Science.gov

Sample records for global posture reeducation

  1. Effectiveness of global postural reeducation in the treatment of temporomandibular disorder: case report.

    PubMed

    Monteiro, Wagner; Francisco de Oliveira Dantas da Gama, Thomaz; dos Santos, Robiana Maria; Collange Grecco, Luanda André; Pasini Neto, Hugo; Oliveira, Claudia Santos

    2013-01-01

    The aim of the present study was to evaluate the effectiveness of global postural reeducation in the treatment of temporomandibular disorder through bilateral surface electromyographic (EMG) analysis of the masseter muscle in a 23-year-old volunteer. EMG values for the masseter were collected at rest (baseline) and during a maximal occlusion. There was a change in EMG activity both at rest and during maximal occlusion following the intervention, evidencing neuromuscular rebalancing between both sides after treatment as well as an increase in EMG activity during maximal occlusion, with direct improvement in the recruitment of motor units during contractile activity and a decrease in muscle tension between sides at rest. The improvement in postural patterns of the cervical spine provided an improvement in aspects of the EMG signal of the masseter muscle in this patient. However, a multidisciplinary study is needed in order to determine the effect of different forms of treatment on this condition and compare benefits between interventions. Therefore, this study can provide a direction regarding the application of this technique in patients with temporomandibular disorder. PMID:23294684

  2. Global Postural Reeducation for patients with musculoskeletal conditions: a systematic review of randomized controlled trials

    PubMed Central

    Ferreira, Giovanni E.; Barreto, Rodrigo G. P.; Robinson, Caroline C.; Plentz, Rodrigo D. M.; Silva, Marcelo F.

    2016-01-01

    ABSTRACT Objectives To systematically review randomized controlled trials that assessed the effects of Global Postural Reeducation (GPR) on patient-reported outcomes in conditions of the musculoskeletal system. Method An electronic search of MEDLINE (via PubMed), EMBASE, Cochrane CENTRAL, and SciELO was performed from their inception to June 2015. Randomized controlled trials that analyzed pain and patient-reported outcomes were included in this review. The Cochrane Collaboration’s Risk of Bias Tool was used to evaluate risk of bias, and the quality of evidence was rated following the GRADE approach. There were no language restrictions. Results Eleven trials were included totaling 383 patients. Overall, the trials had high risk of bias. GPR was superior to no treatment but not to other forms of treatment for pain and disability. No placebo-controlled trials were found. Conclusion GPR is not superior to other treatments; however, it is superior to no treatment. Due to the lack of studies, it is unknown if GPR is better than placebo. The quality of the available evidence ranges from low to very low, therefore future studies may change the effect estimates of GPR in musculoskeletal conditions. PMID:27437710

  3. Effects of Global Postural Reeducation on gait kinematics in parkinsonian patients: a pilot randomized three-dimensional motion analysis study.

    PubMed

    Agosti, Valeria; Vitale, Carmine; Avella, Dario; Rucco, Rosaria; Santangelo, Gabriella; Sorrentino, Pierpaolo; Varriale, Pasquale; Sorrentino, Giuseppe

    2016-04-01

    The Global Postural Reeducation (GPR) method is a physical therapy based on the stretching of antigravity muscle chains with the parallel enhancement of the basal tone of antagonistic muscles addressed to improve static and dynamic stability. Through a three-dimensional motion analysis (3DMA) system, our study aims to investigate whether in Parkinson's disease (PD) patients a GPR program results in a more physiological gait pattern. The kinematic parameters of gait of twenty subjects with clinically diagnosed PD were calculated. The patients were randomly assigned to a study (10 or control (10) group. All subjects underwent neurological and 3DMA assessments at entry time (t 0), at 4 weeks (t 1, end of GPR program), and at 8 and 12 weeks (t 2 and t 3, follow-up evaluation). The study group underwent a four-week GPR program, three times a week, for 40 min individual sessions. Kinematic gait parameters of thigh (T), knee (K) and ankle (A) and UPDRS-III scores were evaluated. At the end of the GPR program, we observed an improvement of the kinematic gait pattern, documented by the increase in KΔc and TΔc values that respectively express the flexion amplitude of knee and thigh. The amelioration was persistent at follow-up assessments, with a parallel enhancement in clinical parameters. GPR intervention shows a long-term efficacy on gait pattern in PD patients. Furthermore, we validated 3DMA as a valuable tool to study the kinematics of gait thus refining the understanding of the effects of specific rehabilitation programs. PMID:26700803

  4. Effectiveness of a 'Global Postural Reeducation' program for persistent Low Back Pain: a non-randomized controlled trial

    PubMed Central

    2010-01-01

    Background The aim of this non-randomized controlled trial was to evaluate the effectiveness of a Global Postural Reeducation (GPR) program as compared to a Stabilization Exercise (SE) program in subjects with persistent low back pain (LBP) at short- and mid-term follow-up (ie. 3 and 6 months). Methods According to inclusion and exclusion criteria, 100 patients with a primary complaint of persistent LBP were enrolled in the study: 50 were allocated to the GPR group and 50 to the SE group. Primary outcome measures were Roland and Morris Disability Questionnaire (RMDQ) and Oswestry Disability Index (ODI). Secondary outcome measures were lumbar Visual Analogue Scale (VAS) and Fingertip-to-floor test (FFT). Data were collected at baseline and at 3/6 months by health care professionals unaware of the study. An intention to treat approach was used to analyze participants according to the group to which they were originally assigned. Results Of the 100 patients initially included in the study, 78 patients completed the study: 42 in the GPR group and 36 in the SE group. At baseline, the two groups did not differ significantly with respect to gender, age, BMI and outcome measures. Comparing the differences between groups at short- and mid-term follow-up, the GPR group revealed a significant reduction (from baseline) in all outcome measures with respect to the SE group. The ordered logistic regression model showed an increased likelihood of definitive improvement (reduction from baseline of at least 30% in RMDQ and VAS scores) for the GPR group compared to the SE group (OR 3.9, 95% CI 2.7 to 5.7). Conclusions Our findings suggest that a GPR intervention in subjects with persistent LBP induces a greater improvement on pain and disability as compared to a SE program. These results must be confirmed by further studies with higher methodological standards, including randomization, larger sample size, longer follow-up and subgrouping of the LBP subjects. Trial registration NCT

  5. An observational retrospective/horizontal study to compare oxygen-ozone therapy and/or global postural re-education in complicated chronic low back pain.

    PubMed

    Apuzzo, Dario; Giotti, Chiara; Pasqualetti, Patrizio; Ferrazza, Paolo; Soldati, Paola; Zucco, Gesualdo M

    2014-01-01

    Acute low back pain (LBP) is the fifth most common reason for physician visits and about nine out of ten adults experience back pain at some point in their life. In a large number of patients LBP is associated with disc herniation (DH). Recently, oxygen-ozone (O2O3) therapy has been used successfully in the treatment of LBP, reducing pain after the failure of other conservative treatments. The aim of this study was to assess the effects of O2O3 therapy in back pain rehabilitation, comparing three groups of patients suffering from chronic back pain associated with DH submitted to three different treatments: intramuscular O2O3 infiltrations, global postural An observational retrospective/horizontal study to compare oxygen-ozone therapy and/or global postural re-education in complicated chronic low back pain re-education (GPR), or a combination of the two (O2O3+GPR). The data show that pain severity before treatment was significantly lower in the patients treated with GPR alone (VAS score 7.4) than in the O2O3+GPR patients (VAS score 8.5) and the O2O3 patients (VAS score 8.6). At the end of treatment, pain severity was lower in the O2O3 patients than in the GPR-alone patients. After some years of follow-up only the difference between O2O3+GPR and GPR-alone remained significant. PMID:25014047

  6. An observational retrospective/horizontal study to compare oxygen-ozone therapy and/or global postural re-education in complicated chronic low back pain

    PubMed Central

    Apuzzo, Dario; Giotti, Chiara; Pasqualetti, Patrizio; Ferrazza, Paolo; Soldati, Paola; Zucco, Gesualdo M.

    2014-01-01

    Summary Acute low back pain (LBP) is the fifth most common reason for physician visits and about nine out of ten adults experience back pain at some point in their life. In a large number of patients LBP is associated with disc herniation (DH). Recently, oxygen-ozone (O2O3) therapy has been used successfully in the treatment of LBP, reducing pain after the failure of other conservative treatments. The aim of this study was to assess the effects of O2O3 therapy in back pain rehabilitation, comparing three groups of patients suffering from chronic back pain associated with DH submitted to three different treatments: intramuscular O2O3 infiltrations, global postural re-education (GPR), or a combination of the two (O2O3+GPR). The data show that pain severity before treatment was significantly lower in the patients treated with GPR alone (VAS score 7.4) than in the O2O3+GPR patients (VAS score 8.5) and the O2O3 patients (VAS score 8.6). At the end of treatment, pain severity was lower in the O2O3 patients than in the GPR-alone patients. After some years of follow-up only the difference between O2O3+GPR and GPR-alone remained significant. PMID:25014047

  7. Reeducating the Educator: Global Perspectives on Community Building. SUNY Series, Teacher Preparation and Development.

    ERIC Educational Resources Information Center

    Christiansen, Helen, Ed.; Ramadevi, S., Ed.

    This collection of papers focuses on community building within teacher education programs in Canada, Israel, Australia, and the United States, suggesting that teacher educators must go beyond localized experiences and reach out to each other in a global discussion. There are 12 chapters in 4 parts. Part 1, "Opening the Conversation," includes (1)…

  8. Reeducation at Heidelberg University.

    ERIC Educational Resources Information Center

    Giles, Geoffrey J.

    1997-01-01

    Utilizes German archival records to illuminate crucial post-war events at Heidelberg University. The university became the focal point of attempts to define the theoretical and practical meaning of "geistige Umerziehung" (spiritual reeducation). Discusses the conflict between U.S. authorities and such esteemed German scholars as Karl Jaspers and…

  9. Analysis of Global Sagittal Postural Patterns in Asymptomatic Chinese Adults

    PubMed Central

    Hu, Panpan; Yu, Miao; Sun, Zhuoran; Li, Weishi; Jiang, Liang; Wei, Feng; Chen, Zhongqiang; Liu, Zhongjun

    2016-01-01

    Study Design A prospective imaging study. Purpose To characterize the distribution of the global sagittal postural patterns in asymptomatic Chinese adults using Roussouly classification. Overview of Literature The norms of sagittal parameters in asymptomatic Chinese population have been previously described, but no report described their global sagittal postural patterns as characterized by Roussouly classification. Methods A cohort of 272 asymptomatic Chinese adults was recruited. Data was assimilated by reviewing the films for each subject. Sagittal parameters were measured and sagittal postural patterns were then determined according to Roussouly classification. The pattern distributions were compared across genders within the study cohort. We also compared the data across different ethnicities from our study and a previous study to further characterize Chinese sagittal postures. Results The cohort included 161 males and 111 females, with mean age of 23.2±4.4 years. The average descriptive results were as below: pelvic incidence (PI) 46.4°±9.6°, thoracic kyphosis (TK) 24.2°±9.0°, lumbar lordosis (LL) 50.6°±10.6°, sacral slope (SS) 37.2°±7.6°, pelvic tilt (PT) 9.4°±6.8°, spinosacral angle (SSA) 131.1°±7.5° and sagittal vertical axis (SVA) 17.24±32.36 mm. Despite a significant difference between two genders in LL, PI, SSA, and SVA, no difference was found in the distribution of Roussouly types among them. 47.8% of our cohort belonged to Roussouly type 3, while type 1, 2 and 4 comprised 23.2%, 14.0% and 15.1% of the subjects, respectively. Roussouly classification was capable of categorizing sagittal parameters except for the PT. This study also found that 4.4% of the recruited subjects belonged to the C7-anterior subgroup. Conclusions From a characterization of the sagittal postural patterns of asymptomatic Chinese adults using Roussouly classification, the distribution was similar between Chinese males and females; however, from a cross

  10. Counseling Families Using Principles of Re-EDucation

    ERIC Educational Resources Information Center

    Shepard, Lisa

    2011-01-01

    When Nicholas Hobbs created the Re-EDucation model, he envisioned that this philosophy would inform multiple disciplines. Today, Re-ED is widely applied to work with troubled children in day treatment, school-based services, residential settings, and therapeutic wilderness programs. Hobbs outlined a dozen Principles of Re-EDucation that are…

  11. Postural Rehabilitation for Adolescent Idiopathic Scoliosis during Growth.

    PubMed

    Weiss, Hans-Rudolf; Moramarco, Marc Michael; Borysov, Maksym; Ng, Shu Yan; Lee, Sang Gil; Nan, Xiaofeng; Moramarco, Kathryn Ann

    2016-06-01

    Long-term follow-up of untreated patients with adolescent idiopathic scoliosis (AIS) indicates that, with the exception of some extremely severe cases, AIS does not have a significant impact on quality of life and does not result in dire consequences. In view of the relatively benign nature of AIS and the long-term complications of surgery, the indications for treatment should be reviewed. Furthermore, recent studies have shown that scoliosis-specific exercises focusing on postural rehabilitation can positively influence the spinal curvatures in growing adolescents. Experiential postural re-education is a conservative, non-invasive approach, and its role in the management of AIS warrants further study. This article reviews current evidence for the inclusion of various forms of postural reeducation in the management of AIS. Recent comprehensive reviews have been researched including a manual and PubMed search for evidence regarding the effectiveness of physical/postural re-education/physiotherapy programs in growing AIS patients. This search revealed that there were few studies on the application of postural re-education in the management of AIS. These studies revealed that postural re-education in the form of exercise rehabilitation programs may have a positive influence on scoliosis; however, the various programs were difficult to compare. More research is necessary. There is at present Level 1 evidence for the effectiveness of Schroth scoliosis exercises in the management of AIS. Whether this evidence can be extrapolated to include other forms of scoliosis- pattern-specific exercises requires further investigation. Because corrective postures theoretically reduce the asymmetric loading of the spinal deformities and reverse the vicious cycle of spinal curvature progression, their integration into AIS programs may be beneficial and should be further examined. PMID:27340540

  12. Postural Rehabilitation for Adolescent Idiopathic Scoliosis during Growth

    PubMed Central

    Weiss, Hans-Rudolf; Moramarco, Marc Michael; Borysov, Maksym; Lee, Sang Gil; Nan, Xiaofeng; Moramarco, Kathryn Ann

    2016-01-01

    Long-term follow-up of untreated patients with adolescent idiopathic scoliosis (AIS) indicates that, with the exception of some extremely severe cases, AIS does not have a significant impact on quality of life and does not result in dire consequences. In view of the relatively benign nature of AIS and the long-term complications of surgery, the indications for treatment should be reviewed. Furthermore, recent studies have shown that scoliosis-specific exercises focusing on postural rehabilitation can positively influence the spinal curvatures in growing adolescents. Experiential postural re-education is a conservative, non-invasive approach, and its role in the management of AIS warrants further study. This article reviews current evidence for the inclusion of various forms of postural reeducation in the management of AIS. Recent comprehensive reviews have been researched including a manual and PubMed search for evidence regarding the effectiveness of physical/postural re-education/physiotherapy programs in growing AIS patients. This search revealed that there were few studies on the application of postural re-education in the management of AIS. These studies revealed that postural re-education in the form of exercise rehabilitation programs may have a positive influence on scoliosis; however, the various programs were difficult to compare. More research is necessary. There is at present Level 1 evidence for the effectiveness of Schroth scoliosis exercises in the management of AIS. Whether this evidence can be extrapolated to include other forms of scoliosis- pattern-specific exercises requires further investigation. Because corrective postures theoretically reduce the asymmetric loading of the spinal deformities and reverse the vicious cycle of spinal curvature progression, their integration into AIS programs may be beneficial and should be further examined. PMID:27340540

  13. Decorticate posture

    MedlinePlus

    Decorticate posture is an abnormal posturing in which a person is stiff with bent arms, clenched fists, and legs ... Decorticate posture is a sign of damage to the nerve pathway between the brain and spinal cord. Although it ...

  14. Basic Explorations in Adult Re-Education. A Terminal Report from the Adult Re-Education Project.

    ERIC Educational Resources Information Center

    Kreitlow, Burton W.

    In this study designed to generate hypotheses concerning adult learning, cognitive processes, and the reeducation of disadvantaged adults, the phenomena of concept attainment, symbol manipulation, verbal behavior, differential instruction, and awareness levels were investigated. Attention focus (cognitive style) in the concept attainment process…

  15. Music and 're-education' in the Soviet Gulag.

    PubMed

    Klause, Inna

    2013-01-01

    After the October Revolution, the Bolsheviks announced a new human dimension of penal policy whose goal should be the so-called 're-education' of prisoners. The desired 're-education' was to be realised using two kinds of measures: the physical work of the prisoners, and 'cultural education work'. A varied musical life in groups, 'agitation brigades', ensembles, orchestras and choirs developed within the framework of the 'cultural education work'. Two camps responsible for building canals in the 1930s particularly adopted this musical life: Belbaltlag and Dmitlag. In the latter, a composition competition took place in 1936 in which, among others, the arrested composer Sergey Protopopov took part. Since the 1930s, the Gulag administration had publicised that the measures taken for 're-education' concerned primarily criminal prisoners, as opposed to 'political prisoners', who were labelled as foreign to socialist society. Although the 'cultural education work' would not have functioned as well as it did without the cooperation of 'political prisoners', since their participation did not fit into the prescribed ideology, they were often underappreciated or even completely concealed. The following is a depiction of the officially organised musical life in the Gulag in the 1920s and 1930s as a grey zone. Music making and listening represented not only a source of strength for the prisoners, but also brought about situations that meant physical and psychological torture for them. PMID:24480890

  16. Decerebrate posture

    MedlinePlus

    ... Brain problem due to drugs, poisoning, or infection Head injury Brain problem due to liver failure Increased pressure ... of posture? Is there any history of a head injury or other condition? What other symptoms came before ...

  17. Open-bite treatment with vertical control and tongue reeducation.

    PubMed

    Garrett, Justin; Araujo, Eustaquio; Baker, Christopher

    2016-02-01

    An open-bite malocclusion with a tongue-thrust habit is a challenging type of malocclusion to correct. A 12-year-old girl came for orthodontic treatment with a severe anterior open bite, extruded posterior segments, a tongue-thrust habit, and lip incompetency. Her parents refused surgical treatment, so a nonextraction treatment plan was developed that used palatal temporary skeletal anchorage devices for vertical control and mandibular tongue spurs to reeducate the tongue. Interproximal reduction was also used to address the moderate to severe mandibular crowding. An abnormal Class I occlusion was achieved with proper overbite and overjet, along with a pleasing smile and gingival display. PMID:26827984

  18. Our experience with re-education in aphasia.

    PubMed

    Polásková, B; Slezáková, E

    1989-01-01

    The presented paper sums up our experience with intensive logopaedic therapy of 104 patients--aphasics of various etiology, aged 31 to 61 years. As evident from our results, a minimum of twelve-month treatment is followed by a remarkable improvement in 45% of the patients, 37% having recovered their phatic functions at least so that they were able to master simple everyday phraseology. No improvement was seen in 18% of the cases. The re-education procedure is illustrated by a case report. PMID:2533801

  19. Reeducation for Design Engineers in Fukuoka System LSI College

    NASA Astrophysics Data System (ADS)

    Hirakawa, Kazuyuki; Sasao, Tsutomu; Fukuda, Akira; Ito, Fumiaki

    Silicon Sea Belt Project started in 2001 on keeping context of East Asian economic growth. Fukuoka System LSI College, a subsidiary of the project, opened on December for supplying reeducated design engineers to the semiconductor industries after trying System LSI design training programs in cooperation with industry, academia, and government. The college approaches the PDCA, i.e., Plan, Do, Check, and Action, techniques making up quality control methodologies in manufacturing, and has applied the PDCA techniques to improving qualities of the training programs. The major semiconductor companies have adopted our programs for eight years from 2004, and given our programs excellent scores. We hope our PDCA process, useful for human resource development of other technological fields.

  20. Determining postural stability

    NASA Technical Reports Server (NTRS)

    Lieberman, Erez (Inventor); Forth, Katharine E. (Inventor); Paloski, William H. (Inventor)

    2011-01-01

    A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states.

  1. Exercise and Posture

    MedlinePlus

    ... Info For Teens Message Boards & Forums Donate Shop Exercise & Posture About Spondylitis / Exercise & Posture Overview For The ... Diet Blood Work and Spondylitis Spondylitis Awareness Month Exercise Exercise is an integral part of any spondylitis ...

  2. Treatment and Posttreatment Effects of Residential Treatment Using a Re-education Model

    ERIC Educational Resources Information Center

    Fields, Elaine; Farmer, Elizabeth M. Z.; Apperson, Joy; Mustillo, Sarah; Simmers, Deborah

    2006-01-01

    This study examined preliminary effectiveness of one of the first Project Re-ED (Re-education of Emotionally Disturbed children) residential treatment centers for children. Data were collected at admission, at discharge, and up to 6 months postdischarge. Findings show substantial decreases in problem behaviors and improvements in personal…

  3. Powerful Environments for Underclass Youth: A Reeducational Plan for Inner-City Schools.

    ERIC Educational Resources Information Center

    Linton, Thomas E.; Forster, Michael

    1989-01-01

    Described are the dehumanizing conditions of Black underclass life and possible improvements through creation of re-educative therapeutic communities, termed "powerful environments." Powerful environments include expectations, psychological distancing from negative culture, positive social integration, staff leadership, peer power, work, and…

  4. An Evaluation of the Effectiveness of Televised Locally Oriented Driver Re-Education.

    ERIC Educational Resources Information Center

    Hutchinson, John W.; And Others

    Television, with its ability to reach large audiences, has been used extensively in driver-education efforts but its effectiveness has never been measured. The purpose of this research was to measure the effectiveness of a televised, locally oriented, candid camera type of driver reeducation program. The measures of effectiveness included a study…

  5. Project METER: Machine Examination Teaching, Evaluation, and Re-Education: An Evaluation.

    ERIC Educational Resources Information Center

    Washington State Dept. of Motor Vehicles, Olympia.

    An automated testing approach utilizing materials and expertise from three areas--programed testing and learning, driving simulation, and driver examination and evaluation--was investigated. METER (Machine Examination, Testing, Evaluation, and Reeducation) was a centralized system composed of three different sub-systems designed to test individual…

  6. Beginning of Movement for Re-Education of Parents in Japan in the 1920's.

    ERIC Educational Resources Information Center

    Kobayashi, Keiko

    In the late 1920s, in conjunction with a new passion for freedom and concern for human rights, two associations were formed in Japan to promote parents' education and children's welfare. In 1928, following a 2-year study of education in America, Tetsuya Kamimura started the Japan Parents' Re-education Association. The association's members…

  7. PROJECT RE-ED, A DEMONSTRATION PROJECT FOR THE REEDUCATION OF EMOTIONALLY DISTURBED CHILDREN.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Mental Health, Raleigh.

    THE PROJECT FOR THE REEDUCATION OF EMOTIONALLY DISTURBED CHILDREN (PROJECT RE-ED), A DEMONSTRATION PROJECT (1961-1968) TO DEVELOP AND EVALUATE THE EFFECTIVENESS OF RESIDENTIAL SCHOOLS (SUNDAY THROUGH FRIDAY) FOR DISTURBED CHILDREN, IS DESCRIBED. THE PROFESSIONAL TRAINING AT GEORGE PEABODY COLLEGE, TENNESSEE, AND USE OF CAREFULLY SELECTED…

  8. Social Postural Coordination

    ERIC Educational Resources Information Center

    Varlet, Manuel; Marin, Ludovic; Lagarde, Julien; Bardy, Benoit G.

    2011-01-01

    The goal of the current study was to investigate whether a visual coupling between two people can produce spontaneous interpersonal postural coordination and change their intrapersonal postural coordination involved in the control of stance. We examined the front-to-back head displacements of participants and the angular motion of their hip and…

  9. Effects of daily telephone-based re-education before taking medicine on Helicobacter pylori eradication

    PubMed Central

    Demirci, Hakan; Ozturk, Kadir; Kurt, Omer

    2016-01-01

    We read the article “Effects of daily telephone-based re-education before taking medicine on Helicobacter pylori (H. pylori) eradication: A prospective single-center study from China” written by Wang et al with great interest. It is reported in American and European guidelines that there is no sufficient test for the diagnosis of H. pylori except culture and that using at least two different tests for diagnosis of H. pylori is recommended. Patients who used antibiotics or bismuth salts in the previous 2 wk were excluded from study. But patients who used probiotics and antioxidant vitamins such as vitamins C and E were not excluded. PMID:27099453

  10. Effects of daily telephone-based re-education before taking medicine on Helicobacter pylori eradication.

    PubMed

    Demirci, Hakan; Ozturk, Kadir; Kurt, Omer

    2016-04-21

    We read the article "Effects of daily telephone-based re-education before taking medicine on Helicobacter pylori (H. pylori) eradication: A prospective single-center study from China" written by Wang et al with great interest. It is reported in American and European guidelines that there is no sufficient test for the diagnosis of H. pylori except culture and that using at least two different tests for diagnosis of H. pylori is recommended. Patients who used antibiotics or bismuth salts in the previous 2 wk were excluded from study. But patients who used probiotics and antioxidant vitamins such as vitamins C and E were not excluded. PMID:27099453

  11. Influence of musical groove on postural sway.

    PubMed

    Ross, Jessica M; Warlaumont, Anne S; Abney, Drew H; Rigoli, Lillian M; Balasubramaniam, Ramesh

    2016-03-01

    Timescales of postural fluctuation reflect underlying neuromuscular processes in balance control that are influenced by sensory information and the performance of concurrent cognitive and motor tasks. An open question is how postural fluctuations entrain to complex environmental rhythms, such as in music, which also vary on multiple timescales. Musical groove describes the property of music that encourages auditory-motor synchronization and is used to study voluntary motor entrainment to rhythmic sounds. The influence of groove on balance control mechanisms remains unexplored. We recorded fluctuations in center of pressure (CoP) of standing participants (N = 40) listening to low and high groove music and during quiet stance. We found an effect of musical groove on radial sway variability, with the least amount of variability in the high groove condition. In addition, we observed that groove influenced postural sway entrainment at various temporal scales. For example, with increasing levels of groove, we observed more entrainment to shorter, local timescale rhythmic musical occurrences. In contrast, we observed more entrainment to longer, global timescale features of the music, such as periodicity, with decreasing levels of groove. Finally, musical experience influenced the amount of postural variability and entrainment at local and global timescales. We conclude that groove in music and musical experience can influence the neural mechanisms that govern balance control, and discuss implications of our findings in terms of multiscale sensorimotor coupling. (PsycINFO Database Record PMID:26727019

  12. Autoimmune Basis for Postural Tachycardia Syndrome

    ClinicalTrials.gov

    2016-03-30

    Postural Orthostatic Tachycardia Syndrome; Postural Tachycardia Syndrome; Tachycardia; Arrhythmias, Cardiac; Autonomic Nervous System Diseases; Orthostatic Intolerance; Cardiovascular Diseases; Primary Dysautonomias

  13. Tips to Maintain Good Posture

    MedlinePlus

    ... Pain and Chiropractic Posture Spinal Health Winter Activities Backpack Safety Kids and Sports Exercising Outdoors with Baby ... Pain and Chiropractic Posture Spinal Health Winter Activities Backpack Safety Kids and Sports Exercising Outdoors with Baby ...

  14. Postural Orthostatic Tachycardia Syndrome

    PubMed Central

    2014-01-01

    The postural orthostatic tachycardia syndrome is a disease characterized by excessively increased heart rate during orthostatic challenge associated with symptoms of orthostatic intolerance including dizziness, exercise intolerance, headache, fatigue, memory problems, nausea, blurred vision, pallor, and sweating, which improve with recumbence. Postural orthostatic tachycardia syndrome patients may present with a multitude of additional symptoms that are attributable to vascular vasoconstriction. Observed signs and symptoms in a patient with postural orthostatic tachycardia syndrome include tachycardia at rest, exaggerated heart rate increase with upright position and exercise, crushing chest pain, tremor, syncope, loss of vision, confusion, migraines, fatigue, heat intolerance, parasthesia, dysesthesia, allodynia, altered traditional senses, and thermoregulatory abnormalities. There are a number of possible dermatological manifestations of postural orthostatic tachycardia syndrome easily explained by its recently discovered pathophysiology. The author reports the case of a 22-year-old woman with moderate-to-severe postural orthostatic tachycardia syndrome with numerous dermatological manifestations attributable to the disease process. The cutaneous manifestations observed in this patient are diverse and most noticeable during postural orthostatic tachycardia syndrome flares. The most distinct are evanescent, hyperemic, sharply demarcated, irregular patches on the chest and neck area that resolve upon diascopy. This distinct “evanescent hyperemia” disappears spontaneously after seconds to minutes and reappears unexpectedly. Other observed dermatological manifestations of this systemic disease include Raynaud’s phenomenon, koilonychia, onychodystrophy, madarosis, dysesthesia, allodynia, telogen effluvium, increased capillary refill time, and livedo reticularis. The treatment of this disease poses a great challenge. The author reports the unprecedented use of an

  15. Development of low postural tone compensatory patterns in children - theoretical basis.

    PubMed

    Gogola, Anna; Saulicz, Edward; Kuszewski, Michał; Matyja, Małgorzata; Myśliwiec, Andrzej

    2014-01-01

    Neurological literature indicates the existence of children with low postural tone without association with central nervous system damage. This fact induces to think about mechanisms, which allow these children to maintain upright posture. There is a suspicion that compensatory mechanism included in this process, enables to achieve upright posture, but at expense of body posture quality. Observations of children's developmental stages caused determination of some postural tone area, which comprise both children with normotonia and with low postural tone without characteristics of central nervous system (CNS) damage. Set of specific qualities allows determination of two types of low postural tone: spastoidal and atetoidal type. Spastoidal type is characterized by deep trunk muscles (local) low postural tone compensated by excessive tension of superficial muscles (global). Atetoidal type includes children with low postural tone in both deep and superficial muscles. At inefficient active subsystem, verticalization proceeds at excessive use of passive subsystem qualities, that is meniscus, ligament, bone shape, and muscles passive features. From neurodevelopmental point of view compensatory mechanisms can be used in children with low postural tone in order to achieve upright posture, but at expense of body posture quality. PMID:25182403

  16. Hollywood as Reeducator: The Role of Feature Films in U.S. Policies Directed at Postwar Germany.

    ERIC Educational Resources Information Center

    Borchers, Hans

    1997-01-01

    Suggests that Hollywood may have been as effective as exchange programs and citizen training centers as an agency of reeducation. Mainstream U.S. films succeeded as a positive socializing force in spite of the low priority given to them by the military authorities. Includes a list of 32 officially sanctioned films. (MJP)

  17. Posture and Movement

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TP3 includes short reports on: (1) Modification of Goal-Directed Arm Movements During Inflight Adaptation to Microgravity; (2) Quantitative Analysis of Motion control in Long Term Microgravity; (3) Does the Centre of Gravity Remain the Stabilised Reference during Complex Human Postural Equilibrium Tasks in Weightlessness?; and (4) Arm End-Point Trajectories Under Normal and Microgravity Environments.

  18. Therapeutic Fascism: re-educating communists in Nazi-occupied Serbia, 1942-44.

    PubMed

    Antic, Ana

    2014-03-01

    This article probes the relationship between psychoanalysis and right-wing authoritarianism, and analyses a unique psychotherapeutic institution established by Serbia's World War II collaborationist regime. The extraordinary Institute for compulsory re-education of high-school and university students affiliated with the Communist resistance movement emerged in the context of a brutal civil war and violent retaliations against Communist activists, but its openly psychoanalytic orientation was even more astonishing. In order to stem the rapid spread of Communism, the collaborationist state, led by its most extreme fascistic elements, officially embraced psychotherapy, the 'talking cure' and Freudianism, and conjured up its own theory of mental pathology and trauma - one that directly contradicted the Nazi concepts of society and the individual. In the course of the experiment, Serbia's collaborationists moved away from the hitherto prevailing organicist, biomedical model of mental illness, and critiqued traditional psychiatry's therapeutic pessimism. PMID:24594820

  19. Bladder cancer cells re-educate TAMs through lactate shuttling in the microfluidic cancer microenvironment

    PubMed Central

    Liu, Pengfei; Cao, Yanwei; Wang, Yonghua; Yang, Xuecheng; Xu, Xiaodong; Wang, Xinsheng; Niu, Haitao

    2015-01-01

    Background In the present study, we aimed to investigate the influence of lactate shuttling on the functional polarization and spatial distribution of transitional cell carcinoma of the bladder (TCCB) cells and macrophages. Methods We designed a microfluidic coculture chip for real-time integrative assays. The effect of lactate shuttling on the re-education of macrophages by TCCB cells was explored by measuring the levels of NO using a total NO assay kit and by evaluating the protein expression of iNOS, p-NFkB-p65, Arg-1 and HIF-1α via cell immunofluorescence and western blotting. Additionally, we examined TCCB cell viability using acridine orange/ethidium bromide (AO/EB) and MitoTracker staining. Moreover, the concentration distributions of lactate and large signaling proteins in the culture chambers were measured using 4′,6-diamidino-2-phenylindole (DAPI) and fluorescein isothiocyanate-dextran (FITC-dextran). Furthermore, the recruitment of macrophages and the influence of macrophages on BC metastasis were observed via light microscopy. Results We confirmed that TCCB cells reprogrammed macrophages into an M2 phenotype. Moreover, lactate inhibited M1 polarization and induced M2 polarization of macrophages, but blockade of cancer cell-macrophage lactate flux significantly inhibited the re-education of macrophages by TCCB cells. In addition, lactate diffused faster and deeper than large signaling proteins in the microfluidic tumor microenvironment. Furthermore, lactate alone induced the migration of macrophages, and M1, but not M2, macrophages reduced the motility of TCCB cells. Conclusions TCCB cells reprogrammed macrophages into an M2 phenotype in a manner that depended on cancer cell-TAM lactate flux. Furthermore, the lactate shuttle may be a determinant of the density of TAMs in tumor tissue. PMID:26474279

  20. Postural development in rats.

    PubMed

    Lelard, T; Jamon, M; Gasc, J-P; Vidal, P-P

    2006-11-01

    Mammals adopt a limited number of postures during their day-to-day activities. These stereotyped skeletal configurations are functionally adequate and limit the number of degrees of freedom to be controlled by the central nervous system. The temporal pattern of emergence of these configurations in altricial mammals is unknown. We therefore carried out an X-ray study in unrestrained rats from birth (P0) until postnatal day 23 (P23). The X-rays showed that many of the skeletal configurations described in adult rodents were already present at birth. By contrast, limb placement changed abruptly at around P10. These skeletal configurations, observed in anesthetized pups, required the maintenance of precise motor control. On the other hand, motor control continued to mature, as shown by progressive changes in resting posture and head movements from P0 to P23. We suggest that a few innate skeletal configurations provide the necessary frames of reference for the gradual construction of an adult motor repertoire in altricial mammals, such as the rat. The apparent absence of a requirement for external sensorial cues in the maturation of this repertoire may account for the maturation of postural and motor control in utero in precocial mammals (Muir et al., 2000 for a review on the locomotor behavior of altricial and precocial animals). PMID:16814770

  1. Stand Up Straight: Posture for Singers.

    ERIC Educational Resources Information Center

    Gauthier, Delores R.

