PMID:17600144

  17. Activation of the aryl hydrocarbon receptor by carcinogenic aromatic amines and modulatory effects of their N-acetylated metabolites.

    PubMed

    Juricek, Ludmila; Bui, Linh-Chi; Busi, Florent; Pierre, Stéphane; Guyot, Erwan; Lamouri, Aazdine; Dupret, Jean-Marie; Barouki, Robert; Coumoul, Xavier; Rodrigues-Lima, Fernando

    2015-12-01

    Aromatic amines (AAs) are an important class of chemicals which account for 12 % of known carcinogens. The biological effects of AAs depend mainly on their biotransformation into reactive metabolites or into N-acetylated metabolites which are generally considered as less toxic. Although the activation of the aryl hydrocarbon receptor (AhR) pathway by certain carcinogenic AAs has been reported, the effects of their N-acetylated metabolites on the AhR have not been addressed. Here, we investigated whether carcinogenic AAs and their N-acetylated metabolites may activate/modulate the AhR pathway in the absence and/or the presence of a bona fide AhR ligand (benzo[a]pyrene/B(a)P]. In agreement with previous studies, we found that certain AAs activated the AhR in human liver and lung cells as assessed by an increase in cytochrome P450 1A1 (CYP1A1) expression and activity. Altogether, we report for the first time that these properties can be modulated by the N-acetylation status of the AA. Whereas 2-naphthylamine significantly activated the AhR and induced CYP1A1 expression, its N-acetylated metabolite was less efficient. In contrast, the N-acetylated metabolite of 2-aminofluorene was able to significantly activate AhR, whereas the parent AA, 2-aminofluorene, did not. In the presence of B(a)P, activation of AhR or antagonist effects were observed depending on the AA or its N-acetylated metabolite. Activation and/or modulation of the AhR pathway by AAs and their N-acetylated metabolites may represent a novel mechanism contributing to the toxicological effects of AAs. More broadly, our data suggest biological interactions between AAs and other classes of xenobiotics through the AhR pathway. PMID:25224404

  18. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    SciTech Connect

    Yang, Xiupei; Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.

  19. A conformational study of N -acetyl glucosamine derivatives utilizing residual dipolar couplings

    NASA Astrophysics Data System (ADS)

    Kramer, Markus; Kleinpeter, Erich

    2011-09-01

    The conformational analyses of six non-rigid N-acetyl glucosamine (NAG) derivatives employing residual dipolar couplings (RDCs) and NOEs together with molecular dynamics (MD) simulations are presented. Due to internal dynamics we had to consider different conformer ratios existing in solution. The good quality of the correlation between theoretically and experimentally obtained RDCs show the correctness of the calculated conformers even if the ratios derived from the MD simulations do not exactly meet the experimental data. If possible, the results were compared to former published data and commented.

  20. N-Acetyl-5-chloro-3-nitro-l-tyrosine ethyl ester

    PubMed Central

    Mutahi, Teresa T.; Edagwa, Benson J.; Fronczek, Frank R.; Uppu, Rao M.

    2012-01-01

    The title compound, C13H15ClN2O6, was synthesized by hypochlorous acid-mediated chlorination of N-acetyl-3-nitro-l-tyrosine ethyl ester. The OH group forms an intra­molecular O—H⋯O hydrogen bond to the nitro group and the N—H group forms an inter­molecular N—H⋯O hydrogen bonds to an amide O atom, linking the mol­ecules into chains along [100]. The crystal studied was a non-merohedral twin, with a 0.907 (4):0.093 (4) domain ratio. PMID:22969682

  1. Chemoenzymatic synthesis of CMP-N-acetyl-7-fluoro-7-deoxy-neuraminic acid.

    PubMed

    Hartlieb, Sina; Günzel, Almut; Gerardy-Schahn, Rita; Münster-Kühnel, Anja K; Kirschning, Andreas; Dräger, Gerald

    2008-08-11

    7-Fluoro sialic acid was prepared and activated as cytidine monophosphate (CMP) ester. The synthesis started with d-glucose, which was efficiently converted into N-acetyl-4-fluoro-4-deoxy-d-mannosamine. Aldolase catalyzed transformation yielded the corresponding fluorinated sialic acid which was activated as CMP ester using three different synthetases in the presence as well as in the absence of pyrophosphatase which possesses inhibitory properties. Finally, conditions were optimized to perform a one-pot reaction starting from fluorinated mannosamine, which yielded the 7-fluoro-7-deoxy-CMP-sialic acid by incubation with three enzymes. PMID:18353292

  2. N-Acetyl glycals are tight-binding and environmentally insensitive inhibitors of hexosaminidases.

    PubMed

    Santana, A G; Vadlamani, G; Mark, B L; Withers, S G

    2016-06-28

    Mono-, di- and trisaccharide derivatives of 1,2-unsaturated N-acetyl-d-glucal have been synthesized and shown to function as tight-binding inhibitors/slow substrates of representative hexosaminidases. Turnover is slow and not observed in the thioamide analogue, allowing determination of the 3-dimensional structure of the complex. Inhibition is insensitive to pH and to mutation of key catalytic residues, consistent with the uncharged character of the inhibitor. These properties could render this inhibitor class less prone to development of resistance. PMID:27253678

  3. Urinary mutagenicity and N-acetylation phenotype in textile industry workers exposed to arylamines

    SciTech Connect

    Sinues, B.; Perez, J.; Bernal, M.L.; Saenz, M.A.; Lanuza, J.; Bartolome, M. )

    1992-09-15

    Primary aromatic amines have been identified epidemiologically as human carcinogens. It has been suggested that the target organ affected by aromatic amines is dependent on the rate of metabolic activation. Epidemiological studies have shown an association between low acetyl transferase activity and bladder cancer risk. On this basis, our working hypothesis was that the slow acetylators could follow in a higher extent the metabolic pathway independent of N-acetylation, leading to the excretion of conjugates of electrophyles with glucuronic acid. The instability of these glucuronides could be responsible for the association between arylamine-induced bladder cancer and slow acetylator phenotype. A total of 153 individuals were included in this study: 70 exposed to arylamines (working in textile industry) and 83 nonexposed. The following parameters were determined in urine: mutagenic index in the absence of metabolic activation, S9; mutagenic index in the presence of S9; and the mutagenic index after incubation of the urine with beta-glucuronidase. All individuals were phenotyped according to their capacity of N-acetylation by using isoniazid as drug test. The results show that the mutagenic index after incubation of the urine with beta-glucuronidase is statistically higher in exposed subjects when compared with nonexposed individuals (P less than 0.001), this parameter being statistically higher among exposed subjects who were slow acetylators than among rapid metabolizers, independent of the fact that they were smokers or nonsmokers. There were no significant differences between groups for the mutagenicity in urine not incubated with beta-glucuronidase.

  4. Interactions of egg yolk phosphatidylcholine with cholesteryl polyethoxy neoglycolipids containing N-acetyl- D-glucosamine

    NASA Astrophysics Data System (ADS)

    Kemoun, Rachida; Gelhausen, Micaèle; Besson, Françoise; Lafont, Dominique; Buchet, René; Boullanger, Paul; Roux, Bernard

    1999-03-01

    Series of neoglycolipids containing cholesteryl and N-acetyl- D-glucosaminyl groups were synthesized with various ethoxy linkers. Their self aggregations and intermolecular interactions, without and with egg yolk phosphatidylcholine (EYPC), were characterized in dry and hydrated states, by using infrared spectroscopy. The neoglycolipids in the dry state formed intermolecular hydrogen bonds between the CO and N-H or O-H groups of N-acetyl- D-glucosamine (GlcNAc). In the presence of EYPC, these intermolecular interactions were broken and new hydrogen bonds, involving the phosphate group of EYPC and N-H or O-H groups of GlcNAc of neoglycolipid, were formed. The presence of water molecules altered these intermolecular hydrogen bonds. The CO groups of EYPC were not affected by the presence of neoglycolipids, either in hydrated or in dry states, indicating that the GlcNAc polar groups interacted mostly with EYPC phosphate residues. The phase transition-temperature of mixtures of EYPC containing either cholesterol or neoglycolipid were similar, indicating that the cholesteryl group of the neoglycolipid interacted in the same manner as cholesterol with hydrocarbon chains of EYPC. Some structural models of molecular interactions of neoglycolipids were discussed in relation with the molecular recognition of wheat germ agglutinin.

  5. [Separation and properties of N-acetyl-beta-D-glucosaminidase from human seminal plasma].

    PubMed

    Yoshida, K; Uchijima, Y; Kobayashi, N; Saitoh, H

    1989-11-01

    N-acetyl-beta-D-glucosaminidase from human seminal plasma has been separated by the cellulose acetate electrophoresis into two components, isoenzyme I and II. The two isoenzymes are readily separated on a DEAE-Sephadex column. Isoenzyme I which has adsorbed to the column, is eluted at 0.1 M NaCl, whereas isoenzyme II has passed through the column. The following enzyme properties have been obtained: 1) Both isoenzymes show the same Km values (0.27 X 10(-3) M) towards sodio-m-cresol-sufonphtaleinyl-N-acetyl-beta-D-glucosaminide . 2) Both isoenzymes show the same pH optima of 5.4. 3) Optimal temperature for isoenzyme I is 50 degrees C, while that for isoenzyme II is 65 degrees C. Isoenzyme II is heat stable, while isoenzyme I is easily denatured by heat. These characteristics of isoenzyme I and II coincide with previous reports of NAG A and B from the spleen and the kidney, respectively. The activity ratio of isoenzyme I and II has been studied for the reproductive tissues. The % ratio of isoenzyme I and II in the epididymal head is 62 and 38, that in the epididymal tail is 42 and 58, and 38:62 in the seminal vesicle, 35:65 in the prostatic gland and 27:73 in the seminal plasma. PMID:2593437

  6. N-acetylation of aromatic amines: implication for skin and immune cells.

    PubMed

    Bonifas, Jutta; Blomeke, Brunhilde

    2015-01-01

    Frequently, aromatic amine (AA) contact to the skin occurs via occupational or 'life style' exposure to hair dye intermediates and couplers, usually monocyclic p-phenylenediamines and meta-substituted aminophenols. The transport of AA from the outer surface to the systemic circulation predominantly follows the intracellular route. Skin tends to have relatively higher phase II compared to phase I xenobiotic metabolizing enzyme capacity, and levels are generally regarded as lower than those in liver. Inside skin cells AA are primarily N-acetylated and detoxified by N-acetyltransferase 1. AA activation via hydroxylation or chemical oxidation competes with acetylation and is only of importance under circumstances when N-acetylation capacities are limited. The reactive AA derivatives are able to elicit effects by virtue of their modifications of skin proteins resulting in irritant or allergic contact dermatitis. Overall, the effective acetylation of topically applied AAs in skin cells emphasizes a protective role of cutaneous acetylation mediating a classical "first-pass" effect, which attenuates systemic exposure. PMID:25553379

  7. Reversible Post-Translational Carboxylation Modulates The Enzymatic Activity Of N-Acetyl-L-Ornithine Transcarbamylase†

    PubMed Central

    Li, Yongdong; Yu, Xiaolin; Ho, Jeremy; Fushman, David; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2010-01-01

    N-acetyl-L-ornithine transcarbamylase (AOTCase), rather than ornithine transcarbamylase (OTCase), is the essential carbamylase enzyme in the arginine biosynthesis of several plant and human pathogens. The specificity of this unique enzyme provides a potential target for controlling the spread of these pathogens. Recently, several crystal structures of AOTCase from Xanthomonas campestris (xc) have been determined. In these structures, an unexplained electron density at the tip of Lys302 side-chain was observed. Using 13C NMR spectroscopy, we show herein that Lys302 is post-translationally carboxylated. The structure of wild-type AOTCase complexed with the bisubstrate analogue, Nδ-(phosphonoacetyl)-Nα-acetyl-L-ornithine (PALAO), indicates that the carboxyl group on Lys302 forms a strong hydrogen bonding network with surrounding active site residues, Lys252, Ser253, His293, and Glu92 from the adjacent subunit either directly or via a water molecule. Furthermore, the carboxyl group is involved in binding N-acetyl-L-ornithine via a water molecule. Activity assays with the wild-type enzyme and several mutants demonstrate that the post translational modification of lysine 302 has an important role in catalysis. PMID:20695527

  8. Infrared and Raman spectra of N-acetyl- L-amino acid methylamides with aromatic side groups

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroatsu; Hasegawa, Kodo; Miyazawa, Tatsuo

    Infrared and Raman spectra of N-acetyl- L-phenylalanine methylamide, N-acetyl- L-tyrosine methylamide and N-acetyl- L-tryptophan methylamide, as model compounds of aromatic amino acid residues in proteins, were measured in the solid state and in methanol solutions. Vibrational assignments of the spectra were made by utilizing the deuteration effect and by comparison with the spectra of related compounds which include toluene, p-cresol and 3-methylindole. The amide I, III and IV bands were strong in Raman scattering, but other characteristic amide bands were ill-defined. In the Raman spectra of methanol solutions, only the bands due to the aromatic side group vibrations were markedly observed, but those due to the peptide backbone vibrations were very weak, suggesting the coexistence of various molecular conformations in solution.

  9. Concurrent esterification and N-acetylation of amino acids with orthoesters: A useful reaction with interesting mechanistic implications.

    PubMed

    Gibson, Sarah; Romero, Dickie; Jacobs, Hollie K; Gopalan, Aravamudan S

    2010-12-22

    The concurrent esterification and N-acetylation of amino acids has been studied with triethyl orthoacetate (TEOA) and triethyl orthoformate (TEOF). In a surprising finding, only one equivalent of TEOA in refluxing toluene was necessary to convert L-proline and L-phenylalanine to the corresponding N-acetyl ethyl esters in good yield. The same transformation using TEOF was not effective. Stereochemical outcome and stoichiometric studies as well as structural variation of the amino acids in this reaction provided unexpected mechanistic insight. PMID:21286246

  10. Concurrent esterification and N-acetylation of amino acids with orthoesters: A useful reaction with interesting mechanistic implications

    PubMed Central

    Gibson, Sarah; Romero, Dickie; Jacobs, Hollie K.; Gopalan, Aravamudan S.

    2010-01-01

    The concurrent esterification and N-acetylation of amino acids has been studied with triethyl orthoacetate (TEOA) and triethyl orthoformate (TEOF). In a surprising finding, only one equivalent of TEOA in refluxing toluene was necessary to convert L-proline and L-phenylalanine to the corresponding N-acetyl ethyl esters in good yield. The same transformation using TEOF was not effective. Stereochemical outcome and stoichiometric studies as well as structural variation of the amino acids in this reaction provided unexpected mechanistic insight. PMID:21286246

  11. Influence of environmental conditions on hyphal morphology in pellets of Aspergillus niger: role of beta-N-acetyl-D-glucosaminidase.

    PubMed

    Pera, L M; Baigorí, M D; Callieri, D

    1999-08-01

    The influence of modifications of the environmental conditions of growth on beta-N-acetyl-D-glucosaminidase (EC 3.2.1.30) activity and on hyphal morphological patterns in pellets of Aspergillus niger was studied. It was found that changes in the degree of branching and, to a lesser extent, in the number of bulbous cells were directly related to the activity of the enzyme. Nevertheless, since beta-N-acetyl-D-glucosaminidase is not the only enzyme involved in the lytic potential of the fungus, these findings do not exclude the possibility that other enzymes may be involved. PMID:10398828

  12. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs.

    PubMed

    Osaki, Tomohiro; Kurozumi, Seiji; Sato, Kimihiko; Terashi, Taro; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu

    2015-08-01

    N-acetyl-d-glucosamine (GlcNAc) is a monosaccharide that polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001). To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism. PMID:26262626

  13. Effect of N-acetyl-D-glucosamine on gene expression in Vibrio parahaemolyticus.

    PubMed

    Thompson, Fabiano L; Neto, Antonio Alves; Santos, Eidy de O; Izutsu, Kaori; Iida, Tetsuya

    2011-01-01

    We analyzed the effect of N-acetyl-D-glucosamine (GlcNAc) on gene expression in the marine bacterium Vibrio parahaemolyticus. The total number of genes whose expression was induced and repressed genes in the presence of GlcNAc was 81 and 55, respectively. The induced genes encoded a variety of products, including proteins related to energy metabolism (e.g. GlcNAc and chitin utilization), transport, central metabolism and chemotaxis, hypothetical proteins, mannose-sensitive hemagglutinin pilus (MSHA), and a PilA protein, whereas the repressed genes encoded mainly hypothetical proteins. GlcNAc appears to influence directly or indirectly a variety of cellular processes, including energy metabolism, chitin utilization, competence, biofilm formation and pathogenicity. GlcNAc, one of the most abundant aminosugars in the oceans, is used by V. parahaemolyticus as an energy source and affects the cellular functioning of this marine bacterium. PMID:21487204

  14. Metabolite regulation of the interaction between Arabidopsis thaliana PII and N-acetyl-l-glutamate kinase.

    PubMed

    Feria Bourrellier, Ana Belén; Ferrario-Méry, Sylvie; Vidal, Jean; Hodges, Michael

    2009-10-01

    The metabolic control of the interaction between ArabidopsisN-acetyl-l-glutamate kinase (NAGK) and the PII protein has been studied. Both gel exclusion and affinity chromatography analyses of recombinant, affinity-purified PII (trimeric complex) and NAGK (hexameric complex) showed that NAGK strongly interacted with PII only in the presence of Mg-ATP, and that this process was reversed by 2-oxoglutarate (2-OG). Furthermore, metabolites such as arginine, glutamate, citrate, and oxalacetate also exerted a negative effect on the PII-NAGK complex formation in the presence of Mg-ATP. Using chloroplast protein extracts and PII affinity chromatography, NAGK interacted with PII only in the presence of ATP-Mg(2+), and this process was antagonized by 2-OG. These results reveal a complex metabolic control of the PII interaction with NAGK in the chloroplast stroma of higher plants. PMID:19631611

  15. Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors.

    PubMed

    Rivlin, Michal; Navon, Gil

    2016-01-01

    The efficacy of glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) as agents for chemical exchange saturation transfer (CEST) magnetic resonance molecular imaging of tumors is demonstrated. Both agents reflect the metabolic activity and malignancy of the tumors. The method was tested in two types of tumors implanted orthotopically in mice: 4T1 (mouse mammary cancer cells) and MCF7 (human mammary cancer cells). 4T1 is a more aggressive type of tumor than MCF7 and exhibited a larger CEST effect. Two methods of administration of the agents, intravenous (IV) and oral (PO), gave similar results. The CEST MRI observation of lung metastasis was confirmed by histology. The potential of the clinical application of CEST MRI with these agents for cancer diagnosis is strengthened by their lack of toxicity as can be indicated from their wide use as food supplements. PMID:27600054

  16. Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors

    PubMed Central

    Rivlin, Michal; Navon, Gil

    2016-01-01

    The efficacy of glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) as agents for chemical exchange saturation transfer (CEST) magnetic resonance molecular imaging of tumors is demonstrated. Both agents reflect the metabolic activity and malignancy of the tumors. The method was tested in two types of tumors implanted orthotopically in mice: 4T1 (mouse mammary cancer cells) and MCF7 (human mammary cancer cells). 4T1 is a more aggressive type of tumor than MCF7 and exhibited a larger CEST effect. Two methods of administration of the agents, intravenous (IV) and oral (PO), gave similar results. The CEST MRI observation of lung metastasis was confirmed by histology. The potential of the clinical application of CEST MRI with these agents for cancer diagnosis is strengthened by their lack of toxicity as can be indicated from their wide use as food supplements. PMID:27600054

  17. Bioanalysis of N-acetyl-aspartyl-glutamate as a marker of glutamate carboxypeptidase II inhibition.

    PubMed

    Thomas, Ajit G; Rojas, Camilo J; Hill, Jeanette R; Shaw, Michael; Slusher, Barbara S

    2010-09-01

    We report the characterization of two methods for the analysis of N-acetyl-aspartyl-glutamate (NAAG) in biological fluids. In the first method, NAAG concentrations were calculated based on differences between glutamate concentrations before and after NAAG hydrolysis with exogenous glutamate carboxypeptidase II (GCP II) using high-performance liquid chromatography (HPLC) followed by fluorescence detection. In the second method, NAAG levels were quantified directly using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analyses of NAAG levels in human cerebrospinal fluid samples using either method gave similar results within experimental error, confirming the validity of the two independent measurements. These methods will be useful in future clinical trials to assess drug-induced GCP II inhibition in biological matrices. PMID:20434427

  18. Differential Neuroprotective Effects of Carnosine, Anserine, and N-Acetyl Carnosine against Permanent Focal Ischemia

    PubMed Central

    Min, Jiangyong; Senut, Marie-Claude; Rajanikant, Krishnamurthy; Greenberg, Eric; Bandagi, Ram; Zemke, Daniel; Mousa, Ahmad; Kassab, Mounzer; Farooq, Muhammad U.; Gupta, Rishi; Majid, Arshad

    2009-01-01

    Carnosine (β-alanyl-L-histidine) has been shown to exhibit neuroprotection in rodent models of cerebral ischemia. In the present study, we further characterized the effects of carnosine treatment in a mouse model of permanent focal cerebral ischemia and compared them with its related peptides anserine and N-acetylated carnosine. We also evaluated the efficacy of bestatin, a carnosinase inhibitor, in ameliorating ischemic brain damage. Permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery (pMCAO). Mice were subsequently randomly assigned to receive an intraperitoneal injection of vehicle (0.9% saline), carnosine, N-acetyl carnosine, anserine, bestatin alone, or bestatin with carnosine. Infarct size was examined using 2,3,5-triphenyltetrazolium chloride staining 1, 3, and 7 days following pMCAO, and neurological function was evaluated using an 18-point-based scale. Brain levels of carnosine were measured in treated mice using high-performance liquid chromatography 1 day following pMCAO. We demonstrated that treatment with carnosine, but not its analogues, was able to significantly reduce infarct volume and improve neurological function compared with those in vehicle-treated mice. These beneficial effects were maintained for 7 days post-pMCAO. In contrast, compared with the vehicle-treated group, bestatin-treated mice displayed an increase in the severity of ischemic lesion, which was prevented by the addition of carnosine. These new data further characterize the neuroprotective effects of carnosine and suggest that carnosine may be an attractive candidate for testing as a stroke therapy. PMID:18543335

  19. Effect of arylamine acetyltransferase Nat3 gene knockout on N-acetylation in the mouse.

    PubMed

    Sugamori, K S; Brenneman, D; Wong, S; Gaedigk, A; Yu, V; Abramovici, H; Rozmahel, R; Grant, D M

    2007-07-01

    Arylamine N-acetyltransferases (NAT) catalyze the biotransformation of many important arylamine drugs and procarcinogens. NAT can either detoxify or activate procarcinogens, complicating the manner in which these enzymes may participate in enhancing or preventing toxic responses to particular agents. Mice possess three NAT isoenzymes: Nat1, Nat2, and Nat3. Whereas Nat1 and Nat2 can efficiently acetylate many arylamines, few substrates appear to be appreciably metabolized by Nat3. We generated a Nat3 knockout mouse strain and used it along with our double Nat1/2(-/-) knockout strain to further investigate the functional role of Nat3. Nat3(-/-) mice showed normal viability and reproductive capacity. Nat3 expression was very low in wild-type animals and completely undetectable in Nat3(-/-) mice. In contrast, greatly elevated expression of Nat3 transcript was observed in Nat1/2(-/-) mice. We used a transcribed marker polymorphism approach to establish that the increased expression of Nat3 in Nat1/2(-/-) mice is a positional artifact of insertion of the phosphoglycerate kinase-neomycin resistance cassette in place of the Nat1/Nat2 gene region and upstream of the intact Nat3 gene, rather than a biological compensatory mechanism. Despite the increase in Nat3 transcript, the N-acetylation of p-aminosalicylate, sulfamethazine, 2-aminofluorene, and 4-aminobiphenyl was undetectable either in vivo or in vitro in Nat1/2(-/-) animals. In parallel, no difference was observed in the in vivo clearance or in vitro metabolism of any of these substrates between wild-type and Nat3(-/-) mice. Thus, Nat3 is unlikely to play a significant role in the N-acetylation of arylamines either in wild-type mice or in mice lacking Nat1 and Nat2 activities. PMID:17403913

  20. Neuroprotection in rabbit retina with N-acetyl-aspartylglutamate and 2-phosphonyl-methyl pentanedioic acid

    NASA Astrophysics Data System (ADS)

    Hacker, Henry D.; Yourick, Debra L.; Koenig, Michael K.; Slusher, Barbara S.; Meyerhoff, James L.

    1999-06-01

    Retinal tissue is subject to ischemia from diabetic retinopathy and other conditions that affect the retinal vasculature such as lupus erythematosus and temporal arteritis. There is evidence in animal models of reversible ischemia that a therapeutic window exists during early recovery when agents that reduce glutamate activity at its receptor sites can rescue neurons from injury. To model ischemia, we used sodium cyanide (NaCN), to inhibit oxidative metabolism, and 2-deoxyglucose (2-DG) to inhibit glycolysis. Dissociated rabbit retina cells were studied to evaluate the potential neuroprotective effects of N-acetyl-aspartyl-glutamate (MAAG), which competes with glutamate as a low-potency agonist at the NMDA receptor complex. N-acetylated α-linked acidic dipeptidase (NAALADase; the NAAG-hydrolyzing enzyme) is responsible for the hydrolysis of NAAG into glutamate, a neurotransmitter and potent excitotoxin, and N-acetylaspartate. 2-Phosphonyl-methyl pentanedioic acid (PMPA) and β-linked NAAG (β-NAAG), inhibitors of NAALADase, were also tested, since inhibition of NAALADase could reduce synaptic glutamate and increase the concentration of NAAG. We found that metabolic inhibition with NaCN/2-DG for 1 hour caused 50% toxicity as assessed with the MTT assay. Co-treatment with NAAG resulted in dose-dependent protection of up to 55% (p<0.005). When the non-hydrolyzable, NAALADase inhibitor β-NAAG was employed dose-dependent protection of up to 37% was observed (p<0.001). PMPA also showed 48% protection (p<.05-.001) against these insults. These data suggest that NAAG may antagonize the effect of glutamate at the NMDA receptor complex in retina. Inhibition of NAALADase by PMPA and β-NAAG may increase the activity of endogenous NAAG.

  1. Pharmacokinetics and N-acetylation metabolism of S-methyl-l-cysteine and trans-S-1-propenyl-l-cysteine in rats and dogs.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-11-01

    1. Pharmacokinetics and N-acetylation metabolism of S-methyl-L-cysteine (SMC) and trans-S-1-propenyl-L-cysteine (S1PC) were examined in rats and dogs. SMC and S1PC (2-5 mg/kg) were well absorbed in both species with high bioavailability (88-100%). 2. SMC and S1PC were excreted only to a small extent in the urine of rats and dogs. The small renal clearance values (<0.03 l/h/kg) indicated the extensive renal reabsorption of SMC and S1PC, which potentially contributed to their long elimination half-lives (>5 h) in dogs. 3. S1PC, but not SMC, underwent N-acetylation extensively in vivo, which can be explained by the relative activities of N-acetylation of S1PC/SMC and deacetylation of their N-acetylated forms, N-acetyl-S1PC/N-acetyl-SMC, in the liver and kidney in vitro. The activities for S1PC N-acetylation were similar to or higher than those for N-acetyl-S1PC deacetylation in liver S9 fractions of rat and dog, whereas liver and kidney S9 fractions of rat and dog had little activity for SMC N-acetylation or considerably higher activities for N-acetyl-SMC deacetylation. 4. Our study demonstrated that the pharmacokinetics of SMC and S1PC in rats and dogs was characterized by high bioavailability and extensive renal reabsorption; however, the extent of undergoing the N-acetylation metabolism was extremely different between SMC and S1PC. PMID:26887651

  2. Effects of N-acetyl-L-cysteine and glutathione on antioxidant status of human serum and 3T3 fibroblasts.

    PubMed Central

    Hong, Sae-Yong; Yang, Jong-Oh; Lee, Eun-Young; Lee, Zee-Won

    2003-01-01

    The effectiveness of several sulfhydryl compounds in the treatment of paraquat intoxication has been previously tested based on their antioxidant ability. However, practical guidelines for their clinical use remain to be determined. As a preliminary pharmacokinetic study on sulfhydryl compounds, we attempted to establish the optimal concentration of N-acetyl-L-cysteine, glutathione, superoxide dismutase, and catalase. We measured the antioxidant effect of these antioxidants in normal pooled plasma and on intracellular reactive oxygen species (ROS) induced by paraquat. N-acetyl-L-cysteine begins to suppress the production of ROS in plasma at concentrations as low as 5 mM, with the suppression being maximal at 40 mM. In the same way, glutathione increased the total antioxidant status in plasma at concentrations of 5-40 mM in a dose-dependent manner. Complete suppression of ROS in plasma induced by exposure to 500 micro M paraquat for 40 min was observed when using 40 mM N-acetyl-L-cysteine and 5 mM glutathione. These concentrations are comparable with 50 units of catalase, which reduced ROS at concentrations of 5-100 units. Further pharmacokinetic study into the systemic administration of these antioxidants is necessary, using effective concentrations of 5-40 mM for both N-acetyl-L-cysteine and glutathione, and 1-50 units of catalase. PMID:14555815

  3. Computational Study of Environmental Effects on Torsional Free Energy Surface of N-Acetyl-N'-methyl-L-alanylamide Dipeptide

    ERIC Educational Resources Information Center

    Carlotto, Silvia; Zerbetto, Mirco

    2014-01-01

    We propose an articulated computational experiment in which both quantum mechanics (QM) and molecular mechanics (MM) methods are employed to investigate environment effects on the free energy surface for the backbone dihedral angles rotation of the small dipeptide N-Acetyl-N'-methyl-L-alanylamide. This computation exercise is appropriate for an…

  4. NagA-Dependent Uptake of N-Acetyl-Glucosamine and N-Acetyl-Chitin Oligosaccharides across the Outer Membrane of Caulobacter crescentus▿

    PubMed Central

    Eisenbeis, Simone; Lohmiller, Stefanie; Valdebenito, Marianne; Leicht, Stefan; Braun, Volkmar

    2008-01-01

    Among the 67 predicted TonB-dependent outer membrane transporters of Caulobacter crescentus, NagA was found to be essential for growth on N-acetyl-β-d-glucosamine (GlcNAc) and larger chitin oligosaccharides. NagA (93 kDa) has a predicted typical domain structure of an outer membrane transport protein: a signal sequence, the TonB box EQVVIT, a hatch domain of 147 residues, and a β-barrel composed of 22 antiparallel β-strands linked by large surface loops and very short periplasmic turns. Mutations in tonB1 and exbBD, known to be required for maltose transport via MalA in C. crescentus, and in two additional predicted tonB genes (open reading frames cc2327 and cc3508) did not affect NagA-mediated GlcNAc uptake. nagA is located in a gene cluster that encodes a predicted PTS sugar transport system and two enzymes that convert GlcNAc-6-P to fructose-6-P. Since a nagA insertion mutant did not grow on and transport GlcNAc, diffusion of GlcNAc through unspecific porins in the outer membrane is excluded. Uptake of GlcNAc into tonB and exbBD mutants and reduction but not abolishment of GlcNAc transport by agents which dissipate the electrochemical potential of the cytoplasmic membrane (0.1 mM carbonyl cyanide 3-chlorophenylhydrazone and 1 mM 2,4-dinitrophenol) suggest diffusion of GlcNAc through a permanently open pore of NagA. Growth on (GlcNAc)3 and (GlcNAc)5 requires ExbB and ExbD, indicating energy-coupled transport by NagA. We propose that NagA forms a small pore through which GlcNAc specifically diffuses into the periplasm and functions as an energy-coupled transporter for the larger chitin oligosaccharides. PMID:18539735

  5. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus.

    PubMed

    Eisenbeis, Simone; Lohmiller, Stefanie; Valdebenito, Marianne; Leicht, Stefan; Braun, Volkmar

    2008-08-01

    Among the 67 predicted TonB-dependent outer membrane transporters of Caulobacter crescentus, NagA was found to be essential for growth on N-acetyl-beta-D-glucosamine (GlcNAc) and larger chitin oligosaccharides. NagA (93 kDa) has a predicted typical domain structure of an outer membrane transport protein: a signal sequence, the TonB box EQVVIT, a hatch domain of 147 residues, and a beta-barrel composed of 22 antiparallel beta-strands linked by large surface loops and very short periplasmic turns. Mutations in tonB1 and exbBD, known to be required for maltose transport via MalA in C. crescentus, and in two additional predicted tonB genes (open reading frames cc2327 and cc3508) did not affect NagA-mediated GlcNAc uptake. nagA is located in a gene cluster that encodes a predicted PTS sugar transport system and two enzymes that convert GlcNAc-6-P to fructose-6-P. Since a nagA insertion mutant did not grow on and transport GlcNAc, diffusion of GlcNAc through unspecific porins in the outer membrane is excluded. Uptake of GlcNAc into tonB and exbBD mutants and reduction but not abolishment of GlcNAc transport by agents which dissipate the electrochemical potential of the cytoplasmic membrane (0.1 mM carbonyl cyanide 3-chlorophenylhydrazone and 1 mM 2,4-dinitrophenol) suggest diffusion of GlcNAc through a permanently open pore of NagA. Growth on (GlcNAc)(3) and (GlcNAc)(5) requires ExbB and ExbD, indicating energy-coupled transport by NagA. We propose that NagA forms a small pore through which GlcNAc specifically diffuses into the periplasm and functions as an energy-coupled transporter for the larger chitin oligosaccharides. PMID:18539735

  6. N-Acetyl Cysteine in the Treatment of Obsessive Compulsive and Related Disorders: A Systematic Review

    PubMed Central

    Oliver, Georgina; Dean, Olivia; Camfield, David; Blair-West, Scott; Ng, Chee; Berk, Michael; Sarris, Jerome

    2015-01-01

    Objective Obsessive compulsive and related disorders are a collection of debilitating psychiatric disorders in which the role of glutamate dysfunction in the underpinning neurobiology is becoming well established. N-acetyl cysteine (NAC) is a glutamate modulator with promising therapeutic effect. This paper presents a systematic review of clinical trials and case reports exploring the use of NAC for these disorders. A further objective was to detail the methodology of current clinical trials being conducted in the area. Methods PubMed, Web of Science and Cochrane Library Database were searched for human clinical trials or case reports investigating NAC in the treatment of obsessive compulsive disorder (OCD) or obsessive compulsive related disorders. Researchers with known involvement in NAC studies were contacted for any unpublished data. Results Four clinical trials and five case reports/series were identified. Study durations were commonly 12-weeks, using 2,400–3,000 mg/day of NAC. Overall, NAC demonstrates activity in reducing the severity of symptoms, with a good tolerability profile and minimal adverse effects. Currently there are three ongoing randomized controlled trials using NAC for OCD (two adults and one pediatric), and one for excoriation. Conclusion Encouraging results have been demonstrated from the few pilot studies that have been conducted. These results are detailed, in addition to a discussion of future potential research. PMID:25912534

  7. The effect of N-acetyl-L-cysteine on the viscosity of ileal neobladder mucus.

    PubMed

    Schrier, B P; Lichtendonk, W J; Witjes, J A

    2002-05-01

    N-acetyl-L-cysteine (NAC) proved to be an effective mucolytic in pulmonary secretions. Our goal was to investigate the in vitro effect of NAC on viscosity of ileal neobladder mucus. The urine of a patient with an ileal neobladder was collected during the first 7 days postoperatively and stored in a refrigerator. After precipitation, the urine was decanted. The residue was stirred to a homogeneous suspension. To samples of 4.5 ml mucus, 0.5 ml NAC 10% was added. To the control sample, 0.5 ml water was added. The samples were incubated in a water bath at 37 degrees C for 5, 30 and 60 min. Viscosity was measured in the Bohlin VOR Rheometer. The viscosity of the ileal neobladder mucus decreased quickly after incubating with NAC 10%. Viscosity increased slightly after I h of incubation. The viscosity in the control sample was higher than in the other incubated samples. NAC was found to decrease the viscosity of ileal neobladder mucus, supporting the in vivo experience that NAC can be useful in patients with an ileal neobladder to facilitate the evacuation of mucus by decreasing viscosity. PMID:12088194

  8. N-acetyl -β-D-glucosaminidase activity in cow milk as an indicator of mastitis.

    PubMed

    Hovinen, Mari; Simojoki, Heli; Pösö, Reeta; Suolaniemi, Jenni; Kalmus, Piret; Suojala, Leena; Pyörälä, Satu

    2016-05-01

    Activity of lysosomal N-acetyl-β-d-glucosaminidase (NAGase) in milk has been used as an indicator of bovine mastitis. We studied NAGase activity of 808 milk samples from healthy quarters and quarters of cows with spontaneous subclinical and clinical mastitis. Associations between milk NAGase activity and milk somatic cell count (SCC), mastitis causing pathogen, quarter, parity, days in milk (DIM) and season were studied. In addition, the performance of NAGase activity in detecting clinical and subclinical mastitis and distinguishing infections caused by minor and major bacteria was investigated. Our results indicate that NAGase activity can be used to detect both subclinical and clinical mastitis with a high level of accuracy (0·85 and 0·99). Incomplete correlation between NAGase activity and SCC suggests that a substantial proportion of NAGase activity comes from damaged epithelial cells of the udder in addition to somatic cells. We therefore recommend determination of NAGase activity from quarter foremilk after at least six hours from the last milking using the method described. Samples should be frozen before analysis. NAGase activity should be interpreted according to DIM, at least during the first month of lactation. Based on the results of the present study, a reference value for normal milk NAGase activity of 0·1-1·04 pmoles 4-MU/min/μl for cows with ≥30 DIM (196 samples) could be proposed. We consider milk NAGase activity to be an accurate indicator of subclinical and clinical mastitis. PMID:27210494

  9. Synthesis, characterization, antibacterial activity and quantum chemical studies of N'-Acetyl propane sulfonic acid hydrazide

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Alyar, Hamit; Ozdemir, Ummuhan Ozmen; Sahin, Omer; Kaya, Kerem; Ozbek, Neslihan; Gunduzalp, Ayla Balaban

    2015-08-01

    A new N'-Acetyl propane sulfonic acid hydrazide, C3H7sbnd SO2sbnd NHsbnd NHsbnd COCH3 (Apsh, an sulfon amide compound) has been synthesized for the first time. The structure of Apsh was investigated using elemental analysis, spectral (IR, 1H/13C NMR) measurements. In addition, molecular structure of the Apsh was determined by single crystal X-ray diffraction technique and found that the compound crystallizes in monoclinic, space group P 21/c. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The structure of Apsh is optimized using Density Functional Theory (DFT) method. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The theoretical IR frequencies are found to be in good agreement with the experimental IR frequencies. Nonlinear optical (NLO) behaviour of Apsh is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). The antibacterial activities of synthesized compound were studied against Gram positive bacteria: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 23212, Staphylococcus epidermidis ATCC 34384, Gram negative bacteria: Eschericha coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70063 by using microdilution method (as MICs) and disc diffusion method.

  10. A nanoparticle delivery vehicle for S-nitroso-N-acetyl cysteine: Sustained vascular response

    PubMed Central

    Nacharaju, Parimala; Tuckman-Vernon, Chaim; Maier, Keith E.; Chouake, Jason; Friedman, Adam; Cabrales, Pedro; Friedman, Joel M.

    2014-01-01

    Interest in the development of nitric oxide (NO) based therapeutics has grown exponentially owing to its well elucidated and established biological functions. In line with this surge, S-nitroso thiol (RSNO) therapeutics are also receiving more attention in recent years both as potential stable sources of NO as well as for their ability to serve as S-nitrosating agents; S-nitrosation of protein thiols is implicated in many physiological processes. We describe two hydrogel based RSNO containing nanoparticle platforms. In one platform the SNO groups are covalently attached to the particles (SNO-np) and the other contains S-nitroso-N-acetyl cysteine encapsulated within the particles (NAC-SNO-np). Both platforms function as vehicles for sustained activity as trans-S-nitrosating agents. NAC-SNO-np exhibited higher efficiency for generating GSNO from GSH and maintained higher levels of GSNO concentration for longer time (24 h) as compared to SNO-np as well as a previously characterized nitric oxide releasing platform, NO-np (nitric oxide releasing nanoparticles). In vivo, intravenous infusion of the NAC-SNO-np and NO-np resulted in sustained decreases in mean arterial pressure, though NAC-SNO-np induced longer vasodilatory effects as compared to the NO-np. Serum chemistries following infusion demonstrated no toxicity in both treatment groups. Together, these data suggest that the NAC-SNO-np represents a novel means to both study the biologic effects of nitrosothiols and effectively capitalize on its therapeutic potential. PMID:22705913

  11. The Role of Poly N Acetyl Glucosamine Nanofibers in Cutaneous Wound Healing

    NASA Astrophysics Data System (ADS)

    Buff-Lindner, Amanda Haley

    Treatment of cutaneous wounds with poly-N-acetyl-glucosamine nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increases in wound closure, antibacterial activities and innate immune responses. Treatment with nanofibers results in increased defensin, small antimicrobial peptides, expression both in vitro and in vivo. Induction of defensin expression results in bacterial clearance in a cutaneous wound model. Our data show that Akt1 plays a central role in the regulation of these activities. Interestingly, pGlcNAc treatment of cutaneous wounds in mice results in decreased scar sizes. Additionally, treatment of cutaneous wounds with pGlcNAc results in increased elasticity and a rescue of tensile strength. Masson Trichrome staining suggests that pGlcNAc treated wounds exhibit decreased collagen content as well as increased collagen alignment with collagen fibers oriented similarly to unwounded tissue. Utilizing a fibrin gel assay to analyze the effect of pGlcNAc nanofiber treatment on fibroblast alignment in vitro, pGlcNAc stimulation of embedded fibroblasts results in fibroblasts alignment as compared to untreated controls, by a process that is Akt1 dependent. Our data show that in Akt1 null animals pGlcNAc treatment does not increase tensile strength or elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in wound closure, the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing.

  12. Polymeric N-acetyl-D-glucosamine (chitin) induces histionic activation in dogs.

    PubMed

    Okamoto, Y; Minami, S; Matsuhashi, A; Sashiwa, H; Saimoto, H; Shigemasa, Y; Tanigawa, T; Tanaka, Y; Tokura, S

    1993-10-01

    Analyses on the effects of polymeric N-acetyl-D-glucosamine (chitin), which was obtained from squid pen, on histiogenic activation in dogs were carried out with subcutaneous implants (5 x 5 cm2) of polyester non-woven fabric (NWF) supplemented with chitin (chitin group) and NWF (control group). These materials were implanted at 4 sites, on the lumbodorsal and lumbosacral subcutaneous tissues on both sides of the midline in each dog under general anesthesia. The implants and their surrounding tissues were isolated on post-implantation days (PIDs) 2, 4, 8, and 18 under general anesthesia. In the chitin group, the implant was organized gradually and its organization was completed on PID 18, when obvious angiogenesis toward the NWF was observed. On the other hand, in the control group, obvious angiogenesis toward the NWF was not observed macroscopically. Numbers of mononuclear (MN) and polymorphonuclear (PMN) cells concentrated around the implants on PID 2 were larger in the chitin than control group. In the chitin group, formation of granulating tissue around the implant was indicated on PID 4, whereas such a phenomenon was not observed in the control group. From these results, chitin accelerates the migration of MN and PMN cells to the NWF site with rapid follow-up organization of the NWF accompanied by angiogenesis. PMID:7506939

  13. N-acetyl-cysteine attenuates neuropathic pain by suppressing matrix metalloproteinases.

    PubMed

    Li, Jiajie; Xu, Lujie; Deng, Xueting; Jiang, Chunyi; Pan, Cailong; Chen, Lu; Han, Yuan; Dai, Wenling; Hu, Liang; Zhang, Guangqin; Cheng, Zhixiang; Liu, Wentao

    2016-08-01

    The treatment of neuropathic pain remains a clinical challenge because of its unclear mechanisms and broad clinical morbidity. Matrix metalloproteinase (MMP)-9 and MMP-2 have previously been described as key components in neuropathic pain because of their facilitation of inflammatory cytokine maturation and induction of neural inflammation. Therefore, the inhibition of MMPs may represent a novel therapeutic approach to the treatment of neuropathic pain. In this study, we report that N-acetyl-cysteine (NAC), which is a broadly used respiratory drug, significantly attenuates neuropathic pain through a unique mechanism of MMP inhibition. Both the in vitro (0.1 mM) and in vivo application of NAC significantly suppressed the activity of MMP-9/2. Orally administered NAC (50, 100, and 200 mg/kg) not only postponed the occurrence but also inhibited the maintenance of chronic constrictive injury (CCI)-induced neuropathic pain in rats. The administration of NAC blocked the maturation of interleukin-1β, which is a critical substrate of MMPs, and markedly suppressed the neuronal activation induced by CCI, including inhibiting the phosphorylation of protein kinase Cγ, NMDAR1, and mitogen-activated protein kinases. Finally, NAC significantly inhibited CCI-induced microglia activation but elicited no notable effects on astrocytes. These results demonstrate an effective and safe approach that has been used clinically to alleviate neuropathic pain through the powerful inhibition of the activation of MMPs. PMID:27075430

  14. N-acetyl-L-histidine, a Prominent Biomolecule in Brain and Eye of Poikilothermic Vertebrates.

    PubMed

    Baslow, Morris H; Guilfoyle, David N

    2015-01-01

    N-acetyl-L-histidine (NAH) is a prominent biomolecule in brain, retina and lens of poikilothermic vertebrates. In fish lens, NAH exhibits an unusual compartmentalized metabolism. It is synthesized from L-histidine (His) and acetyl Co-enzyme A. However, NAH cannot be catabolized by lens cells. For its hydrolysis, NAH is exported to ocular fluid where a specific acylase cleaves His which is then actively taken up by lens and re-synthesized into NAH. This energy-dependent cycling suggested a pump mechanism operating at the lens/ocular fluid interface. Additional studies led to the hypothesis that NAH functioned as a molecular water pump (MWP) to maintain a highly dehydrated lens and avoid cataract formation. In this process, each NAH molecule released to ocular fluid down its gradient carries with it 33 molecules of bound water, effectively transporting the water against a water gradient. In ocular fluid the bound water is released for removal from the eye by the action of NAH acylase. In this paper, we demonstrate for the first time the identification of NAH in fish brain using proton magnetic resonance spectroscopy (MRS) and describe recent evidence supporting the NAH MWP hypothesis. Using MRS, we also document a phylogenetic transition in brain metabolism between poikilothermic and homeothermic vertebrates. PMID:25919898

  15. N-acetyl-l-histidine, a Prominent Biomolecule in Brain and Eye of Poikilothermic Vertebrates

    PubMed Central

    Baslow, Morris H.; Guilfoyle, David N.

    2015-01-01

    N-acetyl-l-histidine (NAH) is a prominent biomolecule in brain, retina and lens of poikilothermic vertebrates. In fish lens, NAH exhibits an unusual compartmentalized metabolism. It is synthesized from l-histidine (His) and acetyl Co-enzyme A. However, NAH cannot be catabolized by lens cells. For its hydrolysis, NAH is exported to ocular fluid where a specific acylase cleaves His which is then actively taken up by lens and re-synthesized into NAH. This energy-dependent cycling suggested a pump mechanism operating at the lens/ocular fluid interface. Additional studies led to the hypothesis that NAH functioned as a molecular water pump (MWP) to maintain a highly dehydrated lens and avoid cataract formation. In this process, each NAH molecule released to ocular fluid down its gradient carries with it 33 molecules of bound water, effectively transporting the water against a water gradient. In ocular fluid the bound water is released for removal from the eye by the action of NAH acylase. In this paper, we demonstrate for the first time the identification of NAH in fish brain using proton magnetic resonance spectroscopy (MRS) and describe recent evidence supporting the NAH MWP hypothesis. Using MRS, we also document a phylogenetic transition in brain metabolism between poikilothermic and homeothermic vertebrates. PMID:25919898

  16. An Additive Effect of Oral N-Acetyl Cysteine on Eradication of Helicobacter pylori

    PubMed Central

    Hamidian, Seyed Mohammad-Taghi; Aletaha, Najmeh-sadat; Taslimi, Reza; Montazeri, Mohammad

    2015-01-01

    Background. Helicobacter pylori is highly adapted to the gastric environment where it lives within or beneath the gastric mucous layer. The aim of this study was to evaluate whether the addition of N-acetyl cysteine to the treatment regimen of H. pylori infection would affect eradication rates of the disease. Methods. A total of 79 H. pylori positive patients were randomized to two therapeutic groups. Both groups received a 14-day course of three-drug regimen including amoxicillin/clarithromycin/omeprazole. Experimental group (38 subjects) received NAC, and control group (41 subjects) received placebo, besides three-drug regimen. H. pylori eradication was evaluated by urea breath test at least 4 weeks after the cessation of therapy. Results. The rate of H. pylori eradication was 72.9% and 60.9% in experimental and control groups, respectively (P = 0.005). By logistic regression modeling, female gender (OR 3.68, 95% CI: 1.06–5.79; P = 0.040) and treatment including NAC (OR 1.88, 95% CI: 0.68–3.15; P = 0.021) were independent factors associated with H. pylori eradication. Conclusion. The results of the present study show that NAC has an additive effect on the eradication rates of H. pylori obtained with three-drug regimen and appears to be a promising means of eradicating H. pylori infection. PMID:26421191

  17. Two novel regulators of N-acetyl-galactosamine utilization pathway and distinct roles in bacterial infections.

    PubMed

    Zhang, Huimin; Ravcheev, Dmitry A; Hu, Dan; Zhang, Fengyu; Gong, Xiufang; Hao, Lina; Cao, Min; Rodionov, Dmitry A; Wang, Changjun; Feng, Youjun

    2015-12-01

    Bacterial pathogens can exploit metabolic pathways to facilitate their successful infection cycles, but little is known about roles of d-galactosamine (GalN)/N-acetyl-d-galactosamine (GalNAc) catabolism pathway in bacterial pathogenesis. Here, we report the genomic reconstruction of GalN/GalNAc utilization pathway in Streptococci and the diversified aga regulons. We delineated two new paralogous AgaR regulators for the GalN/GalNAc catabolism pathway. The electrophoretic mobility shift assays experiment demonstrated that AgaR2 (AgaR1) binds the predicted palindromes, and the combined in vivo data from reverse transcription quantitative polymerase chain reaction and RNA-seq suggested that AgaR2 (not AgaR1) can effectively repress the transcription of the target genes. Removal of agaR2 (not agaR1) from Streptococcus suis 05ZYH33 augments significantly the abilities of both adherence to Hep-2 cells and anti-phagocytosis against RAW264.7 macrophage. As anticipated, the dysfunction in AgaR2-mediated regulation of S. suis impairs its pathogenicity in experimental models of both mice and piglets. Our finding discovered two novel regulators specific for GalN/GalNAc catabolism and assigned them distinct roles into bacterial infections. To the best of our knowledge, it might represent a first paradigm that links the GalN/GalNAc catabolism pathway to bacterial pathogenesis. PMID:26540018

  18. Chitosan films with improved tensile strength and toughness from N-acetyl-cysteine mediated disulfide bonds.

    PubMed

    Miles, Kevin Barrett; Ball, Rebecca Lee; Matthew, Howard William Trevor

    2016-03-30

    To improve the mechanical properties of chitosan (Ct) materials without the use of cytotoxic crosslinkers, disulfide cross-linkable Ct was synthesized by grafting N-acetyl-cysteine (NAC) to Ct using carbodiimide chemistry. Cast films of NAC-Ct conjugates were prepared with degrees of substitution (DS) of 0%, 6%, 15%, and 20%, and the disulfide bond formation was induced by increasing the reaction media pH to 11. The tensile strength, breaking strain, elastic moduli and toughness of disulfide cross-linked polymers were analyzed by monotonic tensile testing of hydrated NAC-Ct films. Crystallinity was determined via XRD. Results demonstrated that NAC incorporation and crosslinking in chitosan produced tougher polymer films with 4-fold higher tensile strength (10 MPa) and 6-fold greater elongation (365%), but reduced crystallinity, compared to unmodified chitosan. The resilience of NAC-Ct films was evaluated by cyclic testing, and results demonstrate that increasing NAC content produced a more resilient material that dissipated less energy when deformed. These improved mechanical properties broaden chitosan's applicability towards the construction of mechanically robust implantable scaffolds for tissue regeneration. PMID:26794940

  19. Synthesis and characterization of a novel chitosan-N-acetyl-homocysteine thiolactone polymer using MES buffer.

    PubMed

    Ferris, C; Casas, M; Lucero, M J; de Paz, M V; Jiménez-Castellanos, M R

    2014-10-13

    We report a new "green" approach to synthesize a novel thiolated chitosan conjugate, chitosan-N-acetyl-homocysteine thiolactone (chitosan-AcHcys) using a "Good's buffers", 2-(N-morpholino)ethanesulfonic acid (MES). After that, the crosslinked Xr-chitosan-AcHcys was obtained only in the presence of air, without other reactants. The chitosan-AcHcys spectrum shows a partial incorporation of the thiolactone onto the polymer backbone. The derivative thermogravimetric analysis confirmed that chitosan-AcHcys is slightly less stable than starting chitosan; however, the peak profile is broadened which is indicative of deeper changes in the thermal degradation process. Also, aqueous dispersions with different concentrations of the crosslinked material (Xr-chitosan-AcHcys) were prepared and rheologically characterized. All aqueous dispersions are viscoelastic fluid with shear-thinning behavior. The viscosity of the dispersions (1-7% of chitosan-AcHcys) increases as a function of polymer concentration. So, we have achieved to disperse a high concentration of thiolated-chitosan derivative in water with different rheological characteristics, which could affect the drug release. PMID:25037337

  20. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy

    PubMed Central

    Van Laar, Victor S.; Roy, Nikita; Liu, Annie; Rajprohat, Swati; Arnold, Beth; Dukes, April A.; Holbein, Cory D.; Berman, Sarah B.

    2014-01-01

    Disruption of the dynamic properties of mitochondria (fission, fusion, transport, degradation, and biogenesis) has been implicated in the pathogenesis of neurodegenerative disorders, including Parkinson’s disease (PD). Parkin, the product of gene PARK2 whose mutation causes familial PD, has been linked to mitochondrial quality control via its role in regulating mitochondrial dynamics, including mitochondrial degradation via mitophagy. Models using mitochondrial stressors in numerous cell types have elucidated a PINK1-dependent pathway whereby Parkin accumulates on damaged mitochondria and targets them for mitophagy. However, the role Parkin plays in regulating mitochondrial homeostasis specifically in neurons has been less clear. We examined whether a stressor linked to neurodegeneration, glutamate excitotoxicity, elicits Parkin-mitochondrial translocation and mitophagy in neurons. We found that brief, acute exposure to glutamate causes Parkin translocation to mitochondria in neurons, in a calcium- and N-methyl-D-aspartate (NMDA) receptor-dependent manner. In addition, we found that Parkin accumulates on endoplasmic reticulum (ER) and mitochondrial/ER junctions following excitotoxicity, supporting a role for Parkin in mitochondrial-ER crosstalk in mitochondrial homeostasis. Despite significant Parkin-mitochondria translocation, however, we did not observe mitophagy under these conditions. To further investigate, we examined the role of glutamate-induced oxidative stress in Parkin-mitochondria accumulation. Unexpectedly, we found that glutamate-induced accumulation of Parkin on mitochondria was promoted by the antioxidant N-acetyl cysteine (NAC), and that co-treatment with NAC facilitated Parkin-associated mitophagy. These results suggest the possibility that mitochondrial depolarization and oxidative damage may have distinct pathways associated with Parkin function in neurons, which may be critical in understanding the role of Parkin in neurodegeneration. PMID

  1. Neonatal administration of N-acetyl-L-aspartyl-L-glutamate induces early neurodegeneration in hippocampus and alters behaviour in young adult rats.

    PubMed

    Bubeníková-Valesová, Vera; Balcar, Vladimir J; Tejkalová, Hana; Langmeier, Milos; St'astný, Frantisek

    2006-01-01

    N-acetyl-L-aspartyl-L-glutamate (NAAG) is a dipeptide that could be considered a sequestered form of L-glutamate. As much as 25% of L-glutamate in brain may be present in the form of NAAG. NAAG is also one of the most abundant neuroactive small molecules in the CNS: it is an agonist at Group II metabotropic glutamate receptors (mGluR II) and, at higher concentrations, at the N-methyl-D-aspartate (NMDA) type of ionotropic glutamate receptors. As such, NAAG can be either neuroprotective or neurotoxic and, in fact, both characteristics have been discussed and described in the literature. In the present studies, 250 nmol NAAG was infused into each lateral cerebral ventricle of 12-day-old rat pups and, using Nissl-stained sections, neurodegeneration in the hippocampus was evaluated 24 or 96 h after the infusion. In several experiments, the neuronal death was also visualised by Fluoro-Jade B staining and studied by TUNEL technique. Some of the NAAG-treated animals were allowed to survive until 50 days post partum and subjected to behavioural (open field) tests. The administration of NAAG to 12-day-old rats resulted in extensive death of neurons particularly in the dentate gyrus of the hippocampus. The neurodegeneration was, in part, prevented by administration of an NMDA receptor antagonist MK-801 (0.1 mg/kg). The nuclear DNA-fragmentation demonstrated by TUNEL technique pointed to the presence of non-specific single-strand DNA cleavage. The NAAG-associated neonatal neuronal damage may have perturbed development of synaptic circuitry during adolescence as indicated by an altered performance of the experimental animals in the open field testing (changes in grooming activity) at postnatal day 50. The results underscore the potential neurotoxicity of NAAG in neonatal rat brain and implicate neonatally induced, NMDA receptor-mediated neuronal loss in the development of abnormal behaviour in young adult rats. PMID:16540202

  2. Lactose-egg yolk diluent supplemented with N-acetyl-D-glucosamine affect acrosome morphology and motility of frozen-thawed boar sperm.

    PubMed

    Yi, Y J; Im, G S; Park, C S

    2002-12-16

    These experiments were carried out to investigate the effect of N-acetyl-D-glucosamine, and to obtain additional information about the effect of orvus es paste (OEP) and egg yolk concentration in the freezing of boar sperm in the maxi-straw. The highest post-thaw acrosomes of normal apical ridge (NAR) and motility were obtained with 0.025 or 0.05% N-acetyl-D-glucosamine concentration in the first diluent. However, there were no effects of N-acetyl-D-glucosamine among the diluents with or without N-acetyl-D-glucosamine at the second dilution. The N-acetyl-D-glucosamine in the first and second diluents was added at room temperatures (20-23 degrees C) and 5 degrees C, respectively. It is suggested that the temperature of N-acetyl-D-glucosamine addition is important for the effect of boar sperm protection during freezing and thawing. When the 0.05% N-acetyl-D-glucosamine was supplemented in the first diluent, the optimum final OEP content was 0.5%. The optimum content of egg yolk in the diluent with 0.05% N-acetyl-D-glucosamine concentration was 20% and egg yolk was one of the main cryoprotective agents. In conclusion, we found out that the diluent with 0.025 or 0.05% soluble N-acetyl-D-glucosamine in the first diluent, 0.5% final orvus es paste concentration and 20% egg yolk concentration significantly enhanced NAR acrosomes and motility of boar sperm after freezing and thawing. PMID:12417120

  3. Development of Unsymmetrical Dyads As Potent Noncarbohydrate-Based Inhibitors against Human β-N-Acetyl-d-hexosaminidase

    PubMed Central

    2013-01-01

    Human β-N-acetyl-d-hexosaminidase has gained much attention due to its roles in several pathological processes and been considered as potential targets for disease therapy. A novel and efficient skeleton, which was an unsymmetrical dyad containing naphthalimide and methoxyphenyl moieties with an alkylamine spacer linkage as a noncarbohydrate-based inhibitor, was synthesized, and the activities were valuated against human β-N-acetyl-d-hexosaminidase. The most potent inhibitor exhibits high inhibitory activity with Ki values of 0.63 μM. The straightforward synthetic manners of these unsymmetrical dyads and understanding of the binding model could be advantageous for further structure optimization and development of new therapeutic agents for Hex-related diseases. PMID:24900704

  4. Exploration of the full conformational space of N-acetyl-L-glutamate-N-methylamide . An ab initio and DFT study

    NASA Astrophysics Data System (ADS)

    Masman, M. F.; Zamora, M. A.; Rodríguez, A. M.; Fidanza, N. G.; Peruchena, N. M.; Enriz, R. D.; Csizmadia, I. G.

    2002-09-01

    A conformational and electronic study on N-acetyl-L-glutamate-N-methylamide was carried out. Theoretical computational analysis revealed 21 different conformations at the RB3LYP/6-31G(d) level of theory. Ab initio calculations at two levels of theory (RHF/3-21G and RHF/6-31G(d)) were also performed. All side-chain conformations were explored for this compound. N-acetyl-L-glutamate-N-methylamide displayed a different conformational behaviour in comparison with other amino acids possessing shorter side-chains. These results can be attributed, at least in part, to the side-chain-backbone interactions, which are stabilizing the low-energy conformations in this molecule.

  5. Development of Unsymmetrical Dyads As Potent Noncarbohydrate-Based Inhibitors against Human β-N-Acetyl-d-hexosaminidase.

    PubMed

    Guo, Peng; Chen, Qi; Liu, Tian; Xu, Lin; Yang, Qing; Qian, Xuhong

    2013-06-13

    Human β-N-acetyl-d-hexosaminidase has gained much attention due to its roles in several pathological processes and been considered as potential targets for disease therapy. A novel and efficient skeleton, which was an unsymmetrical dyad containing naphthalimide and methoxyphenyl moieties with an alkylamine spacer linkage as a noncarbohydrate-based inhibitor, was synthesized, and the activities were valuated against human β-N-acetyl-d-hexosaminidase. The most potent inhibitor exhibits high inhibitory activity with K i values of 0.63 μM. The straightforward synthetic manners of these unsymmetrical dyads and understanding of the binding model could be advantageous for further structure optimization and development of new therapeutic agents for Hex-related diseases. PMID:24900704

  6. Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated alpha-linked acidic dipeptidase.

    PubMed

    Jackson, P F; Cole, D C; Slusher, B S; Stetz, S L; Ross, L E; Donzanti, B A; Trainor, D A

    1996-01-19

    A series of substituted phosphonate derivatives were designed and synthesized in order to study the ability of these compounds to inhibit the neuropeptidase N-acetylated alpha-linked acidic dipeptidase (NAALADase). The molecules were shown to act as inhibitors of the enzyme, with the most potent (compound 3) having a Ki of 0.275 nM. The potency of this compound is more than 1000 times greater than that of previously reported inhibitors of the enzyme. NAALADase is responsible for the catabolism of the abundant neuropeptide N-acetyl-aspartylglutamate (NAAG) into N-acetylaspartate and glutamate. NAAG has been proposed to be a neurotransmitter at a subpopulation of glutamate receptors; alternatively, NAAG has been suggested to act as a storage form of synaptic glutamate. As a result, inhibition of NAALADase may show utility as a therapeutic intervention in diseases in which altered levels of glutamate are thought to be involved. PMID:8558536

  7. Distinct roles of N-acetyl and 5-methoxy groups in the antiproliferative and neuroprotective effects of melatonin.

    PubMed

    Letra-Vilela, Ricardo; Sánchez-Sánchez, Ana María; Rocha, Ana Maia; Martin, Vanesa; Branco-Santos, Joana; Puente-Moncada, Noelia; Santa-Marta, Mariana; Outeiro, Tiago Fleming; Antolín, Isaac; Rodriguez, Carmen; Herrera, Federico

    2016-10-15

    Melatonin (N-acetyl-5-methoxytryptamine) is a highly pleiotropic hormone with antioxidant, antiproliferative, oncolytic and neuroprotective properties. Here, we present evidence that the N-acetyl side chain plays a key role in melatonin's antiproliferative effect in HT22 and sw-1353 cells, but it does so at the expense of antioxidant and neuroprotective properties. Removal of the N-acetyl group enhances the antioxidant and neuroprotective properties of the indole, but it can lead to toxic methamphetamine-like effects in several cell lines. Inhibition of NFkB mimicked melatonin's antiproliferative and antioxidant effects, but not neuroprotection. Our results strongly suggest that neuroprotective and antiproliferative effects of melatonin rely on different parts of the molecule and are likely mediated by different mechanisms. We also predict that melatonin metabolism by target cells could determine whether melatonin inhibits cell proliferation, prevents toxicity or induces cell death (e.g. apoptosis or autophagy). These observations could have important implications for the rational use of melatonin in personalized medicine. PMID:27402602

  8. Hydration and N-acetyl-l-cysteine alter the microstructure of human nail and bovine hoof: implications for drug delivery.

    PubMed

    Nogueiras-Nieto, L; Gómez-Amoza, J L; Delgado-Charro, M B; Otero-Espinar, F J

    2011-12-20

    This work aimed to (a) characterize the microstructure and porosity of human nail and bovine hoof by mercury intrusion porosimetry and SEM image analysis, (b) study the effects of hydration and of N-acetyl-l-cysteine treatment on the microstructure of both membranes, and (c) determine whether the microstructural modifications were associated with changes in drug penetration measured by standard diffusion studies. Bovine hoof surface is more porous than nail surface although there were no differences between the mean surface pore sizes. Hydration and N-acetyl-l-cysteine increased the roughness and apparent surface porosity, and the porosity determined by mercury intrusion porosimetry of both membranes. Pore-Cor™ was used to generate tridimensional structures having percolation characteristics comparable to nail and hooves. The modeled structures were horizontally banded having an inner less-porous area which disappeared upon treatment. Treatment increased the predicted permeability of the simulated structures. Triamcinolone permeation increased significantly for hooves treated N-acetyl-l-cysteine, i.e., the membranes for which microstructural and permeability changes were the largest. Thus, microstructural changes determined via mercury intrusion porosimetry and subsequently modeled by Pore-Cor™ were related to drug diffusion. Further refinement of the technique will allow fast screening of penetration enhancers to be used in ungual drug delivery. PMID:21906642

  9. Maize Root Lectins Mediate the Interaction with Herbaspirillum seropedicae via N-Acetyl Glucosamine Residues of Lipopolysaccharides

    PubMed Central

    Balsanelli, Eduardo; Tuleski, Thalita Regina; de Baura, Valter Antonio; Yates, Marshall Geoffrey; Chubatsu, Leda Satie; de Oliveira Pedrosa, Fabio; de Souza, Emanuel Maltempi; Monteiro, Rose Adele

    2013-01-01

    Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization. PMID:24130823

  10. Structure and Reactivity of the N-Acetyl-Cysteine Radical Cation and Anion: Does Radical Migration Occur?

    NASA Astrophysics Data System (ADS)

    Osburn, Sandra; Berden, Giel; Oomens, Jos; O'Hair, Richard A. J.; Ryzhov, Victor

    2011-10-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of N-acetyl-cysteine followed by the homolytic cleavage of the S-NO bond in the gas phase. IRMPD spectroscopy coupled with DFT calculations revealed that for the radical cation the radical migrates from its initial position on the sulfur atom to the α-carbon position, which is 2.5 kJ mol-1 lower in energy. The radical migration was confirmed by time-resolved ion-molecule reactions. These results are in contrast with our previous study on cysteine methyl ester radical cation (Osburn et al., Chem. Eur. J. 2011, 17, 873-879) and the study by Sinha et al. for cysteine radical cation ( Phys. Chem. Chem. Phys. 2010, 12, 9794-9800) where the radical was found to stay on the sulfur atom as formed. A similar approach allowed us to form a hydrogen-deficient radical anion of N-acetyl-cysteine, (M - 2H) •- . IRMPD studies and ion-molecule reactions performed on the radical anion showed that the radical remains on the sulfur, which is the initial and more stable (by 63.6 kJ mol-1) position, and does not rearrange.

  11. Simple, rapid spectrophotometry of urinary N-acetyl-beta-D-glucosaminidase, with use of a new chromogenic substrate.

    PubMed

    Noto, A; Ogawa, Y; Mori, S; Yoshioka, M; Kitakaze, T; Hori, T; Nakamura, M; Miyake, T

    1983-10-01

    We have developed a new spectrophotometric assay for urinary N-acetyl-beta-D-glucosaminidase (NAGase) with use of sodio m-cresolsulfonphthaleinyl N-acetyl-beta-D-glucosaminide (MCP-NAG). MCP-NAG was synthesized from acetochloro-glucosamine and m-cresolsulfonphthalein (MCP) in four steps. MCP-NAG reacts well with NAGase (Km = 0.41 mmol/L) and is highly water soluble. The absorption maximum and molar absorptivity of the aglycone MCP are 580 nm and 40 670, respectively. Spectral overlap of interfering substances at 580 nm is almost negligible, so that the urine blank can be omitted from the assay procedure. The high molar absorptivity of MCP gives sufficient analytical sensitivity at a reaction time of 15 min. The correlation between the MCP-NAG method (y) and the fluorimetric method (x) involving 4-methylumbelliferyl N-acetyl-beta-D-glucosaminide is represented by the equation y = 0.995x - 0.669 (r = 0.991). Thus, the present method provides practical advantages over conventional methods, for use in the routine laboratory. PMID:6616814

  12. Maize root lectins mediate the interaction with Herbaspirillum seropedicae via N-acetyl glucosamine residues of lipopolysaccharides.

    PubMed

    Balsanelli, Eduardo; Tuleski, Thalita Regina; de Baura, Valter Antonio; Yates, Marshall Geoffrey; Chubatsu, Leda Satie; Pedrosa, Fabio de Oliveira; de Souza, Emanuel Maltempi; Monteiro, Rose Adele

    2013-01-01

    Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization. PMID:24130823

  13. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    PubMed

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis. PMID:23772801

  14. Can N-acetyl-L-cysteine affect zinc metabolism when used as a paracetamol antidote?

    PubMed

    Brumas, V; Hacht, B; Filella, M; Berthon, G

    1992-07-01

    N-Acetyl-L-cysteine (NAC) has long been used in the treatment of chronic lung diseases. Inhalation and oral administration of the drug are both effective in reducing mucus viscosity. In addition, NAC oral therapy allows to restore normal mucoprotein secretion in the long term. Although displaying heavy metal-complexing potential, NAC exerts no detectable influence on the metabolism of essential trace metals when used in the above context (i.e. at doses near 600 mg day-1). However, this may no longer be the case when NAC is used as an oxygen radical scavenger, like in the treatment of paracetamol poisoning. In the latter case, intravenous doses as high as 20 g day-1 are administered, which may induce excessive zinc urinary excretion. In order to allow a better appreciation of the risk of zinc depletion during NAC therapy, the present work addresses the role of this drug towards zinc metabolism at the molecular level. First, formation constants for zinc-NAC complexes have been determined under physiological conditions. Then, computer simulations for blood plasma and gastrointestinal fluid have been run to assess the influence of NAC and its metabolites (e.g. cysteine and glutathione) on zinc excretion and absorption. Blood plasma simulations reveal that NAC can effectively mobilise an important fraction of zinc into urinary excretable complexes as from concentrations of 10(-3) mol dm-3 (which corresponds to a dose of about 800 mg). This effect can still be enhanced by the action of NAC metabolites, among which cysteine is the most powerful zinc sequestering agent. In contrast, simulations relative to gastrointestinal conditions suggest that NAC should tend to increase zinc absorption, regardless of its dose. PMID:1529808

  15. Electrospun Microfiber Scaffolds with Anti-Inflammatory Tributanoylated N-Acetyl-d-Glucosamine Promote Cartilage Regeneration.