    2002-01-01

    Focuses on the importance of posture in music-making. Provides information on the importance of posture and the different types of posture stances to help students work toward better posture. Includes information on using kinesthetic experiences to help students improve their posture. (CMK)

  2. Posture modulates implicit hand maps.

    PubMed

    Longo, Matthew R

    2015-11-01

    Several forms of somatosensation require that afferent signals be informed by stored representations of body size and shape. Recent results have revealed that position sense relies on a highly distorted body representation. Changes of internal hand posture produce plastic alterations of processing in somatosensory cortex. This study therefore investigated how such postural changes affect implicit body representations underlying position sense. Participants localised the knuckles and tips of each finger in external space in two postures: the fingers splayed (Apart posture) or pressed together (Together posture). Comparison of the relative locations of the judgments of each landmark were used to construct implicit maps of represented hand structure. Spreading the fingers apart produced increases in the implicit representation of hand size, with no apparent effect on hand shape. Thus, changes of internal hand posture produce rapid modulation of how the hand itself is represented, paralleling the known effects on somatosensory cortical processing. PMID:26117153

  3. Postural stress analysis in industry.

    PubMed

    Genaidy, A M; Al-Shedi, A A; Karwowski, W

    1994-04-01

    Both observational and instrumentation-based techniques have been used to conduct postural stress analysis in industry. As observational methods are more widespread than instrumentation-based techniques and can be used as a practical tool in the workplace, this study reviews and assesses the scientific literature on observational techniques. Techniques are classified into macropostural, micropostural and postural-work activity. The basis for each classification is outlined and evaluated. Postural recording is performed either continuously or intermittently. Intermittent postural recording procedures lack the criteria for determining the optimum number of observations for low and high repetitive jobs. Research is warranted to examine the sources and magnitudes of errors associated with postural classification. Such information is required to train job analysts in the ergonomics of working postures. PMID:15676953

  4. Assessment of postural balance function.

    PubMed

    Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz

    2009-01-01

    Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers. PMID:20698188

  5. Music and 're-education' in Greek prison camps: from Makronisos (1947-1955) to Giaros (1967-1968).

    PubMed

    Papaeti, Anna

    2013-01-01

    This paper examines the policy of 're-education' for left-wing political prisoners in Greece during the military Junta (1967-1974) at the prison camp on the island of Giaros from 1967 to November 1968. Taking as its starting point the ways folk culture was used to substantiate the Colonels' ideological discourse and to give their rule aesthetic roots as a strategy of legitimization, the paper investigates how this kind of music was instrumentalized as a way of breaking political prisoners in exile. Music from loudspeakers was part of an attempt to make detainees sign Declarations of Loyalty, renouncing their values and their comrades. The 're-education' programme of Giaros is examined here as a remainder of the Greek Civil-War legacy (1946-1949), and particularly of the institutionalized 're-education' and 'rehabilitation' programme of the infamous prison camps on the island of Makronisos (1947-1955). Interviews with former detainees from both historical periods underline the damaging effects of the use of music, highlighting the need to understand music's capacity to degrade, but also torture, individuals instead of uplift and ennoble the soul. PMID:24480891

  6. Postural performance of vestibular loss patients under increased postural threat.

    PubMed

    Young, Laurence R; Bernard-Demanze, Laurence; Dumitrescu, Michel; Magnan, Jacques; Borel, Liliane; Lacour, Michel

    2012-01-01

    The effects of increasing postural task difficulty on balance control was investigated in 9 compensated vestibular loss patients whose results were compared to 11 healthy adults. Subjects were tested in static (stable support) and dynamic (sinusoidal translation of the support) conditions, both at floor level and at height (62 cm above the floor), and with and without vision, to create an additional postural threat. Wavelet analysis of the center of foot pressure displacement and motion analysis of the body segments were used to evaluate the postural performance. Evaluation questionnaires were used to examine the compensation level of the patients (DHI test), their general anxiety level (SAST), fear of height (subjective scale), and workload (NASA TLX test). (Vestibular loss patients rely more on vision and spend more energy maintaining balance than controls, but they use the same postural strategy as normals in both static and dynamic conditions.) Questionnaire data all showed differences in behavior and perceptions between the controls and the patients. However, at height and without vision, a whole body strategy leading to rigid posture replaces the head stabilization strategy found for standing at floor level. The effects of height on postural control can be attributable to an increase in postural threat and attention changes resulting from modifications in perception. PMID:23000612

  7. Seated postural hypotension.

    PubMed

    Gorelik, Oleg; Cohen, Natan

    2015-12-01

    Most studies of postural hypotension (PH) have focused on standing PH. Less is known about PH after transition from a supine to sitting position. Moreover, seated PH has not been previously reviewed in the English literature. The aim of this review was to provide current information regarding seating-induced PH. Seventeen studies were reviewed regarding prevalence, methods of evaluation, manifestations, predisposing factors, prognosis, and management of seated PH. Prevalence ranged from 8% among community-dwelling persons to 56% in elderly hospitalized patients. Dizziness and palpitations were the most frequent symptoms. Of a variety of factors that have been identified as predisposing and contributing to seated PH, aging, bed rest, and hypertension were most important. Because seated PH is a common, easily diagnosable and frequently symptomatic condition, especially in elderly inpatients, this disorder warrants attention. Moreover, seating-induced falls in blood pressure and the associated symptoms, may be largely prevented by nonpharmacologic interventions. PMID:26515671

  8. Early sensory re-education of the hand after peripheral nerve repair based on mirror therapy: a randomized controlled trial

    PubMed Central

    Paula, Mayara H.; Barbosa, Rafael I.; Marcolino, Alexandre M.; Elui, Valéria M. C.; Rosén, Birgitta; Fonseca, Marisa C. R.

    2016-01-01

    BACKGROUND: Mirror therapy has been used as an alternative stimulus to feed the somatosensory cortex in an attempt to preserve hand cortical representation with better functional results. OBJECTIVE: To analyze the short-term functional outcome of an early re-education program using mirror therapy compared to a late classic sensory program for hand nerve repair. METHOD: This is a randomized controlled trial. We assessed 20 patients with median and ulnar nerve and flexor tendon repair using the Rosen Score combined with the DASH questionnaire. The early phase group using mirror therapy began on the first postoperative week and lasted 5 months. The control group received classic sensory re-education when the protective sensation threshold was restored. All participants received a patient education booklet and were submitted to the modified Duran protocol for flexor tendon repair. The assessments were performed by the same investigator blinded to the allocated treatment. Mann-Whitney Test and Effect Size using Cohen's d score were used for inter-group comparisons at 3 and 6 months after intervention. RESULTS: The primary outcome (Rosen score) values for the Mirror Therapy group and classic therapy control group after 3 and 6 months were 1.68 (SD=0.5); 1.96 (SD=0.56) and 1.65 (SD=0.52); 1.51 (SD=0.62), respectively. No between-group differences were observed. CONCLUSION: Although some clinical improvement was observed, mirror therapy was not shown to be more effective than late sensory re-education in an intermediate phase of nerve repair in the hand. Replication is needed to confirm these findings. PMID:26786080

  9. Body posture evaluations in subjects with internal temporomandibular joint derangement.

    PubMed

    Munhoz, Wagner Cesar; Marques, Amélia Pasqual

    2009-10-01

    The aim of this study was to verify possible relationships between global body posture and temporomandibular joint internal derangement (TMJ-id), by comparing 30 subjects presenting typical TMJ-id signs to 20 healthy subjects. Body posture was assessed using the analysis of muscle chains on several photographs. Results show a higher frequency of lifted shoulders (p=0.04) and of changes in the antero-internal hip chain (p=0.02) in the test group, but no further differences were found significant between the control and test groups. The test group was then divided into three subgroups according to the Helkimo index of temporomandibular disorder severity. Again, no significant differences were found between the subgroups. However, there was a trend noticed in the group with the most severe dysfunction, to present a forward head and shoulders posture. Results are discussed in light of previous studies using the same sample. PMID:19891257

  10. Postural Tachycardia Syndrome (POTS)

    PubMed Central

    Low, Phillip A.; Sandroni, Paola; Joyner, Michael; Shen, Win-Kuang

    2014-01-01

    Introduction POTS is defined as the development of orthostatic symptoms associated with a heart rate (HR) increment ≥30, usually to ≥120 bpm without orthostatic hypotension. Symptoms of orthostatic intolerance are those due to brain hypoperfusion and those due to sympathetic overaction. Methods We provide a review of POTS based primarily on work from the Mayo Clinic. Results Females predominate over males by 5:1. Mean age of onset in adults is about 30 years and most patients are between the ages of 20–40 years. Pathophysiologic mechanisms (not mutually exclusive) include peripheral denervation, hypovolemia, venous pooling, β-receptor supersensitivity, psychologic mechanisms, and presumed impairment of brain stem regulation. Prolonged deconditioning may also interact with these mechanisms to exacerbate symptoms. The evaluation of POTS requires a focused history and examination, followed by tests that should include HUT, some estimation of volume status and preferably some evaluation of peripheral denervation and hyperadrenergic state. All patients with POTS require a high salt diet, copious fluids, and postural training. Many require β-receptor antagonists in small doses and low-dose vasoconstrictors. Somatic hypervigilance and psychologic factors are involved in a significant proportion of patients. Conclusions POTS is heterogeneous in presentation and mechanisms. Major mechanisms are denervation, hypovolemia, deconditioning, and hyperadrenergic state. Most patients can benefit from a pathophysiologically based regimen of management. PMID:19207771

  11. Effects of Four Days Hiking on Postural Control

    PubMed Central

    Vieira, Marcus Fraga; de Avelar, Ivan Silveira; Silva, Maria Sebastiana; Soares, Viviane; Lobo da Costa, Paula Hentschel

    2015-01-01

    Hiking is a demanding form of exercise that may cause delayed responses of the postural muscles and a loss of somatosensory information, particularly when repeatedly performed for several days. These effects may negatively influence the postural control of hikers. Therefore, the aim of this study was to investigate the effects of a four-day hike on postural control. Twenty-six adults of both sexes travelled 262 kilometers, stopping for lunch and resting in the early evening each day. Force platforms were used to collect center of pressure (COP) data at 100 Hz for 70 seconds before hiking started and immediately after arriving at the rest station each day. The COP time course data were analyzed according to global stabilometric descriptors, spectral analysis and structural descriptors using sway density curve (SDC) and stabilometric diffusion analysis (SDA). Significant increases were found for global variables in both the anterior-posterior and medial-lateral directions (COP sway area, COP total sway path, COP mean velocity, COP root mean square value and COP range). In the spectral analysis, only the 80% power frequency (F80) in the anterior-posterior direction showed a significant increase, reflecting the increase of the sway frequencies. The SDC revealed a significant increase in the mean distance between peaks (MD) and a significant decrease in the mean peak amplitudes (MP), suggesting that a larger torque amplitude is required for stabilization and that the postural stability is reduced. The SDA revealed a decrease in the long-term slope (Hl) and increases in the short-term (Ks) and the long-term (Kl) intercepts. We considered the likelihood that the presence of local and general fatigue, pain and related neuromuscular adaptations and somatosensory deficits may have contributed to these postural responses. Together, these results demonstrated that four days of hiking increased sway frequencies and deteriorated postural control in the standing position. PMID

  12. Effects of four days hiking on postural control.

    PubMed

    Vieira, Marcus Fraga; de Avelar, Ivan Silveira; Silva, Maria Sebastiana; Soares, Viviane; Lobo da Costa, Paula Hentschel

    2015-01-01

    Hiking is a demanding form of exercise that may cause delayed responses of the postural muscles and a loss of somatosensory information, particularly when repeatedly performed for several days. These effects may negatively influence the postural control of hikers. Therefore, the aim of this study was to investigate the effects of a four-day hike on postural control. Twenty-six adults of both sexes travelled 262 kilometers, stopping for lunch and resting in the early evening each day. Force platforms were used to collect center of pressure (COP) data at 100 Hz for 70 seconds before hiking started and immediately after arriving at the rest station each day. The COP time course data were analyzed according to global stabilometric descriptors, spectral analysis and structural descriptors using sway density curve (SDC) and stabilometric diffusion analysis (SDA). Significant increases were found for global variables in both the anterior-posterior and medial-lateral directions (COP sway area, COP total sway path, COP mean velocity, COP root mean square value and COP range). In the spectral analysis, only the 80% power frequency (F80) in the anterior-posterior direction showed a significant increase, reflecting the increase of the sway frequencies. The SDC revealed a significant increase in the mean distance between peaks (MD) and a significant decrease in the mean peak amplitudes (MP), suggesting that a larger torque amplitude is required for stabilization and that the postural stability is reduced. The SDA revealed a decrease in the long-term slope (Hl) and increases in the short-term (Ks) and the long-term (Kl) intercepts. We considered the likelihood that the presence of local and general fatigue, pain and related neuromuscular adaptations and somatosensory deficits may have contributed to these postural responses. Together, these results demonstrated that four days of hiking increased sway frequencies and deteriorated postural control in the standing position. PMID

  13. Postural threat influences conscious perception of postural sway.

    PubMed

    Cleworth, Taylor W; Carpenter, Mark G

    2016-05-01

    This study examined how changes in threat influenced conscious perceptions of postural sway. Young healthy adults stood on a forceplate mounted to a hydraulic lift placed at two heights (0.8m and 3.2m). At each height, subjects stood quietly with eyes open and eyes closed for 60s. Subjects were instructed to either stand normal, or stand normal and track their perceived sway in the antero-posterior plane by rotating a hand-held potentiometer. Participants reported an increased level of fear, anxiety, arousal and a decreased level of balance confidence when standing at height. In addition, postural sway amplitude decreased and frequency increased at height. However, there were no effects of height on perceived sway. When standing under conditions of increased postural threat, sway amplitude is reduced, while sway perception appears to remain unchanged. Therefore, when threat is increased, sensory gain may be increased to compensate for postural strategies that reduce sway (i.e. stiffening strategy), thereby ensuring sufficient afferent information is available to maintain, or even increase the conscious perception of postural sway. PMID:27016388

  14. Vestibular humanoid postural control.

    PubMed

    Mergner, Thomas; Schweigart, Georg; Fennell, Luminous

    2009-01-01

    Many of our motor activities require stabilization against external disturbances. This especially applies to biped stance since it is inherently unstable. Disturbance compensation is mainly reactive, depending on sensory inputs and real-time sensor fusion. In humans, the vestibular system plays a major role. When there is no visual space reference, vestibular-loss clearly impairs stance stability. Most humanoid robots do not use a vestibular system, but stabilize upright body posture by means of center of pressure (COP) control. We here suggest using in addition a vestibular sensor and present a biologically inspired vestibular sensor along with a human-inspired stance control mechanism. We proceed in two steps. First, in an introductory review part, we report on relevant human sensors and their role in stance control, focusing on own models of transmitter fusion in the vestibular sensor and sensor fusion in stance control. In a second, experimental part, the models are used to construct an artificial vestibular system and to embed it into the stance control of a humanoid. The robot's performance is investigated using tilts of the support surface. The results are compared to those of humans. Functional significance of the vestibular sensor is highlighted by comparing vestibular-able with vestibular-loss states in robot and humans. We show that a kinematic body-space sensory feedback (vestibular) is advantageous over a kinetic one (force cues) for dynamic body-space balancing. Our embodiment of human sensorimotor control principles into a robot is more than just bionics. It inspired our biological work (neurorobotics: 'learning by building', proof of principle, and more). We envisage a future clinical use in the form of hardware-in-the-loop simulations of neurological symptoms for improving diagnosis and therapy and designing medical assistive devices. PMID:19665555

  15. Postural stabilization and balance assessment in Charcot–Marie–Tooth 1A subjects

    PubMed Central

    Lencioni, T.; Rabuffetti, M.; Piscosquito, G.; Pareyson, D.; Aiello, A.; Di Sipio, E.; Padua, L.; Stra, F.; Ferrarin, M.

    2014-01-01

    The aim of the present study was to assess postural stabilization skill in adult subjects affected by Charcot–Marie–Tooth disease (CMT) type 1A. For this purpose ground reaction force (GRF) was measured by means of a piezoelectric force platform during the sit-to-stand (STS) movement, until a steady state erect posture was achieved. Specific indexes to quantify Centre of Mass acceleration, both during postural stabilization and during quiet standing, were computed using a mathematical model. Forty-seven CMT1A subjects were recruited for the study, and the control group was formed by forty-one age- and sex-matched healthy subjects. The results show that CMT1A subjects are less stable than controls during the quiet stance. Greater difficulty (high values of Yinf, the final instability rate) to maintain erect posture appears to be mainly associated with plantar-flexor muscle weakness, rather than to damage of the proprioceptive system. The worst performances shown by CMT1A subjects in the stabilization phase (high values of I, the global index of postural stabilization performance) seem to be associated with reduced muscle strength and the loss of large sensory nerve fibres. Distal muscle weakness appears to affect both postural stabilization and quiet erect posture. The presented protocol and the analysis of postural stabilization parameters provide useful information on CMT1A balance disorders. PMID:25082324

  16. Postural stabilization and balance assessment in Charcot-Marie-Tooth 1A subjects.

    PubMed

    Lencioni, T; Rabuffetti, M; Piscosquito, G; Pareyson, D; Aiello, A; Di Sipio, E; Padua, L; Stra, F; Ferrarin, M

    2014-09-01

    The aim of the present study was to assess postural stabilization skill in adult subjects affected by Charcot-Marie-Tooth disease (CMT) type 1A. For this purpose ground reaction force (GRF) was measured by means of a piezoelectric force platform during the sit-to-stand (STS) movement, until a steady state erect posture was achieved. Specific indexes to quantify Centre of Mass acceleration, both during postural stabilization and during quiet standing, were computed using a mathematical model. Forty-seven CMT1A subjects were recruited for the study, and the control group was formed by forty-one age- and sex-matched healthy subjects. The results show that CMT1A subjects are less stable than controls during the quiet stance. Greater difficulty (high values of Yinf, the final instability rate) to maintain erect posture appears to be mainly associated with plantar-flexor muscle weakness, rather than to damage of the proprioceptive system. The worst performances shown by CMT1A subjects in the stabilization phase (high values of I, the global index of postural stabilization performance) seem to be associated with reduced muscle strength and the loss of large sensory nerve fibres. Distal muscle weakness appears to affect both postural stabilization and quiet erect posture. The presented protocol and the analysis of postural stabilization parameters provide useful information on CMT1A balance disorders. PMID:25082324

  17. Automatic and Interactive Key Posture Design by Combing the PIK with Parametric Posture Splicing

    NASA Astrophysics Data System (ADS)

    Li, Shilei; Wu, Bing; Liang, Jiahong; Su, Jiongming

    Key posture design is commonly needed in computer animation. This paper presents an automatic and interactive whole body posture designing technique by combining the PIK (prioritized inverse kinematics) with the proposed parametric human posture splicing technique. The key feature of PIK is that the user can design a posture by adding high level constraints with different priorities. However, the PIK is essentially a numerical IK algorithm which relies on the iterative optimization starting from a good enough initial posture to get the final result. To speed up the running efficiency and ensure the lifelikeness of the final posture, the parametric posture splicing technique is proposed to generate the initial guess of the PIK. According to the set of the high level constraints, the whole body is divided into some partial parts, whose postures are then generated by the parametric posture synthesis from a single posture database. Then an initial posture guess with some main characteristics of the finally acceptable posture can be generated approximately by splicing these partial body postures together. Starting from this initial guess and with all constraints considered at different priority levels, the PIK can be initialized with a bias defined by this particularly initial guess and iterated step by step to get a final posture. The total process of the whole body posture generation is automatic and interactive. The experimental results show that this combination method can not only improve the computation efficiency of the PIK but also can simultaneously ensure the naturalness of the final posture.

  18. Age Related Decline in Postural Control Mechanisms.

    ERIC Educational Resources Information Center

    Stelmach, George E.; And Others

    1989-01-01

    Studied voluntary and reflexive mechanisms of postural control of young (N=8) and elderly (N=8) adults through measurement of reflexive reactions to large-fast and small-slow ankle rotation postural disturbances. Found reflexive mechanisms relatively intact for both groups although elderly appeared more disadvantaged when posture was under the…

  19. Postural Complexity Influences Development in Infants Born Preterm With Brain Injury: Relating Perception-Action Theory to 3 Cases

    PubMed Central

    Izzo, Theresa; Thacker, Leroy R.; Galloway, James Cole

    2014-01-01

    Background and Purpose Perception-action theory suggests a cyclical relationship between movement and perceptual information. In this case series, changes in postural complexity were used to quantify an infant's action and perception during the development of early motor behaviors. Case Description Three infants born preterm with periventricular white matter injury were included. Outcomes Longitudinal changes in postural complexity (approximate entropy of the center of pressure), head control, reaching, and global development, measured with the Test of Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, were assessed every 0.5 to 3 months during the first year of life. All 3 infants demonstrated altered postural complexity and developmental delays. However, the timing of the altered postural complexity and the type of delays varied among the infants. For infant 1, reduced postural complexity or limited action while learning to control her head in the midline position may have contributed to her motor delay. However, her ability to adapt her postural complexity eventually may have supported her ability to learn from her environment, as reflected in her relative cognitive strength. For infant 2, limited early postural complexity may have negatively affected his learning through action, resulting in cognitive delay. For infant 3, an increase in postural complexity above typical levels was associated with declining neurological status. Discussion Postural complexity is proposed as a measure of perception and action in the postural control system during the development of early behaviors. An optimal, intermediate level of postural complexity supports the use of a variety of postural control strategies and enhances the perception-action cycle. Either excessive or reduced postural complexity may contribute to developmental delays in infants born preterm with white matter injury. PMID:24903116

  20. Recognizing postural orthostatic tachycardia syndrome.

    PubMed

    Pavlik, Daniel; Agnew, Donna; Stiles, Lauren; Ditoro, Rachel

    2016-04-01

    This article describes the pathophysiology, clinical presentation, differential diagnosis, diagnosis, and management of postural orthostatic tachycardia syndrome (POTS), a potentially debilitating autonomic disorder that can have many causes and presentations. POTS can be mistaken for panic disorder, inappropriate sinus tachycardia, and chronic fatigue syndrome. Clinician suspicion for the syndrome is key to prompt patient diagnosis and treatment. PMID:26967958

  1. Nonstationary properties of postural sway.

    PubMed

    Carroll, J P; Freedman, W

    1993-01-01

    Postural sway during quite stance is usually assumed to be a stationary stochastic process. We tested this assumption by investigating the time invariance of the average value and variance of the postural sway of three subjects. The sway was measured with a force plate under three conditions: subject standing on two feet with eyes open; subject standing on two feet with eyes closed; and subject standing on one foot with eyes open. Data were collected in 1 min runs. More than 50 min of data were collected for each subject under each test condition. The data were averaged across all runs for each subject and condition. Trends were found to be present in the data. In addition, there were initial transient increases in the second-order moments about the trends. The transient changes in first- and second-order moments usually disappeared during the first 20 s. In light of these findings, we can reject the hypothesis that postural sway is a stationary process. The results imply that the usual methods to parameterize postural sway have to be either changed or reinterpreted. PMID:8478345

  2. Dietary Re-education, Exercise Program, Performance and Body Indexes Associated with Risk Factors in Overweight/Obese Women

    PubMed Central

    Fett, Carlos; Fett, Waléria; Fabbro, Amaury; Marchini, Julio

    2005-01-01

    This study observed the effect of a dietary re-education plus regular physical activity on body composition, risk factors and physical test performance of sedentary overweight/obese women and to correlate these variables one with each other. Fifty women (36 ± 10 yrs; 31 ± 6 body mass index (BMI, kg/m2)) volunteered for the study. Body compositions were obtained by anthropometry and bioimpedance and some body indexes were established. One-repetition maximum (1-RM) and treadmill VO2max tests were carried out and blood samples were obtained for lipid, glucose and uric acid analyses before (T1) and after two months of intervention (T2). Diet was established by indirect calorimetry. Body fat, glucose, uric acid, total cholesterol, HDL-cholesterol and systolic blood pressure were significantly reduced. The 1-RM and VO2max tests were significantly increased. Neck circumference (NC) was correlated with body composition, back muscle 1-MR, HDL and LDL cholesterol, total cholesterol/HDL ratio, uric acid, and resting energy expenditure. BMI was found to be significantly correlated with waist/hip ratio, circumference sum, and body fat percentage by anthropometry and bioimpedance. Body fat percentage determined by bioimpedance and anthropometry was significantly correlated with arm fat area and arm fat area corrected respectively, and both with BMI at T1 and T2. This study suggests that a dietary reeducation plus physical activity around 200 min/week improved body composition and the health of these women. Many anthropometry measurements have correspondence to risk factors and NC could be a simple approach to reflect these results, without other more complex techniques. PMID:18500956

  3. Does Observation of Postural Imbalance Induce a Postural Reaction?

    PubMed Central

    Tia, Banty; Saimpont, Arnaud; Paizis, Christos; Mourey, France; Fadiga, Luciano; Pozzo, Thierry

    2011-01-01

    Background Several studies bring evidence that action observation elicits contagious responses during social interactions. However automatic imitative tendencies are generally inhibited and it remains unclear in which conditions mere action observation triggers motor behaviours. In this study, we addressed the question of contagious postural responses when observing human imbalance. Methodology/Principal Findings We recorded participants' body sway while they observed a fixation cross (control condition), an upright point-light display of a gymnast balancing on a rope, and the same point-light display presented upside down. Our results showed that, when the upright stimulus was displayed prior to the inverted one, centre of pressure area and antero-posterior path length were significantly greater in the upright condition compared to the control and upside down conditions. Conclusions/Significance These results demonstrate a contagious postural reaction suggesting a partial inefficiency of inhibitory processes. Further, kinematic information was sufficient to trigger this reaction. The difference recorded between the upright and upside down conditions indicates that the contagion effect was dependent on the integration of gravity constraints by body kinematics. Interestingly, the postural response was sensitive to habituation, and seemed to disappear when the observer was previously shown an inverted display. The motor contagion recorded here is consistent with previous work showing vegetative output during observation of an effortful movement and could indicate that lower level control facilitates contagion effects. PMID:21423622

  4. Effects of an adapted physical activity program in a group of elderly subjects with flexed posture: clinical and instrumental assessment

    PubMed Central

    Benedetti, Maria Grazia; Berti, Lisa; Presti, Chiara; Frizziero, Antonio; Giannini, Sandro

    2008-01-01

    Background Flexed posture commonly increases with age and is related to musculoskeletal impairment and reduced physical performance. The purpose of this clinical study was to systematically compare the effects of a physical activity program that specifically address the flexed posture that marks a certain percentage of elderly individuals with a non specific exercise program for 3 months. Methods Participants were randomly divided into two groups: one followed an Adapted Physical Activity program for flexed posture and the other one completed a non-specific physical activity protocol for the elderly. A multidimensional clinical assessment was performed at baseline and at 3 months including anthropometric data, clinical profile, measures of musculoskeletal impairment and disability. The instrumental assessment of posture was realized using a stereophotogrammetric system and a specific biomechanical model designed to describe the reciprocal position of the body segments on the sagittal plane in a upright posture. Results The Adapted Physical Activity program determined a significant improvement in several key parameters of the multidimensional assessment in comparison to the non-specific protocol: decreased occiput-to-wall distance, greater lower limb range of motion, better flexibility of pectoralis, hamstrings and hip flexor muscles, increased spine extensor muscles strength. Stereophotogrammetric analysis confirmed a reduced protrusion of the head and revealed a reduction in compensative postural adaptations to flexed posture characterized by knee flexion and ankle dorsiflexion in the participants of the specific program. Conclusion The Adapted Physical Activity program for flexed posture significantly improved postural alignment and musculoskeletal impairment of the elderly. The stereophotogrammetric evaluation of posture was useful to measure the global postural alignment and especially to analyse the possible compensatory strategies at lower limbs in flexed

  5. The Steps to Perfect Posture

    ERIC Educational Resources Information Center

    Chappell, Jon

    2007-01-01

    Many people have memories of being told to "stop slouching" while seated at the piano bench. But the reality is that good piano posture is not as simple as bolting upright on the bench when the teacher barks. According to Eric Sutz, a Chicago-area piano teacher and performer, one should see a natural curve in his/her lower lumbar area and should…

  6. Correlation dimension estimates of human postural sway.

    PubMed

    Gurses, Senih; Celik, Huseyin

    2013-02-01

    Human postural sway during quiet standing demonstrates a complex structured dynamics, which has been studied by applying numerous methods, such as linear system identification methods, stochastic analysis, and nonlinear system dynamics tools. Although each of the methods applied revealed some particular features of the sway data none of them have succeeded to present a global picture of the quiet stance dynamics, which probably has both stochastic and deterministic properties. In this study we have started applying ergodic theory of dynamical systems to explore statistical characteristic of the sway dynamics observed in successive trials of a subject, different subjects in an age group, and finally different age groups constituted by children, adults, and elderly subjects. Five successive 180-s long trials were performed by each of 28 subjects in four age groups at quiet stance with eyes open. Stationary and ergodic signal characteristics of five successive center of pressure time series collected from a subject in antero-posterior direction (CoPx) were examined. 97% of the trials were found to be stationary by applying Run Test while children and elderly groups demonstrated significant nonstationary behavior. On the other hand 13 out of 24 subjects were found to be nonergodic. We expected to observe differences in complexity of CoPx dynamics due to aging (Farmer, Ott, & Yorke, 1983). However linear metrics such as standard deviation and Fourier spectra of CoPx signals did not show differences due to the age groups. Correlation dimension (Dk) estimates of stationary CoPx signals being an invariant measure of nonlinear system dynamics were computed by using the average displacement method (Eckmann & Ruelle, 1985). Postural dynamics was expanded in m-dimensional space through CoPx signal by introducing optimum time delays, τcritical. 112 out of 136 stationary CoPx signals for 24 stationary subjects converged to Dk estimates. Average of Dk estimates for children and

  7. Articulatory constraints on interpersonal postural coordination.

    PubMed

    Shockley, Kevin; Baker, Aimee A; Richardson, Michael J; Fowler, Carol A

    2007-02-01

    Cooperative conversation has been shown to foster interpersonal postural coordination. The authors investigated whether such coordination is mediated by the influence of articulation on postural sway. In Experiment 1, talkers produced words in synchrony or in alternation, as the authors varied speaking rate and word similarity. Greater shared postural activity was found for the faster speaking rate. In Experiment 2, the authors demonstrated that shared postural activity also increases when individuals speak the same words or speak words that have similar stress patterns. However, this increase in shared postural activity is present only when participants' data are compared with those of their partner, who was present during the task, but not when compared with the data of a member of a different pair speaking the same word sequences as those of the original partner. The authors' findings suggest that interpersonal postural coordination observed during conversation is mediated by convergent speaking patterns. PMID:17311488

  8. Postural Stability is Altered by Blood Shift

    NASA Astrophysics Data System (ADS)

    Marais, M.; Denise, P.; Guincetre, J. Y.; Normand, H.

    2008-06-01

    Non-vestibular influences as shift in blood volume changed perception of body posture. Then, factors affecting blood shift may alter postural control. The purpose of our study was to investigate the effects of leg venous contention on postural stability. Twelve subjects were studied on a balance plate for 5 minutes with the eyes closed, in 3 conditions: with no leg venous contention or grade 1 and 3 support stockings. Standard deviation of x and y position was calculated before and after the closure of the eyes. Strong venous contention altered postural stability, after the eyes were closed, during the first 10 s of standing. As support stockings prevent blood shift induced by upright posture, this result is in line with the hypothesis that blood shifts influence the perception of body orientation and postural control among others factors as vision, vestibular inputs... This strong venous contention could induce an increase of fall.

  9. Common postural defects among music students.

    PubMed

    Blanco-Piñeiro, Patricia; Díaz-Pereira, M Pino; Martínez, Aurora

    2015-07-01

    Postural quality during musical performance affects both musculoskeletal health and the quality of the performance. In this study we examined the posture of 100 students at a Higher Conservatory of Music in Spain. By analysing video tapes and photographs of the students while performing, a panel of experts extracted values of 11 variables reflecting aspects of overall postural quality or the postural quality of various parts of the body. The most common postural defects were identified, together with the situations in which they occur. It is concluded that most students incur in unphysiological postures during performance. It is hoped that use of the results of this study will help correct these errors. PMID:26118530

  10. The neuropathic postural tachycardia syndrome

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Costa, F.; Shannon, J. R.; Robertson, R. M.; Wathen, M.; Stein, M.; Biaggioni, I.; Ertl, A.; Black, B.; Robertson, D.

    2000-01-01

    BACKGROUND: The postural tachycardia syndrome is a common disorder that is characterized by chronic orthostatic symptoms and a dramatic increase in heart rate on standing, but that does not involve orthostatic hypotension. Several lines of evidence indicate that this disorder may result from sympathetic denervation of the legs. METHODS: We measured norepinephrine spillover (the rate of entry of norepinephrine into the venous circulation) in the arms and legs both before and in response to exposure to three stimuli (the cold pressor test, sodium nitroprusside infusion, and tyramine infusion) in 10 patients with the postural tachycardia syndrome and in 8 age- and sex-matched normal subjects. RESULTS: At base line, the mean (+/-SD) plasma norepinephrine concentration in the femoral vein was lower in the patients with the postural tachycardia syndrome than in the normal subjects (135+/-30 vs. 215+/-55 pg per milliliter [0.80+/-0.18 vs. 1.27+/-0.32 nmol per liter], P=0.001). Norepinephrine spillover in the arms increased to a similar extent in the two groups in response to each of the three stimuli, but the increases in the legs were smaller in the patients with the postural tachycardia syndrome than in the normal subjects (0.001+/-0.09 vs. 0.12+/-0.12 ng per minute per deciliter of tissue [0.006+/-0.53 vs. 0.71+/-0.71 nmol per minute per deciliter] with the cold pressor test, P=0.02; 0.02+/-0.07 vs. 0.23+/-0.17 ng per minute per deciliter [0.12+/-0.41 vs. 1.36+/-1.00 nmol per minute per deciliter] with nitroprusside infusion, P=0.01; and 0.008+/-0.09 vs. 0.19+/-0.25 ng per minute per deciliter [0.05+/-0.53 vs. 1.12+/-1.47 nmol per minute per deciliter] with tyramine infusion, P=0.04). CONCLUSIONS: The neuropathic postural tachycardia syndrome results from partial sympathetic denervation, especially in the legs.

  11. Geometric morphometrics as a tool for improving the comparative study of behavioural postures

    NASA Astrophysics Data System (ADS)

    Fureix, Carole; Hausberger, Martine; Seneque, Emilie; Morisset, Stéphane; Baylac, Michel; Cornette, Raphaël; Biquand, Véronique; Deleporte, Pierre

    2011-07-01

    Describing postures has always been a central concern when studying behaviour. However, attempts to compare postures objectively at phylogenetical, populational, inter- or intra-individual levels generally either rely upon a few key elements or remain highly subjective. Here, we propose a novel approach, based on well-established geometric morphometrics, to describe and to analyse postures globally (i.e. considering the animal's body posture in its entirety rather than focusing only on a few salient elements, such as head or tail position). Geometric morphometrics is concerned with describing and comparing variation and changes in the form (size and shape) of organisms using the coordinates of a series of homologous landmarks (i.e. positioned in relation to skeletal or muscular cues that are the same for different species for every variety of form and function and that have derived from a common ancestor, i.e. they have a common evolutionary ancestry, e.g. neck, wings, flipper/hand). We applied this approach to horses, using global postures (1) to characterise behaviours that correspond to different arousal levels, (2) to test potential impact of environmental changes on postures. Our application of geometric morphometrics to horse postures showed that this method can be used to characterise behavioural categories, to evaluate the impact of environmental factors (here human actions) and to compare individuals and groups. Beyond its application to horses, this promising approach could be applied to all questions involving the analysis of postures (evolution of displays, expression of emotions, stress and welfare, behavioural repertoires…) and could lead to a whole new line of research.

  12. Dynamic Control of Posture Across Locomotor Tasks

    PubMed Central

    Earhart, Gammon M.

    2013-01-01

    Successful locomotion depends on postural control to establish and maintain appropriate postural orientation of body segments relative to one another and to the environment, and to ensure dynamic stability of the moving body. This paper provides a framework for considering dynamic postural control, highlighting the importance of coordination, consistency, and challenges to postural control posed by various locomotor tasks such as turning and backward walking. The impacts of aging and various movement disorders on postural control are discussed broadly in an effort to provide a general overview of the field and recommendations for assessment of dynamic postural control across different populations in both clinical and research settings. Suggestions for future research on dynamic postural control during locomotion are also provided and include discussion of opportunities afforded by new and developing technologies, the need for long-term monitoring of locomotor performance in everyday activities, gaps in our knowledge of how targeted intervention approaches modify dynamic postural control, and the relative paucity of literature regarding dynamic postural control in movement disorder populations other than Parkinson disease. PMID:24132838

  13. Optimal coordination and control of posture and movements.

    PubMed

    Johansson, Rolf; Fransson, Per-Anders; Magnusson, Måns

    2009-01-01

    This paper presents a theoretical model of stability and coordination of posture and locomotion, together with algorithms for continuous-time quadratic optimization of motion control. Explicit solutions to the Hamilton-Jacobi equation for optimal control of rigid-body motion are obtained by solving an algebraic matrix equation. The stability is investigated with Lyapunov function theory and it is shown that global asymptotic stability holds. It is also shown how optimal control and adaptive control may act in concert in the case of unknown or uncertain system parameters. The solution describes motion strategies of minimum effort and variance. The proposed optimal control is formulated to be suitable as a posture and movement model for experimental validation and verification. The combination of adaptive and optimal control makes this algorithm a candidate for coordination and control of functional neuromuscular stimulation as well as of prostheses. Validation examples with experimental data are provided. PMID:19671443

  14. Influence of immobilization and sensory re-education on the sensory recovery after reconstruction of digital nerves with direct suture or muscle-in-vein conduits

    PubMed Central

    Manoli, Theodora; Schiefer, Jennifer Lynn; Schulz, Lukas; Fuchsberger, Thomas; Schaller, Hans-Eberhard

    2016-01-01

    The influence of duration of immobilization and postoperative sensory re-education on the final outcome after reconstruction of digital nerves with direct suture or muscle-in-vein conduits was investigated. The final sensory outcome of 35 patients with 41 digital nerve injuries, who either underwent a direct suture (DS) or a nerve reconstruction with muscle-in-vein conduits (MVC), was assessed the earliest 12 months postoperatively using static and moving two-point discrimination as well as Semmes-Weinstein monofilaments. There was no significant difference in sensory recovery in cases with an immobilization of 3–7 days versus 10 days in the DS or MVC group. Moreover, no statistically significant difference in sensory recovery was found in cases receiving postoperative sensory re-education versus those not receiving in the DS or MVC group. An early mobilization does not seem to have a negative impact on the final outcome after digital nerve reconstruction. The effect of sensory re-education after digital nerve reconstruction should be reconsidered. PMID:27073390

  15. [Postural examination in daily occlusodontology].

    PubMed

    Serviere, F

    1989-03-01

    According to the osteopathic and chiropractic concepts, facing a TMJ problem, the practitioner has to determine if the trouble observed in the stomatognatic apparatus is the cause or the effect of the structural problems present anywhere else in the body. The postural examination allows to answer this question. Tow techniques can be used. First a static and dynamic posture test proposed by Bricot. The level of the cranium, the eyes, the shoulders, the wrists, the pelvis and the ankles is analysed, from a front view; from the side, the gravity line is inspected: vertex, auditory meatus, shoulder, hip joint, anterior side of the tibia, ankle joint. The vertical posture can be studied from the front: the arms are held straight and the antero-posterior length between the fingers is measured. From the back, one notes the recoil of the buttocks on one side. An ocular convergence test is performed. Then one uses a Romberg test (oscillation of the body when the eyes are closed), and a Fukuda stepping test. The patient is then asked to bite on a compress, and the same exams are redone. If no change occurs, we are dealing with an ascending problem: the origin of the problem is not the stomatognathic system. The second technique is the Meerssemann test that needs the practice of Applied Kinesiology muscle testing. The patient is lying supine and one tests: the dental occlusion, the two TMJs, the temporal muscles, masseters, pterygoids, sterno-cleido-mastoids, upper tapezius, left and right sacro-iliac joints, psoas muscles bilaterally.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2636023

  16. Neuromechanical tuning of nonlinear postural control dynamics

    NASA Astrophysics Data System (ADS)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  17. Correcting Poor Posture without Awareness or Willpower

    ERIC Educational Resources Information Center

    Wernik, Uri

    2012-01-01

    In this article, a new technique for correcting poor posture is presented. Rather than intentionally increasing awareness or mobilizing willpower to correct posture, this approach offers a game using randomly drawn cards with easy daily assignments. A case using the technique is presented to emphasize the subjective experience of living with poor…

  18. Variations in Writing Posture and Cerebral Organization

    ERIC Educational Resources Information Center

    Levy, Jerre; Reid, Marylou

    1976-01-01

    Investigated the relationship between hand writing posture and cerebral dominance of 48 left handed writers and 25 right handed writers. Determined that cerebral dominance is related to handedness and to whether or not the writing hand posture is normal or inverted. (SL)

  19. Articulatory Constraints on Interpersonal Postural Coordination

    ERIC Educational Resources Information Center

    Shockley, Kevin; Baker, Aimee A.; Richardson, Michael J.; Fowler, Carol A.

    2007-01-01

    Cooperative conversation has been shown to foster interpersonal postural coordination. The authors investigated whether such coordination is mediated by the influence of articulation on postural sway. In Experiment 1, talkers produced words in synchrony or in alternation, as the authors varied speaking rate and word similarity. Greater shared…

  20. Postural Variables in Girls Practicing Volleyball

    ERIC Educational Resources Information Center

    Grabara, Malgorzata; Hadzik, Andrzej

    2009-01-01

    Study aim: To assess body posture of young female volleyball players in relation to their untrained mates. Material and methods: A group of 42 volleyball players and another of 43 untrained girls, all aged 13-16 years were studied with respect to their body posture indices by using computer posturography. Spinal angles and curvatures were…

  1. An Increase in Postural Load Facilitates an Anterior Shift of Processing Resources to Frontal Executive Function in a Postural-Suprapostural Task

    PubMed Central

    Huang, Cheng-Ya; Chang, Gwo-Ching; Tsai, Yi-Ying; Hwang, Ing-Shiou

    2016-01-01

    Increase in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural load increases and shifts postural control into a less automatic process. Fourteen volunteers executed a designated force-matching task from a level surface (a relative automatic process in posture) and from a stabilometer board while maintaining balance at a target angle (a relatively controlled process in posture). Task performance of the postural and suprapostural tasks, synchronization likelihood (SL) of scalp EEG, and graph-theoretical metrics were assessed. Behavioral results showed that the accuracy and reaction time of force-matching from a stabilometer board were not affected, despite a significant increase in postural sway. However, force-matching in the stabilometer condition showed greater local and global efficiencies of the brain networks than force-matching in the level-surface condition. Force-matching from a stabilometer board was also associated with greater frontal cluster coefficients, greater mean SL of the frontal and sensorimotor areas, and smaller mean SL of the parietal-occipital cortex than force-matching from a level surface. The contrast of supra-threshold links in the upper alpha and beta bands between the two stance conditions validated load-induced facilitation of inter-regional connections between the frontal and sensorimotor areas, but that contrast also indicated connection suppression between the right frontal-temporal and the parietal-occipital areas for the stabilometer stance condition. In conclusion, an increase in stance difficulty alters the neurocognitive processes in executing a postural-suprapostural task. Suprapostural performance is not degraded by increase in postural load, due to (1) increased effectiveness of information

  2. An Increase in Postural Load Facilitates an Anterior Shift of Processing Resources to Frontal Executive Function in a Postural-Suprapostural Task.

    PubMed

    Huang, Cheng-Ya; Chang, Gwo-Ching; Tsai, Yi-Ying; Hwang, Ing-Shiou

    2016-01-01

    Increase in postural-demand resources does not necessarily degrade a concurrent motor task, according to the adaptive resource-sharing hypothesis of postural-suprapostural dual-tasking. This study investigated how brain networks are organized to optimize a suprapostural motor task when the postural load increases and shifts postural control into a less automatic process. Fourteen volunteers executed a designated force-matching task from a level surface (a relative automatic process in posture) and from a stabilometer board while maintaining balance at a target angle (a relatively controlled process in posture). Task performance of the postural and suprapostural tasks, synchronization likelihood (SL) of scalp EEG, and graph-theoretical metrics were assessed. Behavioral results showed that the accuracy and reaction time of force-matching from a stabilometer board were not affected, despite a significant increase in postural sway. However, force-matching in the stabilometer condition showed greater local and global efficiencies of the brain networks than force-matching in the level-surface condition. Force-matching from a stabilometer board was also associated with greater frontal cluster coefficients, greater mean SL of the frontal and sensorimotor areas, and smaller mean SL of the parietal-occipital cortex than force-matching from a level surface. The contrast of supra-threshold links in the upper alpha and beta bands between the two stance conditions validated load-induced facilitation of inter-regional connections between the frontal and sensorimotor areas, but that contrast also indicated connection suppression between the right frontal-temporal and the parietal-occipital areas for the stabilometer stance condition. In conclusion, an increase in stance difficulty alters the neurocognitive processes in executing a postural-suprapostural task. Suprapostural performance is not degraded by increase in postural load, due to (1) increased effectiveness of information

  3. Reaching while standing in microgravity: a new postural solution to oversimplify movement control.

    PubMed

    Casellato, Claudia; Tagliabue, Michele; Pedrocchi, Alessandra; Papaxanthis, Charalambos; Ferrigno, Giancarlo; Pozzo, Thierry

    2012-01-01

    Many studies showed that both arm movements and postural control are characterized by strong invariants. Besides, when a movement requires simultaneous control of the hand trajectory and balance maintenance, these two movement components are highly coordinated. It is well known that the focal and postural invariants are individually tightly linked to gravity, much less is known about the role of gravity in their coordination. It is not clear whether the effect of gravity on different movement components is such as to keep a strong movement-posture coordination even in different gravitational conditions or whether gravitational information is necessary for maintaining motor synergism. We thus set out to analyze the movements of eleven standing subjects reaching for a target in front of them beyond arm's length in normal conditions and in microgravity. The results showed that subjects quickly adapted to microgravity and were able to successfully accomplish the task. In contrast to the hand trajectory, the postural strategy was strongly affected by microgravity, so to become incompatible with normo-gravity balance constraints. The distinct effects of gravity on the focal and postural components determined a significant decrease in their reciprocal coordination. This finding suggests that movement-posture coupling is affected by gravity, and thus, it does not represent a unique hardwired and invariant mode of control. Additional kinematic and dynamic analyses suggest that the new motor strategy corresponds to a global oversimplification of movement control, fulfilling the mechanical and sensory constraints of the microgravity environment. PMID:22159588

  4. Muscle synergies as a predictive framework for the EMG patterns of new hand postures

    PubMed Central

    Ajiboye, A B; Weir, R F

    2011-01-01

    Synchronous muscle synergies have been suggested as a framework for dimensionality reduction in muscle coordination. Many studies have shown that synergies form a descriptive framework for a wide variety of tasks. We examined if a muscle synergy framework could accurately predict the EMG patterns associated with untrained static hand postures, in essence, if they formed a predictive framework. Hand and forearm muscle activities were recorded while subjects statically mimed 33 postures of the American Sign Language alphabet. Synergies were extracted from a subset of training postures using non-negative matrix factorization and used to predict the EMG patterns of the remaining postures. Across the subject population, as few as 11 postures could form an eight-dimensional synergy framework that allowed for at least 90% prediction of the EMG patterns of all 33 postures, including trial-to-trial variations. Synergies were quite robust despite using different postures in the training set, and also despite using a varied number of postures. Estimated synergies were categorized into those which were subject-specific and those which were general to the population. Population synergies were sparser than the subject-specific synergies, typically being dominated by a single muscle. Subject-specific synergies were more balanced in the coactivation of multiple muscles. We suggest as a result that global muscle coordination may be a combination of higher order control of robust subject-specific muscle synergies and lower order control of individuated muscles, and that this control paradigm may be useful in the control of EMG-based technologies, such as artificial limbs and functional electrical stimulation systems. PMID:19436081

  5. Muscle synergies as a predictive framework for the EMG patterns of new hand postures

    NASA Astrophysics Data System (ADS)

    Ajiboye, A. B.; Weir, R. F.

    2009-06-01

    Synchronous muscle synergies have been suggested as a framework for dimensionality reduction in muscle coordination. Many studies have shown that synergies form a descriptive framework for a wide variety of tasks. We examined if a muscle synergy framework could accurately predict the EMG patterns associated with untrained static hand postures, in essence, if they formed a predictive framework. Hand and forearm muscle activities were recorded while subjects statically mimed 33 postures of the American Sign Language alphabet. Synergies were extracted from a subset of training postures using non-negative matrix factorization and used to predict the EMG patterns of the remaining postures. Across the subject population, as few as 11 postures could form an eight-dimensional synergy framework that allowed for at least 90% prediction of the EMG patterns of all 33 postures, including trial-to-trial variations. Synergies were quite robust despite using different postures in the training set, and also despite using a varied number of postures. Estimated synergies were categorized into those which were subject-specific and those which were general to the population. Population synergies were sparser than the subject-specific synergies, typically being dominated by a single muscle. Subject-specific synergies were more balanced in the coactivation of multiple muscles. We suggest as a result that global muscle coordination may be a combination of higher order control of robust subject-specific muscle synergies and lower order control of individuated muscles, and that this control paradigm may be useful in the control of EMG-based technologies, such as artificial limbs and functional electrical stimulation systems.

  6. Postural Coordination during Socio-motor Improvisation

    PubMed Central

    Gueugnon, Mathieu; Salesse, Robin N.; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G.; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193

  7. Postural Coordination during Socio-motor Improvisation.

    PubMed

    Gueugnon, Mathieu; Salesse, Robin N; Coste, Alexandre; Zhao, Zhong; Bardy, Benoît G; Marin, Ludovic

    2016-01-01

    Human interaction often relies on socio-motor improvisation. Creating unprepared movements during social interaction is not a random process but relies on rules of synchronization. These situations do not only involve people to be coordinated, but also require the adjustment of their posture in order to maintain balance and support movements. The present study investigated posture in such a context. More precisely, we first evaluated the impact of amplitude and complexity of arm movements on posture in solo situation. Then, we assessed the impact of interpersonal coordination on posture using the mirror game in which dyads performed improvised and synchronized movements (i.e., duo situation). Posture was measured through ankle-hip coordination in medio-lateral and antero-posterior directions (ML and AP respectively). Our results revealed the spontaneous emergence of in-phase pattern in ML direction and antiphase pattern in AP direction for solo and duo situations. These two patterns respectively refer to the simultaneous flexion/extension of the ankles and the hips in the same or opposite direction. It suggests different functional roles of postural coordination patterns in each direction, with in-phase supporting task performance in ML (dynamical stability) and antiphase supporting postural control in AP (mechanical stability). Although amplitude of movement did not influence posture, movement complexity disturbed postural stability in both directions. Conversely, interpersonal coordination promoted postural stability in ML but not in AP direction. These results are discussed in terms of the difference in coupling strength between ankle-hip coordination and interpersonal coordination. PMID:27547193

  8. Human-like agents with posture planning ability

    NASA Technical Reports Server (NTRS)

    Jung, Moon R.; Badler, Norman

    1992-01-01

    Human body models are geometric structures which may be ultimately controlled by kinematically manipulating their joints, but for animation, it is desirable to control them in terms of task-level goals. We address a fundamental problem in achieving task-level postural goals: controlling massively redundant degrees of freedom. We reduce the degrees of freedom by introducing significant control points and vectors, e.g., pelvis forward vector, palm up vector, and torso up vector, etc. This reduced set of parameters are used to enumerate primitive motions and motion dependencies among them, and thus to select from a small set of alternative postures (e.g., bend vs. squat to lower shoulder height). A plan for a given goal is found by incrementally constructing a goal/constraint set based on the given goal, motion dependencies, collision avoidance requirements, and discovered failures. Global postures satisfying a given goal/constraint set are determined with the help of incremental mental simulation which uses a robust inverse kinematics algorithm. The contributions of the present work are: (1) There is no need to specify beforehand the final goal configuration, which is unrealistic for the human body, and (2) the degrees of freedom problem becomes easier by representing body configurations in terms of 'lumped' control parameters, that is, control points and vectors.

  9. Adaptation of Postural Stability following Stroke.

    PubMed

    Di Fabio, R P

    1997-01-01

    Activities of daily living require both anticipatory and reactive postural adjustments. The influence of stroke on anticipatory and reactive balance behaviors is addressed in this article. Two primary deficits appear to underlie postural instability following stroke. The first deficit type is characterized by a loss of postural muscle recruitment in both lower extremities (not hyperactive stretch reflexes). The second deficit type is related specifically to the lack of limb stabilization on the paretic side of the body. These two categories of deficit might result from the disruption of geocentric and egocentric references for postural stability with cerebrovascular disease. Context-dependent postural responses are either relearned or retained following stroke, but deficits in the sequencing and timing of stabilizing neuromuscular responses appear to be resistant to adaptation. Prior knowledge of an impending balance disturbance improves the initiation of reactive postural adjustments in subjects with stroke but has no effect on the initiation of stabilizing responses associated with voluntary motion. The results suggest that reactive and anticipatory postural adjustments are controlled by different neural mechanisms and may require separate attention in a rehabilitation program. PMID:27620375

  10. Recovery of postural equilibrium control following spaceflight

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Reschke, M. F.; Black, F. O.; Doxey, D. D.; Harm, D. L.

    1992-01-01

    Decreased postural stability is observed in most astronauts immediately following spaceflight. Because ataxia may present postflight operational hazards, it is important to determine the incidence of postural instability immediately following landing and the dynamics of recovery of normal postural equilibrium control. It is postulated that postflight postural instability results from in-flight adaptive changes in central nervous system (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. The purpose of the present investigation was to determine the magnitude and time course of postflight recovery of postural equilibrium control and, hence, readaptation of CNS processing of sensory information. Thirteen crew members from six spaceflight missions were studied pre- and postflight using a modified commercial posturography system. Postural equilibrium control was found to be seriously disrupted immediately following spaceflight in all subjects. Readaptation to the terrestrial environment began immediately upon landing, proceeded rapidly for the first 10-12 hours, and then proceeded much more slowly for the subsequent 2-4 days until preflight stability levels were reachieved. It is concluded that the overall postflight recovery of postural stability follows a predictable time course.

  11. Adaptation to transient postural perturbations

    NASA Technical Reports Server (NTRS)

    Andres, Robert O.

    1992-01-01

    This research was first proposed in May, 1986, to focus on some of the problems encountered in the analysis of postural responses gathered from crewmembers. The ultimate driving force behind this line of research was the desire to treat, predict, or explain 'Space Adaptation Syndrome' (SAS) and hence circumvent any adverse effects of space motion sickness on crewmember performance. The aim of this project was to develop an easily implemented analysis of the transient responses to platform translation that can be elicited with a protocol designed to force sensorimotor reorganization, utilizing statistically reliable criterion measures. This report will present: (1) a summary of the activity that took place in each of the three funded years of the project; (2) discussion of experimental results and their implications for future research; and (3) a list of presentations and publications resulting from this project.

  12. Postural orthostatic tachycardia syndrome (POTS)

    PubMed Central

    Sidhu, Bharat; Obiechina, Nonyelum; Rattu, Noman; Mitra, Shanta

    2013-01-01

    Postural orthostatic tachycardia syndrome (POTS) is a heterogeneous group of conditions characterised by autonomic dysfunction and an exaggerated sympathetic response to assuming an upright position. Up till recently, it was largely under-recognised as a clinical entity. There is now consensus about the definition of POTS as a greater than 30/min heart rate increase on standing from a supine position (greater than 40/min increase in 12–19-year-old patients) or an absolute heart rate of greater than 120/min within 10 min of standing from a supine position and in the absence of hypotension, arrhythmias, sympathomimetic drugs or other conditions that cause tachycardia. We present two cases of POTS, followed by a discussion of its pathogenesis, pathophysiology, epidemiology and management. PMID:24042210

  13. Reversible postural orthostatic tachycardia syndrome

    PubMed Central

    Abdulla, Aza; Rajeevan, Thirumagal

    2015-01-01

    Postural orthostatic tachycardia syndrome (POTS) is a relatively rare syndrome recognised since 1940. It is a heterogenous condition with orthostatic intolerance due to dysautonomia and is characterised by rise in heart rate above 30 bpm from base line or to more than 120 bpm within 5-10 min of standing with or without change in blood pressure which returns to base line on resuming supine position. This condition present with various disabling symptoms such as light headedness, near syncope, fatigue, nausea, vomiting, tremor, palpitations and mental clouding, etc. However there are no identifiable signs on clinical examination and patients are often diagnosed to have anxiety disorder. The condition predominantly affects young female between the ages of 15-50 but is rarely described in older people. We describe an older patient who developed POTS which recovered over 12 mo. Recognising this condition is important as there are treatment options available to alleviate the disabling symptoms. PMID:26244158

  14. Postural correlates with painful situations

    PubMed Central

    Lelard, Thierry; Montalan, Benoît; Morel, Maria F.; Krystkowiak, Pierre; Ahmaidi, Said; Godefroy, Olivier; Mouras, Harold

    2013-01-01

    Background: Emotional context may play a crucial role in movement production. According to simulation theories, emotional states affect motor systems. The aim of this study was to compare postural responses assessed by posturography and electromyography when subjects were instructed to imagine themselves in a painful or a non-painful situation. Methods: Twenty-nine subjects (22.3 ± 3.7 years) participated in this study. While standing quietly on a posturographic platform, they were instructed to imagine themselves in a painful or non-painful situation. Displacement of the center of pressure (COP), leg muscle electromyographic activity, heart rate, and electrodermal activity were assessed in response to painful and non-painful situations. Results: The anteroposterior path was shorter (p < 0.05) when subjects imagined themselves in a painful situation (M = 148.0 ± 33.4 mm) compared to a non-painful situation (158.2 ± 38.7 mm). Higher tibialis anterior (TA) activity (RMS-TA = 3.38 ± 1.95% vs. 3.24 ± 1.85%; p < 0.001) and higher variability of soleus (SO) activity (variation coefficient of RMS-SO = 13.5 ± 16.2% vs. M = 9.0 ± 7.2%; p < 0.05) were also observed in painful compared to non-painful situations. No significant changes were observed for other physiological data. Conclusion: This study demonstrates that simulation of painful situations induces changes in postural control and leg muscle activation compared to non-painful situations, as increased stiffness was demonstrated in response to aversive pictures in accordance with previous results. PMID:23386816

  15. Trunk posture monitoring with inertial sensors

    PubMed Central

    Wong, Man Sang

    2008-01-01

    Measurement of human posture and movement is an important area of research in the bioengineering and rehabilitation fields. Various attempts have been initiated for different clinical application goals, such as diagnosis of pathological posture and movements, assessment of pre- and post-treatment efficacy and comparison of different treatment protocols. Image-based methods for measurements of human posture and movements have been developed, such as the radiography, photogrammetry, optoelectric technique and video analysis. However, it is found that these methods are complicated to set up, time-consuming to operate and could only be applied in laboratory environments. This study introduced a method of using a posture monitoring system in estimating the spinal curvature changes during trunk movements on the sagittal and coronal planes and providing trunk posture monitoring during daily activities. The system consisted of three sensor modules, each with one tri-axial accelerometer and three uni-axial gyroscopes orthogonally aligned, and a digital data acquisition and feedback system. The accuracy of this system was tested with a motion analysis system (Vicon 370) in calibration with experimental setup and in trunk posture measurement with nine human subjects, and the performance of the posture monitoring system during daily activities with two human subjects was reported. The averaged root mean squared differences between the measurements of the system and motion analysis system were found to be <1.5° in dynamic calibration, and <3.1° for the sagittal plane and ≤2.1° for the coronal plane in estimation of the trunk posture change during trunk movements. The measurements of the system and the motion analysis system was highly correlated (>0.999 for dynamic calibration and >0.829 for estimation of spinal curvature change in domain planes of movement during flexion and lateral bending). With the sensing modules located on the upper trunk, mid-trunk and the pelvic

  16. Postural variability and sensorimotor development in infancy.

    PubMed

    Dusing, Stacey C

    2016-03-01

    Infants develop skills through a coupling between their sensory and motor systems. Newborn infants must interpret sensory information and use it to modify movements and organize the postural control system based on the task demands. This paper starts with a brief review of evidence on the use of sensory information in the first months of life, and describes the importance of movement variability and postural control in infancy. This introduction is followed by a review of the evidence for the interactions between the sensory, motor, and postural control systems in typically development infants. The paper highlights the ability of young infants to use sensory information to modify motor behaviors and learn from their experiences. Last, the paper highlights evidence of atypical use of sensory, motor, and postural control in the first months of life in infants who were born preterm, with neonatal brain injury or later diagnosed with cerebral palsy (CP). PMID:27027603

  17. Limit cycle oscillations in standing human posture.

    PubMed

    Chagdes, James R; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Cinelli, Michael E; Denomme, Luke T; Powers, Kaley C; Raman, Arvind

    2016-05-01

    Limit cycle oscillations (LCOs) are a hallmark of dynamic instability in time-delayed and nonlinear systems such as climate change models, biological oscillators, and robotics. Here we study the links between the human neuromuscular system and LCOs in standing posture. First, we demonstrate through a simple mathematical model that the observation of LCOs in posture is indicative of excessive neuromuscular time-delay. To test this hypothesis we study LCOs in the postural sway of individuals with multiple sclerosis and concussed athletes representing two different populations with chronically and acutely increased neuromuscular time-delays. Using a wavelet analysis method we demonstrate that 67% of individuals with multiple sclerosis and 44% of individuals with concussion exhibit intermittent LCOs; 8% of MS-controls, 0% of older adults, and 0% of concussion-controls displayed LCOs. Thus, LCOs are not only key to understanding postural instability but also may have important applications for the detection of neuromuscular deficiencies. PMID:27018157

  18. Confounders of Vasovagal Syncope: Postural Tachycardia Syndrome

    PubMed Central

    Nwazue, Victor C.; Raj, Satish R

    2012-01-01

    Most patients who present to a cardiologist with syncope will have vasovagal (reflex) syncope. A busy syncope practice will often also see patients with postural tachycardia syndrome, often presenting with severe recurrent presyncope. Recognition of this “syncope confounder” might be difficult without adequate knowledge of their presentation, and this can adversely affect optimal management. Patients with postural tachycardia syndrome exhibit an excessive increase in heart rate ≥ 30 bpm within 10 minutes of standing (in the absence of orthostatic hypotension), in addition to chronic symptoms of orthostatic intolerance. Postural tachycardia syndrome can often be differentiated from vasovagal syncope by its hemodynamic pattern during tilt table test and differing clinical characteristics. This article will briefly review the presentation of postural tachycardia syndrome, its putative pathophysiology and an approach to non-pharmacological and pharmacological management. PMID:23217691

  19. Microgravity effects on 'postural' muscle activity patterns

    NASA Technical Reports Server (NTRS)

    Layne, Charles S.; Spooner, Brian S.

    1994-01-01

    Changes in neuromuscular activation patterns associated with movements made in microgravity can contribute to muscular atrophy. Using electromyography (EMG) to monitor 'postural' muscles, it was found that free floating arm flexions made in microgravity were not always preceded by neuromuscular activation patterns normally observed during movements made in unit gravity. Additionally, manipulation of foot sensory input during microgravity arm flexion impacted upon anticipatory postural muscle activation.

  20. Postural control in man: the phylogenetic perspective.

    PubMed

    Gramsbergen, Albert

    2005-01-01

    Erect posture in man is a recent affordance from an evolutionary perspective. About eight million years ago, the stock from which modern humans derived split off from the ape family, and from around sixty-thousand years ago, modern man developed. Upright gait and manipulations while standing pose intricate cybernetic problems for postural control. The trunk, having an older evolutionary history than the extremities, is innervated by medially descending motor systems and extremity muscles by the more recent, laterally descending systems. Movements obviously require concerted actions from both systems. Research in rats has demonstrated the interdependencies between postural control and the development of fluent walking. Only 15 days after birth, adult-like fluent locomotion emerges and is critically dependent upon postural development. Vesttibular deprivation induces a retardation in postural development and, consequently, a retarded development of adult-like locomotion. The cerebellum obviously has an important role in mutual adjustments in postural control and extremity movements, or, in coupling the phylogenetic older and newer structures. In the human, the cerebellum develops partly after birth and therefore is vulnerable to adverse perinatal influences. Such vulnerability seems to justify focusing our scientific research efforts onto the development of this structure. PMID:16097476

  1. Gravitational Effects upon Locomotion Posture

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Bentley, Jason R.; Edwards, W. Brent; Perusek, Gail P.; Samorezov, Sergey

    2008-01-01

    Researchers use actual microgravity (AM) during parabolic flight and simulated microgravity (SM) obtained with horizontal suspension analogs to better understand the effect of gravity upon gait. In both environments, the gravitational force is replaced by an external load (EL) that returns the subject to the treadmill. However, when compared to normal gravity (N), researchers consistently find reduced ground reaction forces (GRF) and subtle kinematic differences (Schaffner et al., 2005). On the International Space Station, the EL is applied by elastic bungees attached to a waist and shoulder harness. While bungees can provide EL approaching body weight (BW), their force-length characteristics coupled with vertical oscillations of the body during gait result in a variable load. However, during locomotion in N, the EL is consistently equal to 100% body weight. Comparisons between AM and N have shown that during running, GRF are decreased in AM (Schaffner et al, 2005). Kinematic evaluations in the past have focussed on joint range of motion rather than joint posture at specific instances of the gait cycle. The reduced GRF in microgravity may be a result of differing hip, knee, and ankle positions during contact. The purpose of this investigation was to compare joint angles of the lower extremities during walking and running in AM, SM, and N. We hypothesized that in AM and SM, joints would be more flexed at heel strike (HS), mid-stance (MS) and toe-off (TO) than in N.