    PubMed

    Kim, Chaekyu; Shores, Lucas; Guo, Qiongyu; Aly, Ahmed; Jeon, Ok Hee; Kim, Do Hun; Bernstein, Nicholas; Bhattacharya, Rahul; Chae, Jemin Jeremy; Yarema, Kevin J; Elisseeff, Jennifer H

    2016-04-01

    Tissue-engineering strategies offer promising tools for repairing cartilage damage; however, these strategies suffer from limitations under pathological conditions. As a model disease for these types of nonideal systems, the inflammatory environment in an osteoarthritic (OA) joint limits the efficacy of engineered therapeutics by disrupting joint homeostasis and reducing its capacity for regeneration. In this work, we investigated a sugar-based drug candidate, a tributanoylated N-acetyl-d-glucosamine analogue, called 3,4,6-O-Bu3GlcNAc, that is known to reduce nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in osteoarthritis. 3,4,6-O-Bu3GlcNAc not only inhibited NFκB signaling but also exerted chondrogenic and anti-inflammatory effects on chondrocytes isolated from patients with osteoarthritis. 3,4,6-O-Bu3GlcNAc also increased the expression of extracellular matrix proteins and induced cartilage tissue production in three-dimensional in vitro hydrogel culture systems. To translate these chondrogenic and anti-inflammatory properties to tissue regeneration in osteoarthritis, we implanted 3,4,6-O-Bu3GlcNAc-loaded poly(lactic-co-glycolic acid) microfiber scaffolds into rats. The drug-laden scaffolds were biocompatible, and when seeded with human OA chondrocytes, similarly promoted cartilage tissue formation. 3,4,6-O-Bu3GlcNAc combined with the appropriate structural environment could be a promising therapeutic approach for osteoarthritis. PMID:27019285

  16. N-Acetyl L-Cysteine does not protect mouse ears from the effects of noise*

    PubMed Central

    2010-01-01

    Background Noise-induced hearing loss (NIHL) is one of the most common occupational injuries in the United States. It would be extremely valuable if a safe, inexpensive compound could be identified which protects worker hearing from noise. In a series of experiments, Kopke has shown that the compound N-acetyl-L-cysteine (L-NAC) can protect the hearing of chinchillas from the effects of a single exposure to noise. L-NAC is used in clinical medicine and is very safe. Although L-NAC was reported to be promising, it has not been successful in other studies (Kramer et al., 2006; Hamernik et al., 2008). The present study was undertaken to determine if L-NAC could protect C57BL/6J (B6) mice from the permanent effects of noise. Method Two groups of five B6 mice were injected with either 300 or 600 mg/kg L-NAC approximately 1 hr prior to a 104 dB broadband noise exposure and again immediately after the exposure. A control group (N = 7) was exposed to the same noise level but injected with vehicle (sterile saline). Auditory brainstem response measurements were made at 4, 8, 16 and 32 kHz one week prior to and 12 days after exposure. Conclusions There were no statistically significant differences in ABR threshold shifts between the mice receiving L-NAC and the control mice. This indicates that L-NAC was not effective in preventing permanent threshold shift in this mouse model of NIHL. PMID:20426871

  17. UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases: Completion of the family tree

    PubMed Central

    Raman, Jayalakshmi; Guan, Yu; Perrine, Cynthia L; Gerken, Thomas A; Tabak, Lawrence A

    2012-01-01

    The formation of mucin-type O-glycans is initiated by an evolutionarily conserved family of enzymes, the UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). The human genome encodes 20 transferases; 17 of which have been characterized functionally. The complexity of the GalNAc-T family reflects the differential patterns of expression among the individual enzyme isoforms and the unique substrate specificities which are required to form the dense arrays of glycans that are essential for mucin function. We report the expression patterns and enzymatic activity of the remaining three members of the family and the further characterization of a recently reported isoform, GalNAc-T17. One isoform, GalNAcT-16 that is most homologous to GalNAc-T14, is widely expressed (abundantly in the heart) and has robust polypeptide transferase activity. The second isoform GalNAc-T18, most similar to GalNAc-T8, -T9 and -T19, completes a discrete subfamily of GalNAc-Ts. It is widely expressed and has low, albeit detectable, activity. The final isoform, GalNAc-T20, is most homologous to GalNAc-T11 but lacks a lectin domain and has no detectable transferase activity with the panel of substrates tested. We have also identified and characterized enzymatically active splice variants of GalNAc-T13 that differ in the sequence of their lectin domain. The variants differ in their affinities for glycopeptide substrates. Our findings provide a comprehensive view of the complexities of mucin-type O-glycan formation and provide insight into the underlying mechanisms employed to heavily decorate mucins and mucin-like domains with carbohydrate. PMID:22186971

  18. Distinct specificities of Mycobacterium tuberculosis and mammalian proteasomes for N-acetyl tripeptide substrates.

    PubMed

    Lin, Gang; Tsu, Christopher; Dick, Lawrence; Zhou, Xi K; Nathan, Carl

    2008-12-01

    The proteasome of Mycobacterium tuberculosis (Mtb) is a validated and drug-treatable target for therapeutics. To lay ground-work for developing peptide-based inhibitors with a useful degree of selectivity for the Mtb proteasome over those of the host, we used a library of 5,920 N-acetyl tripeptide-aminomethylcoumarins to contrast the substrate preferences of the recombinant Mtb proteasome wild type and open gate mutant, the Rhodococcus erythropolis proteasome, and the bovine proteasome with activator PA28. The Mtb proteasome was distinctive in strictly preferring P1 = tryptophan, particularly in combination with P3 = glycine, proline, lysine or arginine. Screening results were validated with Michalis-Menten kinetic analyses of 21 oligopeptide aminomethyl-coumarin substrates. Bortezomib, a proteasome inhibitor in clinical use, and 17 analogs varying only at P1 were used to examine the differential impact of inhibitors on human and Mtb proteasomes. The results with the inhibitor panel confirmed those with the substrate panel in demonstrating differential preferences of Mtb and mammalian proteasomes at the P1 amino acid. Changing P1 in bortezomib from Leu to m-CF(3)-Phe led to a 220-fold increase in IC(50) against the human proteasome, whereas changing a P1 Ala to m-F-Phe decreased the IC(50) 400-fold against the Mtb proteasome. The change of a P1 Ala to m-Cl-Phe led to an 8000-fold shift in inhibitory potency in favor of the Mtb proteasome, resulting in 8-fold selectivity. Combinations of preferred amino acids at different sites may thus improve the species selectivity of peptide-based inhibitors that target the Mtb proteasome. PMID:18829465

  19. [Comparison of urinary and seminal N-acetyl-beta-glucosaminidase isoenzymes].

    PubMed

    Yasumoto, R; Asakawa, M; Yamamoto, M; Doi, Y; Kawashima, H; Umeda, M; Tanabe, S; Nishisaka, N; Kakinoki, K; Maekawa, M

    1987-11-01

    N-acetyl-beta-glucosaminidase (NAG) and its isoenzymes were measured in the urine and seminal plasma of healthy volunteers. Urinary NAG level was 2.62 +/- 1.30 U/L (mean +/- standard deviation), 1.99 +/- 0.77 U/g creatinine and seminal NAG level was 2370 +/- 1007 U/l. Urinary NAG level was 2.59 +/- 1.44 U/l, 1.93 +/- 0.80 U/g creatinine in males and 2.67 +/- 1.15 U/l, 2.08 +/- 0.78 U/g creatinine in females, and there was no significant sex difference. NAG isoenzymes in the urine and seminal plasma were divided into two major peaks, A and B. The A:B ratio was 78.0 +/- 6.5: 21.9 +/- 6.5 in the urine and 24.7 +/- 3.2: 75.2 +/- 3.2 in the seminal plasma, and was significantly different. Urinary NAG isoenzyme was 80.3 +/- 6.7: 19.6 +/- 6.7 in males and 74.1 +/- 4.3: 25.9 +/- 4.3 in females, and there was no significant difference between the sexes. These results indicated that urinary and seminal NAG can be differentiated by measuring the isoenzymes. Furthermore, the comparison of seminal NAG isoenzymes before and after vasectomy indicated that seminal NAG may be affected not only by the sperm but also by the prostatic fluid. PMID:3445866

  20. N-Acetyl Cysteine (NAC)-Directed Detoxification of Methacryloxylethyl Cetyl Ammonium Chloride (DMAE-CB)

    PubMed Central

    Shan, Lequn; Wang, Yingjie; Tian, Min; Yang, Yanwei; Sun, Jinlong; Ban, Jinghao; Chen, Jihua

    2015-01-01

    Methacryloxylethyl cetyl ammonium chloride (DMAE-CB) is a polymerizable antibacterial monomer and has been proved as an effective strategy to achieve bioactive bonding with reliable bacterial inhibitory effects. However, the toxicity of DMAE-CB may hamper its wide application in clinical situations. Thus, this study was designed to investigate the toxicity of DMAE-CB and explore the possible protective effects of N-acetyl cysteine (NAC). High performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analysis showed that chemical binding of NAC and DMAE-CB occurred in a time dependent manner. Pre-incubation of fourty-eight hours is required for adequate reaction between DMAE-CB and NAC. DMAE-CB reduced human dental pulp cells (hDPCs) viability in a dose-dependent manner. The toxic effects of DMAE-CB were accompanied by increased reactive oxygen species (ROS) level and reduced glutathione (GSH) content. NAC alleviated DMAE-CB-induced oxidative stress. Annexin V/ Propidium Iodide (PI) staining and Hoechst 33342 staining indicated that DMAE-CB induced apoptosis. Collapsed mitochondrial membrane potential (MMP) and activation of caspase-3 were also observed after DMAE-CB treatment. NAC rescued hDPCs from DMAE-CB-induced apoptosis, accompanied by lower level of MMP loss and caspase-3 activity. This study assists to elucidate the mechanism underlying the cytotoxic effects of DMAE-CB and provides theoretical supports for the searching of effective strategies to reduce toxicity of quaternary ammonium dental monomers. PMID:26274909

  1. A Preliminary Study: N-acetyl-L-cysteine Improves Semen Quality following Varicocelectomy

    PubMed Central

    Barekat, Foroogh; Tavalaee, Marziyeh; Deemeh, Mohammad Reza; Bahreinian, Mahsa; Azadi, Leila; Abbasi, Homayoun; Rozbahani, Shahla; Nasr-Esfahani, Mohammad Hossein

    2016-01-01

    Background Surgery is considered the primary treatment for male infertility from clinical varicocele. One of the main events associated with varicocele is excessive production of reactive oxygen species (ROS). N-acetyl-L-cysteine (NAC), an antioxidant that scavenges free radicals, is considered a supplement to alleviate glutathione (GSH) depletion during oxidative stress. Despite beneficial effects of NAC in other pathological events, there is no report on the effect of NAC in individuals with varicocele. Therefore, the aim of this study is to evaluate the outcome of NAC on semen quality, protamine content, DNA damage, oxidative stress and fertility following varicocelectomy. Materials and Methods This prospective clinical trial included 35 infertile men with varicocele randomly divided into control (n=20) and NAC (n=15) groups. We assessed semen parameters, protamine content [chromomycin A3 (CMA3)], DNA integrity [terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL)] and oxidative stress [2', 7'-dichlorodihydrofluorescein-diacetate (DCFH-DA)] before and three months after varicocelectomy. Results Percentage of abnormal semen parameters, protamine deficiency, DNA fragmentation and oxidative stress were significantly decreased in both groups compared to before surgery. We calculated the percentage of improvement in these parameters compared to before surgery for each group, then compared the results between the groups. Only percentage of protamine deficiency and DNA fragmentation significantly differed between the NAC and control groups. Conclusion The results of this study, for the first time, revealed that NAC improved chromatin integrity and pregnancy rate when administered as adjunct therapy post-varico- celectomy (Registeration Number: IRCT201508177223N5). PMID:27123209

  2. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils

    PubMed Central

    Hasan, Md. Ashraful; Ahn, Won-Gyun

    2016-01-01

    N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though Ca2+ signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ([Ca2+]i) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on [Ca2+]i in human neutrophils. We observed that NAC (1 µM ~ 1 mM) and cysteine (10 µM ~ 1 mM) increased [Ca2+]i in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in [Ca2+]i in human neutrophils was observed. In Ca2+-free buffer, NAC- and cysteine-induced [Ca2+]i increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in [Ca2+]i in human neutrophils occur through Ca2+ influx. NAC- and cysteine-induced [Ca2+]i increase was effectively inhibited by calcium channel inhibitors SKF96365 (10 µM) and ruthenium red (20 µM). In Na+-free HEPES, both NAC and cysteine induced a marked increase in [Ca2+]i in human neutrophils, arguing against the possibility that Na+-dependent intracellular uptake of NAC and cysteine is necessary for their [Ca2+]i increasing activity. Our results show that NAC and cysteine induce [Ca2+]i increase through Ca2+ influx in human neutrophils via SKF96365- and ruthenium red-dependent way. PMID:27610031

  3. Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom.

    PubMed

    Eckert, Ester M; Salcher, Michaela M; Posch, Thomas; Eugster, Bettina; Pernthaler, Jakob

    2012-03-01

    The vernal successions of phytoplankton, heterotrophic nanoflagellates (HNF) and viruses in temperate lakes result in alternating dominance of top-down and bottom-up factors on the bacterial community. This may lead to asynchronous blooms of bacteria with different life strategies and affect the channelling of particular components of the dissolved organic matter (DOM) through microbial food webs. We followed the dynamics of several bacterial populations and of other components of the microbial food web throughout the spring phytoplankton bloom period in a pre-alpine lake, and we assessed bacterial uptake patterns of two constituents of the labile DOM pool (N-acetyl-glucosamine [NAG] and leucine). There was a clear genotypic shift within the bacterial assemblage, from fast growing Cytophaga-Flavobacteria (CF) affiliated with Fluviicola and from Betaproteobacteria (BET) of the Limnohabitans cluster to more grazing resistant AcI Actinobacteria (ACT) and to filamentous morphotypes. This was paralleled by successive blooms of viruses and HNF. We also noted the transient rise of other CF (related to Cyclobacteriaceae and Sphingobacteriaceae) that are not detected by fluorescence in situ hybridization with the general CF probe. Both, the average uptake rates of leucine and the fractions of leucine incorporating bacteria were approximately five to sixfold higher than of NAG. However, the composition of the NAG-active community was much more prone to genotypic successions, in particular of bacteria with different life strategies: While 'opportunistically' growing BET and CF dominated NAG uptake in the initial period ruled by bottom-up factors, ACT constituted the major fraction of NAG active cells during the subsequent phase of high predation pressure. This indicates that some ACT could profit from a substrate that might in parts have originated from the grazing of protists on their bacterial competitors. PMID:22082109

  4. Debrisoquine 4-hydroxylation and sulphamethazine N-acetylation in patients with schizophrenia and major depression

    PubMed Central

    HADAŠOVÁ, EVA; FRANKE, GERD; ZSCHIESCHE, MICHAEL; ČEŠKOVÁ, EVA; ZELENKOVÁ, OLGA; SIEGMUND, WERNER

    1996-01-01

    Debrisoquine 4-hydroxylation and sulphamethazine N-acetylation phenotypes were determined in 115 Czech drug-free in-patients with schizophrenia (n=64) or major depressive disorder (n=51). These data were compared with a control group of 321 healthy volunteers from the North-East German area of Greifswald. The distribution of debrisoquine hydroxylator phenotypes was almost identical in patients and healthy controls. Thus, there were 8.7% (95% CI 5.4–12.0%) of poor metabolizers (PM) among patients while 8.7% (95% CI 3.6–13.8%) PM among the control group. The prevalences of PM amongst patients with chronic schizophrenia and major depression were 10.9% (95% CI 4.5–21.3%) and 5.9 % (95% CI 1.24–16.3%), respectively (χ2 schizophrenics vs control=0.315, NS; χ2 depressive patients vs control=0.450, NS). However, within the group of EM patients there was a significant (P<0.01) shift towards higher debrisoquine metabolic ratios, reflecting a lower hydroxylation capacity in EM patients compared with EM healthy controls. The proportion of slow acetylators (SA) was 60.0% (95% CI 51.0–68.9%) in the entire group of psychiatric patients and 57.5% (95% CI 52.1–62.9%) in the control group (χ2 all patients vs control=0.195, NS). Furthermore, there were no significant differences in the prevalence of the SA phenotype between controls and schizophrenics or patients with major depression. Although the results of this modest study were negative, the presence of subtle differences in the metabolic capacity between psychiatric patients and a healthy population cannot be ruled out. PMID:8735687

  5. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils.

    PubMed

    Hasan, Md Ashraful; Ahn, Won-Gyun; Song, Dong-Keun

    2016-09-01

    N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though Ca(2+) signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ([Ca(2+)]i) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on [Ca(2+)]i in human neutrophils. We observed that NAC (1 µM ~ 1 mM) and cysteine (10 µM ~ 1 mM) increased [Ca(2+)]i in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in [Ca(2+)]i in human neutrophils was observed. In Ca(2+)-free buffer, NAC- and cysteine-induced [Ca(2+)]i increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in [Ca(2+)]i in human neutrophils occur through Ca(2+) influx. NAC- and cysteine-induced [Ca(2+)]i increase was effectively inhibited by calcium channel inhibitors SKF96365 (10 µM) and ruthenium red (20 µM). In Na(+)-free HEPES, both NAC and cysteine induced a marked increase in [Ca(2+)]i in human neutrophils, arguing against the possibility that Na(+)-dependent intracellular uptake of NAC and cysteine is necessary for their [Ca(2+)]i increasing activity. Our results show that NAC and cysteine induce [Ca(2+)]i increase through Ca(2+) influx in human neutrophils via SKF96365- and ruthenium red-dependent way. PMID:27610031

  6. N-Acetyl-β-D-glucosaminidase activity in feral Carcinus maenas exposed to cadmium.

    PubMed

    Mesquita, Sofia Raquel; Ergen, Şeyda Fikirdeşici; Rodrigues, Aurélie Pinto; Oliva-Teles, M Teresa; Delerue-Matos, Cristina; Guimarães, Laura

    2015-02-01

    Cadmium is a priority hazardous substance, persistent in the aquatic environment, with the capacity to interfere with crustacean moulting. Moulting is a vital process dictating crustacean growth, reproduction and metamorphosis. However, for many organisms, moult disruption is difficult to evaluate in the short term, what limits its inclusion in monitoring programmes. N-acetyl-β-D-glucosaminidase (NAGase) is an enzyme acting in the final steps of the endocrine-regulated moulting cascade, allowing for the cast off of the old exoskeleton, with potential interest as a biomarker of moult disruption. This study investigated responses to waterborne cadmium of NAGase activity of Carcinus maenas originating from estuaries with different histories of anthropogenic contamination: a low impacted and a moderately polluted one. Crabs from both sites were individually exposed for seven days to cadmium concentrations ranging from 1.3 to 2000 μg/L. At the end of the assays, NAGase activity was assessed in the epidermis and digestive gland. Detoxification, antioxidant, energy production, and oxidative stress biomarkers implicated in cadmium metabolism and tolerance were also assessed to better understand differential NAGase responses: activity of glutathione S-transferases (GST), glutathione peroxidase (GPx) glutathione reductase (GR), levels of total glutathiones (TG), lipid peroxidation (LPO), lactate dehydrogenase (LDH), and NADP(+)-dependent isocitrate dehydrogenase (IDH). Animals from the moderately polluted estuary had lower NAGase activity both in the epidermis and digestive gland than in the low impacted site. NAGase activity in the epidermis and digestive gland of C. maenas from both estuaries was sensitive to cadmium exposure suggesting its usefulness for inclusion in monitoring programmes. However, in the digestive gland NAGase inhibition was found in crabs from the less impacted site but not in those from the moderately contaminated one. Altered glutathione levels were

  7. Co-Administration of Metformin and N-Acetyl Cysteine Fails to Improve Clinical Manifestations in PCOS Individual Undergoing ICSI

    PubMed Central

    Cheraghi, Ebrahim; Soleimani Mehranjani, Malek; Shariatzadeh, Mohammad Ali; Nasr Esfahani, Mohammad Hossein; Ebrahimi, Zahra

    2014-01-01

    Background Studies have demonstrated the efficacy of metformin (MTF ) in reducing insulin resistance and N-acetyl cysteine (NAC) in inhibiting oxidative stress which are involved in the pathogenesis of polycystic ovarian syndrome (PCOS). We aimed to compare the effects of MTF and NAC combination on serum metabolite and hormonal levels during the course of ovulation induction in PCOS individual candidates of intracytoplasmic sperm injection (ICSI). Materials and Methods In this prospective randomized clinical trial, placebo con- trolled pilot study, 80 patients of polycystic ovarian syndrome at the age of 25-35 years were divided into 4 groups (n=20): i. NAC=treated with N-acetyl cysteine (600 mg three times daily), ii. MTF=treated with metformin (500 mg three times daily), iii. MTF+NAC=treated with N-acetyl cysteine plus metformin (the offered doses) and iv. placebo (PLA). A total number of 20 patients (6 from MTF group, 4 from NAC group, 6 from MTF+NAC group and 4 from PLA group) were dropped of the study. The drugs were administrated from day 3 of menses of previous cycle until ovum pick-up. Results Serum levels of luteinizing hormone (LH), total testosterone, cholester- ol and triglyceride, insulin and leptin significantly reduced in the MTF and NAC groups compared to the placebo (p<0.01). But levels of LH, total testosterone, cholesterol and triglyceride had no significant reduction in the MTF+NAC groups compared to the placebo. The serum levels of malonyldialdehyde (MDA), insulin and leptin reduced significantly after treatment in the MTF+NAC group compared to the placebo (p<0.05). Conclusion Considering the adverse effect of combination therapy, we proposed the conadministration might have no beneficial effect for PCOS patient during course of ovulation induction of ICSI (Registration Number: IRCT201204159476N1). PMID:25083175

  8. In vitro susceptibility of Scedosporium isolates to N-acetyl-L-cysteine alone and in combination with conventional antifungal agents.

    PubMed

    Homa, Mónika; Galgóczy, László; Tóth, Eszter; Virágh, Máté; Chandrasekaran, Muthusamy; Vágvölgyi, Csaba; Papp, Tamás

    2016-10-01

    In recent years, Scedosporium species have been more commonly recognized from severe, difficult-to-treat human infections, such as upper respiratory tract and pulmonary infections. To select an appropriate therapeutic approach for these infections is challenging, because of the commonly observed resistance of the causative agents to several antifungal drugs. Therefore, to find a novel strategy for the treatment of pulmonary Scedosporium infections the in vitro antifungal effect of a mucolytic agent, N-acetyl-L-cysteine and its in vitro combinations with conventional antifungals were investigated. Synergistic and indifferent interactions were registered in 23 and 13 cases, respectively. Antagonism was not revealed between the compounds. PMID:27143635

  9. Influence of pigments and pH of urine on the determination of N-acetyl-beta-D-glucosaminidase activity with 2-methoxy-4-(2'-nitrovinyl)-phenyl-N-acetyl-beta-D-glucosaminide.

    PubMed

    Aćimović, Jelena M; Jovanović, Vesna B; Mandić, Ljuba M

    2005-01-01

    The influence of urinary pigments and urine pH on the spectrophotometric determination of N-acetyl-beta-D-glucosaminidase (NAG; EC 3.2.1.30) activity with 2-methoxy-4-(2'-nitrovinyl)-phenyl-N-acetyl-beta-D-glucosaminide as a substrate was studied. The investigation was performed with human and rabbit urine samples. It was found that alkaline urine pH values influenced NAG activity in two ways: 1) NAG activity decreased due to enzyme instability with pH increase, and 2) NAG activity increased because of the contribution of urinary pigments to absorbance of 2-methoxy-4-(2'-nitrovinyl)-phenol (MNP) at 505 nm. It was shown that besides the maximum (I) in the range of 350-360 nm of the absorption spectra of alkaline urine, there was a maximum (II) in the range of 380-460 nm. With the increase of pH, maximum II was shifted toward higher wavelengths and contributed to MNP absorption (5-90%). On the other hand, the maximum of MNP absorption was shifted toward lower wavelengths (495-400 nm) with increasing pH. Two procedures to eliminate the influence of urinary pigments are presented. The justification of applying a correction to the values of NAG activity in human and rabbit urine (a model system for studying the toxic effects of cadmium) was discussed. PMID:16302206

  10. Crystal Structure of the N-Acetyltransferase Domain of Human N-Acetyl-L-Glutamate Synthase in Complex with N-Acetyl-L-Glutamate Provides Insights into Its Catalytic and Regulatory Mechanisms

    PubMed Central

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2013-01-01

    N-acetylglutamate synthase (NAGS) catalyzes the conversion of AcCoA and L-glutamate to CoA and N-acetyl-L-glutamate (NAG), an obligate cofactor for carbamyl phosphate synthetase I (CPSI) in the urea cycle. NAGS deficiency results in elevated levels of plasma ammonia which is neurotoxic. We report herein the first crystal structure of human NAGS, that of the catalytic N-acetyltransferase (hNAT) domain with N-acetyl-L-glutamate bound at 2.1 Å resolution. Functional studies indicate that the hNAT domain retains catalytic activity in the absence of the amino acid kinase (AAK) domain. Instead, the major functions of the AAK domain appear to be providing a binding site for the allosteric activator, L-arginine, and an N-terminal proline-rich motif that is likely to function in signal transduction to CPS1. Crystalline hNAT forms a dimer similar to the NAT-NAT dimers that form in crystals of bifunctional N-acetylglutamate synthase/kinase (NAGS/K) from Maricaulis maris and also exists as a dimer in solution. The structure of the NAG binding site, in combination with mutagenesis studies, provide insights into the catalytic mechanism. We also show that native NAGS from human and mouse exists in tetrameric form, similar to those of bifunctional NAGS/K. PMID:23894642

  11. Crystal structure of the N-acetyltransferase domain of human N-acetyl-L-glutamate synthase in complex with N-acetyl-L-glutamate provides insights into its catalytic and regulatory mechanisms.

    PubMed

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2013-01-01

    N-acetylglutamate synthase (NAGS) catalyzes the conversion of AcCoA and L-glutamate to CoA and N-acetyl-L-glutamate (NAG), an obligate cofactor for carbamyl phosphate synthetase I (CPSI) in the urea cycle. NAGS deficiency results in elevated levels of plasma ammonia which is neurotoxic. We report herein the first crystal structure of human NAGS, that of the catalytic N-acetyltransferase (hNAT) domain with N-acetyl-L-glutamate bound at 2.1 Å resolution. Functional studies indicate that the hNAT domain retains catalytic activity in the absence of the amino acid kinase (AAK) domain. Instead, the major functions of the AAK domain appear to be providing a binding site for the allosteric activator, L-arginine, and an N-terminal proline-rich motif that is likely to function in signal transduction to CPS1. Crystalline hNAT forms a dimer similar to the NAT-NAT dimers that form in crystals of bifunctional N-acetylglutamate synthase/kinase (NAGS/K) from Maricaulis maris and also exists as a dimer in solution. The structure of the NAG binding site, in combination with mutagenesis studies, provide insights into the catalytic mechanism. We also show that native NAGS from human and mouse exists in tetrameric form, similar to those of bifunctional NAGS/K. PMID:23894642

  12. Microwave-Assisted Esterification of N-Acetyl-L-Phenylalanine Using Modified Mukaiyama's Reagents: A New Approach Involving Ionic Liquids

    PubMed Central

    Zhao, Hua; Song, Zhiyan; Cowins, Janet V.; Olubajo, Olarongbe

    2008-01-01

    Inspired by the concept of ionic liquids (ILs), this study modified the original Mukaiyama's reagent, 2-chloro-1-methylpyridinium iodide (m.p. 200-dec), from ionic solid into liquids by changing its anion. The esterification of N-acetyl-L-phenylalanine was investigated as a model reaction. The microwave irradiation was more effective in esterifying N-acetyl-L-phenylalanine than the conventional reflux method. The original Mukaiyama's reagent was modified into ILs through manipulating its anion. However, only non-nucleophilic anions (such as EtSO4– and Tf2N–) were favorable since nucleophilic ones (such as CF3COO– and CH3COO–) could exchange with chlorine resulting in non-reactive coupling reagents. Two modified Mukaiyama's compounds (i.e. hydrophilic [2-ClMePy][EtSO4] and hydrophobic [2-ClMePy][Tf2N]) have been identified as the best ILtype coupling reagents. The esterification reaction was greatly enhanced by using 1- methylimidazole as the base instead of conventional toxic tertiary amines, and by using excess amount of alcohols as solvents instead of dichloromethane. Overall, the method reported is effective and ‘greener’. PMID:19325717

  13. Hydrosoluble 50% N-acetylation-thiolated chitosan complex with cobalt as a pH-responsive renal fibrosis targeting drugs.

    PubMed

    Li, Min; Tan, Lishan; Tang, Liangfeng; Li, Aiqing; Hu, Jianqiang

    2016-07-01

    About 50% N-acetylation-thiolated chitosan possessing good water solubility was modified from commercial low-molecular-weight chitosan. Chitosan performed obvious target toward renal tubular epithelial cells, and bivalent cobalt ions improved the renal fibrosis inflammation significantly. There were many complexation sites on chitosan after being modified with sulfydryl. So sulfydryl played a role of connecting bridge between chitosan and cobalt ions. Then, this N-acetylation-thiolated chitosan cobalt (NTCC) nanocomplex was designed. The nanocomplex showed excellent stability under normal physiological conditions, and cobalt would be released from the biomaterials in acidic environment. As it was affected by inflammation, the pH in renal fibrosis lesion region was acidic. So there was a specific drug release process happening in lesion region. And drug release efficiency was determined by acidity, which demonstrated that lower the acidity, the faster and more the cobalt ion release. When this nanocomplex was intraperitoneally injected into ureter-obstructed mice, obvious attenuation of fibrotic progression was shown. It was demonstrated that NTCC exhibited special renal-targeting capacity and could be chosen as drug for treating renal fibrosis. PMID:27115330

  14. Structure of the complex of Neisseria gonorrhoeae N-acetyl-L-glutamate synthase with a bound bisubstrate analog.

    PubMed

    Zhao, Gengxiang; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2013-01-25

    N-Acetyl-L-glutamate synthase catalyzes the conversion of AcCoA and glutamate to CoA and N-acetyl-L-glutamate (NAG), the first step of the arginine biosynthetic pathway in lower organisms. In mammals, NAG is an obligate cofactor of carbamoyl phosphate synthetase I in the urea cycle. We have previously reported the structures of NAGS from Neisseria gonorrhoeae (ngNAGS) with various substrates bound. Here we reported the preparation of the bisubstrate analog, CoA-S-acetyl-L-glutamate, the crystal structure of ngNAGS with CoA-NAG bound, and kinetic studies of several active site mutants. The results are consistent with a one-step nucleophilic addition-elimination mechanism with Glu353 as the catalytic base and Ser392 as the catalytic acid. The structure of the ngNAGS-bisubstrate complex together with the previous ngNAGS structures delineates the catalytic reaction path for ngNAGS. PMID:23261468

  15. Structure of the complex of Neisseria gonorrhoeae N-acetyl-L-glutamate synthase with a bound bisubstrate analog

    PubMed Central

    ZHAO, GENGXIANG; ALLEWELL, NORMA M.; TUCHMAN, MENDEL; SHI, DASHUANG

    2013-01-01

    N -acetyl-L-glutamate synthase catalyzes the conversion of AcCoA and glutamate to CoA and N-acetyl-L-glutamate (NAG), the first step of the arginine biosynthetic pathway in lower organisms. In mammals, NAG is an obligate cofactor of carbamoyl phosphate synthetase I in the urea cycle. We have previously reported the structures of NAGS from Neisseria gonorrhoeae (ngNAGS) with various substrates bound. Here we reported the preparation of the bisubstrate analog, CoA-S-acetyl-L-glutamate, the crystal structure of ngNAGS with CoA-NAG bound, and kinetic studies of several active site mutants. The results are consistent with a one-step nucleophilic addition-elimination mechanism with Glu353 as the catalytic base and Ser392 as the catalytic acid. The structure of the ngNAGS-bisubstrate complex together with the previous ngNAGS structures delineates the catalytic reaction path for ngNAGS. PMID:23261468

  16. Involvement of N-acetyl-lactosamine-containing sugar structures in the liver metastasis of mouse colon carcinoma (colon 26) cells.

    PubMed

    Kawakami, H; Ito, M; Miura, Y; Hirano, H

    1994-01-01

    Histochemical aspects of the process of experimentally induced metastasis were examined by light and electron microscopy with labelled lectins employed as a probe. Mouse colon carcinoma cells (colon 26) were injected into the spleen of Balb/c mice and liver metastasis was induced. Among the lectins tested, Erythrina cristagalli agglutinin (ECA) stained the metastasized colon 26 cells strongly compared with the heterogeneous and faint staining in non-metastasized tumour foci in the spleen or in the subcutaneous space. Other lectins, such as Phaseolus vulgaris leucoagglutinin (PHA-L), Phaseolus vulgaris erythroagglutinin (PHA-E) and Datura stramonium agglutinin (DSA), having specificity for branched complex type sugar chains, did not show any differences between metastasized cells and non-metastasized tumour foci. In addition, N-acetyl-lactosamine, a specific inhibitor of ECA binding, significantly inhibited the attachment of suspended colon 26 cells to sectioned unfixed normal liver tissue. These results indicate that the expression of galactose (Gal) beta 1-4 N-acetyl-glucosamine (GlcNAc) residues of branched complex type sugar chains having specificity for ECA are important for the interaction process of carcinoma cells with hepatic cells in the process of liver metastasis. PMID:7532448

  17. Affinity Separation of Lectins Using Porous Membranes Immobilized with Glycopolymer Brushes Containing Mannose or N-Acetyl-d-Glucosamine

    PubMed Central

    Ogata, Yutaro; Seto, Hirokazu; Murakami, Tatsuya; Hoshino, Yu; Miura, Yoshiko

    2013-01-01

    Porous membranes with glycopolymer brushes were prepared as biomaterials for affinity separation. Glycopolymer brushes contained acrylic acid and D-mannose or N-acetyl-D-glucosamine, and were formed on substrates by surface-initiated atom transfer radical polymerization. The presence of glycopolymer brush was confirmed by X-ray photoelectron spectroscopy, contact angle, and ellipsometry measurements. The interaction between lectin and the glycopolymer immobilized on glass slides was confirmed using fluorescent-labeled proteins. Glycopolymer-immobilized surfaces exhibited specific adsorption of the corresponding lectin, compared with bovine serum albumin. Lectins were continuously rejected by the glycopolymer-immobilized membranes. When the protein solution was permeated through the glycopolymer-immobilized membrane, bovine serum albumin was not adsorbed on the membrane surface. In contrast, concanavalin A and wheat germ agglutinin were rejected by membranes incorporating D-mannose or N-acetyl-D-glucosamine, respectively. The amounts of adsorbed concanavalin A and wheat germ agglutinin was increased five- and two-fold that of adsorbed bovine serum albumin, respectively. PMID:24956944

  18. N-Acetylation of p-aminobenzoic acid and p-phenylenediamine in primary porcine urinary bladder epithelial cells and in the human urothelial cell line 5637.

    PubMed

    Föllmann, Wolfram; Blaszkewicz, Meinolf; Behm, Claudia; Degen, Gisela H; Golka, Klaus

    2012-01-01

    N-Acetyltransferases (NAT) are important enzymes in the metabolism of certain carcinogenic arylamines, as N-acetylation decreases or prevents their bioactivation via N-hydroxylation. To study such processes in the bladder, cell culture models may be used, but metabolic competence needs to be characterized. This study focused on the N-acetylation capacity of two urothelial cell systems, using p-aminobenzoic acid (PABA) and the hair dye precursor p-phenylenediamine (PPD), two well-known substrates of the enzyme NAT1. The constitutive NAT1 activity was investigated using primary cultures of porcine urinary bladder epithelial cells (PUBEC) and in the human urothelial cell line 5637 to assess their suitability for further in vitro studies on PABA and PPD-induced toxicity. N-Acetylation of PABA and PPD was determined by high-performance liquid chromatography (HPLC) analysis in cytosols of the two cell systems upon incubation with various substrate levels for up to 60 min. The primary PUBEC revealed higher N-acetylation rates (2.5-fold for PABA, 5-fold for PPD) compared to the 5637 cell line, based on both PABA conversion to its acetylated metabolite and formation of mono- and diacetylated PPD. The urothelial cell systems may thus be useful as a tool for further studies on the N-acetylation of aromatic amines via NAT1. PMID:22994574

  19. Amodiaquine-induced toxicity in isolated rat hepatocytes and the cytoprotective effects of taurine and/or N-acetyl cysteine.

    PubMed

    Heidari, R; Babaei, H; Eghbal, M A

    2014-01-01

    Amodiaquine is an antimalarial drug used in the prophylaxis and treatment of this disease. However, hepatotoxicity as a life-threatening adverse effect is associated with its clinical use. We evaluated amodiaquine-induced toxicity in isolated rat hepatocytes as an in vitro model for studying drug-induced hepatotoxicity. This study attempts to investigate the protective effects of taurine and N-acetyl cysteine against the cytotoxicity induced by amodiaquine. Hepatocytes were prepared by the method of collagenase enzyme perfusion via portal vein. This technique is based on liver perfusion with collagenase after removal of calcium ion (Ca(2+)) with a chelator (ethylene glycol tetraacetic acid (EGTA) 0.5 mM). Cells were treated with different concentrations of amodiaquine, taurine and N-acetyl cysteine. Cell death, protein carbonylation, reactive oxygen species formation, lipid peroxidation, and mitochondrial depolarization were assessed as toxicity markers. Amodiaquine cytotoxic mechanism involved protein carbonylation as well as reactive oxygen species formation and lipid peroxidation. In addition, mitochondria seem to be a target for amodiaquine to induce cellular damage. Administration of taurine (200 μM) and/or N-acetyl cysteine (200 μM) reduced oxidative stress, lipid peroxidation and protein carbonylation caused by amodiaquine. Furthermore, amodiaquine-induced mitochondrial injury was significantly mitigated by taurine and/or N-acetyl cysteine. In glutathione-depleted cells, only N-acetyl cysteine protected hepatocytes against amodiaquine, and taurine showed no protective properties in this situation. Taurine and N-acetyl cysteine protect hepatocytes against amodiaquine probably via their antioxidant properties and counteracting oxidative stress. PMID:25657778

  20. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-l-glutamate synthase/kinase with and without a His tag bound to N-acetyl-l-glutamate

    PubMed Central

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-l-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-l-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P41212, with unit-cell parameters a = b = 51.72, c = 242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a = 63.48, b = 122.34, c = 75.88 Å, β = 107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K. PMID:25615976

  1. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    PubMed

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K. PMID:25615976

  2. Identifying dominant conformations of N-acetyl-L-cysteine methyl ester and N-acetyl-L-cysteine in water: VCD signatures of the amide I and the Cdbnd O stretching bands

    NASA Astrophysics Data System (ADS)

    Poopari, Mohammad Reza; Dezhahang, Zahra; Xu, Yunjie

    2015-02-01

    Infrared (IR) and vibrational circular dichroism (VCD) spectra of N-Acetyl-L-Cysteine Methyl Ester (NALCME) and N-Acetyl-L-Cysteine (NALC) in D2O under different pHs were measured. We focus on the VCD signatures of the amide I and the Cdbnd O stretching spectral signatures of the neutral NALCME and NALC species and the related ones of the deprotonated NALC species in the region of 1800-1500 cm-1. A sign inversion is observed for the amide I VCD band going from the neutral NALCME and NALC to the deprotonated NALC species. Density functional theory (DFT) calculations were carried out to search for the possible conformations of these three species and to simulate their IR and VCD spectra at the B3LYP/aug-cc-pVTZ level in the gas phase and with the polarization continuum model of water solvent. The most stable conformations found for neutral NALCME and NALC exhibit drastically difference VCD patterns, whereas those of deprotonated NALC show similar patterns. We establish an empirical structural-spectral relationship where the aforementioned VCD signatures can be used as spectral markers to identify dominant conformations of these two amino acid derivatives under different pHs. It is recognized that the dominant conformers identified using the VCD spectral markers differ from those based on the relative DFT energies for neutral NALCME and NALC. The influence of solvent on both the conformational geometries and their relative stabilities is discussed. The aforementioned discrepancy can be attributed to the explicit solute-solvent hydrogen-bonding interactions which are not accounted for in the calculations. The empirical structural-spectral relationship identified can potentially be applied to large, related amino acids and polypeptides in water.

  3. Synthesis and immunological evaluation of MUC1 glycopeptide conjugates bearing N-acetyl modified STn derivatives as anticancer vaccines.

    PubMed

    Xiao, An; Zheng, Xiu-Jing; Song, Chengcheng; Gui, Yue; Huo, Chang-Xin; Ye, Xin-Shan

    2016-07-26

    Glycoprotein MUC1 is an attractive target for anti-tumor vaccine development. However, the weak immunogenicity of MUC1 remains a significant problem. To solve this problem, several STn derivatives with N-acetyl modifications were synthesized and incorporated into a 20-amino acid MUC1 tandem repeat sequence. The modified STn-MUC1 glycopeptides were further connected to a carrier protein keyhole limpet hemocyanin (KLH). The immunological effects of these synthetic vaccine conjugates were evaluated using the BALB/c mouse model. The results showed that vaccine V2 elicited higher titers of antibodies which cross-reacted with the native STn-MUC1 antigen. Moreover, the elicited antisera reacted with the STn-MUC1 antigen-positive tumor cells, indicating that the carbohydrate antigen modification strategy may hold potential to overcome the weak immunogenicity of natural MUC1 glycopeptides. PMID:27380866

  4. The tetrapeptide N-acetyl-Pro-Pro-Tyr-Leu in skin care formulations-Physicochemical and release studies.

    PubMed

    Olejnik, Anna; Schroeder, Grzegorz; Nowak, Izabela

    2015-08-15

    Recently there has been a growth of interest in the novel skin care formulations containing active ingredients such as low molecular weight peptides. In this paper we present new skincare formulations such as hydrogels, oil-in-water emulsions and water-in-oil emulsion containing a tetrapeptide (N-acetyl-Pro-Pro-Tyr-Leu). These formulations were characterized in terms of physicochemical parameters (pH, viscosity), stability and particle size distribution. Additionally, the diffusion parameters of the peptide in the obtained formulations were calculated based on the Einstein-Smoluchowski equation. Furthermore, in order to determine the penetration of the tetrapeptide through membranes its release kinetics were investigated. On the basis of release curves, the release rate constants were determined. The results proved that the properties of the formulations strongly determined the release rate of the tetrapeptide. The higher viscosity of the semisolid, the slower was the permeation through the membrane. PMID:26188319

  5. Protective effect of N-acetyl-L-cysteine against disulfiram-induced oxidative stress and apoptosis in V79 cells

    SciTech Connect

    Grosicka-Maciag, Emilia; Kurpios-Piec, Dagmara; Grzela, Tomasz; Czeczot, Hanna; Skrzycki, Michal; Szumilo, Maria; Rahden-Staron, Iwonna

    2010-11-01

    This work investigated the effect of N-acetyl-L-cysteine (NAC) on disulfiram (DSF) induced oxidative stress in Chinese hamster fibroblast cells (V79). An increase in oxidative stress induced by DSF was observed up to a 200 {mu}M concentration. It was evidenced by a statistically significant increase of both GSH{sub t} and GSSG levels, as well as elevated protein carbonyl (PC) content. There was no increase in lipid peroxidation (measured as TBARS). DSF increased CAT activity, but did not change SOD1 and SOD2 activities. Analysis of GSH related enzymes showed that DSF significantly increased GR activity, did not change Se-dependent GPx, but statistically significantly decreased non-Se-dependent GPx activity. DSF showed also pro-apoptotic activity. NAC alone did not produce any significant changes, besides an increase of GSH{sub t} level, in any of the variables measured. However, pre-treatment of cells with NAC ameliorated DSF-induced changes. NAC pre-treatment restored the viability of DSF-treated cells evaluated by Trypan blue exclusion assay and MTT test, GSSG level, and protein carbonyl content to the control values as well as it reduced pro-apoptotic activity of DSF. The increase of CAT and GR activity was not reversed. Activity of both GPx was significantly increased compared to their values after DSF treatment. In conclusion, oxidative properties are at least partially attributable to the cellular effects of disulfiram and mechanisms induced by NAC pre-treatment may lower or even abolish the observed effects. These observations illustrate the importance of the initial cellular redox state in terms of cell response to disulfiram exposure. -- Research Highlights: {yields}This report explores biological properties of disulfiram under a condition of modulated intra-cellular GSH level. It shows a protective role of N-acetyl-L-cysteine in V79 cells exposed to disulfiram (in GSH metabolism as well as in changes of antioxidant enzyme activity).

  6. Two crystal structures of Escherichia coli N-acetyl-L-glutamate kinase demonstrate the cycling between open and closed conformations.

    PubMed

    Gil-Ortiz, Fernando; Ramón-Maiques, Santiago; Fernández-Murga, María L; Fita, Ignacio; Rubio, Vicente

    2010-06-11

    N-Acetyl-L-glutamate kinase (NAGK), the paradigm enzyme of the amino acid kinase family, catalyzes the second step of arginine biosynthesis. Although substrate binding and catalysis were clarified by the determination of four crystal structures of the homodimeric Escherichia coli enzyme (EcNAGK), we now determine 2 A resolution crystal structures of EcNAGK free from substrates or complexed with the product N-acetyl-L-glutamyl-5-phosphate (NAGP) and with sulfate, which reveal a novel, very open NAGK conformation to which substrates would associate and from which products would dissociate. In this conformation, the C-domain, which hosts most of the nucleotide site, rotates approximately 24 degrees -28 degrees away from the N-domain, which hosts the acetylglutamate site, whereas the empty ATP site also exhibits some changes. One sulfate is found binding in the region where the beta-phosphate of ATP normally binds, suggesting that ATP is first anchored to the beta-phosphate site, before perfect binding by induced fit, triggering the shift to the closed conformation. In contrast, the acetylglutamate site is always well formed, although its beta-hairpin lid is found here to be mobile, being closed only in the subunit of the EcNAGK-NAGP complex that binds NAGP most strongly. Lid closure appears to increase the affinity for acetylglutamate/NAGP and to stabilize the closed enzyme conformation via lid-C-domain contacts. Our finding of NAGP bound to the open conformation confirms that this product dissociates from the open enzyme form and allows reconstruction of the active center in the ternary complex with both products, delineating the final steps of the reaction, which is shown here by site-directed mutagenesis to involve centrally the invariant residue Gly11. PMID:20403363

  7. N-Acetyl-L-Cysteine abrogates fibrogenic properties of fibroblasts isolated from Dupuytren's disease by blunting TGF-β signalling

    PubMed Central

    Kopp, Jürgen; Seyhan, Harun; Müller, Bastian; Lanczak, Johanna; Pausch, Elke; Gressner, Axel M; Dooley, Steven; Horch, Raymund E

    2006-01-01

    Dupuytren's disease, a benign fibroproliferative disorder of the palmar fascia, represents an ideal model to study tissue fibrosis. Transforming growth factor-β1 (TGF-β1) and its downstream Smad signalling system is well established as a key player during fibrogenesis. Thus, targeting this basic pathomechanism seems suitable to establish new treatment strategies. One such promising treatment involves the substance N-acetyl-L-cysteine (NAC), shown to have antifibrotic properties in hepatic stellate cells and rat fibroblasts. In order to investigate antifibrotic effects of N-acetyl-L-cysteine (NAC), fibroblasts were isolated from surgically resected fibrotic palmar tissues (Dupuytren fibroblasts, DF) and exposed to different concentrations of NAC and recombinant TGF-β1. Fibroblasts isolated from tendon pulleys served as controls (control fibroblasts, CF). Smad signalling was investigated by a Smad binding element driven reporter gene analysis. Both cell types express TGF-β1, indicating autocrine signalling in DF and CF. This was confirmed by comparing reporter gene activity from LacZ and Smad7 adenovirus infected cells. NAC treatment resulted in abrogation of Smad mediated signalling comparable to ectopically overexpressed Smad7, even when the cells were stimulated with recombinant TGF-β1 or ectopically expressed a constitutively active TGF-β receptor type I. Additionally, NAC dose-dependently decreased expression of three major indicators of impaired fibrotic matrix turnover, namely alpha-smooth muscle actin (α-SMA), α 1 type I procollagen (CollA1), and plasminogen activator inhibitor-type I (PAI-1). Our results suggest that TGF-β signalling and subsequent expression of fibrogenesis related proteins in Dupuytren's disease is abrogated by NAC thus providing a basis for a therapeutic strategy in Dupuytren's disease and other fibroproliferative disorders. PMID:16563228

  8. The alpha-N-acetyl-glucosaminidase gene is transcriptionally activated in male and female gametes prior to fertilization and is essential for seed development in Arabidopsis.

    PubMed

    Ronceret, Arnaud; Gadea-Vacas, Jose; Guilleminot, Jocelyne; Devic, Martine

    2008-01-01

    Sugar residues in proteoglycan complexes carry important signalling and regulatory functions in biology. In humans, heparan sulphate is an example of such a complex polymer containing glucosamine and N-acetyl-glucosamine residues and is present in the extracellular matrix. Although heparan sulphate has not been found in plants, the At5g13690 gene encoding the alpha-N-acetyl-glucosaminidase (NAGLU), an enzyme involved in its catabolism, is present in the Arabidopsis genome. Among our collection of embryo-defective lines, a plant was identified in which the T-DNA had inserted into the AtNAGLU gene. The phenotype of atnaglu is an early arrest of seed development without apparent male or female gametophytic effects. These data demonstrated the essential function in Arabidopsis consistent with the contribution of NAGLU to the Sanfilippo syndrome in human. Expression of AtNAGLU in plants was shown to be prevalent during reproductive development. The presence of AtNAGLU mRNA was observed during early and late male gametogenesis and in each cell of the embryo sac at the time of fertilization. After fertilization, AtNAGLU was expressed in the embryo, suspensor, and endosperm until the cotyledonary stage embryo. This precise pattern of expression identifies the cells and tissues where a remodelling of the N-acetyl-glucosamine residues of proteoglycan complexes is occurring. This work provides original evidence of the important role of N-acetyl-glucosamines in plant reproductive development. PMID:18782908

  9. Formation of the thioester, N-acetyl, S-lactoylcysteine, by reaction of N-acetylcysteine with pyruvaldehyde in aqueous solution. [in prebiotic evolution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1982-01-01

    N-acetylcysteine reacts efficiently with pyruvaldehyde (methylglyoxal) in aqueous solution (pH 7.0) in the presence of a weak base, like imidazole or phosphate, to give the thioester, N-acetyl, S-lactoylcysteine. Reactions of 100 mM N-acetylcysteine with 14 mM, 24 mM and 41 mM pyruvaldehyde yield, respectively, 86%, 76% and 59% N-acetyl, S-lactoylcysteine based on pyruvaldehyde. The decrease in the percent yield at higher pyruvaldehyde concentrations suggests that during its formation the thioester is not only consumed by hydrolysis, but also by reaction with some substance in the pyruvaldehyde preparation. Indeed, purified N-acetyl, S-lactoylcysteine disappears much more rapidly in the presence of pyruvaldehyde than in its absence. Presumably, N-acetyl, S-lactoylcysteine synthesis occurs by rearrangement of the hemithioacetal of N-acetylcysteine and pyruvaldehyde. The significance of this pathway of thioester formation to molecular evolution is discussed.

  10. Evaluation of in vitro toxicity of peptide (N-acetyl-Leu-Gly-Leu-COOH)-substituted-β-cyclodextrin derivative, a novel drug carrier, in PC-12 cells

    PubMed Central

    2013-01-01

    Background Cyclodextrins (CDs) have been shown to improve physicochemical and biopharmaceutical properties of drugs when low solubility and low safety limit their use in the pharmaceutical field. Recently, a new amphiphilic peptide-substituted-β-CD, hepta-(N-acetyl-Leu-Gly-Leu)-β-CD (hepta-(N-acetyl-LGL)-β-CD), is developed which exhibited good solubility, strong inclusion ability and an appropriate average molecular weight. However, there is limited information available about its toxic effects. This study was designed to evaluate cytotoxic effects of the hepta-(N-acetyl-LGL)-β-CD (50, 200, 400, and 800 μg/ml) on rat pheochromocytoma PC-12 cells. Results A significant reduction of cell viability with IC50 values of 1115.0 μg/ml, 762.4 μg/ml, and 464.9 μg/ml at 6, 12, and 24 h post-treatment, respectively, as well as increased lipid peroxide levels and DNA damage were observed. Conclusions In conclusion, hepta-(N-acetyl-Leu-Gly-Leu)-β-CD exhibit significant toxic properties at high concentrations, probably through induction of oxidative stress and genotoxicity. PMID:24359794

  11. The α-Glycosidation of Partially Unprotected N-Acetyl and N-Glycolyl Sialyl Donors in the Absence of a Nitrile Solvent Effect.

    PubMed

    Aoyagi, Taku; Ohira, Shuichi; Fuse, Shinichiro; Uzawa, Jun; Yamaguchi, Yoshiki; Tanaka, Hiroshi

    2016-05-10

    The synthesis of α-sialosides is one of the most difficult reactions in carbohydrate chemistry and is considered to be both a thermodynamically and kinetically disfavored process. The use of acetonitrile as a solvent is an effective solution for the α-selective glycosidation of N-acetyl sialic acids. In this report, we report on the α-glycosidation of partially unprotected N-acetyl and N-glycolyl donors in the absence of a nitrile solvent effect. The 9-O-benzyl-N-acetylthiosialoside underwent glycosidation in CH2 Cl2 with a good α-selectivity. On the other hand, the 4,7,8-O-triacetyl-9-O-benzyl-N-acetylthiosialoside was converted to β-sialoside as a major product under the same reaction conditions. The results indicate that the O-acetyl protection of the sialyl donor was a major factor in reducing the α-selectivity of sialylation. After tuning of the protecting groups of the hydroxy groups at the 4,7,8 position on the sialyl donor, we found that the 9-O-benzyl-4-O-chloroacetyl-N-acetylthiosialoside underwent sialylation with excellent α-selectivity in CH2 Cl2 . To demonstrate the utility of the method, straightforward synthesis of α(2,9) disialosides containing N-acetyl and/or N-glycolyl groups was achieved by using the two N-acetyl and N-glycolyl sialyl donors. PMID:27060996

  12. Fluorescent sensor for selective determination of copper ion based on N-acetyl-L-cysteine capped CdHgSe quantum dots.

    PubMed

    Wang, Qingqing; Yu, Xiangyang; Zhan, Guoqing; Li, Chunya

    2014-04-15

    Using N-acetyl-L-cysteine as a stabilizer, well water-dispersed, high-quality and stable CdHgSe quantum dots were facilely synthesized via a simple aqueous phase method. The as-prepared N-acetyl-L-cysteine capped CdHgSe quantum dots were thoroughly characterized by transmission electron microscopy, X-ray diffraction spectroscopy and FTIR. A fluorescent sensor for selective determination of copper ions was developed using N-acetyl-L-cysteine capped CdHgSe quantum dots as fluorescent probe. The fluorescence intensity of N-acetyl-L-cysteine capped CdHgSe quantum dots decreased when interacted with copper ions due to the formation of coordination complex and aggregates. The method possesses high selectivity and is not influenced by some potential interferences such as Ag(+), Zn(2+), Co(2+) and Ni(2+). Under the optimal conditions, the change of fluorescence intensity (ΔI) was linearly proportional to the concentration of copper ions in the range of 1.0×10(-9)-4.0×10(-7) mol L(-1), with a detection limit as low as 2.0×10(-10) mol L(-1) (S/N=3). The developed method had been successfully employed to determine Cu(2+) in shrimp and South-lake water samples, and the results were verified by atomic absorption spectroscopy. The fluorescent sensor was demonstrated to be selective, sensitive and simple for copper ion determination, and promise for practical applications. PMID:24291268

  13. N-Acetyl-Cysteine as Effective and Safe Chelating Agent in Metal-on-Metal Hip-Implanted Patients: Two Cases

    PubMed Central

    Lonati, Davide; Ragghianti, Benedetta; Ronchi, Anna; Vecchio, Sarah; Locatelli, Carlo Alessandro

    2016-01-01

    Systemic toxicity associated with cobalt (Co) and chromium (Cr) containing metal hip alloy may result in neuropathy, cardiomyopathy, and hypothyroidism. However clinical management concerning chelating therapy is still debated in literature. Here are described two metal-on-metal hip-implanted patients in which N-acetyl-cysteine decreased elevated blood metal levels. A 67-year-old male who underwent Co/Cr hip implant in September 2009 referred to our Poison Control Centre for persisting elevated Co/Cr blood levels (from March 2012 to November 2014). After receiving oral high-dose N-acetyl-cysteine, Co/Cr blood concentrations dropped by 86% and 87% of the prechelation levels, respectively, and persisted at these latter concentrations during the following 6 months of follow-up. An 81-year-old female who underwent Co/Cr hip implant in January 2007 referred to our Centre for detection of high Co and Cr blood levels in June 2012. No hip revision was indicated. After a therapy with oral high-dose N-acetyl-cysteine Co/Cr blood concentrations decreased of 45% and 24% of the prechelation levels. Chelating agents reported in hip-implanted patients (EDTA, DMPS, and BAL) are described in few cases. N-acetyl-cysteine may provide chelating sites for metals and in our cases reduced Co and Cr blood levels and resulted well tolerable. PMID:27148463

  14. sup. alpha. N-acetyl derivatives of. beta. -endorphin-(1-31) and -(1-27) regulate the supraspinal antinociceptive activity of different opioids in mice

    SciTech Connect

    Garzon, J.; Sanchez-Blazquez, P. )

    1991-01-01

    {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) injected icv to mice antagonized the analgesic activity of {beta}-endorphin-(1-31) and morphine whereas the analgesia evoked by DADLE and DAGO was enhanced by this treatment. The modulatory activity of {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) was exhibited at remarkable low doses (fmols) reaching a maximum that persisted even though the dose was increased 100,000 times. The regulatory effect of a single dose of the acetylated neuropeptide lasted for 24h. The activity of {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) was partially retained by the shorter peptide {sup {alpha}}N-acetyl human {beta}-endorphin-(1-27) and to a lesser extent by {beta}-endorphin-(1-27), {beta}-endorphin-(1-31) lacked this regulatory activity on opioid analgesia. Acetylated {beta}-endorphin-(1-31) displayed a biphasic curve when competing with 5 pM ({sup 125}I)-Tyr{sup 27} human {beta}-endorphin-(1-31) specific binding, the first step was abolished with an apparent IC{sub 50} of 0.35 nM, and the rest with an IC{sub 50} of 200 nM. It is suggested that {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) changed the efficiency of the opioid analgesics by acting upon a specific substrate that is functionally coupled to the opioid receptor, presumably the guanine nucleotide binding regulatory proteins G{sub i}/G{sub 0}.

  15. Structural Investigation of a Novel N-Acetyl Glucosamine Binding Chi-Lectin Which Reveals Evolutionary Relationship with Class III Chitinases

    PubMed Central

    Patil, Dipak N.; Datta, Manali; Dev, Aditya; Dhindwal, Sonali; Singh, Nirpendra; Dasauni, Pushpanjali; Kundu, Suman; Sharma, Ashwani K.; Tomar, Shailly; Kumar, Pravindra

    2013-01-01

    The glycosyl hydrolase 18 (GH18) family consists of active chitinases as well as chitinase like lectins/proteins (CLPs). The CLPs share significant sequence and structural similarities with active chitinases, however, do not display chitinase activity. Some of these proteins are reported to have specific functions and carbohydrate binding property. In the present study, we report a novel chitinase like lectin (TCLL) from Tamarindus indica. The crystal structures of native TCLL and its complex with N-acetyl glucosamine were determined. Similar to the other CLPs of the GH18 members, TCLL lacks chitinase activity due to mutations of key active site residues. Comparison of TCLL with chitinases and other chitin binding CLPs shows that TCLL has substitution of some chitin binding site residues and more open binding cleft due to major differences in the loop region. Interestingly, the biochemical studies suggest that TCLL is an N-acetyl glucosamine specific chi-lectin, which is further confirmed by the complex structure of TCLL with N-acetyl glucosamine complex. TCLL has two distinct N-acetyl glucosamine binding sites S1 and S2 that contain similar polar residues, although interaction pattern with N-acetyl glucosamine varies extensively among them. Moreover, TCLL structure depicts that how plants utilize existing structural scaffolds ingenuously to attain new functions. To date, this is the first structural investigation of a chi-lectin from plants that explore novel carbohydrate binding sites other than chitin binding groove observed in GH18 family members. Consequently, TCLL structure confers evidence for evolutionary link of lectins with chitinases. PMID:23717482

  16. In Vitro Biosynthesis and Chemical Identification of UDP-N-acetyl-d-quinovosamine (UDP-d-QuiNAc)*

    PubMed Central

    Li, Tiezheng; Simonds, Laurie; Kovrigin, Evgenii L.; Noel, K. Dale

    2014-01-01

    N-acetyl-d-quinovosamine (2-acetamido-2,6-dideoxy-d-glucose, QuiNAc) occurs in the polysaccharide structures of many Gram-negative bacteria. In the biosynthesis of QuiNAc-containing polysaccharides, UDP-QuiNAc is the hypothetical donor of the QuiNAc residue. Biosynthesis of UDP-QuiNAc has been proposed to occur by 4,6-dehydration of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) to UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose followed by reduction of this 4-keto intermediate to UDP-QuiNAc. Several specific dehydratases are known to catalyze the first proposed step. A specific reductase for the last step has not been demonstrated in vitro, but previous mutant analysis suggested that Rhizobium etli gene wreQ might encode this reductase. Therefore, this gene was cloned and expressed in Escherichia coli, and the resulting His6-tagged WreQ protein was purified. It was tested for 4-reductase activity by adding it and NAD(P)H to reaction mixtures in which 4,6-dehydratase WbpM had acted on the precursor substrate UDP-GlcNAc. Thin layer chromatography of the nucleotide sugars in the mixture at various stages of the reaction showed that WbpM converted UDP-GlcNAc completely to what was shown to be its 4-keto-6-deoxy derivative by NMR and that addition of WreQ and NADH led to formation of a third compound. Combined gas chromatography-mass spectrometry analysis of acid hydrolysates of the final reaction mixture showed that a quinovosamine moiety had been synthesized after WreQ addition. The two-step reaction progress also was monitored in real time by NMR. The final UDP-sugar product after WreQ addition was purified and determined to be UDP-d-QuiNAc by one-dimensional and two-dimensional NMR experiments. These results confirmed that WreQ has UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose 4-reductase activity, completing a pathway for UDP-d-QuiNAc synthesis in vitro. PMID:24817117

  17. Mechanism of allosteric inhibition of N-acetyl-L-glutamate synthase by L-arginine.

    PubMed

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2009-02-20

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in l-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by l-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with l-arginine bound and in the active R-state complexed with CoA and l-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of l-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by approximately 10 A and decreases its height by approximately 20A(.) AAK dimers move 5A outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by approximately 4 degrees . The NAT domains rotate approximately 109 degrees relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the l-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity. PMID:19095660

  18. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine*

    PubMed Central

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2009-01-01

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in l-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by l-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with l-arginine bound and in the active R-state complexed with CoA and l-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of l-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by ∼10 Å and decreases its height by ∼20Å. AAK dimers move 5Å outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by ∼4°. The NAT domains rotate ∼109° relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the l-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity. PMID:19095660

  19. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine

    SciTech Connect

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang

    2010-01-07

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in L-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by L-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with L-arginine bound and in the active R-state complexed with CoA and L-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of L-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by {approx}10 {angstrom} and decreases its height by {approx}20{angstrom}. AAK dimers move 5{angstrom} outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by {approx}4{sup o}. The NAT domains rotate {approx}109{sup o} relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the L-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.

  20. N-Acetyl-Serotonin Protects HepG2 Cells from Oxidative Stress Injury Induced by Hydrogen Peroxide

    PubMed Central

    Jiang, Jiying; Yu, Shuna; Jiang, Zhengchen; Liang, Cuihong; Yu, Wenbo; Li, Jin; Du, Xiaodong; Wang, Hailiang; Gao, Xianghong; Wang, Xin

    2014-01-01

    Oxidative stress plays an important role in the pathogenesis of liver diseases. N-Acetyl-serotonin (NAS) has been reported to protect against oxidative damage, though the mechanisms by which NAS protects hepatocytes from oxidative stress remain unknown. To determine whether pretreatment with NAS could reduce hydrogen peroxide- (H2O2-) induced oxidative stress in HepG2 cells by inhibiting the mitochondrial apoptosis pathway, we investigated the H2O2-induced oxidative damage to HepG2 cells with or without NAS using MTT, Hoechst 33342, rhodamine 123, Terminal dUTP Nick End Labeling Assay (TUNEL), dihydrodichlorofluorescein (H2DCF), Annexin V and propidium iodide (PI) double staining, immunocytochemistry, and western blot. H2O2 produced dramatic injuries in HepG2 cells, represented by classical morphological changes of apoptosis, increased levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), decreased activity of superoxide dismutase (SOD), and increased activities of caspase-9 and caspase-3, release of cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) from mitochondria, and loss of membrane potential (ΔΨm). NAS significantly inhibited H2O2-induced changes, indicating that it protected against H2O2-induced oxidative damage by reducing MDA levels and increasing SOD activity and that it protected the HepG2 cells from apoptosis through regulating the mitochondrial apoptosis pathway, involving inhibition of mitochondrial hyperpolarization, release of mitochondrial apoptogenic factors, and caspase activity. PMID:25013541

  1. Comparison of N-acetyl-beta-D-glucosaminidase and alanine aminopeptidase activities for evaluation of microangiopathy in diabetes mellitus.

    PubMed

    Shimojo, N; Kitahashi, S; Naka, K; Fujii, A; Okuda, K; Tanaka, S; Fujii, S

    1987-03-01

    The activities of urinary N-acetyl-beta-D-glucosaminidase (NAG) and alanine aminopeptidase (AAP) were measured in 207 diabetic patients and 57 healthy controls, and the relationship of these enzymes to different stages of diabetic microangiopathy was studied. Diabetics with clinical proteinuria had higher urinary NAG and AAP (17.7 +/- 1.9 and 42.8 +/- 4.9 U/g creatinine, mean +/- SE, respectively) than healthy controls (1.8 +/- 0.1 and 10.0 +/- 0.4) or diabetics without proteinuria. Among diabetics without proteinuria, NAG excretion in those with retinopathy was slightly higher than in those without (6.4 +/- 0.5 v 5.4 +/- 0.4), and AAP in those with retinopathy was significantly higher than in those without (23.0 +/- 1.5 v 17.4 +/- 0.8, P less than 0.01). Urinary albumin measured by radioimmunoassay and lysozyme in diabetics with retinopathy but without proteinuria was higher than those without retinopathy (P less than 0.001 and P less than 0.01). The increase in albumin was the greatest in diabetics with long duration of the disease (greater than or equal to 8 years); however, NAG and AAP increased more significantly in those with high hemoglobin A1c than in patients with long duration.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2881186

  2. N-Acetyl-Cysteine Promotes Angiostatin Production and Vascular Collapse in an Orthotopic Model of Breast Cancer

    PubMed Central

    Agarwal, Anshu; Muñoz-Nájar, Ursula; Klueh, Ulrike; Shih, Shu-Ching; Claffey, Kevin P.

    2004-01-01

    The antioxidant N-acetyl-cysteine (NAC) has been shown to be chemopreventive in clinical studies, and in recent studies, has shown promise in preventing tumor progression. Although the effects of NAC on tumorigenesis have been associated with decreased angiogenesis, the mechanism of the anti-angiogenic activity has not been determined. In the following study, we describe a novel mechanism whereby NAC therapy blocks MDA-MB-435 breast carcinoma cell proliferation and metastasis in an in vivo tumorigenic model. Athymic nude mice bearing MDA-MB-435 xenografts were treated with systemic NAC daily for 8 weeks. NAC treatment resulted in endothelial cell apoptosis and reduction of microvascular density within the core of the tumor leading to significant tumor cell apoptosis/necrosis. Angiostatin accumulated in tumors from NAC-treated but not control animals. Additional studies using a vascular endothelial growth factor-dependent chicken chorioallantoic membrane angiogenic assay recapitulated NAC-induced endothelial apoptosis and coordinate production of angiostatin, a potent endothelial apoptotic factor. In vitro studies showed angiostatin was formed in endothelial cultures in a vascular endothelial growth factor- and NAC-dependent manner, a process that requires endothelial cell surface plasminogen activation. These results suggest that systemic NAC therapy promotes anti-angiogenesis through angiostatin production, resulting in endothelial apoptosis and vascular collapse in the tumor. PMID:15111315

  3. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.

    PubMed

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-08-01

    N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces. PMID:12902275

  4. Spectroscopic investigations on the effect of N-acetyl-L-cysteine-capped CdTe Quantum Dots on catalase.

    PubMed

    Sun, Haoyu; Yang, Bingjun; Cui, Erqian; Liu, Rutao

    2014-11-11

    Quantum dots (QDs) are recognized as some of the most promising semiconductor nanocrystals in biomedical applications. However, the potential toxicity of QDs has aroused wide public concern. Catalase (CAT) is a common enzyme in animal and plant tissues. For the potential application of QDs in vivo, it is important to investigate the interaction of QDs with CAT. In this work, the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots with fluorescence emission peak at 612 nm (QDs-612) on CAT was investigated by fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible (UV-vis) absorption and circular dichroism (CD) techniques. Binding of QDs-612 to CAT caused static quenching of the fluorescence, the change of the secondary structure of CAT and the alteration of the microenvironment of tryptophan residues. The association constants K were determined to be K288K=7.98×10(5)Lmol(-1) and K298K=7.21×10(5)Lmol(-1). The interaction between QDs-612 and CAT was spontaneous with 1:1 stoichiometry approximately. The CAT activity was also inhibited for the bound QDs-612. This work provides direct evidence about enzyme toxicity of QDs-612 to CAT in vitro and establishes a new strategy to investigate the interaction between enzyme and QDs at a molecular level, which is helpful for clarifying the bioactivities of QDs in vivo. PMID:24910977

  5. Community shifts of actively growing lake bacteria after N-acetyl-glucosamine addition: improving the BrdU-FACS method.