  2. Quantitative postural analysis and pain in children and adolescents victims of burns.

    PubMed

    Valenciano, Paola Janeiro; Itakussu, Edna Yukimi; Trelha PhD, Celita Salmaso; Fujisawa PhD, Dirce Shizuko

    2015-12-01

    [Purpose] This study aimed to quantitatively assess postural alignment in both frontal and sagittal planes, as well as pain in children and adolescents victims of burn injuries. [Subjects and Methods] This cross-sectional study included 21 victims of burns, nine children (age [mean ± SD], 7.3 ± 1.1 yrs) and 12 adolescents (12,0 ± 1.4 yrs), classified as medium and large burns, being investigated on pain and postural alignment evaluated by photogrammetry. Pain intensity was assessed by face scales and postural examination included the assessment of global and thoraco-lumbo-pelvic alignment by previously designed protocols. [Results] Only two adolescents reported mild pain associated with burn injuries, whereas deviations of the projection of the gravity center; forward head posture, and scapular asymmetry were observed in both groups. In the analysis of the thoraco-lumbo-pelvic alignment, children tended to have anterior inclination trunk, increased thoracic kyphosis and lumbar lordosis, while in adolescents, increased thoracic kyphosis and lumbar lordosis were observed. [Conclusion] The results indicate that due to the postural alterations and asymmetries in both frontal and sagittal planes, there is an increased risk of developing scoliosis and possible future pain. Thus, physiotherapy is indicated and should be maintained until complete growth is reached. PMID:26834321

  3. Quantitative postural analysis and pain in children and adolescents victims of burns

    PubMed Central

    Valenciano, Paola Janeiro; Itakussu, Edna Yukimi; Trelha, PhD, Celita Salmaso; Fujisawa, PhD, Dirce Shizuko

    2015-01-01

    [Purpose] This study aimed to quantitatively assess postural alignment in both frontal and sagittal planes, as well as pain in children and adolescents victims of burn injuries. [Subjects and Methods] This cross-sectional study included 21 victims of burns, nine children (age [mean ± SD], 7.3 ± 1.1 yrs) and 12 adolescents (12,0 ± 1.4 yrs), classified as medium and large burns, being investigated on pain and postural alignment evaluated by photogrammetry. Pain intensity was assessed by face scales and postural examination included the assessment of global and thoraco-lumbo-pelvic alignment by previously designed protocols. [Results] Only two adolescents reported mild pain associated with burn injuries, whereas deviations of the projection of the gravity center; forward head posture, and scapular asymmetry were observed in both groups. In the analysis of the thoraco-lumbo-pelvic alignment, children tended to have anterior inclination trunk, increased thoracic kyphosis and lumbar lordosis, while in adolescents, increased thoracic kyphosis and lumbar lordosis were observed. [Conclusion] The results indicate that due to the postural alterations and asymmetries in both frontal and sagittal planes, there is an increased risk of developing scoliosis and possible future pain. Thus, physiotherapy is indicated and should be maintained until complete growth is reached. PMID:26834321

  4. Influence of forward head posture on condylar position.

    PubMed

    Ohmure, H; Miyawaki, S; Nagata, J; Ikeda, K; Yamasaki, K; Al-Kalaly, A

    2008-11-01

    There are several reports suggesting that forward head posture is associated with temporomandibular disorders and restraint of mandibular growth, possibly due to mandibular displacement posteriorly. However, there have been few reports in which the condylar position was examined in forward head posture. The purpose of this study was to test the hypothesis that the condyle moves posteriorly in the forward head posture. The condylar position and electromyography from the masseter, temporal and digastric muscles were recorded on 15 healthy male adults at mandibular rest position in the natural head posture and deliberate forward head posture. The condylar position in the deliberate forward head posture was significantly more posterior than that in the natural head posture. The activity of the masseter and digastric muscles in the deliberate forward head posture was slightly increased. These results suggest that the condyle moves posteriorly in subjects with forward head posture. PMID:18808377

  5. Anatomy and histochemistry of hindlimb flight posture in birds. I. The extended hindlimb posture of shorebirds.

    PubMed

    McFarland, Joshua C; Meyers, Ron A

    2008-08-01

    Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. PMID:18506762

  6. Postural control at the human wrist

    PubMed Central

    Chew, John Z Z; Gandevia, Simon C; Fitzpatrick, Richard C

    2008-01-01

    In our movements and posture, we always act against a physical load. A key property of any load is its elastic stiffness (K), which describes how the force required to hold it must change with position. Here we examine how load stiffness affects the ability to maintain a stable posture at the wrist. Loads having positive (like a spring) and negative stiffness (like an inverted pendulum) were created by varying the position of weights on multiarm rigid pendulum. Subjects (n = 9) held 15 loads (K = ± 0.04, ± 0.01 and 0 N m deg−1 at mean torques of 0.2, 0.4 and 0.6 N m) still for 60 s. Residual wrist movement (sway) increased with mean torque and increased as stiffness became more negative. Large effects of load stiffness were seen at low frequencies (< 1.5 Hz) but not at higher frequencies that reflect load resonance and reflex activity. Subjects accurately perceived their postural sway while holding the loads but measured psychophysical thresholds showed that load stiffness was not perceived. We conclude that load stiffness, independent of force levels, affects the ability to control a load and that the postural control process relies on perception and volitional tracking rather than more automatic reflex pathways. Despite an awareness of their postural errors, we see no evidence for adaptation of postural control processes to compensate for changes in load properties. This is unlike the adaptation of feedforward control processes that produce targeted volitional movements when load properties are altered. We propose that postural control and movement control are fundamentally different neural processes. PMID:18187473

  7. Reliability of photographic posture analysis of adolescents

    PubMed Central

    Hazar, Zeynep; Karabicak, Gul Oznur; Tiftikci, Ugur

    2015-01-01

    [Purpose] Postural problems of adolescents needs to be evaluated accurately because they may lead to greater problems in the musculoskeletal system as they develop. Although photographic posture analysis has been frequently used, more simple and accessible methods are still needed. The purpose of this study was to investigate the inter- and intra-rater reliability of photographic posture analysis using MB-ruler software. [Subjects and Methods] Subjects were 30 adolescents (15 girls and 15 boys, mean age: 16.4±0.4 years, mean height 166.3±6.7 cm, mean weight 63.8±15.1 kg) and photographs of their habitual standing posture photographs were taken in the sagittal plane. For the evaluation of postural angles, reflective markers were placed on anatomical landmarks. For angular measurements, MB-ruler (Markus Bader- MB Software Solutions, triangular screen ruler) was used. Photographic evaluations were performed by two observers with a repetition after a week. Test-retest and inter-rater reliability evaluations were calculated using intra-class correlation coefficients (ICC). [Results] Inter-rater (ICC>0.972) and test-retest (ICC>0.774) reliability were found to be in the range of acceptable to excellent. [Conclusion] Reference angles for postural evaluation were found to be reliable and repeatable. The present method was found to be an easy and non-invasive method and it may be utilized by researchers who are in search of an alternative method for photographic postural assessments. PMID:26644658

  8. Scapular Bracing and Alteration of Posture and Muscle Activity in Overhead Athletes With Poor Posture

    PubMed Central

    Cole, Ashley K; McGrath, Melanie L; Harrington, Shana E; Padua, Darin A; Rucinski, Terri J; Prentice, William E

    2013-01-01

    Context Overhead athletes commonly have poor posture. Commercial braces are used to improve posture and function, but few researchers have examined the effects of shoulder or scapular bracing on posture and scapular muscle activity. Objective To examine whether a scapular stabilization brace acutely alters posture and scapular muscle activity in healthy overhead athletes with forward-head, rounded-shoulder posture (FHRSP). Design Randomized controlled clinical trial. Setting Applied biomechanics laboratory. Patients or Other Participants Thirty-eight healthy overhead athletes with FHRSP. Intervention(s) Participants were assigned randomly to 2 groups: compression shirt with no strap tension (S) and compression shirt with the straps fully tensioned (S + T). Posture was measured using lateral-view photography with retroreflective markers. Electromyography (EMG) of the upper trapezius (UT), middle trapezius (MT), lower trapezius (LT), and serratus anterior (SA) in the dominant upper extremity was measured during 4 exercises (scapular punches, W's, Y's, T's) and 2 glenohumeral motions (forward flexion, shoulder extension). Posture and exercise EMG measurements were taken with and without the brace applied. Main Outcome Measure(s) Head and shoulder angles were measured from lateral-view digital photographs. Normalized surface EMG was used to assess mean muscle activation of the UT, MT, LT, and SA. Results Application of the brace decreased forward shoulder angle in the S + T condition. Brace application also caused a small increase in LT EMG during forward flexion and Y's and a small decrease in UT and MT EMG during shoulder extension. Brace application in the S + T group decreased UT EMG during W's, whereas UT EMG increased during W's in the S group. Conclusions Application of the scapular brace improved shoulder posture and scapular muscle activity, but EMG changes were highly variable. Use of a scapular brace might improve shoulder posture and muscle activity in

  9. Postural stability in children with hemiplegia estimated for three postural conditions: standing, sitting and kneeling.

    PubMed

    Szopa, Andrzej; Domagalska-Szopa, Małgorzata

    2015-04-01

    Postural control deficit is one of the most important problems in children with cerebral palsy (CP). The purpose of the presented study was to compare the effects of body posture asymmetry alone (i.e., in children with mild scoliosis) with the effects of body posture impairment (i.e., in children with hemiplegia) on postural stability. Forty-five outpatients with hemiplegia and 51 children with mild scoliosis were assessed using a posturography device. The examination comprised two parts: (1) analysis of the static load distribution; and (2) a posturographic test (CoP measurements) conducted in three postural conditions: standing, sitting and kneeling. Based on the asymmetry index of the unaffected/affected body sides while standing, the children with hemiplegia were divided into two different postural patterns: a pro-gravitational postural pattern (PGPP) and an anti-gravitational postural pattern (AGPP) (Domagalska-Szopa & Szopa (2013). BioMed Research International, 2013, 462094; (2014). Therapeutics and Clinical Risk Management, 10, 113). The group of children with mild scoliosis, considered as a standard for static body weight distribution, was used as the reference group. The results of present study only partially confirmed that children with hemiplegia have increased postural instability. Strong weight distribution asymmetry was found in children with an AGPP, which induced larger lateral-medial CoP displacements compared with children with scoliosis. In children with hemiplegia, distinguishing between their postural patterns may be useful to improve the guidelines for early therapy children with an AGPP before abnormal patterns of weight-bearing asymmetry are fully established. PMID:25677032

  10. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures

    PubMed Central

    Sohn, M. Hongchul; Ting, Lena H.

    2016-01-01

    muscles associated with producing a specific synergy force vector was reduced by ~45% when generalizability requirements were imposed. Muscles recruited in the generalizable muscle activation patterns had less sensitive torque-producing characteristics to changes in postures. We conclude that generalization of function across postures does not arise from limb biomechanics or a single optimality criterion. Muscle synergies may reflect acquired motor solutions globally tuned for generalizability across biomechanical contexts, facilitating rapid motor adaptation. PMID:26869914

  11. Postural sway following cryotherapy in healthy adults.

    PubMed

    Fukuchi, Claudiane A; Duarte, Marcos; Stefanyshyn, Darren J

    2014-01-01

    In light of the wide use of cryotherapy and its potential negative effects on postural stability, little is known about how postural sway is affected, particularly when the whole lower limb is immersed. The purpose of this study was to analyze the influence of cryotherapy on postural sway in healthy males. Twenty-six subjects were randomly assigned into two intervention groups: control (tepid water at ∼26°C) or ice (cold water at ∼11°C). Postural sway was measured through the center of pressure (COP) position while they stood on a force plate during bipedal (70 s) and unipedal (40 s) conditions before and after the subjects were immersed in a water tub up to the umbilical level for 20 min. COP standard deviation (SD) and COP velocity were analyzed in the anterior-posterior (AP) and medial-lateral (ML) directions. Statistical analysis showed that in the bipedal condition cryotherapy increased the COP SD and COP velocity in the ML direction. During the unipedal condition, a higher COP velocity in the AP and ML directions was also reported. Our findings indicate that cryotherapy by immersing the whole lower limb should be used with caution before engaging in challenging postural control activities. PMID:24631278

  12. Effect of absence of vision on posture.

    PubMed

    Alotaibi, Abdullah Z; Alghadir, Ahmad; Iqbal, Zaheen A; Anwer, Shahnawaz

    2016-04-01

    [Purpose] The visual system is one of the sensory systems that enables the body to assess and process information about the external environment. In the absence of vision, a blind person loses contact with the outside world and develops faulty motor patterns, which results in postural deficiencies. However, literature regarding the development of such deficiencies is limited. The aim of this study was to discuss the effect of absence of vision on posture, the possible biomechanics behind the resulting postural deficiencies, and strategies to correct and prevent them. [Subjects and Methods] Various electronic databases including PubMed, Medline, and Google scholar were examined using the words "body", "posture", "blind" and "absence of vision". References in the retrieved articles were also examined for cross-references. The search was limited to articles in the English language. [Results] A total of 74 papers were shortlisted for this review, most of which dated back to the 1950s and 60s. [Conclusion] Blind people exhibit consistent musculoskeletal deformities. Absence of vision leads to numerous abnormal sensory and motor interactions that often limit blind people in isolation. Rehabilitation of the blind is a multidisciplinary task. Specialists from different fields need to diagnose and treat the deficiencies of the blind together as a team. Before restoring the normal mechanics of posture and gait, the missing link with the external world should be reestablished. PMID:27190486

  13. Coupling of postural and manual tasks in expert performers.

    PubMed

    Amado, A C; Palmer, C J; Hamill, J; van Emmerik, R E A

    2016-04-01

    The purpose of this study was to investigate the integration of bimanual rhythmic movements and posture in expert marching percussionists. Participants (N=11) performed three rhythmic manual tasks [1:1, 2:3, and 2:3-F (2:3 rhythm played faster at a self-selected tempo)] in one of three postures: sitting, standing on one foot, and standing on two feet. Discrete relative phase, postural time-to-contact, and coherence analysis were used to analyze the performance of the manual task, postural control, and the integration between postural and manual performance. Across all three rhythms, discrete relative phase mean and variability results showed no effects of posture on rhythmic performance. The complexity of the manual task (1:1 vs. 2:3) had no effect on postural time-to-contact. However, increasing the tempo of the manual task (2:3 vs. 2:3-F) did result in a decreased postural time-to-contact in the two-footed posture. Coherence analysis revealed that the coupling between the postural and manual task significantly decreased as a function of postural difficulty (going from a two-footed to a one-footed posture) and rhythmic complexity (1:1 vs. 2:3). Taken together, these results demonstrate that expert marching percussionists systematically decouple postural and manual fluctuations in order to preserve the performance of the rhythmic movement task. PMID:26803676

  14. Correlation between Trunk Posture and Neck Reposition Sense among Subjects with Forward Head Neck Postures

    PubMed Central

    Lee, Han Suk; Chung, Hyung Kuk; Park, Sun Wook

    2015-01-01

    Objective. To assess the correlation of abnormal trunk postures and reposition sense of subjects with forward head neck posture (FHP). Methods. In all, postures of 41 subjects were evaluated and the FHP and trunk posture including shoulder, scapular level, pelvic side, and anterior tilting degrees were analyzed. We used the head repositioning accuracy (HRA) test to evaluate neck position senses of neck flexion, neck extension, neck right and left side flexion, and neck right and left rotation and calculated the root mean square error in trials for each subject. Spearman's rank correlation coefficients and regression analysis were used to assess the degree of correlation between the trunk posture and HRA value, and a significance level of α = 0.05 was considered. Results. There were significant correlations between the HRA value of right side neck flexion and pelvic side tilt angle (p < 0.05). If pelvic side tilting angle increases by 1 degree, right side neck flexion increased by 0.76 degrees (p = 0.026). However, there were no significant correlations between other neck motions and trunk postures. Conclusion. Verifying pelvic postures should be prioritized when movement is limited due to the vitiation of the proprioceptive sense of neck caused by FHP. PMID:26583125

  15. Prompting correct lifting posture using signs.

    PubMed

    Burt, C D; Henningsen, N; Consedine, N

    1999-08-01

    The use of a symbol to prompt the adoption of correct lifting posture was examined in three studies. Study 1 used an Appropriateness Test to evaluate nine symbols designed to encourage the adoption of correct lifting posture. Four symbols met the appropriateness criteria and were tested for comprehension in Study 2. Study 3 examined the effect of the best performing symbol from Study 2 in a field setting which involved subjects lifting a small box. Results indicate significant increases in the adoption of the use of correct lifting posture when the symbol was present compared to a control condition. The study also identified the placement of a lifting criterion symbol onto packaging as a useful technique for communicating safety information. PMID:10416848

  16. Development of the Coordination between Posture and Manual Control

    ERIC Educational Resources Information Center

    Haddad, Jeffrey M.; Claxton, Laura J.; Keen, Rachel; Berthier, Neil E.; Riccio, Gary E.; Hamill, Joseph; Van Emmerik, Richard E. A.

    2012-01-01

    Studies have suggested that proper postural control is essential for the development of reaching. However, little research has examined the development of the coordination between posture and manual control throughout childhood. We investigated the coordination between posture and manual control in children (7- and 10-year-olds) and adults during…

  17. Pseudodystonic Posture Secondary to Klippel–Feil Syndrome and Diastematomyelia

    PubMed Central

    Lopez-Vicchi, Martin; Da Prat, Gustavo; Gatto, Emilia Mabel

    2015-01-01

    Background Dystonic postures possess a great number of differential diagnoses. Phenomenology Shown We describe a pseudodystonic posture in a 61-year-old woman with skeletal and extra-skeletal abnormalities. Educational Value Klippel–Feil syndrome represents an unusual cause of pseudodystonic posture to be considered in the differential diagnosis of dystonia. PMID:27352284

  18. Postural Control in Children: Implications for Pediatric Practice

    ERIC Educational Resources Information Center

    Westcott, Sarah L.; Burtner, Patricia

    2004-01-01

    Based on a systems theory of motor control, reactive postural control (RPA) and anticipatory postural control (APA) in children are reviewed from several perspectives in order to develop an evidence-based intervention strategy for improving postural control in children with limitations in motor function. Research on development of postural…

  19. Wearable monitoring of seated spinal posture.

    PubMed

    Dunne, L E; Walsh, P; Hermann, S; Smyth, B; Caulfield, B

    2008-06-01

    This work describes the evaluation of a wearable plastic optical fiber (POF) sensor for monitoring seated spinal posture, as compared to a conventional expert visual analysis, and the development of a field-deployable posture monitoring system. A garment-integrated POF sensor was developed and tested on nine healthy subjects. Data from the wearable sensor were compared to data taken simultaneously from a marker-based motion capture system, for accuracy and reliability. Peak analysis of the resulting data showed a mean time error of 0.53 plusmn 0.8 s, and a mean value error of 0.64 plusmn 3.1 deg, which represents 14.5% of the average range of motion. Expert determination of transitional (good to bad) posture showed a variation of 20.9% of range of motion. These results indicate that the wearable sensor approximates the accuracy of expert visual analysis, and provides sufficient accuracy of measurement to reliably monitor seated spinal posture. PMID:23852756

  20. Can Smartwatches Replace Smartphones for Posture Tracking?

    PubMed Central

    Mortazavi, Bobak; Nemati, Ebrahim; VanderWall, Kristina; Flores-Rodriguez, Hector G.; Cai, Jun Yu Jacinta; Lucier, Jessica; Naeim, Arash; Sarrafzadeh, Majid

    2015-01-01

    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch’s ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches’ ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed. PMID:26506354

  1. Can smartwatches replace smartphones for posture tracking?

    PubMed

    Mortazavi, Bobak; Nemati, Ebrahim; VanderWall, Kristina; Flores-Rodriguez, Hector G; Cai, Jun Yu Jacinta; Lucier, Jessica; Naeim, Arash; Sarrafzadeh, Majid

    2015-01-01

    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed. PMID:26506354

  2. Assessing Postural Stability in the Concussed Athlete

    PubMed Central

    Ruhe, Alexander; Fejer, René; Gänsslen, Axel; Klein, Wolfgang

    2014-01-01

    Context: Postural stability assessment is included as part of the diagnostic and monitoring process for sports-related concussions. Particularly, the relatively simple Balance Error Scoring System (BESS) and more sophisticated force plate measures like the Sensory Organization Test (SOT) are suggested. Evidence Acquisition: Relevant studies were identified via the following electronic databases: PubMed, MEDLINE, EMBASE, Web of Science, ScienceDirect, and CINAHL (1980 to July 2013). Inclusion was based on the evaluation of postural sway or balance in concussed athletes of any age or sex and investigating the reliability or validity of the included tests. Study Design: Clinical review. Level of Evidence: Level 4 Results: Both the SOT and the BESS show moderate reliability, but a learning effect due to repetitive testing needs to be considered. Both tests indicate that postural stability returns to baseline by day 3 to 5 in most concussed athletes. While the BESS is a simple and valid method, it is sensitive to subjectivity in scoring and the learning effect. The SOT is very sensitive to even subtle changes in postural sway, and thus, more accurate than the BESS; however, it is a rather expensive method of balance testing. Conclusion: Both tests serve the purpose of monitoring balance performance in the concussed athlete; however, neither may serve as a stand-alone diagnostic or monitoring tool. Strength of Recommendation Taxonomy: B PMID:25177420

  3. Cognitive load affects postural control in children.

    PubMed

    Schmid, Maurizio; Conforto, Silvia; Lopez, Luisa; D'Alessio, Tommaso

    2007-05-01

    Inferring relations between cognitive processes and postural control is a relatively topical challenge in developmental neurology. This study investigated the effect of a concurrent cognitive task on postural control in a sample of 50 nine-year-old children. Each subject completed two balance trials of 60 s, one with a concurrent cognitive task (cognitive load) and another with no cognitive load. The concurrent cognitive task consisted of mentally counting backwards in steps of 2. Twelve posturographic parameters (PPs) were extracted from the centre of pressure (CoP) trajectory obtained through a load cell force plate. Analysis of variance revealed significant differences in the majority of the extracted PPs. CoP was found to travel faster, farther, and with substantially different features demonstrating an overall broadening of the spectrum in the frequency domain. Nonlinear stability factors revealed significant differences when exposed to a concurrent cognitive task, showing an increase of instability in the intervention rate of the postural control system. By grouping children through selected items from Teachers Ratings and PANESS assessment, specific significant differences were also found both in time and frequency domain PPs, thus confirming the hypothesis of an interaction between cognitive processes (and their development), and postural control. PMID:17136524

  4. Forearm Posture and Mobility in Quadrupedal Dinosaurs

    PubMed Central

    VanBuren, Collin S.; Bonnan, Matthew

    2013-01-01

    Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination). Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy. PMID:24058633

  5. Effect of absence of vision on posture

    PubMed Central

    Alotaibi, Abdullah Z.; Alghadir, Ahmad; Iqbal, Zaheen A.; Anwer, Shahnawaz

    2016-01-01

    [Purpose] The visual system is one of the sensory systems that enables the body to assess and process information about the external environment. In the absence of vision, a blind person loses contact with the outside world and develops faulty motor patterns, which results in postural deficiencies. However, literature regarding the development of such deficiencies is limited. The aim of this study was to discuss the effect of absence of vision on posture, the possible biomechanics behind the resulting postural deficiencies, and strategies to correct and prevent them. [Subjects and Methods] Various electronic databases including PubMed, Medline, and Google scholar were examined using the words “body”, “posture”, “blind” and “absence of vision”. References in the retrieved articles were also examined for cross-references. The search was limited to articles in the English language. [Results] A total of 74 papers were shortlisted for this review, most of which dated back to the 1950s and 60s. [Conclusion] Blind people exhibit consistent musculoskeletal deformities. Absence of vision leads to numerous abnormal sensory and motor interactions that often limit blind people in isolation. Rehabilitation of the blind is a multidisciplinary task. Specialists from different fields need to diagnose and treat the deficiencies of the blind together as a team. Before restoring the normal mechanics of posture and gait, the missing link with the external world should be reestablished. PMID:27190486

  6. Body Posture Facilitates Retrieval of Autobiographical Memories

    ERIC Educational Resources Information Center

    Dijkstra, Katinka; Kaschak, Michael P.; Zwaan, Rolf A.

    2007-01-01

    We assessed potential facilitation of congruent body posture on access to and retention of autobiographical memories in younger and older adults. Response times were shorter when body positions during prompted retrieval of autobiographical events were similar to the body positions in the original events than when body position was incongruent.…

  7. Kinematic and kinetic gait analysis in the sagittal plane of trans-femoral amputees before and after special gait re-education.

    PubMed

    Sjödahl, C; Jarnlo, G B; Söderberg, B; Persson, B M

    2002-08-01

    A special gait-training programme, combining a psychological therapeutic approach with methods in physiotherapy and body awareness, was used to re-educate nine unilateral trans-femoral amputees. All were rehabilitated trauma or tumour amputees with an age of 16-60 years. They had worn prostheses for more than 18 months. The re-education aimed at integrating the prosthesis in normal movements and increasing body awareness. Gait was measured before and after treatment and at 6 months follow-up with a three-dimensional motion analysis system. Results showed almost normalised gait speed and increased symmetry in the hip joints with increased muscle work on the amputated side both immediately and at follow-up. At follow-up there were significant differences in almost all parameters between the two legs of the subjects and when compared to a reference group of 18 healthy volunteers of similar age. Thus, the intact leg compensates for loss of function in the amputated leg and thereby works differently compared to the reference group. For example, during shock absorption the extension moment in the intact knee increased from 0.6 Nm/kg before to 1.0 Nm/kg after treatment and at follow-up compared to 0.4 Nm/kg in the reference group. The eccentric power of quadriceps increased from 0.6 w/kg before to 1.8 w/kg after treatment and 1.7 w/kg at follow-up compared to 0.4 w/kg in the reference group. The limp of amputees is usually observed in the frontal plane, but the authors' special focus on the sagittal plane here illustrates gait propulsion influences. The positive training results remained after six months. PMID:12227444

  8. Inertia sensor-based guidance system for upperlimb posture correction.

    PubMed

    Ding, Z Q; Luo, Z Q; Causo, A; Chen, I M; Yue, K X; Yeo, S H; Ling, K V

    2013-02-01

    Stroke rehabilitation is labor-intensive and time-consuming. To assist patients and therapists alike, we propose a wearable system that measures orientation and corrects arm posture using vibrotactile actuators. The system evaluates user posture with respect to a reference and gives feedback in the form of vibration patterns. Users correct their arm posture, one DOF at a time, by following a protocol starting from the shoulder up to the forearm. Five users evaluated the proposed system by replicating ten different postures. Experimental results demonstrated system robustness and showed that some postures were easier to mimic depending on their naturalness. PMID:21978912

  9. Methods of Postural Assessment Used for Sports Persons

    PubMed Central

    Singla, Deepika

    2014-01-01

    Occurrence of postural defects has become very common now-a-days not only in general population but also in sports persons. There are various methods which can be used to assess these postural defects. These methods have evolved over a period of many years. This paper is first of its kind to summarize the methods of postural assessment which have been used and which can be used for evaluation of postural abnormalities in sports persons such as the visual observation, plumbline, goniometry, photographic, radiographic, photogrammetric, flexiruler, electromagnetic tracking device etc. We recommend more and more postural evaluation studies to be done in future based on the photogrammetric method. PMID:24959470

  10. Posture and Texting: Effect on Balance in Young Adults.

    PubMed

    Nurwulan, Nurul Retno; Jiang, Bernard C; Iridiastadi, Hardianto

    2015-01-01

    Using a mobile phone while doing another activity is a common dual-task activity in our daily lives. This study examined the effect of texting on the postural stability of young adults. Twenty college students were asked to perform static and dynamic postural stability tasks. Traditional COP and multivariate multiscale entropy (MMSE) were used to assess the static postural stability and the Star Excursion Balance Test (SEBT) was used to assess the dynamic postural stability. Results showed that (1) texting impaired postural stability, (2) the complexity index did not change much although the task conditions changed, and (3) performing texting is perceived to be more difficult. PMID:26230323

  11. Posture and Texting: Effect on Balance in Young Adults

    PubMed Central

    Nurwulan, Nurul Retno; Jiang, Bernard C.; Iridiastadi, Hardianto

    2015-01-01

    Using a mobile phone while doing another activity is a common dual-task activity in our daily lives. This study examined the effect of texting on the postural stability of young adults. Twenty college students were asked to perform static and dynamic postural stability tasks. Traditional COP and multivariate multiscale entropy (MMSE) were used to assess the static postural stability and the Star Excursion Balance Test (SEBT) was used to assess the dynamic postural stability. Results showed that (1) texting impaired postural stability, (2) the complexity index did not change much although the task conditions changed, and (3) performing texting is perceived to be more difficult. PMID:26230323

  12. Postural sway and perceived comfort in pointing tasks.

    PubMed

    Solnik, Stanislaw; Pazin, Nemanja; Coelho, Chase J; Rosenbaum, David A; Zatsiorsky, Vladimir M; Latash, Mark L

    2014-05-21

    In this study, we explored relations between indices of postural sway and perceived comfort during pointing postures performed by standing participants. The participants stood on a force plate, grasped a pointer with the dominant (right) hand, and pointed to targets located at four positions and at two distances from the body. We quantified postural sway over 60-s intervals at each pointing posture, and found no effects of target location or distance on postural sway indices. In contrast, comfort ratings correlated significantly with indices of one of the sway components, trembling. Our observations support the hypothesis that rambling and trembling sway components involve different neurophysiological mechanisms. They also suggest that subjective perception of comfort may be more important than the actual posture for postural sway. PMID:24686189

  13. Postural education and behavior among students in a city in southern Brazil: student postural education and behavior

    PubMed Central

    Fonseca, Cíntia Detsch; Cardoso dos Santos, Antônio; Candotti, Cláudia Tarragô; Noll, Matias; Luz, Anna Maria Hecker; Corso, Carlos Otávio

    2015-01-01

    [Purpose] The aim of the present study was to assess the knowledge of the spine and posture among adolescent female students and to determine if they had access to postural education in or outside school. [Subjects and Methods] This was an epidemiological survey of a representative sample of 495 female students aged 14 to 18 years attending a regular secondary school in São Leopoldo, RS, Brazil. Data were collected through a questionnaire. [Results] The results showed that 16.8% of teens did not know what a spine was, 8.3% had no knowledge of posture, and 61% reported receiving no posture education. Posture awareness was associated only with posture while using a computer, while having postural education class was not associated with any postural behavior. [Conclusion] The results showed that, although most students are familiar with the spine and posture, a sizable group is not, and over half had no postural education. These findings suggest that inclusion of postural education programs in schools should be encouraged in order to promote health and prevent diseases related to the spine. PMID:26504322

  14. Postural education and behavior among students in a city in southern Brazil: student postural education and behavior.

    PubMed

    Fonseca, Cíntia Detsch; Cardoso Dos Santos, Antônio; Candotti, Cláudia Tarragô; Noll, Matias; Luz, Anna Maria Hecker; Corso, Carlos Otávio

    2015-09-01

    [Purpose] The aim of the present study was to assess the knowledge of the spine and posture among adolescent female students and to determine if they had access to postural education in or outside school. [Subjects and Methods] This was an epidemiological survey of a representative sample of 495 female students aged 14 to 18 years attending a regular secondary school in São Leopoldo, RS, Brazil. Data were collected through a questionnaire. [Results] The results showed that 16.8% of teens did not know what a spine was, 8.3% had no knowledge of posture, and 61% reported receiving no posture education. Posture awareness was associated only with posture while using a computer, while having postural education class was not associated with any postural behavior. [Conclusion] The results showed that, although most students are familiar with the spine and posture, a sizable group is not, and over half had no postural education. These findings suggest that inclusion of postural education programs in schools should be encouraged in order to promote health and prevent diseases related to the spine. PMID:26504322

  15. Age-dependency of posture parameters in children and adolescents

    PubMed Central

    Ludwig, Oliver; Mazet, Carola; Mazet, Dirk; Hammes, Annette; Schmitt, Eduard

    2016-01-01

    [Purpose] Poor posture in children and adolescents is a well-known problem. Therefore, early detection of incorrect posture is important. Photometric posture analysis is a cost-efficient and easy method, but needs reliable reference values. As children’s posture changes as they grow, the assessment needs to be age-specific. This study aimed to investigate the development of both one-dimensional posture parameter (body inclination angle) and complex parameter (posture index) in different age groups (childhood to adolescence). [Subjects and Methods] The participants were 372 symptom-free children and adolescents (140 girls and 232 boys aged 6–17). Images of their habitual posture were obtained in the sagittal plane. High-contrast marker points and marker spheres were placed on anatomical landmarks. Based on the marker points, the body inclination angle (INC) and posture index (PI) were calculated using the Corpus concepts software. [Results] The INC angle significantly increased with age. The PI did not change significantly among the age groups. No significant differences between the corresponding age groups were found for PI and INC for both sexes. [Conclusion] When evaluating posture using the body inclination angle, the age of the subject needs to be considered. Posture assessment with an age-independent parameter may be more suitable. PMID:27313382

  16. Obesity Impact on the Attentional Cost for Controlling Posture

    PubMed Central

    Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent

    2010-01-01

    Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914

  17. Postural awareness among dental students in Jizan, Saudi Arabia

    PubMed Central

    Kanaparthy, Aruna; Kanaparthy, Rosaiah; Boreak, Nezar

    2015-01-01

    Objective: The study was conducted to assess the postural awareness of dental students in Jizan, Saudi Arabia. Materials and Methods: Close-ended, self-administered questionnaires were used for data collection in the survey. The questionnaire was prepared by observing the positions of students working in the clinics and the common mistakes they make with regard to their postures. The questionnaires were distributed among the dental students who were present and reported to work in the clinics. Levels of postural awareness and the relationship between postural awareness and the degree of musculoskeletal disorder (MSD) among the students was evaluated. This study was carried out in the College of Dental Sciences and Hospital, Jizan. Statistical Analysis: The level of knowledge of postural awareness was evaluated and correlated with the presence or absence of the MSDs. Categorical variables were compared using Chi-square test. P values of less than 0.05 were considered statistically significant. Results: A total of 162 dental students from the age group of 20–25 years were included in the survey, of which 134 dentists responded (83%). When their postural awareness was evaluated, results showed that 89% of the students had poor-to-medium levels of postural awareness. The relation between postural awareness and prevalence of MSDs indicated that 75% of the students with poor awareness, 49% of the students with average awareness, and 40% of the students with good awareness have MSDs. The results were statistically significant (0.002127, which is <0.005) stating that better awareness about proper postures while working helps to minimize the risk of MSDs. Conclusion: Evaluation of levels of postural awareness showed that 21% of the students had poor postural awareness, 67% had average awareness, and 11% had good postural awareness. The analysis of results showed that those students with low-to-average postural awareness had significantly greater prevalence of MSDs. PMID

  18. Smart Rehabilitation Garment for posture monitoring.

    PubMed

    Wang, Q; Chen, W; Timmermans, A A A; Karachristos, C; Martens, J B; Markopoulos, P

    2015-08-01

    Posture monitoring and correction technologies can support prevention and treatment of spinal pain or can help detect and avoid compensatory movements during the neurological rehabilitation of upper extremities, which can be very important to ensure their effectiveness. We describe the design and development of Smart Rehabilitation Garment (SRG) a wearable system designed to support posture correction. The SRG combines a number of inertial measurement units (IMUs), controlled by an Arduino processor. It provides feedback with vibration on the garment, audible alarm signals and visual instruction through a Bluetooth connected smartphone. We discuss the placement of sensing modules, the garment design, the feedback design and the integration of smart textiles and wearable electronics which aimed at achieving wearability and ease of use. We report on the system's accuracy as compared to optical tracker method. PMID:26737595

  19. Modulation of ankle stiffness during postural sway.

    PubMed

    Lang, Christopher B; Kearney, Robert E

    2014-01-01

    Ankle stiffness is a nonlinear, time-varying system which contributes to the control of human upright stance. This study sought to examine the nature of the contribution of stiffness to postural control by determining how intrinsic and reflex stiffnesses varied with sway. Subjects were instructed to stand quietly on a bilateral electro-hydraulic actuator while perturbations were applied about the ankle. Subjects performed three types of trials: normal stance, forward lean, and backward lean. Position, torque, and EMGs from the tibialis anterior and triceps surae were recorded. Background torque, intrinsic stiffness and reflex stiffness were calculated for each perturbation. Intrinsic and reflex stiffnesses were heavily modulated by postural sway. Moreover, they were modulated in a complimentary manner; intrinsic stiffness was lowest when reflex gain was highest, and vice versa. These findings suggest that intrinsic stiffness is modulated simultaneously with reflex stiffness to optimize the control of balance. PMID:25570884

  20. Lead effects on postural balance of children.

    PubMed Central

    Bhattacharya, A; Shukla, R; Bornschein, R L; Dietrich, K N; Keith, R

    1990-01-01

    The postural sway responses of 63 children with a mean age of 5.74 years were quantified with a Force Platform technique. The average maximum (max) blood lead (PbB) of these children during the first 5 years of life was 20.7 micrograms/dL (range 9.2 to 32.5). The backward stepwise regression analysis for sway area response during the eyes-closed, no-foam test with all the covariates and confounders and the PbB parameters showed a significant relationship with peak or max PbB during the second year of life. These results are consistent with our previous study with a smaller group of children. The data have been analyzed to provide some insight into the role of various afferent for the maintenance of postural balance. The results suggests a hypothesis that if the max PbB had caused some level of impairment in the functional capacities or interconnectivity of the vestibular and/or proprioception systems at 2 years of age, then it is reasonable to assume that the redundancy in the postural afferent systems would naturally adapt to rely more on the remaining intact afferent system (in this case, vision). PMID:2088753

  1. Fingertip contact influences human postural control

    NASA Technical Reports Server (NTRS)

    Jeka, J. J.; Lackner, J. R.

    1994-01-01

    Touch and pressure stimulation of the body surface can strongly influence apparent body orientation, as well as the maintenance of upright posture during quiet stance. In the present study, we investigated the relationship between postural sway and contact forces at the fingertip while subjects touched a rigid metal bar. Subjects were tested in the tandem Romberg stance with eyes open or closed under three conditions of fingertip contact: no contact, touch contact (< 0.98 N of force), and force contact (as much force as desired). Touch contact was as effective as force contact or sight of the surroundings in reducing postural sway when compared to the no contact, eyes closed condition. Body sway and fingertip forces were essentially in phase with force contact, suggesting that fingertip contact forces are physically counteracting body sway. Time delays between body sway and fingertip forces were much larger with light touch contact, suggesting that the fingertip is providing information that allows anticipatory innervation of musculature to reduce body sway. The results are related to observations on precision grip as well as the somatosensory, proprioceptive, and motor mechanisms involved in the reduction of body sway.

  2. Ice skating promotes postural control in children.

    PubMed

    Keller, M; Röttger, K; Taube, W

    2014-12-01

    High fall rates causing injury and enormous financial costs are reported for children. However, only few studies investigated the effects of balance training in children and these studies did not find enhanced balance performance in postural (transfer) tests. Consequently, it was previously speculated that classical balance training might not be stimulating enough for children to adequately perform these exercises. Therefore, the aim of this study is to evaluate the influence of ice skating as an alternative form of balance training. Volunteers of an intervention (n = 17; INT: 13.1 ± 0.4 years) and a control group (n = 13; CON: 13.2 ± 0.3 years) were tested before and after training in static and dynamic postural transfer tests. INT participated in eight sessions of ice skating during education lessons, whereas CON participated in normal physical education. Enhanced balance performance was observed in INT but not in CON when tested on an unstable free-swinging platform (P < 0.05) or when performing a functional reach test (P < 0.001). This is the first study showing significantly enhanced balance performance after ice skating in children. More importantly, participating children improved static and dynamic balance control in postural tasks that were not part of the training. PMID:24739083

  3. Postural dynamics and habituation to seasickness.

    PubMed

    Tal, Dror; Bar, Ronen; Nachum, Zohar; Gil, Amnon; Shupak, Avi

    2010-07-26

    The computerized dynamic posturography (CDP) test examines the response pattern to simultaneous, multimodal sensory stimulation. The purpose of this prospective, controlled study was to investigate whether postural dynamics evaluated by CDP are related to seasickness severity and the process of habituation to sea conditions. Subjects included 74 naval personnel assigned to service aboard ship and 29 controls designated for shore-based positions. Study participants performed a baseline CDP test, and subsequent follow-up examinations 6 and 12 months after completion of their training. On those occasions they also completed a seasickness severity questionnaire. Longitudinal changes in postural parameters were examined, as well as a possible correlation between baseline CDP results and final seasickness severity scores. The results indicated longitudinal habituation to seasickness. Reduced scores were found for sensory organization sub-tests 3 and 5 in the first follow-up examination, reflecting increased weighting of visual and somatosensory input in the maintenance of balance. Scores in the second follow-up examination were above baseline values, indicating increased reliance on vestibular cues. These significant bimodal changes were found only in study subjects having the highest degree of habituation to seasickness. A significant decrease in motor response strength was found in parallel with increased habituation to seasickness. Baseline CDP results and postural control dynamics were not correlated with subjects' final seasickness severity score. These results suggest a potential role for CDP in monitoring the process of habituation to unusual motion conditions. PMID:20493235

  4. Detecting altered postural control after cerebral concussion in athletes with normal postural stability

    PubMed Central

    Cavanaugh, J; Guskiewicz, K; Giuliani, C; Marshall, S; Mercer, V; Stergiou, N

    2005-01-01

    Objective: To determine if approximate entropy (ApEn), a regularity statistic from non-linear dynamics, could detect changes in postural control during quiet standing in athletes with normal postural stability after cerebral concussion. Methods: The study was a retrospective, case series analysis of centre of pressure (COP) data collected during the Sensory Organization Test (SOT) from NCAA Division I (USA) athletes prior to and within 48 h after injury. Subjects were 21 male and six female athletes from a variety of sports who sustained a cerebral concussion between 1997 and 2003. After injury, athletes displayed normal postural stability equivalent to preseason levels. For comparison, COP data also were collected from 15 male and 15 female healthy non-athletes on two occasions. ApEn values were calculated for COP anterior-posterior (AP) and medial-lateral (ML) time series. Results: Compared to healthy subjects, COP oscillations among athletes generally became more regular (lower ApEn value) after injury despite the absence of postural instability. For AP time series, declines in ApEn values were much larger in SOT conditions 1 and 2 (approximately three times as large as the standard error of the mean) than for all other conditions. For ML time series, ApEn values declined after injury in all sensory conditions (F1,55 = 6.36, p = 0.02). Conclusions: Athletes who demonstrated normal postural stability after concussion nonetheless displayed subtle changes in postural control. Changes in ApEn may have represented a clinically abnormal finding. ApEn analysis of COP oscillations may be a valuable supplement to existing concussion assessment protocols for athletes. PMID:16244188

  5. Measurement of lip posture and interaction between lip posture and resting face height.

    PubMed

    Yemm, R; El-Sharkawy, M; Stephens, C D

    1978-10-01

    A method for measurement of lip incompetence is described. Electromyographic techniques were used to obtain relaxation of the muscles of the lip and of a jaw elevator muscle. Standardized photographs were taken of the subject's profile, from which lip separation and face height were measured. Variation was found in successive measurements of lip posture, some of which appeared to depend upon mandibular posture. With the teeth in occlusion, lip separation was reduced. Active maintenance of lip contact by the subject was often associated with a reduction in lower face height, which may have been a direct consequence of the lip muscle activity, or of jaw elevator activity facilitating the lip closure. PMID:280639

  6. The dentist’s operating posture – ergonomic aspects

    PubMed Central

    Pîrvu, C; Pătraşcu, I; Pîrvu, D; Ionescu, C

    2014-01-01

    Abstract The practice of dentistry involves laborious high finesse dental preparations, precision and control in executions that require a particular attention, concentration and patience of the dentist and finally the dentist’s physical and mental resistance. The optimal therapeutic approach and the success of practice involve special working conditions for the dentist and his team in an ergonomic environment. The meaning of the posture in ergonomics is the manner in which different parts of the body are located and thus the reports are established between them in order to allow a special task execution. This article discusses the posture adopted by dentists when they work, beginning with the balanced posture and going to different variants of posture. The ideal posture of a dentist gives him, on the one hand the optimal working conditions (access, visibility and control in the mouth) and on the other hand, physical and psychological comfort throughout the execution of the clinical acts. Although the theme of dentist posture is treated with great care and often presented in the undergraduate courses and the continuing education courses on ergonomics in dentistry, many dentists do not know the subject well enough nor the theoretical issues and therefore nor the practical applicability. The risk and perspective of the musculoskeletal disorders related to unbalanced postures should determine the dentists take postural corrective actions and compensation measures in order to limit the negative effects of working in a bad posture. PMID:25184007

  7. Investigation of compensatory postures with videofluoromanometry in dysphagia patients

    PubMed Central

    Solazzo, Antonio; Monaco, Luigi; Del Vecchio, Lucia; Tamburrini, Stefania; Iacobellis, Francesca; Berritto, Daniela; Pizza, Nunzia Luisa; Reginelli, Alfonso; Di Martino, Natale; Grassi, Roberto

    2012-01-01

    AIM: To investigate the effectiveness of head compensatory postures to ensure safe oropharyngeal transit. METHODS: A total of 321 dysphagia patients were enrolled and assessed with videofluoromanometry (VFM). The dysphagia patients were classified as follows: safe transit; penetration without aspiration; aspiration before, during or after swallowing; multiple aspirations and no transit. The patients with aspiration or no transit were tested with VFM to determine whether compensatory postures could correct their swallowing disorder. RESULTS: VFM revealed penetration without aspiration in 71 patients (22.1%); aspiration before swallowing in 17 patients (5.3%); aspiration during swallowing in 32 patients (10%); aspiration after swallowing in 21 patients (6.5%); multiple aspirations in six patients (1.9%); no transit in five patients (1.6%); and safe transit in 169 patients (52.6%). Compensatory postures guaranteed a safe transit in 66/75 (88%) patients with aspiration or no transit. A chin-down posture achieved a safe swallow in 42/75 (56%) patients, a head-turned posture in 19/75 (25.3%) and a hyperextended head posture in 5/75 (6.7%). The compensatory postures were not effective in 9/75 (12%) cases. CONCLUSION: VFM allows the speech-language the-rapist to choose the most effective compensatory posture without a trial-and-error process and check the effectiveness of the posture. PMID:22736921

  8. Effect of Different Insoles on Postural Balance: A Systematic Review

    PubMed Central

    Christovão, Thaluanna Calil Lourenço; Neto, Hugo Pasini; Grecco, Luanda André Collange; Ferreira, Luiz Alfredo Braun; Franco de Moura, Renata Calhes; Eliege de Souza, Maria; Franco de Oliveira, Luis Vicente; Oliveira, Claudia Santos

    2013-01-01

    [Purpose] The aim of the present study was to perform a systematic review of the literature on the effect of different insoles on postural balance. [Subjects and Methods] A systematic review was conducted of four databases. The papers retrieved were evaluated based on the following inclusion criteria: 1) design: controlled clinical trial; 2) intervention: insole; 3) outcome: change in static postural balance; and 4) year of publication: 2005 to 2012. [Results] Twelve controlled trials were found comparing the effects of different insoles on postural balance. The papers had methodological quality scores of 3 or 4 on the PEDro scale. [Conclusion] Insoles have benefits that favor better postural balance and control. PMID:24259792

  9. The Effect of Training on Postural Control in Dyslexic Children

    PubMed Central

    Goulème, Nathalie; Gérard, Christophe-Loïc; Bucci, Maria Pia

    2015-01-01

    The aim of this study was to explore whether a short postural training period could affect postural stability in dyslexic children. Postural performances were evaluated using Multitest Equilibre from Framiral. Posture was recorded in three different viewing conditions (eyes open fixating a target, eyes closed and eyes open with perturbed vision) and in two different postural conditions (on stable and unstable support). Two groups of dyslexic children participated in the study, i.e. G1: 16 dyslexic participants (mean age 9.9 ± 0.3 years) who performed short postural training and G2: 16 dyslexic participants of similar ages (mean age 9.1 ± 0.3 years) who did not perform any short postural training. Findings showed that short postural training improved postural stability on unstable support surfaces with perturbed vision: indeed the surface, the mean velocity of CoP and the spectral power indices in both directions decreased significantly, and the cancelling time in the antero-posterior direction improved significantly. Such improvement could be due to brain plasticity, which allows better performance in sensory process and cerebellar integration. PMID:26162071

  10. Potentially risky postural behaviors during worksite keyboard use

    PubMed Central

    Baker, Nancy A.; Redfern, Mark

    2016-01-01

    Objective This study describes the frequency and distribution of potentially risky postural behaviors of keyboard users. Method Forty-three subjects’ keyboard postural behaviors were rated with the Keyboard – Personal Computer Style instrument (K-PeCS) while they worked at their own workstations. The frequency and distribution of keyboard postural behaviors, and the associations and differences between the right and left sides were assessed. Results Generally, each static body posture had a single criterion that occurred most frequently, (e.g. elbow flexion posture 80 – 120 degrees), while dynamic postures of the wrists and hands were distributed throughout their criteria. Right and left side postural behaviors were significantly associated for shoulder flexion, elbow flexion, hand displacement, wrist extension, forearm rotation, isolated 5th digit, MCP hyperextension, and wrist support use, and significantly different for hand displacement, isolated thumb, number of digits used, and MCP hyperextension. Conclusion Potentially problematic keyboard postural behaviors are common among keyboard users. Our results suggest that occupational therapists must systematically assess body, arm, wrist, and hand postures on both the right and left sides to be able to develop the most effective intervention strategies. PMID:19708467

  11. Effect of Posture on Hip Angles and Moments during Gait

    PubMed Central

    Lewis, Cara L.; Sahrmann, Shirley A.

    2014-01-01

    Anterior hip pain is common in young, active adults. Clinically, we have noted that patients with anterior hip pain often walk in a swayback posture, and that their pain is reduced when the posture is corrected. The purpose of this study was to investigate a potential mechanism for the reduction in pain by testing the effect of posture on movement patterns and internal moments during gait in healthy subjects. Fifteen subjects were instructed to walk while maintaining three postures: 1) natural, 2) swayback, and 3) forward flexed. Kinematic and force data were collected using a motion capture system and a force plate. Walking in the swayback posture resulted in a higher peak hip extension angle, hip flexor moment and hip flexion angular impulse compared to natural posture. In contrast, walking in a forward flexed posture resulted in a decreased hip extension angle and decreased hip flexion angular impulse. Based on these results, walking in a swayback posture may result in increased forces required of the anterior hip structures, potentially contributing to anterior hip pain. This study provides a potential biomechanical mechanism for clinical observations that posture correction in patients with hip pain is beneficial. PMID:25262565

  12. India`s nuclear weapons posture: The end of ambiguity. Master`s thesis

    SciTech Connect

    Davis, S.D.

    1996-12-01

    This thesis examines the future of India`s nuclear weapons posture. Since testing a nuclear device in 1974, India been able to produce weapons material within its civilian nuclear power program. Despite having this nuclear weapons capability, India prefers to maintain an ambiguous nuclear posture. New pressures in the post-cold war era -- the loss of the Soviet Union as a strategic ally, the indefinite extension of the nuclear nonproliferation treaty, the rise of Hindu nationalism, and India`s growing participation in the global economy -- have the potential to derail India`s current nuclear policy. This thesis identifies the domestic and international pressures on India, and assesses the prospects for India to retain its ambiguous policy, renounce the nuclear option, or assemble an overt nuclear arsenal.

  13. The role of central vision in posture: Postural sway adaptations in Stargardt patients.

    PubMed

    Agostini, Valentina; Sbrollini, Agnese; Cavallini, Chanda; Busso, Alessandra; Pignata, Giulia; Knaflitz, Marco

    2016-01-01

    The role of central and peripheral vision in the maintenance of upright stance is debated in literature. Stargardt disease causes visual deficits affecting the central field, but leaving unaltered a patient's peripheral vision. Hence, the study of this rare pathology gives the opportunity to selectively investigate the role of central vision in posture. Postural sway in quiet stance was analyzed in 10 Stargardt patients and 10 control subjects, in three different conditions: (1) eyes closed, (2) eyes open, gazing at a fixed target, and (3) eyes open, tracking a moving target. Stargardt patients outperformed controls in the condition with eyes closed, showing a reduced root mean square (RMS) of the medio-lateral COP displacement, while their performance was not significantly different from controls in the antero-posterior direction. There were no significant differences between patients and controls in open eyes conditions. These results suggest that Stargardt patients adapted to a different visual-somatosensory integration, relying less on vision, especially in the medio-lateral direction. Hence, the central vision seems to affect mostly the medio-lateral direction of postural sway. This finding supports the plausibility of the "functional sensitivity hypothesis", that assigns complementary roles to central and peripheral vision in the control of posture. PMID:26514831

  14. Postural Stability When Leaning from Perceived Upright

    NASA Technical Reports Server (NTRS)

    Vanya, Robert D.; Grounds, John F.; Wood, Scott J.

    2011-01-01

    The transition between quiet stance and gait requires the volitional movement of one?s center of mass (COM) toward a limit of stability (LOS). The goal of this study was to measure the effect of leaning from perceived upright on postural stability when voluntarily maintaining fixed stance positions and during perturbations of the support surface. The COM was derived from force plate data in 12 healthy subjects while standing with feet positioned so that lateral base of support was equal to foot length. For all conditions, arms were folded and subjects were instructed to lean without bending at the hips or lifting their feet. The LOS was determined during maximal voluntary leans with eyes open and closed. The COM was then displayed on a monitor located in front of the subject. Subjects were visually guided to lean toward a target position, maintain this position for 10s, return to upright, and then repeat the same targeted lean maneuver with eyes closed. Targets were randomly presented at 2? in 8 directions and between 2-6? in these same directions according to the asymmetric LOS. Subjects were then verbally guided to lean between 2? back and 4? forward prior to a perturbation of the support surface in either a forward or backward direction. The average LOS was 5.8? forward, 2.9? back, and 4.8? in left/right directions, with no significant difference between eyes open and closed. Center of pressure (COP) velocity increased as subjects maintained fixed stance positions farther from upright, with increased variability during eyes closed conditions. The time to stability and COP path length increased as subjects leaned opposite to the direction of the support surface perturbations. We conclude that postural stability is compromised as subjects lean away from perceived upright, except for perturbations that induce sway in the direction opposite the lean. The asymmetric LOS relative to perceived upright favors postural stability for COM movements in the forward direction.

  15. Postural reorganization induced by torso cutaneous covibration.

    PubMed

    Lee, Beom-Chan; Martin, Bernard J; Ho, Allison; Sienko, Kathleen H

    2013-05-01

    Cutaneous information from joints has been attributed proprioceptive properties similar to those of muscle spindles. This study aimed to assess whether vibration-induced changes in torso cutaneous information contribute to whole-body postural reorganization in humans. Ten healthy young adults stood in normal and Romberg stances with six vibrating actuators positioned on the torso in contact with the skin over the left and right external oblique, internal oblique, and erector spinae muscle locations at the L4/L5 vertebrae level. Vibrations around the torso were randomly applied at two locations simultaneously (covibration) or at all locations simultaneously. Kinematic analysis of the body segments indicated that covibration applied to the skin over the internal oblique muscles induced shifts of both the head and torso in the anterior direction (torso flexion) while the hips shifted in the posterior direction (ankle plantar flexion). Conversely, covibration applied to the skin over the erector spinae muscle locations produced opposite effects. However, covibration applied to the skin over the left internal oblique and left erector spinae, the right internal oblique and right erector spinae, or at all locations simultaneously did not induce any significant postural changes. In addition, the center of pressure position as measured by the force plate was unaffected by all covibration conditions tested. These results were independent of stance and suggest an integrated and coordinated reorganization of posture in response to vibration-induced changes in cutaneous information. In addition, combinations of vibrotactile stimuli over multiple locations exhibit directional summation properties in contrast to the individual responses we observed in our previous work. PMID:23637178

  16. Posture support improves object individuation in infants.

    PubMed

    Woods, Rebecca J; Wilcox, Teresa

    2013-08-01

    A hierarchical progression in infants' ability to use surface features, such as color, as a basis for object individuation in the first year has been well established (Tremoulet, Leslie, & Hall, 2000; Wilcox, 1999). There is evidence, however, that infants' sensitivity to surface features can be increased through multisensory (i.e., visuohaptic) exploration of objects (Wilcox, Woods, Chapa, & McCurry, 2007). Three studies were conducted to investigate the effect of multisensory experience on infants' sensitivity to pattern information. Experiments 1 and 2 confirmed that 5.5- and 6.5-month-olds do not spontaneously use pattern differences to individuate objects and revealed that 6.5- but not 5.5-month-olds can be primed to attend to pattern differences if allowed multisensory experience with the objects prior to the individuation task. However, the 5.5-month-olds also had greater difficulty maintaining a self-sitting posture during the multisensory priming experience. In Experiment 3, 4.5- and 5.5-month-olds were given full postural support during the multisensory exploration period. In this situation, the 5.5-month-olds successfully individuated the objects, but even with full postural support, 4.5-month-old infants did not use the pattern differences to individuate the objects. These results demonstrate that multisensory priming is effective with infants as young as 5.5 months and extends multisensory priming to another surface feature, pattern. Furthermore, these results indicate that constraints are placed on the multisensory experience by the physical and motor development of the infant. PMID:23046431

  17. Artificial Intelligence Software for Assessing Postural Stability

    NASA Technical Reports Server (NTRS)

    Lieberman, Erez; Forth, Katharine; Paloski, William

    2013-01-01

    A software package reads and analyzes pressure distributions from sensors mounted under a person's feet. Pressure data from sensors mounted in shoes, or in a platform, can be used to provide a description of postural stability (assessing competence to deficiency) and enables the determination of the person's present activity (running, walking, squatting, falling). This package has three parts: a preprocessing algorithm for reading input from pressure sensors; a Hidden Markov Model (HMM), which is used to determine the person's present activity and level of sensing-motor competence; and a suite of graphical algorithms, which allows visual representation of the person's activity and vestibular function over time.

  18. The effects of prolonged exposure to weightlessness on postural equilibrium

    NASA Technical Reports Server (NTRS)

    Homick, J. L.; Reschke, M. F.; Miller, E. F., II

    1977-01-01

    A postflight postural equilibrium rail tests on spacecrews was used to prove a pronounced decrement in ability to maintain an upright posture after prolonged exposure to weightlessness. Support for the hypothesis that central neural reorganization occurs in response to environmental change is obtained when postflight decrease in stability on the rails and the time course for recovery are compared with preflight performance.

  19. An Intellectual Posture for Teacher Educators: Two Approaches.

    ERIC Educational Resources Information Center

    Parkay, Forrest W.

    An intellectually clear conceptual base upon which to formulate a study of teacher education is considered. To achieve this conceptual clarification, two intellectual postures are described: John Dewey's "intellectual method" and John Wilson's intellectual "way of working." Three interrelated dimensions of an intellectual posture are discussed:…

  20. Turning Configural Processing Upside Down: Part and Whole Body Postures

    ERIC Educational Resources Information Center

    Reed, Catherine L.; Stone, Valerie E.; Grubb, Jefferson D.; McGoldrick, John E.

    2006-01-01

    Like faces, body postures are susceptible to an inversion effect in untrained viewers. The inversion effect may be indicative of configural processing, but what kind of configural processing is used for the recognition of body postures must be specified. The information available in the body stimulus was manipulated. The presence and magnitude of…

  1. Crouched posture maximizes ground reaction forces generated by muscles.

    PubMed

    Hoang, Hoa X; Reinbolt, Jeffrey A

    2012-07-01

    Crouch gait decreases walking efficiency due to the increased knee and hip flexion during the stance phase of gait. Crouch gait is generally considered to be disadvantageous for children with cerebral palsy; however, a crouched posture may allow biomechanical advantages that lead some children to adopt a crouch gait. To investigate one possible advantage of crouch gait, a musculoskeletal model created in OpenSim was placed in 15 different postures from upright to severe crouch during initial, middle, and final stance of the gait cycle for a total of 45 different postures. A series of optimizations was performed for each posture to maximize transverse plane ground reaction forces in the eight compass directions by modifying muscle forces acting on the model. We compared the force profile areas across all postures. Larger force profile areas were allowed by postures from mild crouch (for initial stance) to crouch (for final stance). The overall ability to generate larger ground reaction force profiles represents a mechanical advantage of a crouched posture. This increase in muscle capacity while in a crouched posture may allow a patient to generate new movements to compensate for impairments associated with cerebral palsy, such as motor control deficits. PMID:22542242

  2. Prevalence of Common Postural Disorders Among Academic Dental Staff

    PubMed Central

    Vakili, Leila; Halabchi, Farzin; Mansournia, Mohammad Ali; Khami, Mohammad Reza; Irandoost, Shahla; Alizadeh, Zahra

    2016-01-01

    Background Musculoskeletal disorders are common problems among dentists. These conditions may lead to inappropriate postures and impairment in physical and psychological function. On the other hand, poor postures and inappropriate ergonomic may result in a wide variety of musculoskeletal disorders. Objectives The aim of this study was to investigate the prevalence of common postural disorders of the spine and shoulder girdle among the dentists and possible correlations between demographic, anthropometric and occupational characteristics with these abnormal postures. Patients and Methods In a cross-sectional study, 96 dental staff including academic staff, residents and senior students of Tehran University of Medical Sciences was enrolled. Data were collected using a questionnaire and posture assessment tools such as plumb-line, checkerboard and flexible ruler. Data analysis was done with SPSS version 17. Results The prevalence of the forward head posture (FHP), rounded shoulder posture (RSP), scoliosis and hyperlordosis were reported in 85.5%, 68.8%, 18.8% and 17.3% of the participants, respectively. A significant correlation was found between gender and FHP (P = 0.04) and also scoliosis (P = 0.009). On the other hand, a significant correlation was seen between weight and hyperlordosis (P = 0.007). Conclusions Our study revealed a high prevalence of postural disorders especially FHP, RSP and scoliosis among Iranian dental staff. The female dentists were less susceptible to FHP and scoliosis. PMID:27625751

  3. Predictors of Postural Stability in Children with ADHD

    ERIC Educational Resources Information Center

    Ghanizadeh, Ahmad

    2011-01-01

    Objective: As children with ADHD who have more inattention problems are more frequently with fine motor problems, it is not clear whether postural balance problems are associated with different subtypes of ADHD. This study investigates the predictors of postural stability in children with ADHD considering the covariant factors of age, gender, and…

  4. Effects of Dyslexia on Postural Control in Adults

    ERIC Educational Resources Information Center

    Patel, M.; Magnusson, M.; Lush, D.; Gomez, S.; Fransson, P. A.

    2010-01-01

    Dyslexia has been shown to affect postural control. The aim of the present study was to investigate the difference in postural stability measured as torque variance in an adult dyslexic group (n=14, determined using the Adult Dyslexia Checklist (ADCL) and nonsense word repetition test) and an adult non-dyslexic group (n=39) on a firm surface and…

  5. Predictor variables for forward scapular posture including posterior shoulder tightness.

    PubMed

    Lee, Ji-Hyun; Cynn, Heon-seock; Yi, Chung-Hwi; Kwon, Oh-yun; Yoon, Tae-Lim

    2015-04-01

    The purpose of this study was (1) to determine the relationships between the degree of forward scapular posture and the pectoralis minor index, the strength of the serratus anterior, the thoracic spine angle, and posterior shoulder tightness, and (2) to identify predictors of forward scapular posture, including posterior shoulder tightness. The study recruited eighteen subjects with forward scapular posture and objectively measured the acromion distance, the pectoralis minor index, and the strength of the serratus anterior muscle of each participant. The amount of glenohumeral horizontal adduction and internal rotation were evaluated to measure posterior shoulder tightness. There were high intra-rater reliabilities in all measurements. The measurement results showed a statistically strong negative correlation between the degree of forward scapular posture and the pectoralis minor index. They also revealed a moderate positive correlation between the degree of forward scapular posture and the thoracic spine angle and a moderate negative relationship between the degree of forward scapular posture and the amount of the glenohumeral horizontal adduction. A multiple regression analysis indicated that a total multiple regression model explained 93% of the amount of forward scapular posture. All predictor variables, including posterior shoulder tightness, should be considered while assessing, managing, and preventing forward scapular posture. PMID:25892380

  6. Postural Strategies in Prader-Willi and Down Syndrome Patients

    ERIC Educational Resources Information Center

    Cimolin, Veronica; Galli, Manuela; Grugni, Graziano; Vismara, Luca; Precilios, Helmer; Albertini, Giorgio; Rigoldi, Chiara; Capodaglio, Paolo

    2011-01-01

    Patients affected by Down (DS) and Prader-Willi syndrome (PWS) are characterised by some common clinical and functional features including gait disorders and reduced postural control. The aim of our study was to quantitatively compare postural control in adult PWS and DS. We studied 12 PWS and 19 DS adult patients matched for age, height, weight…

  7. Selection of wrist posture in conditions of motor ambiguity.

    PubMed

    Wood, Daniel K; Goodale, Melvyn A

    2011-02-01

    In our everyday motor interactions with objects, we often encounter situations where the features of an object are determinate (i.e., not perceptually ambiguous), but the mapping between those features and appropriate movement patterns is indeterminate, resulting in a lack of any clear preference for one posture over another. We call this indeterminacy in stimulus-response mapping 'motor ambiguity'. Here, we use a grasping task to investigate the decision mechanisms that mediate the basic behavior of selecting one wrist posture over another in conditions of motor ambiguity. Using one of two possible wrist postures, participants grasped a dowel that was presented at various orientations. At most orientations, there was a clear preference for one wrist posture over the other. Within a small range of orientations, however, participants were variable in their posture selection due to the fact that the dowel was ambiguous with respect to the hand posture it afforded. We observed longer reaction times (RT) during 'ambiguous' trials than during the 'unambiguous' trials. In two subsequent experiments, we explored the effects of foreknowledge and trial history on the selection of wrist posture. We found that foreknowledge led to shorter RT unless the previous trial involved selecting a posture in the ambiguous region, in which case foreknowledge gave no RT advantage. These results are discussed within the context of existing models of sensorimotor decision making. PMID:21152907

  8. Disruption of postural readaptation by inertial stimuli following space flight

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Paloski, W. H.; Reschke, M. F.; Igarashi, M.; Guedry, F.; Anderson, D. J.

    1999-01-01

    Postural instability (relative to pre-flight) has been observed in all shuttle astronauts studied upon return from orbital missions. Postural stability was more closely examined in four shuttle astronaut subjects before and after an 8 day orbital mission. Results of the pre- and post-flight postural stability studies were compared with a larger (n = 34) study of astronauts returning from shuttle missions of similar duration. Results from both studies indicated that inadequate vestibular feedback was the most significant sensory deficit contributing to the postural instability observed post flight. For two of the four IML-1 astronauts, post-flight postural instability and rate of recovery toward their earth-normal performance matched the performance of the larger sample. However, post-flight postural control in one returning astronaut was substantially below mean performance. This individual, who was within normal limits with respect to postural control before the mission, indicated that recovery to pre-flight postural stability was also interrupted by a post-flight pitch plane rotation test. A similar, though less extreme departure from the mean recovery trajectory was present in another astronaut following the same post-flight rotation test. The pitch plane rotation stimuli included otolith stimuli in the form of both transient tangential and constant centripetal linear acceleration components. We inferred from these findings that adaptation on orbit and re-adaptation on earth involved a change in sensorimotor integration of vestibular signals most likely from the otolith organs.

  9. Emotion expression in body action and posture.

    PubMed

    Dael, Nele; Mortillaro, Marcello; Scherer, Klaus R

    2012-10-01

    Emotion communication research strongly focuses on the face and voice as expressive modalities, leaving the rest of the body relatively understudied. Contrary to the early assumption that body movement only indicates emotional intensity, recent studies have shown that body movement and posture also conveys emotion specific information. However, a deeper understanding of the underlying mechanisms is hampered by a lack of production studies informed by a theoretical framework. In this research we adopted the Body Action and Posture (BAP) coding system to examine the types and patterns of body movement that are employed by 10 professional actors to portray a set of 12 emotions. We investigated to what extent these expression patterns support explicit or implicit predictions from basic emotion theory, bidimensional theory, and componential appraisal theory. The overall results showed partial support for the different theoretical approaches. They revealed that several patterns of body movement systematically occur in portrayals of specific emotions, allowing emotion differentiation. Although a few emotions were prototypically expressed by one particular pattern, most emotions were variably expressed by multiple patterns, many of which can be explained as reflecting functional components of emotion such as modes of appraisal and action readiness. It is concluded that further work in this largely underdeveloped area should be guided by an appropriate theoretical framework to allow a more systematic design of experiments and clear hypothesis testing. PMID:22059517

  10. Postural Tachycardia Syndrome: Beyond Orthostatic Intolerance.

    PubMed

    Garland, Emily M; Celedonio, Jorge E; Raj, Satish R

    2015-09-01

    Postural tachycardia syndrome (POTS) is a form of chronic orthostatic intolerance for which the hallmark physiological trait is an excessive increase in heart rate with assumption of upright posture. The orthostatic tachycardia occurs in the absence of orthostatic hypotension and is associated with a >6-month history of symptoms that are relieved by recumbence. The heart rate abnormality and orthostatic symptoms should not be caused by medications that impair autonomic regulation or by debilitating disorders that can cause tachycardia. POTS is a "final common pathway" for a number of overlapping pathophysiologies, including an autonomic neuropathy in the lower body, hypovolemia, elevated sympathetic tone, mast cell activation, deconditioning, and autoantibodies. Not only may patients be affected by more than one of these pathophysiologies but also the phenotype of POTS has similarities to a number of other disorders, e.g., chronic fatigue syndrome, Ehlers-Danlos syndrome, vasovagal syncope, and inappropriate sinus tachycardia. POTS can be treated with a combination of non-pharmacological approaches, a structured exercise training program, and often some pharmacological support. PMID:26198889

  11. Postural Tachycardia Syndrome: Beyond Orthostatic Intolerance

    PubMed Central

    Garland, Emily M; Celedonio, Jorge E; Raj, Satish R

    2015-01-01

    Postural Tachycardia Syndrome (POTS) is a form of chronic orthostatic intolerance for which the hallmark physiological trait is an excessive increase in heart rate with assumption of upright posture. The orthostatic tachycardia occurs in the absence of orthostatic hypotension and is associated with a >6-month history of symptoms that are relieved by recumbence. The heart rate abnormality and orthostatic symptoms should not be caused by medications that impair autonomic regulation or by debilitating disorders that can cause tachycardia. POTS is a “final common pathway” for a number of overlapping pathophysiologies, including an autonomic neuropathy in the lower body, hypovolemia, elevated sympathetic tone, mast cell activation, deconditioning, and autoantibodies. Not only may patients be affected by more than one of these pathophysiologies, but also the phenotype of POTS has similarities to a number of other disorders, e.g., chronic fatigue syndrome, Ehlers-Danlos Syndrome, vasovagal syncope, and inappropriate sinus tachycardia. POTS can be treated with a combination of non-pharmacological approaches, a structured exercise training program, and often some pharmacological support. PMID:26198889

  12. Fitts’ Law in Early Postural Adjustments

    PubMed Central

    Bertucco, M.; Cesari, P.; Latash, M.L

    2012-01-01

    We tested a hypothesis that the classical relation between movement time and index of difficulty (ID) in quick pointing action (Fitts’ Law) reflects processes at the level of motor planning. Healthy subjects stood on a force platform and performed quick and accurate hand movements into targets of different size located at two distances. The movements were associated with early postural adjustments that are assumed to reflect motor planning processes. The short distance did not require trunk rotation, while the long distance did. As a result, movements over the long distance were associated with substantiual Coriolis forces. Movement kinematics and contact forces and moments recorded by the platform were studied. Movement time scaled with ID for both movements. However, the data could not be fitted with a single regression: Movements over the long distance had a larger intercept corresponding to movement times about 140 ms longer than movements over the shorter distance. The magnitude of postural adjustments prior to movement initiation scaled with ID for both short and long distances. Our results provide strong support for the hypothesis that Fitts’ Law emerges at the level of motor planning, not at the level of corrections of ongoing movements. They show that, during natural movements, changes in movement distance may lead to changes in the relation between movement time and ID, for example when the contribution of different body segments to the movement varies and when the action of Coriolis force may require an additional correction of the movement trajectory. PMID:23211560

  13. [Orthostatic postural tachycardia: study of 8 patients].

    PubMed

    Santiago Pérez, S; Ferrer Gila, T

    1998-02-01

    The occurrence of syncopal episodes is a very frequent event. In the absence of a structural systemic or cardiac disease, syncope is resulting of an anomalous cardiovascular response neurally mediated by the autonomic nervous system. It is the final common manifestation of different abnormal mechanisms and is frequently precipitated by orthostatism. Orthostatic intolerance syndrome refers to the development of symptoms during the upright posture that disappear in supine position. Tachycardia may be one of the clinical features of the syndrome. During orthostatic stress a hyperadrenergic response, with maintained increment of heart rate and associated symptoms, is developed. Changes in blood pressure may be diverse and in some cases hypotension and syncope occurs. Eight patients with symptoms of orthostatic intolerance who underwent autonomic evaluation and were diagnosed from postural tachycardia are presented. In all the cases an abnormal increment of heart rate during tilting was found and it was associated to hyperadrenergic symptoms. Evidence of restricted sympathetic impairment was observed in six cases with distal reduction of sudomotor function and abnormal adrenergic response during Valsalva manoeuvre. Symptoms disappeared or mostly subsided with pharmacological (amitriptyline in one case, phenobarbital in another one and non-cardioselective beta-blockers in six patients) and non-pharmacological treatment. In further examinations heart rate and blood pressure were normal. PMID:9541904

  14. Barnacle Geese Achieve Significant Energetic Savings by Changing Posture

    PubMed Central

    Tickle, Peter G.; Nudds, Robert L.; Codd, Jonathan R.

    2012-01-01

    Here we report the resting metabolic rate in barnacle geese (Branta leucopsis) and provide evidence for the significant energetic effect of posture. Under laboratory conditions flow-through respirometry together with synchronous recording of behaviour enabled a calculation of how metabolic rate varies with posture. Our principal finding is that standing bipedally incurs a 25% increase in metabolic rate compared to birds sitting on the ground. In addition to the expected decrease in energy consumption of hindlimb postural muscles when sitting, we hypothesise that a change in breathing mechanics represents one potential mechanism for at least part of the observed difference in energetic cost. Due to the significant effect of posture, future studies of resting metabolic rates need to take into account and/or report differences in posture. PMID:23071672

  15. Posture-movement responses to stance perturbations and upper limb fatigue during a repetitive pointing task.

    PubMed

    Fuller, Jason R; Fung, Joyce; Côté, Julie N

    2013-08-01

    Localized muscle fatigue and postural perturbation have separately been shown to alter whole-body movement but little is known about how humans respond when subjected to both factors combined. Here we sought to quantify the kinematics of postural control and repetitive upper limb movement during standing surface perturbations and in the presence of fatigue. Subjects stood on a motion-based platform and repetitively reached between two shoulder-height targets until noticeably fatigued (rating of perceived exertion=8/10). Every minute, subjects experienced a posterior and an anterior platform translation while reaching to the distal target. Outcomes were compared prior to and with fatigue (first vs. final minute data). When fatigued, regardless of the perturbation condition, subjects decreased their shoulder abduction and increased contralateral trunk flexion, a strategy that may relieve the load on the fatiguing upper limb musculature. During perturbations, kinematic adaptations emerged across the trunk and arm to preserve task performance. In contrast to our expectation, the kinematic response to the perturbations did not alter in the presence of fatigue. Kinematic adaptations in response to the perturbation predominantly occurred in the direction of the reach whereas fatigue adaptations occurred orthogonal to the reach. These findings suggest that during repetitive reaching, fatigue and postural perturbation compensations organize so as to minimize interaction with each other and preserve the global task characteristics of endpoint motion. PMID:24054899

  16. Evolution of Sports-medical Team Management in the Program of Posture Correction in Children

    PubMed Central

    Torlakovic, Aldvin; Muftic, Mirsad; Radjo, Izet; Talovic, Munir; Mahmutovic, Ifet

    2014-01-01

    Goals: The goal of this study was to determine the effectiveness of the organization and coordination of multidisciplinary team consisted of health and kinesiology professionals at the correction of posture among girls in the period of the second phase of intense growth and development. Material and methods: Testing was conducted on a sample of 70 girls, aged 11.9±2.3 years, in which by the expert evaluation is recorded weakness of individual muscle groups, but also of the whole musculature. For the assessment of posture we applied the method of Napoleon Wolanski. Used are 9 variables that included the observed region of the body and an overall assessment of posture. The subjects were included in the program of kinesiology treatment with duration of 28 weeks. For all the parameters have been applied statistical procedures at univariate and multivariate level. Results: Data on subjects were obtained by measuring the same variables at two time points, i.e. before and after the application of kinesiology treatments. Analyses of differences arithmetic mean and mean values were done with the t-test for paired samples. In order to determine global quantitative differences of tested variables tested discriminant analysis was applied. The results showed that the models which complement the experience and practical application of expert health professionals and kinesiology knowledge is a very effective tool for improving posture of girls in the second phase of intensive growth and development. In this way can be prevented health problems that might arise later in life. PMID:24944533

  17. Effect of Seated Trunk Posture on Eye Blink Startle and Subjective Experience: Comparing Flexion, Neutral Upright Posture, and Extension of Spine

    PubMed Central

    Ceunen, Erik; Zaman, Jonas; Vlaeyen, Johan W. S.; Dankaerts, Wim; Van Diest, Ilse

    2014-01-01

    Postures are known to be able to affect emotion and motivation. Much less is known about whether (affective) modulation of eye blink startle occurs following specific postures. The objective of the current study was to explore this. Participants in the present study were requested to assume three different sitting postures: with the spine flexed (slouched), neutral upright, and extended. Each posture was assumed for four minutes, and was followed by the administration of brief self-report questionnaires before proceeding to the next posture. The same series of postures and measures were repeated prior to ending the experiment. Results indicate that, relative to the other postures, the extended sitting posture was associated with an increased startle, was more unpleasant, arousing, had smaller levels of dominance, induced more discomfort, and was perceived as more difficult. The upright and flexed sitting postures differed in the level of self-reported positive affect, but not in eye blink startle amplitudes. PMID:24516664

  18. Sensorimotor integration in human postural control

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    2002-01-01

    It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an

  19. Newly Standing Infants Increase Postural Stability When Performing a Supra-Postural Task

    PubMed Central

    Claxton, Laura J.; Haddad, Jeffrey M.; Ponto, Katelyn; Ryu, Joong Hyun; Newcomer, Sean C.

    2013-01-01

    Independent stance is one of the most difficult motor milestones to achieve. Newly standing infants exhibit exaggerated body movements and can only stand for a brief amount of time. Given the difficult nature of bipedal stance, these unstable characteristics are slow to improve. However, we demonstrate that infants can increase their stability when engaged in a standing goal-directed task. Infants' balance was measured while standing and while standing and holding a visually attractive toy. When holding the toy, infants stood for a longer period of time, exhibited less body sway, and more mature postural dynamics. These results demonstrate that even with limited standing experience, infants can stabilize posture to facilitate performance of a concurrent task. PMID:23940736

  20. Putative spinal interneurons mediating postural limb reflexes provide basis for postural control in different planes

    PubMed Central

    Zelenin, Pavel V.; Hsu, Li-Ju; Lyalka, Vladimir F.; Orlovsky, Grigori N.; Deliagina, Tatiana G.

    2014-01-01

    The dorsal-side-up trunk orientation in standing quadrupeds is maintained by the postural system driven mainly by somatosensory inputs from the limbs. Postural limb reflexes (PLRs) represent a substantial component of this system. Earlier we described spinal neurons presumably contributing to the generation of PLRs. The first aim of the present study was to reveal trends in the distribution of neurons with different parameters of PLR-related activity across the gray matter of the spinal cord. The second aim was to estimate the contribution of PLR-related neurons with different patterns of convergence of sensory inputs from the limbs to stabilization of body orientation in different planes. For this purpose, the head and vertebral column of the decerebrate rabbit were fixed, whereas the hindlimbs were positioned on a platform. Activity of individual neurons from L5–L6 was recorded during PLRs evoked by lateral tilts of the platform. In addition, the neurons were tested by tilts of the platform under only the ipsilateral or only the contralateral limb, as well as during in-phase tilts of the platforms under both limbs. We found that, across the spinal gray matter, strength of PLR-related neuronal activity and sensory input from the ipsi-limb decreased in the dorso-ventral direction, while strength of the input from the contra-limb increased. A near linear summation of tilt-related sensory inputs from different limbs was found. Functional roles were proposed for individual neurons. The obtained data present the first characterization of posture-related spinal neurons, forming a basis for studies of postural networks impaired by injury. PMID:25370349

  1. The Role of Anticipatory Postural Adjustments in Compensatory Control of Posture: 2. Biomechanical Analysis

    PubMed Central

    Santos, Marcio J.; Kanekar, Neeta; Aruin, Alexander S.

    2010-01-01

    The central nervous system (CNS) utilizes anticipatory (APAs) and compensatory (CPAs) postural adjustments to maintain equilibrium while standing. It is known that these postural adjustments involve displacements of the center of mass (COM) and center of pressure (COP). The purpose of the study was to investigate the relationship between APAs and CPAs from a kinetic and kinematic perspective. Eight subjects were exposed to external predictable and unpredictable perturbations induced at the shoulder level while standing. Kinematic and kinetic data were recorded and analyzed during the time duration typical for anticipatory and compensatory postural adjustments. When the perturbations were unpredictable, the COM and COP displacements were larger compared to predictable conditions with APAs. Thus, the peak of COM displacement, after the pendulum impact, in the posterior direction reached 28 ± 9.6 mm in the unpredictable conditions with no APAs whereas it was 1.6 times smaller, reaching 17 ± 5.5 mm during predictable perturbations. Similarly, after the impact, the peak of COP displacement in the posterior direction was 60 ± 14 mm for unpredictable conditions and 28 ± 3.6 mm for predictable conditions. Finally, the times of the peak COM and COP displacements were similar in the predictable and unpredictable conditions. This outcome provides additional knowledge about how body balance is controlled in presence and in absence of information about the forthcoming perturbation. Moreover, it suggests that control of posture could be enhanced by better utilization of APAs and such an approach could be considered as a valuable modality in the rehabilitation of individuals with balance impairment. PMID:20156693

  2. Emotional and movement-related body postures modulate visual processing.

    PubMed

    Borhani, Khatereh; Làdavas, Elisabetta; Maier, Martin E; Avenanti, Alessio; Bertini, Caterina

    2015-08-01

    Human body postures convey useful information for understanding others' emotions and intentions. To investigate at which stage of visual processing emotional and movement-related information conveyed by bodies is discriminated, we examined event-related potentials elicited by laterally presented images of bodies with static postures and implied-motion body images with neutral, fearful or happy expressions. At the early stage of visual structural encoding (N190), we found a difference in the sensitivity of the two hemispheres to observed body postures. Specifically, the right hemisphere showed a N190 modulation both for the motion content (i.e. all the observed postures implying body movements elicited greater N190 amplitudes compared with static postures) and for the emotional content (i.e. fearful postures elicited the largest N190 amplitude), while the left hemisphere showed a modulation only for the motion content. In contrast, at a later stage of perceptual representation, reflecting selective attention to salient stimuli, an increased early posterior negativity was observed for fearful stimuli in both hemispheres, suggesting an enhanced processing of motivationally relevant stimuli. The observed modulations, both at the early stage of structural encoding and at the later processing stage, suggest the existence of a specialized perceptual mechanism tuned to emotion- and action-related information conveyed by human body postures. PMID:25556213

  3. Postural perturbations: new insights for treatment of balance disorders

    NASA Technical Reports Server (NTRS)

    Horak, F. B.; Henry, S. M.; Shumway-Cook, A.; Peterson, B. W. (Principal Investigator)

    1997-01-01

    This article reviews the neural control of posture as understood through studies of automatic responses to mechanical perturbations. Recent studies of responses to postural perturbations have provided a new view of how postural stability is controlled, and this view has profound implications for physical therapy practice. We discuss the implications for rehabilitation of balance disorders and demonstrate how an understanding of the specific systems underlying postural control can help to focus and enrich our therapeutic approaches. By understanding the basic systems underlying control of balance, such as strategy selection, rapid latencies, coordinated temporal spatial patterns, force control, and context-specific adaptations, therapists can focus their treatment on each patient's specific impairments. Research on postural responses to surface translations has shown that balance is not based on a fixed set of equilibrium reflexes but on a flexible, functional motor skill that can adapt with training and experience. More research is needed to determine the extent to which quantification of automatic postural responses has practical implications for predicting falls in patients with constraints in their postural control system.

  4. Postural activity monitoring for increasing safety in bomb disposal missions

    NASA Astrophysics Data System (ADS)

    Brusey, James; Rednic, Ramona; Gaura, Elena I.; Kemp, John; Poole, Nigel

    2009-07-01

    In enclosed suits, such as those worn by explosive ordnance disposal (EOD) experts, evaporative cooling through perspiration is less effective and, particularly in hot environments, uncompensable heat stress (UHS) may occur. Although some suits have cooling systems, their effectiveness during missions is dependent on the operative's posture. In order to properly assess thermal state, temperature-based assessment systems need to take posture into account. This paper builds on previous work for instrumenting EOD suits with regard to temperature monitoring and proposes to also monitor operative posture with MEMS accelerometers. Posture is a key factor in predicting how body temperature will change and is therefore important in providing local or remote warning of the onset of UHS. In this work, the C4.5 decision tree algorithm is used to produce an on-line classifier that can differentiate between nine key postures from current acceleration readings. Additional features that summarize how acceleration is changing over time are used to improve average classification accuracy to around 97.2%. Without such temporal feature extraction, dynamic postures are difficult to classify accurately. Experimental results show that training over a variety of subjects, and in particular, mixing gender, improves results on unseen subjects. The main advantages of the on-line posture classification system described here are that it is accurate, does not require integration of acceleration over time, and is computationally lightweight, allowing it to be easily supported on wearable microprocessors.

  5. Effects of elastic band exercise on subjects with rounded shoulder posture and forward head posture

    PubMed Central

    Kim, Tae-Woon; An, Da-In; Lee, Hye-Yun; Jeong, Ho-Young; Kim, Dong-Hyun; Sung, Yun-Hee

    2016-01-01

    [Purpose] This study performed to investigate the effect of elastic band exercise program on the posture of subjects with rounded shoulder and forward head posture. [Subjects and Methods] The body length, forward shoulder angle, craniovertebral angle, and cranial rotation angle of participants (n=12) were measured before and after the exercise program. Furthermore, the thicknesses of the pectoralis major, rhomboid major, and upper trapezius were measured using an ultrasonographic imaging device. The exercises program was conducted with elastic bands, with 15 repetitions per set and 3 sets in total. [Results] The length of the pectoralis major, forward shoulder angle, and craniovertebral angle showed significant changes between before and after the exercise program, whereas the changes in the other measurements were not significant. The thickness of the upper trapezius showed a significant increase between before and after the elastic band exercise. [Conclusion] These findings suggest that the elastic band exercise program used in the study is effective for lengthening the pectoralis major and correcting rounded shoulder and forward head posture. PMID:27390405

  6. Myopia, posture and the visual environment.

    PubMed

    Charman, W Neil

    2011-09-01

    Evidence for a possible role for the peripheral retina in the control of refractive development is discussed, together with Howland's suggestion (Paper presented at the 13th International Myopia Conference, Tubingen, Germany, July 26-29, 2010) that signals to generate appropriate growth might be derived from ocular oblique astigmatism. The dependence of this, or similar peripheral mechanisms, on exposure to a uniform field of near-zero dioptric vergence is emphasized: this is required to ensure a consistent relationship between the astigmatic image fields and the retina. This condition is satisfied by typical outdoor environments. In contrast, indoor environments are likely to be unfavourable to peripherally-based emmetropization, since dioptric stimuli may vary widely across the visual field. This is particularly the case when short working distances or markedly asymmetric head postures with respect to the visual task are adopted. PMID:21410496

  7. A Methodology for Investigating Adaptive Postural Control

    NASA Technical Reports Server (NTRS)

    McDonald, P. V.; Riccio, G. E.

    1999-01-01

    Our research on postural control and human-environment interactions provides an appropriate scientific foundation for understanding the skill of mass handling by astronauts in weightless conditions (e.g., extravehicular activity or EVA). We conducted an investigation of such skills in NASA's principal mass-handling simulator, the Precision Air-Bearing Floor, at the Johnson Space Center. We have studied skilled movement-body within a multidisciplinary context that draws on concepts and methods from biological and behavioral sciences (e.g., psychology, kinesiology and neurophysiology) as well as bioengineering. Our multidisciplinary research has led to the development of measures, for manual interactions between individuals and the substantial environment, that plausibly are observable by human sensory systems. We consider these methods to be the most important general contribution of our EVA investigation. We describe our perspective as control theoretic because it draws more on fundamental concepts about control systems in engineering than it does on working constructs from the subdisciplines of biomechanics and motor control in the bio-behavioral sciences. At the same time, we have attempted to identify the theoretical underpinnings of control-systems engineering that are most relevant to control by human beings. We believe that these underpinnings are implicit in the assumptions that cut across diverse methods in control-systems engineering, especially the various methods associated with "nonlinear control", "fuzzy control," and "adaptive control" in engineering. Our methods are based on these theoretical foundations rather than on the mathematical formalisms that are associated with particular methods in control-systems engineering. The most important aspects of the human-environment interaction in our investigation of mass handling are the functional consequences that body configuration and stability have for the pick up of information or the achievement of

  8. Contribution of supraspinal systems to generation of automatic postural responses

    PubMed Central

    Deliagina, Tatiana G.; Beloozerova, Irina N.; Orlovsky, Grigori N.; Zelenin, Pavel V.

    2014-01-01

    Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of spinal and supraspinal mechanisms in the control of posture is different. In the lamprey, the system contains one closed-loop mechanism consisting of supraspino-spinal networks. Reticulospinal (RS) neurons play a key role in generation of postural corrections. Due to vestibular input, any deviation from the stabilized body orientation leads to activation of a specific population of RS neurons. Each of the neurons activates a specific motor synergy. Collectively, these neurons evoke the motor output necessary for the postural correction. In contrast to lampreys, postural corrections in quadrupeds are primarily based not on the vestibular input but on the somatosensory input from limb mechanoreceptors. The system contains two closed-loop mechanisms – spinal and spino-supraspinal networks, which supplement each other. Spinal networks receive somatosensory input from the limb signaling postural perturbations, and generate spinal postural limb reflexes. These reflexes are relatively weak, but in intact animals they are enhanced due to both tonic supraspinal drive and phasic supraspinal commands. Recent studies of these supraspinal influences are considered in this review. A hypothesis suggesting common principles of operation of the postural systems stabilizing body orientation in a particular plane in the lamprey and quadrupeds, that is interaction of antagonistic postural reflexes, is discussed. PMID:25324741

  9. Postural dependence of human locomotion during gait initiation.

    PubMed

    Mille, Marie-Laure; Simoneau, Martin; Rogers, Mark W

    2014-12-15

    The initiation of human walking involves postural motor actions for body orientation and balance stabilization that must be effectively integrated with locomotion to allow safe and efficient transport. Our ability to coordinately adapt these functions to environmental or bodily changes through error-based motor learning is essential to effective performance. Predictive compensations for postural perturbations through anticipatory postural adjustments (APAs) that stabilize mediolateral (ML) standing balance normally precede and accompany stepping. The temporal sequencing between these events may involve neural processes that suppress stepping until the expected stability conditions are achieved. If so, then an unexpected perturbation that disrupts the ML APAs should delay locomotion. This study investigated how the central nervous system (CNS) adapts posture and locomotion to perturbations of ML standing balance. Healthy human adults initiated locomotion while a resistance force was applied at the pelvis to perturb posture. In experiment 1, using random perturbations, step onset timing was delayed relative to the APA onset indicating that locomotion was withheld until expected stability conditions occurred. Furthermore, stepping parameters were adapted with the APAs indicating that motor prediction of the consequences of the postural changes likely modified the step motor command. In experiment 2, repetitive postural perturbations induced sustained locomotor aftereffects in some parameters (i.e., step height), immediate but rapidly readapted aftereffects in others, or had no aftereffects. These results indicated both rapid but transient reactive adaptations in the posture and gait assembly and more durable practice-dependent changes suggesting feedforward adaptation of locomotion in response to the prevailing postural conditions. PMID:25231611

  10. Contribution of supraspinal systems to generation of automatic postural responses.

    PubMed

    Deliagina, Tatiana G; Beloozerova, Irina N; Orlovsky, Grigori N; Zelenin, Pavel V

    2014-01-01

    Different species maintain a particular body orientation in space due to activity of the closed-loop postural control system. In this review we discuss the role of neurons of descending pathways in operation of this system as revealed in animal models of differing complexity: lower vertebrate (lamprey) and higher vertebrates (rabbit and cat). In the lamprey and quadruped mammals, the role of spinal and supraspinal mechanisms in the control of posture is different. In the lamprey, the system contains one closed-loop mechanism consisting of supraspino-spinal networks. Reticulospinal (RS) neurons play a key role in generation of postural corrections. Due to vestibular input, any deviation from the stabilized body orientation leads to activation of a specific population of RS neurons. Each of the neurons activates a specific motor synergy. Collectively, these neurons evoke the motor output necessary for the postural correction. In contrast to lampreys, postural corrections in quadrupeds are primarily based not on the vestibular input but on the somatosensory input from limb mechanoreceptors. The system contains two closed-loop mechanisms - spinal and spino-supraspinal networks, which supplement each other. Spinal networks receive somatosensory input from the limb signaling postural perturbations, and generate spinal postural limb reflexes. These reflexes are relatively weak, but in intact animals they are enhanced due to both tonic supraspinal drive and phasic supraspinal commands. Recent studies of these supraspinal influences are considered in this review. A hypothesis suggesting common principles of operation of the postural systems stabilizing body orientation in a particular plane in the lamprey and quadrupeds, that is interaction of antagonistic postural reflexes, is discussed. PMID:25324741

  11. Postural responses to changing task conditions.

    PubMed

    Hansen, P D; Woollacott, M H; Debu, B

    1988-01-01

    The experimental goal was to investigate discrepancies in the literature concerning postural adaptation and to determine if the prior presentation of horizontal perturbations affected the amplitude of responses to rotational perturbations. Surface EMG recordings from lower leg muscles (gastrocnemius (GAS) and tibialis anterior (TA)) were recorded in twelve subjects, and the amplitudes of the responses were statistically analyzed. We did not find differences between the responses to rotational perturbations which preceded or followed horizontal perturbations. This finding did not support the hypothesis that differences in the order of presentation of the different types of perturbations accounted for the discrepancies in the literature. Furthermore, our design did not show the progressive elimination of the GAS response within three to five sequential trials. Instead, we found a slow but significant response amplitude reduction over ten trials without yielding a permanent disappearance of the response. When analyzing the GAS responses to the rotational perturbations only, we found two components that contributed to the response reduction: 1) an initial reduction between trials one and subsequent trials, which could be due to habituation of a startle-like response; and 2) a second reduction which was more gradual. Our results also showed an immediate change in the response amplitude on the first trial, when the type of perturbation was changed. This is inconsistent with the view that ankle musculature stretch and joint movement are the primary inputs driving the postural responses. Since small ankle dorsiflexing rotations produced by the platform translations caused large GAS responses while large ankle dorsiflexing rotations produced by direct platform rotations caused small GAS responses, this suggests that multiple sensory inputs contribute to the responses. We propose that an initial compensation to a new perturbation type occurs within the first trial by the

  12. Functional asymmetry of posture and body system regulation

    NASA Technical Reports Server (NTRS)

    Boloban, V. N.; Otsupok, A. P.

    1980-01-01

    The manifestation of functional asymmetry during the regulation of an athlete's posture and a system of bodies and its effect on the execution of individual and group acrobatic exercises were studied. Functional asymmetry of posture regulation was recorded in acrobats during the execution of individual and group exercises. It was shown that stability is maintained at the expense of bending and twisting motions. It is important to consider whether the functional asymmetry of posture regulation is left or right sided in making up pairs and groups of acrobats.

  13. Postural Instability in Children with ADHD Is Improved by Methylphenidate

    PubMed Central

    Bucci, Maria P.; Stordeur, Coline; Acquaviva, Eric; Peyre, Hugo; Delorme, Richard

    2016-01-01

    HIGHLIGHTS Both spatial and temporal analyses of the Center of Pressure demonstrate that children with ADHD have poorer postural control than typically developing sex-, age-, and IQ-matched children.Poor sensory integration in postural control could partially explained the deficits in postural stability in children with ADHD.MPH treatment improves postural performance in both spatial and temporal domains in children with ADHD.MPH improves postural control specifically when visual and proprioceptive inputs are misleading.Such improvement could be due to MPH effects on neurons, facilitating cerebellar processing of postural control. The aim of this study was to examine postural control in children with ADHD and explore the effect of methylphenidate (MPH), using spatial and temporal analyses of the center of pressure (CoP). Thirty-eight children with ADHD (mean age 9.82 ± 0.37 years) and 38 sex- age- and IQ-matched children with typically development were examined. Postural stability was evaluated using the Multitest Equilibre machine (Framiral®) at inclusion and after 1 month of MPH in children with ADHD. Postural stability was assessed by recording under several conditions: with eyes open and fixed on a target, with eyes closed and with vision perturbed by optokinetic stimulation, on stable and unstable platforms. At inclusion, we observed poor spatial and temporal postural stability in children with ADHD. The spectral power index was higher in children with ADHD than in controls. Canceling time was shorter at low and medium frequencies of oscillation and longer at higher frequencies in children with ADHD. After 1 month of MPH, the surface area and mean velocity of the CoP decreased significantly under the most complex conditions (unstable platform in the absence of proprioceptive and visual inputs). The spectral power index decreased significantly after MPH while the canceling time did not change. Poor postural control in children with ADHD supports the

  14. Ankle sprain and postural sway in basketball players.

    PubMed

    Leanderson, J; Wykman, A; Eriksson, E

    1993-01-01

    The present study compares postural ankle stability between previously injured basketball players, uninjured players and a control/group. Postural sway was recorded and analysed by stabilometry using a specially designed computer-assisted forceplate. Recordings were obtained for 60 s on each foot. The stabilometric results in the players with no previous injuries did not differ from those in the controls. Players with a previously injured ankle differed significantly from the control group. These players had a larger mean postural sway and used a larger sway area. PMID:8536030

  15. Postural Instability in Children with ADHD Is Improved by Methylphenidate.

    PubMed

    Bucci, Maria P; Stordeur, Coline; Acquaviva, Eric; Peyre, Hugo; Delorme, Richard

    2016-01-01

    HIGHLIGHTS Both spatial and temporal analyses of the Center of Pressure demonstrate that children with ADHD have poorer postural control than typically developing sex-, age-, and IQ-matched children.Poor sensory integration in postural control could partially explained the deficits in postural stability in children with ADHD.MPH treatment improves postural performance in both spatial and temporal domains in children with ADHD.MPH improves postural control specifically when visual and proprioceptive inputs are misleading.Such improvement could be due to MPH effects on neurons, facilitating cerebellar processing of postural control. The aim of this study was to examine postural control in children with ADHD and explore the effect of methylphenidate (MPH), using spatial and temporal analyses of the center of pressure (CoP). Thirty-eight children with ADHD (mean age 9.82 ± 0.37 years) and 38 sex- age- and IQ-matched children with typically development were examined. Postural stability was evaluated using the Multitest Equilibre machine (Framiral®) at inclusion and after 1 month of MPH in children with ADHD. Postural stability was assessed by recording under several conditions: with eyes open and fixed on a target, with eyes closed and with vision perturbed by optokinetic stimulation, on stable and unstable platforms. At inclusion, we observed poor spatial and temporal postural stability in children with ADHD. The spectral power index was higher in children with ADHD than in controls. Canceling time was shorter at low and medium frequencies of oscillation and longer at higher frequencies in children with ADHD. After 1 month of MPH, the surface area and mean velocity of the CoP decreased significantly under the most complex conditions (unstable platform in the absence of proprioceptive and visual inputs). The spectral power index decreased significantly after MPH while the canceling time did not change. Poor postural control in children with ADHD supports the

  16. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control

    PubMed Central

    Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen

    2016-01-01

    Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory conditions, which

  17. Transition from Rocking to Crawling: Postural Constraints on Infant Movement.

    ERIC Educational Resources Information Center

    Goldfield, Eugene C.

    1989-01-01

    Investigated postural constraints on movement of 15 6-month-old infants. Results suggested that each of the developing capabilities of orienting, reaching, and kicking assumed a specific function for locomotion at the stage of crawling. (RJC)

  18. Postural sway and the frequency of horizontal eye movements.

    PubMed

    Stoffregen, Thomas A; Bardy, Benoît G; Bonnet, Céderick T; Hove, Philip; Oullier, Olivier

    2007-01-01

    In two experiments, participants were asked to shift gaze to follow horizontal target oscillation to allow us to investigate relations between eye movements and postural dynamics. Postural sway variability was reduced during target oscillation when compared to sway while viewing a stationary target. The influence of target oscillation on sway was independent of target oscillation frequency. Similar results were obtained with measurements of the center of pressure (Experiment 1) and the displacement of body segments (Experiment 2). The overall results are not consistent with the view that eye movements and postural control compete for limited central processing resources. The results are consistent with the thesis of a functional integration of postural control with visual performance. PMID:17392569

  19. A quantitative measurement method for comparison of seated postures.

    PubMed

    Hillman, Susan J; Hollington, James

    2016-05-01

    This technical note proposes a method to measure and compare seated postures. The three-dimensional locations of palpable anatomical landmarks corresponding to the anterior superior iliac spines, clavicular notch, head, shoulders and knees are measured in terms of x, y and z co-ordinates in the reference system of the measuring apparatus. These co-ordinates are then transformed onto a body-based axis system which allows comparison within-subject. The method was tested on eleven unimpaired adult participants and the resulting data used to calculate a Least Significant Difference (LSD) for the measure, which is used to determine whether two postures are significantly different from one another. The method was found to be sensitive to the four following standardised static postural perturbations: posterior pelvic tilt, pelvic obliquity, pelvic rotation, and abduction of the thighs. The resulting data could be used as an outcome measure for the postural alignment aspect of seating interventions in wheelchairs. PMID:26920073

  20. Hand posture recognizer based on separator wavelet networks

    NASA Astrophysics Data System (ADS)

    Bouchrika, Tahani; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    This paper presents a novel hand posture recognizer based on separator wavelet networks (SWNs). Aiming at creating a robust and rapid hand posture recognizer, we have contributed by proposing a new training algorithm for the wavelet network classifier based on fast wavelet transform (FWN). So, the contribution resides in reducing the number of WNs modeling training data. To make that, inspiring from the adaboost feature selection method, we thought to create SWNs (n-1 WNs for n classes) instead of modeling each training sample by its wavelet network (WN). By proposing the new training algorithm, the recognition phase will be positively influenced. It will be more rapid thanks to the reduction of the number of comparisons between test images WNs and training WNs. Comparisons with other works, employing universal hand posture datasets are presented and discussed. Obtained results have shown that the new hand posture recognizer is comparable to previously established ones.

  1. Movement plans for posture selection do not transfer across hands

    PubMed Central

    Schütz, Christoph; Schack, Thomas

    2015-01-01

    In a sequential task, the grasp postures people select depend on their movement history. This motor hysteresis effect results from the reuse of former movement plans and reduces the cognitive cost of movement planning. Movement plans for hand trajectories not only transfer across successive trials, but also across hands. We therefore asked whether such a transfer would also be found in movement plans for hand postures. To this end, we designed a sequential, continuous posture selection task. Participants had to open a column of drawers with cylindrical knobs in ascending and descending sequences. A hand switch was required in each sequence. Hand pro/supination was analyzed directly before and after the hand switch. Results showed that hysteresis effects were present directly before, but absent directly after the hand switch. This indicates that, in the current study, movement plans for hand postures only transfer across trials, but not across hands. PMID:26441734

  2. Galvanic vestibular stimulation for analysis of postural adaptation and stability.

    PubMed

    Johansson, R; Magnusson, M; Fransson, P A

    1995-03-01

    Human postural dynamics was investigated in 12 normal subjects by means of a force platform recording body sway, induced by bipolar transmastoid galvanic stimulation of the vestibular nerve and labyrinth. The model adopted was that of an inverted segmented pendulum, the dynamics of postural control being assumed to be reflected in the stabilizing forces actuated by the feet as a result of complex muscular activity subject to state feedback of body sway and position. Time-series analysis demonstrates that a transfer function from stimulus to sway-force response with specific parameters can be identified. In addition, adaptation to the vestibular stimulus is demonstrated to exist, and we describe this phenomenon using quantification in terms of a postural adaptation time constant in the range of 40-50 s. The results suggest means to evaluate adaptive behavior and postural control in the erect human being which may be useful in the rehabilitation of individuals striving to regain upright stance. PMID:7698784

  3. Postural changes following sensory reinterpretation as an analog to spaceflight

    NASA Technical Reports Server (NTRS)

    Paloski, William H.; Harm, D. L.; Reschke, M. F.; Doxey, D. D.; Skinner, N. C.; Michaud, L. J.; Parker, D. E.

    1990-01-01

    Postural control changes noted in astronauts immediately following spaceflight are thought to be caused by inflight adaptative changes in Central Nervous System (CNS) processing of sensory information from the visual, vestibular, and proprioceptive systems. In order to elicit these adaptative changes in ground based studies, a Tilt Translation Device (TTD) which causes the CNS of exposed subjects to reinterpret tilt generated sensory inputs from the otolith organs as linear translation of the subject was developed. This device was designed to simulate partially the stimulus rearrangement experienced by astronauts during microgravity. Postural stability is assessed in ten subjects before and after 30 minutes of exposure to TTD. The resulting data suggests that exposure to TTD causes decreases in postural stability and shifts in postflight studies of astronauts. It is concluded that the TTD may be an effective weightlessness simulator, and that the postural changes following TTD exposure may provide a useful dependent measure for evaluation of this apparatus.

  4. Dental occlusion modifies gaze and posture stabilization in human subjects.

    PubMed

    Gangloff, P; Louis, J P; Perrin, P P

    2000-11-01

    Repercussion of dental occlusion was tested upon postural and gaze stabilization, the latter with a visuo-motor task evaluated by shooting performances. Eighteen permit holders shooters and 18 controls were enrolled in this study. Postural control was evaluated in both groups according to four mandibular positions imposed by interocclusal splints: (i) intercuspal occlusion (IO), (ii) centric relation (CR), (iii) physiological side lateral occlusion and (iv) controlateral occlusion, in order to appreciate the impact of the splints upon orthostatism. Postural control and gaze stabilization quality decreased, from the best to the worst, with splints in CR, IO and lateral occlusion. In shooters, the improvement in postural control was parallel to superior shooting performance. A repercussion of dental occlusion upon proprioception and visual stabilization is suggested by these data. PMID:11036196

  5. Observing working postures in industry: Examples of OWAS application.

    PubMed

    Karhu, O; Härkönen, R; Sorvali, P; Vepsäläinen, P

    1981-03-01

    A practical method for identifying and evaluating poor working postures, ie the Ovako Working Posture Analysing System (OWAS), was presented in an earlier paper (Karhu et al, 1977). The application of the method is here described by means of two examples. One is a case study undertaken by members of an ergonomics training course, in which a marked improvement in working posture was achieved by OWAS analysis of critical activities. The second illustrates the effect of setting up a multidisciplinary group in order to develop an alternative method for the installation and maintenance of steel mill equipment. In both examples, application of the OWAS method led to improved posture in the situations studied, and to the likelihood of its wider industrial use. PMID:15676393

  6. Tai Chi training reduced coupling between respiration and postural control.

    PubMed

    Holmes, Matthew L; Manor, Brad; Hsieh, Wan-hsin; Hu, Kun; Lipsitz, Lewis A; Li, Li

    2016-01-01

    In order to maintain stable upright stance, the postural control system must account for the continuous perturbations to the body's center-of-mass including those caused by spontaneous respiration. Both aging and disease increase "posturo-respiratory synchronization;" which reflects the degree to which respiration affects postural sway fluctuations over time. Tai Chi training emphasizes the coordination of respiration and bodily movements and may therefore optimize the functional interaction between these two systems. The purpose of the project was to examine the effect of Tai Chi training on the interaction between respiration and postural control in older adults. We hypothesized that Tai Chi training would improve the ability of the postural control system to compensate for respiratory perturbations and thus, reduce posturo-respiratory synchronization. Participants were recruited from supportive housing facilities and randomized to a 12-week Tai Chi intervention (n=28; 86 ± 5 yrs) or educational-control program (n=34, 85 ± 6 yrs). Standing postural sway and respiration were simultaneously recorded with a force plate and respiratory belt under eyes-open and eyes-closed conditions. Posturo-respiratory synchronization was determined by quantifying the variation of the phase relationship between the dominant oscillatory mode of respiration and corresponding oscillations within postural sway. Groups were similar in age, gender distribution, height, body mass, and intervention compliance. Neither intervention altered average sway speed, sway magnitude or respiratory rate. As compared to the education-control group, however, Tai Chi training reduced posturo-respiratory synchronization when standing with eyes open or closed (p<0.001). Tai Chi training did not affect traditional parameters of standing postural control or respiration, yet reduced the coupling between respiration and postural control. The beneficial effects of Tai Chi training may therefore stem in part

  7. Biomechanical capabilities influence postural control strategies in the cat hindlimb

    PubMed Central

    McKay, J. Lucas; Burkholder, Thomas J.; Ting, Lena H.

    2008-01-01

    During postural responses to perturbations, horizontal plane forces generated by the cat hindlimb are stereotypically directed either towards or away from the animal’s center of mass, independent of perturbation direction. We used a static, three-dimensional musculoskeletal model of the hindlimb to investigate possible biomechanical determinants of this “force constraint strategy” (Macpherson, 1988). We hypothesized that directions in which the hindlimb can produce large forces are preferentially used in postural control. We computed feasible force sets (FFS) based on hindlimb configurations of three cats during postural equilibrium tasks (Jacobs and Macpherson, 1996) and compared them to horizontal plane postural force directions. The grand mean FFS was bimodal, with maxima near the posterior-anterior axis (−86±8° and 71±4°), and minima near the medial-lateral axis (177±8° and 8±8°). Postural force directions clustered near both maxima; there were no medial postural forces near the absolute minimum. However, the medians of the anterior and posterior postural force direction histograms in the right hindlimb were rotated counter-clockwise from the FFS maxima (p<0.05; Wilcoxon signed-rank test). Because the posterior-anterior alignment of the FFS is consistent with a hindlimb structure optimized for locomotion, we conclude that the biomechanical capabilities of the hindlimb strongly influence, but do not uniquely determine the force directions observed in the force constraint strategy. Forces used in postural control may reflect a balance between a neural preference for using forces in the directions of large feasible forces and other criteria, such as the stabilization of the center of mass, and muscular coordination strategies. PMID:17156787

  8. Determination of characteristic parameters of human postural dynamics.

    PubMed

    Johansson, R; Magnusson, M

    1989-01-01

    Posture control performance was quantified in three variables (swiftness, stiffness, damping). Subjects were tested with a force platform recording body sway induced by vibrators attached to the calf muscles. Parameter estimation was made with identification of a transfer function representing the stabilized inverted pendulum. It is conjectured that the state feedback parameters identified are suitable for use in assessing ability to maintain posture. PMID:2635507

  9. Postural sway in diabetic peripheral neuropathy among Indian elderly

    PubMed Central

    Dixit, Snehil; Maiya, Arun; Shasthry, B.A.; Kumaran, D. Senthil; Guddattu, Vasudeva

    2015-01-01

    Background & objectives: Diabetic peripheral neuropathy (DPN) is a major complication of type 2 diabetes and have long term complications on the postural control of the affected population. The objectives of this study were to evaluate postural stability in patients with DPN and to examine correlation of Michigan Neuropathy Screening Instrument (MNSI) with duration of diabetes, age and postural stability measures. Methods: Participants were included if they had clinical neuropathy which was defined by MNSI. Sixty one patients gave their consent to participate in the study and were evaluated on posturography for postural stability measures in four conditions. Repeated measures of analysis of variance (RANOVA) was used to analyze the changes in postural stability measures in different conditions. Results: An increase in mean value of postural stability measures was observed for velocity moment 20.4±1.3, 24.3±2.2, 42.3±20.7, 59±43.03, mediolateral displacement 0.21±0.10, 0.22±0.18, 0.03±0.11, 0.34±0.18, and anteroposterior displacement 0.39 ± 0.09, 0.45±0.12, 0.47±0.13, 0.51±0.20 from EO to EC, EOF, and ECF, respectively. There was a significant difference (P<0.05) in participants with DPN, with greater sway amplitude on firm and foam surface in all the conditions. Moderate correlation of MNSI with age (r=0.43) and postural stability measures were also observed. Interpretation & conclusions: Evaluation of postural stability in Indian DPN population suggests balance impairments on either firm and foam surfaces, with greater likelihood of fall being on foam or deformable surfaces among elderly adults with neuropathy (CTRI/2011/07/001884). PMID:26831420

  10. Association between temporomandibular disorders and abnormal head postures.

    PubMed

    Faulin, Evandro Francisco; Guedes, Carlos Gramani; Feltrin, Pedro Paulo; Joffiley, Cláudia Maria Mithie Suda Costa

    2015-01-01

    This study examines the possible correlation between the prevalence of temporomandibular disorders (TMD) and different head postures in the frontal and sagittal planes using photographs of undergraduate students in the School of Dentistry at the Universidade de Brasília - UnB, Brazil. In this nonrandomized, cross-sectional study, the diagnoses of TMD were made with the Research Diagnostic Criteria (RDC)/TMD axis I. The craniovertebral angle was used to evaluate forward head posture in the sagittal plane, and the interpupillary line was used to measure head tilt in the frontal plane. The measurements to evaluate head posture were made using the Software for the Assessment of Posture (SAPO). Students were divided into two study groups, based on the presence or absence of TMD. The study group comprised 46 students and the control group comprised 80 students. Data about head posture and TMD were analyzed with the Statistical Package for the Social Sciences, version 13. Most cases of TMD were classified as degenerative processes (group III), followed by disk displacement (group II) and muscle disorders (group I). There was no sex predominance for the type of disorder. No association was found between prevalence rates for head postures in the frontal plane and the occurrence of TMD. The same result was found for the association of TMD diagnosis with craniovertebral angle among men and women, and the group that contained both men and women. Abnormal head postures were common among individuals both with and without TMD. No association was found between head posture evaluated in the frontal and sagittal planes and TMD diagnosis with the use of RDC/TMD. PMID:26017489

  11. Human posture classification for intelligent visual surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2008-04-01

    Intelligent surveillance systems (ISS) have gained a significant attention in recent years due to the nationwide security concerns. Some of the important applications of ISS include: homeland security, border monitoring, battlefield intelligence, and sensitive facility monitoring. The essential requirements of an ISS include: (1) multi-modality multi-sensor data and information fusion, (2) communication networking, (3) distributed data/information processing,(4) Automatic target recognition and tracking, (5) Scenario profiling from discrete correlated/uncorrelated events, (6) Context-based situation reasoning, and (7) Collaborative resource sharing and decision support systems. In this paper we have addressed the problem of humanposture classification in crowded urban terrain environments. Certain range of human postures can be attributed to different suspicious acts of intruders in a constrained environment. By proper time analysis of human trespassers' postures in an environment, it would be possible to identify and differentiate malicious intention of the trespassers from other normal human behaviors. Specifically in this paper, we have proposed an image processing-based approach for characterization of five different human postures including: standing, bending, crawling, carrying a heavy object, and holding a long object. Two approaches were introduced to address the problem: template-matching and Hamming Adaptive Neural Network (HANN) classifiers. The former approach performs human posture characterization via binary-profile projection and applies a correlation-based method for classification of human postures. The latter approach is based a HANN technique. For training of the neural, the posture-patterns are initially compressed, thresholded, and serialized. The binary posture-pattern arrays were then used for training of the HANN. The comparative performance evaluation of both approaches the same set of training and testing examples were used to measure

  12. Real-time posture reconstruction for Microsoft Kinect.

    PubMed

    Shum, Hubert P H; Ho, Edmond S L; Jiang, Yang; Takagi, Shu

    2013-10-01

    The recent advancement of motion recognition using Microsoft Kinect stimulates many new ideas in motion capture and virtual reality applications. Utilizing a pattern recognition algorithm, Kinect can determine the positions of different body parts from the user. However, due to the use of a single-depth camera, recognition accuracy drops significantly when the parts are occluded. This hugely limits the usability of applications that involve interaction with external objects, such as sport training or exercising systems. The problem becomes more critical when Kinect incorrectly perceives body parts. This is because applications have limited information about the recognition correctness, and using those parts to synthesize body postures would result in serious visual artifacts. In this paper, we propose a new method to reconstruct valid movement from incomplete and noisy postures captured by Kinect. We first design a set of measurements that objectively evaluates the degree of reliability on each tracked body part. By incorporating the reliability estimation into a motion database query during run time, we obtain a set of similar postures that are kinematically valid. These postures are used to construct a latent space, which is known as the natural posture space in our system, with local principle component analysis. We finally apply frame-based optimization in the space to synthesize a new posture that closely resembles the true user posture while satisfying kinematic constraints. Experimental results show that our method can significantly improve the quality of the recognized posture under severely occluded environments, such as a person exercising with a basketball or moving in a small room. PMID:23981562

  13. Changes in Habitual and Active Sagittal Posture in Children and Adolescents with and without Visual Input – Implications for Diagnostic Analysis of Posture

    PubMed Central

    Mazet, Carola; Mazet, Dirk; Hammes, Annette; Schmitt, Eduard

    2016-01-01

    Introduction Poor posture in children and adolescents has a prevalence of 22-65% and is suggested to be responsible for back pain. To assess posture, photometric imaging of sagittal posture is widely used, but usually only habitual posture positions (resting position with minimal muscle activity) are analysed. Aim The objective of this study was 1) to investigate possible changes in posture-describing parameters in the sagittal plane, when the subjects changed from a habitual passive posture to an actively corrected posture, and 2) to investigate the changes in posture parameters when an actively corrected posture was to be maintained with closed eyes. Materials and Methods In a group of 216 male children and adolescents (average 12.4 ± 2.5 years, range 7.0 – 17.6 years), six sagittal posture parameters (body tilt BT, trunk incline TI, posture index PI, horizontal distances between ear, shoulder and hip and the perpendicular to the ankle joint) were determined by means of photometric imaging in an habitual passive posture position, in an actively erect posture with eyes open, and in active stance with eyes closed. The change in these parameters during the transition between the posture positions was analysed statistically (dependent t-Test or Wilcoxon-Test) after Bonferroni correction (p<0.004). Results When moving from a habitual passive to an active posture BT, TI, PI, dEar, dShoulder, and dHip decreased significantly(p< 0.004). When the eyes were closed, only the perpendicular distances (dEar, dShoulder, and dHip) increased significantly. The parameters that describe the alignment of the trunk sections in relation to each other (BT, TI, PI), remained unchanged in both actively regulated posture positions. Conclusion Changes in sagittal posture parameters that occur when a habitual passive posture switches into an active posture or when an active posture is to be maintained while the eyes are closed can be used for diagnostic purposes regarding poor posture

  14. Which biomechanical models are currently used in standing posture analysis?

    PubMed

    Crétual, A

    2015-11-01

    In 1995, David Winter concluded that postural analysis of upright stance was often restricted to studying the trajectory of the center of pressure (CoP). However, postural control means regulation of the center of mass (CoM) with respect to CoP. As CoM is only accessible by using a biomechanical model of the human body, the present article proposes to determine which models are actually used in postural analysis, twenty years after Winter's observation. To do so, a selection of 252 representative articles dealing with upright posture and published during the four last years has been checked. It appears that the CoP model largely remains the most common one (accounting for nearly two thirds of the selection). Other models, CoP/CoM and segmental models (with one, two or more segments) are much less used. The choice of the model does not appear to be guided by the population studied. Conversely, while some confusion remains between postural control and the associated concepts of stability or strategy, this choice is better justified for real methodological concerns when dealing with such high-level parameters. Finally, the computation of the CoM continues to be a limitation in achieving a more complete postural analysis. This unfortunately implies that the model is chosen for technological reasons in many cases (choice being a euphemism here). Some effort still has to be made so that bioengineering developments allow us to go beyond this limit. PMID:26388359

  15. Subjective Visual Vertical and Postural Capability in Children Born Prematurely

    PubMed Central

    Bucci, Maria Pia; Wiener-Vacher, Sylvette; Trousson, Clémence; Baud, Olivier; Biran, Valerie

    2015-01-01

    Purpose We compared postural stability and subjective visual vertical performance in a group of very preterm-born children aged 3-4 years and in a group of age-matched full-term children. Materials and Methods A platform (from TechnoConcept) was used to measure postural control in children. Perception of subjective visual vertical was also recorded with posture while the child had to adjust the vertical in the dark or with visual perturbation. Two other conditions (control conditions) were also recorded while the child was on the platform: for a fixation of the vertical bar, and in eyes closed condition. Results Postural performance was poor in preterm-born children compared to that of age-matched full-term children: the surface area, the length in medio-lateral direction and the mean speed of the center of pressure (CoP) were significantly larger in the preterm-born children group (p < 0.04, p < 0.01, and p < 0.04, respectively). Dual task in both groups of children significantly affected postural control. The subjective visual vertical (SVV) values were more variable and less precise in preterm-born children. Discussion-Conclusions We suggest that poor postural control as well as perception of verticality observed in preterm-born children could be due to immaturity of the cortical processes involved in the motor control and in the treatment of perception and orientation of verticality. PMID:25790327

  16. Monitoring the prevalence of postural changes in schoolchildren

    PubMed Central

    Nichele da Rosa, Bruna; Noll, Matias; Sedrez, Juliana Adami; Furlanetto, Tassia Silveira; Candotti, Claudia Tarrago

    2016-01-01

    [Purpose] The aim of this study was to identify whether postural changes are prevalent with advancing age using a photogrammetric method performing one-year follow-up study. [Subjects and Methods] Thirty-eight schoolchildren were evaluated in 2011 and 2012 in this cohort study. The subjects underwent a postural evaluation, which involved palpation of reference anatomic points, placement of reflexive markers over the anatomic points, image acquisition, and point digitalization using the Digital Image-based Postural Assessment evaluation software. For data analysis, descriptive statistics and inferential statistics were analyzed by McNemar’s test. [Results] The results showed a significant increase in postural change prevalence for the lumbar spine in the sagittal plane (from 42.2% to 81.6%) and the knees in the frontal plane (from 39.5% to 63.2%) and a significant decrease in the prevalence of scoliosis (from 68.5% to 42.2%). [Conclusion] The findings indicate an increase in the prevalence of postural changes in schoolchildren from Teutônia, RS, Brazil, in 2012 compared with 2011. The development of longitudinal investigations for long-term monitoring of the evolution of posture and of schoolchildren habits’s representing a viable alternative to subsidize health actions. PMID:27065514

  17. Postured voxel-based human models for electromagnetic dosimetry

    NASA Astrophysics Data System (ADS)

    Nagaoka, Tomoaki; Watanabe, Soichi

    2008-12-01

    High-resolution anatomically realistic whole-body voxel models have recently been developed for electromagnetic dosimetry. However, the posture of most models is similar to the standing one, which strongly limits electromagnetic dosimetry when simulating a realistic exposure scenario. In this paper, we present the development of postured models based on anatomically realistic voxel models with standing posture. Voxel models of the Japanese adult male and female were used as the original upright standing models. The Japanese models were composed of 2 mm cubic voxels, each of which was segmented into 51 different tissue types. We developed several different types of posture models using a novel posture transformation method. These posture models were smoothly transformed, while the continuity of the internal tissues and organs was maintained. In this paper, we also present our calculations of the whole-body averaged specific absorption rates (SARs) of sitting male and female models exposed to electromagnetic plane waves at very high (VHF) and ultra high frequency (UHF) bands.

  18. "Stand up straight": notes toward a history of posture.

    PubMed

    Gilman, Sander L

    2014-03-01

    The essay presents a set of interlinked claims about posture in modern culture. Over the past two centuries it has come to define a wide range of assumptions in the West from what makes human beings human (from Lamarck to Darwin and beyond) to the efficacy of the body in warfare (from Dutch drill manuals in the 17th century to German military medical studies of soldiers in the 19th century). Dance and sport both are forms of posture training in terms of their own claims. Posture separates 'primitive' from 'advanced' peoples and the 'ill' from the 'healthy.' Indeed an entire medical sub-specialty developed in which gymnastics defined and recuperated the body. But all of these claims were also part of a Western attempt to use posture (and the means of altering it) as the litmus test for the healthy modern body of the perfect citizen. Focusing on the centrality of posture in two oddly linked moments of modern thought--modern Zionist thought and Nationalism in early 20th century China--in terms of bodily reform, we show how "posture" brings all of the earlier debates together to reform the body. PMID:24317755

  19. The Relationship Between the Stomatognathic System and Body Posture

    PubMed Central

    Cuccia, Antonino; Caradonna, Carola

    2009-01-01

    In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system’s proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss. PMID:19142553

  20. The relationship between the stomatognathic system and body posture.

    PubMed

    Cuccia, Antonino; Caradonna, Carola

    2009-01-01

    In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system's proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss. PMID:19142553

  1. Effects of acute spinalization on neurons of postural networks.

    PubMed

    Zelenin, Pavel V; Lyalka, Vladimir F; Hsu, Li-Ju; Orlovsky, Grigori N; Deliagina, Tatiana G

    2016-01-01

    Postural limb reflexes (PLRs) represent a substantial component of postural corrections. Spinalization results in loss of postural functions, including disappearance of PLRs. The aim of the present study was to characterize the effects of acute spinalization on two populations of spinal neurons (F and E) mediating PLRs, which we characterized previously. For this purpose, in decerebrate rabbits spinalized at T12, responses of interneurons from L5 to stimulation causing PLRs before spinalization, were recorded. The results were compared to control data obtained in our previous study. We found that spinalization affected the distribution of F- and E-neurons across the spinal grey matter, caused a significant decrease in their activity, as well as disturbances in processing of posture-related sensory inputs. A two-fold decrease in the proportion of F-neurons in the intermediate grey matter was observed. Location of populations of F- and E-neurons exhibiting significant decrease in their activity was determined. A dramatic decrease of the efficacy of sensory input from the ipsilateral limb to F-neurons, and from the contralateral limb to E-neurons was found. These changes in operation of postural networks underlie the loss of postural control after spinalization, and represent a starting point for the development of spasticity. PMID:27302149

  2. Use of Video Analysis System for Working Posture Evaluations

    NASA Technical Reports Server (NTRS)

    McKay, Timothy D.; Whitmore, Mihriban

    1994-01-01

    In a work environment, it is important to identify and quantify the relationship among work activities, working posture, and workplace design. Working posture may impact the physical comfort and well-being of individuals, as well as performance. The Posture Video Analysis Tool (PVAT) is an interactive menu and button driven software prototype written in Supercard (trademark). Human Factors analysts are provided with a predefined set of options typically associated with postural assessments and human performance issues. Once options have been selected, the program is used to evaluate working posture and dynamic tasks from video footage. PVAT has been used to evaluate postures from Orbiter missions, as well as from experimental testing of prototype glove box designs. PVAT can be used for video analysis in a number of industries, with little or no modification. It can contribute to various aspects of workplace design such as training, task allocations, procedural analyses, and hardware usability evaluations. The major advantage of the video analysis approach is the ability to gather data, non-intrusively, in restricted-access environments, such as emergency and operation rooms, contaminated areas, and control rooms. Video analysis also provides the opportunity to conduct preliminary evaluations of existing work areas.

  3. Evaluating sensory conflict and postural instability. Theories of motion sickness.

    PubMed

    Warwick-Evans, L A; Symons, N; Fitch, T; Burrows, L

    1998-11-15

    Two experiments were carried out to evaluate the sensory conflict and the postural instability theories of motion sickness. The central hypothesis of sensory conflict theory is that motion sickness is caused by conflict between the current pattern of sensory inputs about self-movement and the pattern that is expected on the basis of previous experience. A subsidiary hypothesis is that the degree of motion sickness is proportional to the magnitude of sensory conflict. The central hypothesis of postural instability theory is that motion sickness is caused by loss of postural control. A subsidiary hypothesis is that the degree of motion sickness is proportional to amount of postural instability, which can be manipulated by physical restraint. In both experiments there were two levels of sensory conflict and two levels of postural restraint. Dependent variables were latency of onset and severity of motion sickness. The widespread occurrence of motion sickness in both experiments clearly confirmed the main hypothesis of sensory conflict theory. The results from Experiment 1, that there was significantly more motion sickness in the restrained condition, and from Experiment 2, that there was no significant difference in symptoms between the two restraint conditions, provide no support for the subsidiary hypothesis of postural instability theory. Evidence relating to the subsidiary proposition of sensory conflict theory was inconsistent. PMID:10052575

  4. Adaptability of anticipatory postural adjustments associated with voluntary movement

    PubMed Central

    Yiou, Eric; Caderby, Teddy; Hussein, Tarek

    2012-01-01

    The control of balance is crucial for efficiently performing most of our daily motor tasks, such as those involving goal-directed arm movements or whole body displacement. The purpose of this article is twofold. Firstly, it is to recall how balance can be maintained despite the different sources of postural perturbation arising during voluntary movement. The importance of the so-called “anticipatory postural adjustments” (APA), taken as a “line of defence” against the destabilizing effect induced by a predicted perturbation, is emphasized. Secondly, it is to report the results of recent studies that questioned the adaptability of APA to various constraints imposed on the postural system. The postural constraints envisaged here are classified into biomechanical (postural stability, superimposition of motor tasks), (neuro) physiological (fatigue), temporal (time pressure) and psychological (fear of falling, emotion). Overall, the results of these studies point out the capacity of the central nervous system (CNS) to adapt the spatio-temporal features of APA to each of these constraints. However, it seems that, depending on the constraint, the “priority” of the CNS was focused on postural stability maintenance, on body protection and/or on maintenance of focal movement performance. PMID:22720267

  5. Effects of acute spinalization on neurons of postural networks

    PubMed Central

    Zelenin, Pavel V.; Lyalka, Vladimir F.; Hsu, Li-Ju; Orlovsky, Grigori N.; Deliagina, Tatiana G.

    2016-01-01

    Postural limb reflexes (PLRs) represent a substantial component of postural corrections. Spinalization results in loss of postural functions, including disappearance of PLRs. The aim of the present study was to characterize the effects of acute spinalization on two populations of spinal neurons (F and E) mediating PLRs, which we characterized previously. For this purpose, in decerebrate rabbits spinalized at T12, responses of interneurons from L5 to stimulation causing PLRs before spinalization, were recorded. The results were compared to control data obtained in our previous study. We found that spinalization affected the distribution of F- and E-neurons across the spinal grey matter, caused a significant decrease in their activity, as well as disturbances in processing of posture-related sensory inputs. A two-fold decrease in the proportion of F-neurons in the intermediate grey matter was observed. Location of populations of F- and E-neurons exhibiting significant decrease in their activity was determined. A dramatic decrease of the efficacy of sensory input from the ipsilateral limb to F-neurons, and from the contralateral limb to E-neurons was found. These changes in operation of postural networks underlie the loss of postural control after spinalization, and represent a starting point for the development of spasticity. PMID:27302149

  6. Effects of Levodopa on Postural Strategies in Parkinson's disease.

    PubMed

    Baston, Chiara; Mancini, Martina; Rocchi, Laura; Horak, Fay

    2016-05-01

    Altered postural control and balance are major disabling issues of Parkinson's disease (PD). Static and dynamic posturography have provided insight into PD's postural deficits; however, little is known about impairments in postural coordination. We hypothesized that subjects with PD would show more ankle strategy during quiet stance than healthy control subjects, who would include some hip strategy, and this stiffer postural strategy would increase with disease progression. We quantified postural strategy and sway dispersion with inertial sensors (one placed on the shank and one on the posterior trunk at L5 level) while subjects were standing still with their eyes open. A total of 70 subjects with PD, including a mild group (H&Y≤2, N=33) and a more severe group (H&Y≥3, N=37), were assessed while OFF and while ON levodopa medication. We also included a healthy control group (N=21). Results showed an overall preference of ankle strategy in all groups while maintaining balance. Postural strategy was significantly lower ON compared to OFF medication (indicating more hip strategy), but no effect of disease stage was found. Instead, sway dispersion was significantly larger in ON compared to OFF medication, and significantly larger in the more severe PD group compared to the mild. In addition, increased hip strategy during stance was associated with poorer self-perception of balance. PMID:27131172

  7. Otolith and Vertical Canal Contributions to Dynamic Postural Control

    NASA Technical Reports Server (NTRS)

    Black, F. Owen

    1999-01-01

    The objective of this project is to determine: 1) how do normal subjects adjust postural movements in response to changing or altered otolith input, for example, due to aging? and 2) how do patients adapt postural control after altered unilateral or bilateral vestibular sensory inputs such as ablative inner ear surgery or ototoxicity, respectively? The following hypotheses are under investigation: 1) selective alteration of otolith input or abnormalities of otolith receptor function will result in distinctive spatial, frequency, and temporal patterns of head movements and body postural sway dynamics. 2) subjects with reduced, altered, or absent vertical semicircular canal receptor sensitivity but normal otolith receptor function or vice versa, should show predictable alterations of body and head movement strategies essential for the control of postural sway and movement. The effect of altered postural movement control upon compensation and/or adaptation will be determined. These experiments provide data for the development of computational models of postural control in normals, vestibular deficient subjects and normal humans exposed to unusual force environments, including orbital space flight.

  8. Postural strategy changes with fatigue of the lumbar extensor muscles.

    PubMed

    Wilson, Erin L; Madigan, Michael L; Davidson, Bradley S; Nussbaum, Maury A

    2006-04-01

    The purpose of this study was to investigate the effect of lumbar extensor fatigue on postural strategy in response to a balance perturbation. Anteriorly-directed force perturbations were applied to the upper back with a padded pendulum and attempted to challenge the postural control system without eliciting a stepping response. In three separate sessions, subjects were perturbed both before and after a fatiguing protocol that induced lumbar extensor fatigue to one of three different fatigue levels. Postural strategy was quantified using center of pressure position along with joint angles and joint torques for the ankle, knee, hip, and "low back" joints. Results showed both proactive and reactive changes in postural strategy. Proactive changes involved a slight anterior lean prior to the perturbation, and reactive changes were consistent with a shift toward more of a hip strategy with fatigue. In addition, results suggested that subjects classified as moving mostly at the hip prior to fatigue were more affected by fatigue compared to subjects classified as moving roughly equal amounts at the ankle and hip prior to fatigue. Increasing fatigue level exaggerated some, but not all, of the changes in postural strategy with fatigue. These findings illustrate that neuromuscular fatigue can influence postural strategy in response to a balance perturbation. PMID:16023345

  9. Monitoring the prevalence of postural changes in schoolchildren.

    PubMed

    Nichele da Rosa, Bruna; Noll, Matias; Sedrez, Juliana Adami; Furlanetto, Tassia Silveira; Candotti, Claudia Tarrago

    2016-01-01

    [Purpose] The aim of this study was to identify whether postural changes are prevalent with advancing age using a photogrammetric method performing one-year follow-up study. [Subjects and Methods] Thirty-eight schoolchildren were evaluated in 2011 and 2012 in this cohort study. The subjects underwent a postural evaluation, which involved palpation of reference anatomic points, placement of reflexive markers over the anatomic points, image acquisition, and point digitalization using the Digital Image-based Postural Assessment evaluation software. For data analysis, descriptive statistics and inferential statistics were analyzed by McNemar's test. [Results] The results showed a significant increase in postural change prevalence for the lumbar spine in the sagittal plane (from 42.2% to 81.6%) and the knees in the frontal plane (from 39.5% to 63.2%) and a significant decrease in the prevalence of scoliosis (from 68.5% to 42.2%). [Conclusion] The findings indicate an increase in the prevalence of postural changes in schoolchildren from Teutônia, RS, Brazil, in 2012 compared with 2011. The development of longitudinal investigations for long-term monitoring of the evolution of posture and of schoolchildren habits's representing a viable alternative to subsidize health actions. PMID:27065514

  10. Evidence from the eyes: Threatening postures hold attention.

    PubMed

    Azarian, Bobby; Esser, Elizabeth G; Peterson, Matthew S

    2016-06-01

    Efficient detection of threat provides obvious survival advantages and has resulted in a fast and accurate threat-detection system. Although beneficial under normal circumstances, this system may become hypersensitive and cause threat-processing abnormalities. Past research has shown that anxious individuals have difficulty disengaging attention from threatening faces, but it is unknown whether other forms of threatening social stimuli also influence attentional orienting. Much like faces, human body postures are salient social stimuli, because they are informative of one's emotional state and next likely action. Additionally, postures can convey such information in situations in which another's facial expression is not easily visible. Here we investigated whether there is a threat-specific effect for high-anxious individuals, by measuring the time that it takes the eyes to leave the attended stimulus, a task-irrelevant body posture. The results showed that relative to nonthreating postures, threat-related postures hold attention in anxious individuals, providing further evidence of an anxiety-related attentional bias for threatening information. This is the first study to demonstrate that attentional disengagement from threatening postures is affected by emotional valence in those reporting anxiety. PMID:26384994

  11. Postural Cueing to Increase Lumbar Lordosis Increases Lumbar Multifidus Activation During Trunk Stabilization Exercises: Electromyographic Assessment Using Intramuscular Electrodes.

    PubMed

    Beneck, George J; Story, John W; Donald, Shelby

    2016-04-01

    Study Design Controlled laboratory study, repeated-measures design. Background Diminished multifidus activation and cross-sectional area are frequent findings in persons with low back pain. Increasing lumbar lordosis has been shown to increase activation of the multifidus with a minimal increase in activation of the long global extensors during unsupported sitting. Objectives To examine the influence of postural cueing to increase lumbar lordosis on lumbar extensor activation during trunk stabilization exercises. Methods Thirteen asymptomatic participants (9 male, 4 female) were instructed to perform 6 trunk stabilization exercises using a neutral position and increasing lumbar lordosis. Electrical activity of the deep multifidus and longissimus thoracis was recorded using fine-wire intramuscular electrodes. The mean root-mean-square of the electromyography (EMG) signal obtained during each exercise was normalized to a maximum voluntary isometric contraction (MVIC). A 2-way, repeated-measures analysis of variance (posture by exercise) was performed for each muscle. Results When averaged across the 6 exercises, postural cueing to increase lumbar lordosis resulted in greater multifidus EMG activity compared to performing the exercises in a neutral posture (35.3% ± 15.1% versus 29.5% ± 11.2% MVIC). No significant increase in longissimus thoracis EMG activity was observed when exercising with cueing to increase lumbar lordosis. Conclusion This study suggests that postural cueing to increase lumbar lordosis during trunk stabilization exercises may better promote multifidus activation than traditional stabilization exercises alone. Future studies are needed to determine whether increasing lumbar lordosis improves multifidus activation in persons with low back pain. J Orthop Sports Phys Ther 2016;46(4):293-299. Epub 8 Mar 2016. doi:10.2519/jospt.2016.6174. PMID:26954268

  12. A New Standing Posture Detector to Enable People with Multiple Disabilities to Control Environmental Stimulation by Changing Their Standing Posture through a Commercial Wii Balance Board

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chiang, Ming-Shan

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture) and a Wii Balance Board with a newly developed standing posture detection program (i.e. a new software program turns a Wii Balance Board into a precise standing posture detector). The…

  13. Effects of disease severity and medication state on postural control asymmetry during challenging postural tasks in individuals with Parkinson's disease.

    PubMed

    Barbieri, Fabio A; Polastri, Paula F; Baptista, André M; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Beretta, Victor S; Gobbi, Lilian T B

    2016-04-01

    The aim of this study was to investigate the effects of disease severity and medication state on postural control asymmetry during challenging tasks in individuals with Parkinson's disease (PD). Nineteen people with PD and 11 neurologically healthy individuals performed three standing task conditions: bipedal standing, tandem and unipedal adapted standing; the individuals with PD performed the tasks in ON and OFF medication state. The participants with PD were distributed into 2 groups according to disease severity: unilateral group (n=8) and bilateral group (n=11). The two PD groups performed the evaluations both under and without the medication. Two force plates were used to analyze the posture. The symmetric index was calculated for various of center of pressure. ANOVA one-way (groups) and two-way (PD groups×medication), with repeated measures for medication, were calculated. For main effects of group, the bilateral group was more asymmetric than CG. For main effects of medication, only unipedal adapted standing presented effects of PD medication. There was PD groups×medication interaction. Under the effects of medication, the unilateral group presented lower asymmetry of RMS in anterior-posterior direction and area than the bilateral group in unipedal adapted standing. In addition, the unilateral group presented lower asymmetry of mean velocity, RMS in anterior-posterior direction and area in unipedal standing and area in tandem adapted standing after a medication dose. Postural control asymmetry during challenging postural tasks was dependent on disease severity and medication state in people with PD. The bilateral group presented higher postural control asymmetry than the control and unilateral groups in challenging postural tasks. Finally, the medication dose was able to reduce postural control asymmetry in the unilateral group during challenging postural tasks. PMID:26741255

  14. Influence of Sensory Dependence on Postural Control

    NASA Technical Reports Server (NTRS)

    Santana, Patricia A.; Mulavara, Ajitkumar P.; Fiedler, Matthew J.

    2011-01-01

    The current project is part of an NSBRI funded project, "Development of Countermeasures to Aid Functional Egress from the Crew Exploration Vehicle Following Long-Duration Spaceflight." The development of this countermeasure is based on the use of imperceptible levels of electrical stimulation to the balance organs of the inner ear to assist and enhance the response of a person s sensorimotor function. These countermeasures could be used to increase an astronaut s re-adaptation rate to Earth s gravity following long-duration space flight. The focus of my project is to evaluate and examine the correlation of sensory preferences for vision and vestibular systems. Disruption of the sensorimotor functions following space flight affects posture, locomotion and spatial orientation tasks in astronauts. The Group Embedded Figures Test (GEFT), the Rod and Frame Test (RFT) and the Computerized Dynamic Posturography Test (CDP) are measurements used to examine subjects visual and vestibular sensory preferences. The analysis of data from these tasks will assist in relating the visual dependence measures recognized in the GEFT and RFT with vestibular dependence measures recognized in the stability measures obtained during CDP. Studying the impact of sensory dependence on the performance in varied tasks will help in the development of targeted countermeasures to help astronauts readapt to gravitational changes after long duration space flight.

  15. Neuromuscular dentistry: Occlusal diseases and posture.

    PubMed

    Khan, Mohd Toseef; Verma, Sanjeev Kumar; Maheshwari, Sandhya; Zahid, Syed Naved; Chaudhary, Prabhat K

    2013-01-01

    Neuromuscular dentistry has been a controversial topic in the field of dentistry and still remains debatable. The issue of good occlusion and sound health has been repeatedly discussed. Sometimes we get complains of sensitive teeth and sometimes of tired facial muscles on getting up in the morning. Owing to the intimate relation of masticatory apparatus with the cranium and cervico-scapular muscular system, the disorders in any system, draw attention from concerned clinicians involved in management, to develop an integrated treatment protocol for the suffering patients. There may be patients reporting to the dental clinics after an occlusal restoration or extraction, having pain in or around the temporomandibular joint, headache or neck pain. Although their esthetic demands must not be undermined during the course of treatment plan, whenever dental treatment of any sort is planned, occlusion/bite should be given prime importance. Very few dentist are able to diagnose the occlusal disease and of those who diagnose many people resort to aggressive treatment modalities. This paper aims to report the signs of occlusal disease, and discuss their association with TMDs and posture. PMID:25737904

  16. Idiopathic orthostatic intolerance and postural tachycardia syndromes

    NASA Technical Reports Server (NTRS)

    Jacob, G.; Biaggioni, I.; Robertson, D. (Principal Investigator)

    1999-01-01

    Upright posture imposes a substantial gravitational stress on the body, for which we are able to compensate, in large part because of the autonomic nervous system. Alteration in autonomic function, therefore, may lead to orthostatic intolerance. On one extreme, patients with autonomic failure caused by degenerative loss of autonomic function are severely disabled by orthostatic hypotension and may faint whenever they stand up. Fortunately, such patients are relatively rare. On the other hand, disabling orthostatic intolerance can develop in otherwise normal young people. These patients can be severely impaired by symptoms of fatigue, tachycardia, and shortness of breath when they stand up. The actual incidence of this disorder is unknown, but these patients make up the largest group of patients referred to centers that specialize in autonomic disorders. We will review recent advances made in the understanding of this condition, potential pathophysiological mechanisms that contribute to orthostatic intolerance, therapeutic alternatives currently available for the management of these patients, and areas in which more research is needed.

  17. Effects of daily telephone-based re-education before taking medicine on Helicobacter pylori eradication: A prospective single-center study from China

    PubMed Central

    Wang, Chun-Hua; Liao, Sheng-Tao; Yang, Jun; Li, Chun-Xia; Yang, Ying-Ying; Han, Ran; Chen, Dong-Feng; Lan, Chun-Hui

    2015-01-01

    AIM: To investigate the effects of daily telephone-based re-education (TRE) before taking medicine for the eradication of Helicobacter pylori (H. pylori) on the compliance and the eradication rate in a Chinese patient population. METHODS: A prospective, physician-blinded, randomized, controlled clinical study was conducted. The patients were randomly assigned to receive TRE every day before taking medicine (TRE group) or no TRE (control group). The patients in the TRE group received regular instructions before taking medicine for the eradication of H. pylori during the entire course of treatment through telephone calls. The patients in the control group received detailed instructions at the time of seeing a doctor for the guidance. The primary outcome was the H. pylori eradication rate after treatment. The secondary outcomes included the clinical remissions after treatment, adverse events, compliance, and patients’ satisfaction. RESULTS: A total of 140 patients were randomized, 70 to the TRE group and 70 to the control group. As the primary outcome, the H. pylori eradication rates in the TRE and control groups were 62.7% and 71.2% in per protocol analysis (P = 0.230), and 52.9% and 52.9% in intention-to-treat analysis (P = 0.567), respectively. As the secondary outcomes, there were no significant differences in the patients’ satisfaction between the two groups (good, 79.7% vs 76.9%; fair, 13.6% vs 19.2%; poor, 6.7% vs 3.9%, for the TRE group and control group, respectively; P > 0.05 for all); the rates of adverse effects were 15.2% and 63.5% in the TRE and control groups, respectively (P < 0.001); the compliance rates in the TRE and control groups were 85.7% and 74.3%, respectively (P = 0.069). CONCLUSION: Daily TRE before taking medicine had no significant impact on the patients’ compliance, satisfaction, or H. pylori eradication, but reduced the rate of adverse events. PMID:26494972

  18. Real-Time Hand Posture Recognition Using a Range Camera

    NASA Astrophysics Data System (ADS)

    Lahamy, Herve

    The basic goal of human computer interaction is to improve the interaction between users and computers by making computers more usable and receptive to the user's needs. Within this context, the use of hand postures in replacement of traditional devices such as keyboards, mice and joysticks is being explored by many researchers. The goal is to interpret human postures via mathematical algorithms. Hand posture recognition has gained popularity in recent years, and could become the future tool for humans to interact with computers or virtual environments. An exhaustive description of the frequently used methods available in literature for hand posture recognition is provided. It focuses on the different types of sensors and data used, the segmentation and tracking methods, the features used to represent the hand postures as well as the classifiers considered in the recognition process. Those methods are usually presented as highly robust with a recognition rate close to 100%. However, a couple of critical points necessary for a successful real-time hand posture recognition system require major improvement. Those points include the features used to represent the hand segment, the number of postures simultaneously recognizable, the invariance of the features with respect to rotation, translation and scale and also the behavior of the classifiers against non-perfect hand segments for example segments including part of the arm or missing part of the palm. A 3D time-of-flight camera named SR4000 has been chosen to develop a new methodology because of its capability to provide in real-time and at high frame rate 3D information on the scene imaged. This sensor has been described and evaluated for its capability for capturing in real-time a moving hand. A new recognition method that uses the 3D information provided by the range camera to recognize hand postures has been proposed. The different steps of this methodology including the segmentation, the tracking, the hand

  19. Cerebellar control of postural scaling and central set in stance.

    PubMed

    Horak, F B; Diener, H C

    1994-08-01

    1. The effects of cerebellar deficits in humans on scaling the magnitude of automatic postural responses based on sensory feedback and on predictive central set was investigated. Electromyographic (EMG) and surface reactive torques were compared in patients with anterior lobe cerebellar disorders and in normal healthy adults exposed to blocks of four velocities and five amplitudes of surface translations during stance. Correlations between the earliest postural responses (integrated EMG and initial rate of change of torque) and translation velocity provided a measure of postural magnitude scaling using sensory information from the current displacement. Correlations of responses with translation amplitude provided a measure of scaling dependent on predictive central set based on sequential experience with previous like displacements because the earliest postural responses occurred before completion of the displacements and because scaling to displacement amplitude disappeared when amplitudes were randomized in normal subjects. 2. Responses of cerebellar patients to forward body sway induced by backward surface displacements were hypermetric, that is, surface-reactive torque responses were two to three times larger than normal with longer muscle bursts resulting in overshooting of initial posture. Despite this postural hypermetria, the absolute and relative latencies of agonist muscle bursts at the ankle, knee, and hip were normal in cerebellar patients. 3. Although they were hypermetric, the earliest postural responses of cerebellar patients were scaled normally to platform displacement velocities using somatosensory feedback. Cerebellar patients, however, were unable to scale initial postural response magnitude to expected displacement amplitudes based on prior experience using central set. Randomization of displacement amplitudes eliminated the set effect of amplitude on initial responses in normal subjects, but responses to randomized and blocked trials were not

  20. One month of contemporary dance modulates fractal posture in aging.

    PubMed

    Coubard, Olivier A; Ferrufino, Lena; Nonaka, Tetsushi; Zelada, Oscar; Bril, Blandine; Dietrich, Gilles

    2014-01-01

    Understanding the human aging of postural control and how physical or motor activity improves balance and gait is challenging for both clinicians and researchers. Previous studies have evidenced that physical and sporting activity focusing on cardiovascular and strength conditioning help older adults develop their balance and gait and/or decrease their frequency of falls. Motor activity based on motor-skill learning has also been put forward as an alternative to develop balance and/or prevent falls in aging. Specifically dance has been advocated as a promising program to boost motor control. In this study, we examined the effects of contemporary dance (CD) on postural control of older adults. Upright stance posturography was performed in 38 participants aged 54-89 years before and after the intervention period, during which one half of the randomly assigned participants was trained to CD and the other half was not trained at all (no dance, ND). CD training lasted 4 weeks, 3 times a week. We performed classical statistic scores of postural signal and dynamic analyses, namely signal diffusion analysis (SDA), recurrence quantification analysis (RQA), and detrended fluctuation analysis (DFA). CD modulated postural control in older trainees, as revealed in the eyes closed condition by a decrease in fractal dimension and an increase in DFA alpha component in the mediolateral plane. The ND group showed an increase in length and mean velocity of postural signal, and the eyes open a decrease in RQA maximal diagonal line in the anteroposterior plane and an increase in DFA alpha component in the mediolateral plane. No change was found in SDA in either group. We suggest that such a massed practice of CD reduced the quantity of exchange between the subject and the environment by increasing their postural confidence. Since CD has low-physical but high-motor impact, we conclude that it may be recommended as a useful program to rehabilitate posture in aging. PMID:24611047

  1. One month of contemporary dance modulates fractal posture in aging

    PubMed Central

    Coubard, Olivier A.; Ferrufino, Lena; Nonaka, Tetsushi; Zelada, Oscar; Bril, Blandine; Dietrich, Gilles

    2013-01-01

    Understanding the human aging of postural control and how physical or motor activity improves balance and gait is challenging for both clinicians and researchers. Previous studies have evidenced that physical and sporting activity focusing on cardiovascular and strength conditioning help older adults develop their balance and gait and/or decrease their frequency of falls. Motor activity based on motor-skill learning has also been put forward as an alternative to develop balance and/or prevent falls in aging. Specifically dance has been advocated as a promising program to boost motor control. In this study, we examined the effects of contemporary dance (CD) on postural control of older adults. Upright stance posturography was performed in 38 participants aged 54–89 years before and after the intervention period, during which one half of the randomly assigned participants was trained to CD and the other half was not trained at all (no dance, ND). CD training lasted 4 weeks, 3 times a week. We performed classical statistic scores of postural signal and dynamic analyses, namely signal diffusion analysis (SDA), recurrence quantification analysis (RQA), and detrended fluctuation analysis (DFA). CD modulated postural control in older trainees, as revealed in the eyes closed condition by a decrease in fractal dimension and an increase in DFA alpha component in the mediolateral plane. The ND group showed an increase in length and mean velocity of postural signal, and the eyes open a decrease in RQA maximal diagonal line in the anteroposterior plane and an increase in DFA alpha component in the mediolateral plane. No change was found in SDA in either group. We suggest that such a massed practice of CD reduced the quantity of exchange between the subject and the environment by increasing their postural confidence. Since CD has low-physical but high-motor impact, we conclude that it may be recommended as a useful program to rehabilitate posture in aging. PMID:24611047

  2. Development of adaptive sensorimotor control in infant sitting posture.

    PubMed

    Chen, Li-Chiou; Jeka, John; Clark, Jane E

    2016-03-01

    A reliable and adaptive relationship between action and perception is necessary for postural control. Our understanding of how this adaptive sensorimotor control develops during infancy is very limited. This study examines the dynamic visual-postural relationship during early development. Twenty healthy infants were divided into 4 developmental groups (each n=5): sitting onset, standing alone, walking onset, and 1-year post-walking. During the experiment, the infant sat independently in a virtual moving-room in which anterior-posterior oscillations of visual motion were presented using a sum-of-sines technique with five input frequencies (from 0.12 to 1.24Hz). Infants were tested in five conditions that varied in the amplitude of visual motion (from 0 to 8.64cm). Gain and phase responses of infants' postural sway were analyzed. Our results showed that infants, from a few months post-sitting to 1 year post-walking, were able to control their sitting posture in response to various frequency and amplitude properties of the visual motion. Infants showed an adult-like inverted-U pattern for the frequency response to visual inputs with the highest gain at 0.52 and 0.76Hz. As the visual motion amplitude increased, the gain response decreased. For the phase response, an adult-like frequency-dependent pattern was observed in all amplitude conditions for the experienced walkers. Newly sitting infants, however, showed variable postural behavior and did not systemically respond to the visual stimulus. Our results suggest that visual-postural entrainment and sensory re-weighting are fundamental processes that are present after a few months post sitting. Sensorimotor refinement during early postural development may result from the interactions of improved self-motion control and enhanced perceptual abilities. PMID:26979899

  3. Does a crouched leg posture enhance running stability and robustness?

    PubMed

    Blum, Yvonne; Birn-Jeffery, Aleksandra; Daley, Monica A; Seyfarth, Andre

    2011-07-21

    Humans and birds both walk and run bipedally on compliant legs. However, differences in leg architecture may result in species-specific leg control strategies as indicated by the observed gait patterns. In this work, control strategies for stable running are derived based on a conceptual model and compared with experimental data on running humans and pheasants (Phasianus colchicus). From a model perspective, running with compliant legs can be represented by the planar spring mass model and stabilized by applying swing leg control. Here, linear adaptations of the three leg parameters, leg angle, leg length and leg stiffness during late swing phase are assumed. Experimentally observed kinematic control parameters (leg rotation and leg length change) of human and avian running are compared, and interpreted within the context of this model, with specific focus on stability and robustness characteristics. The results suggest differences in stability characteristics and applied control strategies of human and avian running, which may relate to differences in leg posture (straight leg posture in humans, and crouched leg posture in birds). It has been suggested that crouched leg postures may improve stability. However, as the system of control strategies is overdetermined, our model findings suggest that a crouched leg posture does not necessarily enhance running stability. The model also predicts different leg stiffness adaptation rates for human and avian running, and suggests that a crouched avian leg posture, which is capable of both leg shortening and lengthening, allows for stable running without adjusting leg stiffness. In contrast, in straight-legged human running, the preparation of the ground contact seems to be more critical, requiring leg stiffness adjustment to remain stable. Finally, analysis of a simple robustness measure, the normalized maximum drop, suggests that the crouched leg posture may provide greater robustness to changes in terrain height. PMID

  4. Ankle and hip postural strategies defined by joint torques

    NASA Technical Reports Server (NTRS)

    Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control

  5. Ankle and hip postural strategies defined by joint torques.

    PubMed

    Runge, C F; Shupert, C L; Horak, F B; Zajac, F E

    1999-10-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control

  6. Autoimmune Basis for Postural Tachycardia Syndrome

    PubMed Central

    Li, Hongliang; Yu, Xichun; Liles, Campbell; Khan, Muneer; Vanderlinde‐Wood, Megan; Galloway, Allison; Zillner, Caitlin; Benbrook, Alexandria; Reim, Sean; Collier, Daniel; Hill, Michael A.; Raj, Satish R.; Okamoto, Luis E.; Cunningham, Madeleine W.; Aston, Christopher E.; Kem, David C.

    2014-01-01

    Background Patients with postural tachycardia syndrome (POTS) have exaggerated orthostatic tachycardia often following a viral illness, suggesting autoimmunity may play a pathophysiological role in POTS. We tested the hypothesis that they harbor functional autoantibodies to adrenergic receptors (AR). Methods and Results Fourteen POTS patients (7 each from 2 institutions) and 10 healthy subjects were examined for α1AR autoantibody‐mediated contractility using a perfused rat cremaster arteriole assay. A receptor‐transfected cell‐based assay was used to detect the presence of β1AR and β2AR autoantibodies. Data were normalized and expressed as a percentage of baseline. The sera of all 14 POTS patients demonstrated significant arteriolar contractile activity (69±3% compared to 91±1% of baseline for healthy controls, P<0.001) when coexisting β2AR dilative activity was blocked; and this was suppressed by α1AR blockade with prazosin. POTS sera acted as a partial α1AR antagonist significantly shifting phenylephrine contractility curves to the right. All POTS sera increased β1AR activation (130±3% of baseline, P<0.01) and a subset had increased β2AR activity versus healthy subjects. POTS sera shifted isoproterenol cAMP response curves to the left, consistent with enhanced β1AR and β2AR agonist activity. Autoantibody‐positive POTS sera demonstrated specific binding to β1AR, β2AR, and α1AR in transfected cells. Conclusions POTS patients have elevated α1AR autoantibodies exerting a partial peripheral antagonist effect resulting in a compensatory sympathoneural activation of α1AR for vasoconstriction and concurrent βAR‐mediated tachycardia. Coexisting β1AR and β2AR agonistic autoantibodies facilitate this tachycardia. These findings may explain the increased standing plasma norepinephrine and excessive tachycardia observed in many POTS patients. PMID:24572257

  7. Postural tachycardia syndrome: time frequency mapping.

    PubMed

    Novak, V; Novak, P; Opfer-Gehrking, T L; Low, P A

    1996-12-14

    Orthostatic tachycardia is common but its specificity remains uncertain. Our preliminary work suggested that using autonomic function testing in conjunction with time-frequency mapping (TFM), it might be possible to characterize a subset of the postural tachycardia syndrome (POTS), that is due to a restricted autonomic neuropathy. We describe 20 patients (17 women and 3 men, aged 14-43 years) with florid POTS and 20 controls (14 women and 6 men, aged 20-41 years). Autonomic failure was quantified by its distribution (cardiovagal, adrenergic and sudomotor) and severity, a symptom profile was generated, and spectral indices, based on modified Wigner distribution during rest and head-up tilt (80 degrees) were evaluated. During tilt-up POTS patients differed from controls by an excessive heart rate (> 130 bpm) (P < 0.001), and higher diastolic pressure (P < 0.01). During rest, cardiovagal oscillations (at respiratory frequencies [RF]) and slow rhythms at nonrespiratory frequencies (NONRF) (from 0.01 to 0.07 Hz) in R-R intervals (RRI) (P < 0.01) were reduced. Both RF and NONRF rhythms in RRI were further blunted with tilt-up (P < 0.001). Slow adrenergic vasomotor rhythms in blood pressure (BP) (approximately 0.07 Hz) surged with tilt-up and returned to normal levels afterwards. The index of sympatho-vagal balance (NONRF-Systolic BP (SBP)/RF-RRI) was dramatically increased in POTS (P < 0.001). Distal postganglionic sudomotor failure was observed, and impairment of the BP responses to the Valsalva maneuver (phase II) suggested peripheral adrenergic dysfunction. Persistent orthostatic dizziness, tiredness, gastrointestinal symptoms and palpitations were common in POTS patients. It is possible to identify a subset of POTS patients who have a length-dependent autonomic neuropathy, affecting the peripheral adrenergic and cardiovagal fibers, with relative preservation of cardiac adrenergic fibers. PMID:8988490

  8. University Football Players, Postural Stability, and Concussions.

    PubMed

    Graves, Barbara Sue

    2016-02-01

    Concussion in football athletes is certainly more prevalent and has potentially serious outcomes. With current concerns and increasing return-to-play issues, additional assessment focus is needed. Division 1 college football athletes, from 18 to 20.9 years (n = 177; age, 19.7 ± 1.2 years; height, 182.3 ± 4.5 cm; weight, 97.3 ± 10.6 kg), before fall practice, over a period of 3 years, underwent baseline postural stability testing (sensory organization test [SOT], NeuroCom). Individuals, who were diagnosed with a concussion (headache, dizziness, fatigue, confusion, or loss of consciousness) during practice or actual competition (n = 15; age, 18.9 ± 0.9 years; height, 181.8 ± 2.5 cm; weight, 86.6 ± 3.6 kg), underwent serial evaluation after injury and 24 hours after concussion. As soon as the player was considered asymptomatic, the test was completed on the first and 14th day. A control group of noninjured male athletes (n = 15; age, 19.1 ± 0.4 years; height, 178.2 ± 3.2 cm; weight, 78.6 ± 2.1 kg) were tested for the same time frame. This particular study was only one part of the total evaluation conducted for the concussed athlete's return to play. Results indicated that the concussion group had a statistically significant (p = 0.037) change from their baseline SOT score and the control group (p = 0.025). This change remained significant until day 14 of posttesting. These data indicate that the SOT, when available, may be a positive additional assessment of concussed college-aged football players. Professionals, when dealing with concussion in competitive sports, do need to continue to work together, but awareness of SOT assessments may also contribute to the return-to-play decisions. PMID:26284680

  9. Postural tachycardia syndrome: time frequency mapping

    NASA Technical Reports Server (NTRS)

    Novak, V.; Novak, P.; Opfer-Gehrking, T. L.; Low, P. A.

    1996-01-01

    Orthostatic tachycardia is common but its specificity remains uncertain. Our preliminary work suggested that using autonomic function testing in conjunction with time-frequency mapping (TFM), it might be possible to characterize a subset of the postural tachycardia syndrome (POTS), that is due to a restricted autonomic neuropathy. We describe 20 patients (17 women and 3 men, aged 14-43 years) with florid POTS and 20 controls (14 women and 6 men, aged 20-41 years). Autonomic failure was quantified by its distribution (cardiovagal, adrenergic and sudomotor) and severity, a symptom profile was generated, and spectral indices, based on modified Wigner distribution during rest and head-up tilt (80 degrees) were evaluated. During tilt-up POTS patients differed from controls by an excessive heart rate (> 130 bpm) (P < 0.001), and higher diastolic pressure (P < 0.01). During rest, cardiovagal oscillations (at respiratory frequencies [RF]) and slow rhythms at nonrespiratory frequencies (NONRF) (from 0.01 to 0.07 Hz) in R-R intervals (RRI) (P < 0.01) were reduced. Both RF and NONRF rhythms in RRI were further blunted with tilt-up (P < 0.001). Slow adrenergic vasomotor rhythms in blood pressure (BP) (approximately 0.07 Hz) surged with tilt-up and returned to normal levels afterwards. The index of sympatho-vagal balance (NONRF-Systolic BP (SBP)/RF-RRI) was dramatically increased in POTS (P < 0.001). Distal postganglionic sudomotor failure was observed, and impairment of the BP responses to the Valsalva maneuver (phase II) suggested peripheral adrenergic dysfunction. Persistent orthostatic dizziness, tiredness, gastrointestinal symptoms and palpitations were common in POTS patients. It is possible to identify a subset of POTS patients who have a length-dependent autonomic neuropathy, affecting the peripheral adrenergic and cardiovagal fibers, with relative preservation of cardiac adrenergic fibers.

  10. Dynamic posture analysis of Spacelab-1 crew members

    NASA Technical Reports Server (NTRS)

    Anderson, D. J.; Reschke, M. F.; Homick, J. E.; Werness, S. A.

    1986-01-01

    Dynamic posture testing was conducted on the science crew of the Spacelab-1 mission on a single axis linear motion platform. Tests took place in pre- and post-flight sessions lasting approximately 20 min each. The pre-flight tests were widely spaced over the several months prior to the mission while the post-flight tests were conducted over the first, second, fourth, and sixth days after landing. Two of the crew members were also tested on the day of landing. Consistent with previous postural testing conducted on flight crews, these crew members were able to complete simple postural tasks to an acceptable level even in the first few hours after landing. Our tests were designed to induce dynamic postural responses using a variety of stimuli and from these responses, evaluate subtle changes in the postural control system which had occurred over the duration of the flight. Periodic sampling post-flight allowed us to observe the time course of readaptation to terrestrial life. Our observations of hip and shoulder position, when subjected to careful analysis, indicated modification of the postural response from pre- to post-flight and that demonstrable adjustments in the dynamic control of their postural systems were taking place in the first few days after flight. For transient stimuli where the platform on which they were asked to stand quickly moved a few centimeters fore or aft then stopped, ballistic or open loop 'programs' would closely characterize the response. During these responses the desired target position was not always achieved and of equal importance not always properly corrected some 15 seconds after the platform ceased to move. The persistent observation was that the subjects had a much stronger dependence on visual stabilization post-flight than pre-flight. This was best illustrated by a slow or only partial recovery to an upward posture after a transient base-of-support movement with eyes open. Postural responses to persistent wideband pseudorandom