    PubMed

    Tada, Yuya; Grossart, Hans-Peter

    2014-02-01

    In aquatic environments, community dynamics of bacteria, especially actively growing bacteria (AGB), are tightly linked with dissolved organic matter (DOM) quantity and quality. We analyzed the community dynamics of DNA-synthesizing and accordingly AGB by linking an improved bromodeoxyuridine immunocytochemistry approach with fluorescence-activated cell sorting (BrdU-FACS). FACS-sorted cells of even oligotrophic ecosystems in winter were characterized by 16S rRNA gene analysis. In incubation experiments, we examined community shifts of AGB in response to the addition of N-acetyl-glucosamine (NAG), one of the most abundant aminosugars in aquatic systems. Our improved BrdU-FACS analysis revealed that AGB winter communities of oligotrophic Lake Stechlin (northeastern Germany) substantially differ from those of total bacteria and consist of Alpha-, Beta-, Gamma-, Deltaproteobacteria, Actinobacteria, Candidatus OP10 and Chloroflexi. AGB populations with different BrdU-fluorescence intensities and cell sizes represented different phylotypes suggesting that single-cell growth potential varies at the taxon level. NAG incubation experiments demonstrated that a variety of widespread taxa related to Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Planctomycetes, Spirochaetes, Verrucomicrobia and Chloroflexi actively grow in the presence of NAG. The BrdU-FACS approach enables detailed phylogenetic studies of AGB and, thus, to identify those phylotypes which are potential key players in aquatic DOM cycling. PMID:23985742

  6. Community shifts of actively growing lake bacteria after N-acetyl-glucosamine addition: improving the BrdU-FACS method

    PubMed Central

    Tada, Yuya; Grossart, Hans-Peter

    2014-01-01

    In aquatic environments, community dynamics of bacteria, especially actively growing bacteria (AGB), are tightly linked with dissolved organic matter (DOM) quantity and quality. We analyzed the community dynamics of DNA-synthesizing and accordingly AGB by linking an improved bromodeoxyuridine immunocytochemistry approach with fluorescence-activated cell sorting (BrdU-FACS). FACS-sorted cells of even oligotrophic ecosystems in winter were characterized by 16S rRNA gene analysis. In incubation experiments, we examined community shifts of AGB in response to the addition of N-acetyl-glucosamine (NAG), one of the most abundant aminosugars in aquatic systems. Our improved BrdU-FACS analysis revealed that AGB winter communities of oligotrophic Lake Stechlin (northeastern Germany) substantially differ from those of total bacteria and consist of Alpha-, Beta-, Gamma-, Deltaproteobacteria, Actinobacteria, Candidatus OP10 and Chloroflexi. AGB populations with different BrdU-fluorescence intensities and cell sizes represented different phylotypes suggesting that single-cell growth potential varies at the taxon level. NAG incubation experiments demonstrated that a variety of widespread taxa related to Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Planctomycetes, Spirochaetes, Verrucomicrobia and Chloroflexi actively grow in the presence of NAG. The BrdU-FACS approach enables detailed phylogenetic studies of AGB and, thus, to identify those phylotypes which are potential key players in aquatic DOM cycling. PMID:23985742

  7. An N-Acetyl Cysteine Ruthenium Tricarbonyl Conjugate Enables Simultaneous Release of CO and Ablation of Reactive Oxygen Species

    PubMed Central

    Seixas, João D; Chaves-Ferreira, Miguel; Montes-Grajales, Diana; Gonçalves, Ana M; Marques, Ana R; Saraiva, Lígia M; Olivero-Verbel, Jesus; Romão, Carlos C; Bernardes, Gonçalo J L

    2015-01-01

    We have designed and synthesised a [Ru(CO)3Cl2(NAC)] pro-drug that features an N-acetyl cysteine (NAC) ligand. This NAC carbon monoxide releasing molecule (CORM) conjugate is able to simultaneously release biologically active CO and to ablate the concurrent formation of reactive oxygen species (ROS). Complexes of the general formulae [Ru(CO)3(L)3]2+, including [Ru(CO)3Cl(glycinate)] (CORM-3), have been shown to produce ROS through a water–gas shift reaction, which contributes significantly, for example, to their antibacterial activity. In contrast, NAC-CORM conjugates do not produce ROS or possess antibacterial activity. In addition, we demonstrate the synergistic effect of CO and NAC both for the inhibition of nitric oxide (formation) and in the expression of tumour-necrosis factor (TNF)-α. This work highlights the advantages of combining a CO-releasing scaffold with the anti-oxidant and anti-inflammatory drug NAC in a unique pro-drug. PMID:26316066

  8. MRS reveals additional hexose N-acetyl resonances in the brain of a mouse model for Sandhoff disease.

    PubMed

    Lowe, J P; Stuckey, D J; Awan, F R; Jeyakumar, M; Neville, D C A; Platt, F M; Griffin, J L; Styles, P; Blamire, A M; Sibson, N R

    2005-12-01

    Sandhoff disease, one of several related lysosomal storage disorders, results from the build up of N-acetyl-containing glycosphingolipids in the brain and is caused by mutations in the genes encoding the hexosaminidase beta-subunit. Affected individuals undergo progressive neurodegeneration in response to the glycosphingolipid storage. (1)H magnetic resonance spectra of perchloric acid extracts of Sandhoff mouse brain exhibited several resonances ca 2.07 ppm that were not present in the corresponding spectra from extracts of wild-type mouse brain. High-performance liquid chromatography and mass spectrometry of the Sandhoff extracts post-MRS identified the presence of N-acetylhexosamine-containing oligosaccharides, which are the likely cause of the additional MRS resonances. MRS of intact brain tissue with magic angle spinning also showed additional resonances at ca 2.07 ppm in the Sandhoff case. These resonances appeared to increase with disease progression and probably arise, for the most part, from the stored glycosphingolipids, which are absent in the aqueous extracts. Hence in vivo MRS may be a useful tool for detecting early-stage Sandhoff disease and response to treatment. PMID:16206131

  9. Purification and characterization of an extracellular muramidase of Clostridium acetobutylicum ATCC 824 that acts on non-N-acetylated peptidoglycan.

    PubMed Central

    Croux, C; Canard, B; Goma, G; Soucaille, P

    1992-01-01

    An extracellular enzyme showing lytic activity on non-N-acetylated peptidoglycan has been isolated from Clostridium acetobutylicum ATCC 824. The lytic enzyme was purified to homogeneity by anion-exchange chromatography and gel filtration, with a recovery of 24%. The enzyme was monomeric and had an estimated molecular weight of 41,000 and an isoelectric point of 3.8. It has been characterized as a muramidase whose 23-amino-acid N terminus displayed 39% homology with the N,O-diacetyl muramidase of the fungus Chalaropsis sp. The muramidase hydrolyzed purified cell walls at an optimum pH of 3, with a maximum velocity of 9.1 mumol of reducing sugars released min-1 mg of muramidase-1 and a concentration of cell walls giving a half-maximum rate of 0.01 mg ml-1. Its activity was inhibited by glucosamine, N-acetylglucosamine, Hg2+, Fe3+, and Ag+ but not by choline. The muramidase-peptidoglycan complex rapidly dissociated before total hydrolysis of the chain and randomly reassociated on another peptidoglycan chain. The affinity of the muramidase was affected by the protein content and the acetylation of the cell wall. Images PMID:1599233

  10. A double-blind, placebo-controlled study of N-acetyl cysteine plus naltrexone for methamphetamine dependence.

    PubMed

    Grant, Jon E; Odlaug, Brian L; Kim, Suck Won

    2010-11-01

    Reducing both glutamatergic and dopaminergic drive in the nucleus accumbens may offer complementary mechanisms by which to reduce drug cravings. This 8-week study sought to examine the efficacy of a combination of a glutamate modulator, N-acetyl cysteine (NAC), plus the opioid antagonist, naltrexone, compared to placebo in the treatment of methamphetamine dependence. Thirty-one subjects with methamphetamine dependence (mean age 36.8 ± 7.12 years; 29% female) were randomly assigned in a 1:1 fashion to NAC plus naltrexone or placebo and returned for one post-baseline visit. The Penn Craving Scale was the primary outcome measure. Self-report methamphetamine use frequency and urine toxicology were secondary measures. NAC plus naltrexone failed to demonstrate statistically significant differences from placebo on primary and secondary outcomes. The current study failed to demonstrate greater efficacy for NAC plus naltrexone compared to placebo. Given the small sample size, the statistical power to detect significant effects of active treatment versus placebo was limited. The question of whether a larger, well-powered sample would have detected differences between NAC plus naltrexone and placebo deserves further examination. PMID:20655182

  11. Spectroscopic and molecular docking studies on the interaction between N-acetyl cysteine and bovine serum albumin.

    PubMed

    Jahanban-Esfahlan, Ali; Panahi-Azar, Vahid; Sajedi, Sanaz

    2015-11-01

    The interaction between N-acetyl cysteine (NAC) and bovine serum albumin (BSA) was investigated by UV-vis, fluorescence spectroscopy, and molecular docking methods. Fluorescence study at three different temperatures indicated that the fluorescence intensity of BSA was reduced upon the addition of NAC by the static quenching mechanism. Binding constant (K(b)) and the number of binding sites (n) were determined. The binding constant for the interaction of NAC and BSA was in the order of 10(3) M(-1), and the number of binding sites was obtained to be equal to 1. Enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) as thermodynamic values were also achieved by van't Hoff equation. Hydrogen bonding and van der Waals force were the major intermolecular forces in the interaction process and it was spontaneous. Finally, the binding mode and the binding sites were clarified using molecular docking which were in good agreement with the results of spectroscopy experiments. PMID:26139573

  12. Understanding N-Acetyl-L-Glutamate Synthase Deficiency: Mutational Spectrum, Impact of Clinical Mutations on Enzyme Functionality, and Structural Considerations.

    PubMed

    Sancho-Vaello, Enea; Marco-Marín, Clara; Gougeard, Nadine; Fernández-Murga, Leonor; Rüfenacht, Véronique; Mustedanagic, Merima; Rubio, Vicente; Häberle, Johannes

    2016-07-01

    N-acetyl-L-glutamate synthase (NAGS) deficiency (NAGSD), the rarest urea cycle defect, is clinically indistinguishable from carbamoyl phosphate synthetase 1 deficiency, rendering the identification of NAGS gene mutations key for differentiation, which is crucial, as only NAGSD has substitutive therapy. Over the last 13 years, we have identified 43 patients from 33 families with NAGS mutations, of which 14 were novel. Overall, 36 NAGS mutations have been found so far in 56 patients from 42 families, of which 76% are homozygous for the mutant allele. 61% of mutations are missense changes. Lack or decrease of NAGS protein is predicted for ∼1/3 of mutations. Missense mutations frequency is inhomogeneous along NAGS: null for exon 1, but six in exon 6, which reflects the paramount substrate binding/catalytic role of the C-terminal domain (GNAT domain). Correspondingly, phenotypes associated with missense mutations mapping in the GNAT domain are more severe than phenotypes of amino acid kinase domain-mapping missense mutations. Enzyme activity and stability assays with 12 mutations introduced into pure recombinant Pseudomonas aeruginosa NAGS, together with in silico structural analysis, support the pathogenic role of most NAGSD-associated mutations found. The disease-causing mechanisms appear to be, from higher to lower frequency, decreased solubility/stability, aberrant kinetics/catalysis, and altered arginine modulation. PMID:27037498

  13. Protective effects of Eugenia jambolana extract versus N-acetyl cysteine against cisplatin-induced damage in rat testis.

    PubMed

    Anand, H; Misro, M M; Sharma, S B; Prakash, S

    2015-03-01

    To assess the protective effects of Eugenia jambolana extract (EJE) or N-acetyl cysteine (NAC) on testis, cisplatin (CIS, 5 mg kg(-1) bw, single dose) was administered either alone or along with EJE (25 mg kg(-1) bw, alternate day) or NAC (150 mg kg(-1) bw, Day 1 and 4) for 7 days. Significant alterations in serum LH, FSH and testosterone were observed in CIS group which were effectively modulated by EJE or NAC supplementation. Upregulation of 3β-HSD gene indicated the rise in functional Leydig cells. This was further confirmed from the identical improvement in hCG-stimulated testosterone production in isolated Leydig cells. Reduction in oxidative stress was associated with restoration of total antioxidant capacity and glutathione levels, and activation of antioxidant enzymes, SOD, catalase, glutathione s-transferase (GST) and glutathione reductase (GR). CIS-induced apoptosis of germ and Leydig cells was contained by both NAC and EJE intervention by effective modulation of apoptotic markers in the extrinsic, intrinsic and other pathways of metazoan apoptosis. Taken together, the study findings establish the potential of EJE as a therapeutically better antioxidant than NAC for use in curtailing the adverse effects of anticancer drugs on testicular function. PMID:24576220

  14. Scope and Limitations of 3-Iodo-Kdo Fluoride-Based Glycosylation Chemistry using N-Acetyl Glucosamine Acceptors.

    PubMed

    Pokorny, Barbara; Kosma, Paul

    2015-12-01

    The ketosidic linkage of 3-deoxy-d-manno-octulosonic acid (Kdo) to lipid A constitutes a general structural feature of the bacterial lipopolysaccharide core. Glycosylation reactions of Kdo donors, however, are challenging due to the absence of a directing group at C-3 and elimination reactions resulting in low yields and anomeric selectivities of the glycosides. While 3-iodo-Kdo fluoride donors showed excellent glycosyl donor properties for the assembly of Kdo oligomers, glycosylation of N-acetyl-glucosamine derivatives was not straightforward. Specifically, oxazoline formation of a β-anomeric methyl glycoside, as well as iodonium ion transfer to an allylic aglycon was found. In addition, dehalogenation of the directing group by hydrogen atom transfer proved to be incompatible with free hydroxyl groups next to benzyl groups. In contrast, glycosylation of a suitably protected methyl 2-acetamido-2-deoxy-α-d-glucopyranoside derivative and subsequent deiodination proceeded in excellent yields and α-specificity, and allowed for subsequent 4-O-phosphorylation. This way, the disaccharides α-Kdo-(2→6)-α-GlcNAcOMe and α-Kdo-(2→6)-α-GlcNAcOMe-4-phosphate were obtained in good overall yields. PMID:27308198

  15. Spectroscopic investigations on the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots on catalase

    NASA Astrophysics Data System (ADS)

    Sun, Haoyu; Yang, Bingjun; Cui, Erqian; Liu, Rutao

    2014-11-01

    Quantum dots (QDs) are recognized as some of the most promising semiconductor nanocrystals in biomedical applications. However, the potential toxicity of QDs has aroused wide public concern. Catalase (CAT) is a common enzyme in animal and plant tissues. For the potential application of QDs in vivo, it is important to investigate the interaction of QDs with CAT. In this work, the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots with fluorescence emission peak at 612 nm (QDs-612) on CAT was investigated by fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible (UV-vis) absorption and circular dichroism (CD) techniques. Binding of QDs-612 to CAT caused static quenching of the fluorescence, the change of the secondary structure of CAT and the alteration of the microenvironment of tryptophan residues. The association constants K were determined to be K288K = 7.98 × 105 L mol-1 and K298K = 7.21 × 105 L mol-1. The interaction between QDs-612 and CAT was spontaneous with 1:1 stoichiometry approximately. The CAT activity was also inhibited for the bound QDs-612. This work provides direct evidence about enzyme toxicity of QDs-612 to CAT in vitro and establishes a new strategy to investigate the interaction between enzyme and QDs at a molecular level, which is helpful for clarifying the bioactivities of QDs in vivo.

  16. A 4-deoxy analogue of N-acetyl-D-glucosamine inhibits heparan sulphate expression and growth factor binding in vitro

    SciTech Connect

    Wijk, Xander M.R. van; Oosterhof, Arie; Broek, Sebastiaan A.M.W. van den; Griffioen, Arjan W.; Dam, Gerdy B. ten; Rutjes, Floris P.J.T.; Delft, Floris L. van; Kuppevelt, Toin H. van

    2010-09-10

    Heparan sulphate (HS) is a long, linear polysaccharide, which has a basic backbone of -{beta}1-4GlcA-{alpha}1-4GlcNAc- units. The involvement of HS in many steps of tumourigenesis, including growth and angiogenesis, makes it an appealing target for cancer therapy. To target the biosynthesis of HS by interfering with its chain elongation, a 4-deoxy analogue of N-acetyl-D-glucosamine (4-deoxy-GlcNAc) was synthesized. Using immunocytochemistry and agarose gel electrophoresis it was shown that incubation with the 4-deoxysugar resulted in a dose dependent reduction of HS expression of MV3 melanoma cells, 1 mM resulting in an almost nullified HS expression. The parent sugar GlcNAc had no effect. 4-deoxysugar treated cells were viable and proliferated at the same rate as control cells. Other glycan structures appeared to be only mildly affected, as staining by various lectins was generally not or only modestly inhibited. At 1 mM of the 4-deoxysugar, the capacity of cells to bind the HS-dependent pro-angiogenic growth factors FGF-2 and VEGF was greatly compromised. Using an in vitro angiogenesis assay, 4-deoxysugar treated endothelial cells showed a sharp reduction of FGF-2-induced sprout formation. Combined, these data indicate that an inexpensive, easily synthesized, water-soluble monosaccharide analogue can interfere with HS expression and pro-angiogenic growth factor binding.

  17. Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis.

    PubMed

    Burillo, Sergio; Luque, Ignacio; Fuentes, Inmaculada; Contreras, Asunción

    2004-06-01

    PII, one of the most conserved signal transduction proteins, is believed to be a key player in the coordination of nitrogen assimilation and carbon metabolism in bacteria, archaea, and plants. However, the identity of PII receptors remains elusive, particularly in photosynthetic organisms. Here we used yeast two-hybrid approaches to identify new PII receptors and to explore the extent of conservation of PII signaling mechanisms between eubacteria and photosynthetic eukaryotes. Screening of Synechococcus sp. strain PCC 7942 libraries with PII as bait resulted in identification of N-acetyl glutamate kinase (NAGK), a key enzyme in the biosynthesis of arginine. The integrity of Ser49, a residue conserved in PII proteins from organisms that perform oxygenic photosynthesis, appears to be essential for NAGK binding. The effect of glnB mutations on NAGK activity is consistent with positive regulation of NAGK by PII. Phylogenetic and yeast two-hybrid analyses strongly suggest that there was conservation of the NAGK-PII regulatory interaction in the evolution of cyanobacteria and chloroplasts, providing insight into the function of eukaryotic PII-like proteins. PMID:15150219

  18. Mutational analysis to identify the residues essential for the inhibition of N-acetyl glutamate kinase of Corynebacterium glutamicum.

    PubMed

    Huang, Yuanyuan; Zhang, Hao; Tian, Hongming; Li, Cheng; Han, Shuangyan; Lin, Ying; Zheng, Suiping

    2015-09-01

    N-acetyl glutamate kinase (NAGK) is a key enzyme in the synthesis of L-arginine that is inhibited by its end product L-arginine in Corynebacterium glutamicum (C. glutamicum). In this study, the potential binding sites of arginine and the residues essential for its inhibition were identified by homology modeling, inhibitor docking, and site-directed mutagenesis. The allosteric inhibition of NAGK was successfully alleviated by a mutation, as determined through analysis of mutant enzymes, which were overexpressed in vivo in C. glutamicum ATCC14067. Analysis of the mutant enzymes and docking analysis demonstrated that residue W23 positions an arginine molecule, and the interaction between arginine and residues L282, L283, and T284 may play an important role in the remote inhibitory process. Based on the results of the docking analysis of the effective mutants, we propose a linkage mechanism for the remote allosteric regulation of NAGK activity, in which residue R209 may play an essential role. In this study, the structure of the arginine-binding site of C. glutamicum NAGK (CgNAGK) was successfully predicted and the roles of the relevant residues were identified, providing new insight into the allosteric regulation of CgNAGK activity and a solid platform for the future construction of an optimized L-arginine producing strain. PMID:25750030

  19. Identification of the enzyme responsible for N-acetylation of norfloxacin by Microbacterium sp. Strain 4N2-2.

    PubMed

    Kim, Dae-Wi; Feng, Jinhui; Chen, Huizhong; Kweon, Ohgew; Gao, Yuan; Yu, Li-Rong; Burrowes, Vanessa J; Sutherland, John B

    2013-01-01

    Microbacterium sp. 4N2-2, isolated from a wastewater treatment plant, converts the antibacterial fluoroquinolone norfloxacin to N-acetylnorfloxacin and three other metabolites. Because N-acetylation results in loss of antibacterial activity, identification of the enzyme responsible is important for understanding fluoroquinolone resistance. The enzyme was identified as glutamine synthetase (GS); N-acetylnorfloxacin was produced only under conditions associated with GS expression. The GS gene (glnA) was cloned, and the protein (53 kDa) was heterologously expressed and isolated. Optimal conditions and biochemical properties (K(m) and V(max)) of purified GS were characterized; the purified enzyme was inhibited by Mn(2+), Mg(2+), ATP, and ADP. The contribution of GS to norfloxacin resistance was shown by using a norfloxacin-sensitive Escherichia coli strain carrying glnA derived from Microbacterium sp. 4N2-2. The GS of Microbacterium sp. 4N2-2 was shown to act as an N-acetyltransferase for norfloxacin, which produced low-level norfloxacin resistance. Structural and docking analysis identified potential binding sites for norfloxacin at the ADP binding site and for acetyl coenzyme A (acetyl-CoA) at a cleft in GS. The results suggest that environmental bacteria whose enzymes modify fluoroquinolones may be able to survive in the presence of low fluoroquinolone concentrations. PMID:23104417

  20. Urinary N-acetyl-beta-D-glucosaminidase and malondialdehyde as a markers of renal damage in burned patients.

    PubMed Central

    Kang, H. K.; Kim, D. K.; Lee, B. H.; Om, A. S.; Hong, J. H.; Koh, H. C.; Lee, C. H.; Shin, I. C.; Kang, J. S.

    2001-01-01

    This study was aimed to evaluate renal dysfunction during three weeks after the burn injuries in 12 patients admitted to the Hallym University Hankang Medical Center with flame burn injuries (total body surface area, 20-40%). Parameters assessed included 24-hr urine volume, blood urea nitrogen, serum creatinine, creatinine clearance, total urinary protein, urinary microalbumin, 24-hr urinary N-acetyl-beta-D-glucosaminidase (NAG) activity, and urinary malondialdehyde (MDA). Statistical analysis was performed using repeated measures ANOVA test. The 24-hr urine volume, creatinine clearance, and urinary protein significantly increased on day 3 post-burn and fell thereafter. The urine microalbumin excretion showed two peak levels on day 0 post-burn and day 3. The 24-hr urinary NAG activity significantly increased to its maximal level on day 7 post-burn and gradually fell thereafter. The urinary MDA progressively increased during 3 weeks after the burn injury. Despite recovery of general renal function through an intensive care of burn injury, renal tubular damage and lipid peroxidation of the renal tissue suggested to persist during three weeks after the burn. Therefore, a close monitoring and intensive management of renal dysfunction is necessary to prevent burn-induced acute renal failure as well as to lower mortality in patients with major burns. PMID:11641529

  1. Inhibition of sulfur mustard-increased protease activity by niacinamide, N-acetyl-L-cysteine or dexamethasone

    SciTech Connect

    Cowan, F.M.; Broomfield, C.A.; Smith, W.J.

    1991-03-11

    The pathologic mechanism of sulfur mustard-induced skin vesication is as yet undefined. Papirmeister et al. have postulated a biochemical mechanism for sulfur mustard-induced cutaneous injury involving sequelae of DNA alkylation, metabolic disruption resulting in NAD+ depletion and activation of protease. The authors have utilized a chromogenic peptide substrate assay to establish that human peripheral blood lymphocytes exposed 24 hr previously to sulfur mustard exhibited an increase in proteolytic activity. Doses of compounds known to alter the biochemical events associated with sulfur mustard exposure or reduce protease activity were tested in this system for their ability to block the sulfur mustard-induced protease activity. Treatment with niacinamide 1 hr after or with N-acetyl-L-cysteine or dexamethasone 24 hr prior to sulfur mustard exposure resulted in a decrease of 39%, 33% and 42% respectively of sulfur mustard-increased protease activity. These data suggest that therapeutic intervention into the biochemical pathways that culminate in protease activation might serve as an approach to treatment of sulfur mustard-induced pathology.

  2. Optimized deglycosylation of glycoproteins by peptide-N4-(N-acetyl-beta-glucosaminyl)-asparagine amidase from Flavobacterium meningosepticum.

    PubMed

    Nuck, R; Zimmermann, M; Sauvageot, D; Josi D; Reutter, W

    1990-01-01

    Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F(PNGase F) from Flavobacterium meningosepticum is a highly useful enzyme for the structural analysis of N (asparagine)-linked carbohydrate chains derived from glycoproteins. The enzyme was enriched using a published procedure [Tarentino AL, Gomez CM, Plummer TH, Jr (1984) Biochemistry 1985:4665-71; Tarentino AL, Plummer TH, Jr (1987) Methods Enzymol 138:770-78] and further purified by hydrophobic interaction HPLC on a weak hydrophobic TSK-Ether column from which it was eluted by a decreasing gradient of 1.7 M ammonium sulphate in 100 mM sodium phosphate, pH 7.0, containing 5 mM EDTA. To determine the optimal conditions for a complete deglycosylation of glycoproteins by PNGase F, experiments were performed with human alpha 1-acid glycoprotein, because the five complex type carbohydrate chains are quite resistant to enzymic hydrolysis. The influence of different detergents on the enzyme reaction was studied. Complete deglycosylation of human alpha 1-acid glycoprotein was achieved by the use of 60 mU/ml PNGase F in 0.25 M sodium phosphate buffer, pH 8.6, containing 0.2% (w/v) SDS, 20 mM mercaptoethanol and 0.5% Mega-10. PMID:2136346

  3. Changes in N-acetyl-B-D-glucosaminidase and B-glucuronidase activities in milk during bovine mastitis.

    PubMed Central

    Nagahata, H; Saito, S; Noda, H

    1987-01-01

    To determine the N-acetyl-B-D-glucosaminidase (NAGase) and B-glucuronidase (B-Gase) activities in mastitic milk, basic enzyme assay conditions, distribution of NAGase and B-Gase, comparison of their activities with California Mastitis Test scores, and the effects of the milking process on their enzyme activities were examined. The mean NAGase and B-Gase activities in milk macrophages were about threefold higher than those of milk and blood polymorphonuclear cells. Very little NAGase activity appeared to be associated with blood mononuclear cells, whereas a relatively higher B-Gase activity was observed. California Mastitis Test scores of each group (1 to 5) appeared to be well correlated (r = 0.86 for NAGase and 0.92 for B-Gase) with the levels of NAGase and B-Gase activity. The milking process was least effective in the normal milk, but some variations of enzyme activities during milking in mastitic milk were found. Changes in NAGase and B-Gase activities in quarter milk were well monitored during the course of clinical mastitis. PMID:3567747

  4. Identification of the Enzyme Responsible for N-Acetylation of Norfloxacin by Microbacterium sp. Strain 4N2-2

    PubMed Central

    Kim, Dae-Wi; Feng, Jinhui; Chen, Huizhong; Kweon, Ohgew; Gao, Yuan; Yu, Li-Rong; Burrowes, Vanessa J.

    2013-01-01

    Microbacterium sp. 4N2-2, isolated from a wastewater treatment plant, converts the antibacterial fluoroquinolone norfloxacin to N-acetylnorfloxacin and three other metabolites. Because N-acetylation results in loss of antibacterial activity, identification of the enzyme responsible is important for understanding fluoroquinolone resistance. The enzyme was identified as glutamine synthetase (GS); N-acetylnorfloxacin was produced only under conditions associated with GS expression. The GS gene (glnA) was cloned, and the protein (53 kDa) was heterologously expressed and isolated. Optimal conditions and biochemical properties (Km and Vmax) of purified GS were characterized; the purified enzyme was inhibited by Mn2+, Mg2+, ATP, and ADP. The contribution of GS to norfloxacin resistance was shown by using a norfloxacin-sensitive Escherichia coli strain carrying glnA derived from Microbacterium sp. 4N2-2. The GS of Microbacterium sp. 4N2-2 was shown to act as an N-acetyltransferase for norfloxacin, which produced low-level norfloxacin resistance. Structural and docking analysis identified potential binding sites for norfloxacin at the ADP binding site and for acetyl coenzyme A (acetyl-CoA) at a cleft in GS. The results suggest that environmental bacteria whose enzymes modify fluoroquinolones may be able to survive in the presence of low fluoroquinolone concentrations. PMID:23104417

  5. Catabolism and detoxification of 1-aminoalkylphosphonic acids: N-acetylation by the phnO gene product.

    PubMed

    Hove-Jensen, Bjarne; McSorley, Fern R; Zechel, David L

    2012-01-01

    In Escherichia coli uptake and catabolism of organophosphonates are governed by the phnCDEFGHIJKLMNOP operon. The phnO cistron is shown to encode aminoalkylphosphonate N-acetyltransferase, which utilizes acetylcoenzyme A as acetyl donor and aminomethylphosphonate, (S)- and (R)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate as acetyl acceptors. Aminomethylphosphonate, (S)-1-aminoethylphosphonate, 2-aminoethyl- and 3-aminopropylphosphonate are used as phosphate source by E. coli phn(+) strains. 2-Aminoethyl- or 3-aminopropylphosphonate but not aminomethylphosphonate or (S)-1-aminoethylphosphonate is used as phosphate source by phnO strains. Neither phn(+) nor phnO strains can use (R)-1-aminoethylphosphonate as phosphate source. Utilization of aminomethylphosphonate or (S)-1-aminoethylphosphonate requires the expression of phnO. In the absence of phnO-expression (S)-1-aminoethylphosphonate is bacteriocidal and rescue of phnO strains requires the simultaneous addition of d-alanine and phosphate. An intermediate of the carbon-phosphorus lyase pathway, 5'-phospho-α-d-ribosyl 1'-(2-N-acetamidoethylphosphonate), a substrate for carbon-phosphorus lyase, was found to accumulate in cultures of a phnP mutant strain. The data show that the physiological role of N-acetylation by phnO-specified aminoalkylphosphonate N-acetyltransferase is to detoxify (S)-1-aminoethylphosphonate, an analog of d-alanine, and to prepare (S)-1-aminoethylphosphonate and aminomethylphosphonate for utilization of the phosphorus-containing moiety. PMID:23056305

  6. Induction of apoptosis in cancer cells through N-acetyl-l-leucine-modified polyethylenimine-mediated p53 gene delivery.

    PubMed

    Li, Zhiyuan; Zhang, Liu; Li, Quanshun

    2015-11-01

    Herein, N-acetyl-L-leucine-modified polyethylenimine was successfully constructed through the EDC/NHS-mediated coupling reaction and employed as vectors to accomplish p53 gene delivery using HeLa (p53wt) and PC-3 cells (p53null) as models. Compared with PEI25K, the derivatives exhibited lower cytotoxicity, protein adsorption and hemolytic activity, together with satisfactory pDNA condensation capability and gene transfection efficiency. After p53 transfection, MTT analysis confirmed that the cell proliferation was inhibited. Flow cytometric analysis showed that the derivative-mediated p53 delivery could induce stronger early apoptosis than PEI25K and Lipofectamine(2000). Further, PC-3 cells showed higher sensitivity to the exogenous p53 transfection than HeLa cells. The mechanism for inducing apoptosis was determined to be up-regulation of p53 expression at both mRNA and protein levels using RT-PCR and western blotting analysis. Expression level and activity analysis of caspase-3, -8 and -9, and mitochondrial membrane potential measurement revealed that p53 transfection mediated by these derivatives facilitated early apoptosis of tumor cells via a mitochondria-dependent apoptosis pathway. Thus, the derivatives showed potential as biocompatible carriers for realizing effective tumor gene therapy. PMID:26322477

  7. Differential effects of N-acetyl-aspartyl-glutamate on synaptic and extrasynaptic NMDA receptors are subunit- and pH-dependent in the CA1 region of the mouse hippocampus.

    PubMed

    Khacho, Pamela; Wang, Boyang; Ahlskog, Nina; Hristova, Elitza; Bergeron, Richard

    2015-10-01

    Ischemic strokes cause excessive release of glutamate, leading to overactivation of N-methyl-d-aspartate receptors (NMDARs) and excitotoxicity-induced neuronal death. For this reason, inhibition of NMDARs has been a central focus in identifying mechanisms to avert this extensive neuronal damage. N-acetyl-aspartyl-glutamate (NAAG), the most abundant neuropeptide in the brain, is neuroprotective in ischemic conditions in vivo. Despite this evidence, the exact mechanism underlying its neuroprotection, and more specifically its effect on NMDARs, is currently unknown due to conflicting results in the literature. Here, we uncover a pH-dependent subunit-specific action of NAAG on NMDARs. Using whole-cell electrophysiological recordings on acute hippocampal slices from adult mice and on HEK293 cells, we found that NAAG increases synaptic GluN2A-containing NMDAR EPSCs, while effectively decreasing extrasynaptic GluN2B-containing NMDAR EPSCs in physiological pH. Intriguingly, the results of our study further show that in low pH, which is a physiological occurrence during ischemia, NAAG depresses GluN2A-containing NMDAR EPSCs and amplifies its inhibitory effect on GluN2B-containing NMDAR EPSCs, as well as upregulates the surface expression of the GluN2A subunit. Altogether, our data demonstrate that NAAG has differential effects on NMDAR function based on subunit composition and pH. These findings suggest that the role of NAAG as a neuroprotective agent during an ischemic stroke is likely mediated by its ability to reduce NMDAR excitation. The inhibitory effect of NAAG on NMDARs and its enhanced function in acidic conditions make NAAG a prime therapeutic agent for the treatment of ischemic events. PMID:26303888

  8. Insulin Aspart (rDNA Origin) Injection

    MedlinePlus

    ... unless it is used in an external insulin pump. In patients with type 2 diabetes, insulin aspart ... also can be used with an external insulin pump. Before using insulin aspart in a pump system, ...

  9. A modeling study for structure features of β-N-acetyl-D-hexosaminidase from Ostrinia furnacalis and its novel inhibitor allosamidin: species selectivity and multi-target characteristics.

    PubMed

    Wang, Yanli; Liu, Tian; Yang, Qing; Li, Zhong; Qian, Xuhong

    2012-04-01

    Insect β-N-acetyl-D-hexosaminidase, a chitin degrading enzyme, is physiologically important during the unique life cycle of the insect. OfHex1, a β-N-acetyl-D-hexosaminidase from the insect, Ostrinia furna, which was obtained by our laboratory (Gen Bank No.: ABI81756.1), was studied by molecular modeling as well as by molecular docking with its inhibitor, allosamidin. 3D model of OfHex1 was built through the ligand-supported homology modeling approach. The binding modes of its substrate and inhibitor were proposed through docking and cluster analysis. The pocket's size and shape of OfHex1 differ from that of human β-N-acetyl-D-hexosaminidase, which determined that allosamidin can selectively inhibit OfHex1 instead of human β-N-acetyl-D-hexosaminidase. Moreover, the multi-target characteristics of allosamidin that inhibit enzymes from different families, OfHex1 (EC 3.2.1.52; GH20) and chitinase (EC 3.2.1.14; GH18), were compared. The common -1/+1 sugar-binding site of chitinase and OfHex1, and the -2/-3 sugar-binding site in chitinase contribute to the binding of allosamidin. This work, at molecular level, proved that OfHex1 could be a potential species-specific target for novel green pesticide design and also provide the possibility to develop allosamidin or its derivatives as a new type of insecticide to 'hit two birds with one stone', which maybe become a novel strategy in pest control. PMID:22177554

  10. N-acetyl-5-N,4-O-oxazolidinone-protected sialyl sulfoxide: an α-selective sialyl donor with Tf2O/(Tol)2SO in dichloromethane.

    PubMed

    Gu, Zhen-yuan; Zhang, Jia-xin; Xing, Guo-wen

    2012-06-01

    Sweet as sugar: Sialyl sulfoxide protected by N-acetyl-5-N,4-O-oxazolidinone was readily prepared, and its coupling to various sugar acceptors was investigated. When the reaction was promoted by Tf(2)O/(Tol)(2)SO, efficient and highly α-selective sialylation yielded α(2,6), α(2,3), and α(2,4) glycosidic linkages between sialic acid and glucose/glacotose. PMID:22488903

  11. Studies on the metabolism of 4-fluoroaniline and 4-fluoroacetanilide in rat: formation of 4-acetamidophenol (paracetamol) and its metabolites via defluorination and N-acetylation.

    PubMed

    Scarfe, G B; Tugnait, M; Wilson, I D; Nicholson, J K

    1999-02-01

    1. The urinary metabolic fate of 4-fluoroaniline (4-FA) and 1-[13C]-4-fluoroacetanilide (4-FAA) has been studied using NMR-based methods after 50 and 100 mg kg(-1) i.p. doses respectively to the male Sprague-Dawley rat. 2. 4-FA was both ortho- and para-hydroxylated. The major metabolite produced by ortho-hydroxylation was 2-amino-5-fluorophenylsulphate accounting for approximately 30% of the dose. Of the dose, approximately 10% was excreted via para-hydroxylation and the resulting defluorinated metabolites were N-acetylated and excreted as sulphate (major), glucuronide (minor) and N-acetyl-cysteinyl (minor) conjugates of 4-acetamidophenol (paracetamol). 3. The major route of metabolism of 1-[13C]-4-FAA was N-deacetylation and the metabolites excreted in the urine were qualitatively identical to 4-FA. The paracetamol metabolites produced via para-hydroxylation were also a product of N-deacetylation and reacetylation, as the [13C]-label was not retained. 4. These studies demonstrate the value of [13C]-labelling in understanding the contribution of N-acetylation, and futile deacetylation-reacetylation reactions, in aniline metabolism. In addition, this work sheds new light on the metabolic lability of certain aromatic fluorine substituents. PMID:10199596

  12. The structure of putative N-acetyl glutamate kinase from Thermus thermophilus reveals an intermediate active site conformation of the enzyme.

    PubMed

    Sundaresan, Ramya; Ragunathan, Preethi; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2012-04-13

    The de novo biosynthesis of arginine in microorganisms and plants is accomplished via several enzymatic steps. The enzyme N-acetyl glutamate kinase (NAGK) catalyzes the phosphorylation of the γ-COO(-) group of N-acetyl-L-glutamate (NAG) by adenosine triphosphate (ATP) which is the second rate limiting step in arginine biosynthesis pathway. Here we report the crystal structure of putative N-acetyl glutamate kinase (NAGK) from Thermus thermophilus HB8 (TtNAGK) determined at 1.92Å resolution. The structural analysis of TtNAGK suggests that the dimeric quaternary state of the enzyme and arginine insensitive nature are similar to mesophilic Escherichia coli NAGK. These features are significantly different from its thermophilic homolog Thermatoga maritima NAGK which is hexameric and arginine-sensitive. TtNAGK is devoid of its substrates but contains two sulfates at the active site. Very interestingly the active site of the enzyme adopts a conformation which is not completely open or closed and likely represents an intermediate stage in the catalytic cycle unlike its structural homologs, which all exist either in the open or closed conformation. Engineering arginine biosynthesis pathway enzymes for the production of l-arginine is an important industrial application. The structural comparison of TtNAGK with EcNAGK revealed the structural basis of thermostability of TtNAGK and this information could be very useful to generate mutants of NAGK with increased overall stability. PMID:22452987

  13. Synthesis and characterization of N-parinaroyl analogs of ganglioside GM3 and de-N-acetyl GM3. Interactions with the EGF receptor kinase

    NASA Technical Reports Server (NTRS)

    Song, W.; Welti, R.; Hafner-Strauss, S.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    A specific plasma membrane glycosphingolipid, known as ganglioside GM3, can regulate the intrinsic tyrosyl kinase activity of the epidermal growth factor (EGF) receptor; this modulation is not associated with alterations in hormone binding to the receptor. GM3 inhibits EGF receptor tyrosyl kinase activity in detergent micelles, in plasma membrane vesicles, and in whole cells. In addition, immunoaffinity-purified EGF receptor preparations contain ganglioside GM3 (Hanai et al. (1988) J. Biol. Chem. 263, 10915-10921), implying that the glycosphingolipid is intimately associated with the receptor kinase in cell membranes. Both the nature of this association and the molecular mechanism of kinase inhibition remain to be elucidated. In this report, we describe the synthesis of a fluorescent analog of ganglioside GM3, in which the native fatty acid was replaced with trans-parinaric acid. This glycosphingolipid inhibited the receptor kinase activity in a manner similar to that of the native ganglioside. A modified fluorescent glycosphingolipid, N-trans-parinaroyl de-N-acetyl ganglioside GM3, was also prepared. This analog, like the nonfluorescent de-N-acetyl ganglioside GM3, had no effect on receptor kinase activity. Results from tryptophan fluorescence quenching and steady-state anisotropy measurements in membranes containing these fluorescent probes and the human EGF receptor were consistent with the notion that GM3, but not de-N-acetyl GM3, interacts specifically with the receptor in intact membranes.

  14. The effect of substitution of the N-acetyl groups of N-acetylgalactosamine residues in chondroitin sulfate on its degradation by chondroitinase ABC.

    PubMed

    Madhunapantula, Subbarao V; Achur, Rajeshwara N; Bhavanandan, Veer P; Gowda, D Channe

    2007-11-01

    Chondroitinase ABC is a lyase that degrades chondroitin sulfate, dermatan sulfate and hyaluronic acid into disaccharides. The purpose of this study was to determine the ability of chondroitinase ABC to degrade chondroitin sulfate in which the N-acetyl groups are substituted with different acyl groups. The bovine tracheal chondroitin sulfate A (bCSA) was N-deacetylated by hydrazinolysis, and the free amino groups derivatized into N-formyl, N-propionyl, N-butyryl, N-hexanoyl or N-benzoyl amides. Treatment of the N-acyl or N-benzoyl derivatives of bCSA with chondroitinase ABC and analysis of the products showed that the N-formyl, N-hexanoyl and N-benzoyl derivatives are completely resistant to the enzyme. In contrast, the N-propionyl or N-butyryl derivatives were degraded into disaccharides with slower kinetics compared to that of unmodified bCSA. The rate of degradation of bCSA derivatives by the enzyme was found to be in the order of N-acetyl>N-propionyl>N-butyryl bCSA. These results have important implications for understanding the interaction of N-acetyl groups of glycosaminoglycans with chondroitinase ABC. PMID:17533514

  15. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  16. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  17. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  18. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  19. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  20. N-Acetyl-Seryl-Aspartyl-Lysyl-Proline: mechanisms of renal protection in mouse model of systemic lupus erythematosus.

    PubMed

    Liao, Tang-Dong; Nakagawa, Pablo; Janic, Branislava; D'Ambrosio, Martin; Worou, Morel E; Peterson, Edward L; Rhaleb, Nour-Eddine; Yang, Xiao-Ping; Carretero, Oscar A

    2015-05-15

    Systemic lupus erythematosus is an autoimmune disease characterized by the development of auto antibodies against a variety of self-antigens and deposition of immune complexes that lead to inflammation, fibrosis, and end-organ damage. Up to 60% of lupus patients develop nephritis and renal dysfunction leading to kidney failure. N-acetyl-seryl-aspartyl-lysyl-proline, i.e., Ac-SDKP, is a natural tetrapeptide that in hypertension prevents inflammation and fibrosis in heart, kidney, and vasculature. In experimental autoimmune myocarditis, Ac-SDKP prevents cardiac dysfunction by decreasing innate and adaptive immunity. It has also been reported that Ac-SDKP ameliorates lupus nephritis in mice. We hypothesize that Ac-SDKP prevents lupus nephritis in mice by decreasing complement C5-9, proinflammatory cytokines, and immune cell infiltration. Lupus mice treated with Ac-SDKP for 20 wk had significantly lower renal levels of macrophage and T cell infiltration and proinflammatory chemokine/cytokines. In addition, our data demonstrate for the first time that in lupus mouse Ac-SDKP prevented the increase in complement C5-9, RANTES, MCP-5, and ICAM-1 kidney expression and it prevented the decline of glomerular filtration rate. Ac-SDKP-treated lupus mice had a significant improvement in renal function and lower levels of glomerular damage. Ac-SDKP had no effect on the production of autoantibodies. The protective Ac-SDKP effect is most likely achieved by targeting the expression of proinflammatory chemokines/cytokines, ICAM-1, and immune cell infiltration in the kidney, either directly or via C5-9 proinflammatory arm of complement system. PMID:25740596

  1. Arginine Biosynthesis in Thermotoga maritima: Characterization of the Arginine-Sensitive N-Acetyl-l-Glutamate Kinase

    PubMed Central

    Fernández-Murga, M. Leonor; Gil-Ortiz, Fernando; Llácer, José L.; Rubio, Vicente

    2004-01-01

    To help clarify the control of arginine synthesis in Thermotoga maritima, the putative gene (argB) for N-acetyl-l-glutamate kinase (NAGK) from this microorganism was cloned and overexpressed, and the resulting protein was purified and shown to be a highly thermostable and specific NAGK that is potently and selectively inhibited by arginine. Therefore, NAGK is in T. maritima the feedback control point of arginine synthesis, a process that in this organism involves acetyl group recycling and appears not to involve classical acetylglutamate synthase. The inhibition of NAGK by arginine was found to be pH independent and to depend sigmoidally on the concentration of arginine, with a Hill coefficient (N) of ∼4, and the 50% inhibitory arginine concentration (I0.5) was shown to increase with temperature, approaching above 65°C the I0.50 observed at 37°C with the mesophilic NAGK of Pseudomonas aeruginosa (the best-studied arginine-inhibitable NAGK). At 75°C, the inhibition by arginine of T. maritima NAGK was due to a large increase in the Km for acetylglutamate triggered by the inhibitor, but at 37°C arginine also substantially decreased the Vmax of the enzyme. The NAGKs of T. maritima and P. aeruginosa behaved in gel filtration as hexamers, justifying the sigmoidicity and high Hill coefficient of arginine inhibition, and arginine or the substrates failed to disaggregate these enzymes. In contrast, Escherichia coli NAGK is not inhibited by arginine and is dimeric, and thus the hexameric architecture may be an important determinant of arginine sensitivity. Potential thermostability determinants of T. maritima NAGK are also discussed. PMID:15342584

  2. N-acetyl-cysteine and prostaglandin. Comparable protection against experimental ethanol injury in the stomach independent of mucus thickness.

    PubMed

    Henagan, J M; Smith, G S; Schmidt, K L; Miller, T A

    1986-12-01

    The role of barrier mucus in mediating the protective effects of 16,16 dimethyl PGE2 (dm PGE2) against ethanol-induced gastric injury, with and without concomitant treatment with N-acetyl-cysteine (NAC), a potent mucolytic agent, was evaluated. Fasted rats were orally administered either saline, 10 micrograms/kg dm PGE2, 20% NAC, or 10 micrograms/kg dm PGE2 plus 20% NAC. In the first study, the rats were killed 15 minutes later and their stomachs were removed and assayed for barrier mucus adherent to the gastric wall using the Alcian blue technique. In the second study, the rats were orally given 2 mL of absolute ethanol (EtOH) after receiving one of these pretreatment regimens, and 5 minutes later they were killed and their stomachs were evaluated histologically by light microscopy for the magnitude of EtOH injury. Although NAC significantly reduced the thickness of barrier mucus by 76% when compared with control animals, it did not adversely affect the ability of dm PGE2 to spare the deep epithelium from injury by EtOH. In fact, NAC was as effective a protective agent as dm PGE2. Neither agent prevented damage to the surface epithelium by EtOH, verifying previous studies regarding the protective effects of prostaglandins. These results indicate that both dm PGE2 and NAC prevent EtOH-induced damage to the deeper layers of the gastric mucosa independent of mucus gel layer thickness, suggesting that other mechanisms than mucus are involved in mediating this protection. PMID:3789839

  3. Transformation of acetaminophen by chlorination produces the toxicants 1,4-benzoquinone and N-acetyl-p-benzoquinone imine.

    PubMed

    Bedner, Mary; MacCrehan, William A

    2006-01-15

    The reaction of the common pain reliever acetaminophen (paracetamol, 4-acetamidophenol) with hypochlorite was investigated over time under conditions that simulate wastewater disinfection. Initially, the reaction was studied in pure water at neutral pH (7.0), a range of reaction times (2-90 min), and a molar excess of hypochlorite (2-57 times) relative to the acetaminophen concentration. The reaction was monitored using reversed-phase liquid chromatography (LC) with ultraviolet absorbance, electrochemical, and mass spectrometric detection. At 1 micromol/L (150 ppb) and 10 micromol/L (1.5 ppm) levels, acetaminophen readily reacted to form at least 11 discernible products, all of which exhibited greater LC retention than the parent. Two of the products were unequivocally identified as the toxic compounds 1,4-benzoquinone and N-acetyl-p-benzoquinone imine (NAPQI), which is the toxicant associated with lethality in acetaminophen overdoses. With a hypochlorite dose of 57 micromol/L (4 ppm as Cl2), 88% of the acetaminophen (10 micromol/L initial) was transformed in 1 h. The two quinoidal oxidation products 1,4-benzoquinone and NAPQI accounted for 25% and 1.5% of the initial acetaminophen concentration, respectively, at a 1 h reaction time. Other products that were identified included two ring chlorination products, chloro-4-acetamidophenol and dichloro-4-acetamidophenol, which combined were approximately 7% of the initial acetaminophen concentration at 1 h. The reaction was also studied in wastewater, where similar reactivity was noted. These results demonstrate that acetaminophen is likely to be transformed significantly during wastewater chlorination. The reactivity of the chlorine-transformation products was also studied with sulfite to simulate dechlorination, and 1,4-benzoquinone and NAPQI were completely reduced. PMID:16468397

  4. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.

    PubMed

    Matano, Christian; Uhde, Andreas; Youn, Jung-Won; Maeda, Tomoya; Clermont, Lina; Marin, Kay; Krämer, Reinhard; Wendisch, Volker F; Seibold, Gerd M

    2014-06-01

    Sustainable supply of feedstock has become a key issue in process development in microbial biotechnology. The workhorse of industrial amino acid production Corynebacterium glutamicum has been engineered towards utilization of alternative carbon sources. Utilization of the chitin-derived aminosugar N-acetyl-glucosamine (GlcNAc) for both cultivation and production with C. glutamicum has hitherto not been investigated. Albeit this organism harbors the enzymes N-acetylglucosamine-6-phosphatedeacetylase and glucosamine-6P deaminase of GlcNAc metabolism (encoded by nagA and nagB, respectively) growth of C. glutamicum with GlcNAc as substrate was not observed. This was attributed to the lack of a functional system for GlcNAc uptake. Of the 17 type strains of the genus Corynebacterium tested here for their ability to grow with GlcNAc, only Corynebacterium glycinophilum DSM45794 was able to utilize this substrate. Complementation studies with a GlcNAc-uptake deficient Escherichia coli strain revealed that C. glycinophilum possesses a nagE-encoded EII permease for GlcNAc uptake. Heterologous expression of the C. glycinophilum nagE in C. glutamicum indeed enabled uptake of GlcNAc. For efficient GlcNac utilization in C. glutamicum, improved expression of nagE with concurrent overexpression of the endogenous nagA and nagB genes was found to be necessary. Based on this strategy, C. glutamicum strains for the efficient production of the amino acid L-lysine as well as the carotenoid lycopene from GlcNAc as sole substrate were constructed. PMID:24668244

  5. N-acetyl-l-cysteine sensitizes pancreatic cancers to gemcitabine by targeting the NFκB pathway

    PubMed Central

    Qanungo, Suparna; Uys, Joachim D.; Manevich, Yefim; Distler, Anne M.; Shaner, Brooke; Hill, Elizabeth G.; Mieyal, John J.; Lemasters, John J.; Townsend, Danyelle M.; Nieminen, Anna-Liisa

    2015-01-01

    First-line therapy for pancreatic cancer is gemcitabine. Although tumors may initially respond to the gemcitabine treatment, soon tumor resistance develops leading to treatment failure. Previously, we demonstrated in human MIA PaCa-2 pancreatic cancer cells that N-acetyl-l-cysteine (NAC), a glutathione (GSH) precursor, prevents NFκB activation via S-glutathionylation of p65-NFκB, thereby blunting expression of survival genes. In this study, we documented the molecular sites of S-glutathionylation of p65, and we investigated whether NAC can suppress NFκB signaling and augment a therapeutic response to gemcitabine in vivo. Mass spectrometric analysis of S-glutathionylated p65-NFκB protein in vitro showed post-translational modifications of cysteines 38, 105, 120, 160 and 216 following oxidative and nitrosative stress. Circular dichroism revealed that S-glutathionylation of p65-NFκB did not change secondary structure of the protein, but increased tryptophan fluorescence revealed altered tertiary structure. Gemcitabine and NAC individually were not effective in decreasing MIA PaCa-2 tumor growth in vivo. However, combination treatment with NAC and gemcitabine decreased tumor growth by approximately 50%. NAC treatment also markedly enhanced tumor apoptosis in gemcitabine-treated mice. Compared to untreated tumors, gemcitabine treatment alone increased p65-NFκB nuclear translocation (3.7-fold) and DNA binding (2.5-fold), and these effects were blunted by NAC. In addition, NAC plus gemcitabine treatment decreased anti-apoptotic XIAP protein expression compared to gemcitabine alone. None of the treatments, however, affected extent of tumor hypoxia, as assessed by EF5 staining. Together, these results indicate that adjunct therapy with NAC prevents NFκB activation and improves gemcitabine chemotherapeutic efficacy. PMID:25257100

  6. Effects of N-acetyl-cysteine on endothelial function and inflammation in patients with type 2 diabetes mellitus

    PubMed Central

    Jeremias, Allen; Soodini, Geetha; Gelfand, Eli; Xu, Yizhen; Stanton, Robert C.; Horton, Edward S.; Cohen, David J.

    2009-01-01

    Endothelial dysfunction has been associated with premature vascular disease. There is increasing data that N-acetyl-cysteine (NAC) may prevent or improve endothelial dysfunction. The aim of this study was to assess the effects of NAC on endothelial function in patients with type 2 diabetes mellitus, a population at high risk for endothelial dysfunction. Twenty-four patients with diabetes mellitus were assigned randomly to initial therapy with either 900 mg NAC or placebo twice daily in a double-blind, cross-over study design. Flowmediated vasodilation (FMD) of the brachial artery was assessed at baseline, after four weeks of therapy, after a four-week wash-out period, and after another four weeks on the opposite treatment. Plasma and red blood cell glutathione levels and high-sensitivity C-reactive protein (CRP) were measured at all four visits. At baseline, FMD was moderately impaired (3.7±2.9%). There was no significant change in FMD after four weeks of NAC therapy as compared to placebo (0.1±3.6% vs. 1.2±4.2%). Similarly, there was no significant change in glutathione levels. However, median CRP decreased from 2.35 to 2.14 mg/L during NAC therapy (p=0.04), while it increased from 2.24 to 2.65 mg/L with placebo. No side effects were noted during the treatment period. In this double-blind, randomized cross-over study, four weeks of oral NAC therapy failed to improve endothelial dysfunction in patients with diabetes mellitus. However, NAC therapy decreased CRP levels, suggesting that this compound may have some efficacy in reducing systemic inflammation. PMID:21977284

  7. Biobreeding rat islets exhibit reduced antioxidative defense and N-acetyl cysteine treatment delays type 1 diabetes

    PubMed Central

    Bogdani, Marika; Henschel, Angela M.; Kansra, Sanjay; Fuller, Jessica M.; Geoffrey, Rhonda; Jia, Shuang; Kaldunski, Mary L.; Pavletich, Scott; Prosser, Simon; Chen, Yi-Guang; Lernmark, Åke; Hessner, Martin J.

    2014-01-01

    Islet-level oxidative stress has been proposed as a trigger for type 1 diabetes (T1D), and release of cytokines by infiltrating immune cells further elevates reactive oxygen species (ROS), exacerbating β cell duress. To identify genes/mechanisms involved with diabeto-genesis at the β cell level, gene expression profiling and targeted follow-up studies were used to investigate islet activity in the biobreeding (BB) rat. Forty-day-old spontaneously diabetic lymphopenic BB DRlyp/lyp rats (before T cell insulitis) as well as nondiabetic BB DR+/+ rats, nondiabetic but lymphopenic F344lyp/lyp rats, and healthy Fischer (F344) rats were examined. Gene expression profiles of BB rat islets were highly distinct from F344 islets and under-expressed numerous genes involved in ROS metabolism, including glutathione S-transferase (GST) family members (Gstm2, Gstm4, Gstm7, Gstt1, Gstp1, and Gstk1), superoxide dismutases (Sod2 and Sod3), peroxidases, and peroxiredoxins. This pattern of under-expression was not observed in brain, liver, or muscle. Compared with F344 rats, BB rat pancreata exhibited lower GST protein levels, while plasma GST activity was found significantly lower in BB rats. Systemic administration of the antioxidant N-acetyl cysteine to DRlyp/lyp rats altered abundances of peripheral eosinophils, reduced severity of insulitis, and significantly delayed but did not prevent diabetes onset. We find evidence of β cell dysfunction in BB rats independent of T1D progression, which includes lower expression of genes related to antioxidative defense mechanisms during the pre-onset period that may contribute to overall T1D susceptibility. PMID:23111281

  8. MRI characterization of cobalt dichloride-N-acetyl cysteine (C4) contrast agent marker for prostate brachytherapy

    PubMed Central

    Lim, Tze Yee; Stafford, R Jason; Kudchadker, Rajat J; Sankaranarayanapillai, Madhuri; Ibbott, Geoffrey; Rao, Arvind; Martirosyan, Karen S; Frank, Steven J

    2014-01-01

    Brachytherapy, a radiotherapy technique for treating prostate cancer, involves the implantation of numerous radioactive seeds into the prostate. While the implanted seeds can be easily identified on a CT image, distinguishing the prostate and surrounding soft tissues is not as straightforward. Magnetic Resonance Imaging (MRI) offers superior anatomical delineation, but the seeds appear as dark voids and are difficult to identify, thus creating a conundrum. Cobalt dichloride-N-acetyl-cysteine (C4) has previously been shown to be promising as an encapsulated contrast agent marker. We performed spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) measurements of C4 solutions with varying cobalt dichloride concentrations to determine the corresponding relaxivities, r1 and r2. These relaxation parameters were investigated at different field strengths, temperatures and orientations. T1 measurements obtained at 1.5 T and 3.0 T, as well as at room and body temperature, showed that r1 is field-independent and temperature-independent. Conversely, the T2 values at 3.0 T were shorter than at 1.5 T, while the T2 values at body temperature were slightly higher than at room temperature. By examining the relaxivities with the C4 vials aligned in three different planes, we found no orientation-dependence. With these relaxation characteristics, we aim to develop pulse sequences that will enhance the C4 signal against prostatic stroma. Ultimately, the use of C4 as a positive contrast agent marker will encourage the use of MRI to obtain an accurate representation of the radiation dose delivered to the prostate and surrounding normal anatomical structures. PMID:24778352

  9. MRI characterization of cobalt dichloride-N-acetyl cysteine (C4) contrast agent marker for prostate brachytherapy.

    PubMed

    Lim, Tze Yee; Stafford, R Jason; Kudchadker, Rajat J; Sankaranarayanapillai, Madhuri; Ibbott, Geoffrey; Rao, Arvind; Martirosyan, Karen S; Frank, Steven J

    2014-05-21

    Brachytherapy, a radiotherapy technique for treating prostate cancer, involves the implantation of numerous radioactive seeds into the prostate. While the implanted seeds can be easily identified on a computed tomography image, distinguishing the prostate and surrounding soft tissues is not as straightforward. Magnetic resonance imaging (MRI) offers superior anatomical delineation, but the seeds appear as dark voids and are difficult to identify, thus creating a conundrum. Cobalt dichloride-N-acetyl-cysteine (C4) has previously been shown to be promising as an encapsulated contrast agent marker. We performed spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) measurements of C4 solutions with varying cobalt dichloride concentrations to determine the corresponding relaxivities, r1 and r2. These relaxation parameters were investigated at different field strengths, temperatures and orientations. T1 measurements obtained at 1.5 and 3.0 T, as well as at room and body temperature, showed that r1 is field-independent and temperature-independent. Conversely, the T2 values at 3.0 T were shorter than at 1.5 T, while the T2 values at body temperature were slightly higher than at room temperature. By examining the relaxivities with the C4 vials aligned in three different planes, we found no orientation-dependence. With these relaxation characteristics, we aim to develop pulse sequences that will enhance the C4 signal against prostatic stroma. Ultimately, the use of C4 as a positive contrast agent marker will encourage the use of MRI to obtain an accurate representation of the radiation dose delivered to the prostate and surrounding normal anatomical structures. PMID:24778352

  10. Arginine biosynthesis in Thermotoga maritima: characterization of the arginine-sensitive N-acetyl-L-glutamate kinase.

    PubMed

    Fernández-Murga, M Leonor; Gil-Ortiz, Fernando; Llácer, José L; Rubio, Vicente

    2004-09-01

    To help clarify the control of arginine synthesis in Thermotoga maritima, the putative gene (argB) for N-acetyl-L-glutamate kinase (NAGK) from this microorganism was cloned and overexpressed, and the resulting protein was purified and shown to be a highly thermostable and specific NAGK that is potently and selectively inhibited by arginine. Therefore, NAGK is in T. maritima the feedback control point of arginine synthesis, a process that in this organism involves acetyl group recycling and appears not to involve classical acetylglutamate synthase. The inhibition of NAGK by arginine was found to be pH independent and to depend sigmoidally on the concentration of arginine, with a Hill coefficient (N) of approximately 4, and the 50% inhibitory arginine concentration (I0.5) was shown to increase with temperature, approaching above 65 degrees C the I0.50 observed at 37 degrees C with the mesophilic NAGK of Pseudomonas aeruginosa (the best-studied arginine-inhibitable NAGK). At 75 degrees C, the inhibition by arginine of T. maritima NAGK was due to a large increase in the Km for acetylglutamate triggered by the inhibitor, but at 37 degrees C arginine also substantially decreased the Vmax of the enzyme. The NAGKs of T. maritima and P. aeruginosa behaved in gel filtration as hexamers, justifying the sigmoidicity and high Hill coefficient of arginine inhibition, and arginine or the substrates failed to disaggregate these enzymes. In contrast, Escherichia coli NAGK is not inhibited by arginine and is dimeric, and thus the hexameric architecture may be an important determinant of arginine sensitivity. Potential thermostability determinants of T. maritima NAGK are also discussed. PMID:15342584

  11. N-Acetyl-D-glucosamine decorated polymeric nanoparticles for targeted delivery of doxorubicin: Synthesis, characterization and in vitro evaluation.

    PubMed

    Tian, Baocheng; Ding, Yuanyuan; Han, Jian; Zhang, Jing; Han, Yuzhen; Han, Jingtian

    2015-06-01

    A novel targeting drug delivery system containing poly(styrene-alt-maleic anhydride)58-b-polystyrene130 (P(St-alt-MA)58-b-PSt130) as a copolymer backbone, N-acetyl glucosamine (NAG) as a targeting moiety was designed and synthesized. The NAG grafted copolymer (NAG-P(St-alt-MA)58-b-PSt130) was characterized by FTIR and (1)H NMR. The NAG-P(St-alt-MA)58-b-PSt130 nanoparticles exhibited spherical shapes with an average diameter about 56.27±0.43 nm, low critical micelle concentration of 0.028 mg/mL, negative zeta potential -41.46±0.99 mV, high drug loading 25.83±1.09% and encapsulation efficiency 69.69±3.98%. In vitro cell cytotoxicity was conducted to confirm the safety of the NAG-P(St-alt-MA)58-b-PSt130 nanoparticles. Confocal laser scanning microscopy (CLSM) and flow cytometry (FCM) results showed that the NAG targeting moiety enhanced the internalization and targeting ability of NAG-P(St-alt-MA)58-b-PSt130 nanoparticles. Anticancer activity toward MCF-7 cells and HT29 cells showed that DOX-loaded NAG-P(St-alt-MA)58-b-PSt130 nanoparticles exhibited a higher antitumor activity compared to DOX-loaded P(St-alt-MA)58-b-PSt130 nanoparticles, which could attribute to NAG receptor-mediated endocytosis. These results suggest that the biocompatible and non-toxic NAG-P(St-alt-MA)58-b-PSt130 nanoparticles may be used as an effective targeting drug delivery system for cancer therapy. PMID:25921641

  12. Benzyl-N-acetyl-alpha-D-galactosaminide induces a storage disease-like phenotype by perturbing the endocytic pathway.

    PubMed

    Ulloa, Fausto; Real, Francisco X

    2003-04-01

    The sugar analog O-benzyl-N-acetyl-alpha-d-galactosaminide (BG) is an inhibitor of glycan chain elongation and inhibits alpha2,3-sialylation in mucus-secreting HT-29 cells. Long-term exposure of these cells to BG is associated with the accumulation of apical glycoproteins in cytoplasmic vesicles. The mechanisms involved therein and the nature of the vesicles have not been elucidated. In these cells, a massive amount of BG metabolites is synthesized. Because sialic acid is mainly distributed apically in epithelial cells, it has been proposed that the BG-induced undersialylation of apical membrane glycoproteins is responsible for their intracellular accumulation due to a defect in anterograde traffic and that sialic acid may constitute an apical targeting signal. In this work, we demonstrate that the intracellular accumulation of membrane glycoproteins does not result mainly from defects in anterograde traffic. By contrast, in BG-treated cells, endocytosed membrane proteins were retained intracellularly for longer periods of time than in control cells and colocalized with accumulated MUC1 and beta(1) integrin in Rab7/lysobisphosphatidic acid(+) vesicles displaying features of late endosomes. The phenotype of BG-treated cells is reminiscent of that observed in lysosomal storage disorders. Sucrose induced a BG-like, lysosomal storage disease-like phenotype without affecting sialylation, indicating that undersialylation is not a requisite for the intracellular accumulation of membrane glycoproteins. Our findings strongly support the notion that the effects observed in BG-treated cells result from the accumulation of BG-derived metabolites and from defects in the endosomal pathway. We propose that abnormal subcellular distribution of membrane glycoproteins involved in cellular communication and/or signaling may also take place in lysosomal storage disorders and may contribute to their pathogenesis. PMID:12538583

  13. Isoflavone supplementation reduces DNA oxidative damage and increases O-β-N-acetyl-D-glucosaminidase activity in healthy women.

    PubMed

    Erba, Daniela; Casiraghi, M Cristina; Martinez-Conesa, Cristina; Goi, Giancarlo; Massaccesi, Luca

    2012-04-01

    Phenolic compounds are believed to boost the human antioxidant defense system and health; therefore, the aim of this research was to investigate the hypothesis that soy isoflavones (IFs) provide antioxidant protection in healthy women by evaluating DNA resistance to oxidative damage and O-β-N-acetyl-D-glucosaminidase (OGA) activity. An IF supplement (80 mg/d) was given to 9 postmenopausal women and 13 young women for 6 months and then stopped up to the 14th month. The women were allowed to consume their normal diet. Blood samples were collected at the beginning of the study after 2, 4, and 6 months and then at the 8th and 14th months. Plasma concentrations of genistein and daidzein, total antioxidant capacity, plasma vitamin status, markers of oxidative stress (red blood cell membrane fluidity, activity of the red blood cell cytosolic enzyme OGA and lymphocyte DNA susceptibility to oxidative stress), and serum lipid profile were analyzed. Analysis of variance for repeated measures was used for statistical analysis. Plasma concentrations of IFs rose significantly during the supplementation period, and plasma total antioxidant capacity increased in young women; membrane fluidity and OGA activity increased, and DNA oxidative damage decreased (P < .05) at 4 months, then returned to the basal level. There was a significant inverse correlation between DNA damage and plasma IF concentrations (P < .01). The results indicated a positive effect of IF supplementation on oxidative stress in women, thus suggesting that the healthful action ascribed to soy consumption may be partially related to the antioxidant potential of IFs. PMID:22575035

  14. N-acetyl cysteine prolonged the developmental ability of mouse two-cell embryos against oxidative stress at refrigerated temperatures.

    PubMed

    Horikoshi, Yuka; Takeo, Toru; Nakagata, Naomi

    2016-06-01

    Cold storage of two-cell embryos at refrigerated temperatures is a useful means to ship genetically engineered mice. We previously reported that M2 medium maintained the developmental ability of two-cell embryos for 48 h at 4 °C, and offspring were obtained from embryos transported by a courier service under refrigerated temperatures. The limitation of 48 h practically restricts the shipping destination of the embryos. To enhance the applicability of the cold-storage technique, prolonging the time to maintain developmental ability of the embryos is required. Oxidative stress may be a cause of the declining developmental ability of cold-stored embryos. However, the effect of oxidative stress on developmental ability of embryos has not been investigated. We examined intracellular glutathione (GSH) levels of cold-stored two-cell embryos to evaluate the effect of oxidative and investigated the efficacy of adding N-acetyl cysteine (NAC) to the preservation medium on the developmental ability of cold-stored embryos and transported two-cell embryos at refrigerated temperatures. Intracellular GSH levels of two-cell embryos decreased by cold storage for longer than 72 h, whereas NAC recovered this reduction and improved the developmental ability of embryos cold-stored for 96 h. In the transport experiment, the developmental rate of transported two-cell embryos to offspring was increased by adding NAC to the preservation medium. We found that NAC prolonged the storage period of two-cell embryos and maintained the developmental ability by alleviating the reduction of intracellular GSH. These findings will improve the technique of cold-storage of two-cell embryos to facilitate efficient transport of genetically engineered mice worldwide. PMID:27164059

  15. MRI characterization of cobalt dichloride-N-acetyl cysteine (C4) contrast agent marker for prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Lim, Tze Yee; Stafford, R. Jason; Kudchadker, Rajat J.; Sankaranarayanapillai, Madhuri; Ibbott, Geoffrey; Rao, Arvind; Martirosyan, Karen S.; Frank, Steven J.

    2014-05-01

    Brachytherapy, a radiotherapy technique for treating prostate cancer, involves the implantation of numerous radioactive seeds into the prostate. While the implanted seeds can be easily identified on a computed tomography image, distinguishing the prostate and surrounding soft tissues is not as straightforward. Magnetic resonance imaging (MRI) offers superior anatomical delineation, but the seeds appear as dark voids and are difficult to identify, thus creating a conundrum. Cobalt dichloride-N-acetyl-cysteine (C4) has previously been shown to be promising as an encapsulated contrast agent marker. We performed spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) measurements of C4 solutions with varying cobalt dichloride concentrations to determine the corresponding relaxivities, r1 and r2. These relaxation parameters were investigated at different field strengths, temperatures and orientations. T1 measurements obtained at 1.5 and 3.0 T, as well as at room and body temperature, showed that r1 is field-independent and temperature-independent. Conversely, the T2 values at 3.0 T were shorter than at 1.5 T, while the T2 values at body temperature were slightly higher than at room temperature. By examining the relaxivities with the C4 vials aligned in three different planes, we found no orientation-dependence. With these relaxation characteristics, we aim to develop pulse sequences that will enhance the C4 signal against prostatic stroma. Ultimately, the use of C4 as a positive contrast agent marker will encourage the use of MRI to obtain an accurate representation of the radiation dose delivered to the prostate and surrounding normal anatomical structures.

  16. Electrochemical sensing of mesalazine and its N-acetylated metabolite in biological samples using functionalized carbon nanotubes.

    PubMed

    Nigović, Biljana; Sadiković, Mirela; Jurić, Sandra

    2016-01-15

    A rapid analytical method without the time-consuming separation step was developed to simultaneously determine mesalazine and its N-acetylated metabolite. A simply designed electrochemical sensor with functionalized carbon nanotubes in a Nafion matrix was constructed for this purpose. The presence of the nanocomposite modifier on the electrode surface significantly affects the voltammetric response of target analytes. The morphology of the modified surface was investigated by scanning electron microscopy. The effect of modifier amount on the sensor performance was investigated in order to obtain the most favorable response of mesalazine since it was found in lower concentration limits in real samples then its metabolite due to the rapid drug elimination and the slightly slower renal metabolite excretion. Under optimal conditions, the anodic peak currents measured by square-wave voltammetry increased linearly after short accumulation of 30s in the range of 5.0×10(-8)-2.5×10(-6)M and 1.0×10(-7)-5.0×10(-6)M for drug and metabolite, respectively. In addition to stable response, the sensor has excellent performance associated with high sensitivity (2.33×10(7) and 8.37×10(6)µAM(-1) for drug and metabolite, respectively). The synergistic effect of the carbon nanotubes and Nafion polymer film yielded detection limit of 1.2×10(-8)M for mesalazine and 2.6×10(-8)M for its metabolite that is comparable to known chromatographic methods. Due to the easy preparation and regeneration, the proposed sensor opens new opportunity for fast, simple and sensitive analysis of drug and its metabolite in human serum samples as well as direct quantification of mesalazine in delayed-release formulations. PMID:26592575

  17. Quantitative LC-MS/MS determination of flupirtine, its N-acetylated and two mercapturic acid derivatives in man.

    PubMed

    Scheuch, Eberhard; Methling, Karen; Bednarski, Patrick J; Oswald, Stefan; Siegmund, Werner

    2015-01-01

    The non-opiate analgesic drug flupirtine was shown in vitro to undergo hydrolysis followed by N-acetylation to form D13223, glucuronidation and conjugation with glutathione to form the stable mercapturic acid derivatives M-424 and M-466. To quantify flupirtine and its metabolites in samples obtained in a clinical study in healthy subjects selected on their genotype of NAT2, UGT1A1 and GSTP1, two LC-MS/MS methods were developed. The validation range for flupirtine and D-13223 in serum was 0.5-500 ng/ml. For urine and feces, the validation ranges for flupirtine and D-13223 were 20-5000 ng/ml and 5.0-5000 ng/ml, respectively. M-424 and M-466 could be quantified in urine between 5.0 and 5000 ng/ml. Free flupirtine and D-13223 were separated from serum, urine and feces with liquid-liquid extraction. For flupirtine and D-13223, the chromatography was performed on a XTerra C18 column isocratically with a mobile phase consisting of ammonium formate buffer (pH 3.5mM) and acetonitrile (50:50; v/v), for M-466 and M-424 a Synergi(®) Fusion-RP column was used and a linear gradient method with water/HCOOH (pH 3) and acetonitrile. The mass spectrometer operated both with electro spray ionization in positive multiple reaction monitoring mode. The developed methods fulfilled the current FDA criteria on bioanalytical method validation for accuracy (error: -16.9 to 11.2%), precision (1.2-13.4%), recovery, stability and matrix effects over the observed analytical range. Thus, the methods were suitable to quantify flupirtine absorption and metabolic disposition in man after single intravenous and oral dosing (100mg) and repeated oral administration (400mg once daily). PMID:25459937

  18. Reactive oxygen species scavenger N-acetyl cysteine reduces methamphetamine-induced hyperthermia without affecting motor activity in mice

    PubMed Central

    Sanchez-Alavez, Manuel; Bortell, Nikki; Galmozzi, Andrea; Conti, Bruno; Marcondes, Maria Cecilia G

    2015-01-01

    Hyperthermia is a potentially lethal side effect of Methamphetamine (Meth) abuse, which involves the participation of peripheral thermogenic sites such as the Brown Adipose Tissue (BAT). In a previous study we found that the anti-oxidant N-acetyl cysteine (NAC) can prevent the high increase in temperature in a mouse model of Meth-hyperthermia. Here, we have further explored the ability of NAC to modulate Meth-induced hyperthermia in correlation with changes in BAT. We found that NAC treatment in controls causes hypothermia, and, when administered prior or upon the onset of Meth-induced hyperthermia, can ameliorate the temperature increase and preserve mitochondrial numbers and integrity, without affecting locomotor activity. This was different from Dantrolene, which decreased motor activity without affecting temperature. The effects of NAC were seen in spite of its inability to recover the decrease of mitochondrial superoxide induced in BAT by Meth. In addition, NAC did not prevent the Meth-induced decrease of BAT glutathione. Treatment with S-adenosyl-L-methionine, which improves glutathione activity, had an effect in ameliorating Meth-induced hyperthermia, but also modulated motor activity. This suggests a role for the remaining glutathione for controlling temperature. However, the mechanism by which NAC operates is independent of glutathione levels in BAT and specific to temperature. Our results show that, in spite of the absence of a clear mechanism of action, NAC is a pharmacological tool to examine the dissociation between Meth-induced hyperthermia and motor activity, and a drug of potential utility in treating the hyperthermia associated with Meth-abuse. PMID:26346736

  19. N-acetyl-L-cysteine sensitizes pancreatic cancers to gemcitabine by targeting the NFκB pathway.

    PubMed

    Qanungo, Suparna; Uys, Joachim D; Manevich, Yefim; Distler, Anne M; Shaner, Brooke; Hill, Elizabeth G; Mieyal, John J; Lemasters, John J; Townsend, Danyelle M; Nieminen, Anna-Liisa

    2014-09-01

    First-line therapy for pancreatic cancer is gemcitabine. Although tumors may initially respond to the gemcitabine treatment, soon tumor resistance develops leading to treatment failure. Previously, we demonstrated in human MIA PaCa-2 pancreatic cancer cells that N-acetyl-l-cysteine (NAC), a glutathione (GSH) precursor, prevents NFκB activation via S-glutathionylation of p65-NFκB, thereby blunting expression of survival genes. In this study, we documented the molecular sites of S-glutathionylation of p65, and we investigated whether NAC can suppress NFκB signaling and augment a therapeutic response to gemcitabine in vivo. Mass spectrometric analysis of S-glutathionylated p65-NFκB protein in vitro showed post-translational modifications of cysteines 38, 105, 120, 160 and 216 following oxidative and nitrosative stress. Circular dichroism revealed that S-glutathionylation of p65-NFκB did not change secondary structure of the protein, but increased tryptophan fluorescence revealed altered tertiary structure. Gemcitabine and NAC individually were not effective in decreasing MIA PaCa-2 tumor growth in vivo. However, combination treatment with NAC and gemcitabine decreased tumor growth by approximately 50%. NAC treatment also markedly enhanced tumor apoptosis in gemcitabine-treated mice. Compared to untreated tumors, gemcitabine treatment alone increased p65-NFκB nuclear translocation (3.7-fold) and DNA binding (2.5-fold), and these effects were blunted by NAC. In addition, NAC plus gemcitabine treatment decreased anti-apoptotic XIAP protein expression compared to gemcitabine alone. None of the treatments, however, affected extent of tumor hypoxia, as assessed by EF5 staining. Together, these results indicate that adjunct therapy with NAC prevents NFκB activation and improves gemcitabine chemotherapeutic efficacy. PMID:25257100

  20. N-Acetyl-Seryl-Aspartyl-Lysyl-Proline: mechanisms of renal protection in mouse model of systemic lupus erythematosus

    PubMed Central

    Liao, Tang-Dong; Nakagawa, Pablo; Janic, Branislava; D'Ambrosio, Martin; Worou, Morel E.; Peterson, Edward L.; Rhaleb, Nour-Eddine; Yang, Xiao-Ping

    2015-01-01

    Systemic lupus erythematosus is an autoimmune disease characterized by the development of auto antibodies against a variety of self-antigens and deposition of immune complexes that lead to inflammation, fibrosis, and end-organ damage. Up to 60% of lupus patients develop nephritis and renal dysfunction leading to kidney failure. N-acetyl-seryl-aspartyl-lysyl-proline, i.e., Ac-SDKP, is a natural tetrapeptide that in hypertension prevents inflammation and fibrosis in heart, kidney, and vasculature. In experimental autoimmune myocarditis, Ac-SDKP prevents cardiac dysfunction by decreasing innate and adaptive immunity. It has also been reported that Ac-SDKP ameliorates lupus nephritis in mice. We hypothesize that Ac-SDKP prevents lupus nephritis in mice by decreasing complement C5-9, proinflammatory cytokines, and immune cell infiltration. Lupus mice treated with Ac-SDKP for 20 wk had significantly lower renal levels of macrophage and T cell infiltration and proinflammatory chemokine/cytokines. In addition, our data demonstrate for the first time that in lupus mouse Ac-SDKP prevented the increase in complement C5-9, RANTES, MCP-5, and ICAM-1 kidney expression and it prevented the decline of glomerular filtration rate. Ac-SDKP-treated lupus mice had a significant improvement in renal function and lower levels of glomerular damage. Ac-SDKP had no effect on the production of autoantibodies. The protective Ac-SDKP effect is most likely achieved by targeting the expression of proinflammatory chemokines/cytokines, ICAM-1, and immune cell infiltration in the kidney, either directly or via C5-9 proinflammatory arm of complement system. PMID:25740596

  1. Influence of Oct1/Oct2-Deficiency on Cisplatin-Induced Changes in Urinary N-Acetyl-β-D-Glucosaminidase

    PubMed Central

    Franke, Ryan M.; Kosloske, Ashley M.; Lancaster, Cynthia S.; Filipski, Kelly K.; Hu, Chaoxin; Zolk, Oliver; Mathijssen, Ron H.; Sparreboom, Alex

    2012-01-01

    Organic cation transporters have previously been implicated in cisplatin nephrotoxicity. In this study, we found that renal tubular secretion of cisplatin is abolished in mice lacking the Oct1 and Oct2 transporters [Oct1/2(−/−) mice], and these mice are protected from experiencing severe cisplatin-induced renal damage. Compared to wildtype mice, Oct1/2(−/−) mice also experienced a significantly decreased change in urinary activity of N-acetyl-β-D-glucosaminidase (NAG) following cisplatin administration (~4-fold, P=0.0016). A cutoff for cumulative urinary NAG activity of >0.4 AU was associated with a 21-fold increased odds for severe nephrotoxicity (P=0.0017), which in turn was linked with overall survival [hazard ratio (95%CI), 8.1 (2.1–31), P=0.0078]. Next, we screened 16 agents at varying concentrations for inhibitory potential against the human homolog transporter, OCT2, using transfected 293Flp-In cells. We focused further on the possible utility of cimetidine as an OCT2 inhibitor because of its strong potency (>95% inhibition), and because this agent is not routinely co-administered with cisplatin. In mice, we found that cimetidine inhibited cisplatin-induced urinary NAG activity changes to a degree significantly different from vehicle-control treated mice (P=0.016), but similar to that seen in Oct1/2(−/−) mice (P=0.91). Interestingly, cimetidine did not affect the uptake of cisplatin into SKOV-3 cells, the NCI60 cell line with the highest OCT2 expression. Collectively, this study suggests that OCT2 inhibitors can completely inhibit transporter-mediated uptake of cisplatin in renal proximal tubular cells, and subsequently ameliorate cisplatin nephrotoxicity without affecting the accumulation in tumor cells. PMID:20601443

  2. Diorganotin(IV) N-acetyl-L-cysteinate complexes: synthesis, solid state, solution phase, DFT and biological investigations.

    PubMed

    Pellerito, Lorenzo; Prinzivalli, Cristina; Casella, Girolamo; Fiore, Tiziana; Pellerito, Ornella; Giuliano, Michela; Scopelliti, Michelangelo; Pellerito, Claudia

    2010-07-01

    Diorganotin(IV) complexes of N-acetyl-L-cysteine (H(2)NAC; (R)-2-acetamido-3-sulfanylpropanoic acid) have been synthesized and their solid and solution-phase structural configurations investigated by FTIR, Mössbauer, (1)H, (13)C and (119)Sn NMR spectroscopy. FTIR results suggested that in R(2)Sn(IV)NAC (R = Me, Bu, Ph) complexes NAC(2-) behaves as dianionic tridentate ligand coordinating the tin(IV) atom, through ester-type carboxylate, acetate carbonyl oxygen atom and the deprotonated thiolate group. From (119)Sn Mössbauer spectroscopy it could be inferred that the tin atom is pentacoordinated, with equatorial R(2)Sn(IV) trigonal bipyramidal configuration. In DMSO-d(6) solution, NMR spectroscopic data showed the coordination of one solvent molecule to tin atom, while the coordination mode of the ligand through the ester-type carboxylate and the deprotonated thiolate group was retained in solution. DFT (Density Functional Theory) study confirmed the proposed structures in solution phase as well as the determination of the most probable stable ring conformation. Biological investigations showed that Bu(2)SnCl(2) and NAC2 induce loss of viability in HCC cells and only moderate effects in non-tumor Chang liver cells. NAC2 showed lower cytotoxic activity than Bu(2)SnCl(2), suggesting that the binding with NAC(2-) modulates the marked cytotoxic activity exerted by Bu(2)SnCl(2). Therefore, these novel butyl derivatives could represent a new class of anticancer drugs. PMID:20421134

  3. Investigation of the therapeutic potential of N-acetyl cysteine and the tools used to define nigrostriatal degeneration in vivo.

    PubMed

    Nouraei, Negin; Zarger, Lauren; Weilnau, Justin N; Han, Jimin; Mason, Daniel M; Leak, Rehana K

    2016-04-01

    The glutathione precursor N-acetyl-l-cysteine (NAC) is currently being tested on Parkinson's patients for its neuroprotective properties. Our studies have shown that NAC can elicit protection in glutathione-independent manners in vitro. Thus, the goal of the present study was to establish an animal model of NAC-mediated protection in which to dissect the underlying mechanism. Mice were infused intrastriatally with the oxidative neurotoxicant 6-hydroxydopamine (6-OHDA; 4μg) and administered NAC intraperitoneally (100mg/kg). NAC-treated animals exhibited higher levels of the dopaminergic terminal marker tyrosine hydroxylase (TH) in the striatum 10d after 6-OHDA. As TH expression is subject to stress-induced modulation, we infused the tracer FluoroGold into the striatum to retrogradely label nigrostriatal projection neurons. As expected, nigral FluoroGold staining and cell counts of FluoroGold(+) profiles were both more sensitive measures of nigrostriatal degeneration than measurements relying on TH alone. However, NAC failed to protect dopaminergic neurons 3weeks following 6-OHDA, an effect verified by four measures: striatal TH levels, nigral TH levels, nigral TH(+) cell counts, and nigral FluoroGold levels. Some degree of mild toxicity of FluoroGold and NAC was evident, suggesting that caution must be exercised when relying on FluoroGold as a neuron-counting tool and when designing experiments with long-term delivery of NAC-such as clinical trials on patients with chronic disorders. Finally, the strengths and limitations of the tools used to define nigrostriatal degeneration are discussed. PMID:26879220

  4. Structural Diversity Within the Mononuclear and Binuclear Active Sites of N-Acetyl-D-Glucosamine-6-Phosphate Deacetylase

    SciTech Connect

    Hall,R.; Brown, S.; Fedorov, A.; Fedorov, E.; Xu, C.; Babbitt, P.; Almo, S.; Raushel, F.

    2007-01-01

    NagA catalyzes the hydrolysis of N-acetyl-D-glucosamine-6-phosphate to D-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-D-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the {alpha}-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity.

  5. Structural diversity within the mononuclear and binuclear active sites of N-acetyl-D-glucosamine-6-phosphate deacetylase.

    PubMed

    Hall, Richard S; Brown, Shoshana; Fedorov, Alexander A; Fedorov, Elena V; Xu, Chengfu; Babbitt, Patricia C; Almo, Steven C; Raushel, Frank M

    2007-07-10

    NagA catalyzes the hydrolysis of N-acetyl-d-glucosamine-6-phosphate to d-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-d-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the alpha-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity. PMID:17567048

  6. N-Acetyl Cysteine May Support Dopamine Neurons in Parkinson's Disease: Preliminary Clinical and Cell Line Data

    PubMed Central

    Monti, Daniel A.; Zabrecky, George; Kremens, Daniel; Liang, Tsao-Wei; Wintering, Nancy A.; Cai, Jingli; Wei, Xiatao; Bazzan, Anthony J.; Zhong, Li; Bowen, Brendan; Intenzo, Charles M.; Iacovitti, Lorraine; Newberg, Andrew B.

    2016-01-01

    Backgound The purpose of this study was to assess the biological and clinical effects of n-acetyl-cysteine (NAC) in Parkinson’s disease (PD). Methods The overarching goal of this pilot study was to generate additional data about potentially protective properties of NAC in PD, using an in vitro and in vivo approach. In preparation for the clinical study we performed a cell tissue culture study with human embryonic stem cell (hESC)-derived midbrain dopamine (mDA) neurons that were treated with rotenone as a model for PD. The primary outcome in the cell tissue cultures was the number of cells that survived the insult with the neurotoxin rotenone. In the clinical study, patients continued their standard of care and were randomized to receive either daily NAC or were a waitlist control. Patients were evaluated before and after 3 months of receiving the NAC with DaTscan to measure dopamine transporter (DAT) binding and the Unified Parkinson’s Disease Rating Scale (UPDRS) to measure clinical symptoms. Results The cell line study showed that NAC exposure resulted in significantly more mDA neurons surviving after exposure to rotenone compared to no NAC, consistent with the protective effects of NAC previously observed. The clinical study showed significantly increased DAT binding in the caudate and putamen (mean increase ranging from 4.4% to 7.8%; p<0.05 for all values) in the PD group treated with NAC, and no measurable changes in the control group. UPDRS scores were also significantly improved in the NAC group (mean improvement of 12.9%, p = 0.01). Conclusions The results of this preliminary study demonstrate for the first time a potential direct effect of NAC on the dopamine system in PD patients, and this observation may be associated with positive clinical effects. A large-scale clinical trial to test the therapeutic efficacy of NAC in this population and to better elucidate the mechanism of action is warranted. Trial Registration ClinicalTrials.gov NCT02445651

  7. Determination of N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC) in the general population using gas chromatography-mass spectrometry.

    PubMed

    Käfferlein, H U; Angerer, J

    1999-10-01

    Carbamoylation of glutathione, peptides and DNA is thought to be one of the most important reactions occurring in an organism after exposure to nitrosoureas, methylformamides or isocyanates. The carcinogenic effects of carbamoylation are not yet fully clarified. Although carbamoylation is known to occur after occupational exposure, it has never been reported in the general population. To clarify the situation, we investigated the levels of N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC) in urine samples from persons without occupational exposure using a sensitive and specific method (gas chromatography-mass spectrometry, GC-MS). AMCC is the degradation product of N-methylcarbamoylated glutathione. The clean-up procedure of urine samples includes two liquid-liquid extraction steps and solid phase extraction using a cation-exchange resin to separate AMCC from other urinary components. N,N-Dimethylpropionic acid amide (DMPA) is used as internal standard. During the preparation of the samples, AMCC is converted to ethyl-N-methylcarbamate (EMC) in the presence of anhydrous potassium carbonate (K2CO3) and ethanol. The reliability and accuracy of this method have been proven in detail. The relative standard deviation for the within-series imprecision for three different concentrations was determined to be between 10.9% and 14.3%, while the relative standard deviation for the between-day imprecision was between 11.3% and 14.8%. The mean recovery for AMCC was determined to be between 79.2% and 85.6%. The limit of detection for the simultaneous measurement of two fragment masses was 30 micrograms L-1. Using this GC-MS method, we analysed urine samples from 42 individuals of the general population in order to determine their urinary excretion of AMCC. It was identified in 40 samples. The mean concentration was 40 micrograms L-1. AMCC can be formed in two ways. The first possibility is the dietary intake of isothiocyanates, especially methyl isothiocyanate, which is a component

  8. Effectiveness of N-acetyl cysteine, 2% chlorhexidine, and their combination as intracanal medicaments on Enterococcus faecalis biofilm

    PubMed Central

    Palaniswamy, Udayakumar; Lakkam, Surender Ram; Arya, Shikha; Aravelli, Swathi

    2016-01-01

    Aim: The purpose of this study was to evaluate the antibacterial efficacies of 2% chlorhexidine (CHX), N-acetyl cysteine (NAC) and assess their synergistic or antagonist action as intracanal medicament. Materials and Methods: Agar diffusion test was performed with 2% CHX, NAC, and their combination against E. faecalis planktonic cells. The diameters of the zones of bacterial inhibition were measured and recorded for each solution. The assay was further extended to 2 weeks old E. faecalis dentinal biofilm. Sixteen freshly extracted teeth were vertically sectioned into two halves resulting in a total of 32 samples. The samples were inoculated with bacterial suspension and incubated at 37°C for 2 weeks for biofilm formation. The samples were then divided into four experimental groups with 8 samples in each group. The samples were gently washed in saline and placed in culture wells containing the test solutions, i.e., 2% CHX, NAC, a combination of 2% CHX and NAC in 1:1 ratio, and a control group containing saline. The biofilm formed on the root canal surface were removed with a sterile scalpel and inoculated on blood agar plates to check for the formation of E. faecalis colonies. Statistical Analysis: For agar diffusion test, data were analyzed statistically using one-way analysis of variance and then by post-hoc Scheffe's test to compare the antimicrobial efficacy between the groups. Statistical analysis was not done for the cultures obtained from the biofilm as there was no growth in all the three test groups except the control group, i.e., saline. Results: In agar diffusion test, among the three groups tested, 2% CHX and NAC showed almost equal zones of inhibition whereas maximum inhibition was shown by a combination of NAC and 2% CHX suggesting a synergistic action. The results obtained were highly significant (P < 0.001) for the combination of medicament when compared to individual test group. In culture analysis, which was done for the biofilm, no growth was

  9. Thiopurine metabolites variations during co-treatment with aminosalicylates for inflammatory bowel disease: Effect of N-acetyl transferase polymorphisms

    PubMed Central

    Stocco, Gabriele; Cuzzoni, Eva; De Iudicibus, Sara; Favretto, Diego; Malusà, Noelia; Martelossi, Stefano; Pozzi, Elena; Lionetti, Paolo; Ventura, Alessandro; Decorti, Giuliana

    2015-01-01

    AIM: To evaluate variation of the concentration of thiopurine metabolites after 5-aminosalicylate (5-ASA) interruption and the role of genetic polymorphisms of N-acetyl transferase (NAT) 1 and 2. METHODS: Concentrations of thioguanine nucleotides (TGN) and methymercaptopurine nucleotides (MMPN), metabolites of thiopurines, were measured by high performance liquid chromatography in 12 young patients (3 females and 9 males, median age 16 years) with inflammatory bowel disease (6 Crohn’s disease and 6 ulcerative colitis) treated with thiopurines (7 mercaptopurine and 5 azathioprine) and 5-ASA. Blood samples were collected one month before and one month after the interruption of 5-ASA. DNA was extracted and genotyping of NAT1, NAT2, inosine triphosphate pyrophosphatase (ITPA) and thiopurine methyl transferase (TPMT) genes was performed using PCR assays. RESULTS: Median TGN concentration before 5-ASA interruption was 270 pmol/8 x 108 erythrocytes (range: 145-750); after the interruption of the aminosalicylate, a 35% reduction in TGN mean concentrations (absolute mean reduction 109 pmol/8 × 108 erythrocytes) was observed (median 221 pmol/8 × 108 erythrocytes, range: 96-427, P value linear mixed effects model 0.0011). Demographic and clinical covariates were not related to thiopurine metabolites concentrations. All patients were wild-type for the most relevant ITPA and TPMT variants. For NAT1 genotyping, 7 subjects presented an allele combination corresponding to fast enzymatic activity and 5 to slow activity. NAT1 genotypes corresponding to fast enzymatic activity were associated with reduced TGN concentration (P value linear mixed effects model 0.033), putatively because of increased 5-ASA inactivation and consequent reduced inhibition of thiopurine metabolism. The effect of NAT1 status on TGN seems to be persistent even after one month since the interruption of the aminosalicylate. No effect of NAT1 genotypes was shown on MMPN concentrations. NAT2 genotyping

  10. Effects of oral administration of N-acetyl-L-cysteine: a multi-biomarker study in smokers.

    PubMed

    Van Schooten, Frederik Jan; Besaratinia, Ahmad; Besarati Nia, Ahmad; De Flora, Silvio; D'Agostini, Francesco; Izzotti, Alberto; Camoirano, Anna; Balm, Alfons J M; Dallinga, Jan Willem; Bast, Aalt; Haenen, Guido R M M; Van't Veer, Laura; Baas, Paul; Sakai, Harumasa; Van Zandwijk, Nico

    2002-02-01

    N-Acetyl-L-cysteine (NAC) has been shown to exert cancer-protective mechanisms and effects in experimental models. We report here the results of a randomized, double-blind, placebo-controlled, Phase II chemoprevention trial with NAC in healthy smoking volunteers. The subjects were supplemented daily with 2 x 600 mg of oral tablets of NAC (n = 20) or placebo (n = 21) for a period of 6 months, and internal dose markers [plasma and bronchoalveolar lavage (BAL) fluid cotinine, urine mutagenicity], biologically effective dose markers [smoking-related DNA adducts and hemoglobin (Hb) adducts], and biological response markers (micronuclei frequency and antioxidants scavenging capacity) were assessed at both pre- and postsupplementation times (T(0) and T(1), respectively). Overall, the internal dose markers remained unchanged at T(1) as compared with T(0) in both NAC and placebo groups. When quantifying the biologically effective dose markers, we observed an inhibitory effect of NAC toward the formation of lipophilic-DNA adducts (5.18 +/- 0.73 versus 4.08 +/- 1.03/10(8) nucleotides; mean +/- SE; P = 0.05) as well as of 7,8-dihydro-8-oxo-2'-deoxyguanosine adducts in BAL cells (3.9 +/- 0.6 versus 2.3 +/- 0.2/10(5) nucleotides; P = 0.003). There was no effect of NAC on the formation of lipophilic-DNA adducts in peripheral blood lymphocytes or polycyclic aromatic hydrocarbon-DNA adducts in mouth floor/buccal mucosa cells or 4-aminobiphenyl-Hb adducts. Likewise, quantification of the biological response markers showed an inhibitory effect of NAC on the frequency of micronuclei in mouth floor and in soft palate cells (1.3 +/- 0.2 versus 0.9 +/- 0.2; P = 0.001) and a stimulating effect of NAC on plasma antioxidant scavenging capacity (393 +/- 14 versus 473 +/- 19 microM Trolox; P = 0.1) but not on BAL fluid antioxidant scavenging capacity. We conclude that NAC has the potential to impact upon tobacco smoke carcinogenicity in humans because it can modulate certain cancer

  11. N-Acetyl-beta-D-glucopyranosylamine 6-phosphate is a specific inhibitor of glycogen-bound protein phosphatase 1.

    PubMed Central

    Board, M

    1997-01-01

    Previous work has shown that the C-1-substituted glucose-analogue N-acetyl-beta-D-glucopyranosylamine (1-GlcNAc) is a competitive inhibitor of glycogen phosphorylase (GP) and stimulates the inactivation of this enzyme by GP phosphatase. In addition to its effects on GP, 1-GlcNAc also prevents the glucose-led activation of glycogen synthase (GS) in whole hepatocytes. Such an effect on GS was thought to be due to the formation of 1-GlcNAc-6-P by the action of glucokinase within the hepatocyte [Board, Bollen, Stalmans, Kim, Fleet and Johnson (1995) Biochem. J. 311, 845-852]. To investigate this possibility further, a pure preparation of 1-GlcNAc-6-P was synthesized. The effects of the phosphorylated glucose analogue on the activity of protein phosphatase 1 (PP1), the enzyme responsible for dephosphorylation and activation of GS, are reported. During the present study, 1-GlcNAc-6-P inhibited the activity of the glycogen-bound form of PP1, affecting both the GSb phosphatase and GPa phosphatase activities. A level of 50% inhibition of GSb phosphatase activity was achieved with 85 microM 1-GlcNAc-6-P in the absence of Glc-6-P and with 135 microM in the presence of 10 mM Glc-6-P. At either Glc-6-P concentration, 500 microM 1-GlcNAc-6-P completely inhibited activity. The Glc-6-P stimulation of the GPa phosphatase activity of PP1 was negated by 1-GlcNAc-6-P but there was no inhibition of the basal rate in the absence of Glc-6-P. 1-GlcNAc-6-P inhibition was specific for the glycogen-bound form of PP1 and did not inhibit the GSb phosphatase activity of the cytosolic form of the enzyme. The present work explains our previous observations on the inactivating effects on GS of incubating whole hepatocytes with 1-GlcNAc. These observations have their basis in the inhibition of glycogen-bound PP1 by 1-GlcNAc-6-P. A novel inhibitor of PP1, specific for the glycogen-bound form of the enzyme, is presented. PMID:9371733

  12. A novel mechanism for resistance to the antimetabolite N-phosphonoacetyl-L-aspartate by Helicobacter pylori.

    PubMed

    Burns, B P; Mendz, G L; Hazell, S L

    1998-11-01

    The mechanism of resistance to N-phosphonoacetyl-L-aspartate (PALA), a potent inhibitor of aspartate carbamoyltransferase (which catalyzes the first committed step of de novo pyrimidine biosynthesis), in Helicobacter pylori was investigated. At a 1 mM concentration, PALA had no effects on the growth and viability of H. pylori. The inhibitor was taken up by H. pylori cells and the transport was saturable, with a Km of 14.8 mM and a Vmax of 19.1 nmol min-1 microliters of cell water-1. By 31P nuclear magnetic resonance (NMR) spectroscopy, both PALA and phosphonoacetate were shown to have been metabolized in all isolates of H. pylori studied. A main metabolic end product was identified as inorganic phosphate, suggesting the presence of an enzyme activity which cleaved the carbon-phosphorus (C-P) bonds. The kinetics of phosphonate group cleavage was saturable, and there was no evidence for substrate inhibition at higher concentrations of either compound. C-P bond cleavage activity was temperature dependent, and the activity was lost in the presence of the metal chelator EDTA. Other cleavages of PALA were observed by 1H NMR spectroscopy, with succinate and malate released as main products. These metabolic products were also formed when N-acetyl-L-aspartate was incubated with H. pylori lysates, suggesting the action of an aspartase. Studies of the cellular location of these enzymes revealed that the C-P bond cleavage activity was localized in the soluble fraction and that the aspartase activity appeared in the membrane-associated fraction. The results suggested that the two H. pylori enzymes transformed the inhibitor into noncytotoxic products, thus providing the bacterium with a mechanism of resistance to PALA toxicity which appears to be unique. PMID:9791105

  13. Aspartate protects Lactobacillus casei against acid stress.

    PubMed

    Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian

    2013-05-01

    The aim of this study was to investigate the effect of aspartate on the acid tolerance of L. casei. Acid stress induced the accumulation of intracellular aspartate in L. casei, and the acid-resistant mutant exhibited 32.5 % higher amount of aspartate than that of the parental strain at pH 4.3. Exogenous aspartate improved the growth performance and acid tolerance of Lactobacillus casei during acid stress. When cultivated in the presence of 50 mM aspartate, the biomass of cells increased 65.8 % compared with the control (without aspartate addition). In addition, cells grown at pH 4.3 with aspartate addition were challenged at pH 3.3 for 3 h, and the survival rate increased 42.26-fold. Analysis of the physiological data showed that the aspartate-supplemented cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, H(+)-ATPase activity, and intracellular ATP pool. In addition, higher contents of intermediates involved in glycolysis and tricarboxylic acid cycle were observed in cells in the presence of aspartate. The increased contents of many amino acids including aspartate, arginine, leucine, isoleucine, and valine in aspartate-added cells may contribute to the regulation of pHi. Transcriptional analysis showed that the expression of argG and argH increased during acid stress, and the addition of aspartate induced 1.46- and 3.06-fold higher expressions of argG and argH, respectively, compared with the control. Results presented in this manuscript suggested that aspartate may protect L. casei against acid stress, and it may be used as a potential protectant during the production of probiotics. PMID:23292549

  14. Polarized spectroscopic elucidation of N-acetyl-L-cysteine, L-cysteine, L-cystine, L-ascorbic acid and a tool for their determination in solid mixtures.

    PubMed

    Koleva, Bojidarka; Spiteller, Michael; Kolev, Tsonko

    2010-01-01

    Method of linear polarized vibrational (both IR- and Raman) spectroscopy of oriented colloids in nematic host is applied on N-acetyl-L-cysteine, L-cysteine, L-cystine and L-ascorbic acid with a view to obtain experimental bands assignment and local structural elucidation in solid-state. Structural results are compared with available crystallographic data for all of the systems studied. Scopes and limitations of the polarized method are shown. Discussion on the correlation between polarized spectroscopic data and the space group type as well as the number of the molecules in the unit cell (Z) is performed. Compounds with monoclinic space group P2(1), containing Z = 1 (N-acetyl-L-cysteine) and 2 (L-cysteine and L-ascorbic acid) are elucidated. One of the rare for organic molecules, hexagonal P6(1)22 space group and Z = 6 (L: -cystine) is also elucidated. Experimental assignment of the characteristics frequencies is obtained, explaining the typical for the crystals Fermi-resonance, Fermy-Davydov and Davydov splitting effects. For first time in the literature we are reported the orientation of the solid-mixture in nematic host, using the trade product ACC (Hexal, Germany), containing mainly N-acetyl-L-cysteine and L-ascorbic acid. Quantitative IR-spectroscopic approach for determination of solid mixtures is presented as well. The intensity ratio between 1,716 cm(-1) (characteristic for N-acetyl-L-cysteine) and 990 cm(-1), (attributed N-acethyl-cysteine and vitamin C) is used. Linear regression analysis between content and the peak ratio data for ten solid-binary mixtures, leads to straight-line plot y = 1.08(2) (+/-0.04(9)) + (-0.11(4) +/- 0.01(1))x, where x = 1/X ( i ). Factor r of 0.9641 and a reliability of 98.85% are obtained. The analysis of ACC 200 (Hexal, Germany) show that the IR measurements leads to standard deviation of 0.010 and 0.011 at P about 0.0500 for the systems and a confidence of >98.77(1)%. PMID:19212805

  15. A molecular biomarker for disruption of crustacean molting: the N-acetyl-beta-glucosaminidase mRNA in the epidermis of the fiddler crab.

    PubMed

    Meng, Yanling; Zou, Enmin

    2009-05-01

    Several environmentally persistent chemicals have been found to be capable of disrupting crustacean molting. Considering the importance of molting in the life of crustaceans, there is a need to develop a molecular biomarker that can reflect the disrupting effects of contaminants on ecdysteroid signaling in crustaceans. N-acetyl-beta-glucosaminidase (NAG) is a chitinolytic enzyme found in crustacean epidermis. The results of the present investigation show that the transcription of NAG gene in the epidermis of the fiddler crab, Uca pugilator, is inducible by the molting hormone 20-hydroxyecdysone, which validates the use of NAG mRNA as a biomarker for molt-disrupting effects of xenobiotics. PMID:19156345

  16. Acetylated α-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica.

    PubMed

    Xiaojun, Wang; Yan, Liu; Hong, Xu; Xianghong, Zhang; Shifeng, Li; Dingjie, Xu; Xuemin, Gao; Lijuan, Zhang; Bonan, Zhang; Zhongqiu, Wei; Ruimin, Wang; Brann, Darrell; Fang, Yang

    2016-01-01

    Silicosis is the most serious occupational disease in China. The objective of this study was to screen various proteins related to mechanisms of the pathogenesis of silicosis underlying the anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) using proteomic profile analysis. We also aimed to explore a potential mechanism of acetylated α-tubulin (α-Ac-Tub) regulation by Ac-SDKP. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to assess the different protein expression profiles between control and silicosis rats treated with or without Ac-SDKP. Twenty-nine proteins were identified to be potentially involved in the progression of silicosis and the anti-fibrotic effect of Ac-SDKP. Our current study finds that 1) the lost expression of Ac-Tub-α may be a new mechanism in rat silicosis; 2) treatment of silicotic rats with N-acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits myofibroblast differentiation and collagen deposition accompanied by stabilizing the expression of α-Ac-Tub in vivo and in vitro, which is related with deacetylase family member 6 (HDAC6) and α-tubulin acetyl transferase (α-TAT1). Our data suggest that α-Ac-Tub regulation by Ac-SDKP may potentially be a new anti-fibrosis mechanism. PMID:27577858

  17. A vibrational molecular force field of model compounds with biological interest. V. Harmonic dynamic of N-acetyl-α- D-glucosamine in the crystalline state

    NASA Astrophysics Data System (ADS)

    Kouach-Alix, I.; Vergoten, G.

    1994-07-01

    Combining the modified Urey—Bradley—Shimanouchi intramolecular potential energy function with an appropriate intermolecular energy function, normal coordinate calculations have been performed for N-acetyl-α- D-glucosamine in the crystalline state. The infrared spectra in the mid range (4000-500 cm -1) and the Raman spectra in 3500-20 cm -1 range were recorded. The overall agreement between the observed and calculated frequencies led to an average error of the order of 3.5 cm -1. The computed potential energy distribution was found to be compatible with previous assignments of D-glucose and D-galactose for the pyranose ring and for N-methylacetamide for the acetamido group. The set of force constants used for N-acetyl-α- D-glucosamine was approximately the same as that obtained for the glucose and N-methylacetamide respectively for the pyranose ring and the acetamido group, a difference existing only for the atoms involved in the anomeric and hydroxy groups.

  18. A Ribbon-like Structure in the Ejective Organelle of the Green Microalga Pyramimonas parkeae (Prasinophyceae) Consists of Core Histones and Polymers Containing N-acetyl-glucosamine.

    PubMed

    Yamagishi, Takahiro; Kurihara, Akira; Kawai, Hiroshi

    2015-11-01

    The green microalga, Pyramimonas parkeae (Prasinophyceae) has an ejective organelle containing a coiled ribbon structure resembling the ejectisome in Cryptophyta. This structure is discharged from the cell by a stimulus and extends to form a tube-like structure, but the molecular components of the structure have not been identified. Tricine-SDS-PAGE analysis indicated that the ribbon-like structure of P. parkeae contains some proteins and low molecular acidic polymers. Edman degradation, LC/MS/MS analyses and immunological studies demonstrated that their proteins are core histones (H3, H2A, H2B and H4). In addition, monosaccharide composition analysis of the ribbon-like structures and degradation by lysozyme strongly indicated that the ribbon-like structure consist of β (1-4) linked polymers containing N-acetyl-glucosamine. Purified polymers and recombinant histones formed glob-like or filamentous structures. Therefore we conclude that the ribbon-like structure of P. parkeae mainly consists of a complex of core histones (H3, H2A, H2B and H4) and polymers containing N-acetyl-glucosamine, and suggest to name the ejective organelle in P. parkeae the "histrosome" to distinguish it from the ejectisome in Cryptophyta. PMID:26398336

  19. Development of a N-acetyl-β-D-glucosaminidase (NAG) assay on a centrifugal lab-on-a-compact-disc (Lab-CD) platform.

    PubMed

    Tanaka, Yoshihide; Okuda, Seira; Sawai, Ayumi; Suzuki, Shigeo

    2012-01-01

    A centrifugal microfluidic platform, which is also known as lab-on-a-compact-disc (Lab-CD), was developed for use as a urinary N-acetyl-β-D-glucosaminidase (NAG) activity assay. In this work, Lab-CD design, centrifugal operations and analytical procedures were established. Automated liquid handling on Lab-CD processes, such as fluid transport, sample metering, mixing, and fluorescence detection are accomplished using a portable Lab-CD system. The linearity of the NAG assay using 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide (4-MU-GlcNAc) was found to be acceptable in the range of 2.5 to 20 U L(-1); the relative standard deviations for the fluorescence intensity of eight samples (7.5 U L(-1)) was 6.4%. Clinical diagnostics is one of the most promising applications for Lab-CD technologies. All the benefits of miniaturization, such as reduced sample requirement, reduced reagent consumption and automation, are realized in this investigation. PMID:22232221

  20. Acetylated α-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica

    PubMed Central

    Xiaojun, Wang; Yan, Liu; Hong, Xu; Xianghong, Zhang; Shifeng, Li; Dingjie, Xu; Xuemin, Gao; Lijuan, Zhang; Bonan, Zhang; Zhongqiu, Wei; Ruimin, Wang; Brann, Darrell; Fang, Yang

    2016-01-01

    Silicosis is the most serious occupational disease in China. The objective of this study was to screen various proteins related to mechanisms of the pathogenesis of silicosis underlying the anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) using proteomic profile analysis. We also aimed to explore a potential mechanism of acetylated α-tubulin (α-Ac-Tub) regulation by Ac-SDKP. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to assess the different protein expression profiles between control and silicosis rats treated with or without Ac-SDKP. Twenty-nine proteins were identified to be potentially involved in the progression of silicosis and the anti-fibrotic effect of Ac-SDKP. Our current study finds that 1) the lost expression of Ac-Tub-α may be a new mechanism in rat silicosis; 2) treatment of silicotic rats with N-acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits myofibroblast differentiation and collagen deposition accompanied by stabilizing the expression of α-Ac-Tub in vivo and in vitro, which is related with deacetylase family member 6 (HDAC6) and α-tubulin acetyl transferase (α-TAT1). Our data suggest that α-Ac-Tub regulation by Ac-SDKP may potentially be a new anti-fibrosis mechanism. PMID:27577858

  1. Urinary N-acetyl-β-d-Glucosaminidase Levels are Positively Correlated With 2-Hr Plasma Glucose Levels During Oral Glucose Tolerance Testing in Prediabetes

    PubMed Central

    Ouchi, Motoshi; Suzuki, Tatsuya; Hashimoto, Masao; Motoyama, Masayuki; Ohara, Makoto; Suzuki, Kazunari; Igari, Yoshimasa; Watanabe, Kentaro; Nakano, Hiroshi; Oba, Kenzo

    2012-01-01

    Background Urinary N-acetyl-β-D-glucosaminidase (NAG) excretion is increased in patients with impaired glucose tolerance (IGT). This study investigated when during the oral glucose tolerance test (OGTT) the plasma glucose, urine glucose, and insulin levels correlate most strongly with urinary N-acetyl-β-d-glucosaminidase (NAG) levels in prediabetic subjects. Methods The OGTT was administered to 80 subjects who had not yet received a diagnosis of diabetes mellitus (DM) and in whom HbA1c levels were ≤6.8% and fasting plasma glucose levels were <7.0 mmol/l. Forty-two subjects had normal glucose tolerance (NGT), 31 had impaired glucose tolerance (IGT), and 7 had DM according to World Health Organization criteria. Serum levels of cystatin C, the estimated glomerular filtration rate, the urinary albumin-to-creatinine (Cr) ratio, urinary and serum β2-microglobulin, and urinary NAG were measured as markers of renal function. Results NAG levels were significantly higher in subjects with DM and in subjects with IGT than in subjects with NGT. No significant associations were observed between glycemic status and other markers of renal function. Multiple linear regression analysis showed that the NAG level was positively correlated with plasma glucose levels at 120 min of the OGTT and was associated with the glycemic status of prediabetic patients. Conclusion These results suggest that postprandial hyperglycemia is an independent factor that causes renal tubular damage in prediabetes patients. PMID:23143631

  2. Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin.

    PubMed

    Xiong, Jian; Bhaskar, Ujjwal; Li, Guoyun; Fu, Li; Li, Lingyun; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J

    2013-09-10

    Heparin is a critically important anticoagulant drug that is prepared from pig intestine. In 2007-2008, there was a crisis in the heparin market when the raw material was adulterated with the toxic polysaccharide, oversulfated chondroitin sulfate, which was associated with 100 deaths in the U.S. alone. As the result of this crisis, our laboratory and others have been actively pursuing alternative sources for this critical drug, including synthetic heparins and bioengineered heparin. In assessing the bioengineering processing costs it has become clear that the use of both enzyme-catalyzed cofactor recycling and enzyme immobilization will be needed for commercialization. In the current study, we examine the use of immobilization of C₅-epimerase and 2-O-sulfotransferase involved in the first enzymatic step in the bioengineered heparin process, as well as arylsulfotransferase-IV involved in cofactor recycling in all three enzymatic steps. We report the successful immobilization of all three enzymes and their use in converting N-sulfo, N-acetyl heparosan into N-sulfo, N-acetyl 2-O-sulfo heparin. PMID:23835156

  3. The Escherichia coli G-fimbrial lectin protein participates both in fimbrial biogenesis and in recognition of the receptor N-acetyl-D-glucosamine.

    PubMed Central

    Saarela, S; Taira, S; Nurmiaho-Lassila, E L; Makkonen, A; Rhen, M

    1995-01-01

    The gafD gene encoding the N-acetyl-D-glucosamine-specific fimbrial lectin (adhesin) protein GafD of uropathogenic Escherichia coli was cloned and subjected to genetic analysis. The corresponding gene product was isolated as a MalE fusion protein. The lectin gene was identified with the aid of deletion mutagenesis; mutations in gafD impaired either receptor binding or both receptor binding and fimbria production, depending on the mutation created. All mutants converted to wild-type expressors when complemented in trans with the cloned intact gafD gene. The predicted 354-amino-acid sequence of GafD, deduced from the nucleotide sequence, is closely related to those of the fimbria-associated F17-G and F17b-G proteins coded for by enterotoxigenic and invasive E. coli strains. Isolated GafD was shown to recognize N-acetyl-D-glucosamine by virtue of specific binding to an immobilized receptor, thus proving directly that GafD is a sugar-binding protein. Our results indicate that GafD as such is sufficient for receptor recognition and that the protein also participates in fimbrial biogenesis. PMID:7883703

  4. Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-L-cysteine-stabilized silver nanoparticles.

    PubMed

    Gao, Xiaohui; Lu, Yizhong; He, Shuijian; Li, Xiaokun; Chen, Wei

    2015-06-16

    We report here a facile colorimetric sensor based on the N-acetyl-L-cysteine (NALC)-stabilized Ag nanoparticles (NALC-Ag NPs) for detection of Fe(3+) ions in aqueous solution. The Ag NPs with an average diameter of 6.55±1.0 nm are successfully synthesized through a simple method using sodium borohydride as reducing agent and N-acetyl-L-cysteine as protecting ligand. The synthesized silver nanoparticles show a strong surface plasmon resonance (SPR) around 400 nm and the SPR intensity decreases with the increasing of Fe(3+) concentration in aqueous solution. Based on the linear relationship between SPR intensity and concentration of Fe(3+) ions, the as-synthesized water-soluble silver nanoparticles can be used for the sensitive and selective detection of Fe(3+) ions in water with a linear range from 80 nM to 80 μM and a detection limit of 80 nM. On the basis of the experimental results, a new detection mechanism of oxidation-reduction reaction between Ag NPs and Fe(3+) ions is proposed, which is different from previously reported mechanisms. Moreover, the NALC-Ag NPs could be applied to the detection of Fe(3+) ions in real environmental water samples. PMID:26002486

  5. Amino acid sequence and carbohydrate-binding analysis of the N-acetyl-D-galactosamine-specific C-type lectin, CEL-I, from the Holothuroidea, Cucumaria echinata.

    PubMed

    Hatakeyama, Tomomitsu; Matsuo, Noriaki; Shiba, Kouhei; Nishinohara, Shoichi; Yamasaki, Nobuyuki; Sugawara, Hajime; Aoyagi, Haruhiko

    2002-01-01

    CEL-I is one of the Ca2+-dependent lectins that has been isolated from the sea cucumber, Cucumaria echinata. This protein is composed of two identical subunits held by a single disulfide bond. The complete amino acid sequence of CEL-I was determined by sequencing the peptides produced by proteolytic fragmentation of S-pyridylethylated CEL-I. A subunit of CEL-I is composed of 140 amino acid residues. Two intrachain (Cys3-Cys14 and Cys31-Cys135) and one interchain (Cys36) disulfide bonds were also identified from an analysis of the cystine-containing peptides obtained from the intact protein. The similarity between the sequence of CEL-I and that of other C-type lectins was low, while the C-terminal region, including the putative Ca2+ and carbohydrate-binding sites, was relatively well conserved. When the carbohydrate-binding activity was examined by a solid-phase microplate assay, CEL-I showed much higher affinity for N-acetyl-D-galactosamine than for other galactose-related carbohydrates. The association constant of CEL-I for p-nitrophenyl N-acetyl-beta-D-galactosaminide (NP-GalNAc) was determined to be 2.3 x 10(4) M(-1), and the maximum number of bound NP-GalNAc was estimated to be 1.6 by an equilibrium dialysis experiment. PMID:11866098

  6. Nitrification of Aspartate by Aspergillus flavus

    PubMed Central

    Hatcher, H. J.; Schmidt, E. L.

    1971-01-01

    Heterotrophic conversion of l-aspartic acid to nitrification products by Aspergillus flavus was studied in a replacement incubation system. Numerous amino acids supported nitrification; aspartate and glutamate were about equivalent as the best sources of nitrate. Addition of sodium bicarbonate to the incubation system substantially enhanced nitrate formation for all nitrifiable amino acids except aspartic acid, but the basis for the bicarbonate effect is obscure. The yield of nitrate from l-aspartate was not approached by forms of aspartic acid resulting from substitution on the beta carbon, the amino nitrogen, or the gamma carboxyl group or by aspartate presented as the d-configuration. There was no relationship between nitrate formation and the occurrence of such possible intermediates as nitrite, bound hydroxylamine, ammonia, aspergillic acid, and beta-nitropropionic acid. Uniformly labeled 14C-l-aspartate that was nitrified in replacement incubation led to no accumulation of label in possible nitrification products in the culture filtrate. Label was found in components of the mycelium after acid hydrolysis, with heaviest accumulation in what appeared to be glucosamine and an unidentified compound, possibly acetylglucosamine. Detectable label was redistributed into serine, glycine, and threonine. Images PMID:5549699

  7. Four homochiral coordination polymers contain N-acetyl-L-tyrosine and different N-donor ligand: Influence of metal cations, ancillary ligands and coordination modes

    SciTech Connect

    Li, Meng-Li; Song, Hui-Hua

    2013-10-15

    Using the chiral ligand N-acetyl-L-tyrosine (Hacty) and maintaining identical reaction conditions, Zn(II), Co(II), and Cd(II) salts provided four novel homochiral coordination polymers ([Zn(acty)(bipy){sub 2}(H{sub 2}O){sub 2}]·NO{sub 3}·2H{sub 2}O){sub n}1, ([Co(acty)(bipy){sub 2}(H{sub 2}O){sub 2}]·NO{sub 3}·2H{sub 2}O){sub n}2, ([Cd(acty){sub 2}(bipy)H{sub 2}O]·H{sub 2}O){sub n}3, and ([Cd(acty)(bpe){sub 2}(Ac)]·6H{sub 2}O){sub n}4 (bipy=4,4′-bipyridine; bpe=1,2-di(4-pyridyl)ethane) in the presence of ancillary ligands. Compounds 1 and 2 are isostructural 1D chain structures. The neighboring chains are further linked into a 3D supramolecular structure via π⋯π stacking and hydrogen bond interactions. Compound 3 shows a 2D network and 4 generates 1D infinite chains along the c-axis. Compounds 3 and 4 are further connected into 3D supramolecular network by hydrogen bond interactions. More importantly, coordination in acyl oxygen atoms and ancillary ligands (bpe) as monodentate decorating ligands in 4 are rarely reported. Ancillary ligands and metal cations significantly influence the structure of the complexes. The photoluminescence properties of 1, 3, and 4 were studied at room temperature. Circular dichroism (CD) of the complexes have been investigated. - Graphical abstract: Four new homochiral coordination polymers were prepared and structurally characterized, which investigate the influence of the ancillary ligands and metal ions on the design and synthesis of coordination polymers. Display Omitted - Highlights: • It is rarely reported that the chiral coordination polymers prepared with N-acetyl-L-tyrosine ligands. • The alkalescent acetyl oxygen atom is difficult to participate in coordination but it is happened in the N-acetyl-L-tyrosine ligands. • The ancillary ligands (4,4′-bipy and bpe) are present in an unusual coordination modes, monodentate decorating ligands in 1, 2 and 4. • Structure comparative analyses results indicate that the

  8. [A short path to synthesis of 4-deoxy-4-fluoroglucosaminides: methylumbelliferyl N-acetyl-4-deoxy-4-fluoro-beta-D-glucosaminide].

    PubMed

    Markina, N A; Voznyĭ, Ia V

    2008-01-01

    A convenient method of synthesis of 1,6-anhydro-4-deoxy-2-O-tosyl-4-fluoro-beta-D-glucopyranose by fusion of 1,6;3,4-dianhydro-2-O-tosyl-beta-D-galactopyranose with 2,4,6-trimethylpyridinium fluoride was found. By successive action of ammonia, methyl trifluoroacetate, and acetic anhydride, the resulting compound was transformed into 1,6-anhydro-3-O-acetyl-2,4-dideoxy-2-trifluoroacetamido-4-fluoro-beta-D-glucopyranose, which was converted into 3,6-di-O-acetyl-2,4-dideoxy-2-trifluoroacetamido-4-fluoro-alpha-D-glucopyranosyl fluoride by the reaction with HF/Py. The resulting fluoride was further used as a glycosyl donor in the synthesis of methylumbelliferyl N-acetyl-4-deoxy-4-fluoro-beta-D-glucosaminide. PMID:18695726

  9. The Interaction of a Carbohydrate-Binding Module from a Clostridium perfringens N-Acetyl-beta-hexosaminidase with its Carbohydrate Receptor

    SciTech Connect

    Ficko-Blean,E.; Boraston, A.

    2006-01-01

    Clostridium perfringens is a notable colonizer of the human gastrointestinal tract. This bacterium is quite remarkable for a human pathogen by the number of glycoside hydrolases found in its genome. The modularity of these enzymes is striking as is the frequent occurrence of modules having amino acid sequence identity with family 32 carbohydrate-binding modules (CBMs), often referred to as F5/8 domains. Here we report the properties of family 32 CBMs from a C. perfringens N-acetyl-{beta}-hexosaminidase. Macroarray, UV difference, and isothermal titration calorimetry binding studies indicate a preference for the disaccharide LacNAc ({beta}-d-galactosyl-1,4-{beta}-d-N-acetylglucosamine). The molecular details of the interaction of this CBM with galactose, LacNAc, and the type II blood group H-trisaccharide are revealed by x-ray crystallographic studies at resolutions of 1.49, 2.4, and 2.3 Angstroms, respectively.

  10. Design, Synthesis and Biological Evaluation of N-Acetyl-S-(pchlorophenylcarbamoyl)cysteine and Its Analogs as a Novel Class of Anticancer Agents

    PubMed Central

    Chen, Wei; Seefeldt, Teresa; Young, Alan; Zhang, Xiaoying; Guan, Xiangming

    2010-01-01

    N-Acetyl-S-(p-chlorophenylcarbamoyl)cysteine (NACC) was identified as a metabolite of sulofenur. Sulofenur was demonstrated to have broad activity against solid tumors in preclinical studies but exhibited disappointing clinical responses due to its high protein binding related adverse effects. NACC exhibited low protein binding and excellent activity against a sulofenur sensitive human colon cancer cell line. In this study, analogs of NACC were synthesized and evaluated with four human cancer cell lines. Two of the NACC analogs showed excellent activity against two human melanoma cell lines, while NACC remains the most potent of the series. All three compounds were more potent than dacarbazine, which is used extensively in treating melanoma. NACC was shown to induce apoptosis without affecting the cell cycle. Further, NACC exhibited low toxicity against monkey kidney cells. The selective anticancer activity, low toxicity, an unknown yet but unique anticancer mechanism and ready obtainability through synthesis make NACC and its analogs promising anticancer agents. PMID:21131205

  11. [Effectiveness and tolerance of the C3 convertase inhibitor, N-acetyl-aspartyl-magnesium glutamate in perennial rhinitis. Results of a double-blind, placebo-controlled study].

    PubMed

    Harnest, U; Kiehn, R; Sieger, C; Weibel, M A

    1989-02-01

    N-Acetyl-aspartyl magnesium glutamate (Rhinaaxia, NAAGA) is a new antiallergic substance for topical use. The compound covers a bilateral way of action. There is inhibition of the mast cell-degranulation and blocking of the C3-convertase, subsequently followed by a blocked cleavage of the fragments C3a and C5a, respectively. 20 patients suffering from perennial allergic rhinitis were treated according to a randomized double blind placebo-controlled study design. Apart from a nominal documentation of subjective complaints the degree of nasal obstruction was objectively rated via rhinomanometria. The nasal flow rate improved significantly in patients treated with NAAGA and subjective complaints decreased markedly. NAAGA showed to be well tolerated although 6 of 10 patients observed transient "nasal burning". PMID:2659003

  12. Rapid colorimetric assay of urinary beta-galactosidase and N-acetyl-beta-D-glucosaminidase with Cobas Mire Auto-analyzer.

    PubMed

    Xu, G; Zhu, L; Hong, J; Cao, Y; Xia, T

    1999-01-01

    A rapid and simple colorimetric method for the assay of urinary beta-galactosidase (GAL) and N-acetyl-beta-D-glucosaminidase (NAG) using 4-nitrophenyl-glycosides as the substrates and a Cobas Mire Auto-analyzer is described. Optimal conditions for this method including substrate concentration, ionic strength, pH and incubation time were characterized. Endogenous substances in urine did not interfere with the assays. Incubation time could be shortened to 10 minutes. A small volume of an alkaline buffer to terminate the enzyme reaction achieved better sensitivity and accuracy. Buffer-substrate solutions were stable for at least one week at 4 degrees C. Normal values of the two urinary enzymes are also reported. PMID:10323472

  13. Insulin Aspart (rDNA Origin) Injection

    MedlinePlus

    ... a solution (liquid) and a suspension (liquid with particles that will settle on standing) to inject subcutaneously ( ... it is colored, cloudy, thickened, or contains solid particles. If you are using insulin aspart suspension, the ...

  14. Structural insight on the control of urea synthesis: identification of the binding site for N-acetyl-L-glutamate, the essential allosteric activator of mitochondrial carbamoyl phosphate synthetase.

    PubMed

    Pekkala, Satu; Martínez, Ana I; Barcelona, Belén; Gallego, José; Bendala, Elena; Yefimenko, Igor; Rubio, Vicente; Cervera, Javier

    2009-12-01

    NAG (N-acetyl-L-glutamate), the essential allosteric activator of the first urea cycle enzyme, CPSI (carbamoyl phosphate synthetase I), is a key regulator of this crucial cycle for ammonia detoxification in animals (including humans). Automated cavity searching and flexible docking have allowed identification of the NAG site in the crystal structure of human CPSI C-terminal domain. The site, a pocket lined by invariant residues and located between the central beta-sheet and two alpha-helices, opens at the beta-sheet C-edge and is roofed by a three-residue lid. It can tightly accommodate one extended NAG molecule having the delta-COO- at the pocket entry, the alpha-COO- and acetamido groups tightly hydrogen bonded to the pocket, and the terminal methyl of the acetamido substituent surrounded by hydrophobic residues. This binding mode is supported by the observation of reduced NAG affinity upon mutation of NAG-interacting residues of CPSI (recombinantly expressed using baculovirus/insect cells); by the fine-mapping of the N-chloroacetyl-L-glutamate photoaffinity labelling site of CPSI; and by previously established structure-activity relationships for NAG analogues. The location of the NAG site is identical to that of the weak bacterial CPS activator IMP (inosine monophosphate) in Escherichia coli CPS, indicating a common origin for these sites and excluding any relatedness to the binding site of the other bacterial CPS activator, ornithine. Our findings open the way to the identification of CPSI deficiency patients carrying NAG site mutations, and to the possibility of tailoring the activator to fit a given NAG site mutation, as exemplified here with N-acetyl-L(+/-)-beta-phenylglutamate for the W1410K CPSI mutation. PMID:19754428

  15. High-throughput LC-MS/MS based simultaneous determination of polyamines including N-acetylated forms in human saliva and the diagnostic approach to breast cancer patients.

    PubMed

    Tsutsui, Haruhito; Mochizuki, Toshiki; Inoue, Koichi; Toyama, Tatsuya; Yoshimoto, Nobuyasu; Endo, Yumi; Todoroki, Kenichiro; Min, Jun Zhe; Toyo'oka, Toshimasa

    2013-12-17

    The determination of polyamines and their N-acetylated forms was performed by ultraperformance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The polyamines efficiently reacted with 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F) in 0.1 M borax (pH 9.3) at 60 °C for 30 min. The resulting derivatives were analyzed by electrospray ionization (ESI)-MS and sensitively detected by selected reaction monitoring (SRM). Furthermore, a rapid separation of the polyamine derivatives within 10 min was performed by UPLC using an antipressurized column packed with 1.7-μm octadecylsilyl (ODS) silica gel. The limits of detection (S/N = 3) on the SRM chromatograms were at the attomole level (9-43 amol). This procedure was used to successfully determine 11 polyamines, including their N-acetylated forms, in the saliva of patients with primary and relapsed breast cancer and healthy volunteers. The level of several polyamines (Ac-PUT, Ac-SPD, Ac-SPM, DAc-SPD, and DAc-SPM) increases in breast cancer patients. Furthermore, the levels of three polyamines (Ac-SPM, DAc-SPD, and DAc-SPM) were significantly higher only in the relapsed patients. The present method proved highly sensitive and is characterized by specificity and feasibility for sample analysis. Consequently, the proposed method is useful for the noninvasive salivary diagnosis of cancer patients and could be applied to determine polyamines in several specimens of biological nature. PMID:24274257

  16. Inhibition of N-acetylation of procainamide and renal clearance of N-acetylprocainamide by para-aminobenzoic acid in humans.

    PubMed

    Tisdale, J E; Rudis, M I; Padhi, I D; Svensson, C K; Webb, C R; Borzak, S; Ware, J A; Krepostman, A; Zarowitz, B J

    1995-09-01

    Procainamide administration often results in excessively high serum N-acetylprocainamide (NAPA) concentrations and subtherapeutic serum procainamide concentrations. Inhibition of N-acetylation of procainamide may prevent accumulation of excessive NAPA while maintaining therapeutic serum procainamide concentrations. The purpose of this randomized, two-way crossover study was to determine if para-aminobenzoic acid (PABA) inhibits N-acetylation of procainamide in healthy volunteers. Eleven (7 female, 4 male) fast acetylators of caffeine received, in random order, PABA 1.5 g orally every 6 hours for 5 days, with a single intravenous dose of procainamide 750 mg administered over 30 minutes on the third day, or intravenous procainamide alone. Blood samples were collected during a 48-hour period after initiation of the infusion. Urine was collected over a 72-hour period. Serum procainamide and NAPA concentrations were analyzed using fluorescence polarization immunoassay. Urine procainamide and NAPA concentrations were measured with high performance liquid chromatography. PABA did not significantly influence total or renal procainamide clearance, elimination rate constant, AUC0-00, amount of procainamide excreted unchanged in the urine, or volume of distribution. However, concomitant PABA administration with procainamide resulted in increases in NAPA AUC0-00 and t1/2 and reductions in NAPA Ke, procainamide acetylation (NAPA formation) clearance, and NAPA renal clearance. Although PABA inhibits metabolic conversion of procainamide to NAPA, it also impairs the renal clearance of NAPA (but not procainamide) in healthy subjects. Therefore, PABA may not be useful for optimizing the safety of efficacy of procainamide in patients. PMID:8786250

  17. Role of mitochondria and NADPH oxidase derived reactive oxygen species in hyperoxaluria induced nephrolithiasis: therapeutic intervention with combinatorial therapy of N-acetyl cysteine and Apocynin.

    PubMed

    Sharma, Minu; Kaur, Tanzeer; Singla, S K

    2016-03-01

    The interactions between the main cellular sources of ROS, such as mitochondria and NADPH oxidase, are known to play an imperative role in the pathogenesis of hyperoxaluria-induced nephrolithiasis. The present study was designed to investigate the protective effect of a combinatorial therapy based on the attenuation of oxidative stress with antioxidant (N-acetyl cysteine), and NADPH oxidase inhibitor (apocynin), that might be required to effectively eliminate hyperoxaluric manifestations. Hyperoxaluria was induced in male Wistar rats by administering 0.4% ethylene glycol with 1% ammonium chloride in drinking water for 9days. Hyperoxaluria accentuated renal oxidative stress in terms of increased ROS production and lipid peroxidation. Mitochondrial dysfunction, a central deleterious event in renal stone crystallization, was evident by decreased activities of electron transport chain complex I, II and IV, augmented mitochondrial ROS, reduced GSH/GSSG ratio, which resulted in the mitochondrial permeability transition pore (mPTP) opening as indicated by increased mitochondrial swelling in hyperoxaluric rats. Furthermore, NADPH oxidase activity was significantly increased, with raised expression of NOX1, NOX2, NOX4, p38MAPK and MnSOD, in the renal tissue of hyperoxaluric rats compared to control. However, combinatorial therapy with N-acetyl cysteine (50mg/kg/day) and apocynin (200mg/kg/day), intraperitoneally, significantly improved renal functions in hyperoxaluric rats and considerably ameliorated mitochondrial dysfunction. NAC with apocynin was also found to be effective in reducing the redundant activity of NADPH oxidase in renal tissue of hyperoxaluric rats. Hence, our investigation provides novel mechanistic insights that combinatorial approaches using targeted modulators of ROS offer therapeutic benefits in hyperoxaluria-induced nephrolithiasis. PMID:26779823

  18. Reconstitution of TGFBR2 in HCT116 colorectal cancer cells causes increased LFNG expression and enhanced N-acetyl-d-glucosamine incorporation into Notch1.

    PubMed

    Lee, Jennifer; Katzenmaier, Eva-Maria; Kopitz, Jürgen; Gebert, Johannes

    2016-08-01

    Transforming growth factor-β (TGF-β) signaling plays a key role in regulating normal cell growth and differentiation, and mutations affecting members of this pathway contribute to cancer development and metastasis. In DNA mismatch repair (MMR)-deficient colorectal cancers that exhibit the microsatellite instability (MSI) phenotype, biallelic frameshift mutations in the transforming growth factor β receptor type 2 (TGFBR2) gene occur at high frequency that lead to altered signal transduction and downstream target gene expression. Although recent evidence suggests that altered TGF-β signaling can modulate protein glycosylation patterns in MSI-high colorectal tumor cells, affected genes have not been identified. Here, we investigated in a more systematic approach, expression changes of TGFBR2-regulated genes, involved in glycosylation using a TGFBR2-reconstituted colorectal cancer cell line (HCT116-TGFBR2) and Glyco-Gene Chip analysis. Based on this oligonucleotide array of about 1000 human glycosylation-related genes, several candidates including HES1, PDGFB, JUNB and LFNG were found to be upregulated in a TGFBR2-dependent manner and subsequently validated by real-time RT-PCR analyses. Focusing on the glycosyltransferase LFNG and its target signaling protein Notch1, dual labeling with [3H]-N-acetyl-d-glucosamine ([3H]-GlcNAc) and [35S]-l-methionine revealed a significant increase in N-acetyl-d-glucosamine incorporation into immunoprecipitated Notch1 receptor upon TGFBR2 expression whereas the protein level remained unaffected. These data suggest that TGFBR2 signaling can affect Notch1 glycosylation via regulation of glycosyltransferase LFNG expression and provide a first mechanistic example for altered glycosylation in MSI colorectal tumor cells. PMID:27156840

  19. Quantitative determination of sulfisoxazole and its three N-acetylated metabolites using HPLC-MS/MS, and the saturable pharmacokinetics of sulfisoxazole in mice.

    PubMed

    Oh, Kyungsoo; Baek, Moon-Chang; Kang, Wonku

    2016-09-10

    Sulfisoxazole (SFX) is still used in combination with trimethoprim in cattle despite adverse drug reactions (e.g., urolithiasis). Recently, SFX is known to be a promising repositioned drug candidate for pulmonary hypertension and cancer. We developed a simultaneous determination method of SFX and its N-acetylated metabolites (N(1)-acetyl SFX, N1AS; N(4)-acetyl SFX, N4AS; diacetyl SFX, DAS) using HPLC-MS/MS for the first time, and examined the pharmacokinetics of SFX in mice. N1AS and DAS were converted rapidly to SFX and N4AS, respectively, in mouse plasma. The time courses of plasma SFX and N4AS concentrations were well-characterised following the oral administration of SFX to mice. The absorption, metabolism, and/or excretion of SFX given at >700mg/kg may be saturable, and in contrast to humans and rats, the extent of systemic exposure of mice to N4AS was much greater than that of SFX. Interestingly, the acetyl groups at both N1- and N4-positions were degraded during the ionisation required to generate precursor ions. In additional experiments the carboxyl group of N-acetyl-5-aminosalicylic acid (NA5AS) was lost instead of the acetyl group during the ionisation, and acetaminophen (AAP) appeared. As the acetyl and carboxyl groups of some substances can be degraded during ionisation in the mass spectrometer, caution is appropriate when it is sought to simultaneously quantify similar structures containing these moieties; chromatographic separation is essential. PMID:27454084

  20. Quantification of the neurotransmitters melatonin and N-acetyl-serotonin in human serum by supercritical fluid chromatography coupled with tandem mass spectrometry.

    PubMed

    Wolrab, Denise; Frühauf, Peter; Gerner, Christopher

    2016-09-21

    The aim of this study was developing a supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS) method and an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method, for the analysis of N-acetyl-serotonin (NAS) and melatonin (Mel) in human serum, and to compare the performance of these methods. Deuterated isotopologues of the neurotransmitters were synthesized and evaluated for suitability as internal standards in sample preparation. Liquid-liquid extraction was selected as sample preparation procedure. With chloroform, the best extraction solvent tested, an extraction yield of 48 ± 2% for N-acetyl-serotonin and 101 ± 10% for melatonin was achieved. SFC separation was accomplished within 3 min on a BEH stationary phase, employing isocratic elution with 90% carbon dioxide and 0.1% formic acid as well as 0.05% ammonium formate in methanol. For the 4 min UHPLC gradient separation with 0.1% formic acid in water and methanol, respectively, a Kinetex XB-C18 was used as stationary phase. Both chromatographic techniques were optimized regarding mobile phase composition, additives to the mobile phase and column temperature. Multiple reaction monitoring (MRM) analysis was used for quantification of the metabolites. Both methods were validated regarding retention time stability, LOD, LOQ, repeatability and reproducibility of quantification, process efficiency, extraction recovery and matrix effects. LOD and LOQ were 0.017 and 0.05 pg μL(-1) for NAS and 0.006 and 0.018 pg μL(-1) for Mel in SFC-MS/MS compared to 0.028 and 0.1 pg μL(-1) for NAS and 0.006 and 0.017 pg μL(-1) for Mel in UHPLC-MS/MS. PMID:27590559

  1. Dataset of cocoa aspartic protease cleavage sites.

    PubMed

    Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen

    2016-09-01

    The data provide information in support of the research article, "The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors" (Janek et al., 2016) [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. PMID:27508221

  2. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene

    SciTech Connect

    Irving, Roy M.; Pinkerton, Marie E.; Elfarra, Adnan A.

    2013-02-15

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague–Dawley rats were dosed (i.p.) with 230 μmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S{sub 2}–S{sub 3} segments) while DCVCS primarily affected the outer cortical proximal tubules (S{sub 1}–S{sub 2} segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37 °C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity. - Highlights: ► NA-DCVCS and NA-DCVC toxicity are distinct from DCVCS toxicity. ► NA-DCVCS readily reacts with GSH to form mono- and di-GSH conjugates. ► Liver glutathione S-transferases enhance NA-DCVCS GSH conjugate formation. ► Renal localization of lesions suggests a role for NA-DCVCS in TCE nephrotoxicity.

  3. Low plasma glutamine in combination with high glutamate levels indicate risk for loss of body cell mass in healthy individuals: the effect of N-acetyl-cysteine.

    PubMed

    Kinscherf, R; Hack, V; Fischbach, T; Friedmann, B; Weiss, C; Edler, L; Bärtsch, P; Dröge, W

    1996-07-01

    Skeletal muscle catabolism, low plasma glutamine, and high venous glutamate levels are common among patients with cancer or human immunodeficiency virus infection. In addition, a high glycolytic activity is commonly found in muscle tissue of cachectic cancer patients, suggesting insufficient mitochondrial energy metabolism. We therefore investigated (a) whether an "an-aerobic physical exercise" program causes similar changes in plasma amino acid levels, and (b) whether low plasma glutamine or high glutamate levels are risk factors for loss of body cell mass (BCM) in healthy human subjects, i.e., in the absence of a tumor or virus infection. Longitudinal measurements from healthy subjects over longer periods suggest that the age-related loss of BCM occur mainly during episodes with high venous glutamate levels, indicative of decreased muscular transport activity for glutamate. A significant increase in venous glutamate levels from 25 to about 40 microM was seen after a program of "anaerobic physical exercise." This was associated with changes in T lymphocyte numbers. Under these conditions persons with low baseline levels of plasma glutamine, arginine, and cystine levels also showed a loss of BCM. This loss of BCM was correlated not only with the amino acid levels at baseline examination, but also with an increase in plasma glutamine, arginine, and cystine levels during the observation period, suggesting that a loss of BCM in healthy individuals terminates itself by adjusting these amino acids to higher levels that stabilize BCM. To test a possible regulatory role of cysteine in this context we determined the effect of N-acetyl-cysteine on BCM in a group of subjects with relatively low glutamine levels. The placebo group of this study showed a loss of BCM and an increase in body fat, suggesting that body protein had been converted into other forms of chemical energy. The decrease in mean BCM/body fat ratios was prevented by N-acetyl-cysteine, indicating that

  4. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice.

    PubMed

    Ding, Dalian; Jiang, Haiyan; Chen, Guang-Di; Longo-Guess, Chantal; Muthaiah, Vijaya Prakash Krishnan; Tian, Cong; Sheppard, Adam; Salvi, Richard; Johnson, Kenneth R

    2016-04-01

    Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the g-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwg mice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC. PMID:26977590

  5. Fenton reaction-mediated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters: analytical applications of hydrogen peroxide, glucose, and catalase detection.

    PubMed

    Deng, Hao-Hua; Wu, Gang-Wei; He, Dong; Peng, Hua-Ping; Liu, Ai-Lin; Xia, Xing-Hua; Chen, Wei

    2015-11-21

    Given the importance of hydrogen peroxide (H2O2) in many biological processes and its wide application in various industries, the demand for sensitive, accurate, and economical H2O2 sensors is high. In this study, we used Fenton reaction-stimulated fluorescence quenching of N-acetyl-L-cysteine-protected gold nanoclusters (NAC-AuNCs) as a reporter system for the determination of H2O2. After the experimental conditions were optimized, the sensing platform enabled the analysis of H2O2 with a limit of detection (LOD) as low as 0.027 μM. As the glucose oxidase cascade leads to the generation of H2O2 and catalase catalyzes the decomposition of H2O2, these two biocatalytic procedures can be probed by the Fenton reaction-mediated quenching of NAC-AuNCs. The LOD for glucose was found to be 0.18 μM, and the linear range was 0.39-27.22 μM. The LOD for catalase was 0.002 U mL(-1), and the linear range was 0.01-0.3 U mL(-1). Moreover, the proposed sensing methods were successfully applied for human serum glucose detection and the non-invasive determination of catalase activity in human saliva, demonstrating their great potential for practical applications. PMID:26436146

  6. Up-regulation of β-amyloidogenesis in neuron-like human cells by both 24- and 27-hydroxycholesterol: protective effect of N-acetyl-cysteine.

    PubMed

    Gamba, Paola; Guglielmotto, Michela; Testa, Gabriella; Monteleone, Debora; Zerbinati, Chiara; Gargiulo, Simona; Biasi, Fiorella; Iuliano, Luigi; Giaccone, Giorgio; Mauro, Alessandro; Poli, Giuseppe; Tamagno, Elena; Leonarduzzi, Gabriella

    2014-06-01

    An abnormal accumulation of cholesterol oxidation products in the brain of patients with Alzheimer's disease (AD) would further link an impaired cholesterol metabolism in the pathogenesis of the disease. The first evidence stemming from the content of oxysterols in autopsy samples from AD and normal brains points to an increase in both 27-hydroxycholesterol (27-OH) and 24-hydroxycholesterol (24-OH) in the frontal cortex of AD brains, with a trend that appears related to the disease severity. The challenge of differentiated SK-N-BE human neuroblastoma cells with patho-physiologically relevant amounts of 27-OH and 24-OH showed that both oxysterols induce a net synthesis of Aβ1-42 by up-regulating expression levels of amyloid precursor protein and β-secretase, as well as the β-secretase activity. Interestingly, cell pretreatment with N-acetyl-cysteine (NAC) fully prevented the enhancement of β-amyloidogenesis induced by the two oxysterols. The reported findings link an impaired cholesterol oxidative metabolism to an excessive β-amyloidogenesis and point to NAC as an efficient inhibitor of oxysterols-induced Aβ toxic peptide accumulation in the brain. PMID:24612036

  7. Protective Effects of N-Acetyl-L-Cysteine in Human Oligodendrocyte Progenitor Cells and Restoration of Motor Function in Neonatal Rats with Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Park, Dongsun; Shin, Kyungha; Choi, Ehn-Kyoung; Choi, Youngjin; Jang, Ja-Young; Kim, Jihyun; Jeong, Heon-Sang; Lee, Wooryoung; Lee, Yoon-Bok; Kim, Seung Up; Joo, Seong Soo; Kim, Yun-Bae

    2015-01-01

    Objective. Since oligodendrocyte progenitor cells (OPCs) are the target cells of neonatal hypoxic-ischemic encephalopathy (HIE), the present study was aimed at investigating the protective effects of N-acetyl-l-cysteine (NAC), a well-known antioxidant and precursor of glutathione, in OPCs as well as in neonatal rats. Methods. In in vitro study, protective effects of NAC on KCN cytotoxicity in F3.Olig2 OPCs were investigated via MTT assay and apoptotic signal analysis. In in vivo study, NAC was administered to rats with HIE induced by hypoxia-ischemia surgery at postnatal day 7, and their motor functions and white matter demyelination were analyzed. Results. NAC decreased KCN cytotoxicity in F3.Olig2 cells and especially suppressed apoptosis by regulating Bcl2 and p-ERK. Administration of NAC recovered motor functions such as the using ratio of forelimb contralateral to the injured brain, locomotor activity, and rotarod performance of neonatal HIE animals. It was also confirmed that NAC attenuated demyelination in the corpus callosum, a white matter region vulnerable to HIE. Conclusion. The results indicate that NAC exerts neuroprotective effects in vitro and in vivo by preserving OPCs, via regulation of antiapoptotic signaling, and that F3.Olig2 human OPCs could be a good tool for screening of candidates for demyelinating diseases. PMID:25918547

  8. Renal tubular dysfunction measured by N-acetyl-beta glucosaminidase/Creatinine activity index in children receiving antiepileptic drugs: a randomized controlled trial.

    PubMed

    Mazaheri, Mojgan; Samaie, Afshin; Semnani, Vahid

    2011-01-01

    To evaluate renal side-effects of anti-epileptic medication by valproate (VPA) and carbamazepine (CBZ), we performed a prospective study to assess renal tubular function by measuring N-acetyl-β glucosaminidase (NAG)/Cr activity index in epileptic children. The study was conducted on 112 children who were diagnosed with epilepsy (28 patients were observed before treatment with anti-epileptics, 28 children were administered VPA, 28 children were treated with CBZ, and 28 healthy children were selected age &sex matched for). An especial NAG assay kit was used for quantitative measuring of NAG in patient urine samples. The patients receiving VPA exhibited higher rate of NAG activity compared with the two groups which not receiving anti-epileptic drugs. Measurement of urinary NAG/Cr index in the children who received CBZ also, was significantly higher than those who were not administered anti-epileptic drugs. The measurement of NAG/Cr index in the VPA group was significantly higher than that in the CBZ group (NAG index: 2.75 versus 1.71). Children on anti-epileptic treatment with VPA or CBZ might demonstrate signs of renal tubular dysfunction, reflected by NAG/Cr activity index. This side effect can be potentially more occurred following VPA administration. PMID:21569539

  9. Renal tubular dysfunction measured by N-acetyl-beta glucosaminidase/Creatinine activity index in children receiving antiepileptic drugs: a randomized controlled trial

    PubMed Central

    2011-01-01

    To evaluate renal side-effects of anti-epileptic medication by valproate (VPA) and carbamazepine (CBZ), we performed a prospective study to assess renal tubular function by measuring N-acetyl-β glucosaminidase (NAG)/Cr activity index in epileptic children. The study was conducted on 112 children who were diagnosed with epilepsy (28 patients were observed before treatment with anti-epileptics, 28 children were administered VPA, 28 children were treated with CBZ, and 28 healthy children were selected age &sex matched for). An especial NAG assay kit was used for quantitative measuring of NAG in patient urine samples. The patients receiving VPA exhibited higher rate of NAG activity compared with the two groups which not receiving anti-epileptic drugs. Measurement of urinary NAG/Cr index in the children who received CBZ also, was significantly higher than those who were not administered anti-epileptic drugs. The measurement of NAG/Cr index in the VPA group was significantly higher than that in the CBZ group (NAG index: 2.75 versus 1.71). Children on anti-epileptic treatment with VPA or CBZ might demonstrate signs of renal tubular dysfunction, reflected by NAG/Cr activity index. This side effect can be potentially more occurred following VPA administration. PMID:21569539

  10. Disruption of intermolecular disulfide bonds in PDGF-BB dimers by N-acetyl-L-cysteine does not prevent PDGF signaling in cultured hepatic stellate cells

    SciTech Connect

    Borkham-Kamphorst, Erawan; Meurer, Steffen K.; Gressner, Axel M.; Weiskirchen, Ralf . E-mail: rweiskirchen@ukaachen.de

    2005-12-30

    Oxidative stress is important in the pathogenesis of liver fibrosis through its induction of hepatic stellate cell (HSC) proliferation and enhancement of collagen synthesis. Reactive oxygen species have been found to be essential second messengers in the signaling of both major fibrotic growth factors, platelet-derived growth factor (PDGF) and transforming growth factor-{beta} (TGF-{beta}), in cultured HSC and liver fibrosis. The non-toxic aminothiol N-acetyl-L-cysteine (NAC) inhibits cellular activation and attenuates experimental fibrosis in liver. Prior reports show that NAC is capable of reducing the effects of TGF-{beta} in biological systems, in cultured endothelial cells, and HSC through its direct reducing activity upon TGF-{beta} molecules. We here analyzed the effects of NAC on PDGF integrity, receptor binding, and downstream signaling in culture-activated HSC. We found that NAC dose-dependently induces disintegration of PDGF in vitro. However, even high doses (>20 mM) were not sufficient to prevent the phosphorylation of the PDGF receptor type {beta}, extracellular signal-regulated kinase, or protein kinase B (PKB/Akt). Therefore, we conclude that the PDGF monomer is still active. The described antifibrotic effects are therefore mainly attributable to the structural impairment of TGF-{beta} signaling components reported previously.

  11. Potential of N-acetylated-para-aminosalicylic Acid to Accelerate Manganese Enhancement Decline for Long-term MEMRI in Rodent Brain

    PubMed Central

    Bade, Aditya N; Zhou, Biyun; McMillan, JoEllyn; Narayanasamy, Prabagaran; Veerubhotla, Ram; Gendelman, Howard E; Boska, Michael D; Liu, Yutong

    2015-01-01

    Background Manganese (Mn2+)-enhanced MRI (MEMRI) is a valuable imaging tool to study brain structure and function in normal and diseased small animals. The brain retention of Mn2+ is relatively long with a half-life (t1/2) of 51 to 74 days causing a slow decline of MRI signal enhancement following Mn2+ administration. Such slow decline limits using repeated MEMRI to follow the central nervous system longitudinally in weeks or months. This is because residual Mn2+ from preceding administrations can confound the interpretation of imaging results. We investigated whether the Mn2+ enhancement decline could be accelerated thus enabling repeated MEMRI, and as a consequence broadens the utility of MEMRI tests. New Methods We investigated whether N-acetyl-para-aminosalicylic acid (AcPAS), a chelator of Mn2+, could affect the decline of Mn2+ induced MRI enhancement in brain. Results and Conclusion Two-week treatment with AcPAS (200 mg/kg/dose × 3 daily) accelerated the decline of Mn2+ induced enhancement in MRI. In the whole brain on average the enhancement declined from 100% to 17% in AcPAS treated mice, while in PBS controls the decline is from 100% to 27%. We posit that AcPAS could enhance MEMRI utility for evaluating brain biology in small animals. Comparison with Existing Methods To the best of our knowledge, no method exists to accelerate the decline of the Mn2+ induced MRI enhancement for repeated MEMRI tests. PMID:26004847

  12. N-Acetyl Cysteine Depletes Reactive Oxygen Species and Prevents Dental Monomer-Induced Intrinsic Mitochondrial Apoptosis In Vitro in Human Dental Pulp Cells

    PubMed Central

    Li, Jing; Shan, Lequn; Liu, Qian; Liu, Ying; Song, Qian; Yu, Fan; Yu, Haohan; Liu, Huan; Huang, Li; Chen, Jihua

    2016-01-01

    Purpose To investigate the involvement of intrinsic mitochondrial apoptosis in dental monomer-induced cytotoxicity and the influences of N-acetyl cysteine (NAC) on this process. Methods Human dental pulp cells (hDPCs) were exposed to several dental monomers in the absence or presence of NAC, and cell viability, intracellular redox balance, morphology and function of mitochondria and key indicators of intrinsic mitochondrial apoptosis were evaluated using various commercial kits. Results Dental monomers exerted dose-dependent cytotoxic effects on hDPCs. Concomitant to the over-production of reactive oxygen species (ROS) and depletion of glutathione (GSH), differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase were detected. Apoptosis, as indicated by positive Annexin V/propidium iodide (PI) staining and activation of caspase-3, was observed after dental monomer treatment. Dental monomers impaired the morphology and function of mitochondria, and induced intrinsic mitochondrial apoptosis in hDPCs via up-regulation of p53, Bax and cleaved caspase-3, and down-regulation of Bcl-2. NAC restored cell viability, relieved oxidative stress and blocked the apoptotic effects of dental monomers. Conclusions Dental monomers induced oxidative stress and mitochondrial intrinsic apoptosis in hDPCs. NAC could reduce the oxidative stress and thus protect hDPCs against dental monomer-induced apoptosis. PMID:26808507

  13. Modification-free and N-acetyl-L-cysteine-induced colorimetric response of AuNPs: A mechanistic study and sensitive Hg(2+) detection.

    PubMed

    Tang, Jie; Wu, Peng; Hou, Xiandeng; Xu, Kailai

    2016-10-01

    A facile yet sensitive and selective method was proposed for Hg(2+) detection based on N-acetyl-L-cysteine(NAC)-induced colorimetric response of AuNPs. The proposed method can be easily performed by introducing the premixing of NAC and Hg(2+) into as-prepared citrate-capped AuNPs solution. A combination of experimental and theoretical studies was applied to illustrate the mechanism of this AuNPs colorimetric system. The strong interaction of NAC and AuNPs through Au-S bond could lead to the aggregation of AuNPs, but the formation of NAC-Hg-NAC complex decreased the affinity between NAC and AuNPs and resulted in an anti-aggregation effect. Therefore, the color of the AuNPs solution would progress from purple to red with the increase of Hg(2+) concentration. The proposed method had a high sensitivity with a limit of detection of 9.9nM. Coexistent metal ions, including Cd(2+), Mn(2+), Al(3+), Ag(+), K(+), Mg(2+), Ca(2+), Cr(3+), Cu(2+), Fe(3+), Pb(2+), Ni(2+) and Zn(2+), did not interfere with the detection of Hg(2+). This method can be used to monitor Hg(2+) in tap water. PMID:27474283

  14. Site-directed mutagenesis studies on the L-arginine-binding sites of feedback inhibition in N-acetyl-L-glutamate kinase (NAGK) from Corynebacterium glutamicum.

    PubMed

    Xu, Meijuan; Rao, Zhiming; Dou, Wenfang; Jin, Jian; Xu, Zhenghong

    2012-02-01

    Arginine biosynthesis in Corynebacterium glutamicum proceeds via a pathway that is controlled by arginine through feedback inhibition of NAGK, the enzyme that converts N-acetyl-L-glutamate (NAG) to N-acety-L-glutamy-L-phosphate. In this study, the gene argB encoding NAGK from C. glutamicum ATCC 13032 was site-directed, and the L-arginine-binding sites of feedback inhibition in Cglu_NAGK are described. The N-helix and C-terminal residues were first deleted, and the results indicated that they are both necessary for Cglu_NAGK, whereas, the complete N-helix deletion (the front 28 residues) abolished the L-arginine inhibition. Further, we study here the impact on these functions of 12 site-directed mutations affecting seven residues of Cglu_NAGK, chosen on the basis of homology structural alignment. The E19R, H26E, and H268N variants could increase the I₀.₅ (R) 50-60 fold, and the G287D and R209A mutants could increase the I₀.₅ (R) 30-40 fold. The E281A mutagenesis resulted in the substrate kinetics being greatly influenced. The W23A variant had a lower specific enzyme activity. These results explained that the five amino acid residues (E19, H26, R209, H268, and G287) located in or near N-helix are all essential for the formation of arginine inhibition. PMID:22101454

  15. Complex formation and catalytic activation by the PII signaling protein of N-acetyl-L-glutamate kinase from Synechococcus elongatus strain PCC 7942.

    PubMed

    Maheswaran, Mani; Urbanke, Claus; Forchhammer, Karl

    2004-12-31

    The signal transduction protein P(II) from the cyanobacterium Synechococcus elongatus strain PCC 7942 forms a complex with the key enzyme of arginine biosynthesis, N-acetyl-l-glutamate kinase (NAGK). Here we report the effect of complex formation on the catalytic properties of NAGK. Although pH and ion dependence are not affected, the catalytic efficiency of NAGK is strongly enhanced by binding of P(II), with K(m) decreasing by a factor of 10 and V(max) increasing 4-fold. In addition, arginine feedback inhibition of NAGK is strongly decreased in the presence of P(II), resulting in a tight control of NAGK activity under physiological conditions by P(II). Analysis of the NAGK-P(II) complex suggests that one P(II) trimer binds to one NAGK hexamer with a K(d) of approximately 3 nm. Complex formation is strongly affected by ATP and ADP. ADP is a strong inhibitor of complex formation, whereas ATP inhibits complex formation only in the absence of divalent cations or in the presence of Mg(2+) ions, together with increased 2-oxoglutarate concentrations. Ca(2+) is able to antagonize the negative effect of ATP and 2-oxoglutarate. ADP and ATP exert their adverse effect on NAGK-P(II) complex formation through binding to the P(II) protein. PMID:15502156

  16. Monomeric Corynebacterium glutamicum N-acetyl glutamate kinase maintains sensitivity to L-arginine but has a lower intrinsic catalytic activity.

    PubMed

    Huang, Yuanyuan; Li, Cheng; Zhang, Hao; Liang, Shuli; Han, Shuangyan; Lin, Ying; Yang, Xiaorong; Zheng, Suiping

    2016-02-01

    N-acetyl glutamate kinase (NAGK) is a key enzyme in the synthesis of L-arginine, and L-arginine-sensitive NAGK typically has hexameric architecture. Defining the relationship between this architecture and L-arginine inhibition can provide a foundation to identify the key amino acids involved in the allosteric regulation network of L-arginine. In the present study, the key amino acids in the N-terminal helix (N-helix) of Corynebacterium glutamicum (Cg) NAGK required for hexamer formation were determined using structural homology modeling and site-directed mutagenesis. It was also verified that hexameric architecture is required for the positive cooperativity of inhibition by L-arginine and for efficient catalysis, but that it is not the determinant of inhibition by L-arginine. Monomeric mutants retained a similar sensitivity to L-arginine as the hexameric form, indicating that monomers contain an independent, sensitive signal transduction network of L-arginine to mediate allosteric regulation. Mutation studies of CgNAGKs also revealed that amino acid residues 18-23 of the N-helix are required for inhibition by L-arginine, and that E19 may be an essential amino acid influencing the apparent affinity of L-arginine. Collectively, these studies may illuminate the basic mechanism of metabolic homeostasis of C. glutamicum. PMID:26512006

  17. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice

    PubMed Central

    Ding, Dalian; Jiang, Haiyan; Chen, Guang-Di; Longo-Guess, Chantal; Muthaiah, Vijaya Prakash Krishnan; Tian, Cong; Sheppard, Adam; Salvi, Richard; Johnson, Kenneth R.

    2016-01-01

    Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the γ-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwgmice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC. PMID:26977590

  18. N-acetil-l-cysteine and 2-amino-2-thiiazoline N-acetyl-l-cysteinate as a possible cancer chemopreventive agents in murine models.

    PubMed

    Simkeviciene, Vitalija; Straukas, J; Uleckiene, Saule

    2002-01-01

    The aim of this study was to investigate N-acetyl-cysteine (NAC) and its 2-amino-2-thiazoline salt (NACAT) as potential chemopreventive agents on experimentally induced lung tumours by urethane (U) in mice. Female BALB/c mice were used. U was given by intraperitoneal injections during 2 weeks (single dose - 10 mg/mouse, total - 50 mg/mouse). Mice were treated daily per os with NAC 1/10 LD50, NACAT 1/10 or 1/100 LD50 starting 2 weeks prior U administration, then during U treatment and thereafter for 2 months. The duration of experiment was 4 months. The results showed that NAC (1000 mg/kg) reduced the lung tumour incidence to 30% that of controls, P < or = 0.05. Most effective of NACAT was 100 mg/kg dose; it reduced an average of lung adenomas per mouse by 26%, P < or = 0.05, but lower dose (10 mg/kg) was less effective. In order to achieve similar chemopreventive effect (approximately 30%) on mice, it is necessary to use 0.38 mM/kg of NACAT or 6.13 mM/kg of NAC. It means that 16 times less of NACAT is required, if calculated by molar concentration. In general, NAC and NACAT have a moderate chemopreventive effect on lung tumorigenesis induced by urethane in mice. PMID:12371608

  19. Urinary Immunoglobulin G to Albumin Ratio and N-Acetyl-Beta-D-Glucosaminidase as Early Predictors of Therapeutic Response in ANCA-Associated Glomerulonephritis

    PubMed Central

    Mravljak, Marija; Vizjak, Alenka; Ferluga, Dusan; Pajek, Jernej; Kovac, Damjan; Skoberne, Andrej; Ales Rigler, Andreja; Kveder, Radoslav; Kosir, Andrej; Lindic, Jelka

    2013-01-01

    Background The aim of our study was to evaluate the prognostic value of glomerular and tubular proteinuria and tubular enzymuria as early indicators of therapeutic response to induction therapy with i.v. pulse cyclophosphamide (CyC) and methylprednisolone (MP) in patients with antineutrophil cytoplasmic antibody (ANCA) associated glomerulonephritis. Methods and Findings An observational single-center study was conducted in 30 patients with ANCA-associated glomerulonephritis. Patients were divided into subgroups with good or poor response to CyC therapy according to clinical and laboratory parameters. The diagnosis of ANCA-associated glomerulonephritis was based on the Chapel-Hill disease definitions. Good response to induction therapy was significantly associated with higher absolute values of urine N-acetyl-beta-D-glucosaminidase (NAG) to creatinine ratio (above 14.83 microcat/mol) and urine immunoglobulin G (IgG) to albumin ratio (above 0.09) at the time of diagnosis, while albuminuria or proteinuria did not have any early predictive value. The remission of renal disease was anticipated as early as 3 months after introduction of induction therapy in patients with reduction of urine NAG to creatinine ratio below the baseline value and in patients with at least 24% rise in eGFR. Conclusions Urine IgG to albumin and urine NAG to creatinine ratio are better early predictors of treatment response in patients with ANCA-associated glomerulonephritis than proteinuria or albuminuria. PMID:24349116

  20. Meta-analysis of the relationship between slow acetylation of N-acetyl transferase 2 and the risk of bladder cancer.

    PubMed

    An, Y; Li, H; Wang, K J; Liu, X H; Qiu, M X; Liao, Y; Huang, J L; Wang, X S

    2015-01-01

    The incidence of bladder cancer is closely associated with exposure to aromatic amines, that can cause cancer only after metabolic activation regulated by N-acetyl transferase 1 and 2 (NAT1 and NAT2). Many studies have indicated that slow acetylation of NAT2 increases the risk of bladder cancer. The major risk factor is tobacco smoke; however, some studies have failed to prove this. This study attempted to explore the correlation between NAT2 slow acetylation and bladder cancer risk through a meta-analysis of published case-control studies. Studies detecting NAT2 gene status in bladder cancer patients and healthy controls were retrieved from PubMed, Cochrane, EMchrane, CBM, and CNKI. We retrieved the data of cited articles and publications to identify and compare NAT2 gene in bladder cancer patients and healthy controls. The variables within and between the studies were also considered. The META module in the Stata v.6.0 software was used for data analysis. Twenty independent studies were enrolled in our meta-analysis according to the inclusion and exclusion criteria. Individual differences in the bladder cancer susceptibility were, in part, attributed to the effect of carcinogens. The merged odds ratio of the effect of slow acetylation on bladder cancer was 1.31 (95% confidence interval = 1.11-1.55). In conclusion, NAT2 slow acetylation state was associated with bladder cancer risk, and was shown to modestly increase the risk of bladder cancer. PMID:26681036

  1. The Giardia intestinalis filamentous cyst wall contains a novel beta(1-3)-N-acetyl-D-galactosamine polymer: a structural and conformational study.

    PubMed

    Gerwig, Gerrit J; van Kuik, J Albert; Leeflang, Bas R; Kamerling, Johannis P; Vliegenthart, Johannes F G; Karr, Craig D; Jarroll, Edward L

    2002-08-01

    Assembly of a protective cyst wall by Giardia is essential for the survival of the parasite outside the host intestine and for transmission among susceptible hosts. The structure of the G. intestinalis filamentous cyst wall was studied by chemical methods, mass spectrometry, and (1)H nuclear magnetic resonance spectroscopy. Isolated cyst wall material contains carbohydrate and protein in a ratio of 3:2 (w/w), and the carbohydrate moiety is composed of a beta(1-3)-N-acetyl-D-galactopyranosamine homopolymer. Conformational analysis by molecular dynamics and persistence length calculations of GalNAc oligomers in solution demonstrated a flexible structure consisting of left- and right-handed helical elements. It is most likely that in the solid state, the polysaccharide forms ordered helices or possibly multiple helical structures having strong interchain interactions. The highly insoluble nature of the Giardia cyst wall must be due to these strong interchain interactions and, probably, a strong association between the carbohydrate and the protein moiety. PMID:12145190

  2. [Effectiveness and tolerance of the C3 convertase inhibitor, N-acetyl-aspartyl-magnesium glutamate with anti-allergic action. Results of a double-blind study].

    PubMed

    Gastpar, H; Kiehn, R; Sieger, C; Weibel, M A

    1989-02-01

    N-Acetyl-aspartyl magnesium glutamate (Rhinaaxia, NAAGA) is a topically active antiallergic dipeptide. The compound acts in two different ways. On the one hand NAAGA inhibits the mast cell-degranulation, on the other hand this compound blocks the activation of the C3-convertase, subsequently followed by a blocked cleavage of the fragments C3a and C5a, respectively. 20 patients suffering from pollinosis were treated for 2 weeks according to a randomized double-blind placebo-controlled study. Besides subjective complaints nasal obstruction was objectively documented via rhinomanometria. 9 out of 10 patients under placebo had to use the rescue drug tritoqualine, a histidine decarboxylase inhibitor, compared to none in the verum group (p less than 0.01). After 14 days of treatment with NAAGA the nasal peak flow rate increased by 21.5 l/min and 21.8 l/min in the tritoqualine/placebo group, respectively (not significant). Nasal obstruction improved statistically significantly after 7 and 14 days of treatment in both groups. Tolerance was reported to be good in either group. PMID:2659002

  3. Oral Administration of N-Acetyl-seryl-aspartyl-lysyl-proline Ameliorates Kidney Disease in Both Type 1 and Type 2 Diabetic Mice via a Therapeutic Regimen

    PubMed Central

    Nitta, Kyoko; Shi, Sen; Nagai, Takako; Kanasaki, Megumi; Kitada, Munehiro; Srivastava, Swayam Prakash; Haneda, Masakazu; Kanasaki, Keizo; Koya, Daisuke

    2016-01-01

    Kidney fibrosis is the final common pathway of progressive kidney diseases including diabetic nephropathy. Here, we report that the endogenous antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), the substrate of angiotensin-converting enzyme (ACE), is an orally available peptide drug used to cure kidney fibrosis in diabetic mice. We utilized two mouse models of diabetic nephropathy, streptozotocin- (STZ-) induced type 1 diabetic CD-1 mice and type 2 diabetic nephropathy model db/db mice. Intervention with the ACE inhibitor imidapril, oral AcSDKP, or imidapril + oral AcSDKP combination therapy increased urine AcSDKP levels. AcSDKP levels were significantly higher in the combination group compared to those of the other groups. AcSDKP oral administration, either AcSDKP alone or in addition to imidapril, ameliorated glomerulosclerosis and tubulointerstitial fibrosis. Plasma cystatin C levels were higher in both models, at euthanasia, and were restored by all the treatment groups. The levels of antifibrotic miRs, such as miR-29 or let-7, were suppressed in the kidneys of both models; all treatments, especially the combination of imidapril + oral AcSDKP, restored the antifibrotic miR levels to a normal value or even higher. AcSDKP may be an oral antifibrotic peptide drug that would be relevant to combating fibroproliferative kidney diseases such as diabetic nephropathy. PMID:27088094

  4. A new method of testing pancreatin therapy in vivo by the use of a peroral chymotrypsin substrate 4-(N-acetyl-L-tyrosyl)aminobenzoic acid.

    PubMed

    Fric, P; Malis, F; Kasafírek, E; Slabý, J

    1980-06-01

    The efficacy of pancreatin in vivo was determined in 14 patients with advanced pancreatic insufficiency using a peroral test with 2 g of chymotrypsin substrate, 4-(N-acetyl-L-tyrosyl)aminobenzoic acid, the Lundh test meal and 1000 ml tea. Chymotrypsin hydrolysis was quantified by 4-aminobenzoic acid excreted in 6-hr or 8-hr urine samples. After a control test without pancreatin, one or two tablets of Panpur (Nordmark-700 mg of pancreatin and 50 mg of bile per tablet) were applied simultaneously with the Lundh meal on repeated examinations. The urinary excretion of 4-aminobenzoic acid was restored to normal values in 5 subjects during both sampling periods. With this method, stimulated and substituted chymotrypsin is measured at the same time. The conditions of the tests, both with and without pancreatin replacement, are fully comparable and thus the significance of factors modifying the activity of enzymic components in the digestive tube is limited. The method appears appropriate for the institution of an effect pancreatin therapy and its control in vivo. PMID:6970159

  5. The influences of N-acetyl cysteine (NAC) on the cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA)-based dental resin

    PubMed Central

    Jiao, Yang; Ma, Sai; Li, Jing; Shan, Lequn; Yang, Yanwei; Li, Meng

    2015-01-01

    Objectives. This study aimed to investigate the influences of N-acetyl cysteine (NAC) on cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA) dental resins. Methods. Experimental PMMA resin was prepared by incorporating various concentrations of NAC (0, 0.15, 0.3, 0.6 and 0.9 wt.%). MTT assay was performed to investigate viability of human dental pulp cells after exposure to extract of PMMA resin with or without NAC. Cell adhesion on resin specimens was examined with scanning electron microscopy. Degree of conversion was studied with Fourier Transform Infrared Spectroscopy (FTIR). Flexural strength, microhardness and surface roughness was evaluated using a universal testing machine, microhardness tester and optical profilometer, respectively. Results. Incorporation of NAC into PMMA resin significantly reduced its cytotoxicity and enhanced cell adhesion on its surface. NAC induced negative influences on the mechanical and physical properties of PMMA resin in a dose-dependent manner. The degree of conversion for all experimental PMMA resins reached as high as 72% after 24 h of polymerization. All the tested properties were maintained when the concentration of incorporated NAC was 0.15 wt.%. Conclusion. The addition of 0.15 wt.% NAC remarkably improved biocompatibility of PMMA resin without exerting significant negative influence on its mechanical and physical properties. PMID:25922788

  6. A novel assay for typing Rh antigens in blood-stains using a lectin specific to the bisecting N-acetyl-D-glucosamine side chain of glycoprotein.

    PubMed

    Matsubara, K; Tanabe, K; Akane, A; Nakamura, H; Takahashi, S; Kimura, K

    1994-08-01

    A unique sandwich enzyme-linked immunosorbent assay for the determination of Rh antigens in blood stains has been developed using Rh antisera and phaseolus vulgaris E4/peroxidase conjugate (PHAE4/PO). The appropriate antiserum for detecting Rh C, c, D, E or e was coated on the inner surface of microplate wells, and the sample antigens from blood stains, solubilized with n-octyl-beta-D-glucopyranoside, were then placed in the wells. After washing the wells repeatedly, PHAE4/PO was added. Bound PHAE4/PO was detected by the development of colors using o-phenylenediamine/H2O2. All Rh antigens corresponding to the antisera were clearly detected using this technique. The detection limit expressed by sample dilution was more than 2 x 10(5) times (volume/dried blood weight) for the various antigens from the fresh 5 x 5 mm2 blood stain. Even when the blood stain samples were left beside a sunny window at room temperature for 2 months, Rh antigens were still detected. When the ABH, MN, P1, Kidd, Duffy and Lewis blood grouping systems were tested with similar ELISA procedures PHAE4 did not recognize any antigen. Since PHAE4 specifically recognizes and combines with the bisecting N-acetyl-D-glucosamine side chain, it was concluded that the glycoprotein was a component of all Rh antigens immune complexes. PMID:8046252

  7. Four homochiral coordination polymers contain N-acetyl-L-tyrosine and different N-donor ligand: Influence of metal cations, ancillary ligands and coordination modes

    NASA Astrophysics Data System (ADS)

    Li, Meng-Li; Song, Hui-Hua

    2013-10-01

    Using the chiral ligand N-acetyl-L-tyrosine (Hacty) and maintaining identical reaction conditions, Zn(II), Co(II), and Cd(II) salts provided four novel homochiral coordination polymers {[Zn(acty)(bipy)2(H2O)2]·NO3·2H2O}n1, {[Co(acty)(bipy)2(H2O)2]·NO3·2H2O}n2, {[Cd(acty)2(bipy)H2O]·H2O}n3, and {[Cd(acty)(bpe)2(Ac)]·6H2O}n4 (bipy=4,4‧-bipyridine; bpe=1,2-di(4-pyridyl)ethane) in the presence of ancillary ligands. Compounds 1 and 2 are isostructural 1D chain structures. The neighboring chains are further linked into a 3D supramolecular structure via π⋯π stacking and hydrogen bond interactions. Compound 3 shows a 2D network and 4 generates 1D infinite chains along the c-axis. Compounds 3 and 4 are further connected into 3D supramolecular network by hydrogen bond interactions. More importantly, coordination in acyl oxygen atoms and ancillary ligands (bpe) as monodentate decorating ligands in 4 are rarely reported. Ancillary ligands and metal cations significantly influence the structure of the complexes. The photoluminescence properties of 1, 3, and 4 were studied at room temperature. Circular dichroism (CD) of the complexes have been investigated.

  8. Simultaneous determination of individual isothiocyanates in plant samples by HPLC-DAD-MS following SPE and derivatization with N-acetyl-l-cysteine.

    PubMed

    Pilipczuk, Tadeusz; Kusznierewicz, Barbara; Chmiel, Tomasz; Przychodzeń, Witold; Bartoszek, Agnieszka

    2017-01-01

    The procedure for the isothiocyanates (ITCs) determination that involves derivatization with N-acetyl-l-cysteine (NAC) and separation by HPLC was developed. Prior to derivatization, plant ITCs were isolated and purified using solid-phase extraction (SPE). The optimum conditions of derivatization are: 500μL of isopropanolic eluate obtained by SPE combined with 500μL of derivatizing reagent (0.2M NAC and 0.2M NaHCO3 in water) and reaction time of 1h at 50°C. The formed dithiocarbamates are directly analyzed by HPLC coupled with diode array detector and mass spectrometer if required. The method was validated for nine common natural ITCs. Calibration curves were linear (R(2)⩾0.991) within a wide range of concentrations and limits of detection were below 4.9nmol/mL. The recoveries were in the range of 83.3-103.7%, with relative standard deviations <5.4%. The developed method has been successfully applied to determine ITCs in broccoli, white cabbage, garden cress, radish, horseradish and papaya. PMID:27507514

  9. Development, validation, and application of a surrogate analyte method for determining N-acetyl-l-aspartyl-l-glutamic acid levels in rat brain, plasma, and cerebrospinal fluid.

    PubMed

    Kinoshita, Kohnosuke; Arai, Kotaro; Kawaura, Kazuaki; Hiyoshi, Tetsuaki; Yamaguchi, Jun-ichi

    2015-10-15

    A bioanalytical strategy for the simple and accurate determination of endogenous substances in a variety of biological matrices using liquid chromatography-tandem mass spectrometry is described. The robust method described here uses two stable isotope-labeled compounds as a surrogate analyte and an internal standard to construct calibration curves with authentic matrices that can be applied to determine N-acetyl-l-aspartyl-l-glutamic acid (NAAG) levels in rat brain, plasma, and cerebrospinal fluid (CSF) using a simple extraction and with a short analysis time of 4min. The validated lower limits of quantification were 1.00nmol/g for brain and 0.0100nmol/mL for plasma and CSF. Using this method, regional differences in NAAG levels in the brain as well as plasma and CSF levels that were much lower than those in the brain were successfully confirmed in treatment-naïve rats. Moreover, after the rats were treated with the intraventricular administration of a NAAG peptidase inhibitor, the NAAG levels increased rapidly and dramatically in the CSF and slightly in the plasma in a time-dependent manner, while the brain levels were not affected. Thus, the procedure described here was easily applied to the determination of NAAG in different matrices in the same manner as that used for xenobiotics, and this method would also be easily applicable to the accurate measurement of endogenous substances in a variety of biological matrices. PMID:26386976

  10. Neuroprotective effect of N-acetyl-aspartyl-glutamate in combination with mild hypothermia in the endothelin-1 rat model of focal cerebral ischaemia.

    PubMed

    Van Hemelrijck, An; Hachimi-Idrissi, Said; Sarre, Sophie; Ebinger, Guy; Michotte, Yvette

    2005-12-01

    Previously we showed that treatment with mild hypothermia (34 degrees C for 2 h) after a focal cerebral infarct was neuroprotective by reducing apoptosis in the penumbra (cortex), but not in the core (striatum) of the infarct. In this study we examined whether administration of N-acetyl-aspartyl-glutamate (NAAG) in combination with mild hypothermia could improve striatal neuroprotection in the endothelin-1 rat model. NAAG (10 mg/kg i.p.) was injected under normothermic (37 degrees C) or mild hypothermic conditions, either 40 min before or 20 min after the insult. NAAG reduced caspase 3 immunoreactivity in the striatum, irrespective of the time of administration and brain temperature. This neuroprotective effect could be explained, at least partially, by decreased nitric oxide synthase activity in the striatum and was blocked by the group II metabotropic glutamate receptor antagonist, LY341495. Hypothermia applied together with NAAG reduced both cortical and striatal caspase 3 immunoreactivity, as well as the overall ischaemic damage in these areas. However, no pronounced improvement was seen in total damaged brain volume. Extracellular glutamate levels did not correlate with the observed protection, whatever treatment protocol was applied. We conclude that treatment with NAAG causes the same degree of neuroprotection as treatment with hypothermia. Combination of the two treatments, although reducing apoptosis, does not considerably improve ischaemic damage. PMID:16135071

  11. N-acetyl-4-aminophenol (paracetamol) in urine samples of 6-11-year-old Danish school children and their mothers.

    PubMed

    Nielsen, Jeanette K S; Modick, Hendrik; Mørck, Thit A; Jensen, Janne F; Nielsen, Flemming; Koch, Holger M; Knudsen, Lisbeth E

    2015-01-01

    Recent studies indicate an association between the use of paracetamol during pregnancy and reproductive disorders in male offspring. Furthermore, N-acetyl-4-aminophenol (NAAP, paracetamol) has been shown to be ubiquitously excreted in urine samples of the general population. To investigate the internal body burden of the Danish population to NAAP for the first time, 288 morning urine samples from 6- to 11-year-old Danish school children and their mothers were analyzed for NAAP. NAAP was measurable in all mothers and all of the children except for one child. Results showed that there is a ubiquitous body burden of NAAP in Danish mothers and children even when paracetamol analgesics have not been used recently. Hence, several unknown sources of NAAP/paracetamol exposure have to exist. We found an association in NAAP excretion between the mothers and their children which could indicate common lifestyle related exposure (e.g. via food or indoor air sources). However, we did not detect any association between lifestyle data from questionnaires and levels of NAAP excretion in this study. The knowledge about possible sources of exposure leading to this omnipresent paracetamol excretion is limited and further investigation is wanted. PMID:25127489

  12. Transport of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine, a metabolite of trichloroethylene, by mouse multidrug resistance associated protein 2 (Mrp2)

    SciTech Connect

    Tsirulnikov, Kirill; Abuladze, Natalia; Koag, Myong-Chul; Newman, Debra; Bondar, Galyna; Zhu Quansheng; Dekant, Wolfgang; Faull, Kym; Kurtz, Ira

    2010-04-15

    N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (Ac-DCVC) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) are the glutathione conjugation pathway metabolites of a common industrial contaminant and potent nephrotoxicant trichloroethylene (TCE). Ac-DCVC and DCVC are accumulated in the renal proximal tubule where they may be secreted into the urine by an unknown apical transporter(s). In this study, we explored the hypothesis that the apical transport of Ac-DCVC and/or DCVC may be mediated by the multidrug resistance associated protein 2 (Mrp2, ABCC2), which is known to mediate proximal tubular apical ATP-dependent transport of glutathione and numerous xenobiotics and endogenous substances conjugated with glutathione. Transport experiments using membrane vesicles prepared from mouse proximal tubule derived cells expressing mouse Mrp2 utilizing ATPase assay and direct measurements of Ac-DCVC/DCVC using liquid chromatography/tandem mass-spectrometry (LC/MS/MS) demonstrated that mouse Mrp2 mediates ATP-dependent transport of Ac-DCVC. Expression of mouse Mrp2 antisense mRNA significantly inhibited the vectorial basolateral to apical transport of Ac-DCVC but not DCVC in mouse proximal tubule derived cells endogenously expressing mouse Mrp2. The results suggest that Mrp2 may be involved in the renal secretion of Ac-DCVC.

  13. Golgi UDP-GlcNAc:Polypeptide O-α-N-Acetyl-d-Glucosaminyltransferase 2 (TcOGNT2) Regulates Trypomastigote Production and Function in Trypanosoma cruzi

    PubMed Central

    Koeller, Carolina M.; van der Wel, Hanke; Feasley, Christa L.; Abreu, Fernanda; da Rocha, Juliana Dutra Barbosa; Montalvão, Fabrício; Fampa, Patrícia; dos Reis, Flávia C. G.; Atella, Georgia C.; Souto-Padrón, Thaís

    2014-01-01

    All life cycle stages of the protozoan parasite Trypanosoma cruzi are enveloped by mucin-like glycoproteins which, despite major changes in their polypeptide cores, are extensively and similarly O-glycosylated. O-Glycan biosynthesis is initiated by the addition of αGlcNAc to Thr in a reaction catalyzed by Golgi UDP-GlcNAc:polypeptide O-α-N-acetyl-d-glucosaminyltransferases (ppαGlcNAcTs), which are encoded by TcOGNT1 and TcOGNT2. We now directly show that TcOGNT2 is associated with the Golgi apparatus of the epimastigote stage and is markedly downregulated in both differentiated metacyclic trypomastigotes (MCTs) and cell culture-derived trypomastigotes (TCTs). The significance of downregulation was examined by forced continued expression of TcOGNT2, which resulted in a substantial increase of TcOGNT2 protein levels but only modestly increased ppαGlcNAcT activity in extracts and altered cell surface glycosylation in TCTs. Constitutive TcOGNT2 overexpression had no discernible effect on proliferating epimastigotes but negatively affected production of both types of trypomastigotes. MCTs differentiated from epimastigotes at a low frequency, though they were apparently normal based on morphological and biochemical criteria. However, these MCTs exhibited an impaired ability to produce amastigotes and TCTs in cell culture monolayers, most likely due to a reduced infection frequency. Remarkably, inhibition of MCT production did not depend on TcOGNT2 catalytic activity, whereas TCT production was inhibited only by active TcOGNT2. These findings indicate that TcOGNT2 downregulation is important for proper differentiation of MCTs and functioning of TCTs and that TcOGNT2 regulates these functions by using both catalytic and noncatalytic mechanisms. PMID:25084865

  14. Role of Urinary Levels of Endothelin-1, Monocyte Chemotactic Peptide-1, and N-Acetyl Glucosaminidase in Predicting the Severity of Obstruction in Hydronephrotic Neonates

    PubMed Central

    Rafiei, Alireza; Mousavi, Seyed Abdollah; Alaee, Abdulrasool; Yeganeh, Yalda

    2014-01-01

    Purpose Antenatal hydronephrosis (AH) is found in 0.5%-1% of neonates. The aim of the study was to assess the urinary concentrations of 3 biomarkers, endothelin-1 (ET-1), monocyte chemotactic peptide-1 (MCP-1), and N-acetyl-glucosaminidase (NAG) in severely hydronephrotic neonates. Materials and Methods Neonates with a history of prenatal hydronephrosis were enrolled in the prospective study in 2 groups. Group 1 included neonates with severe forms of obstruction requiring surgical intervention and group 2 included neonates with milder forms of obstruction without any functional impairment. Fresh voided urinary levels of ET-1, MCP-1, and NAG were measured and their ratios to urinary Cr were calculated. Results Fourty-two neonates were enrolled into the 2 groups: group 1, 24 patients (21 male, 3 female); group 2, 18 neonates (16 male, 2 female). There were no statistically significant differences between urinary ET-1, NAG, MCP-1 values, and ET-1/Cr and NAG/Cr ratios in groups 1 and 2. The urinary MCP-1/Cr ratio was significantly higher in group 1 than in group 2. For comparison of groups 1 and 2, the cut-off values were measured as 0.5709 ng/mg (sensitivity, 75%; specificity, 67%; positive predictive value [PPV], 71%; negative predictive value [NPV], 71%), 0.927 ng/mg (sensitivity, 77%; specificity, 72%; PPV, 77%; NPV, 72%), and 1.1913 IU/mg (sensitivity, 62%; specificity, 67%; PPV, 68%; NPV, 60%) for ET-1/Cr, MCP-1/Cr, and NAG/Cr ratios, respectively. Conclusions The urinary MCP-1/Cr ratio is significantly elevated in neonates with severe obstruction requiring surgical intervention. Based upon these results, urinary MCP-1/Cr may be useful in identification of severe obstructive hydronephrosis in neonates. PMID:25324951

  15. [Pharmacological effects of N-acetyl-L-cysteine on the respiratory tract. (I). Quantitative and qualitative changes in respiratory tract fluid and sputum (author's transl)].

    PubMed

    Kogi, K; Saito, T; Kasé, Y; Hitoshi, T

    1981-06-01

    The following three experiments were performed to determine the effects of N-acetyl-L-cysteine (NAC) on the quantity and quality of respiratory tract fluid (RTF) and sputum. All drugs used were administered into the stomach through a gastric tube. 1) Indirect measurement of bronchial secretion in rats, which was expressed by the amounts of dye excreted into the respiratory tract, was carried out according the the Sakuno's method, with some modification. Some expectorants of the secretomotor type, such as bromhexine and pilocarpine, significantly increased the secretion, even at low doses. On the other hand, mucolytic agents such as NAC augmented the secretion only in doses of 500 to 1500 mg/kg. 2)As a direct method of measurements, Kasé's modification of Perry and Boyd's method was used to collect RTF, quantitatively, from rabbits. The RTF of healthy rabbits was colorless and watery. The administration of NAC in doses of 500 to 1500 mg/kg augmented the output volume and RTF became slightly turbid, probably due to an increase in the viscous mucus. 3) Rabbits with subacute bronchitis were prepared by long-term exposure to air contaminated with SO2 gas and sputa were collected before and after administration of NAC, respectively, according to the Kase's method. The sputa were opalescent and viscous gel included nodular masses. The administration of NAC, 1000 and 1500 mg/kg resulted in a dose dependent decrease in the relative viscosity. The percent-decreased in viscosity with NAC was statistically correlated with that in amounts of dry matter, those in protein and polysaccharide in the sputa. From the results described above, it was concluded that NAC given into the stomach can liquefy sputum by splitting mucoprotein disulphide linkages, that is, altering the rheological characteristics of sputum to facilitate expectoration. PMID:7286849

  16. Atorvastatin acts synergistically with N-acetyl cysteine to provide therapeutic advantage against Fas-activated erythrocyte apoptosis during chronic arsenic exposure in rats

    SciTech Connect

    Biswas, Debabrata; Sen, Gargi; Sarkar, Avik; Biswas, Tuli

    2011-01-01

    Arsenic is an environmental toxicant that reduces the lifespan of circulating erythrocytes during chronic exposure. Our previous studies had indicated involvement of hypercholesterolemia and reactive oxygen species (ROS) in arsenic-induced apoptotic death of erythrocytes. In this study, we have shown an effective recovery from arsenic-induced death signaling in erythrocytes in response to treatment with atorvastatin (ATV) and N-acetyl cysteine (NAC) in rats. Our results emphasized on the importance of cholesterol in the promotion of ROS-mediated Fas signaling in red cells. Arsenic-induced activation of caspase 3 was associated with phosphatidylserine exposure on the cell surface and microvesiculation of erythrocyte membrane. Administration of NAC in combination with ATV, proved to be more effective than either of the drugs alone towards the rectification of arsenic-mediated disorganization of membrane structural integrity, and this could be linked with decreased ROS accumulation through reduced glutathione (GSH) repletion along with cholesterol depletion. Moreover, activation of caspase 3 was capable of promoting aggregation of band 3 with subsequent binding of autologous IgG and opsonization by C3b that led to phagocytosis of the exposed cells by the macrophages. NAC-ATV treatment successfully amended these events and restored lifespan of erythrocytes from the exposed animals almost to the control level. This work helped us to identify intracellular membrane cholesterol enrichment and GSH depletion as the key regulatory points in arsenic-mediated erythrocyte destruction and suggested a therapeutic strategy against Fas-activated cell death related to enhanced cholesterol and accumulation of ROS.

  17. N-Substituted analogues of S-nitroso-N-acetyl-D,L-penicillamine: chemical stability and prolonged nitric oxide mediated vasodilatation in isolated rat femoral arteries.

    PubMed

    Megson, I L; Morton, S; Greig, I R; Mazzei, F A; Field, R A; Butler, A R; Caron, G; Gasco, A; Fruttero, R; Webb, D J

    1999-02-01

    Previous studies show that linking acetylated glucosamine to S-nitroso-N-acetyl-D,L-penicillamine (SNAP) stabilizes the molecule and causes it to elicit unusually prolonged vasodilator effects in endothelium-denuded, isolated rat femoral arteries. Here we studied the propanoyl (SNPP; 3 carbon side-chain), valeryl (SNVP; 5C) and heptanoyl (SNHP; 7C) N-substituted analogues of SNAP (2C), to further investigate other molecular characteristics that might influence chemical stability and duration of vascular action of S-nitrosothiols. Spectrophotometric analysis revealed that SNVP was the most stable analogue in solution. Decomposition of all four compounds was accelerated by Cu(II) and cysteine, and neocuproine, a specific Cu(I) chelator, slowed decomposition of SNHP. Generation of NO from the compounds was confirmed by electrochemical detection at 37 degrees C. Bolus injections of SNAP (10 microl; 10(-8)-10(-3) M) into the perfusate of precontracted, isolated rat femoral arteries taken from adult male Wistar rats (400-500 g), caused concentration-dependent, transient vasodilatations irrespective of endothelial integrity. Equivalent vasodilatations induced by SNVP and SNHP were transient in endothelium-intact vessels but failed to recover to pre-injection pressures at moderate and high concentrations (10(-6)-10(-3) M) in those denuded of endothelium. This sustained effect (> 1 h) was most prevalent with SNHP and was largely reversed by the NO scavenger, haemoglobin. We suggest that increased lipophilicity of SNAP analogues with longer sidechains facilitates their retention by endothelium-denuded vessels; subsequent slow decomposition within the tissue generates sufficient NO to cause prolonged vasodilatation. This is a potentially useful characteristic for targeting NO delivery to areas of endothelial damage. PMID:10188974

  18. N-substituted analogues of S-nitroso-N-acetyl-D,L-penicillamine: chemical stability and prolonged nitric oxide mediated vasodilatation in isolated rat femoral arteries

    PubMed Central

    Megson, I L; Morton, S; Greig, I R; Mazzei, F A; Field, R A; Butler, A R; Caron, G; Gasco, A; Fruttero, R; Webb, D J

    1999-01-01

    Previous studies show that linking acetylated glucosamine to S-nitroso-N-acetyl-D,L-penicillamine (SNAP) stabilizes the molecule and causes it to elicit unusually prolonged vasodilator effects in endothelium-denuded, isolated rat femoral arteries. Here we studied the propanoyl (SNPP; 3 carbon side-chain), valeryl (SNVP; 5C) and heptanoyl (SNHP; 7C) N-substituted analogues of SNAP (2C), to further investigate other molecular characteristics that might influence chemical stability and duration of vascular action of S-nitrosothiols. Spectrophotometric analysis revealed that SNVP was the most stable analogue in solution. Decomposition of all four compounds was accelerated by Cu(II) and cysteine, and neocuproine, a specific Cu(I) chelator, slowed decomposition of SNHP. Generation of NO from the compounds was confirmed by electrochemical detection at 37°C. Bolus injections of SNAP (10 μl; 10−8–10−3 M) into the perfusate of precontracted, isolated rat femoral arteries taken from adult male Wistar rats (400–500 g), caused concentration-dependent, transient vasodilatations irrespective of endothelial integrity. Equivalent vasodilatations induced by SNVP and SNHP were transient in endothelium-intact vessels but failed to recover to pre-injection pressures at moderate and high concentrations (10−6–10−3 M) in those denuded of endothelium. This sustained effect (>1 h) was most prevalent with SNHP and was largely reversed by the NO scavenger, haemoglobin. We suggest that increased lipophilicity of SNAP analogues with longer sidechains facilitates their retention by endothelium-denuded vessels; subsequent slow decomposition within the tissue generates sufficient NO to cause prolonged vasodilatation. This is a potentially useful characteristic for targeting NO delivery to areas of endothelial damage. PMID:10188974

  19. Effect of gamma sterilization on microhardness of the cortical bone tissue of bovine femur in presence of N-Acetyl-L-Cysteine free radical scavenger.

    PubMed

    Allaveisi, Farzaneh; Hashemi, Bijan; Mortazavi, Seyed Mohammad Javad

    2014-05-01

    Gamma sterilization is usually used to minimize the risk of infection transmission through bone allografts. However, it is believed that gamma irradiation affects the mechanical properties of allografts and free radical scavengers can be used to alleviate the radiation-induced degradation of these properties. The aim of this study was to investigate the radioprotective effects of N-Acetyl-L-Cysteine (NAC) free radical scavenger on the material properties of sterilized bovine cortical bone at microstructure level. Forty-two cortical tissue specimens were excised from three bovine femurs and irradiated to 35 and 70 kGy gamma rays in the presence of 5, 50, and 100 mM concentrations of NAC. The localized variations in microhardness were evaluated via indentation in the radial and longitudinal directions to examine different regions of the microstructures of the specimens, including the osteonal and interstitial tissues. A significant increase was observed in the hardness of osteonal, interstitial, and longitudinal combined microstructures exposed to 35 and 70 kGy radiations (P < 0.05), whereas a relative reduction of the hardness was observed in the radial direction. Furthermore, it was found that the application of 50 and 100 mM NAC during gamma irradiation significantly subsided the hardening in longitudinal combined microstructure. Moreover, the reduction of hardness in radial direction was suppressed in the presence of 100 mM of NAC. In conclusion, the results indicated that NAC free radical scavenger can protect the cortical bone against deteriorative effects of ionizing radiation and can be used to improve the material properties of sterilized allografts. PMID:24119926

  20. N-Acetyl Cysteine Mediates Protection from 2-Hydroxyethyl Methacrylate Induced Apoptosis via Nuclear Factor Kappa B–Dependent and Independent Pathways: Potential Involvement of JNK

    PubMed Central

    Paranjpe, Avina; Cacalano, Nicholas A.; Hume, Wyatt R.; Jewett, Anahid

    2009-01-01

    The mechanisms by which resin based materials induce adverse effects in patients have not been completely elucidated. Here we show that 2-hydroxyethyl methacrylate (HEMA) induces apoptotic cell death in oral keratinocytes. Functional loss and cell death induced by HEMA was significantly inhibited in the presence of N-acetyl cysteine (NAC) treatment. NAC also prevented HEMA mediated decrease in vascular endothelial growth factor secretion. The protective effect of NAC was partly related to its ability to induce NF-κB in the cells, since HEMA mediated inhibition of nuclear NF-κB expression and function was significantly blocked in the presence of NAC treatment. Moreover, blocking of nuclear translocation of NF-κB in oral keratinocytes sensitized these cells to HEMA mediated apoptosis. In addition, since NAC was capable of rescuing close to 50% of NF-κB knockdown cells from HEMA mediated cell death, there is, therefore, an NF-κB independent pathway of protection from HEMA mediated cell death by NAC. NAC mediated prevention of HEMA induced cell death in NF-κB knockdown cells was correlated with a decreased induction of c-Jun N-terminal kinase (JNK) activity since NAC inhibited HEMA mediated increase in JNK levels. Furthermore, the addition of a pharmacologic JNK inhibitor to HEMA treated cells prevented cell death and restored NF-κB knockdown cell function significantly. Therefore, NAC protects oral keratinocytes from the toxic effects of HEMA through NF-κB dependent and independent pathways. Moreover, our data suggest the potential involvement of JNK pathway in NAC mediated protection. PMID:19176594

  1. N-acetyl cysteine reduces oxidative toxicity, apoptosis, and calcium entry through TRPV1 channels in the neutrophils of patients with polycystic ovary syndrome.

    PubMed

    Köse, S A; Nazıroğlu, M

    2015-03-01

    Polycystic ovary syndrome (PCOS) is a common inflammatory and oxidant disease with an uncertain pathogenesis. N-acetyl cysteine (NAC) decreases oxidative stress, intracellular free calcium ion [Ca(2+)]i, and apoptosis levels in human neutrophil. We aimed to investigate the effects of NAC on apoptosis, oxidative stress, and Ca(2+) entry through transient receptor potential vanilloid 1 (TRPV1) and TRP melastatin 2 (TRPM2) channels in neutrophils from patients with PCOS. Neutrophils isolated from PCOS group were investigated in three settings: (1) after incubation with TRPV1 channel blocker capsazepine or TRPM2 channel blocker 2-aminoethyl diphenylborinate (2-APB), (2) after supplementation with NAC (for 6 weeks), and (3) with combination (capsazepine + 2-APB + NAC) exposure. The neutrophils in TRPM2 and TRPV1 experiments were stimulated by N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP; 1 μM) and capsaicin (10 μM) as concentration agonists, respectively. Neutrophil lipid peroxidation and capsaicin-induced increase in [Ca(2+)]i concentrations were reduced by capsazepine and NAC treatments. However, the [Ca(2+)]i concentration did not change by fMLP stimulation. Neutrophil lipid peroxidation, apoptosis, caspase-3, caspase-9, cytosolic reactive oxygen species production, and mitochondrial membrane depolarization values were decreased by NAC treatment although neutrophil glutathione peroxidase and reduced glutathione levels were increased by the NAC treatment. Serum lipid peroxidation, luteinizing hormone, testosterone, insulin, interleukin-1 beta, and homocysteine levels were decreased by NAC treatment although serum vitamin A, beta-carotene, vitamin E, and total antioxidant status were increased by the NAC treatment. In conclusion, NAC reduced oxidative stress, apoptosis, cytokine levels, and Ca(2+) entry through TRPV1 channel, which provide supportive evidence that oxidative stress and TRPV1 channel plays a key role in etiology of PCOS. PMID:25666878

  2. Characterization of the N-Acetyl-5-neuraminic Acid-binding Site of the Extracytoplasmic Solute Receptor (SiaP) of Nontypeable Haemophilus influenzae Strain 2019

    SciTech Connect

    Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon; Houtman, Jon C.D.; Turner, Keith H.; Zaleski, Anthony; Ramaswamy, S.; Gibson, Bradford W.; Apicella, Michael A.

    2012-11-14

    Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. In this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.

  3. Identification of N-acetyl-d-glucosamine-specific lectins from rat liver cytosolic and nuclear compartments as heat-shock proteins.

    PubMed Central

    Lefebvre, T; Cieniewski, C; Lemoine, J; Guerardel, Y; Leroy, Y; Zanetta, J P; Michalski, J C

    2001-01-01

    Cytosolic and nuclear O-linked N-acetylglucosaminylation has been proposed to be involved in the nuclear transport of cytosolic proteins. We have isolated nuclear and cytosolic N-acetyl-d-glucosamine (GlcNAc)-specific lectins from adult rat liver by affinity chromatography on immobilized GlcNAc and identified these lectins, by a proteomic approach, as belonging to the heat-shock protein (HSP)-70 family (one of them being heat-shock cognate 70 stress protein). Two-dimensional electrophoresis indicated that the HSP-70 fraction contained three equally abundant proteins with molecular masses of 70, 65 and 55 kDa. The p70 and p65 proteins are phosphorylated and are themselves O-linked GlcNAc (O-GlcNAc)-modified. The HSP-70 associated into high molecular mass complexes that dissociated in the presence of reductive and chaotropic agents. The lectin(s) present in this complex was (were) able to recognize cytosolic and nuclear ligands, which have been isolated using wheat germ agglutinin affinity chromatography. These ligands are O-GlcNAc glycosylated as demonstrated by [(3)H]galactose incorporation and analysis of the products released by reductive beta-elimination. The isolated lectins specifically recognized ligands present in both the cytosol and the nucleus of human resting lymphocytes. These results demonstrated the existence of endogenous GlcNAc-specific lectins, identified as HSP-70 proteins, which could act as a shuttle for the nucleo-cytoplasmic transport of O-GlcNAc glycoproteins between the cytosol and the nucleus. PMID:11696006

  4. Rapid disruption of intestinal epithelial tight junction and barrier dysfunction by ionizing radiation in mouse colon in vivo: protection by N-acetyl-l-cysteine.

    PubMed

    Shukla, Pradeep K; Gangwar, Ruchika; Manda, Bhargavi; Meena, Avtar S; Yadav, Nikki; Szabo, Erzsebet; Balogh, Andrea; Lee, Sue Chin; Tigyi, Gabor; Rao, RadhaKrishna

    2016-05-01

    The goals of this study were to evaluate the effects of ionizing radiation on apical junctions in colonic epithelium and mucosal barrier function in mice in vivo. Adult mice were subjected to total body irradiation (4 Gy) with or without N-acetyl-l-cysteine (NAC) feeding for 5 days before irradiation. At 2-24 h postirradiation, the integrity of colonic epithelial tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton was assessed by immunofluorescence microscopy and immunoblot analysis of detergent-insoluble fractions for TJ and AJ proteins. The barrier function was evaluated by measuring vascular-to-luminal flux of fluorescein isothiocyanate (FITC)-inulin in vivo and luminal-to-mucosal flux in vitro. Oxidative stress was evaluated by measuring protein thiol oxidation. Confocal microscopy showed that radiation caused redistribution of occludin, zona occludens-1, claudin-3, E-cadherin, and β-catenin, as well as the actin cytoskeleton as early as 2 h postirradiation, and this effect was sustained for at least 24 h. Feeding NAC before irradiation blocked radiation-induced disruption of TJ, AJ, and the actin cytoskeleton. Radiation increased mucosal permeability to inulin in colon, which was blocked by NAC feeding. The level of reduced-protein thiols in colon was depleted by radiation with a concomitant increase in the level of oxidized-protein thiol. NAC feeding blocked the radiation-induced protein thiol oxidation. These data demonstrate that radiation rapidly disrupts TJ, AJ, and the actin cytoskeleton by an oxidative stress-dependent mechanism that can be prevented by NAC feeding. PMID:26822914

  5. Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus.

    PubMed

    Xie, Shiwei; Zhou, Weiwen; Tian, Lixia; Niu, Jin; Liu, Yongjian

    2016-08-01

    An 8-week feeding trial was conducted to evaluate the effect of N-acetyl cysteine (NAC) and glycine supplementation on growth performance, glutathione (GSH) synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus. Four practical diets were formulated, control, control +0.2% NAC, control +0.5% glycine, control +0.2% NAC +0.5% glycine. Each diet was randomly assigned to quadruplicate groups of 30 fish (approximately 9.5 g). The weight gain and specific growth rate were significantly increased with the supplementation of NAC and glycine. While they had no effect on feed efficiency feed intake and survival. Glutathion peroxidase (GPx) was increased by NAC and γ-glutamine cysteine synthase (γ-GCS) in plasma were increased by glycine. After the feeding trail, fish were challenged by Streptococcus iniae, fish fed the diet supplemented with NAC obtained significantly higher survival rate after 72 h challenge test. NAC also decreased malonaldehyde (MDA) in liver, increased glutathione S-transferase (GST) activity in plasma, up-regulated mRNA expression of Superoxide dismutase (SOD) and GPx in liver and headkidney. Dietary supplementation of glycine increased the anti-oxidative ability of tilapia through increase anti-oxidative enzyme activity (SOD, glutathione reductase, myeloperoxidase) and up-regulate anti-oxidative gene expression (SOD). Immune ability only enhanced by the supplementation of NAC through increased interleukin-1β (IL-1β) mRNA expression. These results clearly indicated that the supplementation of NAC and glycine can significantly improve the growth performance of tilapia, and NAC also enhance the anti-oxidative and immune capacity of tilapia, glycine could only enhance the anti-oxidative ability. PMID:27235905

  6. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production.

    PubMed

    Xu, Meijuan; Rao, Zhiming; Dou, Wenfang; Yang, Juan; Jin, Jian; Xu, Zhenghong

    2012-07-01

    N-acetyl-L-glutamate kinase (EC 2.7.2.8) is first committed in the specific L-arginine pathway of Corynebacterium sp. A limited increase of L-arginine production for the argB overexpression in the engineering C. creantum SYPA-CCB strain indicated that L-arginine feedback inhibition plays an influence on the L-arginine production. In this study, we have performed site-directed mutagenesis of the key enzyme (NAGK) and the three mutations (E19R, H26E and H268D) exhibited the increase of I0.5R efficiently. Thereby, the multi-mutated NAGKM3 (including E19R/H26E/H268D) was generated and its I0.5R of L-arginine of the mutant was increased remarkably, whereas the NAGK enzyme activities did not declined. To get a feedback-resistant and robust L-arginine producer, the engineered strains SYPA-CCBM3 were constructed. Introducing the argBM3 gene enabled the NAGK enzyme activity insensitive to the intracellular arginine concentrations resulted in an enhanced arginine biosynthesis flux and decreased formation of by-products. The L-arginine synthesis was largely enhanced due to the overexpression of the argBM3, which is resistant to feedback resistant by L-arginine. Thus L-arginine production could reach 45.6 g/l, about 41.7% higher compared with the initial strain. This is an example of up-modulation of the flux through the L-arginine metabolic pathway by deregulating the key enzyme of the pathway. PMID:21901472

  7. N-acetyl-L-glutamate kinase (NAGK) from oxygenic phototrophs: P(II) signal transduction across domains of life reveals novel insights in NAGK control.

    PubMed

    Beez, Sabine; Fokina, Oleksandra; Herrmann, Christina; Forchhammer, Karl

    2009-06-19

    N-Acetyl-L-glutamate kinase (NAGK) catalyzes the first committed step in arginine biosynthesis in organisms that perform the cyclic pathway of ornithine synthesis. In eukaryotic and bacterial oxygenic phototrophs, the activity of NAGK is controlled by the P(II) signal transduction protein. Recent X-ray analysis of NAGK-P(II) complexes from a higher plant (Arabidopsis thaliana) and a cyanobacterium (Synechococcus elongatus) revealed that despite several differences, the overall structure of the complex is highly similar. The present study analyzes the functional conservation of P(II)-mediated NAGK regulation in plants and cyanobacteria to distinguish between universal properties and those that are specific for the different phylogenetic lineages. This study shows that plant and cyanobacterial P(II) proteins can mutually regulate the NAGK enzymes across the domains of life, implying a high selective pressure to conserve P(II)-NAGK interaction over more than 1.2 billion years of separate evolution. The non-conserved C-terminus of S. elongatus NAGK was identified as an element, which strongly enhances arginine inhibition and is responsible for most of the differences between S. elongatus and A. thaliana NAGK with respect to arginine sensitivity. Both P(II) proteins relieve arginine inhibition of NAGK, and in both lineages, P(II)-mediated relief from arginine inhibition is antagonized by 2-oxoglutarate. Together, these properties highlight the conserved role of P(II) as a signal integrator of the C/N balance sensed as 2-oxoglutarate to regulate arginine synthesis in oxygenic phototrophs. PMID:19409905

  8. N-acetyl cysteine as an adjunct to standard anti-Helicobacter pylori eradication regimen in patients with dyspepsia: A prospective randomized, open-label trial

    PubMed Central

    Emami, Mohammad Hassan; Zobeiri, Mehdi; Rahimi, Hojatolah; Arjomandi, Fariba; Daghagzadeh, Hamed; Adibi, Peyman; Hashemi, Jalal

    2014-01-01

    Background: Increasing antibiotic resistance of Helicobacter pylori (H. pylori) which is associated with diseases of the upper gastrointestinal tract, has made alternative treatments necessary. This study compares the efficacy of adding N-acetyl cysteine (NAC) to standard regimen for H. pylori eradication. Materials and Methods: We conducted a randomized, open-label trial, comparing the efficacy of 14 days of quadruple therapy with Amoxicillin, Bismuth citrate, Omeprazole, Clarithromycin (group A) versus 14 days of above regimen plus NAC (group B) in adult patients with dyspepsia. Primary objective was H. pylori eradication. Compliance and side effects were determined by questionnaires. Our analysis was by intention-to-treat (ITT) and per-protocol. This study is registered with www.IRCT.ir, number: IRCT201201078634N1. Result: A total of 121 participants aged 21-76 years with a mean age of 44.5 ± 14.1, and 52.9% female, were randomly allocated a treatment: 60 with 14-day standard therapy and 61 with 14-day standard therapy with NAC. The eradication rate in groups A and B with ITT analyses was 49/60 (81.7%; 95% [confidence intervals] CI = 71.6-91.8%) and 50/61 (82%; 95% CI = 72-91.9%), respectively (P = 0.96). In per-protocol analysis, the rate of H. pylori eradication in groups A and B was 45/54 (83.3%; 95% CI = 73.1-93.6%) and 45/53 (84.9%; 95% CI = 74.9-94.9%), respectively (P = 0.82). Minor well tolerated side effects were reported in 15 (34.9%) and 21 (35.6%) patients of groups A and B, respectively, and only one therapy cessation in group A was created. Conclusion: Standard 14-day triple-drug therapy with NAC is not preferable to standard drug regimens for H. pylori infection. PMID:25298958

  9. Protection of rats against 3-butene-1,2-diol-induced hepatotoxicity and hypoglycemia by N-acetyl-L-cysteine

    SciTech Connect

    Sprague, Christopher L.; Elfarra, Adnan A. . E-mail: elfarra@svm.vetmed.wisc.edu

    2005-09-15

    3-Butene-1,2-diol (BDD), an allylic alcohol and major metabolite of 1,3-butadiene, has previously been shown to cause hepatotoxicity and hypoglycemia in male Sprague-Dawley rats, but the mechanisms of toxicity were unclear. In this study, rats were administered BDD (250 mg/kg) or saline, ip, and serum insulin levels, hepatic lactate levels, and hepatic cellular and mitochondrial GSH, GSSG, ATP, and ADP levels were measured 1 or 4 h after treatment. The results show that serum insulin levels were not causing the hypoglycemia and that the hypoglycemia was not caused by an enhancement of the metabolism of pyruvate to lactate because hepatic lactate levels were either similar (1 h) or lower (4 h) than controls. However, both hepatic cellular and mitochondrial GSH and GSSG levels were severely depleted 1 and 4 h after treatment and the mitochondrial ATP/ADP ratio was also lowered 4 h after treatment relative to controls. Because these results suggested a role for hepatic cellular and mitochondrial GSH in BDD toxicity, additional rats were administered N-acetyl-L-cysteine (NAC; 200 mg/kg) 15 min after BDD administration. NAC treatment partially prevented depletion of hepatic cellular and mitochondrial GSH and preserved the mitochondrial ATP/ADP ratio. NAC also prevented the severe depletion of serum glucose concentration and the elevation of serum alanine aminotransferase activity after BDD treatment without affecting the plasma concentration of BDD. Thus, depletion of hepatic cellular and mitochondrial GSH followed by the decrease in the mitochondrial ATP/ADP ratio was likely contributing to the mechanisms of hepatotoxicity and hypoglycemia in the rat.

  10. Isolation of a mutant Arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans.

    PubMed Central

    von Schaewen, A; Sturm, A; O'Neill, J; Chrispeels, M J

    1993-01-01

    The complex asparagine-linked glycans of plant glycoproteins, characterized by the presence of beta 1-->2 xylose and alpha 1-->3 fucose residues, are derived from typical mannose9(N-acetylglucosamine)2 (Man9GlcNAc2) N-linked glycans through the activity of a series of glycosidases and glycosyl transferases in the Golgi apparatus. By screening leaf extracts with an antiserum against complex glycans, we isolated a mutant of Arabidopsis thaliana that is blocked in the conversion of high-manne to complex glycans. In callus tissues derived from the mutant plants, all glycans bind to concanavalin A. These glycans can be released by treatment with endoglycosidase H, and the majority has the same size as Man5GlcNAc1 glycans. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, the mutant cells synthesize Man9GlcNAc2 and Man8GlcNAc2 glycans, suggesting that the biochemical lesion in the mutant is not in the biosynthesis of high-mannose glycans in the endoplasmic reticulum but in their modification in the Golgi. Direct enzyme assays of cell extracts show that the mutant cells lack N-acetyl glucosaminyl transferase I, the first enzyme in the pathway of complex glycan biosynthesis. The mutant plants are able to complete their development normally under several environmental conditions, suggesting that complex glycans are not essential for normal developmental processes. By crossing the complex-glycan-deficient strain of A. thaliana with a transgenic strain that expresses the glycoprotein phytohemagglutinin, we obtained a unique strain that synthesizes phytohemagglutinin with two high-mannose glycans, instead of one high-mannose and one complex glycan. PMID:8278542

  11. Rats with metabolic syndrome resist the protective effects of N-acetyl l-cystein against impaired spermatogenesis induced by high-phosphorus/zinc-free diet.

    PubMed

    Suzuki, Yuka; Ichihara, Gaku; Sahabudeen, Sheik Mohideen; Kato, Ai; Yamaguchi, Takanori; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Yamada, Yoshiji; Ichihara, Sahoko

    2013-11-01

    Consumption of relatively high amounts of processed food can result in abnormal nutritional status, such as zinc deficiency or phosphorus excess. Moreover, hyperphosphatemia and hypozincemia are found in some patients with diabetic nephropathy and metabolic syndrome. The present study investigated the effects of high-phosphorus/zinc-free diet on the reproductive function of spontaneously hypertensive rats/NDmcr-cp (SHR/cp), a model of the metabolic syndrome. We also investigated the effects of antioxidant, N-acetyl-l-cysteine (NAC), on testicular dysfunction under such conditions. Male SHR/cp and control rats (Wistar Kyoto rats, WKY) were divided into three groups; rats fed control diet (P 0.3%, w/w; Zn 0.2%, w/w), high-phosphorus and zinc-deficient diet (P 1.2%, w/w; Zn 0.0%, w/w) with vehicle, or high-phosphorus and zinc-deficient diet with NAC (1.5mg/g/day) for 12 weeks (n=6 or 8 rats/group). The weights of testis and epididymis were significantly reduced by high-phosphate/zinc-free diet in both SHR/cp and WKY. The same diet significantly reduced caudal epididymal sperm count and motility and induced histopathological changes in the testis in both strains. Treatment with NAC provided significant protection against the toxic effects of the diet on testicular function in WKY, but not in SHR/cp. The lack of the protective effects of NAC on impaired spermatogenesis in SHR/cp could be due to the more pronounced state of oxidative stress observed in these rats compared with WKY. PMID:23810784

  12. N-Acetyl cysteine does not prevent liver toxicity from chronic low-dose plus subacute high-dose paracetamol exposure in young or old mice.

    PubMed

    Kane, Alice Elizabeth; Huizer-Pajkos, Aniko; Mach, John; McKenzie, Catriona; Mitchell, Sarah Jayne; de Cabo, Rafael; Jones, Brett; Cogger, Victoria; Le Couteur, David G; Hilmer, Sarah Nicole

    2016-06-01

    Paracetamol is an analgesic commonly used by people of all ages, which is well documented to cause severe hepatotoxicity with acute overexposures. The risk of hepatotoxicity from nonacute paracetamol exposures is less extensively studied, and this is the exposure most common in older adults. Evidence on the effectiveness of N-acetyl cysteine (NAC) for nonacute paracetamol exposures, in any age group, is lacking. This study aimed to examine the effect of long-term exposure to therapeutic doses of paracetamol and subacute paracetamol overexposure, in young and old mice, and to investigate whether NAC was effective at preventing paracetamol hepatotoxicity induced by these exposures. Young and old male C57BL/6 mice were fed a paracetamol-containing (1.33 g/kg food) or control diet for 6 weeks. Mice were then dosed orally eight times over 3 days with additional paracetamol (250 mg/kg) or saline, followed by either one or two doses of oral NAC (1200 mg/kg) or saline. Chronic low-dose paracetamol exposure did not cause hepatotoxicity in young or old mice, measured by serum alanine aminotransferase (ALT) elevation, and confirmed by histology and a DNA fragmentation assay. Subacute paracetamol exposure caused significant hepatotoxicity in young and old mice, measured by biochemistry (ALT) and histology. Neither a single nor double dose of NAC protected against this toxicity from subacute paracetamol in young or old mice. This finding has important clinical implications for treating toxicity due to different paracetamol exposure types in patients of all ages, and implies a need to develop new treatments for subacute paracetamol toxicity. PMID:26821200

  13. Biodegradable poly(lactic-co-glycolic acid) microspheres loaded with S-nitroso-N-acetyl-D-penicillamine for controlled nitric oxide delivery.

    PubMed

    Lautner, Gergely; Meyerhoff, Mark E; Schwendeman, Steven P

    2016-03-10

    Nitric oxide (NO) is a fascinating and important endogenous free-radical gas with potent antimicrobial, vasodilating, smooth muscle relaxant, and growth factor stimulating effects. However, its wider biomedical applicability is hindered by its cumbersome administration, since NO is unstable especially in biological environments. In this work, to ultimately develop site-specific controlled release vehicles for NO, the NO donor S-nitroso-N-acetyl-D-penicillamine (SNAP) was encapsulated within poly(lactic-co-glycolic acid) 50:50 (PLGA) microspheres by using a solid-in-oil-in-water emulsion solvent evaporation method. The highest payload was 0.56(±0.01) μmol SNAP/mg microspheres. The in vitro release kinetics of the donor were controlled by the bioerosion of the PLGA microspheres. By using an uncapped PLGA (Mw=24,000-38,000) SNAP was slowly released for over 10days, whereas by using the ester capped PLGA (Mw=38,000-54,000) the release lasted for over 4weeks. The presence of copper ions and/or ascorbate in solution was necessary to efficiently decompose the released NO donor and obtain sustained NO release. It was also demonstrated that light can be used to induce rapid NO release from the microspheres over several hours. SNAP exhibited excellent storage stability when encapsulated in the PLGA microspheres. These new microsphere formulations may be useful for site-specific administration and treatment of pathologies associated with dysfunction in endogenous NO production, e.g. treatment of diabetic wounds, or in diseases involving other biological functions of NO including vasodilation, antimicrobial, anticancer, and neurotransmission. PMID:26763376

  14. Arylamine N-acetyl Transferase (NAT) in the blue secretion of Telescopium telescopium: xenobiotic metabolizing enzyme as a biomarker for detection of environmental pollution.

    PubMed

    Gorain, Bapi; Chakraborty, Sumon; Pal, Murari Mohan; Sarkar, Ratul; Samanta, Samir Kumar; Karmakar, Sanmoy; Sen, Tuhinadri

    2014-01-01

    Telescopium telescopium, a marine mollusc collected from Sundarban mangrove, belongs to the largest mollusca phylum in the world and exudes a blue secretion when stimulated mechanically. The blue secretion was found to metabolize (preferentially) para-amino benzoic acid, a substrate for N-acetyl transferase (NAT), thereby indicating acetyl transferase like activity of the secretion. Attempts were also made to characterise bioactive fraction of the blue secretion and to further use this as a biomarker for monitoring of marine pollution. NAT like enzyme from marine mollusc is a potential candidate for detoxification of different harmful chemicals. A partially purified extract of blue secretion was obtained by fractional precipitation with (NH4)2SO4. From different fractions obtained by precipitation, the 0-30% fraction (30S) displayed NAT like activity (using para amino benzoic acid as a substrate with para nitrophenyl phosphate or acetyl coenzyme A as acetyl group donors). Maximum NAT like enzyme activity was attained at 25°C and at a pH of 6. The enzyme activity was found to be inhibited by 5 mM phenyl methyl sulfonyl fluoride. The divalent metal ions reduced NAT like activity of 30S. Moreover, Cu(2+) and Zn(2+) (at concentration of 1 mM) completely inhibited NAT activity. The thermal stability and bench-top stability studies were performed and it was found that the enzyme was stable at room temperature for more than 24 hours. Results from the present study further indicate that heavy metal content in blue secretion gradually decreased from pre-monsoon to post-monsoon season, which also corresponded to the change in NAT like activity. Therefore, this article stresses the importance of biomarker research for monitoring pollution. PMID:26034680

  15. Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens.

    PubMed

    Yang, Zonglin; Peng, Hanyong; Lu, Xiufen; Liu, Qingqing; Huang, Rongfu; Hu, Bin; Kachanoski, Gary; Zuidhof, Martin J; Le, X Chris

    2016-07-01

    The poultry industry has used organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, ROX), to prevent disease and to promote growth. Although previous studies have analyzed arsenic species in chicken litter after composting or after application to agricultural lands, it is not clear what arsenic species were excreted by chickens before biotransformation of arsenic species during composting. We describe here the identification and quantitation of arsenic species in chicken litter repeatedly collected on days 14, 24, 28, 30, and 35 of a Roxarsone-feeding study involving 1600 chickens of two strains. High performance liquid chromatography separation with simultaneous detection by both inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry provided complementary information necessary for the identification and quantitation of arsenic species. A new metabolite, N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), was identified, and it accounted for 3-12% of total arsenic. Speciation analyses of litter samples collected from ROX-fed chickens on days 14, 24, 28, 30, and 35 showed the presence of N-AHAA, 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), inorganic arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and ROX. 3-AHPAA accounted for 3-19% of the total arsenic. Inorganic arsenicals (the sum of As(III) and As(V)) comprised 2-6% (mean 3.5%) of total arsenic. Our results on the detection of inorganic arsenicals, methylarsenicals, 3-AHPAA, and N-AHAA in the chicken litter support recent findings that ROX is actually metabolized by the chicken or its gut microbiome. The presence of the toxic metabolites in chicken litter is environmentally relevant as chicken litter is commonly used as fertilizer. PMID:26876684

  16. Distribution of acid phosphatase, beta-glucuronidase, n-acetyl-beta-d-glucosaminidase and beta-galactosidase in cornea of albino rabbit.

    PubMed

    Cejková, J; Lojda, Z; Havránková, E

    1975-09-29

    Activities of acid phosphatase, beta-glucuronidase, N-acethyl-beta-D-glucosaminidase and acid beta-galactosidase were investigated histochemically in rabbit corneas. Frozen sections after block fixation in cold 4% formaldehyde with 1% CaCl2 followed by washing in cold physiological saline as well as cold microtome sections of corneas quenched in petroleter chilled with acetone-dry ice mixture, transferred to nonprecooled slides or semipermeable membranes were used. Standard aqueous media were employed in the case of free-floating frozen sections of fixed corneas as well as of cold mictrotome sections (postfixed in cold 4% formaldehyde). Agar media were used in connection with the technic of semipermeable membranes. Gomori method (in the case of acid phosphatase), simultaneous azocoupling methods (substrates derivated of naphthol-AS-BI with hexazonium-p-rosanilin) in the case of acid phosphatase, beta-glucuronidase and N-acetyl-beta-D-glucosaminidase and the indigogenic method in the case of acid beta-galactosidase were applied. Enzyme activities in sections of fixed corneas were minimal in comparison with those in cold microtome sections of unfixed material revealed particularly with the technic of semipermeable membranes which is to be preferred. This technic is recommended in studies concerned with lysosomal enzymes in the cornea, particularly in keratocytes. All enzymes investigated were present in corneal epithelium, keratocytes and endothelium. Acid phosphatase displayed the highest activity followed by beta-glucuronidase and acetyl-beta-D-glucosaminidase. The activity of beta-galactosidase was the lowest. For the demonstration of activities in keratocytes sections parallel to the surface are very suitable. In these sections enzyme activities were demonstrated in small granules (apparently lysosomes) present in the central part of their cytoplasm as well as in projections. Diffuse staining was also seen, being the highest in the case of acid phosphatase. PMID

  17. Comparative Characterization of Hepatic Distribution and mRNA Reduction of Antisense Oligonucleotides Conjugated with Triantennary N-Acetyl Galactosamine and Lipophilic Ligands Targeting Apolipoprotein B.

    PubMed

    Watanabe, Ayahisa; Nakajima, Mado; Kasuya, Takeshi; Onishi, Reina; Kitade, Naohisa; Mayumi, Kei; Ikehara, Tatsuya; Kugimiya, Akira

    2016-05-01

    TriantennaryN-acetyl galactosamine (GalNAc, GN3) and lipophilic ligands such as cholesterol andα-tocopherol conjugations dramatically improve the distribution and efficacy of second-generation antisense oligonucleotides (ASOs) in the whole liver. To characterize ligands for delivery to liver cells based on pharmacokinetics and efficacy, we used a locked nucleic acid gapmer of ASO targeting apolipoprotein B as a model compound and evaluated the amount of ASO and apolipoprotein B mRNA in the whole liver, hepatocytes, and nonparenchymal (NP) cells as well as plasma total cholesterol after administration of ASO conjugated with these ligands to mice. Compared with unconjugated ASO, GN3 conjugation increased the amount (7-fold) and efficacy (more than 10-fold) of ASO in hepatocytes only and showed higher efficacy than the increased rate of the amount of ASO. On the other hand, lipophilic ligand conjugations led to increased delivery (3- to 5-fold) and efficacy (5-fold) of ASO to both hepatocytes and NP cells. GN3 and lipophilic ligand conjugations increased the area under the curve of ASOs and the pharmacodynamic duration but did not change the half-life in hepatocytes and NP cells compared with unconjugated ASO. In the liver, the phosphodiester bond between ASO and these ligands was promptly cleaved to liberate unconjugated ASO. These ligand conjugations reduced plasma total cholesterol compared with unconjugated ASO, although these ASOs were well tolerated with no elevation in plasma transaminases. These findings could facilitate ligand selection tailored to liver cells expressed in disease-related genes and could contribute to the discovery and development of RNA interference-based therapy. PMID:26907624

  18. Sensitive Electrochemiluminescence Immunosensor for Detection of N-Acetyl-β-d-glucosaminidase Based on a "Light-Switch" Molecule Combined with DNA Dendrimer.

    PubMed

    Wang, Haijun; Yuan, Yali; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2016-06-01

    Here, a novel "light-switch" molecule of Ru (II) complex ([Ru(dcbpy)2dppz](2+)-DPEA) with self-enhanced electrochemiluminescence (ECL) property is proposed, which is almost nonemissive in aqueous solution but is brightly luminescent when it intercalates into DNA duplex. Owing to less energy loss and shorter electron-transfer distance, the intramolecular ECL reaction between the luminescent [Ru(dcbpy)2dppz](2+) and coreactive tertiary amine group in N,N-diisopropylethylenediamine (DPEA) makes the obtained "light-switch" molecule possess much higher light-switch efficiency compared with the traditional "light-switch" molecule. For increasing the loading amount and further enhancing the luminous efficiency of the "light-switch" molecule, biotin labeled DNA dendrimer (the fourth generation, G4) is prepared from Y-shape DNA by a step-by-step assembly strategy, which provides abundant intercalated sites for [Ru(dcbpy)2dppz](2+)-DPEA. Meanwhile, the obtained nanocomposite (G4-[Ru(dcbpy)2dppz](2+)-DPEA) could well bind with streptavidin labeled detection antibody (SA-Ab2) due to the existence of abundant biotin. Through sandwiched immunoreaction, an ECL immunosensor was fabricated for sensitive determination of N-acetyl-β-d-glucosaminidase (NAG), a typical biomarker for diabetic nephropathy (DN). The detemination linear range was 0.1 pg mL(-1) to 1 ng mL(-1), and the detection limit was 0.028 pg mL(-1). The developed strategy combining the ECL self-enhanced "light-switch" molecular and DNA nanotechnology offers an effective signal amplification mean and provides ample potential for further bioanalysis and clinical study. PMID:27185239

  19. Chemical Decontamination with N-Acetyl-l-Cysteine–Sodium Hydroxide Improves Recovery of Viable Mycobacterium avium subsp. paratuberculosis Organisms from Cultured Milk

    PubMed Central

    Bradner, L.; Robbe-Austerman, S.; Beitz, D. C.

    2013-01-01

    Mycobacterium avium subsp. paratuberculosis is shed into the milk and feces of cows with advanced Johne's disease, allowing the transmission of M. avium subsp. paratuberculosis between animals. The objective of this study was to formulate an optimized protocol for the isolation of M. avium subsp. paratuberculosis in milk. The parameters investigated included chemical decontamination with N-acetyl-l-cysteine–sodium hydroxide (NALC-NaOH), alone and in combination with antibiotics (vancomycin, amphotericin B, and nalidixic acid), and the efficacy of solid (Herrold's egg yolk medium [HEY]) and liquid (Bactec 12B and para-JEM) culture media. For each experiment, raw milk samples from a known noninfected cow were inoculated with 102 to 108 CFU/ml of live M. avium subsp. paratuberculosis organisms. The results indicate that an increased length of exposure to NALC-NaOH from 5 to 30 min and an increased concentration of NaOH from 0.5 to 2.0% did not affect the viability of M. avium subsp. paratuberculosis. Additional treatment of milk samples with the antibiotics following NALC-NaOH treatment decreased the recovery of viable M. avium subsp. paratuberculosis cells more than treatment with NALC-NaOH alone. The Bactec 12B medium was the superior medium of the three evaluated for the isolation of M. avium subsp. paratuberculosis from milk, as it achieved the lowest threshold of detection. The optimal conditions for NALC-NaOH decontamination were determined to be exposure to 1.50% NaOH for 15 min followed by culture in Bactec 12B medium. This study demonstrates that chemical decontamination with NALC-NaOH resulted in a greater recovery of viable M. avium subsp. paratuberculosis cells from milk than from samples treated with hexadecylpyridinium chloride (HPC). Therefore, it is important to optimize milk decontamination protocols to ensure that low concentrations of M. avium subsp. paratuberculosis can be detected. PMID:23637290

  20. Effect of Antifibrotic MicroRNAs Crosstalk on the Action of N-acetyl-seryl-aspartyl-lysyl-proline in Diabetes-related Kidney Fibrosis.

    PubMed

    Srivastava, Swayam Prakash; Shi, Sen; Kanasaki, Megumi; Nagai, Takako; Kitada, Munehiro; He, Jianhua; Nakamura, Yuka; Ishigaki, Yasuhito; Kanasaki, Keizo; Koya, Daisuke

    2016-01-01

    N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous antifibrotic peptide. We found that suppression of AcSDKP and induction of dipeptidyl peptidase-4 (DPP-4), which is associated with insufficient levels of antifibrotic microRNA (miR)s in kidneys, were imperative to understand the mechanisms of fibrosis in the diabetic kidneys. Analyzing streptozotocin (STZ)-induced diabetic mouse strains, diabetic CD-1 mice with fibrotic kidneys could be differentiated from less-fibrotic diabetic 129Sv mice by suppressing AcSDKP and antifibrotic miRs (miR-29s and miR-let-7s), as well as by the prominent induction of DPP-4 protein expression/activity and endothelial to mesenchymal transition. In diabetic CD-1 mice, these alterations were all reversed by AcSDKP treatment. Transfection studies in culture endothelial cells demonstrated crosstalk regulation of miR-29s and miR-let-7s against mesenchymal activation program; such bidirectional regulation could play an essential role in maintaining the antifibrotic program of AcSDKP. Finally, we observed that AcSDKP suppression in fibrotic mice was associated with induction of both interferon-γ and transforming growth factor-β signaling, crucial molecular pathways that disrupt antifibrotic miRs crosstalk. The present study provides insight into the physiologically relevant antifibrotic actions of AcSDKP via antifibrotic miRs; restoring such antifibrotic programs could demonstrate potential utility in combating kidney fibrosis in diabetes. PMID:27425816

  1. Effect of Antifibrotic MicroRNAs Crosstalk on the Action of N-acetyl-seryl-aspartyl-lysyl-proline in Diabetes-related Kidney Fibrosis

    PubMed Central

    Srivastava, Swayam Prakash; Shi, Sen; Kanasaki, Megumi; Nagai, Takako; Kitada, Munehiro; He, Jianhua; Nakamura, Yuka; Ishigaki, Yasuhito; Kanasaki, Keizo; Koya, Daisuke

    2016-01-01

    N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous antifibrotic peptide. We found that suppression of AcSDKP and induction of dipeptidyl peptidase-4 (DPP-4), which is associated with insufficient levels of antifibrotic microRNA (miR)s in kidneys, were imperative to understand the mechanisms of fibrosis in the diabetic kidneys. Analyzing streptozotocin (STZ)-induced diabetic mouse strains, diabetic CD-1 mice with fibrotic kidneys could be differentiated from less-fibrotic diabetic 129Sv mice by suppressing AcSDKP and antifibrotic miRs (miR-29s and miR-let-7s), as well as by the prominent induction of DPP-4 protein expression/activity and endothelial to mesenchymal transition. In diabetic CD-1 mice, these alterations were all reversed by AcSDKP treatment. Transfection studies in culture endothelial cells demonstrated crosstalk regulation of miR-29s and miR-let-7s against mesenchymal activation program; such bidirectional regulation could play an essential role in maintaining the antifibrotic program of AcSDKP. Finally, we observed that AcSDKP suppression in fibrotic mice was associated with induction of both interferon-γ and transforming growth factor-β signaling, crucial molecular pathways that disrupt antifibrotic miRs crosstalk. The present study provides insight into the physiologically relevant antifibrotic actions of AcSDKP via antifibrotic miRs; restoring such antifibrotic programs could demonstrate potential utility in combating kidney fibrosis in diabetes. PMID:27425816

  2. Potential Use of Poly-N-Acetyl-β-(1,6)-Glucosamine as an Antigen for Diagnosis of Staphylococcal Orthopedic-Prosthesis-Related Infections▿

    PubMed Central

    Sadovskaya, Irina; Faure, Stéphanie; Watier, Denis; Leterme, Damien; Chokr, Ali; Girard, Julien; Migaud, Henry; Jabbouri, Saïd

    2007-01-01

    Staphylococcus aureus and coagulase-negative staphylococci are microorganisms most frequently isolated from orthopedic-implant-associated infections. Their capacity to maintain these infections is thought to be related to their ability to form adherent biofilms. Poly-N-acetyl-β-(1,6)-glucosamine (PNAG) is an important constituent of the extracellular biofilm matrix of staphylococci. In the present study, we explored the possibility of using PNAG as an antigen for detecting antibodies in the blood sera of patients with staphylococcal orthopedic-prosthesis-associated infections. First, we tested the presence of anti-PNAG antibodies in an animal model, in the blood sera of guinea pigs that developed an implant-associated infection caused by biofilm-forming, PNAG-producing strains of Staphylococcus epidermidis. Animals infected with S. epidermidis RP62A showed levels of anti-PNAG immunoglobulin G (IgG) significantly higher than those of the control group. The comparative study of healthy individuals and patients with staphylococcal prosthesis-related infections showed that (i) relatively high levels of anti-PNAG IgG were present in the blood sera of the healthy control group, (ii) the corresponding levels in the infected patients were slightly but not significantly higher, and (iii) only 1 of 10 patients had a level of anti-PNAG IgM significantly higher than that of the control group. In conclusion, the encouraging results obtained in the animal study could not be readily applied for the diagnosis of staphylococcal orthopedic-prosthesis-related infections in humans, and PNAG does not seem to be an appropriate antigen for this purpose. Further studies are necessary to determine whether the developed enzyme-linked immunosorbent assay method could serve as a complementary test in the individual follow-up treatment of such infections caused by PNAG-producing staphylococci. PMID:17942607

  3. N-Acetyl-Cysteine and l-Carnitine Prevent Meiotic Oocyte Damage Induced by Follicular Fluid From Infertile Women With Mild Endometriosis.

    PubMed

    Giorgi, Vanessa S I; Da Broi, Michele G; Paz, Claudia C P; Ferriani, Rui A; Navarro, Paula A

    2016-03-01

    This study evaluated the potential protective effect of the antioxidants, l-carnitine (LC) and N-acetyl-cysteine (NAC), in preventing meiotic oocyte damage induced by follicular fluid (FF) from infertile women with mild endometriosis (ME). We performed an experimental study. The FF samples were obtained from 22 infertile women undergoing stimulated cycles for intracytoplasmic sperm injection (11 with ME and 11 without endometriosis). Immature bovine oocytes were submitted to in vitro maturation (IVM) divided into 9 groups: no-FF (No-FF); with FF from control (CFF) or ME (EFF) groups; and with LC (C + LC and E + LC), NAC (C + NAC and E + NAC), or both antioxidants (C + 2Ao and E + 2Ao). After IVM, oocytes were immunostained for visualization of microtubules and chromatin by confocal microscopy. The percentage of meiotically normal metaphase II (MII) oocytes was significantly lower in the EFF group (51.35%) compared to No-FF (86.36%) and CFF (83.52%) groups. The E + NAC (62.22%), E + LC (80.61%), and E + 2Ao (61.40%) groups showed higher percentage of normal MII than EFF group. The E + LC group showed higher percentage of normal MII than E + NAC and E + 2Ao groups and a similar percentage to No-FF and CFF groups. Therefore, FF from infertile women with ME causes meiotic abnormalities in bovine oocytes, and, for the first time, we demonstrated that the use of NAC and LC prevents these damages. Our findings elucidate part of the pathogenic mechanisms involved in infertility associated with ME and open perspectives for further studies investigating whether the use of LC could improve the natural fertility and/or the results of in vitro fertilization of women with ME. PMID:26342050

  4. N-acetyl-beta-D-glucopyranosylamine: a potent T-state inhibitor of glycogen phosphorylase. A comparison with alpha-D-glucose.

    PubMed Central

    Oikonomakos, N. G.; Kontou, M.; Zographos, S. E.; Watson, K. A.; Johnson, L. N.; Bichard, C. J.; Fleet, G. W.; Acharya, K. R.

    1995-01-01

    Structure-based drug design has led to the discovery of a number of glucose analogue inhibitors of glycogen phosphorylase that have an increased affinity compared to alpha-D-glucose (Ki = 1.7 mM). The best inhibitor in the class of N-acyl derivatives of beta-D-glucopyranosylamine, N-acetyl-beta-D-glucopyranosylamine (1-GlcNAc), has been characterized by kinetic, ultracentrifugation, and crystallographic studies. 1-GlcNAc acts as a competitive inhibitor for both the b (Ki = 32 microM) and the a (Ki = 35 microM) forms of the enzyme with respect to glucose 1-phosphate and in synergism with caffeine, mimicking the binding of glucose. Sedimentation velocity experiments demonstrated that 1-GlcNAc was able to induce dissociation of tetrameric phosphorylase a and stabilization of the dimeric T-state conformation. Co-crystals of the phosphorylase b-1-GlcNAc-IMP complex were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the complex structure has been refined to give a crystallographic R factor of 18.1%, for data between 8 and 2.3 A resolution. 1-GlcNAc binds tightly at the catalytic site of T-state phosphorylase b at approximately the same position as that of alpha-D-glucose. The ligand can be accommodated in the catalytic site with very little change in the protein structure and stabilizes the T-state conformation of the 280s loop by making several favorable contacts to Asn 284 of this loop. Structural comparisons show that the T-state phosphorylase b-1-GlcNAc-IMP complex structure is overall similar to the T-state phosphorylase b-alpha-D-glucose complex structure. The structure of the 1-GlcNAc complex provides a rational for the biochemical properties of the inhibitor. PMID:8580837

  5. Crystallographic studies on two bioisosteric analogues, N-acetyl-beta-D-glucopyranosylamine and N-trifluoroacetyl-beta-D-glucopyranosylamine, potent inhibitors of muscle glycogen phosphorylase.

    PubMed

    Anagnostou, Eleni; Kosmopoulou, Magda N; Chrysina, Evangelia D; Leonidas, Demetres D; Hadjiloi, Theodoros; Tiraidis, Costantinos; Zographos, Spyros E; Györgydeák, Zoltán; Somsák, László; Docsa, Tibor; Gergely, Pál; Kolisis, Fragiskos N; Oikonomakos, Nikos G

    2006-01-01

    Structure-based inhibitor design has led to the discovery of a number of potent inhibitors of glycogen phosphorylase b (GPb), N-acyl derivatives of beta-D-glucopyranosylamine, that bind at the catalytic site of the enzyme. The first good inhibitor in this class of compounds, N-acetyl-beta-D-glucopyranosylamine (NAG) (K(i) = 32 microM), has been previously characterized by biochemical, biological and crystallographic experiments at 2.3 angstroms resolution. Bioisosteric replacement of the acetyl group by trifluoroacetyl group resulted in an inhibitor, N-trifluoroacetyl-beta-D-glucopyranosylamine (NFAG), with a K(i) = 75 microM. To elucidate the structural basis of its reduced potency, we determined the ligand structure in complex with GPb at 1.8 angstroms resolution. To compare the binding mode of N-trifluoroacetyl derivative with that of the lead molecule, we also determined the structure of GPb-NAG complex at a higher resolution (1.9 angstroms). NFAG can be accommodated in the catalytic site of T-state GPb at approximately the same position as that of NAG and stabilize the T-state conformation of the 280 s loop by making several favourable contacts to Asn284 of this loop. The difference observed in the K(i) values of the two analogues can be interpreted in terms of subtle conformational changes of protein residues and shifts of water molecules in the vicinity of the catalytic site, variations in van der Waals interaction, and desolvation effects. PMID:16213146

  6. N-acetyl-beta-D-glucopyranosylamine: a potent T-state inhibitor of glycogen phosphorylase. A comparison with alpha-D-glucose.

    PubMed

    Oikonomakos, N G; Kontou, M; Zographos, S E; Watson, K A; Johnson, L N; Bichard, C J; Fleet, G W; Acharya, K R

    1995-12-01

    Structure-based drug design has led to the discovery of a number of glucose analogue inhibitors of glycogen phosphorylase that have an increased affinity compared to alpha-D-glucose (Ki = 1.7 mM). The best inhibitor in the class of N-acyl derivatives of beta-D-glucopyranosylamine, N-acetyl-beta-D-glucopyranosylamine (1-GlcNAc), has been characterized by kinetic, ultracentrifugation, and crystallographic studies. 1-GlcNAc acts as a competitive inhibitor for both the b (Ki = 32 microM) and the a (Ki = 35 microM) forms of the enzyme with respect to glucose 1-phosphate and in synergism with caffeine, mimicking the binding of glucose. Sedimentation velocity experiments demonstrated that 1-GlcNAc was able to induce dissociation of tetrameric phosphorylase a and stabilization of the dimeric T-state conformation. Co-crystals of the phosphorylase b-1-GlcNAc-IMP complex were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the complex structure has been refined to give a crystallographic R factor of 18.1%, for data between 8 and 2.3 A resolution. 1-GlcNAc binds tightly at the catalytic site of T-state phosphorylase b at approximately the same position as that of alpha-D-glucose. The ligand can be accommodated in the catalytic site with very little change in the protein structure and stabilizes the T-state conformation of the 280s loop by making several favorable contacts to Asn 284 of this loop. Structural comparisons show that the T-state phosphorylase b-1-GlcNAc-IMP complex structure is overall similar to the T-state phosphorylase b-alpha-D-glucose complex structure. The structure of the 1-GlcNAc complex provides a rational for the biochemical properties of the inhibitor. PMID:8580837

  7. Antidepressant activity of aspartic acid derivatives.

    PubMed

    Petrov, V I; Sergeev, V S; Onishchenko, N V; Piotrovskii, L B

    2001-04-01

    Antidepressant activity of N-phenyl(benzyl)amino derivatives of aspartic acid was studied on various experimental models of depression. IEM-1770 (30 mg/kg) and IEM-1944 (20 mg/kg) exhibited antidepressant activity after single injection in the forced swimming and tail suspension tests. Antidepressant effect of 14-day administration of these compounds and reference drugs maprotiline (10 mg/kg) and citalopram (10 mg/kg) was confirmed on the model of learned helplessness. PMID:11550022

  8. A Biodistribution and Toxicity Study of Cobalt Dichloride-N-Acetyl Cysteine in an Implantable MRI Marker for Prostate Cancer Treatment

    SciTech Connect

    Frank, Steven J.; Johansen, Mary J.; Martirosyan, Karen S.; Gagea, Mihai; Van Pelt, Carolyn S.; Borne, Agatha; Carmazzi, Yudith; Madden, Timothy

    2013-03-15

    Purpose: C4, a cobalt dichloride-N-acetyl cysteine complex, is being developed as a positive-signal magnetic resonance imaging (MRI) marker to localize implanted radioactive seeds in prostate brachytherapy. We evaluated the toxicity and biodistribution of C4 in rats with the goal of simulating the systemic effects of potential leakage from C4 MRI markers within the prostate. Methods and Materials: 9-μL doses (equivalent to leakage from 120 markers in a human) of control solution (0.9% sodium chloride), 1% (proposed for clinical use), and 10% C4 solution were injected into the prostates of male Sprague-Dawley rats via laparotomy. Organ toxicity and cobalt disposition in plasma, tissues, feces, and urine were evaluated. Results: No C4-related morbidity or mortality was observed in the biodistribution arm (60 rats). Biodistribution was measurable after 10% C4 injection: cobalt was cleared rapidly from periprostatic tissue; mean concentrations in prostate were 163 μg/g and 268 μg/g at 5 and 30 minutes but were undetectable by 60 minutes. Expected dual renal-hepatic elimination was observed, with percentages of injected dose recovered in tissues of 39.0 ± 5.6% (liver), >11.8 ± 6.5% (prostate), and >5.3 ± 0.9% (kidney), with low plasma concentrations detected up to 1 hour (1.40 μg/mL at 5-60 minutes). Excretion in urine was 13.1 ± 4.6%, with 3.1 ± 0.54% recovered in feces by 24 hours. In the toxicity arm, 3 animals died in the control group and 1 each in the 1% and 10% groups from surgical or anesthesia-related complications; all others survived to scheduled termination at 14 days. No C4-related adverse clinical signs or organ toxicity were observed. Conclusion: C4-related toxicity was not observed at exposures at least 10-fold the exposure proposed for use in humans. These data demonstrating lack of systemic toxicity with dual routes of elimination in the event of in situ rupture suggest that C4 warrants further investigation as an MRI marker for prostate

  9. Structural analysis of a type 1 ribosome inactivating protein reveals multiple L-asparagine-N-acetyl-D-glucosamine monosaccharide modifications: Implications for cytotoxicity

    PubMed Central

    HOGG, TANIS; MENDEL, JAMESON T.; LAVEZO, JONATHAN L.

    2015-01-01

    Pokeweed antiviral protein (PAP) belongs to the family of type I ribosome-inactivating proteins (RIPs): Ribotoxins, which function by depurinating the sarcin-ricin loop of ribosomal RNA. In addition to its antibacterial and antifungal properties, PAP has shown promise in antiviral and targeted tumor therapy owing to its ability to depurinate viral RNA and eukaryotic rRNA. Several PAP genes are differentially expressed across pokeweed tissues, with natively isolated seed forms of PAP exhibiting the greatest cytotoxicity. To help elucidate the molecular basis of increased cytotoxicity of PAP isoenzymes from seeds, the present study used protein sequencing, mass spectroscopy and X-ray crystallography to determine the complete covalent structure and 1.7 Å X-ray crystal structure of PAP-S1aci isolated from seeds of Asian pokeweed (Phytolacca acinosa). PAP-S1aci shares ~95% sequence identity with PAP-S1 from P. americana and contains the signature catalytic residues of the RIP superfamily, corresponding to Tyr72, Tyr122, Glu175 and Arg178 in PAP-S1aci. A rare proline substitution (Pro174) was identified in the active site of PAP-S1aci, which has no effect on catalytic Glu175 positioning or overall active-site topology, yet appears to come at the expense of strained main-chain geometry at the pre-proline residue Val173. Notably, a rare type of N-glycosylation was detected consisting of N-acetyl-D-glucosamine monosaccharide residues linked to Asn10, Asn44 and Asn255 of PAP-S1aci. Of note, our modeling studies suggested that the ribosome depurination activity of seed PAPs would be adversely affected by the N-glycosylation of Asn44 and Asn255 with larger and more typical oligosaccharide chains, as they would shield the rRNA-binding sites on the protein. These results, coupled with evidence gathered from the literature, suggest that this type of minimal N-glycosylation in seed PAPs and other type I seed RIPs may serve to enhance cytotoxicity by exploiting receptor

  10. Origin of Long-Term Storage Stability and Nitric Oxide Release Behavior of CarboSil Polymer Doped with S-Nitroso-N-acetyl-D-penicillamine.

    PubMed

    Wo, Yaqi; Li, Zi; Brisbois, Elizabeth J; Colletta, Alessandro; Wu, Jianfeng; Major, Terry C; Xi, Chuanwu; Bartlett, Robert H; Matzger, Adam J; Meyerhoff, Mark E

    2015-10-14

    The prolonged and localized delivery of nitric oxide (NO), a potent antithrombotic and antimicrobial agent, has many potential biomedical applications. In this work, the origin of the long-term storage stability and sustained NO release mechanism of S-nitroso-N-acetyl-D-penicillamine (SNAP)-doped CarboSil 20 80A polymer, a biomedical thermoplastic silicone-polycarbonate-urethane, is explored. Long-term (22 days) localized NO release is achieved by utilizing a cross-linked silicone rubber as topcoats, which can greatly reduce the amount of SNAP, NAP, and NAP disulfide leaching from the SNAP-doped CarboSil films, as measured by LC-MS. Raman spectroscopy and powder X-ray diffraction characterization of SNAP-doped CarboSil films demonstrate that a polymer-crystal composite is formed during the solvent evaporation process when SNAP exceeds its solubility in CarboSil (ca. 3.4-4.0 wt %). Further, when exceeding this solubility threshold, SNAP exists in an orthorhombic crystal form within the bulk of the polymer. The proposed mechanism of sustained NO release in SNAP-doped CarboSil is that the solubilized SNAP in the polymer matrix decomposes and releases NO, primarily in the water-rich regions near the polymer/solution interface, and the dissolved SNAP in the bulk polymeric phase becomes unsaturated, resulting in the dissolution of crystalline SNAP within the bulk of the polymer. This is a very slow process that ultimately leads to NO release at the physiological flux levels for >3 weeks. The increased stability of SNAP within CarboSil is attributed to the intermolecular hydrogen bonds between the SNAP molecules that crystallize. This crystallization also plays a key role in maintaining RSNO stability within the CarboSil polymer for >8 months at 37 °C (88.5% remains). Further, intravascular catheters fabricated with this new material are demonstrated to significantly decrease the formation of Staphylococcus aureus biofilm (a leading cause of nosocomial bloodstream

  11. N-Acetyl-l-cysteine exacerbates generation of IL-10 in cells stimulated with endotoxin in vitro and produces antipyresis via IL-10 dependent pathway in vivo.

    PubMed

    Wrotek, Sylwia; Jędrzejewski, Tomasz; Piotrowski, Jakub; Kozak, Wiesław

    2016-09-01

    N-Acetyl-l-cysteine (NAC) is a well-known medication, primarily used as a mucolytic agent in pulmonary disease. Recently, we have found that NAC possesses antipyretic properties. The aim of the present study was to investigate the mechanism by which NAC attenuates fever. The concentration of interleukin (IL)-10 and prostaglandin (PG) E2 were measured using ELISA kit in the supernatants aspirated after stimulation of peripheral blood mononuclear cells (PBMCs) with lipopolysaccharide (LPS, 1μg/mL) and NAC (10mM). The body temperature of the Wistar rats was measured using biotelemetry system. To inhibit endotoxic fever, NAC (200mg/kg; i.p.) was injected into the rats one hour prior to the LPS administration (50μg/kg; i.p.). The pre-treatment of LPS-stimulated PBMCs with NAC resulted in a significant decrease in PGE2 concentration in comparison to the cells treated with LPS alone (PGE2 level was 386.1±61.9pg/mL vs. 2078.9±157.9pg/mL, respectively, p<0.001). Furthermore, in these cells we observed a significant increase in IL-10 level (142.1±2.62pg/mL in NAC+LPS stimulated cells vs. 54.4±0.6pg/mL in LPS stimulated cells, p<0.001). The injection of anti-IL-10 antibody into the rats abolished antipyretic properties of NAC. Body temperature in animals treated with anti-IL-10+NAC/LPS was 38.28±0.12°C vs. 37.73±0.06°C in IgG+NAC/LPS rats (p<0.001) and 38.31±0.20°C in NaCl/LPS-treated animals (n.s.). Based on these data, we conclude that NAC acts as an antipyretic via IL-10 stimulation. This finding provides a new insight into the immunopharmacology of NAC, and we believe that in a future it will contribute to the new and/or more accurate application of NAC in medicine. PMID:27363620

  12. N-acetyl-S-(N,N-diethylcarbamoyl) cysteine in rat nucleus accumbens, medial prefrontal cortex, and in rat and human plasma after disulfiram administration.

    PubMed

    Winefield, Robert D; Heemskerk, Anthonius A M; Kaul, Swetha; Williams, Todd D; Caspers, Michael J; Prisinzano, Thomas E; McCance-Katz, Elinore F; Lunte, Craig E; Faiman, Morris D

    2015-03-25

    Disulfiram (DSF), a treatment for alcohol use disorders, has shown some clinical effectiveness in treating addiction to cocaine, nicotine, and pathological gambling. The mechanism of action of DSF for treating these addictions is unclear but it is unlikely to involve the inhibition of liver aldehyde dehydrogenase (ALDH2). DSF is a pro-drug and forms a number of metabolites, one of which is N-acetyl-S-(N,N-diethylcarbamoyl) cysteine (DETC-NAC). Here we describe a LCMS/MS method on a QQQ type instrument to quantify DETC-NAC in plasma and intracellular fluid from mammalian brain. An internal standard, the N,N-di-isopropylcarbamoyl homolog (MIM: 291>128) is easily separable from DETC-NAC (MIM: 263>100) on C18 RP media with a methanol gradient. The method's linear range is 0.5-500 nM from plasma and dialysate salt solution with all precisions better than 10% RSD. DETC-NAC and internal standards were recovered at better than 95% from all matrices, perchloric acid precipitation (plasma) or formic acid addition (salt) and is stable in plasma or salt at low pH for up to 24 h. Stability is observed through three freeze-thaw cycles per day for 7 days. No HPLC peak area matrix effect was greater than 10%. A human plasma sample from a prior analysis for S-(N,N-diethylcarbamoyl) glutathione (CARB) was found to have DETC NAC as well. In other human plasma samples from 62.5 mg/d and 250 mg/d dosing, CARB concentration peaks at 0.3 and 4 nM at 3 h followed by DETC-NAC peaks of 11 and 70 nM 2 h later. Employing microdialysis sampling, DETC-NAC levels in the nucleus accumbens (NAc), medial prefrontal cortex (mPFC), and plasma of rats treated with DSF reached 1.1, 2.5 and 80 nM at 6h. The correlation between the appearance and long duration of DETC-NAC concentration in rat brain and the persistence of DSF-induced changes in neurotransmitters observed by Faiman et al. (Neuropharmacology, 2013, 75C, 95-105) is discussed. PMID:25720821

  13. A Biodistribution and Toxicity Study of Cobalt Dichloride–N-Acetyl Cysteine (C4) as an Implantable MRI Marker for Prostate Cancer Treatment

    PubMed Central

    Frank, Steven J.; Johansen, Mary J.; Martirosyan, Karen; Gagea, Mihai; Van Pelt, Carolyn S.; Borne, Agatha; Carmazzi, Yudith; Madden, Timothy

    2013-01-01

    Purpose C4, a cobalt dichloride–N-acetyl cysteine complex, is being developed as a positive-signal magnetic resonance imaging (MRI) marker to localize implanted radioactive seeds in prostate brachytherapy. We evaluated the toxicity and biodistribution of C4 in rats with the goal of simulating systemic effects of potential leakage from C4 MRI markers within the prostate. Methods 9 µl doses (equivalent to leakage from 120 markers in a human) of control (0.9% sodium chloride), 1% (proposed for clinical use) and 10% C4 solution were injected into the prostates of male Sprague-Dawley rats via laparotomy. Organ toxicity and cobalt disposition in plasma, tissues, feces and urine were evaluated. Results No C4-related morbidity or mortality was observed in the biodistribution arm (60 rats). Biodistribution was measurable following 10% C4 injection: cobalt was cleared rapidly from periprostatic tissue; mean concentrations in prostate were 163 µg/g and 268 µg/g at 5 and 30 minutes but were undetectable by 60 minutes. Expected dual renal-hepatic elimination was observed with % injected dose recovered in tissues of 39.0 ±5.6% (liver) > 11.8 ±6.5% (prostate) > 5.3 ±0.9% (kidney) with low plasma concentrations detected up to 1 hr (1.40 µg/ml at 5–60 minutes). Excretion in urine was 13.1 ±4.6 % with 3.1 ±0.54 % recovered in feces by 24 hours. In the toxicity arm, three animals died in the control group and 1 each in the 1% and 10% groups from surgical or anesthesia-related complications; all others survived to scheduled termination at 14 days. No C4-related adverse clinical signs or organ toxicity was observed. Conclusion C4-related toxicity was not observed at exposures at least 10-fold that proposed for human use. This data demonstrating lack of systemic toxicity with dual routes of elimination in the event of in-situ rupture suggests C4 warrants further investigation as an MRI marker for prostate brachytherapy. PMID:23092727

  14. The influence of N-acetyl-L-cysteine on oxidative stress and nitric oxide synthesis in stimulated macrophages treated with a mustard gas analogue

    PubMed Central

    Paromov, Victor; Qui, Min; Yang, Hongsong; Smith, Milton; Stone, William L

    2008-01-01

    Background Sulphur mustard gas, 2, 2'-dichlorodiethyl sulphide (HD), is a chemical warfare agent. Both mustard gas and its monofunctional analogue, 2-chloroethyl ethyl sulphide (CEES), are alkylating agents that react with and diminish cellular thiols and are highly toxic. Previously, we reported that lipopolysaccharide (LPS) significantly enhances the cytotoxicity of CEES in murine RAW 264.7 macrophages and that CEES transiently inhibits nitric oxide (NO) production via suppression of inducible NO synthase (iNOS) protein expression. NO generation is an important factor in wound healing. In this paper, we explored the hypotheses that LPS increases CEES toxicity by increasing oxidative stress and that treatment with N-acetyl-L-cysteine (NAC) would block LPS induced oxidative stress and protect against loss of NO production. NAC stimulates glutathione (GSH) synthesis and also acts directly as a free radical scavenger. The potential therapeutic use of the antibiotic, polymyxin B, was also evaluated since it binds to LPS and could thereby block the enhancement of CEES toxicity by LPS and also inhibit the secondary infections characteristic of HD/CEES wounds. Results We found that 10 mM NAC, when administered simultaneously or prior to treatment with 500 μM CEES, increased the viability of LPS stimulated macrophages. Surprisingly, NAC failed to protect LPS stimulated macrophages from CEES induced loss of NO production. Macrophages treated with both LPS and CEES show increased oxidative stress parameters (cellular thiol depletion and increased protein carbonyl levels). NAC effectively protected RAW 264.7 cells simultaneously treated with CEES and LPS from GSH loss and oxidative stress. Polymyxin B was found to partially block nitric oxide production and diminish CEES toxicity in LPS-treated macrophages. Conclusion The present study shows that oxidative stress is an important mechanism contributing to CEES toxicity in LPS stimulated macrophages and supports the notion

  15. Dual effects of N-acetyl-L-cysteine dependent on NQO1 activity: Suppressive or promotive of 9,10-phenanthrenequinone-induced toxicity

    SciTech Connect

    Toyooka, Tatsushi; Shinmen, Takuya; Aarts, Jac M.M.J.G.; Ibuki, Yuko

    2012-11-01

    A typical antioxidant, N-acetyl-L-cysteine (NAC) generally protects cells from oxidative damage induced by reactive oxygen species (ROS). 9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, produces ROS in redox cycling following two-electron reduction by NAD(P)H:quinone oxidoreductase 1 (NQO1), which has been considered as a cause of its cyto- and genotoxicity. In this study, we show that NAC unexpectedly augments the toxicity of 9,10-PQ in cells with low NQO1 activity. In four human skin cell lines, the expression and the activity of NQO1 were lower than in human adenocarcinoma cell lines, A549 and MCF7. In the skin cells, the cytotoxicity of 9,10-PQ was significantly enhanced by addition of NAC. The formation of DNA double strand breaks accompanying phosphorylation of histone H2AX, was also remarkably augmented. On the other hand, the cyto- and genotoxicity were suppressed by addition of NAC in the adenocarcinoma cells. Two contrasting experiments: overexpression of NQO1 in CHO-K1 cells which originally expressed low NQO1 levels, and knock‐down of NQO1 in the adenocarcinoma cell line A549 by transfection of RNAi, also showed that NAC suppressed 9,10-PQ-induced toxicity in cell lines expressing high NQO1 activity and enhanced it in cell lines with low NQO1 activity. The results suggested that dual effects of NAC on the cyto- and genotoxicity of 9,10-PQ were dependent on tissue-specific NQO1 activity. -- Highlights: ► NAC augmented the cytotoxicity of 9,10-PQ in skin cell lines. ► 9,10-PQ-induced DSBs accompanying γ-H2AX were also augmented by NAC. ► NAC suppressed the cyto- and genotoxicity of 9,10-PQ in adenocarcinoma cell lines. ► The dual effects of NAC on toxicity of 9,10-PQ were dependent on NQO1 activity.

  16. Protective role of N-Acetyl L-Cysteine against reproductive toxicity due to interaction of lead and cadmium in male Wistar rats

    PubMed Central

    Kumar, Banothu Anil; Reddy, Alla Gopala; Kumar, Pentela Ravi; Reddy, Yerradoddi Ramana; Rao, Thirtham Madava; Haritha, Chiluka

    2013-01-01

    Introduction: One of the target organs of heavy metals is testis and many authors proposed that oxidative stress could be responsible to induce their toxicity. An experimental study was conducted to evaluate the molecular mechanisms of lead (Pb) and cadmium (Cd) toxicity, their toxicodynamic interaction and to evaluate therapeutic potential of N-Acetyl L-cysteine (NAC) against the reproductive toxicity in male Wistar rats. Material and methods: rats were randomly divided into 8 groups comprising of 6 rats in each. Group 1 and 2 were syam and NAC control, Group 3, 4 and 5 were kept as toxic control groups such as lead, cadmium and lead + cadmium respectively, where as Group 6, 7 and 8 were therapeutic groups with NAC. The experiment scheduled for 3 months. Body weights, anti-oxidant profile (GSH, GST, TBARS and protein carbonyls) in testis, testis weight, testicular LDH, sperm count and histopathology were conducted. And also, interaction of Pb and Cd with zinc (Zn) and copper (Cu) in testis was assessed. Results: The present study revealed significant alterations in body weights, anti-oxidant profile, weights of testes, testicular LDH, sperm count, and concentration of Zn and Cu in toxic control groups 3, 4 and 5 as compared to control and NAC-treated groups. The toxic combination (Pb+Cd) group 5 showed significant alterations in protein carbonyls, GST levels and testicular LDH as compared to Pb and Cd alone administered groups and these results are substantiated with marked changes in the histopathology. All the NAC-treated groups revealed significant improvement in all the parameters. Conclusion: The results of the investigation revealed that Pb, Cd and their combination induces toxicity to the biological system due to the excess generation of free radicals and impairment of anti-oxidant defenses. Toxic effects were more pronounced in the group that received a combination of Pb and Cd, suggesting positive toxicodynamic interaction. Use of NAC countered the

  17. Roles of P-glycoprotein and multidrug resistance protein in transporting para-aminosalicylic acid and its N-acetylated metabolite in mice brain

    PubMed Central

    Hong, Lan; Xu, Cong; O'Neal, Stefanie; Bi, Hui-chang; Huang, Min; Zheng, Wei; Zeng, Su

    2014-01-01

    Aim: Para-aminosalicylic acid (PAS) is effective in the treatment of manganism-induced neurotoxicity (manganism). In this study we investigated the roles of P-glycoprotein (MDR1a) and multidrug resistance protein (MRP) in transporting PAS and its N-acetylated metabolite AcPAS through blood-brain barrier. Methods: MDR1a-null or wild-type mice were intravenously injected with PAS (200 mg/kg). Thirty minutes after the injection, blood samples and brains were collected, and the concentrations of PAS and AcPAS in brain capillaries and parenchyma were measured using HPLC. Both MDCK-MDR1 and MDCK-MRP1 cells that overexpressed P-gp and MRP1, respectively, were used in two-chamber Transwell transport studies in vitro. Results: After injection of PAS, the brain concentration of PAS was substantially higher in MDR1a-null mice than in wild-type mice, but the brain concentration of AcPAS had no significant difference between MDR1a-null mice and wild-type mice. Concomitant injection of PAS with the MRP-specific inhibitor MK-571 (50 mg/kg) further increased the brain concentration of PAS in MDR1a-null mice, and increased the brain concentration of AcPAS in both MDR1a-null mice and wild-type mice. Two-chamber Transwell studies with MDCK-MDR1 cells demonstrated that PAS was not only a substrate but also a competitive inhibitor of P-gp, while AcPAS was not a substrate of P-gp. Two-chamber Transwell studies with the MDCK-MRP1 cells showed that MRP1 had the ability to transport both PAS and AcPAS across the BBB. Conclusion: P-gp plays a major role in the efflux of PAS from brain parenchyma into blood in mice, while MRP1 is involved in both PAS and AcPAS transport in the brain. PMID:25418377

  18. Efficacy of holmium laser urethrotomy and intralesional injection of Santosh PGI tetra-inject (Triamcinolone, Mitomycin C, Hyaluronidase and N-acetyl cysteine) on the outcome of urethral strictures

    PubMed Central

    Kishore, Lalit; Sharma, Aditya Prakash; Garg, Nitin; Singh, Shrawan Kumar

    2015-01-01

    Introduction To study the efficacy of holmium laser urethrotomy with intralesional injection of Santosh PGI tetra-inject (Triamcinolone, Mitomycin C, Hyaluronidase and N-acetyl cysteine) in the treatment of urethral strictures. Material and methods A total of 50 patients with symptomatic urethral stricture were evaluated by clinical history, physical examination, uroflowmetry and retrograde urethrogram preoperatively. All patients were treated with holmium laser urethrotomy, followed by injection of tetra-inject at the urethrotomy site. Tetra-inject was prepared by diluting acombination of 40 mg Triamcinolone, 2 mg Mitomycin, 3000 UHyaluronidase and 600 mg N-acetyl cysteine in 5–10 ml of saline, according to the stricture length. An indwelling 18 Fr silicone catheter was left in place for 7–10 days.All patients were followed-up for 6-18 months postoperatively by history, uroflowmetry, and if required, retrograde urethrogram and micturating urethrogram every 3 months. Results 41 (82%) patients had asuccessful outcome,whereas 9 (18%) had recurrences during a follow-up ranging from 6–18 months. In <1 cm length strictures, the success rate was 100%, while in 1–3 cm and >3 cm lengthsthe success rates were 81.2% and 66.7% respectively. This modality, thus, has an encouraging success rate, especially in those with short segment urethral strictures (<3 cm). Conclusions Holmium laser urethrotomy with intralesional injection ofSantosh PGI tetra-inject (Triamcinolone, Mitomycin C, Hyaluronidase, N-acetyl cysteine) is a safe and effective minimally-invasive therapeutic modality for short segment urethral strictures. PMID:26855803

  19. Nagstatin, a new inhibitor of N-acetyl-beta-D-glucosaminidase, produced by Streptomyces amakusaensis MG846-fF3. Taxonomy, production, isolation, physico-chemical properties and biological activities.

    PubMed

    Aoyagi, T; Suda, H; Uotani, K; Kojima, F; Aoyama, T; Horiguchi, K; Hamada, M; Takeuchi, T

    1992-09-01

    Nagstatin, a new inhibitor of N-acetyl-beta-D-glucosaminidase (NAG-ase) was discovered in the fermentation broth of Streptomyces amakusaensis MG846-fF3. It was purified by chromatography on Dowex 50W, Avicel and Sephadex LH-20 followed by the treatment of active carbon and then isolated as colorless powder. Nagstatin has the molecular formula of C12H17N3O6. It is competitive with the substrate, and the inhibition constant (Ki) was 1.7 x 10(-8) M. PMID:1429224

  20. Structure of N-acetyl-[beta]-D-glucosaminidase (GcnA) from the Endocarditis Pathogen Streptococcus gordonii and its Complex with the Mechanism-based Inhibitor NAG-thiazoline

    SciTech Connect

    Langley, David B.; Harty, Derek W.S.; Jacques, Nicholas A.; Hunter, Neil; Guss, J. Mitchell; Collyer, Charles A.

    2008-09-17

    The crystal structure of GcnA, an N-acetyl-{beta}-D-glucosaminidase from Streptococcus gordonii, was solved by multiple wavelength anomalous dispersion phasing using crystals of selenomethionine-substituted protein. GcnA is a homodimer with subunits each comprised of three domains. The structure of the C-terminal {alpha}-helical domain has not been observed previously and forms a large dimerization interface. The fold of the N-terminal domain is observed in all structurally related glycosidases although its function is unknown. The central domain has a canonical ({beta}/{alpha}){sub 8} TIM-barrel fold which harbours the active site. The primary sequence and structure of this central domain identifies the enzyme as a family 20 glycosidase. Key residues implicated in catalysis have different conformations in two different crystal forms, which probably represent active and inactive conformations of the enzyme. The catalytic mechanism for this class of glycoside hydrolase, where the substrate rather than the enzyme provides the cleavage-inducing nucleophile, has been confirmed by the structure of GcnA complexed with a putative reaction intermediate analogue, N-acetyl-{beta}-D-glucosamine-thiazoline. The catalytic mechanism is discussed in light of these and other family 20 structures.

  1. Synthesis and biological evaluation of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore: dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity.

    PubMed

    Chowdhury, Morshed A; Abdellatif, Khaled R A; Dong, Ying; Das, Dipankar; Yu, Gang; Velázquez, Carlos A; Suresh, Mavanur R; Knaus, Edward E

    2009-12-15

    A novel class of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore attached to its C-4 or C-5 position was designed for evaluation as anti-inflammatory (AI) agents. Replacement of the 2,4-difluorophenyl ring in diflunisal by the N-difluoromethyl-1,2-dihydropyrid-2-one moiety provided compounds showing dual selective cyclooxygenase-2 (COX-2)/5-lipoxygenase (5-LOX) inhibitory activities. AI structure-activity studies showed that the C-4 (14a) and C-5 (14b) salicylate regioisomers were 1.4- and 1.6-fold more potent than aspirin, and the C-5 N-acetyl-2-carboxybenzenesulfonamide regioisomer (22b) was 1.3- and 2.8-fold more potent than ibuprofen and aspirin, respectively. In vivo ulcer index (UI) studies showed that the 4- and 5-(N-difluoromethyl-1,2-dihydropyrid-2-one-4-yl)salicylic acids (14a and 14b) were completely non-ulcerogenic since no gastric lesions were present (UI=0) relative to aspirin (UI=57) at an equivalent mumol/kg oral dose. The N-difluoromethyl-1,2-dihydropyridin-2-one moiety provides a novel 5-LOX pharmacophore for the design of cyclic hydroxamic mimetics for exploitation in the development of dual COX-2/5-LOX inhibitory AI drugs. PMID:19884005

  2. Submicromolar Phosphinic Inhibitors of E. coli Aspartate Transcarbamoylase

    PubMed Central

    Coudray, Laëtitia; Kantrowitz, Evan R.; Montchamp, Jean-Luc

    2009-01-01

    The design, syntheses, and enzymatic activity of two submicromolar competitive inhibitors of aspartate transcarbamoylase (ATCase) are described. The phosphinate inhibitors are analogs of N-phosphonacetyl-L-aspartate (PALA) but have a reduced charge at the phosphorus moiety. The mechanistic implications are discussed in terms of a possible cyclic transition-state during enzymatic catalysis. PMID:19097895

  3. Partial purification and characterization of an inducible indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans

    SciTech Connect

    Chou, Jyh-Ching |; Cohen, J.D.; Mulbry, W.W.

    1996-11-01

    Indole-3-acetyl-amino acid conjugate hydrolases are believed to be important in the regulation of indole-3-acetic acid (IAA) metabolism in plants and therefore have potential uses for the alteration of plant IAA metabolism. To isolate bacterial strains exhibiting significant indole-3-acetyl-aspartate (IAA-Asp) hydrolase activity, a sewage sludge inoculation was cultured under conditions in which IAA-Asp served as the sole source of carbon and nitrogen. One isolate, Enterobacter agglomerans, showed hydrolase activity inducible by IAA-L-Asp or N-acetyl-L-Asp but not by IAA, (NH{sub 4}){sub 2}SO{sub 4}, urea, or indoleacetamide. Among a total of 17 IAA conjugates tested as potential substrates, the enzyme had an exclusively high substrate specificity for IAA-L-Asp of 13.5 mM. The optimal pH for this enzyme was between 8.0 and 8.5. In extraction buffer containing 0.8 mM Mg{sup 2+} the hydrolase activity was inhibited to 80% by 1 mM dithiothreitol and to 60% by 1 mm CuSO{sub 4}; the activity was increased by 40% with 1mM MnSO{sub 4}. However, in extraction buffer with no trace elements, the hydrolase activity was inhibited to 50% by either 1 mM dithiothreitol or 1% Triton X-100 (Sigma). These results suggest that disulfide bonding might be essential for enzyme activity. Purification of the hydrolase by hydroxyapatite and TSK-phenyl (HP-Genenchem, South San Francisco, CA) preparative high-performance liquid chromatography yielded a major 45-kD polypeptide as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 45 refs., 5 figs., 3 tabs.

  4. Secreted Aspartic Proteinase Family of Candida tropicalis

    PubMed Central

    Zaugg, Christophe; Borg-von Zepelin, Margarete; Reichard, Utz; Sanglard, Dominique; Monod, Michel

    2001-01-01

    Medically important yeasts of the genus Candida secrete aspartic proteinases (Saps), which are of particular interest as virulence factors. Like Candida albicans, Candida tropicalis secretes in vitro one dominant Sap (Sapt1p) in a medium containing bovine serum albumin (BSA) as the sole source of nitrogen. Using the gene SAPT1 as a probe and under low-stringency hybridization conditions, three new closely related gene sequences, SAPT2 to SAPT4, encoding secreted proteinases were cloned from a C. tropicalis λEMBL3 genomic library. All bands identified by Southern blotting of EcoRI-digested C. tropicalis genomic DNA with SAPT1 could be assigned to a specific SAP gene. Therefore, the SAPT gene family of C. tropicalis is likely to contain only four members. Interestingly, the SAPT2 and SAPT3 gene products, Sapt2p and Sapt3p, which have not yet been detected in C. tropicalis cultures in vitro, were produced as active recombinant enzymes with the methylotrophic yeast Pichia pastoris as an expression system. As expected, reverse transcriptase PCR experiments revealed a strong SAPT1 signal with RNA extracted from cells grown in BSA medium. However, a weak signal was obtained with all other SAPT genes under several conditions tested, showing that these SAPT genes could be expressed at a basic level. Together, these experiments suggest that the gene products Sapt2p, Sapt3p, and Sapt4p could be produced under conditions yet to be described in vitro or during infection. PMID:11119531

  5. Aspartate inhibits Staphylococcus aureus biofilm formation.

    PubMed

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp. PMID:25687923

  6. Aspartate Aminotransferase in Alfalfa Root Nodules 1

    PubMed Central

    Farnham, Mark W.; Griffith, Stephen M.; Miller, Susan S.; Vance, Carroll P.

    1990-01-01

    Aspartate aminotransferase (AAT) plays an important role in nitrogen metabolism in all plants and is particularly important in the assimilation of fixed N derived from the legume-Rhizoblum symbiosis. Two isozymes of AAT (AAT-1 and AAT-2) occur in alfalfa (Medicago sativa L.). Antibodies against alfalfa nodule AAT-2 do not recognize AAT-1, and these antibodies were used to study AAT-2 expression in different tissues and genotypes of alfalfa and also in other legume and nonlegume species. Rocket immunoelectrophoresis indicated that nodules of 38-day-old alfalfa plants contained about eight times more AAT-2 than did nodules of 7-day-old plants, confirming the nodule-enhanced nature of this isozyme. AAT-2 was estimated to make up 16, 15, 5, and 8 milligrams per gram of total soluble protein in mature nodules, roots, stems, and leaves, respectively, of effective N2-fixing alfalfa. The concentration of AAT-2 in nodules of ineffective non-N2-fixing alafalfa genotypes was about 70% less than that of effective nodules. Western blots of soluble protein from nodules of nine legume species indicated that a 40-kilodalton polypeptide that reacts strongly with AAT-2 antibodies is conserved in legumes. Nodule AAT-2 immunoprecipitation data suggested that amide- and ureide-type legumes may differ in expression and regulation of the enzyme. In addition, Western blotting and immunoprecipitations of AAT activity demonstrated that antibodies against alfalfa AAT-2 are highly cross-reactive with AAT enzyme protein in leaves of soybean (Glycine max L.), wheat (Triticum aestivum L.), and maize (Zea mays L.) and in roots of maize, but not with AAT in soybean and wheat roots. Results from this study indicate that AAT-2 is structurally conserved and localized in similar tissues among diverse species. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16667896

  7. Iron-chelating and anti-lipid peroxidation properties of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) in long-term iron loading β-thalassemic mice

    PubMed Central

    Kulprachakarn, Kanokwan; Chansiw, Nittaya; Pangjit, Kanjana; Phisalaphong, Chada; Fucharoen, Suthat; Hider, Robert C.; Santitherakul, Sineenart; Srichairatanakool, Somdet

    2014-01-01

    Objective To evaluate the iron-chelating properties and free-radical scavenging activities of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) treatment in chronic iron-loaded β-thalassemic (BKO) mice. Methods The BKO mice were fed with a ferrocene-rich diet and were orally administered with CM1 [50 mg/(kg.day)] for 6 months. Blood levels of non-transferrin bound iron, labile plasma iron, ferritin (Ft) and malondialdehyde were determined. Results The BKO mice were fed with an iron diet for 8 months which resulted in iron overload. Interestingly, the mice showed a decrease in the non-transferrin bound iron, labile plasma iron and malondialdehyde levels, but not the Ft levels after continuous CM1 treatment. Conclusions CM1 could be an effective oral iron chelator that can reduce iron overload and lipid peroxidation in chronic iron overload β-thalassemic mice. PMID:25183338

  8. Solution structure of R(2)Sn(IV)-beta-N-acetyl-neuraminate (R = Me, Bu) complexes in D(2)O and DMSO-d(6): experimental NMR and DFT computational study.

    PubMed

    Bertazzi, Nuccio; Casella, Girolamo; Ferrante, Francesco; Pellerito, Lorenzo; Rotondo, Archimede; Rotondo, Enrico

    2007-04-14

    Two diorganotin(IV)-NANA complexes (NANA (1) = beta-N-acetyl-Neuraminic Acid = 5-amino-3,5-dideoxy-D-glycero-beta-D-galactononulosic acid) with formula Me(2)Sn(iv)NANA (2) and Bu(2)Sn(IV)NANA (3) were synthesized and characterized by (1)H, (13)C and (119)Sn NMR spectroscopy, both in D(2)O and DMSO-d(6) solutions. The experimental data in DMSO suggested the monosaccharide bidentate chelation via O1 carboxylate and vicinal O2 alkoxide atoms, which, in D(2)O, can be dynamically extended to a third binding site (O8 atom) of the pendant chain. Coordination at the tin atom is discussed on the basis of experimental NMR data and DFT calculation. PMID:17387406

  9. Crystallographic studies of aspartate racemase from Lactobacillus sakei NBRC 15893.

    PubMed

    Fujii, Tomomi; Yamauchi, Takae; Ishiyama, Makoto; Gogami, Yoshitaka; Oikawa, Tadao; Hata, Yasuo

    2015-08-01

    Aspartate racemase catalyzes the interconversion between L-aspartate and D-aspartate and belongs to the PLP-independent racemases. The enzyme from the lactic acid bacterium Lactobacillus sakei NBRC 15893, isolated from kimoto, is considered to be involved in D-aspartate synthesis during the brewing process of Japanese sake at low temperatures. The enzyme was crystallized at 293 K by the sitting-drop vapour-diffusion method using 25%(v/v) PEG MME 550, 5%(v/v) 2-propanol. The crystal belonged to space group P3121, with unit-cell parameters a = b = 104.68, c = 97.29 Å, and diffracted to 2.6 Å resolution. Structure determination is under way. PMID:26249691

  10. Effect of 16.16 dimethyl prostaglandin E2, N-acetyl-cysteine and the proton pump inhibitor BY 831-78 on hydrogen peroxide-induced mucosal damage in the rat stomach.

    PubMed

    Schürer-Maly, C C; Haussner, V; Halter, F

    1990-01-01

    Reactive oxygen species are noxious to gastrointestinal mucosa and contribute to a variety of gastrointestinal diseases. We examined whether 16.16 dimethyl prostaglandin E2 (PG) is protective against the oxidizing action of 6% H2O2 causing gross hemorrhagic lesions in rat gastric mucosa. Male Wistar rats were treated with PG, 0.005-5 micrograms/kg, either intragastrically (i.g.) or subcutaneously, 30 min prior to i.g. administration of 6% H2O2, 0.5 ml/100 g. Further animals received 25 mg of the mucus dissolvent N-acetyl-cystein (NAC) following oral PG treatment or 30 mumol/kg of the H+K(+)-ATPase inhibitor BY 831-78 (BY), 4 h before onset of the experiments. Volume, pH and beta-N-acetyl-glucosaminidase and lactate dehydrogenase as parameters of cell damage were determined in the gastric juice. i.g. PG treatment achieved 60 and 55% reduction of the mucosal lesions in doses between 5 and 0.05 micrograms/kg, respectively. i.p. PG administration was effective in all doses tested. Gastric juice volume was only slightly and enzymes were not significantly affected by PG treatment. NAC did not diminish PG efficacy or aggravate mucosal lesions. Gastric acid suppression did not increase PG-induced protection but was strongly protective by itself, reducing damage by 75%. Low-dose PG treatment achieves an effective protection against oxidative damage in gastric mucosa, which is not the result of dilution or enhanced mucus production. PMID:2147665

  11. D-Alanylation of Teichoic Acids and Loss of Poly-N-Acetyl Glucosamine in Staphylococcus aureus during Exponential Growth Phase Enhance IL-12 Production in Murine Dendritic Cells

    PubMed Central

    Lund, Lisbeth Drozd; Ingmer, Hanne; Frøkiær, Hanne

    2016-01-01

    Staphylococcus aureus is a major human pathogen that has evolved very efficient immune evading strategies leading to persistent colonization. During different stages of growth, S. aureus express various surface molecules, which may affect the immune stimulating properties, but very little is known about their role in immune stimulation and evasion. Depending on the growth phase, S. aureus may affect antigen presenting cells differently. Here, the impact of growth phases and the surface molecules lipoteichoic acid, peptidoglycan and poly-N-acetyl glucosamine on the induction of IL-12 imperative for an efficient clearance of S. aureus was studied in dendritic cells (DCs). Exponential phase (EP) S. aureus was superior to stationary phase (SP) bacteria in induction of IL-12, which required actin-mediated endocytosis and endosomal acidification. Moreover, addition of staphylococcal cell wall derived peptidoglycan to EP S. aureus stimulated cells increased bacterial uptake but abrogated IL-12 induction, while addition of lipoteichoic acid increased IL-12 production but had no effect on the bacterial uptake. Depletion of the capability to produce poly-N-acetyl glucosamine increased the IL-12 inducing activity of EP bacteria. Furthermore, the mutant dltA unable to produce D-alanylated teichoic acids failed to induce IL-12 but like peptidoglycan and the toll-like receptor (TLR) ligands LPS and Pam3CSK4 the mutant stimulated increased macropinocytosis. In conclusion, the IL-12 response by DCs against S. aureus is highly growth phase dependent, relies on cell wall D-alanylation, endocytosis and subsequent endosomal degradation, and is abrogated by receptor induced macropinocytosis. PMID:26872029

  12. Non-enzymic beta-decarboxylation of aspartic acid.

    NASA Technical Reports Server (NTRS)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  13. Age estimation in forensic sciences: Application of combined aspartic acid racemization and radiocarbon analysis

    SciTech Connect

    Alkass, K; Buchholz, B A; Ohtani, S; Yamamoto, T; Druid, H; Spalding, S L

    2009-11-02

    Age determination of unknown human bodies is important in the setting of a crime investigation or a mass disaster, since the age at death, birth date and year of death, as well as gender, can guide investigators to the correct identity among a large number of possible matches. Traditional morphological methods used by anthropologists to determine age are often imprecise, whereas chemical analysis of tooth dentin, such as aspartic acid racemization has shown reproducible and more precise results. In this paper we analyze teeth from Swedish individuals using both aspartic acid racemization and radiocarbon methodologies. The rationale behind using radiocarbon analysis is that above-ground testing of nuclear weapons during the cold war (1955-1963) caused an extreme increase in global levels of carbon-14 ({sup 14}C) which have been carefully recorded over time. Forty-four teeth from 41 individuals were analyzed using aspartic acid racemization analysis of tooth crown dentin or radiocarbon analysis of enamel and ten of these were split and subjected to both radiocarbon and racemization analysis. Combined analysis showed that the two methods correlated well (R2=0.66, p < 0.05). Radiocarbon analysis showed an excellent precision with an overall absolute error of 0.6 {+-} 04 years. Aspartic acid racemization also showed a good precision with an overall absolute error of 5.4 {+-} 4.2 years. Whereas radiocarbon analysis gives an estimated year of birth, racemization analysis indicates the chronological age of the individual at the time of death. We show how these methods in combination can also assist in the estimation of date of death of an unidentified victim. This strategy can be of significant assistance in forensic casework involving dead victim identification.

  14. [Aspartate aminotransferase--key enzyme in the human systemic metabolism].

    PubMed

    Otto-Ślusarczyk, Dagmara; Graboń, Wojciech; Mielczarek-Puta, Magdalena

    2016-01-01

    Aspartate aminotransferase is an organ-nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms--cytoplasmic (AST1) and mitochondrial (AST2), that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys - 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp) in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs. PMID:27117097

  15. In situ properties of Helicobacter pylori aspartate carbamoyltransferase.

    PubMed

    Burns, B P; Mendz, G L; Hazell, S L

    1997-11-01

    The kinetic and regulatory properties of aspartate carbamoyltransferase (ACTase) of the human pathogen Helicobacter pylori were studied in situ in cell-free extracts. The presence of enzyme activity was established by identifying the end product as carbamoylaspartate using nuclear magnetic resonance spectroscopy. Activity was measured in all strains studied, including recent clinical isolates. Substrate saturation curves determined employing radioactive tracer analysis or a microtiter colorimetric assay were hyperbolic for both carbamoyl phosphate and aspartate, and there was no evidence for substrate inhibition at higher concentrations of either substrate. The apparent Km were 0.6 and 11.6 mm for carbamoyl phosphate and aspartate, respectively. Optimal pH and temperature were determined as 8.0 and 45 degrees C. Activity was observed with the l- but not the d-isomer of aspartate. Succinate and maleate inhibited enzyme activity competitively with respect to aspartate. The carbamoyl phosphate analogues acetyl phosphate and phosphonoacetic acid inhibited activity in a competitive manner with respect to carbamoyl phosphate. With limiting carbamoyl phosphate purine and pyrimidine nucleotides, tripolyphosphate, pyrophosphate, and orthophosphate inhibited competitively at millimolar concentrations. Ribose and ribose 5-phosphate at 10 mm concentration showed 20 and 35% inhibition of enzyme activity, respectively. N-Phosphonoacetyl-l-aspartate (PALA) was the most potent inhibitor studied, with 50% inhibition of enzyme activity observed at 0.1 microM concentration. Inhibition by PALA was competitive with carbamoyl phosphate (Ki = 0.245 microM) and noncompetitive with aspartate. The kinetic and regulatory data on the activity of the H. pylori enzyme suggest it is a Class A ACTase, but with some interesting characteristics distinct from this class. PMID:9344472

  16. A systematic and mechanistic evaluation of aspartic acid as filler for directly compressed tablets containing trimethoprim and trimethoprim aspartate.

    PubMed

    ElShaer, Amr; Hanson, Peter; Mohammed, Afzal R

    2013-04-01

    The generally accepted paradigm of 'inert' and 'mono functional' excipient in dosage form has been recently challenged with the development of individual excipients capable of exhibiting multiple functions (e.g. binder-disintegrants, surfactant which affect P-gp function). The proposed study has been designed within the realm of multifunctionality and is the first and novel investigation towards evaluation of aspartic acid as a filler and disintegration enhancing agent for the delivery of biopharmaceutical class IV model drug trimethoprim. The study investigated powder characteristics using angle of repose, laser diffractometry and scanning electron microscopy (SEM). The prepared tablets were characterised using Heckel analysis, disintegration time and tensile strength measurements. Although Heckel analysis revealed that both TMP and TMP aspartate salt have high elasticity, the salt form produced a stronger compact which was attributed to the formation of agglomerates. Aspartic acid was found to have high plasticity, but its incorporation into the formulations was found to have a negative impact on the compaction properties of TMP and its salt. Surface morphology investigations showed that mechanical interlocking plays a vital role in binding TMP crystals together during compaction, while the small particle size of TMP aspartate agglomerates was found to have significant impact on the tensile strength of the tablets. The study concluded that aspartic acid can be employed as filler and disintegrant and that compactability within tablets was independent of the surface charge of the excipients. PMID:23207325

  17. Induction of IL-8(CXCL8) and MCP-1(CCL2) with oxidative stress and its inhibition with N-acetyl cysteine (NAC) in cell culture model using HK-2 cell.

    PubMed

    Kumar, Avneesh; Shalmanova, Liliana; Hammad, Abdul; Christmas, Stephen E

    2016-03-01

    Renal transplantation can often be complicated due to delayed graft function, which is a direct sequel of ischaemia reperfusion injury. The adverse outcome of delayed graft function is not only short term but the long-term function of the graft is also affected. Therefore, it is important to understand the mechanisms of ischaemia reperfusion injury. Reactive oxygen species are the key mediators in ischaemia reperfusion injury causing direct cell damage which also initiate inflammation by inducing chemokines. The presence of inflammation is a marker of severe delayed graft function. However, the effect of oxidative stress on the expression of key chemokines has not been fully established yet. Therefore, the aim of this study was to measure the oxidative stress response and the secretion of chemokines in a cell culture model that mimics the effects of ischaemia reperfusion injury in immortalised human renal proximal tubular epithelial cells, HK-2. Cells were treated with varying concentrations of hydrogen peroxide and markers of oxidative stress response and chemokine release were measured. Exposure to hydrogen peroxide induced a significant increase in the activity of the antioxidant enzyme glutathione peroxidase and the levels of the chemokines Interleukin-8 (IL-8; CXCL8) and MCP-1 (CCL2). A dose related increase of chemokine secretion was also observed. The cytokine Interleukin-1β (IL-1β) at 1ng/ml significantly potentiated the expression of both IL-8 (CXCL8) and MCP-1 (CCL2) which showed synergistic response in the presence of hydrogen peroxide. Pre-incubation of the cells with the anti-oxidant N-acetyl cysteine (NAC) strongly suppressed the induction of both IL-8 and MCP-1 when stimulated with hydrogen peroxide and IL-1β. This study demonstrates the potential of anti-oxidants like N-acetyl cysteine in ameliorating the effects of ischaemia reperfusion injury thus suggesting a new therapeutic approach in renal transplantation. These findings can have potential

  18. Synthesis and In Vitro Evaluation of Aspartate Transcarbamoylase Inhibitors

    PubMed Central

    Coudray, Laëtitia; Pennebaker, Anne F.; Montchamp, Jean-Luc

    2009-01-01

    The design, synthesis, and evaluation of a series of novel inhibitors of aspartate transcarbamoylase (ATCase) are reported. Several submicromolar phosphorus-containing inhibitors are described, but all-carboxylate compounds are inactive. Compounds were synthesized to probe the postulated cyclic transition-state of the enzyme-catalyzed reaction. In addition, the associated role of the protonation state at the phosphorus acid moiety was evaluated using phosphinic and carboxylic acids. Although none of the synthesized inhibitors is more potent than N-phosphonacetyl-L-aspartate (PALA), the compounds provide useful mechanistic information, as well as the basis for the design of future inhibitors and/or prodrugs. PMID:19828320

  19. The Combination of N-Acetyl Cysteine, Alpha-Lipoic Acid, and Bromelain Shows High Anti-Inflammatory Properties in Novel In Vivo and In Vitro Models of Endometriosis

    PubMed Central

    Agostinis, C.; Zorzet, S.; De Leo, R.; Zauli, G.; De Seta, F.; Bulla, R.

    2015-01-01

    To evaluate the efficacy of an association of N-acetyl cystein, alpha-lipoic acid, and bromelain (NAC/LA/Br) in the treatment of endometriosis we set up a new in vivo murine model. We explored the anti-inflammatory and proapoptotic effect of this combination on human endometriotic endothelial cells (EECs) and on endothelial cells isolated from normal uterus (UtMECs). We implanted fragments of human endometriotic cysts intraperitoneally into SCID mice to evaluate the efficacy of NAC/LA/Br treatment. UtMECs and EECs, untreated or treated with NAC/LA/Br, were activated with the proinflammatory stimulus TNF-α and their response in terms of VCAM1 expression was evaluated. The proapoptotic effect of higher doses of NAC/LA/Br on UtMECs and EECs was measured with a fluorogenic substrate for activated caspases 3 and 7. The preincubation of EECs with NAC/LA/Br prior to cell stimulation with TNF-α prevents the upregulation of the expression of the inflammatory “marker” VCAM1. Furthermore NAC/LA/Br were able to induce EEC, but not UtMEC, apoptosis. Finally, the novel mouse model allowed us to demonstrate that mice treated with NAC/LA/Br presented a lower number of cysts, smaller in size, compared to untreated mice. Our findings suggest that these dietary supplements may have potential therapeutic uses in the treatment of chronic inflammatory diseases like endometriosis. PMID:25960622

  20. The combination of N-acetyl cysteine, alpha-lipoic acid, and bromelain shows high anti-inflammatory properties in novel in vivo and in vitro models of endometriosis.

    PubMed

    Agostinis, C; Zorzet, S; De Leo, R; Zauli, G; De Seta, F; Bulla, R

    2015-01-01

    To evaluate the efficacy of an association of N-acetyl cystein, alpha-lipoic acid, and bromelain (NAC/LA/Br) in the treatment of endometriosis we set up a new in vivo murine model. We explored the anti-inflammatory and proapoptotic effect of this combination on human endometriotic endothelial cells (EECs) and on endothelial cells isolated from normal uterus (UtMECs). We implanted fragments of human endometriotic cysts intraperitoneally into SCID mice to evaluate the efficacy of NAC/LA/Br treatment. UtMECs and EECs, untreated or treated with NAC/LA/Br, were activated with the proinflammatory stimulus TNF-α and their response in terms of VCAM1 expression was evaluated. The proapoptotic effect of higher doses of NAC/LA/Br on UtMECs and EECs was measured with a fluorogenic substrate for activated caspases 3 and 7. The preincubation of EECs with NAC/LA/Br prior to cell stimulation with TNF-α prevents the upregulation of the expression of the inflammatory "marker" VCAM1. Furthermore NAC/LA/Br were able to induce EEC, but not UtMEC, apoptosis. Finally, the novel mouse model allowed us to demonstrate that mice treated with NAC/LA/Br presented a lower number of cysts, smaller in size, compared to untreated mice. Our findings suggest that these dietary supplements may have potential therapeutic uses in the treatment of chronic inflammatory diseases like endometriosis. PMID:25960622

  1. Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine

    PubMed Central

    Raza, Haider; John, Annie; Shafarin, Jasmin

    2016-01-01

    Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS) in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, has been reported to be beneficial in inflammation-associated diseases like cancer, diabetes and cardiovascular disorders. Their precise molecular mechanisms, however, are not clearly understood. Our previous studies on aspirin treated HepG2 cells strongly suggest cell cycle arrest and induction of apoptosis associated with mitochondrial dysfunction. In the present study, we have further demonstrated that HepG2 cells treated with LPS alone or in combination with aspirin induces subcellular toxic responses which are accompanied by increase in reactive oxygen species (ROS) production, oxidative stress, mitochondrial respiratory dysfunction and apoptosis. The LPS/Aspirin induced toxicity was attenuated by pre-treatment of cells with N-acetyl cysteine (NAC). Alterations in oxidative stress and glutathione-dependent redox-homeostasis were more pronounced in mitochondria compared to extra- mitochondrial cellular compartments. Pre-treatment of HepG2 cells with NAC exhibited a selective protection in redox homeostasis and mitochondrial dysfunction. Our results suggest that the altered redox metabolism, oxidative stress and mitochondrial function in HepG2 cells play a critical role in LPS/aspirin-induced cytotoxicity. These results may help in better understanding the pharmacological, toxicological and therapeutic properties of NSAIDs in cancer cells exposed to bacterial endotoxins. PMID:27441638

  2. N-acetyl cysteine inhibits H2O2-mediated reduction in the mineralization of MC3T3-E1 cells by down-regulating Nrf2/HO-1 pathway.

    PubMed

    Lee, Daewoo; Kook, Sung-Ho; Ji, Hyeok; Lee, Seung-Ah; Choi, Ki-Choon; Lee, Kyung-Yeol; Lee, Jeong-Chae

    2015-11-01

    There are controversial findings regarding the roles of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway on bone metabolism under oxidative stress. We investigated how Nrf2/HO-1 pathway affects osteoblast differentiation of MC3T3-E1 cells in response to hydrogen peroxide (H2O2), N-acetyl cysteine (NAC), or both. Exposing the cells to H2O2 decreased the alkaline phosphatase activity, calcium accumulation, and expression of osteoblast markers, such as osteocalcin and runt-related transcription factor-2. In contrast, H2O2 treatment increased the expression of Nrf2 and HO-1 in the cells. Treatment with hemin, a chemical HO-1 inducer, mimicked the inhibitory effect of H2O2 on osteoblast differentiation by increasing the HO-1 expression and decreasing the osteogenic marker genes. Pretreatment with NAC restored all changes induced by H2O2 to near normal levels in the cells. Collectively, our findings suggest that H2O2-mediated activation of Nrf2/HO-1 pathway negatively regulates the osteoblast differentiation, which is inhibited by NAC. PMID:26303969

  3. N-acetyl cysteine protects human oral keratinocytes from Bis-GMA-induced apoptosis and cell cycle arrest by inhibiting reactive oxygen species-mediated mitochondrial dysfunction and the PI3K/Akt pathway.

    PubMed

    Zhu, Yu; Gu, Ying-xin; Mo, Jia-ji; Shi, Jun-yu; Qiao, Shi-chong; Lai, Hong-chang

    2015-12-01

    Bisphenol-A-glycidyl methacrylate (Bis-GMA) released from dental resin materials causes various toxic effects on gingival epithelium. Thus the underlying mechanisms of its cytotoxicity should be elucidated for safety use. One potential cause of cell damage is the generation of reactive oxygen species (ROS) beyond the capacity of a balanced redox regulation. In this study, we found that exposure of human oral keratinocytes (HOKs) to Bis-GMA caused apoptosis and G1/S cell cycle arrest in parallel with an increased ROS level. Moreover, Bis-GMA induced a depletion of mitochondrial membrane potential, an increase in the Bax/Bcl-2 ratio, an activation of caspase-3 and altered expressions of cell cycle-related proteins (p21, PCNA, cyclinD1). Furthermore, the co-treatment of the ROS scavenger N-acetyl cysteine (NAC) obviously attenuated Bis-GMA-induced toxicity. Here we also evaluated the effects of Bis-GMA on the ROS-related PI3k/Akt pathway. We found that Bis-GMA inhibited the phosphorylation of Akt, whereas the amount of phosphorylated Akt was reverted to the control level in the presence of NAC. Our findings suggested that the toxic effects of Bis-GMA were related to ROS production and the antioxidant NAC effectively reduced Bis-GMA-mediated cytotoxicity. PMID:26343756

  4. Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis

    PubMed Central

    Lambros, Maria P.; Kondapalli, Lavanya; Parsa, Cyrus; Mulamalla, Hari Chandana; Orlando, Robert; Pon, Doreen; Huang, Ying; Chow, Moses S. S.

    2015-01-01

    Qingre Liyan decoction (QYD), a Traditional Chinese medicine, and N-acetyl cysteine (NAC) have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD) at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D) cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E) and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1), protective genes (EGFR and PPARD), and genes of the NFκB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs). NAC-QYD treatment involves the protective effect of Nrf2, NFκB, and DNA repair factors. PMID:25705238

  5. Synthesis and structural study of N-acetyl-1,2,3,4-tetrahydroisoquinoline-2-sulfonamide obtained using H6P2W18O62 as acidic solid catalyst

    NASA Astrophysics Data System (ADS)

    Bougheloum, Chafika; Barbey, Carole; Berredjem, Malika; Messalhi, Abdelrani; Dupont, Nathalie

    2013-06-01

    At room temperature and under acidic conditions, acylation of sulfamides derivatives in various solvents using diverse solid catalysts has been investigated. The best yields are obtained in acetonitrile with a Wells-Dawson type heteropolyacid H6P2W18O62 as acidic solid catalyst. Crystals of N-acetyl-1,2,3,4-tetrahydroisoquinoline-2-sulfonamide suitable for X-ray study have been obtained after recrystallization in toluene. The detailed analysis of molecular and crystal structure is presented in comparison with the structure of 1,2,3,4-tetrahydroisoquinoline-2-sulfonamide, before acylation, previously studied by our team. The role of both intra- and intermolecular weak interactions is discussed. The Hirshfeld surfaces analysis in form of dnorm representation and decomposed fingerprint plots were used to find out different weak but directional hydrogen bonds and π interactions. Both structures present similar sandwich structures with alternation of primary layers involving strong hydrogen bonds with secondary layers involving mostly weaker interactions.

  6. Binding of N-acetyl-N '-beta-D-glucopyranosyl urea and N-benzoyl-N '-beta-D-glucopyranosyl urea to glycogen phosphorylase b: kinetic and crystallographic studies.

    PubMed

    Oikonomakos, Nikos G; Kosmopoulou, Magda; Zographos, Spyros E; Leonidas, Demetres D; Chrysina, Evangelia D; Somsák, László; Nagy, Veronika; Praly, Jean-Pierre; Docsa, Tibor; Tóth, Béla; Gergely, Pál

    2002-03-01

    Two substituted ureas of beta-D-glucose, N-acetyl-N'-beta-D-glucopyranosyl urea (Acurea) and N-benzoyl-N'-beta-D-glucopyranosyl urea (Bzurea), have been identified as inhibitors of glycogen phosphorylase, a potential target for therapeutic intervention in type 2 diabetes. To elucidate the structural basis of inhibition, we determined the structure of muscle glycogen phosphorylase b (GPb) complexed with the two compounds at 2.0 A and 1.8 A resolution, respectively. The structure of the GPb-Acurea complex reveals that the inhibitor can be accommodated in the catalytic site of T-state GPb with very little change in the tertiary structure. The glucopyranose moiety makes the standard hydrogen bonds and van der Waals contacts as observed in the GPb-glucose complex, while the acetyl urea moiety is in a favourable electrostatic environment and makes additional polar contacts with the protein. The structure of the GPb-Bzurea complex shows that Bzurea binds tightly at the catalytic site and induces substantial conformational changes in the vicinity of the catalytic site. In particular, the loop of the polypeptide chain containing residues 282-287 shifts 1.3-3.7 A (Calpha atoms) to accommodate Bzurea. Bzurea can also occupy the new allosteric site, some 33 A from the catalytic site, which is currently the target for the design of antidiabetic drugs. PMID:11895439

  7. Regulation of N-methyl-D-aspartate receptor expression and N-methyl-D-aspartate-induced cellular response during chronic hypoxia in differentiated rat PC12 cells.

    PubMed

    Kobayashi, S; Millhorn, D E

    2000-01-01

    The purpose of the present study was to examine the effect of chronic hypoxia on N-methyl-D-aspartate-mediated cellular responses in differentiated PC12 cells. PC12 cells were differentiated by treatment with nerve growth factor. Patch-clamp analysis in differentiated PC12 cells showed that extracellularly applied N-methyl-D-aspartate induced an inward current that was abolished by the presence of the N-methyl-D-aspartate receptor antagonist MK-801. Results from Ca(2+) imaging experiments showed that N-methyl-D-aspartate induced an elevation in intracellular free Ca(2+) which was also abolished by MK-801. We also examined the effect of hypoxia on the N-methyl-D-aspartate-induced current in nerve growth factor-treated cells. We found that the N-methyl-D-aspartate-induced inward current and the N-methyl-D-aspartate-induced elevation in intracellular free Ca(2+) were markedly attenuated by chronic hypoxia. We next examined the possibility that the reduced N-methyl-D-aspartate responsiveness was due to down-regulation of N-methyl-D-aspartate receptor levels. Northern blot and immunoblot analyses showed that both messenger RNA and protein levels for N-methyl-D-aspartate receptor subunit 1 were markedly decreased during hypoxia. However, the messenger RNA for N-methyl-D-aspartate receptor subunit 2C was increased, whereas the protein level for subunit 2C did not change. Our results indicate that differentiated PC12 cells express functional N-methyl-D-aspartate receptors and that chronic exposure to hypoxia attenuates the N-methyl-D-aspartate-induced Ca(2+) accumulation in these cells via down-regulation of N-methyl-D-aspartate receptor subunit 1. This mechanism may play an important role in protecting PC12 cells against hypoxic stress. PMID:11113364

  8. Radiochemical microassay for aspartate aminotransferase activity in the nervous system

    SciTech Connect

    Garrison, D.; Beattie, J.; Namboodiri, M.A.

    1988-07-01

    A radiochemical procedure for measuring aspartate aminotransferase activity in the nervous system is described. The method is based on the exchange of tritium atoms at positions 2 and 3 of L-2,3-(/sup 3/H)aspartate with water when this amino acid is transaminated in the presence of alpha-ketoglutarate to form oxaloacetate. The tritiated water is separated from the radiolabeled aspartate by passing the reaction mixture over a cation exchange column. Confirmation that the radioactivity in the product is associated with water was obtained by separating it by anion exchange HPLC and by evaporation. The product formation is linear with time up to 120 min and with tissue in the 0.05- to 10-micrograms range. The apparent Km for aspartate in the rat brain homogenate is found to be 0.83 mM and that for alpha-ketoglutarate to be 0.12 mM. Methods that further improve the sensitivity of the assay are also discussed.

  9. 40 CFR 721.10348 - Aspartic acid, N,N′-(iminodi-alkanediyl)bis, tetraalkane esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aspartic acid, N,Nâ²-(iminodi... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10348 Aspartic acid, N,N′-(iminodi... reporting. (1) The chemical substances identified generically as aspartic acid,...

  10. 40 CFR 721.10348 - Aspartic acid, N,N′-(iminodi-alkanediyl)bis, tetraalkane esters (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aspartic acid, N,Nâ²-(iminodi... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10348 Aspartic acid, N,N′-(iminodi... reporting. (1) The chemical substances identified generically as aspartic acid,...

  11. 40 CFR 721.10348 - Aspartic acid, N,N′-(iminodi-alkanediyl)bis, tetraalkane esters (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aspartic acid, N,Nâ²-(iminodi... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10348 Aspartic acid, N,N′-(iminodi... reporting. (1) The chemical substances identified generically as aspartic acid,...

  12. The effect of N-acetyl-l-cysteine and ascorbic acid on visible-light-irradiated camphorquinone/N,N-dimethyl-p-toluidine-induced oxidative stress in two immortalized cell lines.

    PubMed

    Pagoria, D; Geurtsen, W

    2005-11-01

    Recent studies have revealed that visible-light (VL)-irradiated camphorquinone (CQ), in the presence of a tertiary amine (e.g., N,N-dimethyl-p-toluidine, DMT), generates initiating radicals that may indiscriminately react with molecular oxygen forming reactive oxygen species (ROS). In this study, the ability of the antioxidants N-acetyl-l-cysteine (NAC) and ascorbic acid (AA) to reduce intracellular oxidative stress induced by VL-irradiated CQ/DMT or VL-irradiated hydrogen peroxide (H(2)O(2)) was assessed in an immortalized Murine cementoblast cell line (OCCM.30) and an immortalized Murine fibroblast cell line, 3T3-Swiss albino (3T3). Intracellular oxidative stress was measured with the membrane permeable dye, 2',7'-dichlorodihydrofluorescein diacetate (H(2)DCF-DA). VL-irradiated CQ/DMT and VL-irradiated H(2)O(2) each produced significantly (p<0.001) elevated intracellular oxidative levels in both cell types compared to intracellular ROS levels in VL-irradiated untreated cells. OCCM.30 cementoblasts were found to be almost twice as sensitive to VL-irradiated CQ/DMT and VL-irradiated H(2)O(2) treatment compared to 3T3 fibroblasts. Furthermore, 10mm NAC and 10mm AA each eliminated oxidative stress induced by VL-irradiated CQ/DMT and VL-irradiated H(2)O(2) in both cell types. Our results suggest that NAC and AA may effectively reduce or eliminate oxidative stress in cells exposed to VL-irradiated CQ/DMT following polymerization. PMID:15919110

  13. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses

    PubMed Central

    Kalamaki, Mary S.; Alexandrou, Dimitris; Lazari, Diamanto; Merkouropoulos, Georgios; Fotopoulos, Vasileios; Pateraki, Irene; Aggelis, Alexandros; Carrillo-López, Armando; Rubio-Cabetas, Maria J.; Kanellis, Angelos K.

    2009-01-01

    A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified. PMID:19357433

  14. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses.

    PubMed

    Kalamaki, Mary S; Alexandrou, Dimitris; Lazari, Diamanto; Merkouropoulos, Georgios; Fotopoulos, Vasileios; Pateraki, Irene; Aggelis, Alexandros; Carrillo-López, Armando; Rubio-Cabetas, Maria J; Kanellis, Angelos K

    2009-01-01

    A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified. PMID:19357433

  15. Estimation of benchmark dose as the threshold levels of urinary cadmium, based on excretion of total protein, {beta} {sub 2}-microglobulin, and N-acetyl-{beta}-D-glucosaminidase in cadmium nonpolluted regions in Japan

    SciTech Connect

    Kobayashi, Etsuko . E-mail: ekoba@faculty.chiba-u.jp; Suwazono, Yasushi; Uetani, Mirei; Inaba, Takeya; Oishi, Mitsuhiro; Kido, Teruhiko; Nishijo, Muneko; Nakagawa, Hideaki; Nogawa, Koji

    2006-07-15

    Previously, we investigated the association between urinary cadmium (Cd) concentration and indicators of renal dysfunction, including total protein, {beta} {sub 2}-microglobulin ({beta} {sub 2}-MG), and N-acetyl-{beta}-D-glucosaminidase (NAG). In 2778 inhabitants {>=}50 years of age (1114 men, 1664 women) in three different Cd nonpolluted areas in Japan, we showed that a dose-response relationship existed between renal effects and Cd exposure in the general environment without any known Cd pollution. However, we could not estimate the threshold levels of urinary Cd at that time. In the present study, we estimated the threshold levels of urinary Cd as the benchmark dose low (BMDL) using the benchmark dose (BMD) approach. Urinary Cd excretion was divided into 10 categories, and an abnormality rate was calculated for each. Cut-off values for urinary substances were defined as corresponding to the 84% and 95% upper limit values of the target population who have not smoked. Then we calculated the BMD and BMDL using a log-logistic model. The values of BMD and BMDL for all urinary substances could be calculated. The BMDL for the 84% cut-off value of {beta} {sub 2}-MG, setting an abnormal value at 5%, was 2.4 {mu}g/g creatinine (cr) in men and 3.3 {mu}g/g cr in women. In conclusion, the present study demonstrated that the threshold level of urinary Cd could be estimated in people living in the general environment without any known Cd-pollution in Japan, and the value was inferred to be almost the same as that in Belgium, Sweden, and China.

  16. Differential effects of α-tocopherol and N-acetyl-cysteine on advanced glycation end product-induced oxidative damage and neurite degeneration in SH-SY5Y cells.

    PubMed

    Pazdro, Robert; Burgess, John R

    2012-04-01

    Advanced glycation end products (AGEs) result from non-enzymatic glycation of proteins and cause cellular oxidative stress in a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent manner. Due to these effects, AGEs are implicated as a causal factor in diabetic complications. Several antioxidants, including vitamin E, improve cell viability and diminish markers of oxidative damage in cells exposed to AGEs. However, vitamin E has been studied in cell culture systems with primary focus on apoptosis and lipid peroxidation, while its influences on AGE-induced protein and DNA oxidation, intracellular antioxidant status and cell morphology remain largely unknown. Here, we verify the suppression of AGE-induced cell death and lipid peroxidation by 200μM α-tocopherol in SH-SY5Y cells. We report the partial inhibition of DNA oxidation and a decrease in protein carbonyl formation by α-tocopherol with no effects on intracellular GSH concentrations. We observed that 2mM N-acetyl cysteine (NAC) also had a suppressive effect on DNA and protein oxidation, but unlike α-tocopherol, it caused a marked increase in intracellular GSH. Finally, we compared the ability of both antioxidants to maintain neurites in SH-SY5Y cells and found that α-tocopherol had no effect on neurite loss due to AGEs, while NAC fully maintained cell morphology. Thus, while α-tocopherol suppressed AGE-induced macromolecule damage, it was ineffective against neurite degeneration. These results may implicate thiol oxidation and maintenance as a major regulator of neurite degeneration in this model. PMID:22261284

  17. Evaluation of the effect of N-acetyl-glucosamine administration on biomarkers for cartilage metabolism in healthy individuals without symptoms of arthritis: A randomized double-blind placebo-controlled clinical study

    PubMed Central

    Tomonaga, Akihito; Watanabe, Keita; Fukagawa, Mitsuhiko; Suzuki, Asahi; Kurokawa, Mihoko; Nagaoka, Isao

    2016-01-01

    The present study aimed to evaluate the effect of N-acetyl-glucosamine (GlcNAc) on the joint health of healthy individuals without arthritic symptoms. A randomized double-blind placebo-controlled clinical trial was performed to investigate the effect of oral administration of a GlcNAc-containing test supplement (low dose, 500 mg/day and high dose, 1,000 mg/day) on cartilage metabolism in healthy individuals with a mean age of 48.6±1.3 years (range, 23–64 years) by analyzing the ratio of type II collagen degradation to type II collagen synthesis using type II collagen degradation (C2C) and synthesis (PIICP) markers. The results indicated that the changes in C2C/PIICP ratios from the baseline were suppressed in the treated with low and high doses of GlcNAc, compared with the placebo group at week 16 during intervention. To further elucidate the effect of GlcNAc, subjects with impaired cartilage metabolism were evaluated. Notably, the changes in the C2C/PIICP ratios were markedly suppressed in the groups treated with low and high doses of GlcNAc at week 16. Finally, to exclude the effect of heavy body weight on joint loading, subjects weighing <70 kg with impaired cartilage metabolism were analyzed. Notably, the changes in the C2C/PIICP ratios were suppressed in the groups treated with low and high doses of GlcNAc at weeks 12 and 16. No test supplement-related adverse events were observed during or following the intervention. Together, these observations suggest that oral administration of GlcNAc at doses of 500 mg and 1,000 mg/day exhibits a chondroprotective effect on healthy individuals by reducing the C2C/PIICP ratio (relatively decreasing type II collagen degradation and increasing type II collagen synthesis) without any apparent adverse effects. PMID:27588069

  18. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine

    PubMed Central

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2016-01-01

    The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds. PMID:26951077

  19. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine.

    PubMed

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2016-06-01

    The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds. PMID:26951077

  20. Occurrence of Free d-Amino Acids and Aspartate Racemases in Hyperthermophilic Archaea

    PubMed Central

    Matsumoto, Megumi; Homma, Hiroshi; Long, Zhiqun; Imai, Kazuhiro; Iida, Toshii; Maruyama, Tadashi; Aikawa, Yuko; Endo, Isao; Yohda, Masafumi

    1999-01-01

    The occurrence of free d-amino acids and aspartate racemases in several hyperthermophilic archaea was investigated. Aspartic acid in all the hyperthermophilic archaea was highly racemized. The ratio of d-aspartic acid to total aspartic acid was in the range of 43.0 to 49.1%. The crude extracts of the hyperthermophiles exhibited aspartate racemase activity at 70°C, and aspartate racemase homologous genes in them were identified by PCR. d-Enantiomers of other amino acids (alanine, leucine, phenylalanine, and lysine) in Thermococcus strains were also detected. Some of them might be by-products of aspartate racemase. It is proven that d-amino acids are produced in some hyperthermophilic archaea, although their function is unknown. PMID:10515953

  1. Chemical shift and electric field gradient tensors for the amide and carboxyl hydrogens in the model peptide N-acetyl-D,L-valine. Single-crystal deuterium NMR study.

    SciTech Connect

    Gerald, R. E., II; Bernhard, T.; Haeberlen, U.; Rendell, J.; Opella, S.; Chemical Engineering

    1993-01-01

    Solid-state NMR spectroscopy is well established as a method for describing molecular structure with resolution on the atomic scale. Many of the NMR observables result from anisotropic interactions between the nuclear spin and its environment. These observables can be described by second-rank tensors. For example, the eigenvalues of the traceless symmetric part of the hydrogen chemical shift (CS) tensor provide information about the strength of inter- or intramolecular hydrogen bonding. On the other hand, the eigenvectors of the deuterium electric field gradient (EFG) tensor give deuteron/proton bond directions with an accuracy rivalled only by neutron diffraction. In this paper the authors report structural information of this type for the amide and carboxyl hydrogen sites in a single crystal of the model peptide N-acetyl-D,L-valine (NAV). They use deuterium NMR to infer both the EFG and CS tensors at the amide and carboxyl hydrogen sites in NAV. Advantages of this technique over multiple-pulse proton NMR are that it works in the presence of {sup 14}N spins which are very hard to decouple from protons and that additional information in form of the EFG tensors can be derived. The change in the CS and EFG tensors upon exchange of a deuteron for a proton (the isotope effect) is anticipated to be very small; the effect on the CS tensors is certainly smaller than the experimental errors. NAV has served as a model peptide before in a variety of NMR studies, including those concerned with developing solid-state NMR spectroscopy as a method for determining the structure of proteins. NMR experiments on peptide or protein samples which are oriented in at least one dimension can provide important information about the three-dimensional structure of the peptide or the protein. In order to interpret the NMR data in terms of the structure of the polypeptide, the relationship of the CS and EFG tensors to the local symmetry elements of an amino acide, e.g., the peptide plane, is

  2. Crystal structure of truncated aspartate transcarbamoylase from Plasmodium falciparum.

    PubMed

    Lunev, Sergey; Bosch, Soraya S; Batista, Fernando de Assis; Wrenger, Carsten; Groves, Matthew R

    2016-07-01

    The de novo pyrimidine-biosynthesis pathway of Plasmodium falciparum is a promising target for antimalarial drug discovery. The parasite requires a supply of purines and pyrimidines for growth and proliferation and is unable to take up pyrimidines from the host. Direct (or indirect) inhibition of de novo pyrimidine biosynthesis via dihydroorotate dehydrogenase (PfDHODH), the fourth enzyme of the pathway, has already been shown to be lethal to the parasite. In the second step of the plasmodial pyrimidine-synthesis pathway, aspartate and carbamoyl phosphate are condensed to N-carbamoyl-L-aspartate and inorganic phosphate by aspartate transcarbamoylase (PfATC). In this paper, the 2.5 Å resolution crystal structure of PfATC is reported. The space group of the PfATC crystals was determined to be monoclinic P21, with unit-cell parameters a = 87.0, b = 103.8, c = 87.1 Å, α = 90.0, β = 117.7, γ = 90.0°. The presented PfATC model shares a high degree of homology with the catalytic domain of Escherichia coli ATC. There is as yet no evidence of the existence of a regulatory domain in PfATC. Similarly to E. coli ATC, PfATC was modelled as a homotrimer in which each of the three active sites is formed at the oligomeric interface. Each active site comprises residues from two adjacent subunits in the trimer with a high degree of evolutional conservation. Here, the activity loss owing to mutagenesis of the key active-site residues is also described. PMID:27380369

  3. Isolation and characterization of recombinant Drosophila Copia aspartic proteinase.

    PubMed

    Athauda, Senarath B P; Yoshioka, Katsuji; Shiba, Tadayoshi; Takahashi, Kenji

    2006-11-01

    The wild type Copia Gag precursor protein of Drosophila melanogaster expressed in Escherichia coli was shown to be processed autocatalytically to generate two daughter proteins with molecular masses of 33 and 23 kDa on SDS/PAGE. The active-site motif of aspartic proteinases, Asp-Ser-Gly, was present in the 23 kDa protein corresponding to the C-terminal half of the precursor protein. The coding region of this daughter protein (152 residues) in the copia gag gene was expressed in E. coli to produce the recombinant enzyme protein as inclusion bodies, which was then purified and refolded to create the active enzyme. Using the peptide substrate His-Gly-Ile-Ala-Phe-Met-Val-Lys-Glu-Val-Asn (cleavage site: Phe-Met) designed on the basis of the sequence of the cleavage-site region of the precursor protein, the enzymatic properties of the proteinase were investigated. The optimum pH and temperature of the proteinase toward the synthetic peptide were 4.0 and 70 degrees C respectively. The proteolytic activity was increased with increasing NaCl concentration in the reaction mixture, the optimum concentration being 2 M. Pepstatin A strongly inhibited the enzyme, with a Ki value of 15 nM at pH 4.0. On the other hand, the active-site residue mutant, in which the putative catalytic aspartic acid residue was mutated to an alanine residue, had no activity. These results show that the Copia proteinase belongs to the family of aspartic proteinases including HIV proteinase. The B-chain of oxidized bovine insulin was hydrolysed at the Leu15-Tyr16 bond fairly selectively. Thus the recombinant Copia proteinase partially resembles HIV proteinase, but is significantly different from it in certain aspects. PMID:16813567

  4. Pediatric anti-N methyl D aspartate receptor encephalitis.

    PubMed

    Suri, Vinit; Sharma, Sushma; Gupta, Rohan; Sogani, S K; Mediratta, Sunit; Jadhao, Nilesh

    2013-05-01

    Anti-N Methyl D Aspartate Receptor encephalitis (anti-NMDARE) is a recently defined disease, which is probably more under-recognized than rare. We report a case of anti-NMDARE in a 13-years-old girl, who presented with intractable seizures. To the best of our knowledge, this is the second case of pediatric anti-NMDARE being reported from India. The need for a greater awareness of this disease and the subtle differences in clinical presentation between pediatric and adult patients are highlighted. PMID:24082929

  5. Structural and functional characterization of aspartate racemase from the acidothermophilic archaeon Picrophilus torridus.

    PubMed

    Aihara, Takayuki; Ito, Toshiya; Yamanaka, Yasuaki; Noguchi, Keiichi; Odaka, Masafumi; Sekine, Masae; Homma, Hiroshi; Yohda, Masafumi

    2016-07-01

    Functional and structural characterizations of pyridoxal 5'-phosphate-independent aspartate racemase of the acidothermophilic archaeon Picrophilus torridus were performed. Picrophilus aspartate racemase exhibited high substrate specificity to aspartic acid. The optimal reaction temperature was 60 °C, which is almost the same as the optimal growth temperature. Reflecting the low pH in the cytosol, the optimal reaction pH of Picrophilus aspartate racemase was approximately 5.5. However, the activity at the putative cytosolic pH of 4.6 was approximately 6 times lower than that at the optimal pH of 5.5. The crystal structure of Picrophilus aspartate racemase was almost the same as that of other pyridoxal 5'-phosphate -independent aspartate racemases. In two molecules of the dimer, one molecule contained a tartaric acid molecule in the catalytic site; the structure of the other molecule was relatively flexible. Finally, we examined the intracellular existence of D-amino acids. Unexpectedly, the proportion of D-aspartate to total aspartate was not very high. In contrast, both D-proline and D-alanine were observed. Because Picrophilus aspartate racemase is highly specific to aspartate, other amino acid racemases might exist in Picrophilus torridus. PMID:27094682

  6. New aspartic proteinase of Ulysses retrotransposon from Drosophila virilis.

    PubMed

    Volkov, D A; Dergousova, N I; Rumsh, L D

    2004-06-01

    This work is focused on the investigation of a proteinase of Ulysses mobile genetic element from Drosophila virilis. The primary structure of this proteinase is suggested based on comparative analysis of amino acid sequences of aspartic proteinases from retroviruses and retrotransposons. The corresponding cDNA fragment has been cloned and expressed in E. coli. The protein accumulated in inclusion bodies. The recombinant protein (12 kD) was subjected to refolding and purified by affinity chromatography on pepstatin-agarose. Proteolytic activity of the protein was determined using oligopeptide substrates melittin and insulin B-chain. It was found that the maximum of the proteolytic activity is displayed at pH 5.5 as for the majority of aspartic proteinases. We observed that hydrolysis of B-chain of insulin was totally inhibited by pepstatin A in the micromolar concentration range. The molecular weight of the monomer of the Ulysses proteinase was determined by MALDI-TOF mass-spectrometry. PMID:15236611

  7. A Single Aspartate Coordinates Two Catalytic Steps in Hedgehog Autoprocessing.

    PubMed

    Xie, Jian; Owen, Timothy; Xia, Ke; Callahan, Brian; Wang, Chunyu

    2016-08-31

    Hedgehog (Hh) signaling is driven by the cholesterol-modified Hh ligand, generated by autoprocessing of Hh precursor protein. Two steps in Hh autoprocessing, N-S acyl shift and transesterification, must be coupled for efficient Hh cholesteroylation and downstream signal transduction. In the present study, we show that a conserved aspartate residue, D46 of the Hh autoprocessing domain, coordinates these two catalytic steps. Mutagenesis demonstrated that D46 suppresses non-native Hh precursor autoprocessing and is indispensable for transesterification with cholesterol. NMR measurements indicated that D46 has a pKa of 5.6, ∼2 units above the expected pKa of aspartate, due to a hydrogen-bond between protonated D46 and a catalytic cysteine residue. However, the deprotonated form of D46 side chain is also essential, because a D46N mutation cannot mediate cholesteroylation. On the basis of these data, we propose that the proton shuttling of D46 side chain mechanistically couples the two steps of Hh cholesteroylation. PMID:27529645

  8. Molecular-Scale Study of Aspartate Adsorption on Goethite and Competition with Phosphate.

    PubMed

    Yang, Yanli; Wang, Shengrui; Xu, Yisheng; Zheng, Binghui; Liu, Jingyang

    2016-03-15

    Knowledge of the interfacial interactions between aspartate and minerals, especially its competition with phosphate, is critical to understanding the fate and transport of amino acids in the environment. Adsorption reactions play important roles in the mobility, bioavailability, and degradation of aspartate and phosphate. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements and density functional theory (DFT) calculations were used to investigate the interfacial structures and their relative contributions in single-adsorbate and competition systems. Our results suggest three dominant mechanisms for aspartate: bidentate inner-sphere coordination involving both α- and γ-COO(-), outer-sphere complexation via electrostatic attraction and H-bonding between aspartate NH2 and goethite surface hydroxyls. The interfacial aspartate is mainly governed by pH and is less sensitive to changes of ionic strength and aspartate concentration. The phosphate competition significantly reduces the adsorption capacity of aspartate on goethite. Whereas phosphate adsorption is less affected by the presence of aspartate, including the relative contributions of diprotonated monodentate, monoprotonated bidentate, and nonprotonated bidentate structures. The adsorption process facilitates the removal of bioavailable aspartate and phosphate from the soil solution as well as from the sediment pore water and the overlying water. PMID:26870876

  9. Biosynthesis of D-aspartate in mammals: the rat and human homologs of mouse aspartate racemase are not responsible for the biosynthesis of D-aspartate.

    PubMed

    Matsuda, Satsuki; Katane, Masumi; Maeda, Kazuhiro; Kaneko, Yuusuke; Saitoh, Yasuaki; Miyamoto, Tetsuya; Sekine, Masae; Homma, Hiroshi

    2015-05-01

    D-Aspartate (D-Asp) has important physiological functions, and recent studies have shown that substantial amounts of free D-Asp are present in a wide variety of mammalian tissues and cells. Biosynthesis of D-Asp has been observed in several cultured rat cell lines, and a murine gene (glutamate-oxaloacetate transaminase 1-like 1, Got1l1) that encodes Asp racemase, a synthetic enzyme that produces D-Asp from L-Asp, was proposed recently. The product of this gene is homologous to mammalian glutamate-oxaloacetate transaminase (GOT). Here, we tested the hypothesis that rat and human homologs of mouse GOT1L1 are involved in Asp synthesis. The following two approaches were applied, since the numbers of attempts were unsuccessful to prepare soluble GOT1L1 recombinant proteins. First, the relationship between the D-Asp content and the expression levels of the mRNAs encoding GOT1L1 and D-Asp oxidase, a primary degradative enzyme of D-Asp, was examined in several rat and human cell lines. Second, the effect of knockdown of the Got1l1 gene on D-Asp biosynthesis during culture of the cells was determined. The results presented here suggest that the rat and human homologs of mouse GOT1L1 are not involved in D-Asp biosynthesis. Therefore, D-Asp biosynthetic pathway in mammals is still an urgent issue to be resolved. PMID:25646960

  10. Hybridization of glutamate aspartate transaminase. Investigation of subunit interaction.

    PubMed

    Boettcher, B; Martinez-Carrion, M

    1975-10-01

    Glutamate aspartate transaminase (EC 2.6.1.1) is a dimeric enzyme with identical subunits with each active site containing pyridoxal 5'-phosphate linked via an internal Shiff's base to a lysine residue. It is not known if these sites interact during catalysis but negative cooperativity has been reported for binding of the coenzyme (Arrio-Dupont, M. (1972), Eur. J. Biochem. 30, 307). Also nonequivalence of its subunits in binding 8-anilinonaphthalene-1-sulfonate (Harris, H.E., and Bayley, P. M. (1975), Biochem. J. 145, 125), in modification of only a single tyrosine with full loss of activity (Christen, P., and Riordan, J.F. (1970), Biochemistry 9, 3025), and following modification with 5,5'-dithiobis(2-nitrobenzoic acid) (Cournil, I., and Arrio-Dupont, M. (1973), Biochemie 55, 103) has been reported. However, steady-state and transient kinetic methods as well as direct titration of the active site chromophore with substrates and substrate analogs have not revealed any cooperative phenomena (Braunstein, A. E. (1973), Enzymes, 3rd Ed. 9, 379). It was therefore decided that a more direct approach should be used to clarify the quistion of subunit interaction during the covalent phase of catalysis. To this end a hybrid method was devised in which a hybrid transaminase was prepared which contained one subunit with a functional active site while the other subunit has the internal Shiff's base reduced with NaBH4. The specific activities and amount of "actively bound" pyridoxal 5'-phosphate are both in a 2:1 ratio for the native and hybrid forms. Comparison of the steady-state kinetic properties of the hybrid and native enzyme forms shows that both forms gave parallel double reciprocal plots which is characteristic of the Ping-Pong Bi-Bi mechanism of transamination. The Km values for the substrates L-aspartic acid and alpha-ketoglutaric acid are nearly identical while the Vmax value for the hybrid is one-half the value of the native transaminase. It therefore appears that

  11. Distribution of radio-labeled N-Acetyl-L-Cysteine in Sprague-Dawley rats and its effect on glutathione metabolism following single and repeat dosing by oral gavage.

    PubMed

    Arfsten, Darryl P; Johnson, Eric W; Wilfong, Erin R; Jung, Anne E; Bobb, Andrew J

    2007-01-01

    The distribution of radio-labeled N-Acetyl-L-Cysteine (NAC) and its impact on glutathione (GSH) metabolism was studied in Sprague-Dawley rats following single and multiple dosing with NAC by oral gavage. Radioactivity associated with administration of (14)C-NAC distributed to most tissues examined within 1 hour of administration with peak radioactivity levels occurring within 1 hour to 4 hours and for a majority of the tissues examined, radioactivity remained elevated for up to 12 hours or more. Administration of a second dose of 1,200 mg/kg NAC + (14)C-NAC 4 hours after the first increased liver, kidney, skin, thymus, spleen, eye, and serum radioactivity significantly beyond levels achieved following 1 dose. Administration of a third dose of 1,200 mg/kg NAC + (14)C-NAC 4 hours after the second dose did not significantly increase tissue radioactivity further except in the skin. GSH concentrations were increased 20% in the skin and 50% in the liver after one dose of 1,200 mg/kg NAC whereas lung and kidney GSH were unaffected. Administration of a second and third dose of 1,200 mg/kg NAC at 4 hours and 8 hours after the first did not increase tissue GSH concentrations above background with the exception that skin GSH levels were elevated to levels similar to those obtained after a single dose of NAC. Glutathione-S-transferase (GST) activity was increased 150% in the kidney and 10% in the liver, decreased 60% in the skin, and had no effect on lung GST activity following a single dose of 1,200 mg/kg NAC. Administration of a second dose of 1,200 mg/kg NAC 4 hours after the first decreased skin GST activity a further 20% whereas kidney GST activity remained elevated at levels similar to those obtained after 1 dose of NAC. Administration of a third dose of NAC 4 hours after the second dose increased liver GST activity significantly as compared to background but did not affect skin, kidney, or lung GST activity. Transient decreases in glutathione reductase (GR) activity

  12. Aspartate aminotransferase activity in human healthy and inflamed dental pulps.

    PubMed

    Spoto, G; Fioroni, M; Rubini, C; Tripodi, D; Perinetti, G; Piattelli, A

    2001-06-01

    Aspartate aminotransferase (AST) seems to be an important mediator of inflammatory processes. Its role in the progression and detection of inflammatory periodontal disease has been increasingly recognized in recent years. In the present study AST activity was analyzed in normal healthy human dental pulps, in reversible pulpitis, and in irreversible pulpitis. Enzymatic AST activity showed that the control values for the healthy pulps were 4.8 +/- 0.7 units/mg of pulp tissue. In reversible pulpitis specimens the AST activity increased to 7.98 +/- 2.1 units/mg of pulp tissue. In irreversible pulpitis specimens the values decreased to 2.28 +/- 1.7 units/mg of pulp tissue. Differences between the groups (control versus reversible pulpitis and reversible pulpitis versus irreversible pulpitis) were statistically significant (p = 0.0015). These results could point to a role of AST in the early events that lead to development of pulpal inflammation. PMID:11487132

  13. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase.

    PubMed

    Wales, M E; Madison, L L; Glaser, S S; Wild, J R

    1999-12-17

    The native Escherichia coli aspartate transcarbamoylase (ATCase, E.C. 2.1.3.2) provides a classic allosteric model for the feedback inhibition of a biosynthetic pathway by its end products. Both E. coli and Erwinia herbicola possess ATCase holoenzymes which are dodecameric (2(c3):3(r2)) with 311 amino acid residues per catalytic monomer and 153 and 154 amino acid residues per regulatory (r) monomer, respectively. While the quaternary structures of the two enzymes are identical, the primary amino acid sequences have diverged by 14 % in the catalytic polypeptide and 20 % in the regulatory polypeptide. The amino acids proposed to be directly involved in the active site and nucleotide binding site are strictly conserved between the two enzymes; nonetheless, the two enzymes differ in their catalytic and regulatory characteristics. The E. coli enzyme has sigmoidal substrate binding with activation by ATP, and inhibition by CTP, while the E. herbicola enzyme has apparent first order kinetics at low substrate concentrations in the absence of allosteric ligands, no ATP activation and only slight CTP inhibition. In an apparently important and highly conserved characteristic, CTP and UTP impose strong synergistic inhibition on both enzymes. The co-operative binding of aspartate in the E. coli enzyme is correlated with a T-to-R conformational transition which appears to be greatly reduced in the E. herbicola enzyme, although the addition of inhibitory heterotropic ligands (CTP or CTP+UTP) re-establishes co-operative saturation kinetics. Hybrid holoenzymes assembled in vivo with catalytic subunits from E. herbicola and regulatory subunits from E. coli mimick the allosteric response of the native E. coli holoenzyme and exhibit ATP activation. The reverse hybrid, regulatory subunits from E. herbicola and catalytic subunits from E. coli, exhibited no response to ATP. The conserved structure and diverged functional characteristics of the E. herbicola enzyme provides an opportunity

  14. AGC1/2, the mitochondrial aspartate-glutamate carriers.

    PubMed

    Amoedo, N D; Punzi, G; Obre, E; Lacombe, D; De Grassi, A; Pierri, C L; Rossignol, R

    2016-10-01

    In this review we discuss the structure and functions of the aspartate/glutamate carriers (AGC1-aralar and AGC2-citrin). Those proteins supply the aspartate synthesized within mitochondrial matrix to the cytosol in exchange for glutamate and a proton. A structure of an AGC carrier is not available yet but comparative 3D models were proposed. Moreover, transport assays performed by using the recombinant AGC1 and AGC2, reconstituted into liposome vesicles, allowed to explore the kinetics of those carriers and to reveal their specific transport properties. AGCs participate to a wide range of cellular functions, as the control of mitochondrial respiration, calcium signaling and antioxydant defenses. AGC1 might also play peculiar tissue-specific functions, as it was found to participate to cell-to-cell metabolic symbiosis in the retina. On the other hand, AGC1 is involved in the glutamate-mediated excitotoxicity in neurons and AGC gene or protein alterations were discovered in rare human diseases. Accordingly, a mice model of AGC1 gene knock-out presented with growth delay and generalized tremor, with myelinisation defects. More recently, AGC was proposed to play a crucial role in tumor metabolism as observed from metabolomic studies showing that the asparate exported from the mitochondrion by AGC1 is employed in the regeneration of cytosolic glutathione. Therefore, given the central role of AGCs in cell metabolism and human pathology, drug screening are now being developed to identify pharmacological modulators of those carriers. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:27132995

  15. Towards structural understanding of feedback control of arginine biosynthesis: cloning and expression of the gene for the arginine-inhibited N-acetyl-L-glutamate kinase from Pseudomonas aeruginosa, purification and crystallization of the recombinant enzyme and preliminary X-ray studies.

    PubMed

    Fernández-Murga, M Leonor; Ramón-Maiques, Santiago; Gil-Ortiz, Fernando; Fita, Ignacio; Rubio, Vicente

    2002-06-01

    N-Acetyl-L-glutamate kinase (NAGK) catalyzes the second step in the pathway of arginine biosynthesis in microorganisms and plants. In many species, it is the pathway-controlling enzyme and is subject to feedback inhibition by arginine. The gene for the best characterized arginine-inhibitable NAGK, that from Pseudomonas aeruginosa, has been cloned in a pET22 plasmid and overexpressed in Escherichia coli. The enzyme was purified in three steps to 95% purity and was shown by cross-linking to form dimers. It was crystallized by the hanging-drop vapour-diffusion method at 277 K in the presence of ADP, Mg and N-acetyl-L-glutamate. The crystallization solution contained 0.1 M sodium cacodylate pH 6.5, 150-170 mM magnesium acetate and 13% polyethylene glycol 8000. Prismatic crystals of maximum dimension approximately 0.5 mm diffract to 2.75 A resolution and belong to space group P1 (unit-cell parameters a = 71.86, b = 98.78, c = 162.9 A, alpha = 91.49, beta = 92.03, gamma = 107.56 degrees ). Packing density considerations agree with 6-18 NAGK monomers in the asymmetric unit, with a corresponding solvent content of 79-36%. Self-rotation function calculations confirm the space group and suggest the presence of 3-7 dimers in the unit cell. PMID:12037312

  16. Synthesis of 6-phosphofructose aspartic acid and some related Amadori compounds.

    PubMed

    Hansen, Alexandar L; Behrman, Edward J

    2016-08-01

    We describe the synthesis and characterization of 6-phosphofructose-aspartic acid, an intermediate in the metabolism of fructose-asparagine by Salmonella. We also report improved syntheses of fructose-asparagine itself and of fructose-aspartic acid. PMID:27258673

  17. Structural Analysis of the Ligand-Binding Domain of the Aspartate Receptor Tar from Escherichia coli.

    PubMed

    Mise, Takeshi

    2016-07-01

    The Escherichia coli cell-surface aspartate receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni(2+). These signals are transmitted from the extracellular region of Tar to the cytoplasmic region via the transmembrane domain. The mechanism by which extracellular signals are transmitted into the cell through conformational changes in Tar is predicted to involve a piston displacement of one of the α4 helices of the homodimer. To understand the molecular mechanisms underlying the induction of Tar activity by an attractant, the three-dimensional structures of the E. coli Tar periplasmic domain with and without bound aspartate, Asp-Tar and apo-Tar, respectively, were determined. Of the two ligand-binding sites, only one site was occupied, and it clearly showed the electron density of an aspartate. The slight changes in conformation and the electrostatic surface potential around the aspartate-binding site were observed. In addition, the presence of an aspartate stabilized residues Phe-150' and Arg-73. A pistonlike displacement of helix α4b' was also induced by aspartate binding as predicted by the piston model. Taken together, these small changes might be related to the induction of Tar activity and might disturb binding of the second aspartate to the second binding site in E. coli. PMID:27292793

  18. Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria.

    PubMed

    Palmieri, L; Pardo, B; Lasorsa, F M; del Arco, A; Kobayashi, K; Iijima, M; Runswick, M J; Walker, J E; Saheki, T; Satrústegui, J; Palmieri, F

    2001-09-17

    The mitochondrial aspartate/glutamate carrier catalyzes an important step in both the urea cycle and the aspartate/malate NADH shuttle. Citrin and aralar1 are homologous proteins belonging to the mitochondrial carrier family with EF-hand Ca(2+)-binding motifs in their N-terminal domains. Both proteins and their C-terminal domains were overexpressed in Escherichia coli, reconstituted into liposomes and shown to catalyze the electrogenic exchange of aspartate for glutamate and a H(+). Overexpression of the carriers in transfected human cells increased the activity of the malate/aspartate NADH shuttle. These results demonstrate that citrin and aralar1 are isoforms of the hitherto unidentified aspartate/glutamate carrier and explain why mutations in citrin cause type II citrullinemia in humans. The activity of citrin and aralar1 as aspartate/glutamate exchangers was stimulated by Ca(2+) on the external side of the inner mitochondrial membrane, where the Ca(2+)-binding domains of these proteins are localized. These results show that the aspartate/glutamate carrier is regulated by Ca(2+) through a mechanism independent of Ca(2+) entry into mitochondria, and suggest a novel mechanism of Ca(2+) regulation of the aspartate/malate shuttle. PMID:11566871

  19. Properties of Copolymers of Aspartic Acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartic acid may be prepared chemically or by the fermentation of carbohydrates. Currently, low molecular weight polyaspartic acids are prepared commercially by heating aspartic acid at high temperatures (greater than 220 degrees C) for several hours in the solid state. In an effort to develop a ...

  20. Protection against ionising radiation and synergism with thiols by zinc aspartate.

    PubMed

    Floersheim, G L; Floersheim, P

    1986-06-01

    Pre-treatment with zinc aspartate protected mice against the lethal effects of radiation and raised the LD50 from 8 Gy to 12.2 Gy. Zinc chloride and zinc sulphate were clearly less active. The radioprotective effect of zinc aspartate was equivalent to cysteamine and slightly inferior to S,2-aminoethylisothiourea (AET). Zinc aspartate displayed a similar therapeutic index to the thiols but could be applied at an earlier time before irradiation. Synergistic effects occurred with the combined administration of zinc aspartate and thiols. By giving zinc aspartate with cysteamine, the LD50 was increased to 13.25 Gy and, by combining it in the optimal protocol with AET, to 17.3 Gy. The radioprotection by zinc and its synergism with thiols is explained by the stabilisation of thiols through the formation of zinc complexes. PMID:3518853

  1. Age-Related Changes in D-Aspartate Oxidase Promoter Methylation Control Extracellular D-Aspartate Levels and Prevent Precocious Cell Death during Brain Aging.

    PubMed

    Punzo, Daniela; Errico, Francesco; Cristino, Luigia; Sacchi, Silvia; Keller, Simona; Belardo, Carmela; Luongo, Livio; Nuzzo, Tommaso; Imperatore, Roberta; Florio, Ermanno; De Novellis, Vito; Affinito, Ornella; Migliarini, Sara; Maddaloni, Giacomo; Sisalli, Maria Josè; Pasqualetti, Massimo; Pollegioni, Loredano; Maione, Sabatino; Chiariotti, Lorenzo; Usiello, Alessandro

    2016-03-01

    The endogenous NMDA receptor (NMDAR) agonist D-aspartate occurs transiently in the mammalian brain because it is abundant during embryonic and perinatal phases before drastically decreasing during adulthood. It is well established that postnatal reduction of cerebral D-aspartate levels is due to the concomitant onset of D-aspartate oxidase (DDO) activity, a flavoenzyme that selectively degrades bicarboxylic D-amino acids. In the present work, we show that d-aspartate content in the mouse brain drastically decreases after birth, whereas Ddo mRNA levels concomitantly increase. Interestingly, postnatal Ddo gene expression is paralleled by progressive demethylation within its putative promoter region. Consistent with an epigenetic control on Ddo expression, treatment with the DNA-demethylating agent, azacitidine, causes increased mRNA levels in embryonic cortical neurons. To indirectly evaluate the effect of a putative persistent Ddo gene hypermethylation in the brain, we used Ddo knock-out mice (Ddo(-/-)), which show constitutively suppressed Ddo expression. In these mice, we found for the first time substantially increased extracellular content of d-aspartate in the brain. In line with detrimental effects produced by NMDAR overstimulation, persistent elevation of D-aspartate levels in Ddo(-/-) brains is associated with appearance of dystrophic microglia, precocious caspase-3 activation, and cell death in cortical pyramidal neurons and dopaminergic neurons of the substantia nigra pars compacta. This evidence, along with the early accumulation of lipufuscin granules in Ddo(-/-) brains, highlights an unexpected importance of Ddo demethylation in preventing neurodegenerative processes produced by nonphysiological extracellular levels of free D-aspartate. PMID:26961959

  2. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis.

    PubMed

    Birsoy, Kıvanç; Wang, Tim; Chen, Walter W; Freinkman, Elizaveta; Abu-Remaileh, Monther; Sabatini, David M

    2015-07-30

    The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation. PMID:26232224

  3. Flap Dynamics in Aspartic Proteases: A Computational Perspective.

    PubMed

    Mahanti, Mukul; Bhakat, Soumendranath; Nilsson, Ulf J; Söderhjelm, Pär

    2016-08-01

    Recent advances in biochemistry and drug design have placed proteases as one of the critical target groups for developing novel small-molecule inhibitors. Among all proteases, aspartic proteases have gained significant attention due to their role in HIV/AIDS, malaria, Alzheimer's disease, etc. The binding cleft is covered by one or two β-hairpins (flaps) which need to be opened before a ligand can bind. After binding, the flaps close to retain the ligand in the active site. Development of computational tools has improved our understanding of flap dynamics and its role in ligand recognition. In the past decade, several computational approaches, for example molecular dynamics (MD) simulations, coarse-grained simulations, replica-exchange molecular dynamics (REMD) and metadynamics, have been used to understand flap dynamics and conformational motions associated with flap movements. This review is intended to summarize the computational progress towards understanding the flap dynamics of proteases and to be a reference for future studies in this field. PMID:26872937

  4. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    PubMed

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. PMID:25922304

  5. A Deficiency in Aspartate Biosynthesis in Lactococcus lactis subsp. lactis C2 Causes Slow Milk Coagulation†

    PubMed Central

    Wang, Hua; Yu, Weizhu; Coolbear, Tim; O’Sullivan, Dan; McKay, Larry L.

    1998-01-01

    A mutant of fast milk-coagulating (Fmc+) Lactococcus lactis subsp. lactis C2, designated L. lactis KB4, was identified. Although possessing the known components essential for utilizing casein as a nitrogen source, which include functional proteinase (PrtP) activity and oligopeptide, di- and tripeptide, and amino acid transport systems, KB4 exhibited a slow milk coagulation (Fmc−) phenotype. When the amino acid requirements of L. lactis C2 were compared with those of KB4 by use of a chemically defined medium, it was found that KB4 was unable to grow in the absence of aspartic acid. This aspartic acid requirement could also be met by aspartate-containing peptides. The addition of aspartic acid to milk restored the Fmc+ phenotype of KB4. KB4 was found to be defective in pyruvate carboxylase and thus was deficient in the ability to form oxaloacetate and hence aspartic acid from pyruvate and carbon dioxide. The results suggest that when lactococci are propagated in milk, aspartate derived from casein is unable to meet fully the nutritional demands of the lactococci, and they become dependent upon aspartate biosynthesis. PMID:9572935

  6. The initial step in the archaeal aspartate biosynthetic pathway catalyzed by a monofunctional aspartokinase

    PubMed Central

    Faehnle, Christopher R.; Liu, Xuying; Pavlovsky, Alexander; Viola, Ronald E.

    2006-01-01

    The activation of the β-carboxyl group of aspartate catalyzed by aspartokinase is the commitment step to amino-acid biosynthesis in the aspartate pathway. The first structure of a microbial aspartokinase, that from Methanococcus jannaschii, has been determined in the presence of the amino-acid substrate l-­aspartic acid and the nucleotide product MgADP. The enzyme assembles into a dimer of dimers, with the interfaces mediated by both the N- and C-terminal domains. The active-site functional groups responsible for substrate binding and specificity have been identified and roles have been proposed for putative catalytic functional groups. PMID:17012784

  7. Insulin degludec aspart: One-year real world experience

    PubMed Central

    Kalra, Sanjay; Baruah, Manash P.

    2016-01-01

    Background: This retrospective analysis describes the use of insulin degludec aspart (IDegAsp) in India. Material and Methods: All subjects who had received IDegAsp for 52 weeks at two endocrine centers were included in this study. Results: Forty-eight subjects (40 men), with mean age of 54.33 ± 9.63 years and mean duration of diabetes of 6.33 ± 2.96 years, started IDegAsp as insulin of initiation (16), as an intensification regime (4), as de-escalation from basal-bolus therapy (16), or as switch from premixed insulin (12). The dose of IDegAsp fell from 43.17 ± 21.18 U/day or 0.56 ± 0.23 U/kg to 37.75 ± 17.13U/day (0.51 ± 0.12 U/kg) at 24 weeks and 41.41 ± 15.33 U/day (0.56 ± 0.17 U/kg) at 52 weeks. Hemoglobin A1c (HbA1c), which was 9.52 ± 1.27% at the start of therapy, fell to 7.51 ± 0.46% at 26 weeks and to 7.48 ± 0.40% at 52 weeks. Fasting plasma glucose fell from 154.08 ± 33.30 mg% to 108.58 ± 22.26 mg% at 26 weeks and 102.17 ± 12.79 mg% at 52 weeks. Of the 48 subjects, 39 (81.25%) achieved a target of HbA1c <7.0% at both 26 and 52 weeks. No episode of hypoglycemia was reported in the 4 weeks preceding the analysis. Conclusion: This communication highlights the efficacy, safety, and tolerability, while providing insight into the usage patterns of IDegAsp. PMID:27186556

  8. Effects of L-cysteine and N-acetyl-L-cysteine on 4-hydroxy-2, 5-dimethyl-3(2H)-furanone (furaneol), 5-(hydroxymethyl)furfural, and 5-methylfurfural formation and browning in buffer solutions containing either rhamnose or glucose and arginine.

    PubMed

    Haleva-Toledo, E; Naim, M; Zehavi, U; Rouseff, R L

    1999-10-01

    Solutions of L-cysteine (Cys) and N-acetyl-L-cysteine (AcCys), containing glucose or rhamnose, with or without arginine, were buffered to pH 3, 5, and 7 and incubated at 70 degrees C for 48 h. Cys and AcCys inhibited the formation of (hydroxymethyl)furfural (HMF) from glucose and methylfurfural (MF) from rhamnose under acidic conditions. AcCys inhibited the accumulation of 4-hydroxy-2, 5-dimethyl- 3(2H)-furanone (DMHF, Furaneol) from rhamnose, but Cys, under our experimental conditions, enhanced Furaneol accumulation from rhamnose. Cys and AcCys reacted directly with Furaneol but not with HMF or MF. Both Cys and AcCys inhibited nonenzymatic browning at pH 7. At pH 3, however, Cys reacted with both glucose and rhamnose to produce unidentified compounds that increased the visible absorbency. PMID:10552780

  9. Probing the mechanisms of electron capture dissociation mass spectrometry with nitrated peptides† †Electronic supplementary information (ESI) available: CID MS/MS spectra of N-acetylated peptides; CID experimental data. See DOI: 10.1039/c0cp00623h

    PubMed Central

    Jones, Andrew W.

    2010-01-01

    Previously we have shown that the presence of 3-nitrotyrosine within a peptide sequence severely depletes the peptide backbone fragments typically observed following electron capture dissociation (ECD) mass spectrometry. Instead, ECD of nitrated peptides is characterised by abundant losses of small neutrals (hydroxyl radicals, water and ammonia). Here, we investigate the origin of ammonia loss by comparing the ECD behaviour of lysine- and arginine-containing nitrated peptides, and their N-acetylated counterparts, and nitrated peptides containing no basic amino acid residues. The results reveal that ammonia loss derives from the N-terminus of the peptides, however, the key finding of this work is the insight provided into the hierarchy of various proposed ECD mechanisms: the Utah-Washington mechanism, the electron predator mechanism and the Oslo mechanism. PMID:20830387

  10. N-Methyl-D-Aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity

    EPA Science Inventory

    N-Methyl-D-aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity Glufosinate (GLF) at high levels in mammals causes convulsions through a mechanism that is not completely understood. The structural similarity of GLF to glutamate (GLU) implicates the glutamate...

  11. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells

    PubMed Central

    Sullivan, Lucas B.; Gui, Dan Y.; Hosios, Aaron M.; Bush, Lauren N.; Freinkman, Elizaveta; Vander Heiden, Matthew G.

    2015-01-01

    Summary Mitochondrial respiration is important for cell proliferation, however the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. PMID:26232225

  12. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    PubMed

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. PMID:26232225

  13. Analysis of a Delivery Device Conversion for Insulin Aspart: Potential Clinical Impact in Veterans.

    PubMed

    Moorman Spangler, Caitlin M; Greck, Beth D; Killian, Jancy H

    2016-04-01

    In Brief Insulin therapies using a wide variety of delivery devices are available to accommodate individual patients' needs. In this study of veterans with diabetes, converting from insulin aspart delivered with vials and syringes to insulin aspart delivered via a pen device resulted in no significant change in A1C. Although insulin pen delivery devices offer benefits, providers should thoroughly consider all potential reasons for uncontrolled diabetes before modifying a patient's insulin delivery method. PMID:27092019

  14. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  15. Insulin Aspart in the Management of Diabetes Mellitus: 15 Years of Clinical Experience.

    PubMed

    Hermansen, Kjeld; Bohl, Mette; Schioldan, Anne Grethe

    2016-01-01

    Limiting excessive postprandial glucose excursions is an important component of good overall glycemic control in diabetes mellitus. Pharmacokinetic studies have shown that insulin aspart, which is structurally identical to regular human insulin except for the replacement of a single proline amino acid with an aspartic acid residue, has a more physiologic time-action profile (i.e., reaches a higher peak and reaches that peak sooner) than regular human insulin. As expected with this improved pharmacokinetic profile, insulin aspart demonstrates a greater glucose-lowering effect compared with regular human insulin. Numerous randomized controlled trials and a meta-analysis have also demonstrated improved postprandial control with insulin aspart compared with regular human insulin in patients with type 1 or type 2 diabetes, as well as efficacy and safety in children, pregnant patients, hospitalized patients, and patients using continuous subcutaneous insulin infusion. Studies have demonstrated that step-wise addition of insulin aspart is a viable intensification option for patients with type 2 diabetes failing on basal insulin. Insulin aspart has shown a good safety profile, with no evidence of increased receptor binding, mitogenicity, stimulation of anti-insulin antibodies, or hypoglycemia compared with regular human insulin. In one meta-analysis, there was evidence of a lower rate of nocturnal hypoglycemia compared with regular human insulin and, in a trial that specifically included patients with a history of recurrent hypoglycemia, a significantly lower rate of severe hypoglycemic episodes. The next generation of insulin aspart (faster-acting insulin aspart) is being developed with a view to further improving on these pharmacokinetic/pharmacodynamic properties. PMID:26607485

  16. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase.

    PubMed Central

    Ford, G C; Eichele, G; Jansonius, J N

    1980-01-01

    X-ray diffraction studies to 2.8-A resolution have yielded the three-dimensional structure of mitochondrial aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1), an isologous alpha 2 dimer (Mr = 2 x 45,000). The subunits are rich in secondary structure and contain two domains, one of which anchors the coenzyme, pyridoxal 5'-phosphate. Each active site lies between the subunits and is composed of residues from both of them. PMID:6930651

  17. Aspartate Aminotransferase in Alfalfa Root Nodules : III. Genotypic and Tissue Expression of Aspartate Aminotransferase in Alfalfa and Other Species.

    PubMed

    Farnham, M W; Griffith, S M; Miller, S S; Vance, C P

    1990-12-01

    Aspartate aminotransferase (AAT) plays an important role in nitrogen metabolism in all plants and is particularly important in the assimilation of fixed N derived from the legume-Rhizoblum symbiosis. Two isozymes of AAT (AAT-1 and AAT-2) occur in alfalfa (Medicago sativa L.). Antibodies against alfalfa nodule AAT-2 do not recognize AAT-1, and these antibodies were used to study AAT-2 expression in different tissues and genotypes of alfalfa and also in other legume and nonlegume species. Rocket immunoelectrophoresis indicated that nodules of 38-day-old alfalfa plants contained about eight times more AAT-2 than did nodules of 7-day-old plants, confirming the nodule-enhanced nature of this isozyme. AAT-2 was estimated to make up 16, 15, 5, and 8 milligrams per gram of total soluble protein in mature nodules, roots, stems, and leaves, respectively, of effective N(2)-fixing alfalfa. The concentration of AAT-2 in nodules of ineffective non-N(2)-fixing alafalfa genotypes was about 70% less than that of effective nodules. Western blots of soluble protein from nodules of nine legume species indicated that a 40-kilodalton polypeptide that reacts strongly with AAT-2 antibodies is conserved in legumes. Nodule AAT-2 immunoprecipitation data suggested that amide- and ureide-type legumes may differ in expression and regulation of the enzyme. In addition, Western blotting and immunoprecipitations of AAT activity demonstrated that antibodies against alfalfa AAT-2 are highly cross-reactive with AAT enzyme protein in leaves of soybean (Glycine max L.), wheat (Triticum aestivum L.), and maize (Zea mays L.) and in roots of maize, but not with AAT in soybean and wheat roots. Results from this study indicate that AAT-2 is structurally conserved and localized in similar tissues among diverse species. PMID:16667896

  18. Lowered circulating aspartate is a metabolic feature of human breast cancer

    PubMed Central

    Xie, Guoxiang; Zhou, Bingsen; Zhao, Aihua; Qiu, Yunping; Zhao, Xueqing; Garmire, Lana; Shvetsov, Yurii B.; Yu, Herbert; Yen, Yun; Jia, Wei

    2015-01-01

    Distinct metabolic transformation is essential for cancer cells to sustain a high rate of proliferation and resist cell death signals. Such a metabolic transformation results in unique cellular metabolic phenotypes that are often reflected by distinct metabolite signatures in tumor tissues as well as circulating blood. Using a metabolomics platform, we find that breast cancer is associated with significantly (p = 6.27E-13) lowered plasma aspartate levels in a training group comprising 35 breast cancer patients and 35 controls. The result was validated with 103 plasma samples and 183 serum samples of two groups of primary breast cancer patients. Such a lowered aspartate level is specific to breast cancer as it has shown 0% sensitivity in serum from gastric (n = 114) and colorectal (n = 101) cancer patients. There was a significantly higher level of aspartate in breast cancer tissues (n = 20) than in adjacent non-tumor tissues, and in MCF-7 breast cancer cell line than in MCF-10A cell lines, suggesting that the depleted level of aspartate in blood of breast cancer patients is due to increased tumor aspartate utilization. Together, these findings suggest that lowed circulating aspartate is a key metabolic feature of human breast cancer. PMID:26452258

  19. A mutant of Arabidopsis thaliana (L.) Heynh. with modified control of aspartate kinase by threonine.

    PubMed

    Heremans, B; Jacobs, M

    1997-04-01

    Mutagenesis and subsequent selection of Arabidopsis thaliana plantlets on a growth inhibitory concentration of lysine has led to the isolation of lysine-resistant mutants. The ability to grown on 2 mM lysine has been used to isolate mutants that may contain an aspartate kinase with altered regulatory-feedback properties. One of these mutants (RL 4) was characterized by a relative enhancement of soluble lysine. The recessive monogenic nuclear transmission of the resistance trait was established. It was associated with an aspartate kinase less sensitive to feedback inhibition by threonine. Two mutants (RLT 40 and RL 4) in Arabidopsis, characterized by an altered regulation of aspartate kinase, were crossed to assess the effects of the simultaneous presence of these different aspartate kinase forms. A double mutant (RLT40 x RL4) was isolated and characterized by two feedback-desensitized isozymes of aspartate kinase to, respectively, lysine and threonine but no threonine and/or lysine overproduction was observed. Genetical analysis of this unique double aspartate kinase mutant indicated that both mutations were located on chromosome 2, but their loci (ak1 and ak2) were found to be unlinked. PMID:9241437

  20. Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae).

    PubMed

    Lufrano, Daniela; Faro, Rosário; Castanheira, Pedro; Parisi, Gustavo; Veríssimo, Paula; Vairo-Cavalli, Sandra; Simões, Isaura; Faro, Carlos

    2012-09-01

    Typical aspartic proteinases from plants of the Astereaceae family like cardosins and cyprosins are well-known milk-clotting enzymes. Their effectiveness in cheesemaking has encouraged several studies on other Astereaceae plant species for identification of new vegetable rennets. Here we report on the cloning, expression and characterization of a novel aspartic proteinase precursor from the flowers of Cirsium vulgare (Savi) Ten. The isolated cDNA encoded a protein product with 509 amino acids, termed cirsin, with the characteristic primary structure organization of plant typical aspartic proteinases. The pro form of cirsin was expressed in Escherichia coli and shown to be active without autocatalytically cleaving its pro domain. This contrasts with the acid-triggered autoactivation by pro-segment removal described for several recombinant plant typical aspartic proteinases. Recombinant procirsin displayed all typical proteolytic features of aspartic proteinases as optimum acidic pH, inhibition by pepstatin, cleavage between hydrophobic amino acids and strict dependence on two catalytic Asp residues for activity. Procirsin also displayed a high specificity towards κ-casein and milk-clotting activity, suggesting it might be an effective vegetable rennet. The findings herein described provide additional evidences for the existence of different structural arrangements among plant typical aspartic proteinases. PMID:22727116

  1. A Cooperative Escherichia coli Aspartate Transcarbamoylase without Regulatory Subunits

    SciTech Connect

    Mendes, K.; Kantrowitz, E

    2010-01-01

    Here we report the isolation, kinetic characterization, and X-ray structure determination of a cooperative Escherichia coli aspartate transcarbamoylase (ATCase) without regulatory subunits. The native ATCase holoenzyme consists of six catalytic chains organized as two trimers bridged noncovalently by six regulatory chains organized as three dimers, c{sub 6}r{sub 6}. Dissociation of the native holoenzyme produces catalytically active trimers, c{sub 3}, and nucleotide-binding regulatory dimers, r{sub 2}. By introducing specific disulfide bonds linking the catalytic chains from the upper trimer site specifically to their corresponding chains in the lower trimer prior to dissociation, a new catalytic unit, c{sub 6}, was isolated consisting of two catalytic trimers linked by disulfide bonds. Not only does the c{sub 6} species display enhanced enzymatic activity compared to the wild-type enzyme, but the disulfide bonds also impart homotropic cooperativity, never observed in the wild-type c3. The c{sub 6} ATCase was crystallized in the presence of phosphate and its X-ray structure determined to 2.10 {angstrom} resolution. The structure of c{sub 6} ATCase liganded with phosphate exists in a nearly identical conformation as other R-state structures with similar values calculated for the vertical separation and planar angles. The disulfide bonds linking upper and lower catalytic trimers predispose the active site into a more active conformation by locking the 240s loop into the position characteristic of the high-affinity R state. Furthermore, the elimination of the structural constraints imposed by the regulatory subunits within the holoenzyme provides increased flexibility to the c{sub 6} enzyme, enhancing its activity over the wild-type holoenzyme (c{sub 6}r{sub 6}) and c{sub 3}. The covalent linkage between upper and lower catalytic trimers restores homotropic cooperativity so that a binding event at one or so active sites stimulates binding at the other sites. Reduction

  2. L-aspartic acid transport by cat erythrocytes

    SciTech Connect

    Chen, C.W.; Preston, R.L.

    1986-03-01

    Cat and dog red cells are unusual in that they have no Na/K ATPase and contain low K and high Na intracellularly. They also show significant Na dependent L-aspartate (L-asp) transport. The authors have characterized this system in cat RBCs. The influx of /sup 3/H-L-asp (typically 2..mu..M) was measured in washed RBCs incubated for 60 s at 37/sup 0/C in medium containing 140 mM NaCl, 5 mM Kcl, 2 mM CaCl/sub 2/, 15 mM MOPS pH 7.4, 5 mM glucose, and /sup 14/C-PEG as a space marker. The cells were washed 3 times in the medium immediately before incubation which was terminated by centrifuging the RBCs through a layer of dibutylphthalate. Over an L-asp concentration range of 0.5-1000..mu..M, influx obeyed Michaelis-Menten kinetics with a small added linear diffusion component. The Kt and Jmax of the saturable component were 5.40 +/- 0.34 ..mu..M and 148.8 +/- 7.2 ..mu..mol 1. cell/sup -1/h/sup -1/ respectively. Replacement of Na with Li, K, Rb, Cs or choline reduce influx to diffusion. With the addition of asp analogues (4/sup +/M L-asp, 40/sup +/M inhibitor), the following sequence of inhibition was observed (range 80% to 40% inhib.): L-glutamate > L-cysteine sulfonate > D-asp > L-cysteic acid > D-glutamate. Other amino acids such as L-alanine, L-proline, L-lysine, L-cysteine, and taurine showed no inhibition (<5%). These data suggest that cat red cells contain a high-affinity Na dependent transport system for L-asp, glutamate, and closely related analogues which resembles that found in the RBCs of other carnivores and in neural tissues.

  3. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    PubMed Central

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of the kinetic studies. We purified His6-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (Km = 0.35 ± 0.03 mm for l-aspartate, Km = 0.098 ± 0 mm for d-aspartate, Km = 26 ± 2 mm for l-alanine, Km = 3.3 ± 0.2 mm for d-alanine). Competitive inhibition by various amino acids of l-aspartate or l-alanine in self-exchange reactions revealed that l-cysteine selectively inhibited l-aspartate self-exchange but only weakly inhibited l-alanine self-exchange. Additionally, l-serine selectively inhibited l-alanine self-exchange but barely inhibited l-aspartate self-exchange. The aspartate analogs l-cysteine sulfinic acid, l-cysteic acid, and d-cysteic acid competitively and strongly inhibited l-aspartate self-exchange compared with l-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of l-aspartate and l-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  4. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    PubMed

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  5. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase.

    PubMed

    Vacca, R A; Giannattasio, S; Graber, R; Sandmeier, E; Marra, E; Christen, P

    1997-08-29

    Arg386 and Arg292 of aspartate aminotransferase bind the alpha and the distal carboxylate group, respectively, of dicarboxylic substrates. Their substitution with lysine residues markedly decreased aminotransferase activity. The kcat values with L-aspartate and 2-oxoglutarate as substrates under steady-state conditions at 25 degrees C were 0.5, 2.0, and 0.03 s-1 for the R292K, R386K, and R292K/R386K mutations, respectively, kcat of the wild-type enzyme being 220 s-1. Longer dicarboxylic substrates did not compensate for the shorter side chain of the lysine residues. Consistent with the different roles of Arg292 and Arg386 in substrate binding, the effects of their substitution on the activity toward long chain monocarboxylic (norleucine/2-oxocaproic acid) and aromatic substrates diverged. Whereas the R292K mutation did not impair the aminotransferase activity toward these substrates, the effect of the R386K substitution was similar to that on the activity toward dicarboxylic substrates. All three mutant enzymes catalyzed as side reactions the beta-decarboxylation of L-aspartate and the racemization of amino acids at faster rates than the wild-type enzyme. The changes in reaction specificity were most pronounced in aspartate aminotransferase R292K, which decarboxylated L-aspartate to L-alanine 15 times faster (kcat = 0.002 s-1) than the wild-type enzyme. The rates of racemization of L-aspartate, L-glutamate, and L-alanine were 3, 5, and 2 times, respectively, faster than with the wild-type enzyme. Thus, Arg --> Lys substitutions in the active site of aspartate aminotransferase decrease aminotransferase activity but increase other pyridoxal 5'-phosphate-dependent catalytic activities. Apparently, the reaction specificity of pyridoxal 5'-phosphate-dependent enzymes is not only achieved by accelerating the specific reaction but also by preventing potential side reactions of the coenzyme substrate adduct. PMID:9268327

  6. Structural view of the regulatory subunit of aspartate kinase from Mycobacterium tuberculosis.

    PubMed

    Yang, Qingzhu; Yu, Kun; Yan, Liming; Li, Yuanyuan; Chen, Cheng; Li, Xuemei

    2011-09-01

    The aspartate kinase (AK) from Mycobacterium tuberculosis (Mtb) catalyzes the biosynthesis of aspartate family amino acids, including lysine, threonine, isoleucine and methionine. We determined the crystal structures of the regulatory subunit of aspartate kinase from Mtb alone (referred to as MtbAKβ) and in complex with threonine (referred to as MtbAKβ-Thr) at resolutions of 2.6 Å and 2.0 Å, respectively. MtbAKβ is composed of two perpendicular non-equivalent ACT domains [aspartate kinase, chorismate mutase, and TyrA (prephenate dehydrogenase)] per monomer. Each ACT domain contains two α helices and four antiparallel β strands. The structure of MtbAKβ shares high similarity with the regulatory subunit of the aspartate kinase from Corynebacterium glutamicum (referred to as CgAKβ), suggesting similar regulatory mechanisms. Biochemical assays in our study showed that MtbAK is inhibited by threonine. Based on crystal structure analysis, we discuss the regulatory mechanism of MtbAK. PMID:21976064

  7. Interaction between L-aspartate and the brucite [Mg(OH)2]-water interface

    NASA Astrophysics Data System (ADS)

    Estrada, Charlene F.; Sverjensky, Dimitri A.; Pelletier, Manuel; Razafitianamaharavo, Angélina; Hazen, Robert M.

    2015-04-01

    The interaction of biomolecules at the mineral-water interface could have played a prominent role in the emergence of more complex organic species in life's origins. Serpentinite-hosted hydrothermal vents may have acted as a suitable environment for this process to occur, although little is known about biomolecule-mineral interactions in this system. We used batch adsorption experiments and surface complexation modeling to study the interaction of L-aspartate onto a thermodynamically stable product of serpentinization, brucite [Mg(OH)2], over a wide range of initial aspartate concentrations at four ionic strengths governed by [Mg2+] and [Ca2+]. We observed that up to 1.0 μmol of aspartate adsorbed per m2 of brucite at pH ∼ 10.2 and low Mg2+ concentrations (0.7 × 10-3 M), but surface adsorption decreased at high Mg2+ concentrations (5.8 × 10-3 M). At high Ca2+ concentrations (4.0 × 10-3 M), aspartate surface adsorption doubled (to 2.0 μmol m-2), with Ca2+ adsorption at 29.6 μmol m-2. We used the extended triple-layer model (ETLM) to construct a quantitative thermodynamic model of the adsorption data. We proposed three surface reactions involving the adsorption of aspartate (HAsp-) and/or Ca2+ onto brucite:

  8. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds. PMID:26254042

  9. Kinetic studies of the uptake of aspartate aminotransferase and malate dehydrogenase into mitochondria in vitro.

    PubMed Central

    Marra, E; Passarella, S; Casamassima, E; Perlino, E; Doonan, S; Quagliariello, E

    1985-01-01

    Kinetic measurements of the uptake of native mitochondrial aspartate aminotransferase and malate dehydrogenase into mitochondria in vitro were carried out. The uptake of both the enzymes is essentially complete in 1 min and shows saturation characteristics. The rate of uptake of aspartate aminotransferase into mitochondria is decreased by malate dehydrogenase, and vice versa. The inhibition is exerted by isoenzyme remaining outside the mitochondria rather than by isoenzyme that has been imported. The thiol compound beta-mercaptoethanol decreases the rate of uptake of the tested enzymes; inhibition is a result of interaction of beta-mercaptoethanol with the mitochondria and not with the enzymes themselves. The rate of uptake of aspartate aminotransferase is inhibited non-competitively by malate dehydrogenase, but competitively by beta-mercaptoethanol. The rate of uptake of malate dehydrogenase is inhibited non-competitively by aspartate aminotransferase and by beta-mercaptoethanol. beta-Mercaptoethanol prevents the inhibition of the rate of uptake of malate dehydrogenase by aspartate aminotransferase. These results are interpreted in terms of a model system in which the two isoenzymes have separate but interacting binding sites within a receptor in the mitochondrial membrane system. PMID:4015628

  10. Uptake and metabolism of (14C)-aspartate by developing kernels of maize (Zea mays L. )

    SciTech Connect

    Muhitch, M.J. )

    1990-05-01

    Pulse-chase experiments were performed to determine the metabolic fate of (14C)-aspartate in the pedicel region and subsequent uptake into the endosperm. Kernels were removed from the cob, leaving the pedicel attached but removing glumes, palea, and lemma. The basal tips were incubated in (14C)-aspartate for 0.5 h, followed by a 2 h chase period with unlabeled aspartate. In contrast to a previous study in which 70% of the 14C from aspartate was recovered in the organic acid fraction (Lyznik, et al., Phytochemistry 24: 425, 1985), only 20 to 25% of the radioactivity found in the 2 h chase period. While a small amount of the 14C transiently appeared in alanine at the beginning of the chase period, the most heavily labeled non-fed amino acid was glutamine, which accounted for 21% of the radioactivity within the pedicel amino acid fraction by 0.5 h into the chase period. There was no evidence for asparagine synthesis within the pedicel region of the kernel. 14C recovered from the endosperm in the form of amino acids were aspartate (60%), glutamine (20%), glutamate (15%), and alanine (5%). These results suggest that some of the maternally supplied amino acids undergo metabolic conversion to other amino acids before being taken up by the endosperm.

  11. Serum Insulin Aspart Concentrations Following High-Dose Insulin Aspart Administered Directly into the Duodenum of Healthy Subjects: An Open-Labeled, Single-Blinded, and Uncontrolled Exploratory Trial

    PubMed Central

    Ihlo, Charlotte A.; Aksglæde, Karin Bak; Laursen, Torben; Lauritzen, Torsten; Christiansen, Jens Sandahl

    2009-01-01

    Objective The goal of this study was to determine the bioavailability of high-dose insulin aspart administered directly into the duodenum of healthy subjects. Methods In a pilot study, four subjects each received four escalating doses of a 1-ml solution of insulin aspart (100, 300, 600, and 1000 IU, respectively) directly into the duodenum. In the following main study, eight subjects each received two identical doses of insulin aspart of 1000 IU, in 4- and 8-ml solutions, respectively, directly into the duodenum. Subjects in the main study also received an intravenous and a subcutaneous injection of 4 to 6 IU of insulin aspart. Results A considerable number of samples and, in some cases, consecutive samples revealed significantly increased concentrations of serum insulin aspart. Despite the significant serum insulin aspart concentrations, no significant changes of plasma glucose were measured. Moreover, no significant suppression of endogenous insulin secretion was detected, as assessed by the levels of serum human insulin. Conclusions Administration of high-dose insulin aspart directly into the duodenum of healthy subjects resulted in significantly increased serum insulin aspart concentrations in a high number of consecutive samples using a specific enzyme-linked immunosorbent assay. However, no significant changes in the levels of plasma glucose or serum human insulin were observed. Thus, the study did not provide any evidence of biological activity of the original insulin aspart molecule after high-dose administration directly into the duodenum. PMID:20144435

  12. N-phosphonacetyl-L-isoasparagine a Potent and Specific Inhibitor of E. coli Aspartate Transcarbamoylase†

    PubMed Central

    Eldo, Joby; Cardia, James P.; O’Day, Elizabeth M.; Xia, Jiarong; Tsurata, Hiro; Kantrowitz, Evan R.

    2008-01-01

    The synthesis of a new inhibitor, N-phosphonacetyl-L-isoasparagine (PALI), of Escherichia coli aspartate transcarbamoylase (ATCase) is reported, as well as structural studies of the enzyme·PALI complex. PALI was synthesized in 7 steps from β-benzyl L-aspartate. The KD of PALI was 2 μM. Kinetics and small-angle X-ray scattering experiments showed that PALI can induce the cooperative transition of ATCase from the T to the R state. The X-ray structure of the enzyme·PALI complex showed 22 hydrogen bonding interactions between the enzyme and PALI. The kinetic characterization and crystal structure of the ATCase·PALI complex also provides detailed information regarding the importance of the α-carboxylate for the binding of the substrate aspartate. PMID:17004708

  13. Action of aspartate on the /sup 32/Pi incorporation into phospholipids of cerebral cortex

    SciTech Connect

    de Scarnati, O.C.; Sato, M.; De Robertis, E.

    1982-02-01

    The effect of L-aspartate on the /sup 32/Pi incorporation of phospholipids, was studied on slices of rat cerebral cortex. This amino acid produced an inhibitory effect in concentrations 0.01-10 mM, which was more evident at 120 min. This effect was not stereospecific and did not imply a change in Pi uptake and in nucleotides approximating P precursors. The inhibition was present in PS, PC, PE and to a lesser extent in Pi. On liver slices 1 mM L-aspartate had the opposite effect, stimulating the incorporation of /sup 32/Pi into total phospholipids. Our results suggest that the effect of L-aspartate is by a non-specific mechanism, probably not mediated by a receptor.

  14. Selective permeability of rat liver mitochondria to purified aspartate aminotransferases in vitro.

    PubMed Central

    Marra, E; Doonan, S; Saccone, C; Quagliariello, E

    1977-01-01

    1. A method was devised to allow determination of intramitochondrial aspartate amino-transferase activity in suspensions of intact mitochondria. 2. Addition of purified rat liver mitochondrial aspartate aminotransferase to suspensions of rat liver mitochondria caused an apparent increase in the intramitochondrial enzyme activity. No increase was observed when the mitochondria were preincubated with the purified cytoplasmic isoenzyme. 3. These results suggest that mitochondrial aspartate aminotransferase, but not the cytoplasmic isoenzyme, is able to pass from solution into the matrix of intact rat liver mitochondria in vitro. 4. This system may provide a model for studies of the little-understood processes by which cytoplasmically synthesized components are incorporated into mitochondria in vivo. PMID:883959

  15. Adsorption of L-aspartate to rutile (α-TiO 2): Experimental and theoretical surface complexation studies

    NASA Astrophysics Data System (ADS)

    Jonsson, Caroline M.; Jonsson, Christopher L.; Estrada, Charlene; Sverjensky, Dimitri A.; Cleaves, H. James, II; Hazen, Robert M.

    2010-04-01

    Interactions between aqueous amino acids and mineral surfaces influence many geochemical processes from biomineralization to the origin of life. However, the specific reactions involved and the attachment mechanisms are mostly unknown. We have studied the adsorption of L-aspartate on the surface of rutile (α-TiO 2, pH PPZC = 5.4) in NaCl(aq) over a wide range of pH, ligand-to-solid ratio and ionic strength, using potentiometric titrations and batch adsorption experiments. The adsorption is favored below pH 6 with a maximum of 1.2 μmol of adsorbed aspartate per m 2 of rutile at pH 4 in our experiments. The adsorption decreases at higher pH because the negatively charged aspartate molecule is repelled by the negatively charged rutile surface above pH PPZC. At pH values of 3-5, aspartate adsorption increases with decreasing ionic strength. The adsorption of aspartate on rutile is very similar to that previously published for glutamate ( Jonsson et al., 2009). An extended triple-layer model was used to provide a quantitative thermodynamic characterization of the aspartate adsorption data. Two reaction stoichiometries identical in reaction stoichiometry to those for glutamate were needed. At low surface coverages, aspartate, like glutamate, may form a bridging-bidentate surface species binding through both carboxyl groups, i.e. "lying down" on the rutile surface. At high surface coverages, the reaction stoichiometry for aspartate was interpreted differently compared to glutamate: it likely involves an outer-sphere or hydrogen bonded aspartate surface species, as opposed to a partly inner-sphere complex for glutamate. Both the proposed aspartate species are qualitatively consistent with previously published ATR-FTIR spectroscopic results for aspartate on amorphous titanium dioxide. The surface complexation model for aspartate was tested against experimental data for the potentiometric titration of aspartate in the presence of rutile. In addition, the model correctly

  16. Aspartate Embedding Depth Affects pHLIP’s Insertion pKa

    PubMed Central

    Fendos, Justin; Barrera, Francisco N.; Engelman, Donald M.

    2014-01-01

    We have used the pHLIP® (pH Low Insertion Peptide) peptide family to study the role of aspartate embedding depth in pH-dependent transmembrane peptide insertion. pHLIP binds to the surface of a lipid bilayer as a largely unstructured monomer at neutral pH. When pH is lowered, pHLIP inserts spontaneously across the membrane as a spanning α-helix. pHLIP insertion is reversible when pH is adjusted back to a neutral value. One of the critical events facilitating pHLIP insertion is the protonation of aspartates in the spanning domain of the peptide: the negative side chains of these residues convert to uncharged, polar forms, facilitating insertion by altering the hydrophobicity of the spanning domain. To further examine this protonation mechanism, we created pHLIP sequence variants in which the position of the two spanning aspartates (D14, D25) was moved up or down in the sequence. We hypothesized that aspartate depth in the inserted state would directly affect the proton affinity of the acidic side chains, altering the pKa of pH-dependent insertion. To this end, we also mutated the arginine at position 11 to see if arginine snorkeling modulates the insertion pKa by affecting aspartate depth. Our results indicate both types of mutations change the insertion pKa, supporting the idea that aspartate depth is a participating parameter in determining pH dependence. We also show that pHLIP’s resistance to aggregation can be altered with our mutations, identifying a new criterion for improving pHLIP performance in vivo when targeting acidic disease tissues such as cancer and inflammation. PMID:23721379

  17. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate

    SciTech Connect

    Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.; Maruyama, Ichiro N.

    2014-08-27

    The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.

  18. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Qatar cohort of the A1chieve study

    PubMed Central

    Daghash, Mohamed Hasan; Raja, Jabbar Mubarak; Milad, Mohamed

    2013-01-01

    Background: The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Qatar. Results: A total of 91 patients were enrolled in the study. Two insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 88), insulin detemir (n = 2), and other insulin combinations (n = 1). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 10.9%) and insulin users (mean HbA1c: 9.1%) groups. After 24 weeks of treatment, all the study groups showed improvement in HbA1c (insulin naïve: −1.8%, insulin users: −1.3%). Major hypoglycaemia did not occur in the study patients. SADRs were reported in 1.4% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia. PMID:24404484

  19. Proton transfer pathways in an aspartate-water cluster sampled by a network of discrete states

    NASA Astrophysics Data System (ADS)

    Reidelbach, Marco; Betz, Fridtjof; Mäusle, Raquel Maya; Imhof, Petra

    2016-08-01

    Proton transfer reactions are complex transitions due to the size and flexibility of the hydrogen-bonded networks along which the protons may "hop". The combination of molecular dynamics based sampling of water positions and orientations with direct sampling of proton positions is an efficient way to capture the interplay of these degrees of freedom in a transition network. The energetically most favourable pathway in the proton transfer network computed for an aspartate-water cluster shows the pre-orientation of water molecules and aspartate side chains to be a pre-requisite for the subsequent concerted proton transfer to the product state.

  20. Chemotactic responses of Escherichia coli to small jumps of photoreleased L-aspartate.

    PubMed

    Jasuja, R; Keyoung, J; Reid, G P; Trentham, D R; Khan, S

    1999-03-01

    Computer-assisted motion analysis coupled to flash photolysis of caged chemoeffectors provides a means for time-resolved analysis of bacterial chemotaxis. Escherichia coli taxis toward the amino acid attractant L-aspartate is mediated by the Tar receptor. The physiology of this response, as well as Tar structure and biochemistry, has been studied extensively. The beta-2, 6-dinitrobenzyl ester of L-aspartic acid and the 1-(2-nitrophenyl)ethyl ether of 8-hydroxypyrene-1,3,6-tris-sulfonic acid were synthesized. These compounds liberated L-aspartate and the fluorophore 8-hydroxypyrene 1,3,6-tris-sulfonic acid (pyranine) upon irradiation with near-UV light. Photorelease of the fluorophore was used to define the amplitude and temporal stability of the aspartate jumps employed in chemotaxis experiments. The dependence of chemotactic adaptation times on aspartate concentration, determined in mixing experiments, was best fit by two Tar aspartate-binding sites. Signal processing (excitation) times, amplitudes, and adaptive recovery of responses elicited by aspartate jumps producing less than 20% change in receptor occupancy were characterized in photorelease assays. Aspartate concentration jumps in the nanomolar range elicited measurable responses. The response threshold and sensitivity of swimming bacteria matched those of bacteria tethered to glass by a single flagellum. Stimuli of similar magnitude, delivered either by rapid mixing or photorelease, evoked responses of similar strength, as assessed by recovery time measurements. These times remained proportional to change in receptor occupancy close to threshold, irrespective of prior occupancy. Motor excitation responses decayed exponentially with time. Rates of excitation responses near threshold ranged from 2 to 7 s-1. These values are consistent with control of excitation signaling by decay of phosphorylated pools of the response regulator protein, CheY. Excitation response rates increased slightly with stimulus size

  1. Retrograde transport of (/sup 3/H)-D-aspartate label by cochlear and vestibular efferent neurons

    SciTech Connect

    Schwarz, D.W.; Schwarz, I.E.

    1988-01-01

    (/sup 3/H)-D-aspartic acid was injected into the inner ear of rats. After a six hour survival time, labeled cells were found at all locations known to contain efferent cochlear or vestibular neurons. Most labeled neurons were found in the ipsilateral lateral superior olivary nucleus (LSO), although both ventral nuclei of the trapezoid body (VTB), group E, and the caudal pontine reticular nucleus (CPR) just adjacent to the ascending limb of the facial nerve also contained labeled cells. Because not all efferent neurons in the rat could be previously shown to be cholinergic, aspartate and glutamate are efferent transmitter candidates.

  2. Cloning and expression of genes of aspartate-family amino acid aiosynthesis from medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four of the amino acids that must be acquired in the human diet, lysine, threonine, methionine and isoleucine, are derived from a common precursor, aspartate, and are produced in a branched, highly-regulated, biosynthetic pathway. Moreover, the common dietary sources of plant proteins, cereals grain...

  3. Threonine Overproduction in Transgenic Tobacco Plants Expressing a Mutant Desensitized Aspartate Kinase of Escherichia coli1

    PubMed Central

    Shaul, Orit; Galili, Gad

    1992-01-01

    In higher plants, the synthesis of the essential amino acid threonine is regulated primarily by the sensitivity of the first enzyme in its biosynthetic pathway, aspartate kinase, to feedback inhibition by threonine and lysine. We aimed to study the potential of increasing threonine accumulation in plants by means of genetic engineering. This was addressed by the expression of a mutant, desensitized aspartate kinase derived from Escherichia coli either in the cytoplasm or in the chloroplasts of transgenic tobacco (Nicotiana Tabacum cv Samsun NN) plants. Both types of transgenic plants exhibited a significant overproduction of free threonine. However, threonine accumulation was higher in plants expressing the bacterial enzyme in the chloroplast, indicating that compartmentalization of aspartate kinase within this organelle was important, although not essential. Threonine overproduction in leaves was positively correlated with the level of the desensitized enzyme. Transgenic plants expressing the highest leaf aspartate kinase activity also exhibited a slight increase in the levels of free lysine and isoleucine, both of which share a common biosynthetic pathway with threonine, but showed no significant change in the level of other free amino acids. The present study proposes a new molecular biological approach to increase the limiting content of threonine in higher plants. PMID:16653099

  4. Genome-wide identification, evolutuionary and expression analysis of aspartic proteases gene superfamily in grape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartic proteases (APs) are a large family of proteolytic enzymes in vertebrates, plants, yeast, nematodes, parasites, fungi, and viruses. In plants, they are involved in many biological processes, such as plant senescence, stress response, programmed cell death, and reproduction. Prior to the pr...

  5. A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bennett, George D.

    2005-01-01

    The green polymerization of aspartic acid carried out during an organic-inorganic synthesis laboratory course for undergraduate students is described. The procedure is based on work by Donlar Corporation, a Peru, Illinois-based company that won a Green Chemistry Challenge Award in 1996 in the Small Business category for preparing thermal…

  6. Identification of a small molecule [beta]-secretase inhibitor that binds without catalytic aspartate engagement

    SciTech Connect

    Steele, Thomas G.; Hills, Ivory D.; Nomland, Ashley A.; de León, Pablo; Allison, Timothy; McGaughey, Georgia; Colussi, Dennis; Tugusheva, Katherine; Haugabook, Sharie J.; Espeseth, Amy S.; Zuck, Paul; Graham, Samuel L.; Stachel, Shawn J.

    2010-09-02

    A small molecule inhibitor of beta-secretase with a unique binding mode has been developed. Crystallographic determination of the enzyme-inhibitor complex shows the catalytic aspartate residues in the active site are not engaged in inhibitor binding. This unprecedented binding mode in the field of aspartyl protease inhibition is described.

  7. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  8. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  9. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  10. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  11. 21 CFR 862.1100 - Aspartate amino transferase (AST/SGOT) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Aspartate amino transferase (AST/SGOT) test system. 862.1100 Section 862.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  12. Pneumocystis Jirovecii Pneumonia in a Patient with Anti-N-Methyl-D-Aspartate Receptor Postherpetic Encephalitis.

    PubMed

    García-Moreno, Jorge; Igartua Laraudogoitia, Jon; Montes Ros, Milagrosa

    2016-07-01

    Anti-N-methyl-D-aspartate receptor encephalitis is a neuroimmunologic disorder that has been increasingly diagnosed during the past 5 years. It provokes a predictable syndrome treated with several immunomodulatory agents, such as corticosteroids and/or biologics. We managed a child with this disease who developed Pneumocystis jirovecii pneumonia as a direct infectious complication of the use of rituximab. PMID:27093160

  13. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group.

    PubMed

    Bungard, Christopher J; Williams, Peter D; Ballard, Jeanine E; Bennett, David J; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S; Chang, Ronald K; Dubost, David C; Fay, John F; Diamond, Tracy L; Greshock, Thomas J; Hao, Li; Holloway, M Katharine; Felock, Peter J; Gesell, Jennifer J; Su, Hua-Poo; Manikowski, Jesse J; McKay, Daniel J; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M; Nantermet, Philippe G; Nadeau, Christian; Sanchez, Rosa I; Satyanarayana, Tummanapalli; Shipe, William D; Singh, Sanjay K; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M; Vacca, Joseph P; Crane, Sheldon N; McCauley, John A

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile. PMID:27437081

  14. Insights into the behaviour of biomolecules on the early Earth: The concentration of aspartate by layered double hydroxide minerals

    NASA Astrophysics Data System (ADS)

    Grégoire, Brian; Erastova, Valentina; Geatches, Dawn L.; Clark, Stewart J.; Greenwell, H. Christopher; Fraser, Donald G.

    2016-03-01

    The role of mineral surfaces in concentrating and facilitating the polymerisation of simple protobiomolecules during the Hadean and Archean has been the subject of much research in order to constrain the conditions that may have led to the origin of life on early Earth. Here we examine the adsorption of the amino acid aspartate on layered double hydroxide minerals, and use a combined computer simulation - experimental spectroscopy approach to gain insight into the resulting structures of the host-aspartate material. We show that the uptake of aspartate occurs in alkaline solution by anion exchange of the dianion form of aspartate, rather than by surface adsorption. Anion exchange only occurs at values of pH where a significant population of aspartate has the amino group deprotonated, and is then highly efficient up to the mineral anion exchange capacity.

  15. DNA interaction with octahedral and square planar Ni(II) complexes of aspartic-acid Schiff-bases

    NASA Astrophysics Data System (ADS)

    Sallam, S. A.; Orabi, A. S.; Abbas, A. M.

    2011-12-01

    Ni(II) complexes of (S,E)-2-(2-OHbenzilydene)aspartic acid; (S,E)-2-(2,3-diOHbenzilydene)aspartic acid-; (S,E)-2-(2,4-diOH-benzilydene)aspartic acid; (S,E)-2-(2,5-diOHbenzilydene)aspartic acid and (S,E)-2-((2-OHnaphthalene-1-yl)methylene)aspartic acid Schiff-bases have been synthesized by template method in ethanol or ammonia media. They were characterized by elemental analyses, conductivity measurements, magnetic moment, UV, IR and 1H nmr spectra as well as thermal analysis (TG, DTG, DTA). The Schiff-bases are dibasic tridentate or tetradentate donors and the complexes have square planar and octahedral structures. The complexes decompose in two or three steps where kinetic and thermodynamic parameters of the decomposition steps were computed. The interactions of the formed complexes with FM-DNA were monitored by UV and fluorescence spectroscopy.

  16. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

    PubMed

    Onstott, T C; Magnabosco, C; Aubrey, A D; Burton, A S; Dworkin, J P; Elsila, J E; Grunsfeld, S; Cao, B H; Hein, J E; Glavin, D P; Kieft, T L; Silver, B J; Phelps, T J; van Heerden, E; Opperman, D J; Bada, J L

    2014-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 °C and 1-2 years for 3 km depth and 54 °C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 °C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples. PMID:24289240

  17. Structural Insights into the Activation and Inhibition of Histo-Aspartic Protease from Plasmodium falciparum

    SciTech Connect

    Bhaumik, Prasenjit; Xiao, Huogen; Hidaka, Koushi; Gustchina, Alla; Kiso, Yoshiaki; Yada, Rickey Y.; Wlodawer, Alexander

    2012-09-17

    Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 {angstrom} resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C-terminal domains apart, thereby separating His32 and Asp215 and preventing formation of the mature active site. In the inhibitor complex, the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter U, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to those of the fragment of helix 2 comprising residues 34p-38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A' of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP.

  18. Taurine attenuates D-[3H]aspartate release evoked by depolarization in ischemic corticostriatal slices.

    PubMed

    Molchanova, Svetlana M; Oja, Simo S; Saransaari, Pirjo

    2006-07-12

    Taurine is thought to be protective in ischemia due to its neuroinhibitory effects. The present aim was to assess the ability of taurine to attenuate glutamate release evoked by ischemia and to determine which component of this release is affected. The release of preloaded D-[(3)H]aspartate (a non-metabolized analog of glutamate) from superfused murine corticostriatal slices was used as index of glutamate release. Preincubation of corticostriatal slices with 10 mM taurine reduced the D-[(3)H]aspartate release evoked by either chemical ischemia (0.5 mM NaCN in glucose-free medium) or oxygen-glucose deprivation. The taurine uptake inhibitor guanidinoethanesulfonate (5 mM), the glycine receptor antagonist strychnine (0.1 mM) and the GABA(A) receptor antagonist bicuculline (0.1 mM) did not block the taurine effect. To determine which component of ischemia-induced glutamate release is affected by taurine, three pathways of this release were pharmacologically modeled. Unlabeled D-aspartate (0.5 mM) and hypo-osmotic medium (NaCl reduced by 50 mM) evoked D-[(3)H]aspartate release via homoexchange and hypo-osmotic release pathways, respectively. Taurine did not influence these pathways. However, it suppressed the synaptic release of D-[(3)H]aspartate evoked by the voltage-gated sodium channel opener veratridine (0.1 mM). Taurine thus reduces glutamate release under ischemic conditions by affecting the depolarization-evoked component. PMID:16781687

  19. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

    SciTech Connect

    Onstott, T. C.; Aubrey, A.D.; Kieft, T L; Silver, B J; Phelps, Tommy Joe; Van Heerden, E.; Opperman, D. J.; Bada, J L.

    2014-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 C and 1 2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  20. Does Aspartic Acid Racemization Constrain the Depth Limit of the Subsurface Biosphere?

    NASA Technical Reports Server (NTRS)

    Onstott, T C.; Magnabosco, C.; Aubrey, A. D.; Burton, A. S.; Dworkin, J. P.; Elsila, J. E.; Grunsfeld, S.; Cao, B. H.; Hein, J. E.; Glavin, D. P.; Kieft, T. L.; Silver, B. J.; Phelps, T. J.; Heerden, E. Van; Opperman, D. J.; Bada, J. L.

    2013-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of approximately 89 years for 1 km depth and 27 C and 1-2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  1. Insulin degludec and insulin aspart: novel insulins for the management of diabetes mellitus

    PubMed Central

    Atkin, Stephen; Javed, Zeeshan; Fulcher, Gregory

    2015-01-01

    Patients with type 2 diabetes mellitus require insulin as disease progresses to attain or maintain glycaemic targets. Basal insulin is commonly prescribed initially, alone or with one or more rapid-acting prandial insulin doses, to limit mealtime glucose excursions (a basal–bolus regimen). Both patients and physicians must balance the advantages of improved glycaemic control with the risk of hypoglycaemia and increasing regimen complexity. The rapid-acting insulin analogues (insulin aspart, insulin lispro and insulin glulisine) all have similar pharmacokinetic and pharmacodynamic characteristics and clinical efficacy/safety profiles. However, there are important differences in the pharmacokinetic and pharmacodynamic profiles of basal insulins (insulin glargine, insulin detemir and insulin degludec). Insulin degludec is an ultra-long-acting insulin analogue with a flat and stable glucose-lowering profile, a duration of action exceeding 30 h and less inter-patient variation in glucose-lowering effect than insulin glargine. In particular, the chemical properties of insulin degludec have allowed the development of a soluble co-formulation with prandial insulin aspart (insulin degludec/insulin aspart) that provides basal insulin coverage for at least 24 h with additional mealtime insulin for one or two meals depending on dose frequency. Pharmacokinetic and pharmacodynamic studies have shown that the distinct, long basal glucose-lowering action of insulin degludec and the prandial glucose-lowering effect of insulin aspart are maintained in the co-formulation. Evidence from pivotal phase III clinical trials indicates that insulin degludec/insulin aspart translate into sustained glycaemic control with less hypoglycaemia and the potential for a simpler insulin regimen with fewer daily injections. PMID:26568812

  2. Insulin degludec and insulin aspart: novel insulins for the management of diabetes mellitus.

    PubMed

    Atkin, Stephen; Javed, Zeeshan; Fulcher, Gregory

    2015-11-01

    Patients with type 2 diabetes mellitus require insulin as disease progresses to attain or maintain glycaemic targets. Basal insulin is commonly prescribed initially, alone or with one or more rapid-acting prandial insulin doses, to limit mealtime glucose excursions (a basal-bolus regimen). Both patients and physicians must balance the advantages of improved glycaemic control with the risk of hypoglycaemia and increasing regimen complexity. The rapid-acting insulin analogues (insulin aspart, insulin lispro and insulin glulisine) all have similar pharmacokinetic and pharmacodynamic characteristics and clinical efficacy/safety profiles. However, there are important differences in the pharmacokinetic and pharmacodynamic profiles of basal insulins (insulin glargine, insulin detemir and insulin degludec). Insulin degludec is an ultra-long-acting insulin analogue with a flat and stable glucose-lowering profile, a duration of action exceeding 30 h and less inter-patient variation in glucose-lowering effect than insulin glargine. In particular, the chemical properties of insulin degludec have allowed the development of a soluble co-formulation with prandial insulin aspart (insulin degludec/insulin aspart) that provides basal insulin coverage for at least 24 h with additional mealtime insulin for one or two meals depending on dose frequency. Pharmacokinetic and pharmacodynamic studies have shown that the distinct, long basal glucose-lowering action of insulin degludec and the prandial glucose-lowering effect of insulin aspart are maintained in the co-formulation. Evidence from pivotal phase III clinical trials indicates that insulin degludec/insulin aspart translate into sustained glycaemic control with less hypoglycaemia and the potential for a simpler insulin regimen with fewer daily injections. PMID:26568812

  3. Gene profiling reveals hydrogen sulphide recruits death signaling via the N-methyl-D-aspartate receptor identifying commonalities with excitotoxicity.

    PubMed

    Chen, Minghui Jessica; Peng, Zhao Feng; Manikandan, Jayapal; Melendez, Alirio J; Tan, Gek San; Chung, Ching Ming; Li, Qiu-Tian; Tan, Theresa M; Deng, Lih Wen; Whiteman, Matthew; Beart, Philip M; Moore, Phillip K; Cheung, Nam Sang

    2011-05-01

    Recently the role of hydrogen sulphide (H(2) S) as a gasotransmitter stimulated wide interest owing to its involvement in Alzheimer's disease and ischemic stroke. Previously we demonstrated the importance of functional ionotropic glutamate receptors (GluRs) by neurons is critical for H(2) S-mediated dose- and time-dependent injury. Moreover N-methyl-D-aspartate receptor (NMDAR) antagonists abolished the consequences of H(2) S-induced neuronal death. This study focuses on deciphering the downstream effects activation of NMDAR on H(2) S-mediated neuronal injury by analyzing the time-course of global gene profiling (5, 15, and 24 h) to provide a comprehensive description of the recruitment of NMDAR-mediated signaling. Microarray analyses were performed on RNA from cultured mouse primary cortical neurons treated with 200 µM sodium hydrosulphide (NaHS) or NMDA over a time-course of 5-24 h. Data were validated via real-time PCR, western blotting, and global proteomic analysis. A substantial overlap of 1649 genes, accounting for over 80% of NMDA global gene profile present in that of H(2) S and over 50% vice versa, was observed. Within these commonly occurring genes, the percentage of transcriptional consistency at each time-point ranged from 81 to 97%. Gene families involved included those related to cell death, endoplasmic reticulum stress, calcium homeostasis, cell cycle, heat shock proteins, and chaperones. Examination of genes exclusive to H(2) S-mediated injury (43%) revealed extensive dysfunction of the ubiquitin-proteasome system. These data form a foundation for the development of screening platforms and define targets for intervention in H(2) S neuropathologies where NMDAR-activated signaling cascades played a substantial role. PMID:20945398

  4. Intramolecular signal transmission in enterobacterial aspartate transcarbamylases II. Engineering co-operativity and allosteric regulation in the aspartate transcarbamylase of Erwinia herbicola.

    PubMed

    Cunin, R; Rani, C S; Van Vliet, F; Wild, J R; Wales, M

    1999-12-17

    The aspartate transcarbamylase (ATCase) from Erwinia herbicola differs from the other investigated enterobacterial ATCases by its absence of homotropic co-operativity toward the substrate aspartate and its lack of response to ATP which is an allosteric effector (activator) of this family of enzymes. Nevertheless, the E. herbicola ATCase has the same quaternary structure, two trimers of catalytic chains with three dimers of regulatory chains ((c3)2(r2)3), as other enterobacterial ATCases and shows extensive primary structure conservation. In (c3)2(r2)3 ATCases, the association of the catalytic subunits c3 with the regulatory subunits r2 is responsible for the establishment of positive co-operativity between catalytic sites for the binding of aspartate and it dictates the pattern of allosteric response toward nucleotide effectors. Alignment of the primary sequence of the regulatory polypeptides from the E. herbicola and from the paradigmatic Escherichia coli ATCases reveals major blocks of divergence, corresponding to discrete structural elements in the E. coli enzyme. Chimeric ATCases were constructed by exchanging these blocks of divergent sequence between these two ATCases. It was found that the amino acid composition of the outermost beta-strand of a five-stranded beta-sheet in the effector-binding domain of the regulatory polypeptide is responsible for the lack of co-operativity and response to ATP of the E. herbicola ATCase. A novel structural element involved in allosteric signal recognition and transmission in this family of ATCases was thus identified. PMID:10600394

  5. Induced synthesis of P450 aromatase and 17β-estradiol by D-aspartate in frog brain.

    PubMed

    Burrone, Lavinia; Santillo, Alessandra; Pinelli, Claudia; Baccari, Gabriella Chieffi; Di Fiore, Maria Maddalena

    2012-10-15

    D-Aspartic acid is an endogenous amino acid occurring in the endocrine glands as well as in the nervous system of various animal phyla. Our previous studies have provided evidence that D-aspartate plays a role in the induction of estradiol synthesis in gonads. Recently, we have also demonstrated that D-aspartic acid induces P450 aromatase mRNA expression in the frog (Pelophylax esculentus) testis. P450 aromatase is the key enzyme in the estrogen synthetic pathway and irreversibly converts testosterone into 17β-estradiol. In this study, we firstly investigated the immunolocalisation of P450 aromatase in the brain of P. esculentus, which has never previously been described in amphibians. Therefore, to test the hypothesis that d-aspartate mediates a local synthesis of P450 aromatase in the frog brain, we administered D-aspartate in vivo to male frogs and then assessed brain aromatase expression, sex hormone levels and sex hormone receptor expression. We found that D-aspartate enhances brain aromatase expression (mRNA and protein) through the CREB pathway. Then, P450 aromatase induces 17β-estradiol production from testosterone, with a consequent increase of its receptor. Therefore, the regulation of d-aspartate-mediated P450 aromatase expression could be an important step in the control of neuroendocrine regulation of the reproductive axis. Accordingly, we found that the sites of P450 aromatase immunoreactivity in the frog brain correspond to the areas known to be involved in neurosteroid synthesis. PMID:22771744

  6. Molecular cloning and enzymological characterization of pyridoxal 5'-phosphate independent aspartate racemase from hyperthermophilic archaeon Thermococcus litoralis DSM 5473.

    PubMed

    Washio, Tsubasa; Kato, Shiro; Oikawa, Tadao

    2016-09-01

    We succeeded in expressing the aspartate racemase homolog gene from Thermococcus litoralis DSM 5473 in Escherichia coli Rosetta (DE3) and found that the gene encodes aspartate racemase. The aspartate racemase gene consisted of 687 bp and encoded 228 amino acid residues. The purified enzyme showed aspartate racemase activity with a specific activity of 1590 U/mg. The enzyme was a homodimer with a molecular mass of 56 kDa and did not require pyridoxal 5'-phosphate as a coenzyme. The enzyme showed aspartate racemase activity even at 95 °C, and the activation energy of the enzyme was calculated to be 51.8 kJ/mol. The enzyme was highly thermostable, and approximately 50 % of its initial activity remained even after incubation at 90 °C for 11 h. The enzyme showed a maximum activity at a pH of 7.5 and was stable between pH 6.0 and 7.0. The enzyme acted on L-cysteic acid and L-cysteine sulfinic acid in addition to D- and L-aspartic acids, and was strongly inhibited by iodoacetic acid. The site-directed mutagenesis of the enzyme showed that the essential cysteine residues were conserved as Cys83 and Cys194. D-Forms of aspartic acid, serine, alanine, and valine were contained in T. litoralis DSM 5473 cells. PMID:27438592

  7. N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors mediate seizures and CA1 hippocampal damage induced by dendrotoxin-K in rats.

    PubMed

    Bagetta, G; Iannone, M; Palma, E; Nisticò, G; Dolly, J O

    1996-04-01

    The epileptogenic and neurodegenerative effects of dendrotoxin K, from Dendroaspis polylepis, a specific blocker of a non-inactivating, voltage-sensitive K+ channel, were studied after focal injection into one dorsal hippocampus in rats. Administration of 35 pmol dendrotoxin K elicited motor seizures and bilateral electrocortical discharges after a latent period (5.3 +/- 2.1 min), in all of the treated animals (n = 6). At 24 h, histological examination of brain (n = 5) coronal sections (10 microns; n = 6 per brain) detected bilateral damage to the hippocampal formation which extended 300 microns rostral and caudal to the injection tract. Quantitation of the damage revealed significant bilateral neuronal cell loss in the CA1 and CA4 pyramidal cell layer relative to the corresponding brain regions of rats (n = 3) injected with bovine serum albumin (105 pmol), which per se was ineffective in all respects. Dendrotoxin K (35 pmol) also caused a significant loss of CA3 pyramidal neurons and dentate gyrus granule cells ipsilateral to the site of toxin injection. In one out of six rats, a lower dose (3.5 pmol) of dendrotoxin K produced convulsive behaviour and electrocortical seizures but after a longer latency and these were accompanied by significant neuronal loss in the CA1, CA3 and CA4 pyramidal cell layer ipsilateral to the injected side. The lowest dose (0.35 pmol; n = 6 rats) of dendrotoxin K used failed to induce seizures and did not cause hippocampal damage (n = 6 rats). Systemic (i.p.) treatment with dizocilpine maleate (3 mg/kg) or LY 274614 (5 mg/kg i.p.), two N-methyl-D-aspartate receptor antagonists (given 15 min beforehand), prevented dendrotoxin K (35 pmol)-induced motor seizures and electrocortical epileptogenic discharges in 100% of the animals (n = 6 per group) treated. Similarly, these antagonists minimized the damage typically produced in the rat hippocampus, with no significant neuronal loss being observed. By contrast, NBQX (30 mg/kg, i.p. given 15

  8. Solvent-Free Polymerization of L-Aspartic Acid in the Presence of D-Sorbitol to Obtain Water Soluble or Network Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-aspartic acid was thermally polymerized in the presence of D-sorbitol with the goal of synthesizing new, higher molecular weight water soluble and absorbent copolymers. No reaction occurred when aspartic acid alone was heated at 170 or 200 degrees C. In contrast, heating sorbitol and aspartic ac...

  9. Pragmatic use of insulin degludec/insulin aspart co-formulation: A multinational consensus statement.

    PubMed

    Kalra, Sanjay; Latif, Zafar A; Comlekci, Abdurrahman; Galvez, Guillermo Gonzalez; Malik, Rached; Pathan, Md Faruque; Kumar, Ajay

    2016-01-01

    Insulin degludec/insulin aspart (IDegAsp) is a modern coformulation of ultra-long-acting basal insulin degludec, with rapid-acting insulin aspart. IDegAsp provides effective, safe, well-tolerated glycemic control, with a low risk of hypoglycemia while allowing flexibility in meal patterns and timing of administration. This consensus statement describes a pragmatic framework to identify patients who may benefit from IDegAsp therapy. It highlights the utility of IDegAsp in type 2 diabetic patients who are insulin-naive, suboptimally controlled on basal or premixed insulin, or dissatisfied with basal-bolus regimens. It also describes potential IDegAsp usage in type 1 diabetic patients. PMID:27366723

  10. Pragmatic use of insulin degludec/insulin aspart co-formulation: A multinational consensus statement

    PubMed Central

    Kalra, Sanjay; Latif, Zafar A.; Comlekci, Abdurrahman; Galvez, Guillermo Gonzalez; Malik, Rached; Pathan, Md Faruque; Kumar, Ajay

    2016-01-01

    Insulin degludec/insulin aspart (IDegAsp) is a modern coformulation of ultra-long-acting basal insulin degludec, with rapid-acting insulin aspart. IDegAsp provides effective, safe, well-tolerated glycemic control, with a low risk of hypoglycemia while allowing flexibility in meal patterns and timing of administration. This consensus statement describes a pragmatic framework to identify patients who may benefit from IDegAsp therapy. It highlights the utility of IDegAsp in type 2 diabetic patients who are insulin-naive, suboptimally controlled on basal or premixed insulin, or dissatisfied with basal–bolus regimens. It also describes potential IDegAsp usage in type 1 diabetic patients. PMID:27366723

  11. Membrane topology of the electrogenic aspartate-alanine antiporter AspT of Tetragenococcus halophilus.

    PubMed

    Nanatani, Kei; Ohonishi, Fumito; Yoneyama, Hiroshi; Nakajima, Tasuku; Abe, Keietsu

    2005-03-01

    AspT is an electrogenic aspartate:alanine exchange protein that represents the vectorial component of a proton-motive metabolic cycle found in some strains of Tetragenococcus halophilus. AspT is the sole member of a new family, the Aspartate: Alanine Exchanger (AAE) family, in secondary transporters, according to the computational classification proposed by Saier et al. (http://www.biology.ucsd.edu/~msaier/transport/). We analyzed the topology of AspT biochemically, by using fusion methods in combination with alkaline phosphatase or beta-lactamase. These results suggested that AspT has a unique topology; 8 TMS, a large cytoplasmic loop (183 amino acids) between TMS5 and TMS6, and N- and C-termini that both face the periplasm. These results demonstrated a unique 2D-structure of AspT as the novel AAE family. PMID:15670744

  12. Anti-N-Methyl-D-Aspartate Receptor Encephalitis: A Case Study.

    PubMed

    Halbert, Roger Kelsey

    2016-10-01

    Anti-N-methyl-D-aspartate receptor encephalitis is an autoimmune syndrome that presents with personality changes, autonomic dysfunction, and neurologic deterioration. Most patients with this syndrome progress from psychosis to seizure to catatonia, often associated with abnormal movements, autonomic instability, and hypoventilation. First-line treatment constitutes resection of the associated neoplasm, corticosteroids, intravenous immunoglobulin, and plasma exchange. Second-line treatment includes rituximab and cyclophosphamide. A case of confirmed anti-N-methyl-D-aspartate receptor encephalitis is presented that illustrates the diagnostic and treatment challenges associated with this syndrome and underscores the nursing implications of medical management during immunosuppression. This case study recommends surface cooling and a pharmaceutical regimen for management of autonomic storming, which is a hallmark of this disorder. PMID:27579962

  13. Crystallographic Snapshots of the Complete Catalytic Cycle of the Unregulated Aspartate Transcarbamoylase from Bacillus subtilis

    SciTech Connect

    K Harris; G Cockrell; D Puleo; E Kantrowitz

    2011-12-31

    Here, we report high-resolution X-ray structures of Bacillus subtilis aspartate transcarbamoylase (ATCase), an enzyme that catalyzes one of the first reactions in pyrimidine nucleotide biosynthesis. Structures of the enzyme have been determined in the absence of ligands, in the presence of the substrate carbamoyl phosphate, and in the presence of the bisubstrate/transition state analog N-phosphonacetyl-L-aspartate. Combining the structural data with in silico docking and electrostatic calculations, we have been able to visualize each step in the catalytic cycle of ATCase, from the ordered binding of the substrates, to the formation and decomposition of the tetrahedral intermediate, to the ordered release of the products from the active site. Analysis of the conformational changes associated with these steps provides a rationale for the lack of cooperativity in trimeric ATCases that do not possess regulatory subunits.

  14. Crystallographic snapshots of the complete catalytic cycle of the unregulated aspartate transcarbamoylase from Bacillus subtilis.

    PubMed

    Harris, Katharine M; Cockrell, Gregory M; Puleo, David E; Kantrowitz, Evan R

    2011-08-01

    Here, we report high-resolution X-ray structures of Bacillus subtilis aspartate transcarbamoylase (ATCase), an enzyme that catalyzes one of the first reactions in pyrimidine nucleotide biosynthesis. Structures of the enzyme have been determined in the absence of ligands, in the presence of the substrate carbamoyl phosphate, and in the presence of the bisubstrate/transition state analog N-phosphonacetyl-L-aspartate. Combining the structural data with in silico docking and electrostatic calculations, we have been able to visualize each step in the catalytic cycle of ATCase, from the ordered binding of the substrates, to the formation and decomposition of the tetrahedral intermediate, to the ordered release of the products from the active site. Analysis of the conformational changes associated with these steps provides a rationale for the lack of cooperativity in trimeric ATCases that do not possess regulatory subunits. PMID:21663747

  15. The N-terminal region of mature mitochondrial aspartate aminotransferase can direct cytosolic dihydrofolate reductase into mitochondria in vitro.

    PubMed

    Giannattasio, S; Azzariti, A; Marra, E; Quagliariello, E

    1994-06-30

    Two fused genes were constructed which encode for two chimeric proteins in which either 10 or 191 N-terminal amino acids of mature mitochondrial aspartate aminotransferase had been attached to the entire polypeptide chain of cytosolic dihydrofolate reductase. The precursor and mature form of mitochondrial aspartate aminotransferase, dihydrofolate reductase and both chimeric proteins were synthesized in vitro and their import into isolated mitochondria was studied. Both chimeric proteins were taken up by isolated organelles, where they became protease resistant, thus indicating the ability of the N-terminal portion of the mature moiety of the precursor of mitochondrial aspartate aminotransferase to direct cytosolic dihydrofolate reductase into mitochondria. PMID:8024546

  16. Toxicity of the pyrimidine biosynthetic pathway intermediate carbamyl aspartate in Salmonella typhimurium.

    PubMed Central

    Turnbough, C L; Bochner, B R

    1985-01-01

    Growth of Salmonella typhimurium pyrC or pyrD auxotrophs was severely inhibited in media that caused derepressed pyr gene expression. No such inhibition was observed with derepressed pyrA and pyrB auxotrophs. Growth inhibition was not due to the depletion of essential pyrimidine biosynthetic pathway intermediates or substrates. This result and the pattern of inhibition indicated that the accumulation of the pyrimidine biosynthetic pathway intermediate carbamyl aspartate was toxic. This intermediate is synthesized by the sequential action of the first two enzymes of the pathway encoded by pyrA and pyrB and is a substrate for the pyrC gene product. It should accumulate to high levels in pyrC or pyrD mutants when expression of the pyrA and pyrB genes is elevated. The introduction of either a pyrA or pyrB mutation into a pyrC strain eliminated the observed growth inhibition. Additionally, a direct correlation was shown between the severity of growth inhibition of a pyrC auxotroph and the levels of the enzymes that synthesize carbamyl aspartate. The mechanism of carbamyl aspartate toxicity was not identified, but many potential sites of growth inhibition were excluded. Carbamyl aspartate toxicity was shown to be useful as a phenotypic trait for classifying pyrimidine auxotrophs and may also be useful for positive selection of pyrA or pyrB mutants. Finally, we discuss ways of overcoming growth inhibition of pyrC and pyrD mutants under derepressing conditions. PMID:3894327

  17. Synthesis and proteinase inhibitory properties of diphenyl phosphonate analogues of aspartic and glutamic acids.

    PubMed

    Hamilton, R; Walker, B; Walker, B J

    1998-07-01

    The synthesis of diphenyl phosphonate analogues of aspartic and glutamic acid, and their inhibitory activity against S. aureus V8 protease and granzyme B, is described. The study has revealed difficulties with protecting group compatibility in the synthesis of these analogues. Two analogues, Acetyl. AspP (OPh)2 and Acetyl.GluP (OPh)2 were found to function as irreversible inactivators of V8 proteinase, yet exhibit no activity against granzyme B. PMID:9873408

  18. Crystal Structures of the Histo-Aspartic Protease (HAP) from Plasmodium falciparum

    SciTech Connect

    Bhaumik, Prasenjit; Xiao, Huogen; Parr, Charity L.; Kiso, Yoshiaki; Gustchina, Alla; Yada, Rickey Y.; Wlodawer, Alexander

    2009-08-07

    The structures of recombinant histo-aspartic protease (HAP) from malaria-causing parasite Plasmodium falciparum as apoenzyme and in complex with two inhibitors, pepstatin A and KNI-10006, were solved at 2.5-, 3.3-, and 3.05-{angstrom} resolutions, respectively. In the apoenzyme crystals, HAP forms a tight dimer not seen previously in any aspartic protease. The interactions between the monomers affect the conformation of two flexible loops, the functionally important 'flap' (residues 70-83) and its structural equivalent in the C-terminal domain (residues 238-245), as well as the orientation of helix 225-235. The flap is found in an open conformation in the apoenzyme. Unexpectedly, the active site of the apoenzyme contains a zinc ion tightly bound to His32 and Asp215 from one monomer and to Glu278A from the other monomer, with the coordination of Zn resembling that seen in metalloproteases. The flap is closed in the structure of the pepstatin A complex, whereas it is open in the complex with KNI-10006. Although the binding mode of pepstatin A is significantly different from that in other pepsin-like aspartic proteases, its location in the active site makes unlikely the previously proposed hypothesis that HAP is a serine protease. The binding mode of KNI-10006 is unusual compared with the binding of other inhibitors from the KNI series to aspartic proteases. The novel features of the HAP active site could facilitate design of specific inhibitors used in the development of antimalarial drugs.

  19. The Pathway of Product Release from the R State of Aspartate Transcarbamoylase

    PubMed Central

    Mendes, Kimberly R.; Kantrowitz, Evan R.

    2010-01-01

    The pathway of product release from the R state of aspartate transcarbamoylase has been determined here by solving the crystal structure of Escherichia coli aspartate transcarbamoylase (ATCase) locked in the R-quaternary structure by specific introduction of disulfide bonds. ATCase displays ordered substrate binding and product release, remaining in the R state until substrates are exhausted. The structure reported here represents ATCase in the R state bound to the final product molecule, phosphate. This structure has been difficult to obtain previously because the enzyme relaxes back to the T state after the substrates are exhausted. Hence cocrystallizing the wild-type enzyme with phosphate results in a T-state structure. In this structure of the enzyme trapped in the R state with specific disulfide bonds, we observe two phosphate molecules per active site. The position of the first phosphate corresponds to the position of the phosphate of carbamoyl phosphate and the position of the phosphonate of N-phosphonacetyl-L-aspartate. However, the second, more weakly bound phosphate, is bound in a positively charged pocket more accessible to the surface than the other phosphate. The second phosphate appears to be on the path that phosphate would have to take to exit the active site. Our results suggest that phosphate dissociation and carbamoyl phosphate binding can occur simultaneously and the dissociation of phosphate may actually promote the binding of carbamoyl phosphate for more efficient catalysis. PMID:20620149

  20. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    SciTech Connect

    Rosenberg, R.M.; O'Leary, M.H.

    1985-03-26

    The authors have measured the /sup 13/C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D/sub 2/O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D/sub 2/O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The /sup 13/C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the /sup 13/C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier.

  1. Vibrational Spectroscopy and Phonon-Related Properties of the L-Aspartic Acid Anhydrous Monoclinic Crystal.

    PubMed

    Silva, A M; Costa, S N; Sales, F A M; Freire, V N; Bezerra, E M; Santos, R P; Fulco, U L; Albuquerque, E L; Caetano, E W S

    2015-12-10

    The infrared absorption and Raman scattering spectra of the monoclinic P21 l-aspartic acid anhydrous crystal were recorded and interpreted with the help of density functional theory (DFT) calculations. The effect of dispersive forces was taken into account, and the optimized unit cells allowed us to obtain the vibrational normal modes. The computed data exhibits good agreement with the measurements for low wavenumbers, allowing for a very good assignment of the infrared and Raman spectral features. The vibrational spectra of the two lowest energy conformers of the l-aspartic molecule were also evaluated using the hybrid B3LYP functional for the sake of comparison, showing that the molecular calculations give a limited description of the measured IR and Raman spectra of the l-aspartic acid crystal for wavenumbers below 1000 cm(-1). The results obtained reinforce the need to use solid-state calculations to describe the vibrational properties of molecular crystals instead of calculations for a single isolated molecule picture even for wavenumbers beyond the range usually associated with lattice modes (200 cm(-1) < ω < 1000 cm(-1)). PMID:26623495

  2. Structural Insights into a Novel Class of Aspartate Aminotransferase from Corynebacterium glutamicum.

    PubMed

    Son, Hyeoncheol Francis; Kim, Kyung-Jin

    2016-01-01

    Aspartate aminotransferase from Corynebacterium glutamicum (CgAspAT) is a PLP-dependent enzyme that catalyzes the production of L-aspartate and α-ketoglutarate from L-glutamate and oxaloacetate in L-lysine biosynthesis. In order to understand the molecular mechanism of CgAspAT and compare it with those of other aspartate aminotransferases (AspATs) from the aminotransferase class I, we determined the crystal structure of CgAspAT. CgAspAT functions as a dimer, and the CgAspAT monomer consists of two domains, the core domain and the auxiliary domain. The PLP cofactor is found to be bound to CgAspAT and stabilized through unique residues. In our current structure, a citrate molecule is bound at the active site of one molecule and mimics binding of the glutamate substrate. The residues involved in binding of the PLP cofactor and the glutamate substrate were confirmed by site-directed mutagenesis. Interestingly, compared with other AspATs from aminotransferase subgroup Ia and Ib, CgAspAT exhibited unique binding sites for both cofactor and substrate; moreover, it was found to have unusual structural features in the auxiliary domain. Based on these structural differences, we propose that CgAspAT does not belong to either subgroup Ia or Ib, and can be categorized into a subgroup Ic. The phylogenetic tree and RMSD analysis also indicates that CgAspAT is located in an independent AspAT subgroup. PMID:27355211

  3. Density functional theory study on the interaction between keto-9H guanine and aspartic acid.

    PubMed

    Harris, Patrina Thompson; Hill, Glake A

    2012-05-01

    A theoretical study was performed using density functional theory (DFT) to investigate hydrogen bonding interactions in signature complexes formed between keto-9H guanine (Gua) and aspartic acid (Asp) at neutral pH. Optimized geometries, binding energies and the theoretical IR spectra of guanine, aspartic acid and their corresponding complexes (Gua-Asp) were calculated using the B3LYP method and the 6-31+G(d) basis set. Stationary points found to be at local minima on the potential energy surface were verified by second derivative harmonic vibrational frequency calculations at the same level of theory. AIM theory was used to analyze the hydrogen bonding characteristics of these DNA base complex systems. Our results show that the binding motif for the most stable complex is strikingly similar to a Watson-Crick motif observed in the guanine-cytosine base pair. We have found a range of hydrogen bonding interactions between guanine and aspartic acid in the six complexes. This was further verified by theoretical IR spectra of ω(C-H--O-H) cm(-1) stretches for the Gua-Asp complexes. The electron density plot indicates strong hydrogen bonding as shown by the 2p(z) dominant HOMO orbital character. PMID:21877157

  4. Developmental changes in aspartate-family amino acid biosynthesis in pea chloroplasts

    SciTech Connect

    Mills, W.R.; Cato, L.W.; Stephens, B.W.; Reeves, M. )

    1990-05-01

    Isolated chloroplasts are known to synthesize the asp-derived amino acids (ile, hse, lys and thr) from ({sup 14}C)asp (Mills et al, 1980, Plant Physiol. 65, 1166). Now, we have studied the influence of tissue age on essential amino acid biosynthesis in pea (Pisum sativum) plastids. Chloroplasts from the younger (third and fourth) leaves of 12 day old plants, were 2-3 times more active in synthesizing lys and thr from ({sup 14}C)asp than those from older (first or second) leaves. We also examined two key pathway enzymes (aspartate kinase and homoserine dehydrogenase); with each enzyme,a activity in younger leaves was about 2 times that in plastids from older tissue. Both lys- and thr-sensitive forms of aspartate kinase are known in plants; in agreement with earlier work, we found that lys-sensitive activity was about 4 times higher in the younger tissues, while the thr-sensitive activity changed little during development (Davies and Miflin, 1977, Plant Sci. Lett. 9, 323). Recently the role of aspartate kinase and homoserine dehydrogenase in controlling asp-family amino acid synthesis has been questioned (Giovanelli et al, 1989, Plant Physiol. 90, 1584); we hope that measurements of amino acid levels in chloroplasts as well as further enzyme studies will help us to better understand the regulation of asp-family amino acid synthesis.

  5. Intersubunit communication in the dihydroorotase-aspartate transcarbamoylase complex of Aquifex aeolicus.

    PubMed

    Evans, Hedeel Guy; Fernando, Roshini; Vaishnav, Asmita; Kotichukkala, Mahalakshmi; Heyl, Deborah; Hachem, Fatme; Brunzelle, Joseph S; Edwards, Brian F P; Evans, David R

    2014-01-01

    Aspartate transcarbamoylase and dihydroorotase, enzymes that catalyze the second and third step in de novo pyrimidine biosynthesis, are associated in dodecameric complexes in Aquifex aeolicus and many other organisms. The architecture of the dodecamer is ideally suited to channel the intermediate, carbamoyl aspartate from its site of synthesis on the ATC subunit to the active site of DHO, which catalyzes the next step in the pathway, because both reactions occur within a large, internal solvent-filled cavity. Channeling usually requires that the reactions of the enzymes are coordinated so that the rate of synthesis of the intermediate matches its rate of utilization. The linkage between the ATC and DHO subunits was demonstrated by showing that the binding of the bisubstrate analog, N-phosphonacetyl-L-aspartate to the ATC subunit inhibits the activity of the distal DHO subunit. Structural studies identified a DHO loop, loop A, interdigitating between the ATC domains that would be expected to interfere with domain closure essential for ATC catalysis. Mutation of the DHO residues in loop A that penetrate deeply between the two ATC domains inhibits the ATC activity by interfering with the normal reciprocal linkage between the two enzymes. Moreover, a synthetic peptide that mimics that part of the DHO loop that binds between the two ATC domains was found to be an allosteric or noncompletive ATC inhibitor (K(i) = 22 μM). A model is proposed suggesting that loop A is an important component of the functional linkage between the enzymes. PMID:24353170

  6. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus id