Science.gov

Sample records for global silicate weathering

  1. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic activities. For example, Huntington et al. (2000) show that extensive timber harvesting in the southeastern forests of the United States, which are underlain by intensely weathered saprolites, produces net calcium exports that exceed inputs from weathering, thus creating a long-term regional problem in forest management.The role of chemical weathering has long been recognized in economic geology. Tropical bauxites, which account for most of world's aluminum ores, are typical examples of residual concentration of silicate rocks by chemical weathering over long time periods (Samma, 1986). Weathering of ultramafic silicates such as peridotites forms residual lateritic deposits that contain significant deposits of nickel and cobalt. Ores generated by chemical mobilization include uranium deposits that are produced by weathering of granitic rocks under oxic conditions and subsequent concentration by sorption and precipitation ( Misra, 2000).Over the last several decades, estimating rates of silicate weathering has become important in addressing new environmental issues. Acidification of soils, rivers, and lakes has become a major concern in many parts of North America and Europe. Areas at particular risk are uplands where silicate bedrock, resistant to chemical weathering, is overlain by thin organic-rich soils (Driscoll et al., 1989). Although atmospheric deposition is the most important factor in watershed acidification, land use practices, such as conifer reforestation, also create acidification problems ( Farley and Werritty, 1989). In such environments, silicate hydrolysis reactions are the principal buffer against acidification. As pointed out by Drever and Clow (1995), a reasonable environmental objective is to decrease the inputs of acidity such that they are equal to or less than the rate of neutralization by weathering in sensitive watersheds.The intensive interest in past and present global climate change has renewed efforts to understand quantitatively feedback mechanisms between climate and chemical weathering. On timescales longer than

  2. Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer?

    SciTech Connect

    Gaillardet, J.; Dupre, B.; Allegre, C.J.

    1999-12-01

    This study focuses on the major and trace element composition of suspended sediments transported by the world's largest rivers. Its main purpose is to answer the following question: is the degree of weathering of modern river-borne particles consistent with the estimated river dissolved loads derived from silicate weathering? In agreement with the well known mobility of elements during weathering of continental rocks, the authors confirm that river sediments are systematically depleted in Na, K, Ba with respect to the Upper Continental Crust. For each of these mobile elements, a systematics of weathering indexes of river-borne solids is attempted. A global consistency is found between all these indexes. Important variations in weathering intensities exist. A clear dependence of weathering intensities with climate is observed for the rivers draining mostly lowlands. However, no global correlation exists between weathering intensities and climatic or relief parameters because the trend observed for lowlands is obscured by rivers draining orogenic zones. An inverse correlation between weathering intensities and suspended sediment concentrations is observed showing that the regions having the highest rates of physical denudation produce the least weathered sediments. Finally, chemical and physical weathering are compared through the use of a simple steady state model. The authors show that the weathering intensities of large river suspended sediments can only be reconciled with the (silicate-derived) dissolved load or rivers, by admitting that most of the continental rocks submitted to weathering in large river basins have already suffered previous weathering cycles. A simple graphical method is proposed for calculating the proportion of sedimentary recycling in large river basins. Finally, even if orogenic zones produce weakly weathered sediments, the authors emphasize the fact that silicate chemical weathering rates (and hence CO{sub 2} consumption rates by silicate weathering) are greatly enhanced in mountains simply because the sediment yields in orogenic drainage basins are higher. Hence, the parameters that control chemical weathering rates would be those that control physical denudation rates.

  3. Silicate weathering in the Ganges alluvial plain

    NASA Astrophysics Data System (ADS)

    Frings, Patrick J.; Clymans, Wim; Fontorbe, Guillaume; Gray, William; Chakrapani, Govind J.; Conley, Daniel J.; De La Rocha, Christina

    2015-10-01

    The Ganges is one of the world's largest rivers and lies at the heart of a body of literature that investigates the interaction between mountain orogeny, weathering and global climate change. Three regions can be recognised in the Ganges basin, with the Himalayan orogeny to the north and the plateaus of peninsular India to the south together delimiting the Ganges alluvial plain. Despite constituting approximately 80% of the basin, weathering processes in the peninsula and alluvial plain have received little attention. Here we present an analysis of 51 water samples along a transect of the alluvial plain, including all major tributaries. We focus on the geochemistry of silicon and its isotopes. Area normalised dissolved Si yields are approximately twice as high in rivers of Himalaya origin than the plain and peninsular tributaries (82, 51 and 32 kmol SiO2 km-2 yr-1, respectively). Such dissolved Si fluxes are not widely used as weathering rate indicators because a large but variable fraction of the DSi mobilised during the initial weathering process is retained in secondary clay minerals. However, the silicon isotopic composition of dissolved Si (expressed as ?30Si) varies from + 0.8 ‰ in the Ganges mainstem at the Himalaya front to + 3.0 ‰ in alluvial plain streams and appears to be controlled by weathering congruency, i.e. by the degree of incorporation of Si into secondary phases. The higher ?30Si values therefore reflect decreasing weathering congruency in the lowland river catchments. This is exploited to quantify the degree of removal using a Rayleigh isotope mass balance model, and consequently derive initial silica mobilisation rates of 200, 150 and 107 kmol SiO2 km-2 yr-1, for the Himalaya, peninsular India and the alluvial plain, respectively. Because the non-Himalayan regions dominate the catchment area, the majority of initial silica mobilisation from primary minerals occurs in the alluvial plain and peninsular catchment (41% and 34%, respectively).

  4. Lithium Isotopes as Proxy of Continental Silicate Weathering

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Wanner, C.; Rudnick, R. L.; McDonough, W. F.

    2014-12-01

    Chemical weathering has an important influence on continental crust evolution, as weathering of basalt preferentially removes soluble elements, such as Mg and Ca, and can shift the crust towards more andesitic compositions, thus helping to solve the crustal composition paradox. The isotopic compositions of soluble elements (e.g., Li and Mg) provide a monitor of chemical weathering of the continents through time. Here we evaluate the factors influencing the abundance, [Li], and isotopic composition of riverine Li delivered to the oceans through analyses and modeling of [Li] and d7Li in streams and groundwaters draining a single continental lithology, the Columbia River Basalts (CRBs). The streams were sampled in different climate zones that lie on the dry and wet sides of the Cascades Mountains, and during two different seasons (summer and late winter) in order to evaluate climatic and seasonal influences on Li isotopes in rivers. Dissolved Li (?7Li = +9.3 to +30.4) is systematically heavier than that of fresh or weathered CRBs, suspended loads (-5.9 to -0.3), and shallow groundwaters (+6.7 to +9.4). Continued isotopic fractionation between stream water and suspended and/or bed loads has a major influence on riverine ?7Li as indicated by the heavier Li in streams, compared to the shallow groundwaters that feed them. Seasonal ?7Li variation is observed only for streams west of the Cascades, where the difference in precipitation rate between the seasons is greatest. Reactive transport model simulations reveal that riverine ?7Li is strongly controlled by subsurface residence times and Li isotope fractionation occurring within rivers. The varying residence times for groundwaters feeding the western streams in summer (long residence times, higher ?7Li, greater weathering) and winter (short residence times, lower ?7Li, less weathering) explains the observed seasonal variations. A global, negative correlation between ?7Li and Li/Na for streams and rivers draining basaltic catchments reflects the overall transport time, hence the amount of silicate weathering. Based on our results, the increase of ?7Li in seawater during the Cenozoic is unlikely related to changing climate, but may reflect mountain building giving rise to increased silicate weathering.

  5. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologi...

  6. Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering

    E-print Network

    Paytan, Adina

    Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering 70 Ma · Overview of the Marine Lithium Cycle · Analytical Challenges · 68 Million Year Seawater Lithium Isotope Record (Forams) · Interpretation Standard: NIST L-SVEC Li (SRM 8545) #12;100 Ma Climate

  7. Geoengineering potential of artificially enhanced silicate weathering of olivine

    PubMed Central

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A.

    2010-01-01

    Geoengineering is a proposed action to manipulate Earth’s climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO2 sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1–5 Pg of C per year for the 21st century by this technique. PMID:21059941

  8. Geoengineering potential of artificially enhanced silicate weathering of olivine.

    PubMed

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A

    2010-11-23

    Geoengineering is a proposed action to manipulate Earth's climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO(2) sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1-5 Pg of C per year for the 21st century by this technique. PMID:21059941

  9. Grasslands, silicate weathering and diatoms: Cause and effect

    SciTech Connect

    Johansson, A.K. . Dept. of Geological Sciences)

    1993-03-01

    Diatoms are silica-limited, photosynthetic, single-celled eukaryotes that today occupy a wide variety of habitats both in freshwater and marine environments. Ultimately the silica they use is derived from the weathering of silicates on land. Although marine diatoms first appear in the Jurassic, the fossil record shows a remarkable correlation between the Mid-Miocene appearance of widespread grasslands and the drastic increase in diatom-rich deposits in freshwater, as well as in marine environments throughout the world. Grasses actively weather silicates, accumulating soluble silica into their leaves. Decomposing grasses release this soluble silica into the soil from whence it is transported into lakes and oceans and made available to diatoms. Grasses also probably increased chemical weathering, and hence the release of soluble silica, in previously weakly vegetated semi-arid areas. Increased weathering of silicates also led to cooler climates as evidenced by the Mid-Miocene [delta][sup 18]O record. The author suggests that the Tertiary expansion of grasslands is responsible for the explosive increase in diversity and abundance of diatoms in the oceans and freshwaters of the Mid-Miocene.

  10. Direct measurement of the combined effects of lichen, rainfall, and temperature on silicate weathering

    SciTech Connect

    Brady, P.V.; Dorn, R.I.; Brazel, A.J.; Clark, J.; Moore, R.B.; Glidewell, T.

    1999-10-01

    A key uncertainty in models of the global carbonate-silicate cycle and long-term climate is the way that silicates weather under different climatologic conditions, and in the presence or absence of organic activity. Digital imaging of basalts in Hawaii resolves the coupling between temperature, rainfall, and weathering in the presence and absence of lichens. Activation energies for abiotic dissolution of plagioclase (23.1 {+-} 2.5 kcal/mol) and olivine (21.3 {+-} 2.7 kcal/mol) are similar to those measured in the laboratory, and are roughly double those measured from samples taken underneath lichen. Abiotic weathering rates appear to be proportional to rainfall. Dissolution of plagioclase and olivine underneath lichen is far more sensitive to rainfall.

  11. UV bluing after Space Weathering of silicates and meteorites

    NASA Astrophysics Data System (ADS)

    Kanuchova, Z.; Brunetto, R.; Fulvio, D.; Strazzulla, G.

    2015-10-01

    Asteroid surface space weathering has been investigated both observationally and experimentally, mostly focusing on the effects on the visible-near infrared (VNIR, 0.4-2.5 ?m) spectral range. Here we present laboratory near-UV (NUV, 200-400 nm) reflectance spectra of ion irradiated (30-400 keV) silicates and meteorites as a simulation of solar wind ion irradiation. These results show that the induced alteration can reproduce the spread observed in the VNIR vs. NUV slope diagram for S-type asteroids. We expect the evidence of weathering processes in the NUV part of spectra before these effects becomes observable at the longer wavelengths [1].

  12. Z .Journal of Geochemical Exploration 62 1998 149159 Volcanic and anthropogenic contributions to global weathering

    E-print Network

    Thomas, Ellen

    of carbonate-to-silicate rock weathering. The theoretically predicted flux of silica from chemical weathering Elsevier Science B.V. All rights reserved. Keywords: chemical weathering; degassing; SO ; paleoatmosphere to global weathering budgets J.C. Varekamp ) , E. Thomas 1 Department of Earth and EnÕironmental Sciences

  13. An Evaluation of Ethyl Silicate-Based Grouts for Weathered Silicate Stones

    NASA Astrophysics Data System (ADS)

    Dolph, Brittany Helen

    Culturally significant monuments made of weathered siliceous stone often display sub-surface condition issues such as cracks and voids. These issues require grouts that are ideally compatible with the composition and properties of the substrate. Based on the successful application of ethyl silicates as consolidants in recent literature, this study examines possible formulation pathways for the development of a grout incorporating ethyl silicate. Tetraethylorthosilicate (TEOS), dibutyltin dilaurate (DBTL) as a catalyst, silicone oil (PDMS), various grades of ground quartz, sepiolite, and hollow glass spheres were used in differing concentrations to create samples. These were visually and physically assessed on workability, separation, shrinkage, cracking, strength, and flexibility. Quantitative analysis was performed on selected formulations using UV-Vis-NIR reflectance spectroscopy in coordination with a weight loss experiment to investigate kinetics, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). Successful formulations tended to include oligomeric TEOS, crushed quartz of mixed grades, sepiolite powder, and PDMS, and show promise for future investigations.

  14. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA

    NASA Astrophysics Data System (ADS)

    Fortner, S. K.; Lyons, W. B.; Carey, A. E.; Shipitalo, M. J.; Welch, S. A.; Welch, K. A.

    2012-03-01

    Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologic timescales. Natural landscapes have been reshaped into agricultural ones to meet food needs for growing world populations. These processes modify soil properties, alter hydrology, affect erosion, and consequently impact water-soil-rock interactions such as chemical weathering. Dissolved silica (DSi), Ca2+, Mg2+, NO3-, and total alkalinity were measured in water samples collected from five small (0.0065 to 0.383 km2) gauged watersheds at the North Appalachian Experimental Watershed (NAEW) near Coshocton, Ohio, USA. The sampled watersheds in this unglaciated region include: a forested site (70+ year stand), mixed agricultural use (corn, forest, pasture), an unimproved pasture, tilled corn, and a recently (<3 yr) converted no-till corn field. The first three watersheds had perennial streams, but the two corn watersheds only produced runoff during storms and snowmelt. For the perennial streams, total discharge was an important control of dissolved silicate transport. Median DSi yields (2210-3080 kg km-2 yr-1) were similar to the median of annual averages between 1979-2009 for the much larger Ohio-Tennessee River Basin (2560 kg km-2 yr-1). Corn watersheds, which only had surface runoff, had substantially lower DSi yields (<530 kg km-2 yr-1) than the perennial-flow watersheds. The lack of contributions from Si-enriched groundwater largely explained their much lower DSi yields with respect to sites having baseflow. A significant positive correlation between the molar ratio of (Ca2++Mg2+)/alkalinity to DSi in the tilled corn and the forested site suggested, however, that silicate minerals weathered as alkalinity was lost via enhanced nitrification resulting from fertilizer additions to the corn watershed and from leaf litter decomposition in the forest. This same relation was observed in the Ohio-Tennessee River Basin where dominant landuse types include both agricultural lands receiving nitrogenous fertilizers and forests. Greater gains in DSi with respect to alkalinity losses in the Ohio-Tennessee River Basin than in the NAEW sites suggested that soils derived from younger Pleistocene glacial-till may yield more DSi relative to nitrogenous fertilizer applications than the older NAEW soils. Because silicate weathering occurs via acids released from nitrification, CO2 consumption estimates based on the assumption that silicate weathers via carbonic acid alone may be especially over-estimated in fertilized agricultural watersheds with little baseflow (i.e. 67 % overestimated in the corn till watershed). CO2 consumption estimates based on silicate weathering may be as much as 20 % lower than estimates derived from carbonic acid weathering alone for the Ohio-Tennessee River Basin between 1979-2009. Globally, this may mean that younger landscapes with soils favorable for agriculture are susceptible to fertilizer-enhanced silicate weathering. Increases in silicate weathering, however, may be offset by shifts in hydrology resulting from agricultural land management practices or even from soil silica losses in response to repeated acidification.

  15. Sodium-calcium ion exchange in the weathering of shales: Implications for global weathering budgets

    SciTech Connect

    Cerling, T.E.; Pederson, B.L. ); Von Damm, K.L. )

    1989-06-01

    Unpolluted rivers and streams that drain marine shales show an excess of sodium compared to chloride and a deficiency of calcium and magnesium compared to sulfate and alkalinity. This is due in part to cation exchange of sodium for divalent cations on clay minerals. Consideration of the global weathering budget suggest that up to 34% of the sodium in the total dissolved stream load may be due to cation exchange rather than sodium production via silicate dissolution weathering reactions. These results suggest that the weather budgets for sodium and calcium are in need of revision because of the inclusion of cation-exchange processes in the weathering cycle. This implies that silicate dissolution is less important in determining the composition of global river water than was previously thought.

  16. Tectonic and climatic controls on long-term silicate weathering in Asia since 5 Ma

    E-print Network

    Clift, Peter

    Tectonic and climatic controls on long-term silicate weathering in Asia since 5 Ma Shiming Wan,1 tectonic deforma- tion, climate, atmospheric CO2 concentrations and conti- nental weathering and erosion of paleo-climate and pCO2, the history of long- term silicate weathering in the Himalaya and Tibetan

  17. The time scale of the silicate weathering negative feedback on atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Colbourn, G.; Ridgwell, A.; Lenton, T. M.

    2015-05-01

    The ultimate fate of CO2 added to the ocean-atmosphere system is chemical reaction with silicate minerals and burial as marine carbonates. The time scale of this silicate weathering negative feedback on atmospheric pCO2 will determine the duration of perturbations to the carbon cycle, be they geological release events or the current anthropogenic perturbation. However, there has been little previous work on quantifying the time scale of the silicate weathering feedback, with the primary estimate of 300-400 kyr being traceable to an early box model study by Sundquist (1991). Here we employ a representation of terrestrial rock weathering in conjunction with the "GENIE" (Grid ENabled Integrated Earth system) model to elucidate the different time scales of atmospheric CO2 regulation while including the main climate feedbacks on CO2 uptake by the ocean. In this coupled model, the main dependencies of weathering—runoff, temperature, and biological productivity—were driven from an energy-moisture balance atmosphere model and parameterized plant productivity. Long-term projections (1 Myr) were conducted for idealized scenarios of 1000 and 5000 PgC fossil fuel emissions and their sensitivity to different model parameters was tested. By fitting model output to a series of exponentials we determined the e-folding time scale for atmospheric CO2 drawdown by silicate weathering to be ˜240 kyr (range 170-380 kyr), significantly less than existing quantifications. Although the time scales for reequilibration of global surface temperature and surface ocean pH are similar to that for CO2, a much greater proportion of the peak temperature anomaly persists on this longest time scale; ˜21% compared to ˜10% for CO2.

  18. Long-term Stability of Global Erosion Rates and1 Weathering during late Cenozoic Cooling2

    E-print Network

    Willenbring, Jeb F.

    1 of 18 Long-term Stability of Global Erosion Rates and1 Weathering during late Cenozoic Cooling2 3 and is7 removed from the atmosphere by silicate rock weathering and organic carbon8 burial. This balance of continental11 rock weathering and erosion1,2 are superimposed on fluctuations in organic12 carbon burial3

  19. Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event)

    NASA Astrophysics Data System (ADS)

    Lechler, Maria; Pogge von Strandmann, Philip A. E.; Jenkyns, Hugh C.; Prosser, Giacomo; Parente, Mariano

    2015-12-01

    An abrupt rise in temperature, forced by a massive input of CO2 into the atmosphere, is commonly invoked as the main trigger for Oceanic Anoxic Events (OAEs). Global warming initiated a cascade of palaeoenvironmental perturbations starting with increased continental weathering and an accelerated hydrological cycle that delivered higher loads of nutrients to coastal areas, stimulating biological productivity. The end-result was widespread anoxia and deposition of black shales: the hallmarks of OAEs. In order to assess the role of weathering as both an OAE initiator and terminator (via CO2 sequestration) during the Early Aptian OAE 1a (Selli Event, ?120 Ma) the isotopic ratio of lithium isotopes was analysed in three sections of shallow-marine carbonates from the Pacific and Tethyan realms and one basinal pelagic section from the Tethyan domain. Because the isotopic composition of lithium in seawater is largely controlled by continental silicate weathering and high- and low-temperature alteration of basaltic material, a shift to lighter ?7Li values is expected to characterize OAEs. The studied sections illustrate this phenomenon: ?7Li values decrease to a minimum coincident with the negative carbon-isotope excursion that effectively records the onset of OAE 1a. A second negative ?7Li excursion occurs coeval with the minimum in strontium isotopes after the event. The striking similarity to the strontium-isotope record argues for a common driver. The formation and destruction (weathering) of an oceanic LIP could account for the parallel trend in both isotope systems. The double-spike in lithium isotopes is probably related to a change in weathering congruencies. Such a chemostratigraphy is consistent with the hypothesis that an increase in silicate weathering, in conjunction with organic-carbon burial, led to drawdown of atmospheric CO2 during the early Aptian OAE 1a.

  20. The effect of land plants on weathering rates of silicate minerals

    NASA Astrophysics Data System (ADS)

    Drever, James I.

    1994-05-01

    Land plants and their associated microbiota directly affect silicate mineral weathering in several ways: by generation of chelating ligands, by modifying pH through production of CO 2 or organic acids, and by altering the physical properties of a soil, particularly the exposed surface areas of minerals and the residence time of water. In laboratory experiments far from equilibrium, 1 mM oxalate (a strong chelator of Al) has a negligible effect on the dissolution rate of alkali feldspars, but some effect on calcic feldspars and olivine. By analogy to oxalate, the overall effect of organic ligands on the weathering rate of silicate minerals in nature is likely to be small, except perhaps in microenvironments adjacent to roots and fungal hyphae. The effect of pH on silicate mineral dissolution rate depends on pH: below pH 4-5, the rate increases with decreasing pH, in the circumneutral region the rate is pH-independent, and at pH values above around 8 the rate increases with increasing pH. Vegetation should thus cause an increase in weathering rate through the pH effect only where the pH is below 4-5. As an overall generalization, the effect of plants on weathering rate through changes in soil-solution chemistry is probably small for granitic rocks; it may be greater for more mafic rocks. It is the release of Ca and Mg from mafic rocks that has the greatest influence on the global CO 2 budget. The effect of changes in soil physical properties on weathering rate can be major. By binding fine particles, plants can greatly increase weathering rates in areas of high physical erosion. Where erosion rates are lower, the effect of plants is less clear. On long timescales plants may decrease chemical weathering by binding secondary products and isolating unweathered minerals from meteoric water. A major unknown in estimating the effect of the advent of land plants on weathering rates is the nature (thickness, particle size distribution, permeability) of the regolith on the pre-Silurian continents. The indirect effect of vegetation through changing the regional distribution of precipitation may be as important as the direct effects.

  1. Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering

    NASA Astrophysics Data System (ADS)

    Roy, S.; Gaillardet, J.; Allègre, C. J.

    1999-05-01

    This study focuses on the chemistry of the Seine river system, one of the major rivers in Europe, and constitutes the first geochemical investigation of both suspended and dissolved loads of this river. The Seine river drains a typical Mesozoic-Cenozoic sedimentary basin: the Paris basin, constituted of limestones mixed or interbedded with terrigenous sediments derived from the paleoreliefs bordering the Mesozoic and Cenozoic seas. In the context of quantifying the global influence of carbonate and silicate weathering on atmospheric CO 2 consumption, the Seine river offers the possibility of examining weathering rates in a flat sedimentary environment, under temperate climatic conditions. One of the major problems associated with the Seine river, as with many temperate rivers, is pollution. We propose, in this paper, 2 approaches in order to correct the dissolved load of the Seine river for anthropogenic inputs and to calculate weathering rates of carbonates and silicates. The first uses the dissolved load of rivers and tries to allocate the different solutes to different sources. A mixing model, based on elemental ratios, is established and solved by an inversion technique. The second approach consists in using the suspended load geochemistry. Under steady state conditions, we show that the geochemistry of suspended sediments makes it possible to estimate the amount of solutes released during the chemical weathering of silicates, and thus to calculate weathering rates of silicates. The total dissolved load of the Seine river at Paris can be decomposed into 2% of solutes derived from natural atmospheric sources, 7% derived from anthropogenic atmospheric sources, 6% derived from agriculture, 3% derived from communal inputs, and 82% of solutes derived from rock weathering. During high floods, the contribution of atmospheric and agriculture inputs predominates. The weathering rate of carbonates is estimated to be 48 t/km 2/yr (25 mm/1000 yr). Only 10% of carbonates are transported in a solid form, the rest being transported in solution. CO 2 consumption by carbonate weathering approaches 400 × 10 3 mol/km 2/yr. In the Seine river at Paris, about 2-3 mg/l of dissolved cations are found to originate from the chemical weathering of silicates. By taking dissolved silica into accounts, the total dissolved load derived from silicate weathering is about 6-7 mg/l. This value is minimal because biological uptake of silica probably occur in the Seine river. The chemical weathering rate of aluminosilicates is estimated to be 2 t/km 2/yr . The ratio of physical over chemical weathering of silicates range between 1 and 3 and the total (chemical and physical) erosion rates of sedimentary silicates are about 2-3 mm/kyr. The CO 2 consumption by silicate weathering 15-24 × 10 3 mol/km 2/yr and is independent of dissolved silica concentration. Silicate consumption is thus 20 times less than carbonate consumption in the Paris basin. Compared to the neighboring granitic areas, the sedimentary region drained by the Seine river has 2 to 3 times lower CO 2 consumption rates. We attribute this difference to the cation-depleted nature of the Seine basin aluminosilicates, which are of sedimentary origin. At a world scale, the chemical denudation rates found for the Seine basin are very low and comparable to those given for tropical lowland rivers draining silicates, such as the rivers of the Congo and Amazon basins, in spite of huge climatic differences. We attribute this similarity to the low mechanical denudation that characterizes these two types of regions.

  2. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA

    NASA Astrophysics Data System (ADS)

    Fortner, S. K.; Lyons, W. B.; Carey, A. E.; Shipitalo, M. J.; Welch, S. A.; Welch, K. A.

    2011-09-01

    Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologic timescales. Natural landscapes have been reshaped into agricultural ones to meet food needs for growing world populations. These processes modify soil properties, alter hydrology, affect erosion, and consequently impact water-soil-rock interactions such as chemical weathering. Dissolved silica (DSi), Ca2+, Mg2+, NO3-, and total alkalinity were measured in water samples collected from five small (0.65 to 38.3 ha) gauged watersheds at the North Appalachian Experimental Watershed (NAEW) near Coshocton, Ohio, USA. The sampled watersheds in this unglaciated region include: a forested site (70+ yr stand), mixed agricultural use (corn, forest, pasture), an unimproved pasture, tilled corn, and a recently (<3 yr) converted no-till corn field. The first three watersheds had perennial streams, but the two corn watersheds only produced runoff during storms and snowmelt. For the perennial streams, total discharge was an important control of dissolved silicate transport. Median DSi yields (22.1-30.8 kg ha-1 a-1) were similar to the median of annual averages between 1979-2009 for the much larger Ohio-Tennessee River Basin (25.6 kg ha-1 a-1). Corn watersheds, which only had surface runoff, had substantially lower DSi yields (<5.3 kg ha-1 a-1) than the perennial-flow watersheds. The lack of contributions from Si-enriched groundwater largely explained their much lower DSi yields with respect to sites having baseflow. A significant positive correlation between the molar ratio of (Ca2+ + Mg2)/alkalinity to DSi in the tilled corn and the forested site suggested, however, that silicate minerals weathered as alkalinity was lost via enhanced nitrification resulting from fertilizer additions to the corn watershed and from leaf litter decomposition in the forest. This same relation was observed in the Ohio-Tennessee River Basin where dominant landuse types include both agricultural lands receiving nitrogenous fertilizers and forests. Greater gains in DSi with respect to alkalinity losses in the Ohio-Tennessee River Basin than in the NAEW sites suggested that soils derived from younger Pleistocene glacial-till may yield more DSi relative to nitrogenous fertilizer applications than the older NAEW soils. Because silicate weathering occurs via acids released from nitrification, CO2 consumption estimates based on the assumption that silicate weathers via carbonic-acid alone may be especially over-estimated in fertilized agricultural watersheds with little baseflow (i.e. 67% overestimated in the corn till watershed). CO2 consumption estimates based on silicate weathering may be as much as an average of 8% lower than estimates derived from carbonic acid weathering alone for the Ohio-Tennessee River Basin between 1979-2009.

  3. Variation in silicate weathering across the Oligocene-Miocene boundary: evidence from lithium and neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Stewart, J.; James, R. H.; Wilson, P. A.; Anand, P.; Edgar, K. M.

    2011-12-01

    Changes in global silicate weathering have a profound effect on the global carbon cycle and Earth's climate on multi-million year timescales. They may also be associated with short-term (<105 yrs) climatic aberrations: for example, temperature anomalies observed across the Oligocene-Miocene (O/M) boundary (~23 Ma) have been linked to changes in silicate rock exposure on Antarctica. To explore this idea further, we present trace element data along with lithium and neodymium isotope data measured in the carbonate tests of O/M-aged planktic foraminifera. These temporal records of the Li and Nd isotopic composition (?7Li and ?Nd) of seawater generated from deep-sea sediment core material (ODP Site 926, Ceara Rise) require large samples of mono-specific foraminifera (~20 mg). Therefore we first assess the geochemical utility of the large, abundant taxa, Dentoglobigerina venezuelana, for the purposes of ?7Li and ?Nd analysis. Three morphotypes of D. venezuelana are defined based on the morphology of the final chamber and aperture architecture. We find that the palaeoecology of these morphotypes based on their Mg/Ca, ?18O, and ?13C compositions is suitably similar to allow them to be grouped for the purpose of generating "sample-hungry" continental weathering records. Because the ?7Li and ?Nd of seawater are influenced by changes in continent-derived fluvial input to the oceans, records of seawater ?7Li and ?Nd have the potential to help constrain past changes in continental weathering. Li isotopes fractionate strongly during weathering processes, with ?7Li values becoming lower as weathering reactions tend towards completion. Nd sourced from ancient continental material typically possesses distinctively unradiogenic compositions (low ?Nd) relative to younger, mantle-derived sources. Finally, local vs. global signals of weathering input can be evaluated through utilisation of the differing oceanic residence times of Li (~1 Myrs) and Nd (~1 kyrs). To this end, we present a 4 Myr isotopic and trace element record for the O/M boundary, and we use these new data to better constrain the links between weathering and climate during this interval of significant climate change.

  4. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering.

    PubMed

    Misra, Sambuddha; Froelich, Philip N

    2012-02-17

    Weathering of uplifted continental rocks consumes carbon dioxide and transports cations to the oceans, thereby playing a critical role in controlling both seawater chemistry and climate. However, there are few archives of seawater chemical change that reveal shifts in global tectonic forces connecting Earth ocean-climate processes. We present a 68-million-year record of lithium isotopes in seawater (?(7)Li(SW)) reconstructed from planktonic foraminifera. From the Paleocene (60 million years ago) to the present, ?(7)Li(SW) rose by 9 per mil (‰), requiring large changes in continental weathering and seafloor reverse weathering that are consistent with increased tectonic uplift, more rapid continental denudation, increasingly incongruent continental weathering (lower chemical weathering intensity), and more rapid CO(2) drawdown. A 5‰ drop in ?(7)Li(SW) across the Cretaceous-Paleogene boundary cannot be produced by an impactor or by Deccan trap volcanism, suggesting large-scale continental denudation. PMID:22282473

  5. Global warming, bad weather, insurance losses and the global economy

    SciTech Connect

    Low, N.C.; Shen, S.

    1996-09-01

    Global warming causes extremely bad weather in the near term. The impact on the insurance industry is described. Why global warming in the near term causes very bad weather is explained. The continuing trend of very bad weather and the future impact on the insurance industry is explored. How very bad weather can affect the global financial market is explained. Taking a historical view of the development of the modern economy, the authors describe in the near term the impact of global warming on the global economy. The long term impact of global warming on the global economy and the human race is explored. Opportunities presented by global warming are described.

  6. Development of a Global Fire Weather Database

    NASA Astrophysics Data System (ADS)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; Pappenberger, F.; Tanpipat, V.; Wang, X.

    2015-06-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC = 1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRA's precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models.

  7. Extreme weather events and global crop production

    NASA Astrophysics Data System (ADS)

    Ray, D. K.; Gerber, J. S.; West, P. C.

    2014-12-01

    Extreme weather events can lead to significant loss in crop production and even trigger global price spikes. However it is still not clear where exactly and what types of extreme events have resulted in sharp declines in crop production. Neither is it clear how frequently such extreme events have resulted in extreme crop production losses. Using extreme event metrics with a newly developed high resolution and long time series of crop statistics database we identify the frequency and type of extreme event driven crop production losses globally at high resolutions. In this presentation we will present our results as global maps identifying the frequency and type of extreme weather events that resulted in extreme crop production losses and quantify the losses. Understanding how extreme events affects crop production is critical for managing risk in the global food system

  8. Control of Regional and Global Weather

    E-print Network

    Alexander Bolonkin

    2007-01-09

    Author suggests and researches a new revolutionary idea for regional and global weather control. He offers to cover cities, bad regions of country, full country or a continent by a thin closed film with control clarity located at a top limit of the Earth troposphere (4 - 6 km). The film is supported at altitude by small additional atmospheric pressure and connected to ground by thin cables. It is known, the troposphere defines the Earth weather. Authors show this closed dome allows to do a full control of the weather in a given region (the day is always fine, the rain is only in night, no strong wind). The average Earth (white cloudy) reflectance equal 0.3 - 0.5. That means the Earth losses about 0.3 - 0.5 of a solar energy. The dome controls the clarity of film and converts the cold regions to subtropics and creates the hot deserts, desolate wildernesses to the prosperous regions with temperate climate. That is a realistic and the cheapest method of the weather control in the Earth at the current time. Key words: Global weather control, gigantic film dome, converting a cold region to subtropics, converting desolate wilderness to a prosperous region.

  9. Satellite Constellation Monitors Global and Space Weather

    NASA Astrophysics Data System (ADS)

    Cheng, Chio-Zong Frank; Kuo, Ying-Hwa; Anthes, Richard A.; Wu, Lance

    2006-04-01

    Six identical microsatellites were successfully launched into a circular low Earth orbit from Vandenberg Air Force Base, Calif., at 0140 UTC on 15 April 2006. Termed the Formosa Satellite 3 and Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) mission, the new constellation's primary science goal is to obtain vertical profiles in near-real time of temperature, pressure, and water vapor in the neutral atmosphere and electron density in the ionosphere. The observations will be used to support operational global weather prediction, climate monitoring and research, space weather forecasting, and ionospheric research.

  10. Global economic impacts of severe Space Weather.

    NASA Astrophysics Data System (ADS)

    Schulte In Den Baeumen, Hagen; Cairns, Iver

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events, and could have substantial impacts on electric power transmission and telecommunication grids. Modern society’s heavy reliance on these domestic and international networks increases our susceptibility to such a severe Space Weather event. Using a new high-resolution model of the global economy we simulate the economic impact of large CMEs for 3 different planetary orientations. We account for the economic impacts within the countries directly affected as well as the post-disaster economic shock in partner economies through international trade. For the CMEs modeled the total global economic impacts would range from US 380 billion to US 1 trillion. Of this total economic shock 50 % would be felt in countries outside the zone of direct impact, leading to a loss in global GDP of 0.1 - 1 %. A severe Space Weather event could lead to global economic damages of the same order as other weather disasters, climate change, and extreme financial crisis.

  11. Climatic and landscape controls on water transit times and silicate mineral weathering in the critical zone

    NASA Astrophysics Data System (ADS)

    Zapata-Rios, Xavier; McIntosh, Jennifer; Rademacher, Laura; Troch, Peter A.; Brooks, Paul D.; Rasmussen, Craig; Chorover, Jon

    2015-08-01

    The critical zone (CZ) can be conceptualized as an open system reactor that is continually transforming energy and water fluxes into an internal structural organization and dissipative products. In this study, we test a controlling factor on water transit times (WTT) and mineral weathering called Effective Energy and Mass Transfer (EEMT). We hypothesize that EEMT, quantified based on local climatic variables, can effectively predict WTT within—and mineral weathering products from—the CZ. This study tests whether EEMT or static landscape characteristics are good predictors of WTT, aqueous phase solutes, and silicate weathering products. Our study site is located around Redondo Peak, a rhyolitic volcanic resurgent dome, in northern New Mexico. At Redondo Peak, springs drain slopes along an energy gradient created by differences in terrain aspect. This investigation uses major solute concentrations, the calculated mineral mass undergoing dissolution, and the age tracer tritium and relates them quantitatively to EEMT and landscape characteristics. We found significant correlations between EEMT, WTT, and mineral weathering products. Significant correlations were observed between dissolved weathering products (Na+ and DIC), 3H concentrations, and maximum EEMT. In contrast, landscape characteristics such as contributing area of spring, slope gradient, elevation, and flow path length were not as effective predictive variables of WTT, solute concentrations, and mineral weathering products. These results highlight the interrelationship between landscape, hydrological, and biogeochemical processes and suggest that basic climatic data embodied in EEMT can be used to scale hydrological and hydrochemical responses in other sites.

  12. Near-ultraviolet bluing after space weathering of silicates and meteorites

    NASA Astrophysics Data System (ADS)

    Kanuchova, Z.; Brunetto, R.; Fulvio, D.; Strazzulla, G.

    2015-09-01

    Asteroid surface space weathering has been investigated both observationally and experimentally, mostly focusing on the effects on the visible-near infrared (VNIR, 0.4-2.5 ?m) spectral range. Here we present laboratory near-ultraviolet (NUV, 200-400 nm) reflectance spectra of ion irradiated (30-400 keV) silicates and meteorites as a simulation of solar wind ion irradiation. These results show that the induced alteration can reproduce the spread observed in the VNIR vs. NUV slope diagram for S-type asteroids. In particular, the well-known spectral reddening effect induced in the VNIR range is accompanied by a less known but stronger bluing effect at NUV wavelengths. Such trend was previously identified by Hendrix and Vilas (Hendrix, A.R., Vilas, F. [2006]. Astron. J., 132, 1396-1404) but only based on the comparison between observations and laboratory spectra of lunar materials. We attribute the NUV bluing, analogously to the VNIR reddening, to the formation of iron nanoparticles accompanied by structural modifications (amorphization) of surface silicates. We expect the evidence of weathering processes in the NUV part of spectra before these effects become observable at longer wavelengths, thus searching for the space weathering effects in the NUV range would allow establishing the extent of space weathering for very young asteroidal families. It will be important to include in future studies the NUV range both in the observations of specific classes of objects (e.g., the Vestoids) and in the laboratory spectra of meteorites and terrestrial analogues before and after space weather processing.

  13. Global weather prediction -Possible developments in the next decades -

    E-print Network

    Begstsson, Lennart

    Global weather prediction -Possible developments in the next decades - Professor Lennart Bengtsson) It is by now almost fifty years since I first read L. F. Richardsons book ,,Weather prediction by numerical in weather and weather prediction I found the book all in all exciting, although quite a bit eccentric

  14. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling.

    PubMed

    Willenbring, Jane K; von Blanckenburg, Friedhelm

    2010-05-13

    Over geologic timescales, CO(2) is emitted from the Earth's interior and is removed from the atmosphere by silicate rock weathering and organic carbon burial. This balance is thought to have stabilized greenhouse conditions within a range that ensured habitable conditions. Changes in this balance have been attributed to changes in topographic relief, where varying rates of continental rock weathering and erosion are superimposed on fluctuations in organic carbon burial. Geological strata provide an indirect yet imperfectly preserved record of this change through changing rates of sedimentation. Widespread observations of a recent (0-5-Myr) fourfold increase in global sedimentation rates require a global mechanism to explain them. Accelerated uplift and global cooling have been given as possible causes, but because of the links between rates of erosion and the correlated rate of weathering, an increase in the drawdown of CO(2) that is predicted to follow may be the cause of global climate change instead. However, globally, rates of uplift cannot increase everywhere in the way that apparent sedimentation rates do. Moreover, proxy records of past atmospheric CO(2) provide no evidence for this large reduction in recent CO(2) concentrations. Here we question whether this increase in global weathering and erosion actually occurred and whether the apparent increase in the sedimentation rate is due to observational biases in the sedimentary record. As evidence, we recast the ocean dissolved (10)Be/(9)Be isotope system as a weathering proxy spanning the past approximately 12 Myr (ref. 14). This proxy indicates stable weathering fluxes during the late-Cenozoic era. The sum of these observations shows neither clear evidence for increased erosion nor clear evidence for a pulse in weathered material to the ocean. We conclude that processes different from an increase in denudation caused Cenozoic global cooling, and that global cooling had no profound effect on spatially and temporally averaged weathering rates. PMID:20463736

  15. Isolation and the interaction between a mineral-weathering Rhizobium tropici Q34 and silicate minerals.

    PubMed

    Wang, Rong Rong; Wang, Qi; He, Lin Yan; Qiu, Gang; Sheng, Xia Fang

    2015-05-01

    The purposes of this study were to isolate and evaluate the interaction between mineral-weathering bacteria and silicate minerals (feldspar and biotite). A mineral-weathering bacterium was isolated from weathered rocks and identified as Rhizobium tropici Q34 based on 16S rRNA gene sequence analysis. Si and K concentrations were increased by 1.3- to 4.0-fold and 1.1- to 1.7-fold in the live bacterium-inoculated cultures compared with the controls respectively. Significant increases in the productions of tartaric and succinic acids and extracellular polysaccharides by strain Q34 were observed in cultures with minerals. Furthermore, significantly more tartaric acid and polysaccharide productions by strain Q34 were obtained in the presence of feldspar, while better growth and more citric acid production of strain Q34 were observed in the presence of biotite. Mineral dissolution experiments showed that the organic acids and polysaccharides produced by strain Q34 were also capable of promoting the release of Si and K from the minerals. The results showed that the growth and metabolite production of strain Q34 were enhanced in the presence of the minerals and different mineral exerted distinct impacts on the growth and metabolite production. The bio-weathering process is probably a synergistic action of organic acids and extracellular polysaccharides produced by the bacterium. PMID:25716616

  16. Temporal and spatial variation of surface reaction rates in porous media: Applications to silicate weathering

    NASA Astrophysics Data System (ADS)

    Ghanbarian, B.; Hunt, A. G.; Skinner, T. E.; Ewing, R. P.

    2013-12-01

    Percolation theory provides a promising framework for modeling transport in heterogeneous porous media, including hydraulic and electrical conductivity, air permeability, gas diffusivity, and solute transport. Using percolation concepts (e.g., critical path analysis, fractal scaling of percolation clusters, and cluster statistics), we developed a physically-based model for predicting solute transport. Our model predicted spatial solute distributions as a function of time, and arrival time distributions as a function of system size. Our solute transport predictions gave good matches to a wide range of experiments. We now apply our solute transport model to silicate weathering. We assume that surface chemical reactions are at equilibrium at the scale of a single pore, but that at larger length scales, reactions are limited by transport of reactants or products. Using results from published field experiments, we find that the temporal and spatial dependence derived from solute velocity successfully predicts the measured time- and length-dependence of reaction rates and weathering of silicate minerals over a wide range of time and length scale. A similar analysis of lab experiments (uranium breakthrough curves measured in two short and long columns from the Hanford site) indicates that normalized reaction rate versus normalized time follow 2D invasion and 3D random percolation.

  17. 40K-40Ca systematics as a Tracer of Silicate Weathering: A Himalayan case study

    NASA Astrophysics Data System (ADS)

    Davenport, Jesse; Caro, Guillaume; France-Lanord, Christian

    2015-04-01

    This study investigates the use of the 40K-40Ca system as a tracer to better quantify the contributions of silicate and carbonate lithologies in the dissolved load of major Himalayan rivers. Previous work using Sr isotopes as a proxy for silicate weathering has been complicated by the redistribution of radiogenic 87Sr between silicate and carbonate lithologies, particularly in the Lesser Himalaya, where dolomites exhibit 87Sr/86Sr ratios as high as 0.85. The 40Ca signature of carbonates, on the other hand, appears to be remarkably resistant to metamorphism and dolomitization [1]. It was therefore anticipated that the 40K-40Ca system could circumvent issues associated with such secondary events, and yield more robust constraints on the relative contribution of silicate vs. carbonate lithologies in dissolved river loads. The main difficulty in applying the 40K-40Ca decay scheme as a tracer lies in the analytical precision required to measure small variations (~1 É?-unit) on the large 40Ca isotope (96.9%). This difficulty can now be overcome using the Finnigan Triton TIMS, which allows measurements of the 40Ca/44Ca ratio with external precision of 0.35 É?-unit in multidynamic mode. Using this method, we generated high-precision 40Ca data on carbonates/dolomites, bedload sediments, dissolved load, and clay samples originating from and representing the main litho-tectonic units of the Himalaya. Our results show that metamorphosed dolomites from the Lesser Himalaya (LH) exhibit no radiogenic 40Ca excess despite highly variable 87Sr/86Sr signatures (0.73-0.85). Thus, all Himalayan carbonates appear to be characterized by a homogeneous É?40Ca=0. In contrast, silicate material is radiogenic, with É?40Ca averaging +1 in the Tethyan Sedimentary Series (TSS), +1.6 in the High Himalaya crystalline (HHC) and +4 É?-units in the LH. Results obtained from a series of 35 Himalayan rivers (including the Brahmaputra, Ganga and its main tributaries) show that É?40Ca in the dissolved load is significantly influenced by silicate weathering, with É?40Ca ranging from +0.1 in rivers draining carbonate dominated catchments to +1.6 É?-units in rivers draining predominantly gneissic catchments of the High Himalaya. No simple relation exists between 87Sr and 40Ca systematics, which likely reflects the decoupling of Rb-Sr and K-Ca systems in LH dolomites. In contrast, 40Ca signatures correlate well with proxies of carbonate weathering such as Ca/Na or Mg/Na ratios. Overall, our results indicate that the 40Ca signature of Himalayan rivers primarily reflects the lithological nature of their erosional source, and highlight the significant contribution of HHC gneisses to the dissolved calcium budget of the Ganga and Brahmaputra. [1] Caro et al. (2010) EPSL 296, 124-132

  18. BET surface area distributions in polar stream sediments: Implications for silicate weathering in a cold-arid environment

    USGS Publications Warehouse

    Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L

    2014-01-01

    BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (<62.5 ?m) sediment from the hyporheic zone of polar glacial streams in the McMurdo Dry Valleys, Antarctica (Wright and Taylor Valleys) exhibit a wide range (2.5–70.6 m2/g) of surface area values. Samples from one (Delta Stream, Taylor Valley) of the four sampled stream transects exhibit high values (up to 70.6 m2/g), which greatly exceed surface area values from three temperate proglacial streams (0.3–12.1 m2/g). Only Clark stream in Wright Valley exhibits a robust trend with distance, wherein surface area systematically decreases (and particle size increases) in the mud fraction downstream, interpreted to reflect rapid dissolution processes in the weathering environment. The remaining transects exhibit a range in variability in surface area distributions along the length of the channel, likely related to variations in eolian input to exposed channel beds, adjacent snow drifts, and to glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.

  19. Silicate Weathering and Pervasive Authigenic Carbonate Precipitation Coupled to Methanogenesis in the Krishna-Godavari Basin, Offshore India

    NASA Astrophysics Data System (ADS)

    Solomon, E. A.; Spivack, A. J.; Kastner, M.; Torres, M. E.

    2014-12-01

    The cycling of methane in marine sediments has been actively studied for the past several decades, but less attention has been paid to the cycling of CO2 produced in methanogenic sediments. The National Gas Hydrate Program Expedition 01 cored 10 sites with the Joides Resolution drillship in the Krishna-Godavari basin, located on the southeastern margin of India. A comprehensive suite of pore water solute concentrations and isotope ratios were analyzed to investigate the distribution and concentration of gas hydrate along the margin, in situ diagenetic and metabolic reactions, fluid migration and flow pathways, and fluid and gas sources. This represents one of the most comprehensive pore water geochemical datasets collected at a continental margin to date, and provides the necessary tracers to better understand the processes and sinks controlling CO2 in margin sediments. Our results show that the CO2 produced through net microbial methanogenesis is effectively neutralized through silicate weathering throughout the sediment column drilled at each site (~100-300 m), buffering the pH of the sedimentary pore water and generating excess alkalinity through the same reaction sequence as continental silicate weathering. Most of the excess alkalinity produced through silicate weathering in the Krishna-Godavari basin is sequestered in Ca- and Fe-carbonates as a result of ubiquitous calcium release from weathering detrital silicates and Fe-reduction within the methanogenic sediments. Formation of secondary hydrous silicates (e.g. smectite) related to incongruent primary silicate dissolution acts as a significant sink for pore water Mg, K, Li, Rb, and B. The consumption of methane through anaerobic oxidation of methane, sequestration of methane in gas hydrate, and sequestration of dissolved inorganic carbon in authigenic carbonates keeps methanogenesis as a thermodynamically feasible catabolic pathway. Our results combined with previous indications of silicate weathering in anoxic sediments in the Sea of Okhotsk, suggest that silicate weathering coupled to microbial methanogenesis should be occurring in continental margins worldwide, providing a net sink of atmospheric CO2 over geologic timescales.

  20. Silicate versus carbonate weathering in Iceland: New insights from Ca isotopes

    NASA Astrophysics Data System (ADS)

    Jacobson, Andrew D.; Grace Andrews, M.; Lehn, Gregory O.; Holmden, Chris

    2015-04-01

    Several studies have measured riverine fluxes of Ca and carbonate alkalinity in Iceland with the aim of quantifying the role of basalt weathering in the long-term carbon cycle. A major assumption is that all of the Ca and alkalinity originates from the dissolution of Ca-bearing silicate minerals, such as plagioclase and clinopyroxene. However, hydrothermal calcite occurs throughout Iceland, and even trace levels are expected to impact river geochemistry owing to the mineral's high solubility and fast dissolution rate. To test this hypothesis, we used a new, high-precision Ca isotope MC-TIMS method (?44/40Ca; 2?SD = ± 0.04 ‰) to trace sources of Ca in Icelandic rivers. We report elemental and Ca isotope data for rivers, high- and low-temperature groundwater, basalt, hydrothermal calcite (including Iceland Spar), and stilbite and heulandite, which are two types of zeolites commonly formed during low-grade metamorphism of basalt. In agreement with previous research, we find that rivers have higher ?44/40Ca values than basalt, with a maximum difference of ?0.40‰. This difference may reflect isotope fractionation in the weathering zone, i.e., preferential uptake of 40Ca during clay mineral formation, adsorption, and other geochemical processes that cycle Ca. However, calcite ?44/40Ca values are also up to ?0.40‰?higher than bedrock values, and on a diagram of ?44/40Ca versus Sr/Ca, nearly all waters plot within a plausible mixing domain bounded by the measured compositions of basalt and calcite, with glacial rivers plotting closer to calcite than non-glacial rivers. Calcite and heulandite form during hydrothermal alteration of basalt in the deep lava pile and often occur together in metabasalts now exposed at the surface. Because heulandite ?44/40Ca values are ?1-2‰?lower than basalt, we suggest that 40Ca uptake by heudlandite explains the relatively high ?44/40Ca values of calcite and that calcite weathering in turn elevates riverine ?44/40Ca values. High mechanical erosion rates are known to facilitate the exposure and weathering of calcite, which explains the isotopic contrast between glacial and non-glacial watersheds. Using a mixing model, we find that calcite weathering provides ?0-65% of the Ca in non-glacial rivers and ?25-90% of the Ca in glacial rivers, with silicate weathering providing the remainder. Icelandic hydrothermal calcite contains mantle carbon. Noting that zeolite facies metamorphism and hydrothermal fluid circulation are ubiquitous characteristics of basaltic eruptions and assuming that hydrothermal calcite in other basaltic settings also contains mantle carbon, we suggest that the contribution of basalt weathering to long-term CO2 drawdown and climate regulation may be less significant than previously realized.

  1. Global chemical weathering and associated P-release

    NASA Astrophysics Data System (ADS)

    Hartmann, Jens; Moosdorf, Nils; Lauerwald, Ronny; Hinderer, Matthias; West, A. Joshua

    2014-05-01

    Chemical weathering releases phosphorus to soils and ecosystems. To improve understanding of the spatial distribution of the global P-release characteristics, a model framework for estimating global chemical weathering rates was coupled with geochemical information. Results suggest that the global soil shielding reduces chemical weathering fluxes by about 44%, compared to an Earth surface with no deeply weathered soils but relatively young rock surfaces (e.g. as in volcanic arc and other tectonically active areas). About 70% of the weathering fluxes globally derive from 10% of the land area, with Southeast Asia being a primary "hot spot" of chemical weathering and for P-release. In contrast, only 50% of runoff is attributed to 10% of the land area; thus the global chemical weathering rating curve is to some extent disconnected from the global runoff curve due to the spatially heterogeneous climate as well as differences in rock and soil properties. In addition to total chemical weathering fluxes, the release of P, a nutrient that controls biological productivity at large spatial scales, is affected by the spatial correlation between runoff, lithology, temperature and soil properties. The areal abundance of deeply weathered soils in Earth's past may have influenced weathering fluxes and P-fuelled biological productivity significantly, specifically in the case of larger climate shifts when high runoff fields shift to areas with thinner soils or areas with more weatherable rocks and relatively increased P-content. This observation may be particularly important for spatially resolved Earth system models targeting geological time scales. The full research text can be found in: Hartmann, J., N. Moosdorf, R. Lauerwald, M. Hinderer, A.J. West (2014) Global chemical weathering and associated P-release - the role of lithology, temperature and soil properties. Chemical Geology 363, 145-163. doi: 10.1016/j.chemgeo.2013.10.025 (open access)

  2. Evidence for stable Sr isotope fractionation by silicate weathering in a small sedimentary watershed in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chao, Hung-Chun; You, Chen-Feng; Liu, Hou-Chun; Chung, Chuan-Hsiung

    2015-09-01

    Radiogenic Sr isotopes (87Sr/86Sr) are robust for provenance identification in hydrology, affected mainly by the age of background lithologies and the degree of chemical weathering. However, there is limited knowledge concerning the fractionation mechanism of stable Sr isotopes (88Sr/86Sr) in rivers. In this study, river water was collected on a weekly to monthly basis throughout dry and wet seasons. Furthermore, to study the variations of radiogenic and stable Sr isotopes during intense weathering, a major flooding event (2000 mm precipitation in three days, Typhoon Morakot), water was captured within a small drainage catchment system (161 km2) along the Hou-ku River in southwestern Taiwan. For a better constraint on the end member compositions, bedload sediments, suspended particles, and several host rocks were sampled for a systematic investigation. The carbonate and silicate phases of these solids were chemically separated. Dissolved major elements indicate that the watersheds were predominated by silicate weathering. Stable Sr isotopes show no significant variation (?88Sr = 0.24-0.31‰) temporally and spatially with an average of 0.28‰. Additionally, all solids showed lower ?88Sr values than the river water while the host rocks had higher ?88Sr values (?88Sr = 0.20-0.26‰) than the residual weathering products (?88Sr = 0.08-0.22‰), indicating preferential leaching of heavy Sr into the hydrosphere and leaving light Sr in the residual solids. Results of laboratory acid leaching experiments reveal that dissolution of high ?88Sr value minerals occurred at an early stage of weathering. The variation of weathering intensity does not alter stable Sr isotopes in silicate weathering dominated river water, which contains higher stable Sr isotopes than the associated sediments. The silicatic sedimentary rocks preferentially released higher stable Sr isotopes into the hydrosphere during chemical weathering, thus leaving lower stable Sr isotopes in the residual solids.

  3. Notes on a Vision for the Global Space Weather Enterprise

    NASA Astrophysics Data System (ADS)

    Head, James N.

    2015-07-01

    Space weather phenomena impacts human civilization on a global scale and hence calls for a global approach to research, monitoring, and operational forecasting. The Global Space Weather Enterprise (GSWE) could be arranged along lines well established in existing international frameworks related to space exploration or to the use of space to benefit humanity. The Enterprise need not establish a new organization, but could evolve from existing international organizations. A GSWE employing open architectural concepts could be arranged to promote participation by all interested States regardless of current differences in science and technical capacity. Such an Enterprise would engender capacity building and burden sharing opportunities.

  4. A 40K-40Ca approach to tracing silicate and carbonate weathering in the Himalayan erosional system

    NASA Astrophysics Data System (ADS)

    Davenport, J.; Caro, G.; France-Lanord, C.

    2014-12-01

    Understanding the effects of chemical erosion on the geologic CO2 cycle and seawater chemistry requires the ability to differentiate between the relative contributions of silicate and carbonate weathering to the dissolved load of rivers. Previous approaches (i.e. major elemental budgets or Sr isotopic compositions) do not always produce a straightforward explanation to the question at hand. This is especially the case in the Himalaya, where Sr isotopic compositions are extreme even in carbonate phases owing to metamorphic redistribution of radiogenic 87Sr. The aim of this study is to investigate a new isotopic approach using the 40K-40Ca system to better quantify the contributions of silicate and carbonate lithologies in the dissolved load of major Himalayan rivers. The silicate upper crust, with a K/Ca ratio of 1, is expected to have developed a radiogenic ?40Ca of ca. +2 ?-units, while marine carbonates are characterized by a homogeneous ? 40Ca=0 [1]. The 40K-40Ca system was therefore expected to produce robust constraints on the relative contribution of silicate vs. carbonate lithologies in dissolved river loads. To this end, we present high precision 40Ca data on river sediments, dissolved river loads and bedrock representative of the main Himalayan formations. Our results show that dolomites from the Lesser Himalaya (LH) exhibit no radiogenic 40Ca excess despite highly variable 87Sr/86Sr signatures (0.73-0.85). In contrast, silicate material is radiogenic, with ?40Ca ranging between +1 in the Tethyan Sedimentary Series (TSS) to +4 ?-units in the LH. Results obtained from a series of 27 Himalayan rivers show that ?40Ca in the dissolved load is significantly influenced by silicate lithologies, with ?40Ca ranging from +0.1 in carbonate dominated catchments to +1.6 ?-units in rivers draining predominantly gneissic catchments of the High Himalaya. Coherent, two end-member mixing trends between ?40Ca and major elements suggest that the 40Ca signature of Himalayan rivers primarily reflects the lithological nature of their erosional source, and highlights the potential of the 40K-40Ca decay scheme as a tracer of silicate weathering. [1] Caro G., Papanastassiou D.A., Wasserburg G.J. 40K-40Ca isotopic constraints on the oceanic calcium cycle. Earth and Planetary Science Letters 2010;296: 124-132.

  5. What is the maximum potential for CO2 sequestration by "stimulated" weathering on the global scale?

    PubMed

    Hartmann, Jens; Kempe, Stephan

    2008-12-01

    Natural chemical weathering of silicate rocks is a significant sink for soil and atmospheric CO(2). Previous work suggested that natural chemical weathering may be stimulated by applying finely ground silicate rocks to agricultural areas or forests [stimulated weathering (SW)]. However, it remained unknown if this technique is practical to sequester globally significant amounts of CO(2) under realistic conditions. Applying first estimates of "normal treatment" amounts from a literature review, we report here a theoretical global maximum potential of 65 10(6) t sequestered C a(-1) if SW would be applied homogenously on all agricultural and forested areas of the world. This is equivalent to 0.9% of anthropogenic CO(2) emissions (reference period 2000-2005). First, however, the assumed application of SW on most of the considered areas is not economically feasible because of logistic issues, and second the net-CO(2) sequestration is expected to amount to only a fraction of consumed CO(2) due to the energy demand of the application itself (currently ~11%). Unless progress in application procedures is provided, the recent realistic maximum net-CO(2)-consumption potential is expected to be much smaller than 0.1% of anthropogenic emissions, and the SW would thus not be one of the key techniques to reduce atmospheric CO(2) concentration. However, literature suggests that for some agricultural areas (croplands) and specifically for rice production areas in humid climates, this SW may be a feasible tool to support international efforts to sequester CO(2). SW may be cost effective for those areas if linked to the CO(2)-emission certificate trade in the future, and increases in crop production are taken into account. PMID:18754090

  6. Global Weather's Problem Child--El Nino.

    ERIC Educational Resources Information Center

    Rasmusson, Eugene M.

    1984-01-01

    Discusses the nature and effects of the El Nino/Southern Oscillation phenomenon. Indicates that new understanding of the phenomenon from current data will provide a global view of climate that has never before been within reach. (JN)

  7. Global Navigation Satellite Systems and Space Weather: Building upon the International Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Gadimova, S. H.; Haubold, H. J.

    2014-01-01

    Globally there is growing interest in better unders tanding solar-terrestrial interactions, particularly patterns and trends in space weather. This is not only for scientific reasons, but also because the reliable operation of ground-based and space-based assets and infrastructures is increasingly dependent on their robustness against the detrimental effects of space weather. Consequently, in 2009, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) proposed the International Space Weather Initiative (ISWI), as a follow-up activity to the International Heliophysical Year 2007 (IHY2007), to be implemented under a three-year workplan from 2010 to 2012 (UNGA Document, A/64/20). All achievements of international cooperation and coordination for ISWI, including instrumentation, data analysis, modelling, education, training and public outreach, are made a vailable through the ISWI Newsletter and the ISWI Website (http://www.iswi-secretariat.org/). Since the last solar maximum in 2000, societal dependence on global navigation satellite system (GNSS) has increased substantially. This situation has brought increasing attention to the subject of space weather and its effects on GNSS systems and users. Results concerning the impact of space weather on GNSS are made available at the Information Portal (www.unoosa.org) of the International Committee on Global Navigati on Satellite Systems (ICG). This paper briefly reviews the curre nt status of ISWI with regard to GNSS.

  8. The contribution of weathering of the main Alpine rivers on the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Donnini, Marco; Probst, Jean-Luc; Probst, Anne; Frondini, Francesco; Marchesini, Ivan; Guzzetti, Fausto

    2013-04-01

    On geological time-scales the carbon fluxes from the solid Earth to the atmosphere mainly result from volcanism and metamorphic-decarbonation processes, whereas the carbon fluxes from atmosphere to solid Earth mainly depend on weathering of silicates and carbonates, biogenic precipitation and removal of CaCO3 in the oceans and volcanic gases - seawater interactions. Quantifying each contribution is critical. In this work, we estimate the atmospheric CO2 uptake by weathering in the Alps, using results of the study of the dissolved loads transported by 33 main Alpine rivers. The chemical composition of river water in unpolluted areas is a good indicator of surface weathering processes (Garrels and Mackenzie, 1971; Drever, 1982; Meybeck, 1984; Tardy, 1986; Berner and Berner, 1987; Probst et al., 1994). The dissolved load of streams originates from atmospheric input, pollution, evaporite dissolution, and weathering of carbonate and silicate rocks, and the application of mass balance calculations allows quantification of the different contributions. In this work, we applied the MEGA (Major Element Geochemical Approach) geochemical code (Amiotte Suchet, 1995; Amiotte Suchet and Probst, 1996) to the chemical compositions of the selected rivers in order to quantify the atmospheric CO2 consumed by weathering in Alpine region. The drainage basins of the main Alpine rivers were sampled near the basin outlets during dry and flood seasons. The application of the MEGA geochemical consisted in several steps. First, we subtracted the rain contribution in river waters knowing the X/Cl (X = Na, K, Mg, Ca) ratios of the rain. Next, we considered that all (Na+K) came from silicate weathering. The average molar ratio Rsil = (Na+K)/(Ca+Mg) for rivers draining silicate terrains was estimated from unpolluted French stream waters draining small monolithological basins (Meybeck, 1986; 1987). For the purpose, we prepared a simplified geo-lithological map of Alps according to the lithological classification of Meybeck (1986, 1987). Then for each basin we computed Rsil weighted average considering the surface and the mean precipitation for the surface area of each lithology. Lastly, we estimated the (Ca+Mg) originating from carbonate weathering as the remaining cations after silicate correction. Depending on time-scales of the phenomena (shorter than about 1 million year i.e., correlated to the short term carbon cycle, or longer than about 1 million years i.e., correlated to the long-term carbon cycle), we considered different equations for the quantification of the atmospheric CO2 consumed by weathering (Huh, 2010). The results show the net predominance of carbonate weathering on fixing atmospheric CO2 and that, considering the long-term carbon cycle, the amount of atmospheric CO2 uptake by weathering is about one order of magnitude lower than considering the short-term carbon cycle. Moreover, considering the short-term carbon cycle, the mean CO2 consumed by Alpine basins is of the same order of magnitude of the mean CO2 consumed by weathering by the 60 largest rivers of the world estimated by Gaillardet et al. (1999). References Amiotte-Suchet, P. "Cycle Du Carbone, Érosion Chimique Des Continents Et Transfert Vers Les Océans." Sci. Géol. Mém. Strasbourg 97 (1995): 156. Amiotte-Suchet, P., and J.-L. Probst. "Origins of dissolved inorganic carbon in the Garonne river waters: seasonal and interannual variations." Sci. Géologiques Bull. Strasbourg 49, no. 1-4 (1996): 101-126. Berner, E.K., and R.A. Berner. The Global Water Cycle. Geochemistry and Environment. Prentice Halle. Engelwood Cliffs, NJ, 1987. Drever, J.L. The Geochemistry of Natural Waters. Prentice Hall, 1982. Gaillardet, J., B. Dupré, P. Louvat, and C.J. Allègre. "Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers." Chemical Geology 159 (1999): 3-30. Garrels, R.M., and F.T. Mackenzie. Evolution of Sedimentary Rocks. New York: W.W. Nortonand, 1971. Huh, Y. "Estimation of Atmospheric CO2 Uptake by Silicat

  9. Economic value of global weather measurements

    SciTech Connect

    Canavan, G.; Butterworth, J.

    1999-02-19

    Global sensor networks could support increased activity in a number of economic sectors. Potential benefits and the predicted time scales required to realize them are estimated. Benefits are particular compelling for fundamental reasons for aviation, hotels and restaurants, natural disasters, construction, agriculture, and apparel. These benefits can be captured by simple logistic approximations.

  10. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

    PubMed Central

    Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.

    2012-01-01

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768

  11. Global Weather Prediction and High-End Computing at NASA

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert; Yeh, Kao-San

    2003-01-01

    We demonstrate current capabilities of the NASA finite-volume General Circulation Model an high-resolution global weather prediction, and discuss its development path in the foreseeable future. This model can be regarded as a prototype of a future NASA Earth modeling system intended to unify development activities cutting across various disciplines within the NASA Earth Science Enterprise.

  12. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO? concentrations compared to primordial values.

    PubMed

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO? concentration. The results show that the expression of CA genes is negatively correlated with both CO? concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO? concentration show that the magnitudes of the effects of CA and CO? concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO? concentration compared to 3 billion years ago. PMID:25583135

  13. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    NASA Astrophysics Data System (ADS)

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago.

  14. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    PubMed Central

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago. PMID:25583135

  15. Impact of derived global weather data on simulated crop yields

    PubMed Central

    van Wart, Justin; Grassini, Patricio; Cassman, Kenneth G

    2013-01-01

    Crop simulation models can be used to estimate impact of current and future climates on crop yields and food security, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete terrestrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated weather station data; or (iii) remotely sensed surface data from satellites. The present study's objective is to evaluate capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs (CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China, USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors (RMSEs) that were 26–72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE of 12–19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural productivity in current and future climates are highly uncertain. An alternative approach would impose a climate scenario on location-specific observed daily weather databases combined with an appropriate upscaling method. PMID:23801639

  16. Impact of derived global weather data on simulated crop yields.

    PubMed

    van Wart, Justin; Grassini, Patricio; Cassman, Kenneth G

    2013-12-01

    Crop simulation models can be used to estimate impact of current and future climates on crop yields and food security, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete terrestrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated weather station data; or (iii) remotely sensed surface data from satellites. The present study's objective is to evaluate capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs (CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China, USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors (RMSEs) that were 26-72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE of 12-19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural productivity in current and future climates are highly uncertain. An alternative approach would impose a climate scenario on location-specific observed daily weather databases combined with an appropriate upscaling method. PMID:23801639

  17. Evaluating sensitivity of silicate mineral dissolution rates to physical weathering using a soil evolution model (SoilGen2.25)

    NASA Astrophysics Data System (ADS)

    Opolot, E.; Finke, P. A.

    2015-08-01

    Silicate mineral dissolution rates depend on the interaction of a number of factors categorized either as intrinsic (e.g. mineral surface area, mineral composition) or extrinsic (e.g. climate, hydrology, biological factors, physical weathering). Estimating the integrated effect of these factors on the silicate mineral dissolution rates therefore necessitates the use of fully mechanistic soil evolution models. This study applies a mechanistic soil evolution model (SoilGen) to explore the sensitivity of silicate mineral dissolution rates to the integrated effect of other soil forming processes and factors. The SoilGen soil evolution model is a 1-D model developed to simulate the time-depth evolution of soil properties as a function of various soil forming processes (e.g. water, heat and solute transport, chemical and physical weathering, clay migration, nutrient cycling and bioturbation) driven by soil forming factors (i.e., climate, organisms, relief, parent material). Results from this study show that although soil solution chemistry (pH) plays a dominant role in determining the silicate mineral dissolution rates, all processes that directly or indirectly influence the soil solution composition equally play an important role in driving silicate mineral dissolution rates. Model results demonstrated a decrease of silicate mineral dissolution rates with time, an obvious effect of texture and an indirect but substantial effect of physical weathering on silicate mineral dissolution rates. Results further indicated that clay migration and plant nutrient recycling processes influence the pH and thus the silicate mineral dissolution rates. Our silicate mineral dissolution rates results fall between field and laboratory rates but were rather high and more close to the laboratory rates owing to the assumption of far from equilibrium reaction used in our dissolution rate mechanism. There is therefore need to include secondary mineral precipitation mechanism in our formulation. In addition, there is need for a more detailed study that is specific to field sites with detailed measurements of silicate mineral dissolution rates, climate, hydrology and mineralogy to enable the calibration and validation of the model. Nevertheless, this study is another important step to demonstrate the critical need to couple different soil forming processes with chemical weathering in order to explain differences observed between laboratory and field measured silicate mineral dissolution rates.

  18. Evaluating sensitivity of silicate mineral dissolution rates to physical weathering using a soil evolution model (SoilGen2.25)

    NASA Astrophysics Data System (ADS)

    Opolot, E.; Finke, P. A.

    2015-11-01

    Silicate mineral dissolution rates depend on the interaction of a number of factors categorized either as intrinsic (e.g. mineral surface area, mineral composition) or extrinsic (e.g. climate, hydrology, biological factors, physical weathering). Estimating the integrated effect of these factors on the silicate mineral dissolution rates therefore necessitates the use of fully mechanistic soil evolution models. This study applies a mechanistic soil evolution model (SoilGen) to explore the sensitivity of silicate mineral dissolution rates to the integrated effect of other soil-forming processes and factors. The SoilGen soil evolution model is a 1-D model developed to simulate the time-depth evolution of soil properties as a function of various soil-forming processes (e.g. water, heat and solute transport, chemical and physical weathering, clay migration, nutrient cycling, and bioturbation) driven by soil-forming factors (i.e., climate, organisms, relief, parent material). Results from this study show that although soil solution chemistry (pH) plays a dominant role in determining the silicate mineral dissolution rates, all processes that directly or indirectly influence the soil solution composition play an equally important role in driving silicate mineral dissolution rates. Model results demonstrated a decrease of silicate mineral dissolution rates with time, an obvious effect of texture and an indirect but substantial effect of physical weathering on silicate mineral dissolution rates. Results further indicated that clay migration and plant nutrient recycling processes influence the pH and thus the silicate mineral dissolution rates. Our silicate mineral dissolution rates results fall between field and laboratory rates but were rather high and more close to the laboratory rates possibly due to the assumption of far from equilibrium reaction used in our dissolution rate mechanism. There is therefore a need to include secondary mineral precipitation mechanism in our formulation. In addition, there is a need for a more detailed study that is specific to field sites with detailed measurements of silicate mineral dissolution rates, climate, hydrology, and mineralogy to enable the calibration and validation of the model. Nevertheless, this study is another important step to demonstrate the critical need to couple different soil-forming processes with chemical weathering in order to explain differences observed between laboratory and field measured silicate mineral dissolution rates.

  19. Entropy Shows that Global Warming Should Cause Increased Variability in the Weather

    E-print Network

    John Michael Williams

    2001-02-21

    Elementary physical reasoning seems to leave it inevitable that global warming would increase the variability of the weather. The first two terms in an approximation to the global entropy are used to show that global warming has increased the free energy available to drive the weather, and that the variance of the weather should increase correspondingly.

  20. Effects of paleogeology, chemical weathering, and climate on the global geochemical cycle of carbon dioxide

    SciTech Connect

    Bluth, G.J.S.

    1990-01-01

    A new method of geologic reconstruction has been developed that determines areas of exposure for each epoch of the Phanerozoic. The paleogeologic maps reveal that the relative proportions of exposed rock types show few abrupt changes through Phanerozoic time, compared to the secular changes in areal extent of rock deposition. Chemical weathering of silicate minerals acts as a long-term transfer of CO{sub 2} from the atmosphere to carbonate sediments via river runoff. Thus, the roles of silicate and non-silicate rocks must be differentiated. Chemical records of streams draining monolithologic basins confirm that the relative weathering susceptibility of lithologies clearly favors carbonate over silicate rocks; surprisingly, among the silicates (clastic and igneous) there is no significant distinction. A survey of basalt catchments shows no correlation between temperature and weathering. Although a warm, wet climate promotes mineral weathering, this may be countered over time by soil shielding of bedrock-groundwater interactions. Mean annual runoff rates are 60% higher at {minus}100 my (using 4x current CO{sub 2}) from CCM simulations but, since Cretaceous land area is 30% smaller, total runoff changes very little. However, in a spatially distributed model of the Earth the annual bicarbonate flux of the Cretaceous (4x CO{sub 2}) is 59 {times} 10{sup 12}eq, compared to 39 {times} 10{sup 12}eq for the present-day. Net HCO{sub 3}{sup {minus}} flux from silicate weathering is 25% higher in the Cretaceous, because the distribution of silicate exposures coincides with regions of intense runoff. Thus, by adding spatial dimensions of runoff and geology to preexisting models, the balance of CO{sub 2} levels by silicate dissolution can be achieved without severe changes in either atmospheric chemistry or rock proportions.

  1. The Global Distribution of Weathered Glass on Mars

    NASA Astrophysics Data System (ADS)

    Horgan, B.; Chojnacki, M.; Lai, J.; Clarke, D.; Joseph, J.; Bell, J. F.

    2012-12-01

    Weathered iron-bearing glass has been identified as the primary phase in over ten million square kilometers of low-albedo deposits in the northern lowlands of Mars, based on visible to near-infrared (0.36-2.5 ?m) spectra from the OMEGA imaging spectrometer onboard Mars Express (Horgan and Bell, 2012). The glass exhibits a concave blue slope in the near-infrared that is consistent with a leached glass rind. This rind is formed during exposure of glass to at least slightly acidic fluids under water-limited conditions, and is commonly observed in dry volcanic environments on Earth. The proposed origin for these materials is explosive volcanism, potentially triggered due to ice-magma interactions in the late Hesperian or Amazonian, followed by post-depositional acidic weathering at the surface. A possible analog for these glass-rich sedimentary terrains are the extensive sand plains, dune fields, and flood plains of Iceland, which are composed of glass-rich (50-90%) volcaniclastic sediments formed during sub-glacial eruptions. The large scale of the martian deposits suggests widespread (and potentially ice-related) explosive volcanism either in the northern lowlands or near the dichotomy boundary. This possibility raises the question: How widespread are glass-rich deposits on Mars globally? To address this question, we have developed a global set of visible/near-infrared OMEGA mosaics at 1 km/pixel resolution. Preliminary analysis of this data set indicates that the concave spectral slope that we associate with weathered glass is present in large portions of the Syrtis Major region, within Mawrth Vallis, and in several dozen dune fields in the regions of Syrtis Major, Arabia Terra, Valles Marineris, and the Argyre Basin. Higher resolution CRISM observations of several Valles Marineris dune fields appear to confirm these preliminary results, as spectra within the dune fields are consistent with iron-bearing glass (Chojnacki et al., 2012). We are currently working to extend this analysis globally, and to search for correlations with deposit types, sediment sources, and predicted distributions of pyroclastic deposits from the major volcanic edifices. However, even these preliminary results strongly suggest that weathered glass is a major component of global martian sediments. An additional source of information regarding the nature and distribution of these deposits is their inferred composition from thermal infrared spectra. The dark, glassy deposits of the northern lowlands are the type locality for the globally distributed TES Surface Type 2 (ST2) composition, which differs from the olivine-basaltic Surface Type 1 by requiring an additional high-silica component. Based on the correlation between the glass and ST2 in the northern lowlands, we hypothesize that the weathered glassy rinds may be the high-silica component of ST2 in this region. In order to determine whether there is a global correlation between ST2 and weathered glass, we have compared global maps of TES ST2 spectral indices with OMEGA weathered glass spectral indices. We have initially focused on dune fields as mapped by the Mars Global Digital Dunes Database, which reveal at least a qualitative correlation between ST2 and weathered glass. Further analysis will produce a quantitative comparison of the two data sets in the dune fields as well as in other low albedo terrains.

  2. Atlas of the global distribution of atmospheric heating during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Schaack, Todd K.; Johnson, Donald R.

    1991-01-01

    Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.

  3. Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA

    SciTech Connect

    Stauffer, R.E.; Wittchen, B.D. )

    1991-11-01

    The authors use data from the US EPA National Surface Water Survey (NSWS), the USGS Bench-Mark Station monitoring program, and the National Acid Deposition Program (NADP) to evaluate the role of weathering in supplying base cations to surface waters in forested, upland, felsic terrane of the northeastern, northcentral, and northwestern (Idaho batholith) US. Multivariate regression reveals differential effects of discharge on individual base cations and silica, but no secular trend in the Ca/Na denudation rate over 24 yr (1965-1988) for the Wild River catchment in the White Mountains. Because the turn-over time for Na in the soil-exchange complex is only ca. 1.5 yr, the long-term behavior of the ratios Ca/Na and Si/Na in waters leaving this catchment indicates that weathering is compensating for base cation export. In every subregion, Ca and Mg concentrations in lakes are statistically linked to nonmarine Na, but the median Ca/Na ratio is greater than the ratio in local plagioclase. The authors attribute this inequality to nonstoichiometric weathering of calcium in juvenile (formerly glaciated) terrane, not to leaching of exchangeable cations by So{sub 4} because intraregional and cross-regional statistical analysis reveals no effect of atmospherically derived sulfate ion. The median base cation denudation rates (meq m{sup {minus}2}yr{sup {minus}1}) for these American lake regions are: Maine granites (108); western Adirondack felsic gneiss (85); Vermilion batholith (42); Idaho batholith (52). The regional rates are high enough to compensate for present wet deposition of acidifying anions except in some vulnerable lake watersheds in the western Adirondacks.

  4. Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA

    NASA Astrophysics Data System (ADS)

    Stauffer, Robert E.; Wittchen, Bruce D.

    1991-11-01

    We use data from the US EPA National Surface Water Survey (NSWS), the USGS Bench-Mark Station monitoring program, and the National Acid Deposition Program (NADP) to evaluate the role of weathering in supplying base cations to surface waters in forested, upland, felsic terrane of the northeastern, northcentral, and northwestern (Idaho batholith) United States. Multivariate regression reveals differential effects of discharge on individual base cations and silica, but no secular trend in the Ca/Na denudation rate over 24 yr (1965-1988) for the Wild River catchment in the White Mountains. Because the turn-over time for Na in the soil-exchange complex is only ca. 1.5 yr, the long-term behavior of the ratios Ca/Na and Si/Na in waters leaving this catchment indicates that weathering is compensating for base cation export. In every subregion, Ca and Mg concentrations in lakes are statistically linked to nonmarine Na, but the median Ca/Na ratio is greater than the ratio in local plagioclase. We attribute this inequality to nonstoichiometric weathering of calcium in juvenile (formerly glaciated) terrane, not to leaching of exchangeable cations by SO 4, because intraregional and cross-regional statistical analysis reveals no effect of atmospherically derived sulfate ion. The median base cation denudation rates (meq m -2 yr -1) for these American lake regions are: Maine granites (108); western Adirondack felsic gneiss (85); Vermilion batholith (42); Idaho batholith (52). The regional rates are high enough to compensate for present wet deposition of acidifying anions except in some vulnerable lake watersheds in the western Adirondacks.

  5. Influence of extreme weather disasters on global crop production.

    PubMed

    Lesk, Corey; Rowhani, Pedram; Ramankutty, Navin

    2016-01-01

    In recent years, several extreme weather disasters have partially or completely damaged regional crop production. While detailed regional accounts of the effects of extreme weather disasters exist, the global scale effects of droughts, floods and extreme temperature on crop production are yet to be quantified. Here we estimate for the first time, to our knowledge, national cereal production losses across the globe resulting from reported extreme weather disasters during 1964-2007. We show that droughts and extreme heat significantly reduced national cereal production by 9-10%, whereas our analysis could not identify an effect from floods and extreme cold in the national data. Analysing the underlying processes, we find that production losses due to droughts were associated with a reduction in both harvested area and yields, whereas extreme heat mainly decreased cereal yields. Furthermore, the results highlight ~7% greater production damage from more recent droughts and 8-11% more damage in developed countries than in developing ones. Our findings may help to guide agricultural priorities in international disaster risk reduction and adaptation efforts. PMID:26738594

  6. How severe Space Weather can disrupt global supply chains

    NASA Astrophysics Data System (ADS)

    Schulte in den Bäumen, H.; Moran, D.; Lenzen, M.; Cairns, I.; Steenge, A.

    2014-06-01

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events that could soon have substantial impacts on electrical grids. Modern society's heavy reliance on these domestic and international networks increases our susceptibility to such a severe space weather event. Using a new high-resolution model of the global economy we simulate the economic impact of strong CMEs for 3 different planetary orientations. We account for the economic impacts within the countries directly affected as well as the post-disaster economic shock in partner economies linked by international trade. For a 1989 Quebec-like event the global economic impacts would range from USD 2.4 to 3.4 trillion over a year. Of this total economic shock about 50% would be felt in countries outside the zone of direct impact, leading to a loss in global GDP of 3.9 to 5.6%. The global economic damages are of the same order as wars, extreme financial crisis and estimated for future climate change.

  7. How severe space weather can disrupt global supply chains

    NASA Astrophysics Data System (ADS)

    Schulte in den Bäumen, H.; Moran, D.; Lenzen, M.; Cairns, I.; Steenge, A.

    2014-10-01

    Coronal mass ejections (CMEs) strong enough to create electromagnetic effects at latitudes below the auroral oval are frequent events that could soon have substantial impacts on electrical grids. Modern society's heavy reliance on these domestic and international networks increases our susceptibility to such a severe space-weather event. Using a new high-resolution model of the global economy, we simulate the economic impact of strong CMEs for three different planetary orientations. We account for the economic impacts within the countries directly affected, as well as the post-disaster economic shock in partner economies linked by international trade. For a 1989 Quebec-like event, the global economic impacts would range from USD 2.4 to 3.4 trillion over a year. Of this total economic shock, about 50% would be felt in countries outside the zone of direct impact, leading to a loss in global Gross Domestic Product (GDP) of 3.9 to 5.6%. The global economic damage is of the same order as wars, extreme financial crisis and estimated for future climate change.

  8. Transport properties of interfacial Si-rich layers formed on silicate minerals during weathering: Implications for environmental concerns

    NASA Astrophysics Data System (ADS)

    Daval, Damien; Rémusat, Laurent; Bernard, Sylvain; Wild, Bastien; Micha, Jean-Sébastien; Rieutord, François; Fernandez-Martinez, Alejandro

    2015-04-01

    The dissolution of silicate minerals is of primary importance for various processes ranging from chemical weathering to CO2 sequestration. Whether it determines the rates of soil formation, CO2 uptake and its impact on climate change, channeling caused by hydrothermal circulation in reservoirs of geothermal power plants, durability of radioactive waste confinement glasses or geological sequestration of CO2, the same strategy is commonly applied for determining the long term evolution of fluid-rock interactions. This strategy relies on a bottom-up approach, where the kinetic rate laws governing silicate mineral dissolution are determined from laboratory experiments. However, a long-standing problem regarding this approach stems from the observation that laboratory-derived dissolution rates overestimate their field counterparts by orders of magnitude, casting doubt on the accuracy and relevance of predictions based on reactive-transport simulations. Recently [1], it has been suggested that taking into account the formation of amorphous Si-rich surface layers (ASSL) as a consequence of mineral dissolution may contribute to decrease the large gap existing between laboratory and natural rates. Our ongoing study is aimed at deciphering the extent to which ASSL may represent a protective entity which affects the dissolution rate of the underlying minerals, both physically (passivation) and chemically (by promoting the formation of a local chemical medium which significantly differs from that of the bulk solution). Our strategy relies on the nm-scale measurement of the physicochemical properties (diffusivity, thickness and density) of ASSL formed on cleavages of a model mineral (wollastonite) and their evolution as a function of reaction progress. Our preliminary results indicate that the diffusivity of nm-thick ASSL formed on wollastonite surface is ~1,000,000 times smaller than that reported for an aqueous medium, as estimated from the monitoring of the progression of a tracer in nm-thick ASSL by means of nanoSIMS analyses. However, estimated diffusion coefficients remain up to 20 orders of magnitude greater than those corresponding to solid-state diffusion, indicating that such ASSL were not formed through a solid-state transformation of wollastonite. In addition, the estimation of diffusion coefficients of the tracer for samples recovered after two different time durations indicates that such a diffusion coefficient may decrease with time. This result may be explained by the spontaneous evolution of the density of ASSL, which increased as the dissolution reaction proceeds, as shown from modeling of time-resolved in situ X-ray reflectivity spectra obtained on the dissolving surfaces. Overall, these results emphasize the need for the recognition of the importance of the interfacial fluid/mineral medium for adequately modeling the dissolution kinetics of silicate minerals relevant for environmental concerns. [1] Daval, D. et al., 2013. Geochim Cosmochim Acta 107, 121-134.

  9. VISUAL QUERY OF TIME-DEPENDENT 3D WEATHER IN A GLOBAL GEOSPATIAL

    E-print Network

    Shaw, Chris

    1 VISUAL QUERY OF TIME-DEPENDENT 3D WEATHER IN A GLOBAL GEOSPATIAL ENVIRONMENT William Ribarsky for a chapter in a pending book: Mining Spatio-Temporal Information Systems, R. Ladner, K. Shaw, and Mahdi WEATHER IN A GLOBAL GEOSPATIAL ENVIRONMENT William Ribarsky, Nickolas Faust, Zachary Wartell, Christopher

  10. Carbon Dioxide Weathering Flux Since the Last Glacial Maximum to the Present, its Control of River Water Composition, and its Role in the Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Lerman, A.; Wu, L.; MacKenzie, F. T.

    2006-12-01

    A weathering potential ? = (net CO2 consumed)/(HCO3- produced) describes the consumption of CO2 in mineral weathering reactions. Based on the reaction stoichiometry, ? = 0.5 for pure carbonates and 1.0 for the crystalline silicate continental crust, with intermediate values for mixed- mineralogy rocks. Carbon dioxide is the main driver of mineral weathering reactions as an acid derived from the atmosphere and(or) remineralization of organic matter in soil, and it is supplemented by small, but perhaps regionally important, amounts of H2SO4 forming in the oxidation of pyrite. The projected anthropogenic emissions of SO2 to the atmosphere may provide H2SO4 to the continental surface at a rate that is 3 to 5 times greater than its natural production by the oxidation of sedimentary pyrite. The higher H2SO4 input may increase the main ionic concentrations in rivers by ~13%, without significantly affecting the CO2 weathering consumption. Sulfuric acid produces HCO3- or CO2 by reactions with the carbonates. In the global carbon cycle from the Last Glacial Maximum to the present, the CO2 uptake in the weathering layer is comparable to other major fluxes in the atmosphere-land-ocean system. The weathering layer thickness depends on the mineral dissolution rates, reactive mineral surface area, particle size, and rock porosity, not all of which are generally well known. In an average world river, the mass proportions of the main cations and anions differ from those in the weathering source consisting of the sediments and part of the continental crust, because of the differences in mineral solubilities and dissolution rates. A dissolution model of a weathering source (63 weight % average sediment and 37% upper continental crust) gives an average river water composition that agrees very well with the composition ranges of other investigators. This dissolution model gives an average CO2 consumption potential of ? = 0.72 and a sequence of relative stability or persistence in the weathering of the mineral constituents of the sedimentary carbonate, silicate, and evaporite rocks, and the crustal silicates. The calculated CO2 consumption is a weathering flux of 22×1012 mol C/yr, derived mainly from soil-atmosphere CO2 that forms by decomposition of soil organic matter. At the LGM, the consumption rate was smaller, ~13×1012 mol C/yr. Also smaller at the LGM are the computed inorganic and organic carbon transfer rates from land to the ocean, reflecting the lower temperature, smaller land surface area, and smaller phytomass and soil humus reservoirs.

  11. Hydrologic regulation of chemical weathering and the geologic carbon cycle.

    PubMed

    Maher, K; Chamberlain, C P

    2014-03-28

    Earth's temperature is thought to be regulated by a negative feedback between atmospheric CO2 levels and chemical weathering of silicate rocks that operates over million-year time scales. To explain variations in the strength of the weathering feedback, we present a model for silicate weathering that regulates climatic and tectonic forcing through hydrologic processes and imposes a thermodynamic limit on weathering fluxes, based on the physical and chemical properties of river basins. Climate regulation by silicate weathering is thus strongest when global topography is elevated, similar to the situation today, and lowest when global topography is more subdued, allowing planetary temperatures to vary depending on the global distribution of topography and mountain belts, even in the absence of appreciable changes in CO2 degassing rates. PMID:24625927

  12. Do fair weather regions contribute to the global circuit support?

    NASA Astrophysics Data System (ADS)

    Mareev, Evgeny

    2014-05-01

    The role of different generators (thunderstorm clouds, mesoscale convective systems, electrified shower clouds etc.) in the maintaining the ionospheric potential (IP) of the global electric circuit (GEC) and its variation is still insufficiently understood. This paper considers possible approaches to the modeling of GEC generators with particular focus on the planetary boundary layer (PBL), or Austausch, generator, operating in the fair weather regions. It is well known that turbulent convection leads to intensive mixing of charged particles in the PBL and, consequently, to the generation of the vertical electric current. As a rule, this current is directed upward if the positive charge is accumulated near the Earth's surface particularly due to the electrode effect. There is still a great uncertainty concerning the contribution of the PBL generator into the global circuit. This is not only for a lack of data, but also due to the difficulties of theory: the intensity of the generator depends upon the IP, so the search for its contribution into the GEC requires solving a self-consistent problem. We suggest an analytical approach for the calculation of the IP induced by the given electric currents in the atmosphere. The obtained expressions and numerical calculations show that convection amplifies the contributions of thunderstorm/shower-cloud sources, while the value of this amplification varies likely from 10 to 20% depending mainly on the square occupied by intensive convection and the mean thickness of the PBL. It is important that the diurnal motion of the convection area on the Earth's surface may cause regular variations into the IP diurnal variation (reflected in the Carnegie curve), superimposed with the thunderstorm/shower-cloud contributions. It is suggested that the contribution of PBL generator into the GEC potential maximizes when the Pacific ocean surface is sunlit because at this time both conditions of its operation are satisfied: the PBL is unstable; the electrode effect forms over the maximum square because over the land surface this effect is often not developed due to radioactive emanations.

  13. Atmospheric and oceanographic research review, 1978. [global weather, ocean/air interactions, and climate

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.

  14. Stormy Weather: 101 Solutions to Global Climate Change.

    ERIC Educational Resources Information Center

    Dauncey, Guy

    This document presents 101 solutions to global climate change. These solutions are actions that are well suited to every level of society. This book creates awareness about global climate change. The history of Earth and the greenhouse effect are discussed, and explanations and solutions to global climate change are provided including traveling…

  15. Weather.

    ERIC Educational Resources Information Center

    Web Feet K-8, 2000

    2000-01-01

    This subject guide to weather resources includes Web sites, CD-ROMs and software, videos, books, audios, magazines, and professional resources. Related disciplines are indicated, age levels are specified, and a student activity is included. (LRW)

  16. Water - The key to global change. [of weather and climate

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A.

    1988-01-01

    The role of water in processes of global change is discussed. The importance of water in global warming, the loss of biological diversity, the activity of the El Nino southern oscillation, and the melting of polar ice are examined. Plans for a mission to measure tropical rainfall using a two frequency radar, a visible/IR radiometer and a passive microwave radiometer are noted. The way in which global change is affected by changes in patterns of available water is considered.

  17. Seafloor weathering controls on atmospheric CO{sub 2} and global climate

    SciTech Connect

    Brady, P.V.; Gislason, S.R.

    1997-03-01

    Alteration of surficial marine basalts at low temperatures (<40{degrees}C) is a potentially important sink for atmospheric CO{sub 2} over geologic time. Petrologic analyses, thermodynamic calculations, and experimental weathering results point to extensive Ca leaching and consumption of marine CO{sub 2} during alteration. Basalt weathering in seawater-like solutions is sensitive to temperature. The activation energy for initial basalt weathering in seawater is 41-65 U kJ mol{sup -1}. If seafloor weathering temperatures are set by deep ocean fluids under high fluid to rock ratios the feedback between weathering and atmospheric CO{sub 2} is indirect, but sizeable. If the bulk of seafloor weathering occurs in the presence of low-temperature hydrothermal fluids, the weathering feedback depends on the linkage between spreading rates and heat flow. In either case, the primary linkage between seafloor weathering and the global carbon cycle appears to be thermal as opposed to chemical. 81 refs., 4 figs., 2 tabs.

  18. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS

    E-print Network

    Schrijver, Karel

    Understanding space weather to shield society: A global road map for 2015-2025 commissionedSpace Weather and Environment Informatics Lab., National Inst. of Information and Communications Techn., Tokyo Corporation, Chantilly, VA 20151, USA vNOAA Space Weather Prediction Center, USA wSwedish Institute of Space

  19. Understanding space weather to shield society: A global road map for 20152025 commissioned by COSPAR and ILWS

    E-print Network

    Schrijver, Karel

    Understanding space weather to shield society: A global road map for 2015­2025 commissioned. Alberta, Edmonton, AB T6G 2J1, Canada r Space Weather and Environment Informatics Lab., National Inst Science Department/Chantilly, Aerospace Corporation, Chantilly, VA 20151, USA v NOAA Space Weather

  20. Stable runoff and weathering fluxes into the oceans over Quaternary climate cycles

    NASA Astrophysics Data System (ADS)

    von Blanckenburg, Friedhelm; Bouchez, Julien; Ibarra, Daniel E.; Maher, Kate

    2015-07-01

    Throughout the Quaternary period, the Earth’s surface has been subject to large changes in temperature and precipitation associated with fluctuations between glacial and interglacial states that have affected biogeochemical cycling. However, the effect of these climate oscillations on weathering is debated, with climate modelling efforts using empirical relationships between measures of climate and weathering suggesting minimal changes in global weathering rates between these two climate states. The ratio of the cosmogenic isotope 10Be, which is produced in the atmosphere and deposited to the oceans and the land surface, to 9Be, which is introduced to the oceans by the riverine silicate weathering flux, can be used to track relative weathering fluxes. Here we apply this proxy to marine sediment beryllium records spanning the past two million years, and find no detectable shifts in inputs from global silicate weathering into the oceans. Using climate model simulations of the Last Glacial Maximum along with a model for silicate weathering, we find that there was large regional variability in runoff between glacial and interglacial periods, but that this regional variability was insufficient to shift global weathering fluxes. We suggest that this stability in weathering explains the observation that the removal of CO2 from the atmosphere by silicate weathering has been in approximate balance with CO2 degassing over the past 600,000 years.

  1. Modeling extreme "Carrington-type" space weather events using three-dimensional global MHD simulations

    NASA Astrophysics Data System (ADS)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex

    2014-06-01

    There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al. (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst˜=-1600 nT.

  2. Modeling Extreme 'Carrington-Type' Space Weather Events Using Three-dimensional Global MHD Simulations

    NASA Technical Reports Server (NTRS)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex

    2014-01-01

    There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al., (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst approx. = -1600 nT.

  3. Pathways of calcrete development on weathered silicate rocks in Tamil Nadu, India: Mineralogy, chemistry and paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Durand, N.; Gunnell, Y.; Curmi, P.; Ahmad, S. M.

    2006-11-01

    Poorly documented yet spectacularly thick and extensive outcrops of calcrete hardpan occur on gneiss in the semiarid region of Coimbatore, South India. The hardpan caps a series of residual plateaux forming the present-day continental divide and grades into large expanses of Vertisols. Characteristic calcrete and Vertisol profiles were logged along toposequences and sampled for macro- and micromorphological study, and for chemical and mineralogical composition. Strontium isotopic analyses revealed that the calcrete is derived from in situ weathering of Ca-bearing primary minerals of the saprolite, which is rich in ankerite, Ca-amphiboles and Ca-plagioclase. The macroscale analysis revealed a range of facies developed within the gneiss saprolite, but in terms of relative chronology the nodular hardpan has the longest history. Two evolutionary pathways leading to nodular hardpan formation have been established. The first occurs entirely within a vadose environment, whereas the second begins within a phreatic environment before continuing to develop in vadose conditions. The ability to identify and map these generic categories of calcrete constitutes a potential tool for reconstructing paleotopography and paleogroundwater levels. The bedrock-weathering-derived nodular hardpan is blanketed by a laminar facies that correlates with an eolian event with marine Sr signatures. This suggests influx of Ca dust from the Arabian Sea continental shelf during a Pleistocene sea-level low-stand. It defines an important benchmark in the chronology of the area and highlights the potential antiquity of the thick calcrete profiles.

  4. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L.

    1996-01-01

    Mineral weathering rates are determined for a series of soils ranging in age from 0.2-3000 Ky developed on alluvial terraces near Merced in the Central Valley of California. Mineralogical and elemental abundances exhibit time-dependent trends documenting the chemical evolution of granitic sand to residual kaolinite and quartz. Mineral losses with time occur in the order: hornblende > plagioclase > K-feldspar. Maximum volume decreases of >50% occur in the older soils. BET surface areas of the bulk soils increase with age, as do specific surface areas of aluminosilicate mineral fractions such as plagioclase, which increases from 0.4-1.5 m2 g-1 over 600 Ky. Quartz surface areas are lower and change less with time (0.11-0.23 m2 g-1). BET surface areas correspond to increasing external surface roughness (?? = 10-600) and relatively constant internal surface area (??? 1.3 m2 g-1). SEM observations confirm both surface pitting and development of internal porosity. A numerical model describes aluminosilicate dissolution rates as a function of changes in residual mineral abundance, grain size distributions, and mineral surface areas with time. A simple geometric treatment, assuming spherical grains and no surface roughness, predicts average dissolution rates (plagioclase, 10-17.4; K-feldspar, 10-17.8; and hornblende, 10-17.5 mol cm-1 s-1) that are constant with time and comparable to previous estimates of soil weathering. Average rates, based on BET surface area measurements and variable surface roughnesses, are much slower (plagioclase, 10-19.9; K-feldspar, 10-20.5; and hornblende 10-20.1 mol cm-2 s-1). Rates for individual soil horizons decrease by a factor of 101.5 over 3000 Ky indicating that the surface reactivities of minerals decrease as the physical surface areas increase. Rate constants based on BET estimates for the Merced soils are factors of 103-104 slower than reported experimental dissolution rates determined from freshly prepared silicates with low surface roughness (?? <10). This study demonstrates that the utility of experimental rate constants to predict weathering in soils is limited without consideration of variable surface areas and processes that control the evolution of surface reactivity with time.

  5. Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals and industrial wastes as a Novel Carbon Capture and Storage Technology

    NASA Astrophysics Data System (ADS)

    Park, A. H. A.

    2014-12-01

    Increasing concentration of CO2 in the atmosphere is attributed to rising consumption of fossil fuels around the world. The development of solutions to reduce CO2 emissions to the atmosphere is one of the most urgent needs of today's society. One of the most stable and long-term solutions for storing CO2 is via carbon mineralization, where minerals containing metal oxides of Ca or Mg are reacted with CO2 to produce thermodynamically stable Ca- and Mg-carbonates that are insoluble in water. Carbon mineralization can be carried out in-situ or ex-situ. In the case of in-situ mineralization, the degree of carbonation is thought to be limited by both mineral dissolution and carbonate precipitation reaction kinetics, and must be well understood to predict the ultimate fate of CO2 within geological reservoirs. While the kinetics of in-situ mineral trapping via carbonation is naturally slow, it can be enhanced at high temperature and high partial pressure of CO2. The addition of weak organic acids produced from food waste has also been shown to enhance mineral weathering kinetics. In the case of the ex-situ carbon mineralization, the role of these ligand-bearing organic acids can be further amplified for silicate mineral dissolution. Unfortunately, high mineral dissolution rates often lead to the formation of a silica-rich passivation layer on the surface of silicate minerals. Thus, the use of novel solvent mixture that allows chemically catalyzed removal of this passivation layer during enhanced Mg-leaching surface reaction has been proposed and demonstrated. Furthermore, an engineered biological catalyst, carbonic anhydrase, has been developed and evaluated to accelerate the hydration of CO2, which is another potentially rate-limiting step of the carbonation reaction. The development of these novel catalytic reaction schemes has significantly improved the overall efficiency and sustainability of in-situ and ex-situ mineral carbonation technologies and allowed direct capture and storage of CO2 from mixture gas streams eliminating the energy-intensive solvent regeneration and CO2 compression steps.

  6. Recent results from the GISS model of the global atmosphere. [circulation simulation for weather forecasting

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.

    1975-01-01

    Large numerical atmospheric circulation models are in increasingly widespread use both for operational weather forecasting and for meteorological research. The results presented here are from a model developed at the Goddard Institute for Space Studies (GISS) and described in detail by Somerville et al. (1974). This model is representative of a class of models, recently surveyed by the Global Atmospheric Research Program (1974), designed to simulate the time-dependent, three-dimensional, large-scale dynamics of the earth's atmosphere.

  7. GLOBAL CHANGE ECOLOGY N. J. Karberg K. S. Pregitzer J. S. King

    E-print Network

    due to enhanced chemical weathering. The study also demonstrated the close coupling between) in the soil, chemistry of dis- solved inorganic carbonate (DIC) and the rate of min- eral weathering/silicate weathering cycle Introduction Physiological effects of elevated atmospheric CO2 and tropospheric O3 Global CO

  8. An improved technique for global solar radiation estimation using numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Shamim, M. A.; Remesan, R.; Bray, M.; Han, D.

    2015-07-01

    Global solar radiation is the driving force in hydrological cycle especially for evapotranspiration (ET) and is quite infrequently measured. This has led to the reliance on indirect techniques of estimation for data scarce regions. This study presents an improved technique that uses information from a numerical weather prediction (NWP) model (National Centre for Atmospheric Research NCAR's Mesoscale Meteorological model version 5 MM5), for the determination of a cloud cover index (CI), a major factor in the attenuation of the incident solar radiation. The cloud cover index (CI) together with the atmospheric transmission factor (KT) and output from a global clear sky solar radiation were then used for the estimation of global solar radiation for the Brue catchment located in the southwest of England. The results clearly show an improvement in the estimated global solar radiation in comparison to the prevailing approaches.

  9. First report on Cretaceous paleoweathering rates in western Panthalassa: Evidence of global enhancement of continental weathering during OAE 2

    NASA Astrophysics Data System (ADS)

    Ohta, T.

    2013-12-01

    Mid-Cretaceous is characterized by intensified oceanic anoxia (Oceanic Anoxic Events: OAEs) that raised global deposition of organic black shales. Several models have been proposed to explain the cause of the OAEs in conjunction with Cretaceous global warmth, active volcanism, sea-level changes and others. For example, Weissert et al. (1998) proposed a mechanism called 'weathering hypothesis'. In this model, the cause of the OAEs is explained in a following chain reaction, (1) global warmth and increase in atmospheric CO2 enhanced weathering of continental crust, (2) enhanced land weathering led excessive influx of nutrients from continents to oceans, (3) eutrophication enhanced primary productivity, (4) the excessive primary producers consumed dissolved oceanic oxygen that finally led to the OAEs. Several studies, in fact, revealed a causal relation between enhanced weathering and OAEs in northern Tethys region. However, it is necessary to collect worldwide information to unravel the global response of weathering hypothesis as a cause of OAEs. For such reason, the present contribution conducted measurements of the degree of hinterland paleoweathering during OAEs in northern Japan, for the purpose to provide a first report on the relation between continental weathering and OAEs in open ocean, the western Panthalassa Ocean. Aptian to Campanian forearc basin mudstones (Yezo Group) were analyzed by XRF and the degree of hinterland weathering was evaluated by geochemical weathering index (W index; Ohta and Arai, 2007). The W values obtained for the Yezo Group are 30~50, which is equivalent to the W values of recent soils developed in temperate mid-latitude climate. The W values show a fluctuation pattern that is concordant with the Cretaceous paleotemperature changes. This match indicates that the change in paleotemperature governed the weathering rates of East Asian continental crust. In addition, hinterland weathering rates show instantaneous increase during the OAE intervals. Specifically, a clear positive excursion of W value is recorded in the OAE 2 horizon. High-resolution analysis revealed that increase in weathering rate slightly predates the OAE 2, c.a. 100 to 500 ka before the onset of anoxia. Therefore, our results are consistent with the weathering hypothesis in two aspects. As assumed in weathering hypothesis, enhanced hinterland weathering is linked with the OAEs and hinterland weathering precedes the onset of OAEs. Furthermore, our data suggests that, as well as in Tethys Ocean, enhanced hinterland paleoweathering during OAEs also occurred in the open Panathalassa Ocean. This indicates that enhanced hinterland weathering was a global and pervasive event causing OAEs.

  10. Space weathering of silicate regoliths with various FeO contents: New insights from laser irradiation experiments and theoretical spectral simulations

    NASA Astrophysics Data System (ADS)

    Moroz, Lyuba V.; Starukhina, Larissa V.; Rout, Surya Snata; Sasaki, Sho; Helbert, Jörn; Baither, Dietmar; Bischoff, Addi; Hiesinger, Harald

    2014-06-01

    To investigate effects of micrometeorite bombardment on optical spectra and composition of planetary and asteroid regoliths with low Fe contents, we irradiated samples of a Fe-poor plagioclase feldspar (andesine-labradorite) using a nanosecond pulsed laser. We measured reflectance spectra of irradiated and non-irradiated areas of the samples (pressed pellets) between 0.5 and 18 ?m and performed SEM/EDS and TEM studies of the samples. Bulk FeO content of 0.72 wt.% in the samples is comparable, for example, to FeO content in silicates on the surface of Mercury, that was recently mapped by NASA's MESSENGER mission and will be spectrally mapped by remote sensing instruments MERTIS and SYMBIO-SYS on board the ESA BepiColombo spacecraft. We also employed theoretical spectral modeling to characterize optical alteration caused by formation of nano- and submicrometer Fe0 inclusions within space-weathered surface layers and grain rims of a Fe-poor regolith. The laser-irradiated surface layer of plagioclase reveals significant melting, while reflectance spectra show mild darkening and reddening in the visible and near-infrared (VNIR). Our spectral modeling indicates that the optical changes observed in the visible require reduction of bulk FeO (including Fe from mineral impurities found in the sample) and formation of nanophase (np) Fe0 within the glassy surface layer. A vapor deposit, if present, is optically too thin to contribute to optical modification of the investigated samples or to cause space weathering-induced optical alteration of Fe-poor regoliths in general. Due to low thickness of vapor deposits, npFe0 formation in the latter can cause darkening and reddening only for a regolith with rather high bulk Fe content. Our calculations show that only a fraction of bulk Fe is likely to be converted to npFe0 in nanosecond laser irradiation experiments and probably in natural regolith layers modified by space weathering. The previously reported differences in response of different minerals to laser irradiation, and probably to space weathering-induced heating are likely controlled by their differences in electrical conductivities and melting points. For a given mineral grain, its susceptibility to melting/vaporization is also affected by electric conductivities of adjacent grains of other minerals in the regolith. Published nanosecond laser irradiation experiments simulate optical alteration of immature regoliths, since only the uppermost surface layer of an irradiated pellet is subject to heating. According to our calculations, if regolith particles due to impact-induced turnover are mantled with npFe0-bearing rims of the same thickness, then even low contents of Fe similar to our sample or Mercury' surface can cause significant darkening and reddening, provided a melt layer, rather than a thin vapor deposit is involved into npFe0 formation. All spectral effects observed in the thermal infrared (TIR) after irradiation of our feldspar sample are likely to be associated with textural changes. We expect that mineralogical interpretation of the BepiColombo MERTIS infrared spectra of Mercury between 7 and 17 ?m will be influenced mostly by textural effects (porosity, comminution) and impact glass formation rather than formation of npFe0 inclusions.

  11. Continental-pelagic carbonate partitioning and the global carbonate-silicate cycle

    NASA Technical Reports Server (NTRS)

    Caldeira, K.; Rampino, M. R. (Principal Investigator)

    1991-01-01

    A carbonate-silicate geochemical cycle model is developed and used to explore dynamic and climatic consequences of constraints on shallow-water carbonate burial and possible carbon loss to the mantle associated with sea-floor subduction. The model partitions carbonate deposition between shallow-water and deep-water environments and includes carbon fluxes between the mantle and lithosphere. When total lithospheric carbonate mass is constant, there are two stable steady states, one in which the carbonate burial flux is mostly continental and another in which it is mostly pelagic. The continental steady state is characterized by a low metamorphic CO2 flux to the atmosphere and predominantly shallow-water carbonate burial. The pelagic steady state is characterized by a high metamorphic CO2 flux and predominantly deep-water carbonate burial. For reasonable parameter values, when total lithospheric carbonate mass is allowed to vary, the model oscillates between predominantly continental and predominantly pelagic modes. Model results suggest that carbonate deposition patterns established during the Cenozoic may be pushing the Earth system from the continental to the pelagic mode on a time scale of 10(8) yr, with a possible consequent order-of-magnitude increase in the metamorphic CO2 flux to the atmosphere.

  12. Global Weather States and Their Properties from Passive and Active Satellite Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Tselioudis, George; Rossow, William; Zhang, Yuanchong; Konsta, Dimitra

    2013-01-01

    In this study, the authors apply a clustering algorithm to International Satellite Cloud Climatology Project (ISCCP) cloud optical thickness-cloud top pressure histograms in order to derive weather states (WSs) for the global domain. The cloud property distribution within each WS is examined and the geographical variability of each WS is mapped. Once the global WSs are derived, a combination of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical cloud structure retrievals is used to derive the vertical distribution of the cloud field within each WS. Finally, the dynamic environment and the radiative signature of the WSs are derived and their variability is examined. The cluster analysis produces a comprehensive description of global atmospheric conditions through the derivation of 11 WSs, each representing a distinct cloud structure characterized by the horizontal distribution of cloud optical depth and cloud top pressure. Matching those distinct WSs with cloud vertical profiles derived from CloudSat and CALIPSO retrievals shows that the ISCCP WSs exhibit unique distributions of vertical layering that correspond well to the horizontal structure of cloud properties. Matching the derived WSs with vertical velocity measurements shows a normal progression in dynamic regime when moving from the most convective to the least convective WS. Time trend analysis of the WSs shows a sharp increase of the fair-weather WS in the 1990s and a flattening of that increase in the 2000s. The fact that the fair-weather WS is the one with the lowest cloud radiative cooling capability implies that this behavior has contributed excess radiative warming to the global radiative budget during the 1990s.

  13. Association of global weather changes with acute coronary syndromes: gaining insights from clinical trials data

    NASA Astrophysics Data System (ADS)

    Bakal, Jeffrey A.; Ezekowitz, Justin A.; Westerhout, Cynthia M.; Boersma, Eric; Armstrong, Paul W.

    2013-05-01

    The aim of this study was to develop a method for the identification of global weather parameters and patient characteristics associated with a type of heart attack in which there is a sudden partial blockage of a coronary artery. This type of heart attack does not demonstrate an elevation of the ST segment on an electrocardiogram and is defined as a non-ST elevation acute coronary syndrome (NSTE-ACS). Data from the Global Summary of the Day database was linked with the enrollment and baseline data for a phase III international clinical trial in NSTE-ACS in four 48-h time periods covering the week prior to the clinical event that prompted enrollment in the study. Meteorological events were determined by standardizing the weather data from enrollment dates against an empirical distribution from the month prior. These meteorological events were then linked to the patients' geographic region, demographics and comorbidities to identify potential susceptible populations. After standardization, changes in temperature and humidity demonstrated an association with the enrollment event. Additionally there appeared to be an association with gender, region and a history of stroke. This methodology may provide a useful global insight into assessing the biometeorologic component of diseases from international data.

  14. Long Range Weather Prediction III: Miniaturized Distributed Sensors for Global Atmospheric Measurements

    SciTech Connect

    Teller, E; Leith, C; Canavan, G; Wood, L

    2001-11-13

    We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These {approx}$10{sup 2} B annual savings dwarf the <$1 B costs of operating a rational, long-range weather prediction system of the type proposed.

  15. Global silicate mineralogy of the Moon from the Diviner lunar radiometer.

    PubMed

    Greenhagen, Benjamin T; Lucey, Paul G; Wyatt, Michael B; Glotch, Timothy D; Allen, Carlton C; Arnold, Jessica A; Bandfield, Joshua L; Bowles, Neil E; Donaldson Hanna, Kerri L; Hayne, Paul O; Song, Eugenie; Thomas, Ian R; Paige, David A

    2010-09-17

    We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes. PMID:20847266

  16. Weathering along a periglacial stream, Western Greenland

    NASA Astrophysics Data System (ADS)

    Evans, M.; Beal, S.

    2009-12-01

    Chemical weathering of Ca-Mg silicate minerals followed by marine carbonate precipitation is the fundamental sink for atmospheric CO2 in the long-term carbon cycle. Weathering of silicates along the margins of large ice sheets has been implicated in reducing atmospheric CO2 and impacting global climate despite low temperatures and a lack of significant soil cover; conditions not traditionally considered conducive to high reaction rates. Most glacial weathering studies have focused on valley glacier settings, where high water flux and an abundance of clay to silt sized sediments speed the breakdown of silicate minerals. However, little is known about these processes in the marginal zones of the Greenland Ice Sheet (GIS), where recent warming and accelerated melt may lead to profound shifts in hydrology and biogeochemistry. Continued melting should increase water flux and eventually expose additional margin land-surface. It is unclear however if these changing conditions will lead to increased chemical denudation along the margin. An examination of the current weathering regime along the GIS margin is necessary to better constrain estimates of the impacts of changing conditions on future chemical weathering fluxes and related CO2 drawdown. Water, suspended load, and bedload samples were collected in July 2008 along a 6 km stretch of stream exiting the western side of the Greenland Ice Sheet. Waters and sediments were analyzed for major ions, alkalinity and Sr isotopes to determine the character and extent of weathering. Major ion concentrations in the stream waters are very low (0-45 ?M HCO3- and 2-26 ?M for individual salts) with significant dilution by superglacial ice melt. There are no systematic down-stream trends in ion concentrations. Silicate-derived ions make up most of the stream alkalinity indicating little to no carbonate weathering. K+ contributes up to 40% of the cation load and K+/?cation ratios in streams far exceed those in bedload samples. This combined with Sr isotope values suggest preferential weathering of sheet silicates (biotites), typical of other glaciated areas. High SO42- concentrations in the stream samples nearest the ice margin suggest some anoxic subglacial weathering may be occurring. With the majority of solutes produced through preferential breakdown of biotite and anoxic reactions, our data suggest little impact on atmospheric CO2 from weathering along the GIS margin.

  17. Proceedings of the First National Workshop on the Global Weather Experiment: Current Achievements and Future Directions, volume 2, part 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An assessment of the status of research using Global Weather Experiment (GWE) data and of the progress in meeting the objectives of the GWE, i.e., better knowledge and understanding of the atmosphere in order to provide more useful weather prediction services. Volume Two consists of a compilation of the papers presented during the workshop. These cover studies that addressed GWE research objectives and utilized GWE information. The titles in Part 2 of this volume include General Circulation Planetary Waves, Interhemispheric, Cross-Equatorial Exchange, Global Aspects of Monsoons, Midlatitude-Tropical Interactions During Monsoons, Stratosphere, Southern Hemisphere, Parameterization, Design of Observations, Oceanography, Future Possibilities, Research Gaps, with an Appendix.

  18. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    NASA Astrophysics Data System (ADS)

    Le Page, Y.; Morton, D.; Bond-Lamberty, B.; Pereira, J. M. C.; Hurtt, G.

    2015-02-01

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human-Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spread over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.

  19. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    SciTech Connect

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; Pereira, Jose M.; Hurtt, George C.

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spread over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.

  20. Carbon dioxide efficiency of terrestrial enhanced weathering.

    PubMed

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-01

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance. PMID:24597739

  1. A Real-time 3D Visualization of Global MHD Simulation for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Murata, K.; Matsuoka, D.; Kubo, T.; Shimazu, H.; Tanaka, T.; Fujita, S.; Watari, S.; Miyachi, H.; Yamamoto, K.; Kimura, E.; Ishikura, S.

    2006-12-01

    Recently, many satellites for communication networks and scientific observation are launched in the vicinity of the Earth (geo-space). The electromagnetic (EM) environments around the spacecraft are always influenced by the solar wind blowing from the Sun and induced electromagnetic fields. They occasionally cause various troubles or damages, such as electrification and interference, to the spacecraft. It is important to forecast the geo-space EM environment as well as the ground weather forecasting. Owing to the recent remarkable progresses of super-computer technologies, numerical simulations have become powerful research methods in the solar-terrestrial physics. For the necessity of space weather forecasting, NICT (National Institute of Information and Communications Technology) has developed a real-time global MHD simulation system of solar wind-magnetosphere-ionosphere couplings, which has been performed on a super-computer SX-6. The real-time solar wind parameters from the ACE spacecraft at every one minute are adopted as boundary conditions for the simulation. Simulation results (2-D plots) are updated every 1 minute on a NICT website. However, 3D visualization of simulation results is indispensable to forecast space weather more accurately. In the present study, we develop a real-time 3D webcite for the global MHD simulations. The 3-D visualization results of simulation results are updated every 20 minutes in the following three formats: (1)Streamlines of magnetic field lines, (2)Isosurface of temperature in the magnetosphere and (3)Isoline of conductivity and orthogonal plane of potential in the ionosphere. For the present study, we developed a 3-D viewer application working on Internet Explorer browser (ActiveX) is implemented, which was developed on the AVS/Express. Numerical data are saved in the HDF5 format data files every 1 minute. Users can easily search, retrieve and plot past simulation results (3D visualization data and numerical data) by using the STARS (Solar-terrestrial data Analysis and Reference System). The STARS is a data analysis system for satellite and ground-based observation data for solar-terrestrial physics.

  2. Constellation of CubeSats for Realtime Ionospheric E-field Measurements for Global Space Weather

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Swenson, C.; Pilinski, M.; Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.; Azeem, I.; Barjatya, A.

    2014-12-01

    Inexpensive and robust space-weather monitoring instruments are needed to fill upcoming gaps in the Nation's ability to meet requirements for space weather specification and forecasting. Foremost among the needed data are electric fields, since they drive global ionospheric and thermospheric behavior, and because there are relatively few ground-based measurements. We envisage a constellation of CubeSats to provide global coverage of the electric field and its variability. The DICE (Dynamic Ionosphere CubeSat Experiment) mission was a step towards this goal, with two identical 1.5U CubeSats, each carrying three space weather instruments: (1) double probe instruments to measure AC and DC electric fields; (2) Langmuir probes to measure ionospheric electron density, and; (3) a magnetometer to measure field-aligned currents. DICE launched in October 2011. DICE was the first CubeSat mission to observe a Storm Enhanced Density event, fulfilling a major goal of the mission. Due to attitude control anomalies encountered in orbit, the DICE electric field booms have not yet been deployed. Important lessons have been learned for the implementation of a spin-stabilized CubeSat, and the design and performance of the Attitude Determination & Control System (ADCS). These lessons are now being applied to the DIME SensorSat, a risk-reduction mission that is capable of deploying flexible electric field booms up to a distance of 10-m tip-to-tip from a 1.5U CubeSat. DIME will measure AC and DC electric fields, and will exceed several IORD-2 threshold requirements. Ion densities, and magnetic fields will also be measured to characterize the performance of the sensor in different plasma environments. We show the utility of a constellation of electric field measurements, describe the DIME SensorSat, and demonstrate how the measurement will meet or exceed IORD requirements. The reduced cost of these sensors will enable constellations that can, for the first time, adequately resolve the spatial and temporal variability in ionospheric electrodynamics. DICE and DIME are collaborations between ASTRA and Space Dynamics Lab/Utah State University.

  3. Proceedings of the First National Workshop on the Global Weather Experiment: Current Achievements and Future Directions, volume 1

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A summary of the proceedings in which the most important findings stemming from the Global Weather Experiment (GWE) are highlighted, additional key results and recommendations are comered, and the presentations and discussion are summarized. Detailed achievements, unresolved problems, and recommendations are included.

  4. Evaluating a system of systems approach for integrated global weather, climate, and hazard monitoring

    NASA Astrophysics Data System (ADS)

    Birk, Ronald; Baldauf, Brian; Ohlemacher, Rick; Andreoli, Leo

    2008-08-01

    Northrop Grumman Corporation (NGC) provides systems and technologies to ensure national security based on technologies - from undersea to outer space, and in cyberspace. With a heritage of developing and integrating science instruments on space platforms and airborne systems, NGC is conducting analysis of alternatives for a global observing system that integrates data collected from geostationary and polar-orbiting satellites with Unmanned Aerial System (UAS) platforms. This enhanced acquisition of environmental data will feed decision support systems such as the TouchTable ® to deliver improved decision making capabilities. Rapidly fusing and displaying multiple types of weather and ocean observations, imagery, and environmental data with geospatial data to create an integrated source of information for end users such as emergency managers and planners will deliver innovative solutions to improve disaster warning, mitigate disaster impacts, and reduce the loss of life and property. We present analysis of alternatives of combinations of sensor platforms that integrate space and airborne systems with ground and ocean observing sensors and form the basis for vertically integrated global observing systems with the capacity to improve measurements associated with hazard and climate-related uncertainties. The analyses include candidate sensors deployed on various configurations of satellites that include NPOESS, GOES R, and future configurations, augmented by UAS vehicles including Global Hawk, configured to deliver innovative environmental data collection capabilities over a range of environmental conditions, including severe hazards, such as hurricanes and extreme wildland fires. Resulting approaches are evaluated based on metrics that include their technical feasibility, capacity to be integrated with evolving Earth science models and relevant decision support tools, and life cycle costs.

  5. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    DOE PAGESBeta

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; Pereira, Jose M.; Hurtt, George C.

    2015-02-13

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore »over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less

  6. Space Solar Patrol data and changes in weather and climate, including global warming

    NASA Astrophysics Data System (ADS)

    Avakyan, S. V.; Baranova, L. A.; Leonov, N. B.; Savinov, E. P.; Voronin, N. A.

    2010-08-01

    In this paper, the results obtained during the execution of several ISTC projects are presented. The general aim of these projects has been the study of global changes in the environment, connected with solar activity. A brief description of the optical apparatus of the Space Solar Patrol (SSP) developed and built in the framework of the ISTC projects 385, 385.2, 1523 and 2500 is given. The SSP is intended for permanent monitoring of spectra and absolute fluxes of soft x-ray and extreme ultraviolet (x-ray/EUV) radiation from the full disk of the Sun which ionizes the upper atmosphere of the Earth. Permanent solar monitoring in the main part of the ionizing radiation spectra 0.8-115 (119) nm does not exist. The apparatus of the SSP was developed in the years 1996-2005 with multiyear experience of developing such apparatus in S I Vavilov State Optical Institute. The basis of this apparatus is the use of unique detectors of ionizing radiation—open secondary electron multipliers, which are 'solar blind' to near UV, visible and IR radiation from the Sun, and new methodology of these solar spectroradiometric absolute measurements. The prospects are discussed of using the SSP data for the investigation and forecast of the influence of solar variability on the weather and climate including global warming and also on the biosphere including human beings (proposal 3878). This article was originally submitted for inclusion with the papers from the 9th International Symposium on Measurement Science and Intelligent Instruments (ISMTII-2009), published in the May 2010 issue.

  7. Weather Avoidance Guidelines for NASA Global Hawk High-Altitude UAS

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Zipser, Edward J.; Velden, Chris; Monette, Sarah; Heymsfield, Gerry; Braun, Scott; Newman, Paul; Black, Pete; Black, Michael; Dunion, Jason

    2014-01-01

    NASA operates two Global Hawk unmanned aircraft systems for Earth Science research projects. In particular, they are used in the Hurricane and Severe Storm Sentinel (HS3) project during 2012, 2013, and 2014 to take measurements from the environment around tropical cyclones, and from directly above tropical cyclones. There is concern that strict adherence to the weather avoidance rules used in 2012 may sacrifice the ability to observe important science targets. We have proposed modifications to these weather avoidance rules that we believe will improve the ability to observe science targets without compromising aircraft safety. The previous guidelines, used in 2012, specified: Do not approach thunderstorms within 25 nm during flight at FL500 or below. When flying above FL500: Do not approach reported lightning within 25NM in areas where cloud tops are reported at FL500 or higher. Aircraft should maintain at least 10000 ft vertical separation from reported lightning if cloud tops are below FL500. No over-flight of cumulus tops higher than FL500. No flight into forecast or reported icing conditions. No flight into forecast or reported moderate or severe turbulence Based on past experience with high-altitude flights over tropical cyclones, we have recommended changing this guidance to: Do not approach thunderstorms within 25 nm during flight at FL500 or below. Aircraft should maintain at least 5000 ft vertical separation from significant convective cloud tops except: a) When cloud tops above FL500: In the event of reported significant lightning activity or indicators of significant overshooting tops, do not approach within 10-25 nm, depending on pilot discretion and advice from Mission Scientist. b) When cloud tops are below FL500, maintain 10000 ft separation from reported significant lightning or indicators of significant overshooting tops. No flight into forecasted or reported icing conditions. No flight into forecasted or reported moderate or severe turbulence The key changes have to do with overflight of high convective cloud tops and those producing lightning. Experience shows that most tropical oceanic convection (including that in tropical cyclones) is relatively gentle even if the cloud tops are quite high, and can be safely overflown. Exceptions are convective elements producing elevated lightning flash rates (more than just the occasional flash, which would trigger avoidance under the previous rules) and significant overshooting cloud tops.

  8. Application of dynamical systems theory to global weather phenomena revealed by satellite imagery

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel; Tang, Chung-Muh

    1989-01-01

    Theoretical studies of low frequency and seasonal weather variability; dynamical properties of observational and general circulation model (GCM)-generated records; effects of the hydrologic cycle and latent heat release on extratropical weather; and Earth-system science studies are summarized.

  9. Development and Initial Application of the Global-Through-Urban Weather Research1 and Forecasting Model with Chemistry (GU-WRF/Chem)2

    E-print Network

    Nenes, Athanasios

    interactions with meteorology and51 climate and to quantify the impact of global change on urban/regional air unified global-through-urban models,50 GU-WRF/Chem can be applied to simulate air quality and its1 Development and Initial Application of the Global-Through-Urban Weather Research1 and Forecasting

  10. Tropopause folds in ERA-Interim: Global climatology and relation to extreme weather events

    NASA Astrophysics Data System (ADS)

    Škerlak, Bojan; Sprenger, Michael; Pfahl, Stephan; Tyrlis, Evangelos; Wernli, Heini

    2015-05-01

    Tropopause folds are intimately linked to upper level frontogenesis and jet stream dynamics. They play an important role for stratosphere-troposphere exchange, the dynamical coupling of upper and lower tropospheric levels, and for generating severe weather events. This study presents a global climatology of tropopause folds using ERA-Interim reanalysis data from 1979 to 2012 and a refined version of a previously developed 3-D labeling and fold identification algorithm. This algorithm objectively separates stratospheric and tropospheric air in complex situations, e.g., in regions with strong low-level inversions, and in extratropical cyclones where diabatically generated potential vorticity anomalies typically occur. Three classes of tropopause folds are defined (shallow, medium, and deep), and their geographical distribution, vertical extent, and seasonal cycle are investigated. Most shallow folds occur along the subtropical jet stream, in agreement with previous studies. Hot spots of medium and deep tropopause folds are found west of Australia and along the coast of Antarctica in the Southern Hemisphere and around the east coast of North America in the Northern Hemisphere. Seasonal cycles show maxima in winter for all fold classes. Medium and deep folds are frequently associated with surface wind gust and precipitation extremes, as quantified for folds over the southern Indian Ocean. Wind gust extremes occur mainly in an elongated band upstream and equatorward of folds, whereas precipitation extremes occur mainly east and poleward of folds. Overall, in the considered region, about 20% of medium folds and 33% of deep folds are associated with surface wind or precipitation extremes in the vicinity of the fold.

  11. Modeling the weather impact on aviation in a global air traffic model

    NASA Astrophysics Data System (ADS)

    Himmelsbach, S.; Hauf, T.; Rokitansky, C. H.

    2009-09-01

    Weather has a strong impact on aviation safety and efficiency. For a better understanding of that impact, especially of thunderstorms and similar other severe hazards, we pursued a modeling approach. We used the detailed simulation software (NAVSIM) of worldwide air traffic, developed by Rokitansky [Eurocontrol, 2005] and implemented a specific weather module. NAVSIM models each aircraft with its specific performance characteristics separately along preplanned and prescribed routes. The specific weather module in its current version simulates a thunderstorm as an impenetrable 3D object, which forces an aircraft to circumvent the latter. We refer to that object in general terms as a weather object. The Cb-weather object, as a specific weather object, is a heuristic model of a real thunderstorm, with its characteristics based on actually observed satellite and precipitation radar data. It is comprised of an upper volume, mostly the anvil, and a bottom volume, the up- and downdrafts and the lower outflow area [Tafferner and Forster, 2009; Kober and Tafferner 2009; Zinner et al, 2008]. The Cb-weather object is already implemented in NAVSIM, other weather objects like icing and turbulence will follow. This combination of NAVSIM with a weather object allows a detailed investigation of situations where conflicts exist between planned flight routes and adverse weather. The first objective is to simulate the observed circum-navigation in NAVSIM. Real occurring routes will be compared with simulated ones. Once this has successfully completed, NAVSIM offers a platform to assess existing rules and develop more efficient strategies to cope with adverse weather. An overview will be given over the implementation status of weather objects within NAVSIM and first results will be presented. Cb-object data provision by A. Tafferner, C. Forster, T. Zinner, K. Kober, M. Hagen (DLR Oberpfaffenhofen) is greatly acknowledged. References: Eurocontrol, VDL Mode 2 Capacity Analysis through Simulations: WP3.B - NAVSIM Overview and Validation Results, Edition 1.2, 2005 Kober K. and A. Tafferner. Tracking and nowcasting of convective cells using remote sensing data from radar and satellite, Meteorologische Zeitschrift, 1 (No. 18), 75-84, 2009 Tafferner A. and C. Forster, Improvement of thunderstorm hazard information for pilots through a ground based weather information and management system, Eighth USA/Europe Air Traffic Management Research and Development Seminar (submitted), 2009 Zinner, T., H. Mannstein, A. Tafferner. Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data, Meteorol. Atmos. Phys., 101, 191-210, 2008

  12. Constraining the role of early land plants in Palaeozoic weathering and global cooling

    PubMed Central

    Quirk, Joe; Leake, Jonathan R.; Johnson, David A.; Taylor, Lyla L.; Saccone, Loredana; Beerling, David J.

    2015-01-01

    How the colonization of terrestrial environments by early land plants over 400 Ma influenced rock weathering, the biogeochemical cycling of carbon and phosphorus, and climate in the Palaeozoic is uncertain. Here we show experimentally that mineral weathering by liverworts—an extant lineage of early land plants—partnering arbuscular mycorrhizal (AM) fungi, like those in 410 Ma-old early land plant fossils, amplified calcium weathering from basalt grains threefold to sevenfold, relative to plant-free controls. Phosphate weathering by mycorrhizal liverworts was amplified 9–13-fold over plant-free controls, compared with fivefold to sevenfold amplification by liverworts lacking fungal symbionts. Etching and trenching of phyllosilicate minerals increased with AM fungal network size and atmospheric CO2 concentration. Integration of grain-scale weathering rates over the depths of liverwort rhizoids and mycelia (0.1 m), or tree roots and mycelia (0.75 m), indicate early land plants with shallow anchorage systems were probably at least 10-fold less effective at enhancing the total weathering flux than later-evolving trees. This work challenges the suggestion that early land plants significantly enhanced total weathering and land-to-ocean fluxes of calcium and phosphorus, which have been proposed as a trigger for transient dramatic atmospheric CO2 sequestration and glaciations in the Ordovician. PMID:26246550

  13. Constraining the role of early land plants in Palaeozoic weathering and global cooling.

    PubMed

    Quirk, Joe; Leake, Jonathan R; Johnson, David A; Taylor, Lyla L; Saccone, Loredana; Beerling, David J

    2015-08-22

    How the colonization of terrestrial environments by early land plants over 400 Ma influenced rock weathering, the biogeochemical cycling of carbon and phosphorus, and climate in the Palaeozoic is uncertain. Here we show experimentally that mineral weathering by liverworts—an extant lineage of early land plants—partnering arbuscular mycorrhizal (AM) fungi, like those in 410 Ma-old early land plant fossils, amplified calcium weathering from basalt grains threefold to sevenfold, relative to plant-free controls. Phosphate weathering by mycorrhizal liverworts was amplified 9-13-fold over plant-free controls, compared with fivefold to sevenfold amplification by liverworts lacking fungal symbionts. Etching and trenching of phyllosilicate minerals increased with AM fungal network size and atmospheric CO2 concentration. Integration of grain-scale weathering rates over the depths of liverwort rhizoids and mycelia (0.1 m), or tree roots and mycelia (0.75 m), indicate early land plants with shallow anchorage systems were probably at least 10-fold less effective at enhancing the total weathering flux than later-evolving trees. This work challenges the suggestion that early land plants significantly enhanced total weathering and land-to-ocean fluxes of calcium and phosphorus, which have been proposed as a trigger for transient dramatic atmospheric CO2 sequestration and glaciations in the Ordovician. PMID:26246550

  14. Passive millimeter-wave retrieval of global precipitation utilizing satellites and a numerical weather prediction model

    E-print Network

    Surussavadee, Chinnawat

    2007-01-01

    This thesis develops and validates the MM5/TBSCAT/F([lambda]) model, composed of a mesoscale numerical weather prediction (NWP) model (MM5), a two-stream radiative transfer model (TBSCAT), and electromagnetic models for ...

  15. Chemical weathering and CO? consumption in the Lower Mekong River.

    PubMed

    Li, Siyue; Lu, X X; Bush, Richard T

    2014-02-15

    Data on river water quality from 42 monitoring stations in the Lower Mekong Basin obtained during the period 1972-1996 was used to relate solute fluxes with controlling factors such as chemical weathering processes. The total dissolved solid (TDS) concentration of the Lower Mekong varied from 53 mg/L to 198 mg/L, and the median (114 mg/L) was compared to the world spatial median value (127 mg/L). Total cationic exchange capacity (Tz(+)) ranged from 729 to 2,607 ?molc/L, and the mean (1,572 ?molc/L) was 1.4 times higher than the world discharge-weighted average. Calcium and bicarbonate dominated the annual ionic composition, accounting for ~70% of the solute load that equalled 41.2×10(9)kg/y. TDS and major elements varied seasonally and in a predictable way with river runoff. The chemical weathering rate of 37.7t/(km(2)y), with respective carbonate and silicate weathering rates of 27.5t/(km(2) y) (13.8mm/ky) and 10.2t/(km(2) y) (3.8mm/ky), was 1.5 times higher than the global average. The CO2 consumption rate was estimated at 191×10(3)molCO2/(km(2)y) for silicate weathering, and 286×10(3)molCO2/(km(2)y) by carbonate weathering. In total, the Mekong basin consumed 228×10(9)molCO2/y and 152×10(9)molCO2/y by the combined weathering of carbonate and silicate, constituting 1.85% of the global CO2 consumption by carbonate weathering and 1.75% by silicates. This is marginally higher than its contribution to global water discharge ~1.3% and much higher than (more than three-fold) its contribution to world land surface area. Remarkable CO2 consumed by chemical weathering (380×10(9)mol/y) was similar in magnitude to dissolved inorganic carbon as HCO3(-) (370×10(9)mol/y) exported by the Mekong to the South China Sea. In this landscape, atmospheric CO2 consumption by rock chemical weathering represents an important carbon sink with runoff and physical erosion controlling chemical erosion. PMID:24291559

  16. Thermal Expansion Calculation of Silicate Glasses at 210°C, Based on the Systematic Analysis of Global Databases

    SciTech Connect

    Fluegel, Alex

    2010-10-01

    Thermal expansion data for more than 5500 compositions of silicate glasses were analyzed statistically. These data were gathered from the scientific literature, summarized in SciGlass© 6.5, a new version of the well known glass property database and information system. The analysis resulted in a data reduction from 5500 glasses to a core of 900, where the majority of the published values is located within commercial glass composition ranges and obtained over the temperature range 20 to 500°C. A multiple regression model for the linear thermal expansivity at 210°C, including error formula and detailed application limits, was developed based on those 900 core data from over 100 publications. The accuracy of the model predictions is improved about twice compared to previous work because systematic errors from certain laboratories were investigated and corrected. The standard model error (precision) was 0.37 ppm/K, with R² = 0.985. The 95% confidence interval for individual predictions largely depends on the glass composition of interest and the composition uncertainty. The model is valid for commercial silicate glasses containing Na2O, CaO, Al2O3, K2O, MgO, B2O3, Li2O, BaO, ZrO2, TiO2, ZnO, PbO, SrO, Fe2O3, CeO2, fining agents, and coloring and de-coloring components. In addition, a special model for ultra-low expansion glasses in the system SiO2-TiO2 is presented. The calculations allow optimizing the time-temperature cooling schedule of glassware, the development of glass sealing materials, and the design of specialty glass products that are exposed to varying temperatures.

  17. Estimation of confidence intervals of global horizontal irradiance obtained from a weather prediction model

    NASA Astrophysics Data System (ADS)

    Ohtake, Hideaki; Gari da Silva Fonseca, Joao, Jr.; Takashima, Takumi; Oozeki, Takashi; Yamada, Yoshinori

    2014-05-01

    Many photovoltaic (PV) systems have been installed in Japan after the introduction of the Feed-in-Tariff. For an energy management of electric power systems included many PV systems, the forecast of the PV power production are useful technology. Recently numerical weather predictions have been applied to forecast the PV power production while the forecasted values invariably have forecast errors for each modeling system. So, we must use the forecast data considering its error. In this study, we attempted to estimate confidence intervals for hourly forecasts of global horizontal irradiance (GHI) values obtained from a mesoscale model (MSM) de-veloped by the Japan Meteorological Agency. In the recent study, we found that the forecasted values of the GHI of the MSM have two systematical forecast errors; the first is that forecast values of the GHI are depended on the clearness indices, which are defined as the GHI values divided by the extraterrestrial solar irradiance. The second is that forecast errors have the seasonal variations; the overestimation of the GHI forecasts is found in winter while the underestimation of those is found in summer. The information of the errors of the hourly GHI forecasts, that is, confidence intervals of the forecasts, is of great significance for planning the energy management included a lot of PV systems by an electric company. On the PV systems, confidence intervals of the GHI forecasts are required for a pinpoint area or for a relatively large area control-ling the power system. For the relatively large area, a spatial-smoothing method of the GHI values is performed for both the observations and forecasts. The spatial-smoothing method caused the decline of confidence intervals of the hourly GHI forecasts on an extreme event of the GHI forecast (a case of large forecast error) over the relatively large area of the Tokyo electric company (approximately 68 % than for a pinpoint forecast). For more credible estimation of the confidence intervals, it is required to consider the location of the installed PV systems or its capacity over the region.

  18. Estimation of weathering rates and CO2 drawdown based on solute load: Significance of granulites and gneisses dominated weathering in the Kaveri River basin, Southern India

    NASA Astrophysics Data System (ADS)

    Pattanaik, J. K.; Balakrishnan, S.; Bhutani, R.; Singh, P.

    2013-11-01

    The solute load of the Kaveri River (South India) and its tributaries draining diverse Precambrian terrains during pre-monsoon and monsoon periods was determined. Using average annual flow, total drainage area and atmospheric input corrected major ion concentrations of these rivers chemical weathering rates, annual fluxes of different ionic species to the ocean and CO2 consumption rates were estimated. Bicarbonate is the most dominant ion (27-79% of anion budget) in all the river samples collected during monsoon period followed by Ca2+, whereas, in case of pre-monsoon water samples Na+ is the most dominant ion (in meq/l). Two approaches were adopted to estimate silicate and carbonate weathering rates in the drainage basin. At Musuri silicate weathering rate (SWR) is 9.44 ± 0.29 tons/km2/a and carbonate weathering rate (CWR) is 1.46 ± 0.16 tons/km2/a. More than 90% of the total ionic budget is derived from weathering of silicates in the Kaveri basin. CO2 consumption rate in the basin for silicate weathering FCO2sil is 3.83 ± 0.12 × 105 mol/km2/a (upper limit), which is comparable with the Himalayan rivers at upper reaches. For carbonate weathering (FCO2carb) CO2 consumption rate is 0.15 ± 0.03 × 105 mol/km2/a in the Kaveri basin. The lower limit of CO2 consumption rate corrected for H2SO4 during silicate and carbonate weathering is FCO2sil is 3.24 × 1005 mol/km2/a and FCO2carb 0.13 × 105 mol/km2/a respectively. CO2 sequestered due to silicate weathering in the Kaveri basin is 25.41 (±0.82) × 109 mol/a which represents 0.21 (±0.01)% of global CO2 drawdown. This may be due to tropical climatic condition, high rainfall during both SW and NE monsoon and predominance of silicate rocks in the Kaveri basin.

  19. Severe Space Weather Events: Global Geospace Responses to Powerful Solar Wind Drivers (Invited)

    NASA Astrophysics Data System (ADS)

    Baker, D.

    2009-12-01

    Recent international space science programs have made a concerted effort to study activity on the Sun, the propagation of energy bursts from the Sun to near-Earth space, energy coupling into the magnetosphere, and its redistribution and deposition in the upper and middle atmosphere. Extreme solar, geomagnetic and solar wind conditions can be observed by a large international array of satellites and ground-based sensors. We discuss the types of space weather-related problems that have been identified in recent times and consider examples of space weather-induced spacecraft (and ground-based) anomalies and failures that affect both civilian and military systems. Special attention will be given to delineating the specific kinds of geospace responses that occur for different transient solar wind drivers. In this context, we discuss near-term plans to consolidate and integrate understanding as an important component of the community effort to propose technical and operational solutions to space weather problems. I will focus on new scientific advancement that is needed for successful space weather programs and will describe actions that can help assure a good future integrated space weather program.

  20. GEM-AQ/EC, an on-line global multiscale chemical weather modelling system: model development and evaluations of global aerosol climatology

    NASA Astrophysics Data System (ADS)

    Gong, S. L.; Lavoue, D.; Zhao, T. L.; Huang, P.; Kaminski, J. W.

    2012-04-01

    A global air quality modeling system GEM-AQ/EC was developed by implementing tropospheric chemistry and aerosol processes on-line into the Global Environmental Multiscale weather prediction model - GEM. Due to the multi-scale features of the GEM, the integrated model, GEM-AQ/EC, is able to investigate chemical weather at scales from global to urban domains. The current chemical mechanism is comprised of 50 gas-phase species, 116 chemical and 19 photolysis reactions, and is complemented by a sectional aerosol module CAM (The Canadian Aerosol Module) with 5 aerosols types: sulphate, black carbon, organic carbon, sea-salt and soil dust. Monthly emission inventories of black carbon and organic carbon from boreal and temperate vegetation fires were assembled using the most reliable areas burned datasets by countries, from statistical databases and derived from remote sensing products of 1995-2004. The model was run for ten years from from 1995-2004 with re-analyzed meteorology on a global uniform 1 × 1° horizontal resolution domain and 28 hybrid levels extending up to 10 hPa. The simulating results were compared with various observations including surface network around the globe and satellite data. Regional features of global aerosols are reasonably captured including emission, surface concentrations and aerosol optical depth. For various types of aerosols, satisfactory correlations were achieved between modeled and observed with some degree of systematic bias possibly due to large uncertainties in the emissions used in this study. A global distribution of natural aerosol contributions to the total aerosols is obtained and compared with observations.

  1. GEM-AQ/EC, an on-line global multi-scale chemical weather modelling system: model development and evaluation of global aerosol climatology

    NASA Astrophysics Data System (ADS)

    Gong, S. L.; Lavoué, D.; Zhao, T. L.; Huang, P.; Kaminski, J. W.

    2012-09-01

    A global air quality modeling system GEM-AQ/EC was developed by implementing tropospheric chemistry and aerosol processes on-line into the Global Environmental Multiscale weather prediction model - GEM. Due to the multi-scale features of the GEM, the integrated model, GEM-AQ/EC, is able to investigate chemical weather at scales from global to urban domains. The current chemical mechanism is comprised of 50 gas-phase species, 116 chemical and 19 photolysis reactions, and is complemented by a sectional aerosol module CAM (The Canadian Aerosol Module) with 5 aerosols types: sulphate, black carbon, organic carbon, sea-salt and soil dust. Monthly emission inventories of black carbon and organic carbon from boreal and temperate vegetation fires were assembled using the most reliable areas burned datasets by countries, from statistical databases and derived from remote sensing products of 1995-2004. The model was run for ten years from from 1995-2004 with re-analyzed meteorology on a global uniform 1° × 1° horizontal resolution domain and 28 hybrid levels extending up to 10 hPa. The simulating results were compared with various observations including surface network around the globe and satellite data. Regional features of global aerosols are reasonably captured including emission, surface concentrations and aerosol optical depth. For various types of aerosols, satisfactory correlations were achieved between modeled and observed with some degree of systematic bias possibly due to large uncertainties in the emissions used in this study. A global distribution of natural aerosol contributions to the total aerosols is obtained and compared with observations.

  2. World weather program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A brief description of the Global Weather Experiment is presented. The world weather watch program plan is described and includes a global observing system, a global data processing system, a global telecommunication system, and a voluntary cooperation program. A summary of Federal Agency plans and programs to meet the challenges of international meteorology for the two year period, FY 1980-1981, is presented.

  3. The Geobiology of Weathering: a 13th Hypothesis

    E-print Network

    Schwartzman, David

    2015-01-01

    The magnitude of the biotic enhancement of weathering (BEW) has profound implications for the long-term carbon cycle. The BEW ratio is defined as how much faster the silicate weathering carbon sink is under biotic conditions than under abiotic conditions at the same atmospheric pCO2 level and surface temperature. Thus, a 13th hypothesis should be considered in addition to the 12 outlined by Brantley...(2011) regarding the geobiology of weathering: The BEW factor and its evolution over geological time can be inferred from meta-analysis of empirical and theoretical weathering studies. Estimates of the global magnitude of the BEW are presented, drawing from lab, field, watershed data and models of the long-term carbon cycle, with values ranging from one to two orders of magnitude.

  4. Evidence that low-temperature oceanic hydrothermal systems play an important role in the silicate-carbonate weathering cycle and long-term climate regulation

    NASA Astrophysics Data System (ADS)

    Coogan, Laurence A.; Gillis, Kathryn M.

    2013-06-01

    The feedbacks between changes in atmospheric CO2 levels, climate, and CO2 drawdown into rocks are incompletely understood. In particular, the role of the upper oceanic crust in this long-term carbon cycling is debated. Here, a simple model for the precipitation of calcite in the upper oceanic crust is developed with the aim of understanding why Late Mesozoic upper oceanic crust contains several times higher CO2 concentrations (~2.5 wt%) than Cenozoic upper oceanic crust (~0.5 wt%). The modeling shows that neither heating of seawater, nor leaching of Ca from the rock with charge balance maintained by Mg uptake by the rock, can lead to >0.2 wt% CO2 uptake by the oceanic crust. Alkalinity production during fluid-rock reaction in the crust allows substantially more CO2 to be taken up by the crust in calcite, and is consistent with changes in the major element composition of Late Mesozoic upper oceanic crust due to hydrothermal alteration. The higher CO2 content of Late Mesozoic than Cenozoic upper oceanic crust thus requires greater alkalinity production by fluid-rock reactions in the Late Mesozoic. This may have been due to higher bottom water temperature and/or seawater having a different composition leading to different secondary minerals forming in the Late Mesozoic. Irrespective of the mechanism, the negative feedback on atmospheric CO2 levels provided by enhanced hydrothermal CO2 consumption in the Late Mesozoic was of similar magnitude to that from continental weathering.

  5. Development of an integrated chemical weather prediction system for environmental applications at meso to global scales: NMMB/BSC-CHEM

    NASA Astrophysics Data System (ADS)

    Jorba, O.; Pérez, C.; Karsten, K.; Janjic, Z.; Dabdub, D.; Baldasano, J. M.

    2009-09-01

    This contribution presents the ongoing developments of a new fully on-line chemical weather prediction system for meso to global scale applications. The modeling system consists of a mineral dust module and a gas-phase chemistry module coupled on-line to a unified global-regional atmospheric driver. This approach allows solving small scale processes and their interactions at local to global scales. Its unified environment maintains the consistency of all the physico-chemical processes involved. The atmospheric driver is the NCEP/NMMB numerical weather prediction model (Janjic and Black, 2007) developed at National Centers for Environmental Prediction (NCEP). It represents an evolution of the operational WRF-NMME model extending from meso to global scales. Its unified non-hydrostatic dynamical core supports regional and global simulations. The Barcelona Supercomputing Center is currently designing and implementing a chemistry transport model coupled online with the new global/regional NMMB. The new modeling system is intended to be a powerful tool for research and to provide efficient global and regional chemical weather forecasts at sub-synoptic and mesoscale resolutions. The online coupling of the chemistry follows the approach similar to that of the mineral dust module already coupled to the atmospheric driver, NMMB/BSC-DUST (Pérez et al., 2008). Chemical species are advected and mixed at the corresponding time steps of the meteorological tracers using the same numerical scheme. Advection is eulerian, positive definite and monotone. The chemical mechanism and chemistry solver is based on the Kinetic PreProcessor KPP (Damian et al., 2002) package with the main purpose of maintaining a wide flexibility when configuring the model. Such approach will allow using a simplified chemical mechanism for global applications or a more complete mechanism for high-resolution local or regional studies. Moreover, it will permit the implementation of a specific configuration for forecasting applications in regional or global domains. An emission process allows the coupling of different emission inventories sources such as RETRO, EDGAR and GEIA for the global domain, EMEP for Europe and HERMES for Spain. The photolysis scheme is based on the Fast-J scheme, coupled with physics of each model layer (e.g., aerosols, clouds, absorbers as ozone) and it considers grid-scale clouds from the atmospheric driver. The dry deposition scheme follows the deposition velocity analogy for gases, enabling the calculation of deposition fluxes from airborne concentrations. No cloud-chemistry processes are included in the system yet (no wet deposition, scavenging and aqueous chemistry). The modeling system developments will be presented and first results of the gas-phase chemistry at global scale will be discussed. REFERENCES Janjic, Z.I., and Black, T.L., 2007. An ESMF unified model for a broad range of spatial and temporal scales, Geophysical Research Abstracts, 9, 05025. Pérez, C., Haustein, K., Janjic, Z.I., Jorba, O., Baldasano, J.M., Black, T.L., and Nickovic, S., 2008. An online dust model within the meso to global NMMB: current progress and plans. AGU Fall Meeting, San Francisco, A41K-03, 2008. Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael, G.R., 2002. The kinetic preprocessor KPP - A software environment for solving chemical kinetics. Comp. Chem. Eng., 26, 1567-1579. Sandu, A., and Sander, R., 2006. Technical note:Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. Atmos. Chem. and Phys., 6, 187-195.

  6. Research Review: Walter Orr Roberts on the Atmosphere, Global Pollution and Weather Modification

    ERIC Educational Resources Information Center

    Jacobsen, Sally

    1973-01-01

    Global Atmospheric Research Program is envisaged to study various aspects of the environment for the whole globe. Describes programs undertaken and the international problems involved in implementing results of such research on a global level. (PS)

  7. Quantifying the Chemical Weathering Efficiency of Basaltic Catchments

    NASA Astrophysics Data System (ADS)

    Ibarra, D. E.; Caves, J. K.; Thomas, D.; Chamberlain, C. P.; Maher, K.

    2014-12-01

    The geographic distribution and areal extent of rock type, along with the hydrologic cycle, influence the efficiency of global silicate weathering. Here we define weathering efficiency as the production of HCO3- for a given land surface area. Modern basaltic catchments located on volcanic arcs and continental flood basalts are particularly efficient, as they account for <5% of sub-aerial bedrock but produce ~30% of the modern global weathering flux. Indeed, changes in this weathering efficiency are thought to play an important role in modulating Earth's past climate via changes in the areal extent and paleo-latitude of basaltic catchments (e.g., Deccan and Ethiopian Traps, southeast Asia basaltic terranes). We analyze paired river discharge and solute concentration data for basaltic catchments from both literature studies and the USGS NWIS database to mechanistically understand geographic and climatic influences on weathering efficiency. To quantify the chemical weathering efficiency of modern basalt catchments we use solute production equations and compare the results to global river datasets. The weathering efficiency, quantified via the Damköhler coefficient (Dw [m/yr]), is calculated from fitting concentration-discharge relationships for catchments with paired solute and discharge measurements. Most basalt catchments do not demonstrate 'chemostatic' behavior. The distribution of basalt catchment Dw values (0.194 ± 0.176 (1?)), derived using SiO2(aq) concentrations, is significantly higher than global river Dw values (mean Dw of 0.036), indicating a greater chemical weathering efficiency. Despite high Dw values and total weathering fluxes per unit area, many basaltic catchments are producing near their predicted weathering flux limit. Thus, weathering fluxes from basaltic catchments are proportionally less responsive to increases in runoff than other lithologies. The results of other solute species (Mg2+ and Ca2+) are comparable, but are influenced both by the stoichiometry of local primary minerals and secondary clays. Our results provide a framework to interpret how small changes in the areal extent or geographic distribution of basaltic catchments may markedly influence the silicate weathering feedback.

  8. Effects of climate on chemical weathering in watersheds

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.

    1995-01-01

    Climatic effects on chemical weathering are evaluated by correlating variations in solute concentrations and fluxes with temperature, precipitation, runoff, and evapotranspiration (ET) for a worldwide distribution of sixty-eight watersheds underlain by granitoid rock types. Stream solute concentrations are strongly correlated with proportional ET loss, and evaporative concentration makes stream solute concentrations an inapprorpiate surrogate for chemical weathering. Chemical fluxes are unaffected by ET, and SiO2 and Na weathering fluxes exhibit systematic increases with precipitation, runoff, and temperature. However, warm and wet watersheds produce anomalously rapid weathering rates. A proposed model that provides an improved prediction of weathering rates over climatic extremes is the product of linear precipitation and Arrhenius temperature functions. The resulting apparent activation energies based on SiO2 and Na fluxes are 59.4 and 62.5 kJ.mol-1, respectively. The coupling between temperature and precipitation emphasizes the importance of tropical regions in global silicate weathering fluxes, and suggests it is not representative to use continental averages for temperature and precipitation in the weathering rate functions of global carbon cycling and climatic change models. Fluxes of K, Ca, and Mg exhibit no climatic correlation, implying that other processes, such as ion exchange, nutrient cycling, and variations in lithology, obscure any climatic signal. -from Authors

  9. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering

    PubMed Central

    Mills, Benjamin; Lenton, Timothy M.; Watson, Andrew J.

    2014-01-01

    A shift toward higher atmospheric oxygen concentration during the late Proterozoic has been inferred from multiple indirect proxies and is seen by many as a prerequisite for the emergence of complex animal life. However, the mechanisms controlling the level of oxygen throughout the Proterozoic and its eventual rise remain uncertain. Here we use a simple biogeochemical model to show that the balance between long-term carbon removal fluxes via terrestrial silicate weathering and ocean crust alteration plays a key role in determining atmospheric oxygen concentration. This balance may be shifted by changes in terrestrial weatherability or in the generation rate of oceanic crust. As a result, the terrestrial chemical weathering flux may be permanently altered—contrasting with the conventional view that the global silicate weathering flux must adjust to equal the volcanic CO2 degassing flux. Changes in chemical weathering flux in turn alter the long-term supply of phosphorus to the ocean, and therefore the flux of organic carbon burial, which is the long-term source of atmospheric oxygen. Hence we propose that increasing solar luminosity and a decrease in seafloor spreading rate over 1,500–500 Ma drove a gradual shift from seafloor weathering to terrestrial weathering, and a corresponding steady rise in atmospheric oxygen. Furthermore, increased terrestrial weatherability during the late Neoproterozoic may explain low temperature, increases in ocean phosphate, ocean sulfate, and atmospheric oxygen concentration at this time. PMID:24927553

  10. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering.

    PubMed

    Mills, Benjamin; Lenton, Timothy M; Watson, Andrew J

    2014-06-24

    A shift toward higher atmospheric oxygen concentration during the late Proterozoic has been inferred from multiple indirect proxies and is seen by many as a prerequisite for the emergence of complex animal life. However, the mechanisms controlling the level of oxygen throughout the Proterozoic and its eventual rise remain uncertain. Here we use a simple biogeochemical model to show that the balance between long-term carbon removal fluxes via terrestrial silicate weathering and ocean crust alteration plays a key role in determining atmospheric oxygen concentration. This balance may be shifted by changes in terrestrial weatherability or in the generation rate of oceanic crust. As a result, the terrestrial chemical weathering flux may be permanently altered--contrasting with the conventional view that the global silicate weathering flux must adjust to equal the volcanic CO2 degassing flux. Changes in chemical weathering flux in turn alter the long-term supply of phosphorus to the ocean, and therefore the flux of organic carbon burial, which is the long-term source of atmospheric oxygen. Hence we propose that increasing solar luminosity and a decrease in seafloor spreading rate over 1,500-500 Ma drove a gradual shift from seafloor weathering to terrestrial weathering, and a corresponding steady rise in atmospheric oxygen. Furthermore, increased terrestrial weatherability during the late Neoproterozoic may explain low temperature, increases in ocean phosphate, ocean sulfate, and atmospheric oxygen concentration at this time. PMID:24927553

  11. Direct measurement of the combined effects of lichen, rainfall, and temperature onsilicate weathering

    USGS Publications Warehouse

    Brady, P.V.; Dorn, R.I.; Brazel, A.J.; Clark, J.; Moore, R.B.; Glidewell, T.

    1999-01-01

    A key uncertainty in models of the global carbonate-silicate cycle and long-term climate is the way that silicates weather under different climatologic conditions, and in the presence or absence of organic activity. Digital imaging of basalts in Hawaii resolves the coupling between temperature, rainfall, and weathering in the presence and absence of lichens. Activation energies for abiotic dissolution of plagioclase (23.1 ?? 2.5 kcal/mol) and olivine (21.3 ?? 2.7 kcal/mol) are similar to those measured in the laboratory, and are roughly double those measured from samples taken underneath lichen. Abiotic weathering rates appear to be proportional to rainfall. Dissolution of plagioclase and olivine underneath lichen is far more sensitive to rainfall.

  12. Major ion chemistry in the headwaters of the Yamuna river system:. Chemical weathering, its temperature dependence and CO 2 consumption in the Himalaya

    NASA Astrophysics Data System (ADS)

    Dalai, T. K.; Krishnaswami, S.; Sarin, M. M.

    2002-10-01

    The Yamuna river and its tributaries in the Himalaya constitute the Yamuna River System (YRS). The YRS basin has a drainage area and discharge comparable in magnitude to those of the Bhagirathi and the Alaknanda rivers, which merge to form the Ganga at the foothills of the Himalaya. A detailed geochemical study of the YRS was carried out to determine: (i) the relative significance of silicate, carbonate and evaporite weathering in contributing to its major ion composition; (ii) CO 2 consumption via silicate weathering; and (iii) the factors regulating chemical weathering of silicates in the basin. The results show that the YRS waters are mildly alkaline, with a wide range of TDS, ˜32 to ˜620 mg l-1. In these waters, the abundances of Ca, Mg and alkalinity, which account for most of TDS, are derived mainly from carbonates. Many of the tributaries in the lower reaches of the Yamuna basin are supersaturated with calcite. In addition to carbonic acid, sulphuric acid generated by oxidation of pyrites also seems to be supplying protons for chemical weathering. Silicate weathering in YRS basin contributes, on average, ˜25% (molar basis) of total cations on a basin wide scale. Silicate weathering, however, does not seem to be intense in the basin as evident from low Si/(Na*+K) in the waters, ˜1.2 and low values of chemical index of alteration (CIA) in bed sediments, ˜60. CO 2 drawdown resulting from silicate weathering in the YRS basin in the Himalaya during monsoon ranges between (4 to 7) × 10 5 moles km -2 y -1. This is higher than that estimated for the Ganga at Rishikesh for the same season. The CO 2 consumption rates in the Yamuna and the Ganga basins in the Himalaya are higher than the global average value, suggesting enhanced CO 2 drawdown in the southern slopes of the Himalaya. The impact of this enhanced drawdown on the global CO 2 budget may not be pronounced, as the drainage area of the YRS and the Ganga in the Himalaya is small. The CO 2 drawdown by silicates in the YRS basin is marginally higher than the reported values of CO 2 release from oxidation of organic rich sediments, estimated using Re as a proxy. This comparison shows the need to constrain CO 2 sources and sinks better to balance its budget in a regional scale. The results also show that silicate weathering rate in the YRS basin is ˜10 mm ky -1 and on the Ganga basin, it is ˜5 mm ky -1, which are several times lower than the carbonate weathering rates. The significantly higher silicate weathering rate observed in the YRS basin seems to be governed by rapid physical erosion in this region. The apparent activation energy for overall silicate weathering in the YRS basin, derived from Na* and Si concentrations and water temperature, ranges from ˜50 to 80 kJ mol -1. These values are comparable to those reported for granitoid weathering in natural watersheds and feldspar weathering in laboratory experiments. This study brings to light the sources contributing to major ions, enhanced chemical weathering rates in the Yamuna River Basin and interdependence of silicate weathering on physical erosion and temperature.

  13. Space Weather Monitors -- A Global Education and Small Instruments Program for the IHY 2007

    NASA Astrophysics Data System (ADS)

    Scherrer, D. K.; Mitchell, R.; Cohen, M.; Clark, W.; Styner, R.; Roche, A.; Scherrer, P.; Inan, U.; Lee, S.; Winegarden, S.; Tan, J.; Khanal, S.

    2005-12-01

    Earth's ionosphere reacts strongly to the intense x-ray and ultraviolet radiation released by the Sun during solar events and by lightning during thunderstorms. Students around the world can directly monitor and track these sudden ionospheric disturbances (SIDs) by using a receiver to monitor the signal strength from distant VLF transmitters, and noting unusual changes as the waves bounce off the ionosphere. Stanford's Solar Center, in conjunction with the Space, Telecommunications and Radioscience Laboratory and local educators, have developed inexpensive ionospheric disturbance monitors that students can install and use at their local schools. Students "buy in" to the project by building their own antenna, a simple structure costing little and taking a couple hours to assemble. Data collection and analysis is handled by a local PC. Stanford is providing a centralized data repository where students can exchange and discuss data. Two versions of the monitors exist -- a low-cost version (nicknamed "SID") designed to detect solar flares, and a more sensitive version ("AWESOME") that provides both solar and nighttime research-quality data. Both monitors are currently being placed in high schools and community colleges around the US. Students will have the opportunity to work with a researcher "mentor" to collect and interpret data. Our space weather monitors have been chosen as educational and small intruments projects for deployment to 191 countries around the world for the International Heliophysical Year, 2007. Our presentation will focus on the educational aspects of the Space Weather Monitor program.

  14. A Global Analysis of the ZWD/PW Conversion Methods using Radiosonde Observations and Numerical Weather Models

    NASA Astrophysics Data System (ADS)

    Rozsa, S.

    2014-12-01

    Water vapor plays an important role as a basic climate variable in the thermodynamics and dynamics of the storm systems at the atmosphere and in hydrological cycles of local, regional and global scales. Moreover, the distribution of atmospheric water vapor is difficult to determine because of its rapid change in spatial and temporal scales. Atmospheric water vapor can be estimated by the zenith delay derived from ground-based GNSS data. Ground-based GNSS receivers are a valuable source for determining total zenith delay (ZTD) and precipitable water vapor (PW) data for meteorology since they are portable, economic and provide measurements that are not affected by weather conditions. They cannot provide a humidity profile as radiosondes can, however they have the advantage of producing automated continuous data as opposed to operational radiosondes usually providing two measurements in a day. Therefore, tropospheric delay modeling methods for estimating precipitable water vapor using GNSS signals are being developed frequently. Wet and hydrostatic zenith delays can be computed by applying the mapping functions which are mathematical equations using elevation angles. The observed tropospheric delays can be used for monitoring the water vapor content of the troposphere. In several regions of the world GNSS derived products are already used on a routine basis for numerical weather prediction. In this study, PW values obtained from radiosonde profiles and the ones derived from ground-based GNSS data are processed both with BERNESE v5.0 using Niell mapping function and GAMIT/GLOBK using empirical model GPT (Global Pressure and Temperature) are compared with the values computed from radiosonde analysis algorithm under severe storm conditions. In order to convert the ZWD to PW new, locally fitted models are derived using local radiosonde observations and ECMWF model data.

  15. FTIR Spectra of Possible End Products of Martian Surface Weathering

    NASA Astrophysics Data System (ADS)

    Maxe, L. P.

    2008-03-01

    Comparative analysis of IR spectra shows that martian weathering can lead to separating destruction of surface rocks. The semi-cosmic martian weathering results in amorphous silica dust and open unique ferry aluminum/ferry silicate martian rocks.

  16. Weathering and Secondary Minerals in the Martian Meteorite Shergotty

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; Thomas-Keprta, Kathie L.; McKay, David S.

    2000-01-01

    The Shergotty martian meteorite contains weathering features and secondary minerals much like those in Nakhla, including secondary silicates, NaCl, and Ca-sulfate. It is likely that the weathering occurred on Mars.

  17. Atmospheric CO2 Removal by Enhancing Weathering

    NASA Astrophysics Data System (ADS)

    Koster van Groos, A. F.; Schuiling, R. D.

    2014-12-01

    The increase of the CO2 content in the atmosphere by the release of anthropogenic CO2 may be addressed by the enhancement of weathering at the surface of the earth. The average emission of mantle-derived CO2 through volcanism is ~0.3 Gt/year (109 ton/year). Considering the ~3.000 Gt of CO2 present in the atmosphere, the residence time of CO2 in the earth's atmosphere is ~10,000 years. Because the vast proportion of carbon in biomass is recycled through the atmosphere, CO2 is continuously removed by a series of weathering reactions of silicate minerals and stored in calcium and magnesium carbonates. The addition of anthropogenic CO2 from fossil fuel and cement production, which currently exceeds 35 Gt/year and dwarfs the natural production 100-fold, cannot be compensated by current rates of weathering, and atmospheric CO2 levels are rising rapidly. To address this increase in CO2 levels, weathering rates would have to be accelerated on a commensurate scale. Olivine ((Mg,Fe)2SiO4) is the most reactive silicate mineral in the weathering process. This mineral is the major constituent in relatively common ultramafic rocks such as dunites (olivine content > 90%). To consume the current total annual anthropogenic release of CO2, using a simplified weathering reaction (Mg2SiO4 + 4CO2 + 4H2O --> 2 Mg2+ + 4HCO3- + H4SiO4) would require ~30 Gt/year or ~8-9 km3/year of dunite. This is a large volume; it is about double the total amount of ore and gravel currently mined (~ 17 Gt/year). To mine and crush these rocks to <100 ?m costs ~ 8/ton. The transport and distribution over the earth's surface involves additional costs, that may reach 2-5/ton. Thus, the cost of remediation for the release of anthropogenic CO2 is 300-400 billion/year. This compares to a 2014 global GDP of ~80 trillion. Because weathering reactions require the presence of water and proceed more rapidly at higher temperatures, the preferred environments to enhance weathering are the wet tropics. From a socio-economic view, this would require a transfer of funds to some of the poorest and neediest countries. An additional benefit is that weathered ultramafic rocks produce some of the most fertile soils. It also would contribute directly to the remediation of ocean acidification.

  18. Investigating the Climate System: WEATHER. Global Awareness Tour. Problem-Based Classroom Modules

    ERIC Educational Resources Information Center

    Passow, Michael J.

    2003-01-01

    With support from National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center, Institute for Global Environmental Strategies (IGES) has developed educational materials that incorporate information and data from the Tropical Rainfall Measuring Mission (TRMM), a joint satellite mission between the United States and Japan.…

  19. Optical characterization of laser ablated silicates

    NASA Astrophysics Data System (ADS)

    Brunetto, Rosario; Roush, Ted L.; Marra, Anna Cinzia; Orofino, Vincenzo

    2007-11-01

    We perform an optical characterization of UV laser ablated silicates (olivine, pyroxene), starting from their reflectance spectra in the 0.3-2.5 ?m spectral range. The goal is to provide useful tools to model space weathering effects on surfaces of asteroids and TNOs (trans-neptunian objects). We determine that the reddening and darkening spectral trend is compatible with the Hapke's space weathering model, using the optical constants of metallic iron in a silicate matrix. This result is supported by new magnetic susceptibility measurements on laser ablated orthopyroxene. We also investigate the potential contribution of formation of amorphous silicates in the process. Applying our results to silicate-rich surfaces in the Solar System, we investigate the possibility of a weathered olivine component on the surface of Centaur 5145 Pholus. Inclusion of this component slightly decreases the amount of complex organics and water ice from those previously estimated. Thus, the current Pholus spectrum is consistent with the presence of either unweathered or weathered olivine, or potentially both materials.

  20. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    E-print Network

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  1. Large igneous provinces and organic carbon burial: Controls on global temperature and continental weathering during the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Bodin, Stéphane; Meissner, Philipp; Janssen, Nico M. M.; Steuber, Thomas; Mutterlose, Jörg

    2015-10-01

    There is an abundance of evidence for short intervals of cold climatic conditions during the Early Cretaceous. However, the lack of a high-resolution, long-term Early Cretaceous paleotemperature record hampers a full-scale synthesis of these putative "cold snap" episodes, as well as a more holistic approach to Early Cretaceous climate changes. We present an extended compilation of belemnite-based oxygen, carbon and strontium isotope records covering the Berriasian-middle Albian from the Vocontian Basin (SE France). This dataset clearly demonstrates three intervals of cold climatic conditions during the Early Cretaceous (late Valanginian-earliest Hauterivian, late early Aptian, latest Aptian-earliest Albian). Each of these intervals is associated with rapid and high amplitude sea-level fluctuations, supporting the hypothesis of transient growth of polar ice caps during the Early Cretaceous. As evidenced by positive carbon isotope excursions, each cold episode is associated with enhanced burial of organic matter on a global scale. Moreover, there is a relatively good match between the timing and size of large igneous province eruptions and the amplitude of Early Cretaceous warming episodes. Altogether, these observations confirm the instrumental role of atmospheric CO2 variations in driving Early Cretaceous climate change. From a long-term perspective, the coupling of global paleotemperature and seawater strontium isotopic ratio during the Early Cretaceous is best explained by temperature-controlled changes of continental crust weathering rates.

  2. Frequencies and Characteristics of Global Oceanic Precipitation from Shipboard Present-Weather Reports

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.

    1995-01-01

    Ship reports of present weather obtained from the Comprehensive Ocean-Atmosphere Data Set are analyzed for the period 1958-91 in order to elucidate regional and seasonal variations in the climatological frequency, phase, intensity, and character of oceanic precipitation. Specific findings of note include the following: 1) The frequency of thunderstorm reports, relative to all precipitation reports, is a strong function of location, with thunderstorm activity being favored within 1000-3000 km of major tropical and subtropical land masses, while being quite rare at other locations, even within the intertropical convergence zone. 2) The latitudinal frequency of precipitation over the southern oceans increases steadily toward the Antarctic continent and shows relatively little seasonal variation. The frequency of convective activity, however, shows considerable seasonal variability, with sharp winter maxima occurring near 38 deg. latitude in both hemispheres. 3) Drizzle is the preferred form of precipitation in a number of regions, most of which coincide with known regions of persistent marine stratus and stratocumulus in the subtropical highs. Less well documented is the high relative frequency of drizzle in the vicinity of the equatorial sea surface temperature front in the eastern Pacific. 4) Regional differences in the temporal scale of precipitation events (e.g., transient showers versus steady precipitation) are clearly depicted by way of the ratio of the frequency of precipitation at the observation time to the frequency of all precipitation reports, including precipitation during the previous hour. The results of this study suggest that many current satellite rainfall estimation techniques may substantially underestimate the fractional coverage or frequency of precipitation poleward of 50 deg. latitude and in the subtropical dry zones. They also draw attention to the need to carefully account for regional differences in the physical and spatial properties of rainfall when developing calibration relationships for satellite algorithms.

  3. Compilation of 3D global conductivity model of the Earth for space weather applications

    NASA Astrophysics Data System (ADS)

    Alekseev, Dmitry; Kuvshinov, Alexey; Palshin, Nikolay

    2015-12-01

    We have compiled a global three-dimensional (3D) conductivity model of the Earth with an ultimate goal to be used for realistic simulation of geomagnetically induced currents (GIC), posing a potential threat to man-made electric systems. Bearing in mind the intrinsic frequency range of the most intense disturbances (magnetospheric substorms) with typical periods ranging from a few minutes to a few hours, the compiled 3D model represents the structure in depth range of 0-100 km, including seawater, sediments, earth crust, and partly the lithosphere/asthenosphere. More explicitly, the model consists of a series of spherical layers, whose vertical and lateral boundaries are established based on available data. To compile a model, global maps of bathymetry, sediment thickness, and upper and lower crust thicknesses as well as lithosphere thickness are utilized. All maps are re-interpolated on a common grid of 0.25×0.25 degree lateral spacing. Once the geometry of different structures is specified, each element of the structure is assigned either a certain conductivity value or conductivity versus depth distribution, according to available laboratory data and conversion laws. A numerical formalism developed for compilation of the model, allows for its further refinement by incorporation of regional 3D conductivity distributions inferred from the real electromagnetic data. So far we included into our model four regional conductivity models, available from recent publications, namely, surface conductance model of Russia, and 3D conductivity models of Fennoscandia, Australia, and northwest of the United States.

  4. Extreme Weather: Understanding the Science of Hurricanes, Tornadoes, Floods, Heat Waves, Snow Storms, Global Warming and Other Atmospheric Disturbances

    NASA Astrophysics Data System (ADS)

    Brooks, Harold

    2008-07-01

    Extreme weather is of importance because of the threats it makes to life and property. At the same time, extreme weather is a great fascination for meteorologists as well as for the general public. The conditions and processes that lead to extreme weather-although governed by the same physical principles as ``ordinary'' weather-frequently are far from the average state of the atmosphere. Thus, explaining them in simple terms can be difficult. This book represents an effort to explain the development of extreme weather to the public.

  5. Weather Avoidance Guidelines for NASA Global Hawk High-Altitude Unmanned Aircraft Systems (UAS)

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Zipser, Edward J.; Velden, Chris S.; Monette, Sarah A.; Heymsfield, Gerald M.; Braun, Scott A.; Newman, Paul A.; Black, Peter G.; Black, Michael L.; Dunion, Jason P.

    2014-01-01

    The current Global Hawk flight rules would probably not have been effective in the single event of greatest concern (the Emily encounter). The cloud top had not reached 50,000 ft until minutes before the encounter. The TOT and lightning data would not have been available until near the overflight time since this was a rapidly growing cell. This case would have required a last-minute diversion when lightning became frequent. Avoiding such a cell probably requires continual monitoring of the forward camera and storm scope, whether or not cloud tops have been exceeding specific limits. However, the current overflight rules as strictly interpreted would have prohibited significant fractions of the successful Global Hawk overpasses of Karl and Matthew that proved not to be hazardous. Many other high altitude aircraft (ER-2 and Global Hawk) flights in NASA tropical cyclone field programs have successfully overflown deep convective clouds without incident.The convective cell that caused serious concern about the safety of the ER-2 in Emily was especially strong for a tropical cyclone environment, probably as strong or stronger than any that was overflown by the ER-2 in 20 previous flights over tropical cyclones. Specifically, what made that cell a safety concern was the magnitude of the vertical velocity of the updraft, at least 20 m/s (4000 ft/minute) at the time the ER-2 overflew it. Such a strong updraft can generate strong gravity waves at and above the tropopause, posing a potential danger to aircraft far above the maximum altitude of the updraft itself or its associated cloud top. Indeed, the ER-2 was probably at least 9000 ft above that cloud top. Cloud-top height, by itself, is not an especially good indicator of the intensity of convection and the likelihood of turbulence. Nor is overflying high cloud tops (i.e. > 50,000 ft) of particular concern unless there is other evidence of very strong convective updrafts beneath those tops in the path of the aircraft. center dot Lightning, especially lightning with a high flash rate, is well correlated with convective intensity. Lightning with a minimal flash rate (say 1-3 flashes per minute) is indicative of updraft speeds of about 10 m/s in the mixed phase region where charge is being separated, generally at altitudes about 20-25 kft in a hurricane. That is still stronger than typical updrafts (more like 5 m/s). An unresolved issue is whether there is a high and instantaneous correlation between vertical velocity in the middle troposphere (necessary for lightning generation) and near cloud top (more direct concern for overflights).

  6. Diurnal Simulation Models of Weather Data for Improved Predictions of Global Climate Changes

    NASA Astrophysics Data System (ADS)

    Loukidou-Kafatou, Thalia

    Most of our knowledge about the Earth has been assembled by those in Earth-science disciplines. Each of these disciplines has traditionally operated within its own frame of reference with little or no interaction. This situation is now changing rapidly as a new view of the Earth forces members of the scientific community to transcend disciplinary boundaries. We now recognize global connections between the physical dynamics of the Earth system, and that knowledge from all Earth science disciplines is needed to describe this system. The need for an interdisciplinary approach to Earth science has been accentuated by advances in space sciences. We begin to gain a new awareness of the common destiny of humanity beyond geographical and political boundaries. The need to be able to predict climate changes is imperative and the need to formulate policies to regulate the effects of human activities on global climate is compelling and critical at this point in human history. Yet the ability to do so requires an understanding of the highly complex and interactive mechanisms of climate. One essential ingredient in achieving this understanding is climatological data. Climatological data of the past are available, in the best case, every six hours per day, resolution that is not adequate for the study of the natural variability of climate. The picture of the past record of the Earth's history is incomplete and fragmentary as we look further back in time. Yet snapshots of past conditions can provide an important test bed for evolving models of Earth system processes operating on time-scales of decades to centuries. This research contributes to the reconstruction of the paleoclimate, the climate of the past, which links long and short timescales. In this research project three diurnal models are developed. They require four equally spaced data per day as a basis for simulating hourly data. The models use mathematical techniques, such as Fourier Transform, Fast Fourier Transform, and cubic's Spline. All models perform at an error rate of less than 10%. The models can be used to recreate past records in climate, in GCMs, in agriculture and all Earth Sciences.

  7. The carbonate-silicate cycle and CO2/climate feedbacks on tidally locked terrestrial planets.

    PubMed

    Edson, Adam R; Kasting, James F; Pollard, David; Lee, Sukyoung; Bannon, Peter R

    2012-06-01

    Atmospheric gaseous constituents play an important role in determining the surface temperatures and habitability of a planet. Using a global climate model and a parameterization of the carbonate-silicate cycle, we explored the effect of the location of the substellar point on the atmospheric CO(2) concentration and temperatures of a tidally locked terrestrial planet, using the present Earth continental distribution as an example. We found that the substellar point's location relative to the continents is an important factor in determining weathering and the equilibrium atmospheric CO(2) level. Placing the substellar point over the Atlantic Ocean results in an atmospheric CO(2) concentration of 7 ppmv and a global mean surface air temperature of 247 K, making ?30% of the planet's surface habitable, whereas placing it over the Pacific Ocean results in a CO(2) concentration of 60,311 ppmv and a global temperature of 282 K, making ?55% of the surface habitable. PMID:22775488

  8. RECONSTRUCTING CORONAL MASS EJECTIONS WITH COORDINATED IMAGING AND IN SITU OBSERVATIONS: GLOBAL STRUCTURE, KINEMATICS, AND IMPLICATIONS FOR SPACE WEATHER FORECASTING

    SciTech Connect

    Liu Ying; Luhmann, Janet G.; Lin, Robert P.; Bale, Stuart D.; Thernisien, Arnaud; Vourlidas, Angelos; Davies, Jackie A.

    2010-10-20

    We reconstruct the global structure and kinematics of coronal mass ejections (CMEs) using coordinated imaging and in situ observations from multiple vantage points. A forward modeling technique, which assumes a rope-like morphology for CMEs, is used to determine the global structure (including orientation and propagation direction) from coronagraph observations. We reconstruct the corresponding structure from in situ measurements at 1 AU with the Grad-Shafranov method, which gives the flux-rope orientation, cross section, and a rough knowledge of the propagation direction. CME kinematics (propagation direction and radial distance) during the transit from the Sun to 1 AU are studied with a geometric triangulation technique, which provides an unambiguous association between solar observations and in situ signatures; a track fitting approach is invoked when data are available from only one spacecraft. We show how the results obtained from imaging and in situ data can be compared by applying these methods to the 2007 November 14-16 and 2008 December 12 CMEs. This merged imaging and in situ study shows important consequences and implications for CME research as well as space weather forecasting: (1) CME propagation directions can be determined to a relatively good precision as shown by the consistency between different methods; (2) the geometric triangulation technique shows a promising capability to link solar observations with corresponding in situ signatures at 1 AU and to predict CME arrival at the Earth; (3) the flux rope within CMEs, which has the most hazardous southward magnetic field, cannot be imaged at large distances due to expansion; (4) the flux-rope orientation derived from in situ measurements at 1 AU may have a large deviation from that determined by coronagraph image modeling; and (5) we find, for the first time, that CMEs undergo a westward migration with respect to the Sun-Earth line at their acceleration phase, which we suggest is a universal feature produced by the magnetic field connecting the Sun and ejecta. The importance of having dedicated spacecraft at L4 and L5, which are well situated for the triangulation concept, is also discussed based on the results.

  9. Factoring in weather variation to capture the influence of urban design and built environment on globally recommended levels of moderate to vigorous physical activity in children

    PubMed Central

    Katapally, Tarun Reddy; Muhajarine, Nazeem

    2015-01-01

    Objectives In curbing physical inactivity, as behavioural interventions directed at individuals have not produced a population-level change, an ecological perspective called active living research has gained prominence. However, active living research consistently underexplores the role played by a perennial phenomenon encompassing all other environmental exposures—variation in weather. After factoring in weather variation, this study investigated the influence of diverse environmental exposures (including urban design and built environment) on the accumulation of globally recommended moderate to vigorous physical activity levels (MVPA) in children. Design This cross-sectional observational study is part of an active living initiative set in the Canadian prairie city of Saskatoon. As part of this study, Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Moreover, diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive MVPA of 331 10–14-year-old children in 25 1-week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample and matched with weather data obtained from Environment Canada. Multilevel modelling using Hierarchical Linear and Non-linear Modelling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on the accumulation of recommended MVPA. Results Urban design, including diversity of destinations within neighbourhoods played a significant role in the accumulation of MVPA. After factoring in weather variation, it was observed that children living in neighbourhoods closer to the city centre (with higher diversity of destinations) were more likely to accumulate recommended MVPA. Conclusions The findings indicate that after factoring in weather variation, certain types of urban design are more likely to be associated with MVPA accumulation. PMID:26621516

  10. CENTENARY SYMPOSIUM SPECIAL FEATURE Ecosystem CO2 starvation and terrestrial silicate

    E-print Network

    to draw-down [CO2]a by enhancing chemical weathering and carbonate deposition on the seafloor. That [CO2]aCENTENARY SYMPOSIUM SPECIAL FEATURE Ecosystem CO2 starvation and terrestrial silicate weathering weathering as [CO2]a declines. One proposed mechanism is a negative feedback mediated through CO2 starvation

  11. Reconnaissance of Field Sites for the Study of Chemical Weathering on the Guayana Shield, South America

    SciTech Connect

    Steefell, C I

    2003-02-01

    Despite the fact that chemical weathering of silicate rocks plays an important role in the draw-down of CO{sub 2} over geologic time scales (Berner and Berner, 1996), the overall controls on the rate of chemical weathering are still not completely understood. Lacking a mechanistic understanding of these controls, it remains difficult to evaluate a hypothesis such as that presented by Raymo and Ruddiman (1992), who suggested that enhanced weathering and CO{sub 2} draw-down resulting from the uplift of the Himalayas contributed to global cooling during the Cenozoic. At an even more fundamental level, the three to four order of magnitude discrepancy between laboratory and field weathering rates is still unresolved (White et al., 1996). There is as yet no comprehensive, mechanistic model for silicate chemical weathering that considers the coupled effects of precipitation, vadose zone flow, and chemical reactions. The absence of robust process models for silicate weathering and the failure to resolve some of these important questions may in fact be related-the controls on the overall rates of weathering cannot be understood without considering the weathering environment as one in which multiple, time-dependent chemical and physical processes are coupled (Malmstrom, 2000). Once chemical weathering is understood at a mechanistic process level, the important controls on chemical weathering (physical erosion, temperature, precipitation) can be folded into larger scale models tracking the global carbon cycle. Our goal in this study was to carry out the preliminary work needed to establish a field research site for chemical weathering om the Cuayana Shield in South America. The Guayana Shield is a Precambrian province greater than 1.5 billion years old covering portions of Venezuela, Guyana (the country), Surinam, French Guiana, and Brazil (Figure 1). More important than the age of the rocks themselves, however, is the age of the erosion surface developed on the Shield, with estimates ranging as old as 65 million years. Preserved mostly in highlands, this very old erosion surface represents an end-member site where physical erosion has been significantly slower than the rate of chemical weathering. Much of the Shield is also noteworthy for the fact that chemical weathering is still occurring today, thus offering the chance to study a system in which a present day weathering regime is accompanied by an integrated weathering record over millions of years (Soler and Lasaga, 2000). If rates of chemical weathering can be determined for this very old weathering system where physical erosion is minor, they can then be compared with rates determined from sites with similar annual temperatures and rainfall, but much higher physical erosion rates. Comparative studies of this kind can provide a parameterization of chemical weathering rates as a function of physical erosion and tectonic uplift that can be used in global models for the carbon cycle.

  12. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS

    E-print Network

    Schrijver, Carolus J; Aylward, Alan D; Denardini, Clezio M; Gibson, Sarah E; Glover, Alexi; Gopalswamy, Nat; Grande, Manuel; Hapgood, Mike; Heynderickx, Daniel; Jakowski, Norbert; Kalegaev, Vladimir V; Lapenta, Giovanni; Linker, Jon A; Liu, Siqing; Mandrini, Cristina H; Mann, Ian R; Nagatsuma, Tsutomu; Nandi, Dibyendu; Obara, Takahiro; O'Brien, T Paul; Onsager, Terrance; Opgenoorth, Hermann J; Terkildsen, Michael; Valladares, Cesar E; Vilmer, Nicole

    2015-01-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. [...] advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun-Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustaine...

  13. The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling.

    PubMed

    Thorley, Rachel M S; Taylor, Lyla L; Banwart, Steve A; Leake, Jonathan R; Beerling, David J

    2015-09-01

    On million-year timescales, carbonate rock weathering exerts no net effect on atmospheric CO2 concentration. However, on timescales of decades-to-centuries, it can contribute to sequestration of anthropogenic CO2 and increase land-ocean alkalinity flux, counteracting ocean acidification. Historical evidence indicates this flux is sensitive to land use change, and recent experimental evidence suggests that trees and their associated soil microbial communities are major drivers of continental mineral weathering. Here, we review key physical and chemical mechanisms by which the symbiotic mycorrhizal fungi of forest tree roots potentially enhance carbonate rock weathering. Evidence from our ongoing field study at the UK's national pinetum confirms increased weathering of carbonate rocks by a wide range of gymnosperm and angiosperm tree species that form arbuscular (AM) or ectomycorrhizal (EM) fungal partnerships. We demonstrate that calcite-containing rock grains under EM tree species weather significantly faster than those under AM trees, an effect linked to greater soil acidification by EM trees. Weathering and corresponding alkalinity export are likely to increase with rising atmospheric CO2 and associated climate change. Our analyses suggest that strategic planting of fast-growing EM angiosperm taxa on calcite- and dolomite-rich terrain might accelerate the transient sink for atmospheric CO2 and slow rates of ocean acidification. PMID:25211602

  14. Weathering warming in Colorado

    SciTech Connect

    Gillis, A.M.

    1996-03-01

    This article describes the results of a field experiment heating patches of a subalpine meadow in the Rocky Mountains to determine what will weather and what will weather under projected global warming. The problems with actually measuring the feedback is discussed, along with the changes which come as the meadow is heated.

  15. Experimental Determination of Ca-Silicate Dissolution Rates: A Source of Calcium for Geologic CO2

    SciTech Connect

    Carroll, S A; Knauss, K G

    2001-04-11

    The international scientific community recognizes that greenhouse gases have the potential to influence climate, and that potential changes in sea level and weather patterns would be largely deleterious. Because CO{sub 2} is emitted in such large quantities and its atmospheric concentration has been consistently rising throughout the recent past, it is only prudent to focus attention on reducing its emission and on developing strategies for its removal from the atmosphere [1]. A variety of removal methods have been suggested ranging from deep-sea disposal, to recycling to methanol, and to conversion to solid carbonate [2]. Problems appear to remain with all these strategies, and more work is needed to develop an acceptable, efficient method or set of methods. The idea of converting the gas to solid carbonate is particularly appealing, because on a human time scale, this is permanent disposal. The reaction of CO{sub 2} and water with unstable silicate minerals to produce more stable silicates (e.g., clays) and solid carbonates is the natural weathering process which is a dominant part of the long-term global geochemical cycling process (e.g., [3]). The Earth's large deposits of limestone and dolomite (the two primary forms of carbonate rock) represent the Earth's natural response to volcanic CO{sub 2} emissions over much of planetary history. Recently, the suggestion was made to utilize the reaction of CO{sub 2} with silicate minerals that occurs naturally during chemical-weathering within deep sedimentary basins [4] or in aquifers [1] as a basis for removal.

  16. Weather assessment and forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.

  17. Enhanced weathering strategies for cooling the planet and saving coral reefs

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Quirk, J.; Thorley, R.; Kharecha, P. A.; Hansen, J. E.; Ridgwell, A. J.; Lomas, M.; Banwart, S. A.

    2014-12-01

    Acceleration of the chemical weathering sink for atmospheric CO2 via distribution of pulverized silicate rocks across terrestrial landscapes has been proposed as a macro-engineering Carbon Dioxide Removal (CDR) scheme, but its effectiveness and response to ongoing global change is poorly understood. We employ a detailed spatially resolved weathering model driven by two ensemble Representative Concentration Pathway (RCP) projections of 21st Century climate (RCP8.5 and RCP4.5) to assess enhanced weathering and examine feedbacks on atmospheric CO2 and ocean carbonate biogeochemistry. Atmospheric CO2 reduction of ~100-260 ppm by year 2100, the range depending mainly on rock composition, is obtained by spreading 5 kg m-2 yr-1 over 20 Mkm2 tropical weathering 'hotspots'. Ocean acidification is neutralized in RCP4.5 and ameliorated in RCP8.5 due to enhanced land-ocean export of weathered alkalinity products and reduced CO2 forcings, and the aragonite saturation state of surface oceans is raised to >3.5, thus avoiding likely extinction of coral reef ecosystems. We suggest that accelerated weathering has substantial potential to help limit global warming and benefits to marine life not obtained from other CDR approaches, but major issues of cost, social acceptability, and potential unanticipated consequences should encourage urgent efforts to phase down fossil fuel emissions.

  18. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    SciTech Connect

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  19. Mesoscale weather and climate modeling with the global non-hydrostatic Goddard Earth Observing System Model (GEOS-5) at cloud-permitting resolutions

    NASA Astrophysics Data System (ADS)

    Putman, W. M.; Suarez, M.

    2009-12-01

    The Goddard Earth Observing System Model (GEOS-5), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-5 from it's standard 72-level 27-km resolution (~5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (~3.6 billion cells). We will present results from a series of forecast experiments exploring the impact of the non-hydrostatic dynamics at transition resolutions of 14- to 7-km, and the influence of increased horizontal/vertical resolution on convection and physical parameterizations within GEOS-5. Regional and mesoscale features of 5- to 10-day weather forecasts will be presented and compared with satellite observations. Our results will highlight the impact of resolution on the structure of cloud features including tropical convection and tropical cyclone predicability, cloud streets, von Karman vortices, and the marine stratocumulus cloud layer. We will also present experiment design and early results from climate impact experiments for global non-hydrostatic models using GEOS-5. Our climate experiments will focus on support for the Year of Tropical Convection (YOTC). We will also discuss a seasonal climate time-slice experiment design for downscaling coarse resolution century scale climate simulations to global non-hydrostatic resolutions of 14- to 7-km with GEOS-5.

  20. Weathering and weathering rates of natural stone

    NASA Astrophysics Data System (ADS)

    Winkler, Erhard M.

    1987-06-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the rocks' permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of the causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between disolution, crack-corrosion, and expansion-contraction cycies triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  1. Weathering and weathering rates of natural stone

    SciTech Connect

    Winkler, E.M. )

    1987-01-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the ricks permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of th causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between dissolution, crack-corrosion, and the expansion-contraction cycles triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  2. Weather Watch

    ERIC Educational Resources Information Center

    Bratt, Herschell Marvin

    1973-01-01

    Suggests a number of ways in which Federal Aviation Agency weather report printouts can be used in teaching the weather section of meteorology. These weather sequence reports can be obtained free of charge at most major airports. (JR)

  3. Global patterns

    SciTech Connect

    Akins, W.E.

    1991-01-01

    This book covers global climate change patterns. The history of climatic change, elements and controls of weather and climate, global patterns of vegetation, and global distribution of soils are all topics covered in this book.

  4. Spatial variations in chemical weathering and CO 2 consumption in Nepalese High Himalayan catchments during the monsoon season

    NASA Astrophysics Data System (ADS)

    Wolff-Boenisch, Domenik; Gabet, Emmanuel J.; Burbank, Douglas W.; Langner, Heiko; Putkonen, Jaakko

    2009-06-01

    The major ion chemistry of the Marsyandi basin and six of its tributaries in the Nepalese Himalaya have been investigated during the monsoon months of 2002. Weekly water samples taken at 10 river monitoring stations in the Annapurna watershed over the course of 4 months provide chemical weathering data for the region at an unprecedented temporal and spatial resolution. The river chemistry of all but one basin is heavily dominated by carbonate weathering which, compared to silicate weathering, contributes 80 to 97% of the total solute load. This prevalence is due to a combination of (a) intrinsically faster dissolution kinetics of carbonates, (b) relatively high runoff and (c) glacial meltwater and low temperatures at high altitudes resulting in enhanced carbonate solubilities. Monitoring stations with headwaters in the Tethyan Sedimentary Series (TSS) are particularly carbonate-rich and slightly supersaturated with respect to calcite through half of the monsoon season. Silicate weathering in the TSS is driven largely by sulfuric acid and therefore does not contribute significantly to the drawdown of atmospheric CO 2. With respect to the tributaries in the Greater Himalayan Sequence (GHS), carbonate weathering is practically as predominant as for the TSS, in spite of the largely felsic lithology of the GHS. Relative to the TSS, the primary proton source in the GHS has shifted, with at least 80% of the protons derived from carbonic acid. Averaged over the whole field area, the CO 2 fluxes, based on silicate-derived Ca and Mg, are considerably lower than the global average. Assuming that this study area is representative of the entire range, we conclude that in situ weathering of the High Himalayas does not represent a significant sink of atmospheric carbon dioxide, despite the presence of a watershed south of the GHS that is characterized by a four times higher CO 2 consumption rate than the global average. Silicate weathering rates of all basins appear to be climate controlled, displaying a tight correlation with runoff and temperature. Given the extremely low chemical weathering under transport-limited conditions in high-altitude crystalline terrains outside of the monsoon season, this would result in virtually no chemical exhumation for 2/3 of the year in such a cold and arid climate, north of the rain shadow cast by the High Himalayas.

  5. APPLICATION OF GLOBAL WEATHER AND CLIMATE MODEL OUTPUT TO THE DESIGN AND OPERATION OF WIND-ENERGY SYSTEMS

    SciTech Connect

    Curry, Judith

    2015-05-21

    This project addressed the challenge of providing weather and climate information to support the operation, management and planning for wind-energy systems. The need for forecast information is extending to longer projection windows with increasing penetration of wind power into the grid and also with diminishing reserve margins to meet peak loads during significant weather events. Maintenance planning and natural gas trading is being influenced increasingly by anticipation of wind generation on timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment of wind farm siting, government planning, long-term wind purchase agreements and the regulatory environment. The challenge of making wind forecasts on these longer time scales is associated with a wide range of uncertainties in general circulation and regional climate models that make them unsuitable for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time scales from one day to seven months using what is arguably the best forecasting system in the world (European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a framework to assess future wind power through developing scenarios of interannual to decadal climate variability and change. The Phase II research has successfully developed an operational wind power forecasting system for the U.S., which is being extended to Europe and possibly Asia.

  6. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Kauristie, Kirsti; Aylward, Alan D.; Denardini, Clezio M.; Gibson, Sarah E.; Glover, Alexi; Gopalswamy, Nat; Grande, Manuel; Hapgood, Mike; Heynderickx, Daniel; Jakowski, Norbert; Kalegaev, Vladimir V.; Lapenta, Giovanni; Linker, Jon A.; Liu, Siqing; Mandrini, Cristina H.; Mann, Ian R.; Nagatsuma, Tsutomu; Nandy, Dibyendu; Obara, Takahiro; Paul O'Brien, T.; Onsager, Terrance; Opgenoorth, Hermann J.; Terkildsen, Michael; Valladares, Cesar E.; Vilmer, Nicole

    2015-06-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. We recognize that much progress has been made and continues to be made with a powerful suite of research observatories on the ground and in space, forming the basis of a Sun-Earth system observatory. But the domain of space weather is vast - extending from deep within the Sun to far outside the planetary orbits - and the physics complex - including couplings between various types of physical processes that link scales and domains from the microscopic to large parts of the solar system. Consequently, advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun-Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recommend advances through priority focus (1) on observation-based modeling throughout the Sun-Earth system, (2) on forecasts more than 12 h ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solar-wind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4) on developing a comprehensive specification of space climate, including the characterization of extreme space storms to guide resilient and robust engineering of technological infrastructures. The roadmap clusters its implementation recommendations by formulating three action pathways, and outlines needed instrumentation and research programs and infrastructure for each of these. An executive summary provides an overview of all recommendations.

  7. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…

  8. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…

  9. The role of nitrification in silicate hydrolysis in soils near Santa Cruz, CA

    NASA Astrophysics Data System (ADS)

    Kyker-Snowman, E.; White, A.; Lawrence, C. R.; Schulz, M. S.

    2013-12-01

    In some ecosystems, nitrification (microbial conversion of ammonium to nitrate) may supplant carbonic acid as a source of acidity and drive silicate weathering. Recent studies have explored the impact that ammonium fertilizer addition to soils has on weathering of various mineral types (Pacheco et al. 2013) and demonstrated directly that ammonium addition to soils can increase carbonate weathering (Gandois et al. 2011). Some evidence points to a role for nitrification in silicate weathering at a series of coastal grassland terraces near Santa Cruz, CA. Weathering rates in these soils have been estimated using the byproducts of silicate hydrolysis (Cl--adjusted Na+ and other cations). If carbonic acid from dissolved CO2 is the source of acidity in silicate hydrolysis, bicarbonate should balance the cations produced during weathering. However, in the Santa Cruz soils nitrate is the dominant anion balancing cation concentrations. High concentrations of CO2 (>1%) at depths greater than 1m may provide additional support for nitrification-based silicate hydrolysis at Santa Cruz. We evaluate the role of nitrification in silicate weathering for soils from the Santa Cruz Marine Terrace Chronosequence using a column ammonium-addition experiment and a basic weathering model. The column experiment uses ammonium inputs in excess of natural inputs and measures weathering products in eluted fluids over time. The model incorporates more realistic estimates of ammonium input and explores whether the observed concentrations of cations, nitrate and CO2 seen at Santa Cruz can be explained by nitrification-driven acidity or if other inputs need to be considered. Gandois, L, Perrin, A-S, and Probst, A. 2011. Impact of nitrogenous fertiliser-induced proton release on cultivated soils with contrasting carbonate contents: A column experiment. Geochimica et Cosmochimica Acta 75 pp. 1185-1198. Pacheco, F, Landim, P, and Szocs, T. 2013. Anthropogenic impacts on mineral weathering: A statistical perspective. Applied Geochemistry 36 pp. 34-48.

  10. Approach to Integrate Global-Sun Models of Magnetic Flux Emergence and Transport for Space Weather Studies

    NASA Technical Reports Server (NTRS)

    Mansour, Nagi N.; Wray, Alan A.; Mehrotra, Piyush; Henney, Carl; Arge, Nick; Godinez, H.; Manchester, Ward; Koller, J.; Kosovichev, A.; Scherrer, P.; Zhao, J.; Stein, R.; Duvall, T.; Fan, Y.

    2013-01-01

    The Sun lies at the center of space weather and is the source of its variability. The primary input to coronal and solar wind models is the activity of the magnetic field in the solar photosphere. Recent advancements in solar observations and numerical simulations provide a basis for developing physics-based models for the dynamics of the magnetic field from the deep convection zone of the Sun to the corona with the goal of providing robust near real-time boundary conditions at the base of space weather forecast models. The goal is to develop new strategic capabilities that enable characterization and prediction of the magnetic field structure and flow dynamics of the Sun by assimilating data from helioseismology and magnetic field observations into physics-based realistic magnetohydrodynamics (MHD) simulations. The integration of first-principle modeling of solar magnetism and flow dynamics with real-time observational data via advanced data assimilation methods is a new, transformative step in space weather research and prediction. This approach will substantially enhance an existing model of magnetic flux distribution and transport developed by the Air Force Research Lab. The development plan is to use the Space Weather Modeling Framework (SWMF) to develop Coupled Models for Emerging flux Simulations (CMES) that couples three existing models: (1) an MHD formulation with the anelastic approximation to simulate the deep convection zone (FSAM code), (2) an MHD formulation with full compressible Navier-Stokes equations and a detailed description of radiative transfer and thermodynamics to simulate near-surface convection and the photosphere (Stagger code), and (3) an MHD formulation with full, compressible Navier-Stokes equations and an approximate description of radiative transfer and heating to simulate the corona (Module in BATS-R-US). CMES will enable simulations of the emergence of magnetic structures from the deep convection zone to the corona. Finally, a plan will be summarized on the development of a Flux Emergence Prediction Tool (FEPT) in which helioseismology-derived data and vector magnetic maps are assimilated into CMES that couples the dynamics of magnetic flux from the deep interior to the corona.

  11. Sensitivity of the boreal forest-mire ecotone CO2, CH4, and N2O global warming potential to rainy and dry weather

    NASA Astrophysics Data System (ADS)

    ?upek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero

    2015-04-01

    In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net warming.

  12. Nanoporus Silicate Frameworks Nanoporous Copper Silicates with One-Dimen-

    E-print Network

    Wang, Xiqu

    Nanoporus Silicate Frameworks Nanoporous Copper Silicates with One-Dimen- sional 12-Ring Channel for the synthesis of transition-metal-silicate open-framework and microporous compounds that uses a common building principle. The structures in this family of compounds are formed by linking isolated transition

  13. Development and initial application of the global-through-urban weather research and forecasting model with chemistry

    E-print Network

    Zhang, Yang

    and extinction of species). A changing climate affects air quality through a number of processes including (1 quality and its interactions with meteorology and climate and to quantify the impact of global change on urban/regional air quality across various spatial scales. Citation: Zhang, Y., P. Karamchandani, T

  14. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  15. Cockpit weather information system

    NASA Technical Reports Server (NTRS)

    Tu, Jeffrey Chen-Yu (Inventor)

    2000-01-01

    Weather information, periodically collected from throughout a global region, is periodically assimilated and compiled at a central source and sent via a high speed data link to a satellite communication service, such as COMSAT. That communication service converts the compiled weather information to GSDB format, and transmits the GSDB encoded information to an orbiting broadcast satellite, INMARSAT, transmitting the information at a data rate of no less than 10.5 kilobits per second. The INMARSAT satellite receives that data over its P-channel and rebroadcasts the GDSB encoded weather information, in the microwave L-band, throughout the global region at a rate of no less than 10.5 KB/S. The transmission is received aboard an aircraft by means of an onboard SATCOM receiver and the output is furnished to a weather information processor. A touch sensitive liquid crystal panel display allows the pilot to select the weather function by touching a predefined icon overlain on the display's surface and in response a color graphic display of the weather is displayed for the pilot.

  16. The influence of tropical wind data on the analysis and forecasts of the GLAS GCM for the Global Weather Experiment

    NASA Technical Reports Server (NTRS)

    Paegle, J.; Baker, W. E.

    1985-01-01

    Several densities of tropical divergent wind data were included in a fourth-order GCM to examine the effects on the accuracy of the model predictions. The experiments covered assimilation of all available tropical wind data, no tropical wind data between 20 deg N and 20 deg S, only westerly tropical wind data and only easterly tropical wind data. The predictions were all made for the 200 mb upper troposphere. Elimination of tropical data produced excessively strong upper tropospheric westerlies which in turn amplified the globally integrated rotational flow kinetic energy by around 10 percent and doubled the global divergent flow kinetic energy. Retaining only easterly wind data, ameliorated most of the error. Inclusion of all the tropical wind data however, did not lead to overall positive effects, as the data were linked to tropical wave energetics and ageostrophic winds which were already assimilated in the model.

  17. Jerks as Guiding Influences on the Global Environment: Effects on the Solid Earth, Its Angular Momentum and Lithospheric Plate Motions, the Atmosphere, Weather, and Climate

    NASA Astrophysics Data System (ADS)

    Quinn, J. M.; Leybourne, B. A.

    2010-12-01

    Jerks are thought to be the result of torques applied at the core-mantle boundary (CMB) caused by either of two possible processes, working together or separately: 1) Electromagnetic Induction and 2) Mechanical Slippage. In the first case, it is thought that electromagnetic energy slowly builds-up at the CMB, reaches some critical level, and is then suddenly released, causing a geomagneticly induced torque at the CMB due to the differential electrical conductivity between the lower mantle and the surface of the outer core. The second case is driven by stress and strain increases that buildup mechanical potential energy, which is released when a critical level is reached, thereby generating a torque at the CMB. Generally, a trigger is required to start the Jerk process in motion. In the electromagnetic case, it is suggested that energy from the Sun may supply the requisite energy buildup that is subsequently released by a magnetic storm trigger, for instance. In the case of mechanical slippage, bari-center motion among the Earth, Moon, and Sun, as well as tidal forces and mass redistributions through Earth's wobbles combine to provide the accumulated stress/strain buildup and subsequent trigger. The resulting fluid flow changes at the CMB result in geomagnetic field changes and Joule heating throughout the solid Earth, its oceans, and atmosphere. It is shown that the Global Temperature Anomaly (GTA), which is measured at Earth's surface, correlates with changes in the geomagnetic non-dipole moment, and thus with core fluid motions. This links Global Warming and weather with core processes, important examples being the 1930's Dust Bowl Era and the 1947 Impulse. The CMB torque also affects Earth's angular momentum. But it appears that magnetic storms can as well. As a consequence, the Jet Stream, atmospheric circulation patterns, and the Global Oscillation System (i.e., El-Nino/Southern-Oscillation, North Atlantic Oscillation, the Pacific Decade Oscillation, etc.) are modulated. These parameters in turn affect the weather and climate (e.g., the Dust Bowl Era, El Ninos, La Ninas, and hurricanes). The stress/strain within the Earth leads to Earth torsion, vibration, and mass redistribution, which leads to tectonic plate motion, seismicity, volcanism, and gravity waves, which drive atmospheric circulation and the teleconnection processes (i.e., a redistribution of magma beneath the plates) via surge tectonics. Various other connections among these processes and parameters will be discussed.

  18. Mitigation of Atmospheric Delay in SAR Absolute Ranging Using Global Numerical Weather Prediction Data: Corner Reflector Experiments at 3 Different Test Sites

    NASA Astrophysics Data System (ADS)

    Cong, Xiaoying; Balss, Ulrich; Eineder, Michael

    2015-04-01

    The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the Base of Far-Distributed Test Sites; EUSAR 2014; 10th European Conference on Synthetic Aperture Radar; Proceedings of. VDE, 2014: 1-4. [3] Eineder M., Balss U., Gisinger C., et al. TerraSAR-X pixel localization accuracy: Approaching the centimeter level, Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE, 2014: 2669-2670. [4] Cong X., Balss U., Eineder M., et al. Imaging Geodesy -- Centimeter-Level Ranging Accuracy With TerraSAR-X: An Update. Geoscience and Remote Sensing Letters, IEEE, 2012, 9(5): 948-952. [5] Cong X. SAR Interferometry for Volcano Monitoring: 3D-PSI Analysis and Mitigation of Atmospheric Refractivity. München, Technische Universität München, Dissertation, 2014.

  19. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Vivit, D.V.; Stonestrom, D.A.; Larsen, M.; Murphy, S.F.; Eberl, D.

    1998-01-01

    The pristine Rio Icacos watershed in the Luquillo Mountains in eastern Puerto Rico has the fastest documented weathering rate of silicate rocks on the Earth's surface. A regolith propagation rate of 58 m Ma-1 calculated from iso-volumetric saprolite formation from quartz diorite, is comparable to the estimated denudation rate (25-50 Ma-1) but is an order of magnitude faster than the global average weathering rate (6 Ma-1). Weathering occurs in two distinct environments; plagioclase and hornblende react at the saprock interface and biotite and quartz weather in the overlying thick saprolitic regolith. These environments produce distinctly different water chemistries, with K, Mg, and Si increasing linearly with depth in saprolite porewaters and with stream waters dominated by Ca, Na, and Si. Such differences are atypical of less intense weathering in temperate watersheds. Porewater chemistry in the shallow regolith is controlled by closed-system recycling of inorganic nutrients such as K. Long-term elemental fluxes through the regolith (e.g., Si = 1.7 ?? 10-8 moles m-2 s-1) are calculated from mass losses based on changes in porosity and chemistry between the regolith and bedrock and from the age of the regolith surface (200 Ma). Mass losses attributed to solute fluxes are determined using a step-wise infiltration model which calculates mineral inputs to the shallow and deep saprolite porewaters and to stream water. Pressure heads decrease with depth in the shallow regolith (-2.03 m H2O m-1), indicating that both increasing capillary tension and graviometric potential control porewater infiltration. Interpolation of experimental hydraulic conductivities produces an infiltration rate of 1 m yr-1 at average field moisture saturation which is comparable with LiBr tracer tests and with base discharge from the watershed. Short term weathering fluxes calculated from solute chemistries and infiltration rates (e.g., Si = 1.4 ?? 10-8 moles m-2 s-1) are compared to watershed flux rates (e.g., Si = 2.7 ?? 10-8 moles m-2 s-1). Consistency between three independently determined sets of weathering fluxes imply that possible changes in precipitation, temperature, and vegetation over the last several hundred thousand years have not significantly impacted weathering rates in the Luquillo Mountains of Puerto Rico. This has important ramifications for tropical environments and global climate change. Copyright ?? 1998 Elsevier Science Ltd.

  20. Major ion chemistry of the Yarlung TsangpoBrahmaputra river: Chemical weathering, erosion, and CO2 consumption

    E-print Network

    Hren, Michael

    Major ion chemistry of the Yarlung Tsangpo­Brahmaputra river: Chemical weathering, erosion, and CO2­Brahmaputra to examine the effect of tectonic, climatic, and geologic fac- tors on chemical weathering rates. Specifically, we quantify chemical weathering fluxes and CO2 consumption by silicate weathering in southern

  1. MSATT Workshop on Chemical Weathering on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger (editor); Banin, Amos (editor)

    1992-01-01

    The topics covered with respect to chemical weathering on Mars include the following: Mars soil, mineralogy, spectroscopic analysis, clays, silicates, oxidation, iron oxides, water, chemical reactions, geochemistry, minerals, Mars atmosphere, atmospheric chemistry, salts, planetary evolution, volcanology, Mars volcanoes, regolith, surface reactions, Mars soil analogs, carbonates, meteorites, and reactivity.

  2. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. A11, PAGES 25,05325,078, NOVEMBER 1, 2000 Global three-dimensional MHD simulation of a space weather

    E-print Network

    Groth, Clinton P. T.

    three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation the potential, as well as current limitations, of the MHD-based space weather model for enhancing the understanding of coronal physics, solar wind plasma processes, magnetospheric physics, and space weather

  3. Modelling weathering processes at the catchment scale: The WITCH numerical model

    E-print Network

    Mailhes, Corinne

    Centre de Ge´ochimie de la Surface, Strasbourg, France Abstract A numerical model of chemical weatheringModelling weathering processes at the catchment scale: The WITCH numerical model Yves Godde´ris a. Introduction Since the early work by Walker et al. (1981), continental silicate weathering has been recognized

  4. Silicates in Alien Asteroids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  5. Some topics on geochemistry of weathering: a review.

    PubMed

    Formoso, Milton L L

    2006-12-01

    Weathering is a complex process comprising physical disaggregation, chemical and biological decomposition of rocks and minerals transforming complex structure minerals in simpler ones. Hydrolysis of silicates is perhaps the most important process but associated certainly to biological weathering. It is discussed the role ofwaters: activities/concentrations of chemical species, pH, Eh, importance of complexes. Weathering is not only a destructive process. It can concentrate chemical species and form mineral deposits (kaolin, bauxite, Fe, Mn, P, Nb, Au). Weathering studies are important in pedology, engineering geology, hydrogeology, paleoclimatology and ecology. The use of stonemeal is based upon the study of rock weathering. PMID:17143414

  6. Thermochemistry of Silicates

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).

  7. Exposure age and climate controls on weathering in deglaciated watersheds of western Greenland

    NASA Astrophysics Data System (ADS)

    Scribner, C. A.; Martin, E. E.; Martin, J. B.; Deuerling, K. M.; Collazo, D. F.; Marshall, A. T.

    2015-12-01

    Fine-grained sediments deposited by retreating glaciers weather faster than the global average and this weathering can impact the global carbon cycle and oceanic fluxes of nutrients and radiogenic isotopes. Much work has focused on subglacial and proglacial weathering of continental ice sheets, but little is known about weathering and resulting fluxes from deglacial watersheds, which are disconnected from the ice sheets and discharge only annual precipitation and permafrost melt. We investigate the effects of exposure age and precipitation on weathering intensity in four deglacial watersheds on Greenland that form a transect from the coast near Sisimiut toward the Greenland Ice Sheet (GrIS) near Kangerlussuaq based on evaluations of major ion compositions, Sr isotope ratios, and mineral saturation states of waters and sediments. The transect is underlain by Archean orthogneiss and is characterized by gradients in moraine ages (?7.5-8.0 ky inland to ?10 ky at the coast) and water balance (-150 mm/yr inland to +150 mm/yr at the coast). Anion compositions are generally dominated by HCO3, but SO4 becomes increasingly important toward the coast, reflecting a switch from trace carbonate dissolution to sulfide mineral oxidation. Coastal watersheds have a higher proportion of dissolved silica, higher Na/Cl, Si/Ca, and lower Ca/Sr ratios than inland watersheds, indicating an increase in the relative proportion of silicate weathering and an increase in the extent of weathering toward the coast. More extensive weathering near the coast is also apparent in differences in the 87Sr/86Sr ratios of stream water and bedload (?87Sr/86Sr), which decreases from 0.017 inland to 0.005 at the coast, and in increased saturation states relative to amorphous SiO2 and quartz. The steep weathering gradient from inland to coastal watersheds reflects enhanced weathering compared to that expected from the 2 to 3 ky difference in exposure age caused by elevated coastal precipitation. The gradient of weathering with exposure age, water budget and distance from the ice sheet indicates that oceanic and atmospheric fluxes will change as continental glaciers retreat, precipitation patterns across the deglacial region readjust, and the relative proportion of deglacial to proglacial runoff increases.

  8. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  9. Wacky Weather

    ERIC Educational Resources Information Center

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  10. The effect of rock composition on cyanobacterial weathering of crystalline basalt and rhyolite.

    PubMed

    Olsson-Francis, K; Simpson, A E; Wolff-Boenisch, D; Cockell, C S

    2012-09-01

    The weathering of volcanic rocks contributes significantly to the global silicate weathering budget, effecting carbon dioxide drawdown and long-term climate control. The rate of chemical weathering is influenced by the composition of the rock. Rock-dwelling micro-organisms are known to play a role in changing the rate of weathering reactions; however, the influence of rock composition on bio-weathering is unknown. Cyanobacteria are known to be a ubiquitous surface taxon in volcanic rocks. In this study, we used a selection of fast and slow growing cyanobacterial species to compare microbial-mediated weathering of bulk crystalline rocks of basaltic and rhyolitic composition, under batch conditions. Cyanobacterial growth caused an increase in the pH of the medium and an acceleration of rock dissolution compared to the abiotic controls. For example, Anabaena cylindrica increased the linear release rate (R(i)(l)) of Ca, Mg, Si and K from the basalt by more than fivefold (5.21-12.48) and increased the pH of the medium by 1.9 units. Although A. cylindrica enhanced rhyolite weathering, the increase in R(i)(l) was less than threefold (2.04-2.97) and the pH increase was only 0.83 units. The R(i)(l) values obtained with A. cylindrica were at least ninefold greater with the basalt than the rhyolite, whereas in the abiotic controls, the difference was less than fivefold. Factors accounting for the slower rate of rhyolite weathering and lower biomass achieved are likely to include the higher content of quartz, which has a low rate of weathering and lower concentrations of bio-essential elements, such as, Ca, Fe and Mg, which are known to be important in controlling cyanobacterial growth. We show that at conditions where weathering is favoured, biota can enhance the difference between low and high Si-rock weathering. Our data show that cyanobacteria can play a significant role in enhancing rock weathering and likely have done since they evolved on the early Earth. PMID:22694082

  11. The role of basalt weathering on climate: the Siberian traps

    NASA Astrophysics Data System (ADS)

    Grard, A.; François, L.; Dessert, C.; Dupré, B.; Goddéris, Y.

    2003-04-01

    The Siberian traps represent one of the most important flood basalt provinces on Earth. Their onset coincides with a profound faunal mass extinction at the Permo-Trias boundary (250 my ago). The volcanic eruption has also environmental and climatic effects through aerosols and gases injection into the atmosphere. Chemical weathering processes play a major role in biogeochemical cycles and climate evolution. In particular, the weathering of silicate rocks represents an important sink of atmospheric CO_2. At the million-year timescale, the volcanic release of CO_2 into the atmosphere-ocean system is balanced by its consumption during silicate weathering followed by carbonate deposition on the seafloor. Recent data have shown that chemical weathering of basalt is five to ten times more efficient than weathering of acidic silicate rocks such as granite or gneiss (Dessert et al., EPSL, 188 : 459-474, 2001). Thus the weathering of basaltic rocks consumes more atmospheric CO_2 than other silicate rocks. In the case of subaerial basaltic volcanism, an eruption not only releases CO_2 to the atmosphere, but also produces basaltic rocks which weather rapidly, enhancing CO_2 consumption rates. Currently, the Siberian basaltic traps are located in a cold and dry region. The weathering rates of this province are low, and the climatic impact is thus currently low. But in the past, the latitudinal temperature gradient was smaller. During the Permian, the climate was significantly warmer than today. Thus the chemical weathering of the Siberian traps was enhanced at that time, and this process led to a long-term impact on the Triassic climate and on the carbon cycle. The used model calculates the traps impact on the long-term carbon cycle and climate evolution. This model has been refined and adapted to high latitudes environments. We quantify the cooling caused by traps weathering.

  12. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food...HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium...

  13. Weatherizing America

    ScienceCinema

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony;

    2013-05-29

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  14. Weatherizing America

    SciTech Connect

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony;

    2009-01-01

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  15. Social Media: Space Weather #SpaceWeather

    E-print Network

    on the Power Grid Space Weather and the Aurora Borealis What are Solar Flares? What are Coronal Mass Social Media: Space Weather #SpaceWeather Please help the NWS spread these important safety build a WeatherReady Nation. New Space Weather Safety Page What is Space Weather and What

  16. Space Weathering of Silicates Simulated by Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Loeffler, M. J.; Dukes, C. A.; Christoffersen, R.; Baragiola, R. A.

    2015-11-01

    We present our results from experiments where we have laser irradiated pressed pellets of SiO2 and two different olivine compositions (Fo90 and Fo99+), while monitoring our samples with reflectance and photoelectron spectroscopy.

  17. Mountain weather and climate

    SciTech Connect

    Barry, R.G.

    1992-01-01

    Mountain environments are reaching the world environmental agenda of concern. The first edition of this book provided a well organized set of principles on how weather and climate processes operate in mountain environments; it was and remains the major reference on the subject. This second edition remains in the original format but adds new material, including updates and increased bibliography and stressing the importance of the temporal dimension of mountain climates and the potential sensitivity of these environments to global change processes.

  18. Atmosphere, weather and climate

    SciTech Connect

    Barry, R.G.; Chorley, R.J.

    1993-01-01

    In this updated sixth edition the authors focus on the current concern of human impacts on the environment. The topics of greenhouse gases, the destruction of the ozone layer, carbon cycles, and the thermal role of oceans are covered in a revised chapter 1. The authors have intended this book to be a nontechnical account of the dynamics of the atmosphere and of the world climate system. The book presents a general understanding of weather phenomena and of global climates.

  19. Early Silicate Earth Differentiation

    NASA Astrophysics Data System (ADS)

    Caro, Guillaume

    2011-05-01

    The discovery of small 142Nd anomalies in early Archean rocks has brought about a revolution in our understanding of early planetary differentiation processes. 142Nd is a radiogenic isotope produced by the decay of now-extinct 146Sm in crustal and mantle reservoirs. Given that 142Nd heterogeneities can be produced only prior to 4.2 Gya, this short-lived chronometer provides selective information on the very early evolution of primordial silicate reservoirs. This information is particularly crucial for Earth, where the fingerprints of the earliest crustal formation processes have been almost entirely erased from the geological record. This article reviews the history of the field, from the pioneering applications of the 147Sm-143Nd and 146Sm-142Nd systems to ancient crustal rocks, to the more recent insights gained from application of 146Sm-142Nd to meteorites and lunar samples.

  20. Smooth Sailing for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Through a cooperative venture with NASA's Stennis Space Center, WorldWinds, Inc., developed a unique weather and wave vector map using space-based radar satellite information and traditional weather observations. Called WorldWinds, the product provides accurate, near real-time, high-resolution weather forecasts. It was developed for commercial and scientific users. In addition to weather forecasting, the product's applications include maritime and terrestrial transportation, aviation operations, precision farming, offshore oil and gas operations, and coastal hazard response support. Target commercial markets include the operational maritime and aviation communities, oil and gas providers, and recreational yachting interests. Science applications include global long-term prediction and climate change, land-cover and land-use change, and natural hazard issues. Commercial airlines have expressed interest in the product, as it can provide forecasts over remote areas. WorldWinds, Inc., is currently providing its product to commercial weather outlets.

  1. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin)

    NASA Astrophysics Data System (ADS)

    Lupker, Maarten; France-Lanord, Christian; Galy, Valier; Lavé, Jérôme; Gaillardet, Jérôme; Gajurel, Ananta Prasad; Guilmette, Caroline; Rahman, Mustafizur; Singh, Sunil Kumar; Sinha, Rajiv

    2012-05-01

    We present an extensive river sediment dataset covering the Ganga basin from the Himalayan front downstream to the Ganga mainstream in Bangladesh. These sediments were mainly collected over several monsoon seasons and include depth profiles of suspended particles in the river water column. Mineral sorting is the first order control on the chemical composition of river sediments. Taking into account this variability we show that sediments become significantly depleted in mobile elements during their transit through the floodplain. By comparing sediments sampled at the Himalayan front with sediments from the Ganga mainstream in Bangladesh it is possible to budget weathering in the floodplain. Assuming a steady state weathering regime in the floodplain, the weathering of Himalayan sediments in the Gangetic floodplain releases ca. (189 ± 92) × 109 and (69 ± 22) × 109 mol/yr of carbonate bound Ca and Mg to the dissolved load, respectively. Silicate weathering releases (53 ± 18) × 109 and (42 ± 13) × 109 mol/yr of Na and K while the release of silicate Mg and Ca is substantially lower, between ca. 0 and 20 × 109 mol/yr. Additionally, we show that sediment hydration, [H2O+], is a sensitive tracer of silicate weathering that can be used in continental detrital environments, such as the Ganga basin. Both [H2O+] content and the D/H isotopic composition of sediments increases during floodplain transfer in response to mineral hydrolysis and neoformations associated to weathering reactions. By comparing the chemical composition of river sediments across the floodplain with the composition of the eroded Himalayan source rocks, we suggest that the floodplain is the dominant location of silicate weathering for Na, K and [H2O+]. Overall this work emphasizes the role of the Gangetic floodplain in weathering Himalayan sediments. It also demonstrates how detrital sediments can be used as weathering tracers if mineralogical and chemical sorting effects are properly taken into account.

  2. Deducing Weathering Processes Using Silicon Isotopes in the Ganges Alluvial Plain, India

    NASA Astrophysics Data System (ADS)

    Frings, P.; De La Rocha, C. L.; Fontorbe, G.; Chakrapani, G.; Clymans, W.; Conley, D. J.

    2014-12-01

    The Ganges Alluvial Plain ('GAP') is the sedimentary infill of the foreland basin created during Himalayan orogeny. Freshly eroded material from the Himalaya and southern cratonic tributaries is deposited into a system with long water-sediment interaction times, creating potential for further generation of river weathering fluxes. To quantify weathering processes in the GAP, 51 sites including all major tributaries were sampled in a September 2013 campaign and analysed for major and minor ions, Ge/Si ratios and ?30Si, ?13C and ?18O. Net dissolved Si (DSi) and major cation yields are 2 to 5 times lower in the GAP than the Himalaya, and at a whole basin scale approximate the global average, indicating that the plain apparently moderates the efficiency of Himalayan weathering rates. Mainstem ?30Si spans 0.81 to 1.93‰ (see figure) and gives the impression of a system buffered to moderate DSi and ?30Si. Ge/Si ratios (µmol/mol) are higher than expected in the Himalaya (>3), reflecting input of Ge-enriched water from hot springs, and decline to ~1.4 in the GAP. For the Himalayan sourced rivers, ?30Si increases with distance from the Himalayan front, and can not be explained entirely by conservative mixing with higher ?30Si peninsular and GAP streams. To a first degree, the ?30Si data suggest incorporation of Si into secondary minerals as the key fractionating process, and that this occurs both in situ during initial weathering and progressively in the GAP. Partitioning of solutes between sources is complicated in the GAP. Consistent with previous work, carbonate weathering dominates the ion fluxes, but with substantial contributions from saline/alkaline soil salts, the chlorination of wastewater and highly variable rainfall chemistry. Due to these contributions, precisely inferring the input from silicate weathering is difficult. We introduce a novel method to infer silicate-weathering rates that exploits the fractionation of Si during clay formation to account for the loss of DSi from solution.

  3. Seafloor weathering buffering climate: numerical experiments

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching reactions, carbonate precipitation, and clay formation.

  4. Weathering of sulfides on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1987-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.

  5. Can enhanced weathering remove carbon dioxide from the atmosphere to prevent climate change? (Invited)

    NASA Astrophysics Data System (ADS)

    Renforth, P.; Pogge von Strandmann, P.; Henderson, G. M.

    2013-12-01

    On long timescales, silicate weathering provides the ultimate sink for CO2 released by volcanic degassing and, because the rate of such weathering is temperature dependant, this sink is thought to respond to climate change to provide a strong negative feedback stabilising Earth's climate. An increase of global weathering rates is expected in response to anthropogenic warming and this increased weathering will ultimately (on the timescale of hundreds of thousands of years) serve to remove additional CO2 and return the climate system to lower temperatures. Some have proposed that accelerating this natural process by adding ground minerals to the land surface may help to prevent climate change. However, a major challenge in assessing such a proposal is the lack of experimental kinetic data for minerals added to the environment. Here we will present results from an experiment in which a forsterite rich olivine (Mg2SiO4) was added to the top of a soil column extracted from an agricultural field. A solution was passed through the columns over a period of 5 months and the drainage waters were collected and analysed. The greater flux of Mg measured eluting from the treated soil can be used to constrain the weathering rate of the olivine. A weathering rate can be determined by normalising the rate of magnesium flux to the surface area of olivine in the soil. By combining this information with a simple shrinking core model, we can estimate that an average particle size less than 1 ?m would be required in order for the olivine to completely dissolve in a year. Therefore, the energy requirements for enhanced weathering are large >2 GJ(electrical) per net tonne of CO2 sequestered, but it is at least comparable to direct air capture technologies. These preliminary results suggest limited carbon capture potential for enhanced weathering in temperate agricultural soils. However, some environments may be better suited (e.g. humid tropical agricultural soils) and additional experimental work is required to test these. This initial assessment does not include the plethora of other impacts that may be caused by enhanced weathering (ocean fertilisation, dust generation, soil carbon changes, K-feldspar fertilisation). More generally, terrestrial enhanced weathering is only one of a number of technologies that propose to add alkalinity to the surface ocean. The findings from this study will be presented in the context of this broader research field of ocean alkalinity modification.

  6. Recent work on the evolution of the global climate during the Cenozoic era has focused almost exclusively on the possible per-

    E-print Network

    Warrick, Douglas R.

    ­1009 (1989). 19. Gardner, R. & Walsh, N. Chemical weathering oif metamorphic rocks from low elevations exclusively on the possible per- turbation of atmospheric CO2 levels resulting from weathering of silicates,31,32 . Although the hypothesized link between Himalayan silicate weathering and atmospheric CO2 levels remains

  7. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite.

    PubMed

    Elmore, Amy R

    2003-01-01

    This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 microm as possibly carcinogenic to humans, but fibers <5 microm were not classified as to their carcinogenicity to humans. Likewise, Clinoptilolite, Phillipsite, Mordenite, Nonfibrous Japanese Zeolite, and synthetic Zeolites were not classified as to their carcinogenicity to humans. These ingredients are not significantly toxic in oral acute or short-term oral or parenteral toxicity studies in animals. Inhalation toxicity, however, is readily demonstrated in animals. Particle size, fibrogenicity, concentration, and mineral composition had the greatest effect on toxicity. Larger particle size and longer and wider fibers cause more adverse effects. Magnesium Aluminum Silicate was a weak primary skin irritant in rabbits and had no cumulative skin irritation in guinea pigs. No gross effects were reported in any of these studies. Sodium Magnesium Silicate had no primary skin irritation in rabbits and had no cumulative skin irritation in guinea pigs. Hectorite was nonirritating to the skin of rabbits in a Draize primary skin irritation study. Magnesium Aluminum Silicate and Sodium Magnesium Silicate caused minimal eye irritation in a Draize eye irritation test. Bentonite caused severe iritis after injection into the anterior chamber of the eyes of rabbits and when injected intralamellarly, widespread corneal infiltrates and retrocorneal membranes were recorded. In a primary eye irritation study in rabbits, Hectorite was moderately irritating without washing and practically nonirritating to the eye with a washout. Rats tolerated a single dose of Zeolite A without any adverse reaction in the eye. Calcium Silicate had no discernible effect on nidation or on maternal or fetal survival in rabbits. Magnesium Aluminum Silicate had neither a teratogenic nor adverse effects on the mouse fetus. Female rats receiving a 20% Kaolin diet exhibited maternal anemia but no significant reduction in birth weight of the pups was recorded. Type A Zeolite produced no adverse effects on the dam, embryo, or fetus in either rats or rabbits at any dose level. Clinoptilolite had no effect on female rat reproductive performance. These ingredients were not genotoxic in the Ames bacterial test system. In primary hepatocyte cultures, the addition of Attapulgite had no significant unscheduled DNA synthesis. Attapulgite did cause significant increases in unscheduled DNA synthesis in rat pleural mesothelial cells, but no significant increase in sister chromosome exchanges were seen. Zeolite particles (<10 microm) produced statistically significant increase in the percentage of aberrant metaphases in human peripheral blood lymphocytes and cells collected by peritoneal lavage from exposed mice. Topical application of Magnesium Aluminum Silicate to human skin daily for 1 week produced no adverse effects. Occupational exposure to mineral dusts has been studied extensively. Fibrosis and pneumoconiosis have been documented in workers involved in the mining and processing of Aluminum Silicate, Calcium Silicate, Zirconium Silicate, Fuller's Earth, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite. The Cosmetic Ingre

  8. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  9. Modulation of Cenozoic climate by weathering of large igneous provinces on continents drifting through equatorial humid belt

    NASA Astrophysics Data System (ADS)

    Muttoni, G.; Kent, D. V.

    2011-12-01

    The small reservoir of CO2 in the atmosphere (pCO2) that modulates climate through the greenhouse effect is a delicate balance between large fluxes of sources and sinks. The major long-term source of CO2 is global degassing from sea-floor spreading, subduction, hotspot activity, and metamorphism; the ultimate sink is through weathering of continental silicates. Most carbon cycle models are driven by changes in the source flux, in particular, variable rates of ocean floor production (and concomitant subduction) but the area/age versus age distribution of the modern ocean is compatible with a steady rate since 180 Ma (Rowley, 2002 GSA Bulletin). We previously suggested (2008 PNAS) that evidence of high pCO2 and warm climates in the Cretaceous-early Cenozoic could be explained by the subduction of Tethyan ocean crust loaded with equatorial carbonate-rich pelagic (more readily subductable) sediments since the onset of India's northward flight at ~120 Ma up until the CO2-producing decarbonation factory slowed down with collision of India and Asia at the Early Eocene Climate Optimum at 50 Ma. At about this time, the India continent and the highly weatherable Deccan Traps drifted into the equatorial humid belt where uptake of CO2 by efficient silicate weathering would further lower the level of pCO2. Continued weathering uptake was influenced by the southerly extrusion of SE Asia in response to the Indian indentor starting at ~40 Ma (Molnar & Tapponnier, 1975 Science) as well as the emplacement of the Ethiopian traps near the Equator at 30 Ma. The ongoing impingement of India into Asia and resultant southerly tectonic extrusion of SE Asia (Replumaz & Tapponnier, 2003 JGR) makes it the dominant new area in the equatorial humid belt. Moreover, SE Asia presently accounts for 25% of CO2 consumption of all basaltic provinces, which account for ~1/3 of the total consumption by continental silicate weathering (Dessert et al., 2003 Chemical Geology) that is within the range of total emission of CO2 from modern volcanoes (Gerlach, 2011 Eos). In contrast, large igneous provinces like that 250 Ma Siberian Traps that remained in higher (cooler) latitudes or the 130 Ma Parana located in the tropical arid belt are not major sponges of CO2. And on the supply side, there is presently little subduction of equatorial bulge sediments save for Central America. We conclude that consumption of CO2 by igneous provinces with highly weatherable mafic rocks that drift into the equatorial humid belt is an important and quite possibly the determinant process for modulating levels of pCO2.

  10. Chemical and Physical Weathering in a Hot-arid, Tectonically Active Alluvial System (Anza-Borrego Desert, CA)

    NASA Astrophysics Data System (ADS)

    Joo, Y. J.; Elwood Madden, M.; Soreghan, G. S.

    2014-12-01

    Climate and tectonics are primary controls on bedrock erosion, and sediment production, transport, and deposition. Additionally, silicate weathering in tectonically active regions is known to play a significant role in global climate owing to the high rates of physical erosion and exposure of unweathered bedrock to chemical weathering, which removes CO2 from the atmosphere. Therefore, the feedback between weathering and climate is key to understanding climate change through Earth history. This study investigates chemical and physical weathering of alluvial sediments in the Anza-Borrego Desert, California, located in the southern part of the San Andreas Fault System. This setting provides an ideal opportunity to study weathering in a hot and arid climate with mean annual temperatures of ~23 °C and mean annual precipitation of ~160 mm in the basin. Samples were collected along a proximal-to-distal transect of an alluvial-fan system sourced exclusively from Cretaceous tonalite of the Peninsular Range. The single bedrock lithology enables exploration of the effects of other variables — climate, transport distance, drainage area, and tectonics— on the physical and chemical properties of the sediments. Although minimal overall (CIA = 56-61), the degree of chemical weathering increases down transect, dominated by plagioclase dissolution. BET surface area of the mud (<63µm) fraction decreases distally, which is consistent with coarsening grain-size. Chemical alteration and BET surface area both increase in a distal region, within the active Elsinore Fault zone. Extensive fracturing here, together with a more-humid Pleistocene climate likely facilitated in-situ bedrock weathering; specifically, dissolution of primary minerals (e.g. plagioclase), preceding the arid alluvial erosion, transport, and deposition in the Holocene. This study further seeks to disentangle the complex record of the climate and tectonic signals imprinted in these sediments.

  11. Weather control

    SciTech Connect

    Leepson, M.

    1980-09-05

    Weather modification, the intentional altering of atmospheric conditions to suit the purposes of humankind, has five basic forms: (1) fog dissipation; (2) rain and snow enhancement; (3) hail suppression; (4) lightning suppression; and (5) the abatement of severe storms such as hurricanes and tornadoes. The dissipation of fog and the seeding of clouds with dry ice or silver iodide to produce rain are the most successful weather modification techniques. Both are used extensively and with varying degrees of success in the United States and around the world. Cloud seeding, though, is not effective in easing the harshness of a drought, such as the one that hit the Southwest, Midwest and Great Plains this summer.

  12. Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals

    NASA Astrophysics Data System (ADS)

    Casey, William H.; Westrich, Henry R.; Banfield, Jillian F.; Ferruzzi, Giulio; Arnold, Geroge W.

    1993-11-01

    THE pathways by which silicate minerals transform to solutes, clays and amorphous solids are relevant to a wide range of natural, industrial and even medical concerns. For example, weathered layers on silicate may have a high sorptive capacity, affecting nutrient and contamination retention in soils; less obviously, such layers on inhaled silicate grains might affect their interaction with lung tissue. Here we report the observation, in dissolution experiments on a range of chain-silicate minerals, of the formation of a near-surface amorphous region enriched in silicon and hydrogen, and depleted in other metals. Raman spectroscopy and ion-beam elemental analysis show that portions of the polymeric silicate anion in this region spontaneously reconstruct to form a network that contains four-member silicate rings and areas of incipient crystallization. If hydrolysable metals interact with the silicate anion during this reconstruction, clays and amorphous products may form directly. This process complements traditional dissolution-precipitation pathways of mineral diagenesis1, as the silicon does not have to be present in solution before being incorporated into a growing secondary phase.

  13. PII S0016-7037(01)00869-9 Germaniumsilicon fractionation in the weathering environment

    E-print Network

    Derry, Louis A.

    affected by processes other than silicate weath- ering. For example, strontium isotope ratios in soil al., 2000), whereas stream water osmium isotope ratios may preferentially reflect weathering--We present a detailed study of germanium behavior in the soil weathering environment as an important step

  14. Weathering fluxes to the Gulf of Mexico from the Pliocene to Holocene based on radiogenic isotopes

    NASA Astrophysics Data System (ADS)

    Portier, A. M.; Martin, E. E.; Hemming, S. R.; Thierens, M. M.; Raymo, M. E.

    2014-12-01

    Chemical weathering of the continents plays a key role in the global carbon cycle and delivers solutes to the ocean. Past studies, documented using radiogenic isotopes of detrital and seawater samples, show the intensity of weathering varies with climate over a range of time scales.. We analyzed Pb and Nd isotopic values of seawater extracted from dispersed Fe-Mn oxides, <2?m (clay) and <63?m (silt) detrital fractions of Pliocene to Holocene sediment from Gulf of Mexico ODP Site 625B to evaluate long term variations in weathering fluxes for three time slices: the Pliocene/early Pleistocene, Mid Pleistocene Transition (MPT), and late Pleistocene/Holocene. We also examine short term glacial/interglacial variations. Little variation is seen in Nd isotopes of detrital fractions with age, suggesting little change in the average age of material delivered to the Gulf. Seawater Nd values become less radiogenic over the Pleistocene, consistent with observed changes in Caribbean seawater. Pb isotopes of silt fractions are also relatively constant through time, but clay fractions are more radiogenic at the MPT and dispersed Fe-Mn oxides trend to more radiogenic values in the late Pleistocene. Consequently, the Pb isotopes of dispersed Fe-Mn oxides tend to be less radiogenic than the detrital fractions in samples older than 2000 ka and more radiogenic than the detrital fractions, particularly clays, at the MPT. This may reflect greater incongruent silicate weathering during the MPT, a change in weathering conditions that could be consistent with the Regolith Hypothesis. Over glacial/interglacial timescales, dispersed Fe-Mn oxides Pb isotopes become more radiogenic than detrital fractions, and clay fractions become more radiogenic than silt fractions, during glacial periods. However, all fractions have similar values during interglacials. This pattern is distinct from previous studies that found enhanced incongruent silicate weathering during warm intervals, but is consistent with recent work finding a correlation with carbonate content, whereby low carbonate during glacials at Site 625 corresponds to a greater offset between leachate and detrital Pb isotopes. Biases from "heavy mineral effects" and changes in circulation during periods of lower sea level also need to be considered.

  15. Hiding Silicates in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Lewis, Mark C.; Stewart, G. R.

    2009-09-01

    A series of numerical simulations are presented that look at the impact of replacing some of the ice particles in Saturn's rings with silicate particles. All particles are modeled as perfect spheres with no tangential friction. Collisions and particle self-gravity are considered and regions in both the A and B rings have been explored. The particles that represent silicates are given a density of 3 g/cm3 while the icy particles have a density of 0.5 g/cm3. Simulations were done using particles of a single size as well as size distributions and parameters were picked to roughly match measured surface densities. The primary conclusion of this work is that silicate material is well hidden from observations as it collapses down to form core-like structures in the ephemeral gravity wakes. When 4% of the particles are silicates, less than 1% of the reflected light is reflected from the silicate bodies. The light reflected from silicates preferentially comes from particles that are not currently in gravity wakes. Higher percentages of high density material can also be very effectively hidden. Hence, direct observation of spectra does not serve as a strong bound on ring composition. However, having even 4% silicate material does change the pitch angle and structure of gravity wakes and this might serve as an indirect diagnostic of the presence of higher density material. This is especially relevant in the A ring where gravity wake pitch angle affects the azimuthal brightness asymmetry. This work supported by NASA PG&G.

  16. Short Communication: Earth is (mostly) flat, but mountains dominate global denudation: apportionment of the continental mass flux over millennial time scales, revisited

    NASA Astrophysics Data System (ADS)

    Willenbring, J. K.; Codilean, A. T.; Ferrier, K. L.; McElroy, B.; Kirchner, J. W.

    2014-01-01

    Carbon dioxide consumption by silicate mineral weathering and the subsequent precipitation of carbonate sediments sequesters CO2 over geologic timescales. The rate of this carbon sequestration is coupled to rates of continental erosion, which exposes fresh minerals to weathering. Steep mountain landscapes represent a small fraction of continental surfaces but contribute disproportionately to global erosion rates. However, the relative contributions of Earth's much vaster, but more slowly eroding, plains and hills remain the subject of debate. Recently, Willenbring et al. (2013) analyzed a compilation of denudation rates and topographic gradients and concluded that low-gradient regions dominate global denudation fluxes and silicate weathering rates. Here, we show that Willenbring et al. (2003) topographic and statistical analyses were subject to methodological errors that affected their conclusions. We correct these errors, and reanalyze their denudation rate and topographic data. In contrast to the results of Willenbring et al. (2013), we find that the denudation flux from the steepest 10% of continental topography nearly equals the flux from the other 90% of the continental surface combined. This new analysis implies global denudation fluxes of ∼23 Gt yr-1, roughly five times the value reported in Willenbring et al. (2013) and closer to previous estimates found elsewhere in the literature. Although low-gradient landscapes make up a small proportion of the global fluxes, they remain important because of the human reliance, and impact, on these vast areas.

  17. Arctic Sea Ice Hits Record Low--Extreme Weather to Come? Global warming to blame for highest observed decline, scientists say.

    E-print Network

    South Bohemia, University of

    intense extreme-weather events such as heat waves, cold spells, and droughts. On Monday, researchers rate of decline since 1979, with the rest due to natural climate variability. "If you run these climate," Stroeve said. "None of them are able to capture what's happening today without including greenhouse gases

  18. Martian Chemical Weathering at Hematite Ridge, Gale Crater

    NASA Astrophysics Data System (ADS)

    Bridges, J. C.; Schwenzer, S. P.; Leveille, R.; Wiens, R. C.; McAdam, A.; Conrad, P.; Kelley, S. P.

    2015-10-01

    A likely origin of Hematite Ridge, Gale Crater is from the in-situ weathering of precursor silicates under oxidizing conditions: it might represent an ancient sub aerially exposed horizon. High W/R associated with FeMg mineral alteration and hematite enrichment is envisaged within a near surface aquifer.

  19. The rise and fall of continental arcs: Interplays between magmatism, uplift, weathering, and climate

    NASA Astrophysics Data System (ADS)

    Lee, Cin-Ty A.; Thurner, Sally; Paterson, Scott; Cao, Wenrong

    2015-09-01

    Continental arcs, such as the modern Andes or the Cretaceous Sierra Nevada batholith, are some of the highest topographic features on Earth. Continental arc volcanoes may produce more CO2 than most other types of volcanoes due to the interaction of magmas with sedimentary carbonates stored in the continental upper plate. As such, global flare-ups in continental arc magmatism may amplify atmospheric CO2 concentrations, leading to climatic warming. However, the high elevations of continental arcs may also enhance orographic precipitation and change global atmospheric circulation patterns, possibly increasing the efficiency of chemical weathering and drawdown of atmospheric CO2, which may subdue the climatic warming response to volcanic activity. To better evaluate the climatic response, we develop models that integrate magmatic crustal thickening, topographic uplift, isostasy and erosion. The topographic response is used to predict how soil formation rates, soil residence times, and chemical weathering rates vary during and after a magmatic episode. Although magmatism leads to crustal thickening, which requires topographic uplift, highest elevations peak ?10 My after magmatism ends. Relatively high elevations, which enhance erosion and chemical weathering of the continental arc, persist for tens of million years after magmatism ends, depending on erosion kinetics. It has recently been suggested that the Cretaceous-Paleogene greenhouse (high atmospheric CO2 and warm climate) coincided with a global chain of continental arcs, whereas mid- to late Cenozoic icehouse conditions (low atmospheric CO2 and cold climate) coincided with a lull in continental arc activity after 50 Ma. Application of our models to the Sierra Nevada (California, USA) continental arc, which represents a segment of this global Cretaceous-Paleogene continental arc, reproduces the observed topographic and erosional response. Our models require that the newly formed continental arc crust remained high and continued to erode and weather well after (>50 My) the end of magmatism. Thus, in the aftermath of a global continental arc flare-up, both the total volcanic inputs of CO2 decline and the average weatherability of continents increases, the latter due to the increased proportion of widespread remnant topography available for weathering and erosion. This combination leads to a decrease in the long-term baseline of carbon in the ocean/atmosphere system, leading to cooling. Mid-Cenozoic cooling is often attributed solely to increased weathering rates associated with India-Eurasian collision and the Himalayan orogeny. However, the total area of now-extinct Cretaceous-Paleogene continental arcs is 1.3-2 times larger than that of the Himalayan range front and the Tibetan plateau combined, suggesting that weathering of these remnant volcanic arcs may also play a role in drawing down CO2 through silicate weathering and subsequent carbonate burial. In summary, if global continental arc flare-ups lead to greenhouse conditions, long-lived icehouse conditions should follow in the aftermath due to decreased CO2 inputs and an increase in regional weathering efficiency of remnant arc topography.

  20. Comparative pathology of silicate pneumoconiosis.

    PubMed Central

    Brambilla, C.; Abraham, J.; Brambilla, E.; Benirschke, K.; Bloor, C.

    1979-01-01

    A simple pneumoconiosis with lamellar birefringent crystals was observed in animals dying in the San Diego Zoo. We studied 100 autopsies from 11 mammalian and eight avian species. In mammals, mild pulmonary lesions comprised crystal-laden macrophages in alveoli and lymphatics. Interstitial fibrosis was present in 20% of cases. There were no nodules. In birds, dust retention produced large granulomas around tertiary bronchi without fibrosis. Mineralogic analysis using scanning and transmission electron microscopy showed most of the crystals to be silicates. Ninety percent were complex silicates, with aluminum-potassium silicates comprising 70% of the analyzed particles. Electron and x-ray diffraction showed the silicates to be muscovite mica and its hydrothermal degradation product, ie, illite clay. This mica was also present on filtration membranes of atmospheric air samples obtained from the San Diego Zoo. The amount of dust retention was related to the animal's age, anatomic or ecologic variances, and length of stay in the San Diego Zoo. Its semidesert atmosphere is rich in silicates, which are inhaled and deposited in the lungs. Similar mica-induced lesions are found in humans living in this region or the Southwest of the USA. This simple pneumoconiosis is likely to be widespread in human populations living in desert or semidesert climates. Images Figure 9 Figure 10 Figure 7 Figure 8 Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 PMID:223447

  1. Social Media: Space Weather #SpaceWeather

    E-print Network

    Weather Check out this video on how space weather impacts communications: https://youtu.be/7vFGTl_Cp6I://www.swpc.noaa.gov/impacts/spaceweatherandgpssystems #SpaceWeather Check out this video on how space weather impacts GPS: https

  2. UNH Sport Club Weather Guidelines Cold Weather*

    E-print Network

    1 UNH Sport Club Weather Guidelines Cold Weather* *All temperatures are with wind during the cold weather months. Be sure to provide plenty of opportunities for re: Modify activity to limit exposure to weather and allow more frequent chances to re

  3. Commercializing Space Weather using GAIM

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Schunk, Robert; Sojka, Jan J.

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the en-ergy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects com-munication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) was organized in 2009 to develop commercial space weather applications. It uses the Global Assimilation of Ionospheric Measurements (GAIM) system as the basis for providing improvements to communication and navigation systems. For example, in August 2009 SWC released, in conjunction with Space Environment Technologies, the world's first real-time space weather via an iPhone app, Space WX. It displays the real-time, current global ionosphere to-tal electron content along with its space weather drivers, is available through the Apple iTunes store, and is used around the world. The GAIM system is run operationally at SWC for global and regional (continental U.S.) conditions. Each run stream continuously ingests up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations in a Kalman filter to adjust the background output from the physics-based Ionosphere Forecast Model (IFM). Additionally, 80 real-time digisonde data streams from around the world provide ionosphere characterization up to the F-region peak. The combination of these data dramatically improves the current epoch ionosphere specification beyond the physics-based solution. The altitudinal range is 90-1500 km for output TEC, electron densities, and other data products with a few degrees resolution in latitude and longitude at 15-minute time granularity. We describe the existing SWC products that are used as commercial space weather information. SWC funding is provided by the State of Utah's Utah Science Technology and Research (USTAR) initiative. The SWC is physically located on the USU campus in Logan, Utah.

  4. Space weathering: from laboratory to observations .

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Orofino, V.; Strazzulla, G.

    An ongoing research program in our laboratories is focusing on the effects of laser ablation and ion irradiation on silicates, meteorites, and ices, as a simulation of space weathering on Solar System minor bodies (asteroids, Trans-Neptunian Objects, etc.). Spectroscopic results show a general reddening and darkening of the various materials in the 0.3-2.7 mu m range. Laboratory data are then compared with observations, through spectral characterization and scattering models, indicating that space weathering is a very efficient process both in the inner and outer Solar System. In particular, we demonstrated that the majority of TNOs and Centaurs can develop an organic crust mantle produced after irradiation of simple C-bearing molecules. Another relevant result is that the exposure to surface space weathering of asteroid 832 Karin, as calculated from our experiments and models, is in agreement with a dynamical time-scale, i.e. the age of the corresponding Karin family.

  5. Photochemical weathering and contemporary volatile loss on Mars

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.

    1987-01-01

    In an earlier series of papers by the author it was proposed that photochemical weathering of Fe(2+) in magnetite and in mafic silicates may be occurring in the contemporary surface environment with a resultant loss of O2 from the atmosphere. Morris and Lauer challenged the photochemical weathering model, proposing that oxidation by radiant heating rather than UV photoelectron emission induced oxidation may have dominated in the authors experiments. Subsequent laboratory studies of photochemical weathering of magnetite described here support the authors original proposal that UV illunimation can indeed drive the oxidation of magnetite under contemporary Martian surface conditions. The negative results of the Morris and Lauer study can now be explained.

  6. Battery components employing a silicate binder

    DOEpatents

    Delnick, Frank M. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM); Odinek, Judy G. (Rio Rancho, NM)

    2011-05-24

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  7. Building a Weather-Ready Nation Winter Weather Safety

    E-print Network

    Building a Weather-Ready Nation Winter Weather Safety NOAA/NWS Winter Weather Safety Seasonal Campaign www.weather.gov #12;Building a Weather-Ready Nation Winter Weather Hazards Winter Weather Safety www.weather.gov · Snow/Ice · Blizzards · Flooding · Cold Temperatures #12;Building a Weather

  8. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  9. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  10. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  11. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  12. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  13. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  14. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  15. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  16. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  17. Dehydroxylated clay silicates on Mars: Riddles about the Martian regolith solved with ferrian saponites

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Clay silicates, resulting from the chemical weathering of volcanic glasses and basaltic rocks of Mars, are generally believed to be major constituents of the martian regolith and atmospheric dust. Because little attention has been given to the role, if any, of Mg-bearing clay silicates on the martian surface, the crystal chemistry, stability, and reactivity of Mg-Fe smectites are examined. Partially dehydroxylated ferrian saponites are suggested to be major constituents of the surface of Mars, regulating several properties of the regolith.

  18. Biogeochemical weathering under ice: Size matters J. L. Wadham,1

    E-print Network

    Priscu, John C.

    is a critical control on the balance of chemical weathering processes and that microbial activity is ubiquitous of chemical weathering dynamics provides important information on subglacial biodiversity and global; Tranter et al., 2005]. These chemical weathering processes may be critical to their survival through

  19. Amended Silicated for Mercury Control

    SciTech Connect

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly ash is sold as a by-product.

  20. Iron-magnesium silicate bioweathering on Earth (and Mars?).

    PubMed

    Fisk, M R; Popa, R; Mason, O U; Storrie-Lombardi, M C; Vicenzi, E P

    2006-02-01

    We examined the common, iron-magnesium silicate minerals olivine and pyroxene in basalt and in mantle rocks to determine if they exhibit textures similar to bioweathering textures found in glass. Our results show that weathering in olivine may occur as long, narrow tunnels (1-3 microm in diameter and up to 100 microm long) and as larger irregular galleries, both of which have distinctive characteristics consistent with biological activity. These weathering textures are associated with clay mineral by-products and nucleic acids. We also examined olivine and pyroxene in martian meteorites, some of which experienced preterrestrial aqueous alteration. Some olivines and pyroxenes in the martian meteorite Nakhla were found to contain tunnels that are similar in size and shape to tunnels in terrestrial iron-magnesium silicates that contain nucleic acids. Though the tunnels found in Nakhla are similar to the biosignatures found in terrestrial minerals, their presence cannot be used to prove that the martian alteration features had a biogenic origin. The abundance and wide distribution of olivine and pyroxene on Earth and in the Solar System make bioweathering features in these minerals potentially important new biosignatures that may play a significant role in evaluating whether life ever existed on Mars. PMID:16551226

  1. Hot Weather Tips

    MedlinePLUS

    HOT Weather Tips Printer-friendly version We all suffer in hot weather. However, for elderly and disabled people and ... stress and following these tips for dealing with hot weather. Wear cool clothing: See that the person ...

  2. Weather Prediction Models

    NASA Astrophysics Data System (ADS)

    Bacmeister, Julio T.

    Awareness of weather and concern about weather in the proximate future certainly must have accompanied the emergence of human self-consciousness. Although weather is a basic idea in human existence, it is difficult to define precisely.

  3. Weather in the News.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1989-01-01

    A discussion of TV weather forecasting introduces this article which features several hands-on science activities involving observing, researching, and experimenting with the weather. A reproducible worksheet on the reliability of weather forecasts is included. (IAH)

  4. Forecasting the Weather.

    ERIC Educational Resources Information Center

    Bollinger, Richard

    1984-01-01

    Presents a computer program which predicts the weather based on student input of such weather data as wind direction and barometric pressure. Also provides procedures for several hands-on, weather-related activities. (JN)

  5. A Century of Monitoring Weather and Crops: The Weekly Weather and Crop Bulletin.

    NASA Astrophysics Data System (ADS)

    Heddinghaus, Thomas R.; Le Comte, Douglas M.

    1992-02-01

    Publication of a national weekly weather summary called the Weekly Weather Chronicle began in 1872. This summary was the precursor of today's Weekly Weather and Crop Bulletin (WWCB), a publication that reports global weather and climate conditions relevant to agricultural interests, as well as current national activities and assessments of crop and livestock conditions. The WWCB is produced by the Joint Agricultural Weather Facility (JAWF), a world agricultural weather information center located in the U.S. Department of Agriculture (USDA) headquarters in Washington, D.C., and jointly staffed by units of the National Oceanic and Atmospheric Administration's Climats. Analysis Center and USDA's World Agricultural Outlook Board and National Agricultural Statistics Service. Besides featuring charts and tables (e.g., temperature and precipitation maps and crop progress and condition tables), the WWCB contains summaries and special stories highlighting significant weather events affecting agriculture, such as droughts, torrential rains, floods, unusual warmth, heat waves, severe freezes, heavy snowfall, blizzards, damaging storms, and hurricanes.

  6. Modifying Silicates for Better Dispersion in Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces, the co-ion exchange strengthens the polymer/silicate interface and ensures irreversible separation of the silicate layers. One way in which it does this is to essentially tether one amine of each diamine molecule to a silicate surface, leaving the second amine free for reaction with monomers during the synthesis of a polymer. In addition, the incorporation of alkyl ammonium ions into the galleries at low concentration helps to keep low the melt viscosity of the oligomer formed during synthesis of the polymer and associated processing - a consideration that is particularly important in the case of a highly cross-linked, thermosetting polymer. Because of the chemical bonding between the surface-modifying amines and the monomers, even when the alkyl ammonium ions become degraded at high processing temperature, the silicate layers do not aggregate and, hence, nanometer-level dispersion is maintained.

  7. The Application of a Speciation Mass-Balance Model (PHREEQCi) For Linking Subglacial Chemical Weathering Processes and Subglacial Hydrology

    NASA Astrophysics Data System (ADS)

    Mitchell, A. C.; Brown, G. H.; Fuge, R.

    2004-05-01

    The determination of solute sources in glacierised environments is critical for the continued use of hydrochemistry as an indicator of hydrological flow-paths, and for our understanding of processes of chemical denudation, metal and nutrient cycling in glacierised environments, and global biogeochemical cycles. This study develops previous methods of solute provenance determination in glacial hydrochemical systems by utilising PHREEQCi, a computer based speciation mass-balance (SMB) model, with hydrochemical, hydrological and mineralogical field data, from Haut Glacier d'Arolla, Switzerland. The aim is to investigate the utility of SMB models and the feasibility of previously hypothesised subglacial weathering reactions, with regard the relationship between macro changes in hydrology, and micro changes in subglacial chemical weathering processes. Two modelling schemes were developed; reactions between supraglacial and bulk meltwaters (S-BM), and reactions between supraglacial and in-situ borehole meltwaters (S-BHM). SMB modelling produced a broad range of feasible weathering scenarios, but not one unique weathering scenario, which could account for the observed changes in water chemistry between input and output waters in subglacial environments over contrasting periods of the ablation season. There were few differences between S-BM and S-BHM weathering scenarios, so these hypothetical models appear feasible for both quick-flow and delayed-flow waters, where the reaction processes are the same, but the reaction magnitude differs. These hypothetical models suggest a number of key features characterise subglacial weathering processes: (i) Silicate minerals should incongruently dissolve in the subglacial environment, and by the nature of their slow reaction kinetics, are probably indicative of waters that have had a slow transit time through the distributed subglacial hydrological system. (ii) Carbon dioxide and oxygen was required by all feasible S-BM and S-BHM models to allow primary silicate, carbonate and pyrite dissolution, irrespective of hydrological setting. This suggests that delayed-flow waters obtain carbon and oxygen from limited atmospheric contact in the distributed system, release from ice bubbles, the aeration of input waters in channellised englacial environments, or addition from microbial sources or organic carbon. This contrasts with previous models of solute acquisition in subglacial environments which have assumed weathering in the distributed system proceeds by protons derived from sulphide oxidation. (iii) Feasible S-BM and S-BHM models can be obtained without calcite dissolution, and modal weathering masses from all the models indicates calcite and Ca-feldspar weathering is equal. This contrasts with previous models of solute provenance in subglacial environments which have assumed all Ca derives from carbonate weathering. While SMB models are mathematically feasible, the authors wish to stress they are hypothetical and cannot be fully corroborated. Nevertheless, this initial study indicates SMB models provide a powerful method for exploring multiple potential subglacial weathering processes, which may further utilise the sensitivity of subglacial weathering processes to macro changes in subglacial hydrology.

  8. Silicate Dust in RS Ophiuchi

    NASA Astrophysics Data System (ADS)

    Rushton, M. T.; Woodward, C. E.; Helton, L. A.; Gehrz, R. D.; Evans, A.; Kaminsky, B.; Pavlenko, Y. V.; Eyres, S. P. S.; Maxwell, M.

    2014-12-01

    We present Spitzer IRS spectra of the recurrent nova RS Ophiuchi obtained between 2006 and 2009. The data show emission lines due to HI, [Ne II], [Ne V], [Ne VI] and [O IV] and the well known silicate features at 10 ?m and 18 ?m, whose behaviour are reported here. The silicate features are variable in the period covered by the observations, appearing strongest in our 2007 data. Interestingly, the central wavelength of the 18 ?m band is shorter than observed in other symbiotic systems and other circumstellar environments, suggesting unusual grain properties in RS Oph. We report changes that have taken place in the dusty environment in RS Oph and investigate the properties of the dust grains.

  9. World weather program: Plan for fiscal year 1972

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The World Weather Program which is composed of the World Weather Watch, the Global Atmospheric Research Program, and the Systems Design and Technological Development Program is presented. The U.S. effort for improving the national weather services through advances in science, technology and expanded international cooperation during FY 72 are described. The activities of the global Atmospheric Research Program for last year are highlighted and fiscal summary of U.S. programs is included.

  10. Longevity of silicate ceramic restorations.

    PubMed

    Beier, Ulrike Stephanie; Dumfahrt, Herbert

    2014-09-01

    The demand for esthetic restorations has resulted in an increased use of dental ceramics as a biocompatible and functionally sufficient alternative to conventional restorative materials. Silicate ceramic restorations are widely used for veneers, inlays, onlays, and crowns in dentistry. Long-term data are of crucial importance to optimize clinical practice. The purpose of the present article is to summarize data of the Innsbruck ceramic evaluation up to 261 months with the focus on longevity and failure characteristics. PMID:25126640

  11. Large-scale fractionation of lithium isotopes during continental weathering and erosion: Insights from the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Dellinger, M.; Gaillardet, J.; Bouchez, J.; Calmels, D.; Louvat, P.

    2014-12-01

    The increase of 9‰ of the lithium isotope composition of the ocean since 60 Ma has been interpreted as reflecting a change of the silicate weathering regime with more rapid CO2 consumption due to increased tectonic uplift (Misra and Froelich, 2012). However, the small number of case studies limits our current understanding of the parameters controlling the Li isotope composition of large rivers discharging to the ocean. To characterize Li isotope fractionation at the continental scale, we report the Li isotope composition of river-borne material in the largest Earth's River system, the Amazon River basin. The sample set includes rivers from various geomorphological settings, notably rivers draining the Andes and the lowlands. As a result of silicate weathering, the Li isotope composition (?7Li ) of the dissolved load is fractionated toward heavy values (from +1.2 to +32‰) compared to the upper continental crust (0 - 2‰) and the suspended sediments (-6.8 to -0.5‰). We show that despite having very contrasted weathering and erosion regimes, both Andean headwaters and lowland rivers share a similar range of Li isotope composition (+1.2 up to +18‰). The correlation of the dissolved ?7Li with the Li/Na and with the Li/Mg ratios suggests that the fraction of Li incorporated in secondary minerals during weathering is the main parameter controlling the Li isotope composition at the whole Amazon basin scale. Both Rayleigh distillation and batch fractionation models satisfactorily explain the data with fractionation factors between weathering products and dissolved load ranging from 0.982 to 0.991. The fraction of Li incorporated in secondary minerals is controlled by the weathering regime and therefore is linked to the denudation rates. However, we show that Li incorporation in floodplains also influences the ?7Li of rivers at their mouth. These results have important implications for the understanding of past ocean ?7Li and stress the need to characterize at the global scale what are the parameters controlling the proportion of Li incorporated in secondary minerals.

  12. The rate and causes of lunar space weathering: Insights from Lunar Reconnaissance Orbiter Wide Angle Camera ultraviolet observations

    NASA Astrophysics Data System (ADS)

    Denevi, B. W.; Robinson, M. S.; Sato, H.; Hapke, B. W.; McEwen, A. S.; Hawke, B. R.

    2011-12-01

    Lunar Reconnaissance Orbiter Wide Angle Camera global ultraviolet and visible imaging provides a unique opportunity to examine the rate and causes of space weathering on the Moon. Silicates typically have a strong decrease in reflectance toward UV wavelengths (<~450 nm) due to strong bands at 250 nm and in the far UV. Metallic iron is relatively spectrally neutral, and laboratory spectra suggest that its addition to mature soils in the form of submicroscopic iron (also known as nanophase iron) flattens silicate spectra, significantly reducing spectral slope in the ultraviolet. Reflectance at ultraviolet wavelengths may be especially sensitive to the surface coatings that form due to exposure to space weathering because scattering from the surfaces of grains contributes a larger fraction to the reflectance spectrum at short wavelengths. We find that the UV slope (as measured by the 320/415 nm ratio) is a more sensitive measure of maturity than indexes based on visible and near-infrared wavelengths. Only the youngest features (less than ~100 Ma) retain a UV slope that is distinct from mature soils of the same composition. No craters >20 km have UV slopes that approach those observed in laboratory spectra of fresh lunar materials (powdered lunar rocks). While the 320/415 nm ratio increases by ~18% from powdered rocks to mature soils in laboratory samples, Giordano Bruno, the freshest large crater, only shows a 3% difference between fresh and mature materials. At the resolution of our UV data (400 m/pixel), we observe some small (<5 km) craters that show a ~14% difference in 320/415 nm ratio from their mature surroundings. UV observations show that Reiner Gamma has had significantly lower levels of space weathering than any of the Copernican craters we examined, and was the only region we found with a UV slope that approached laboratory values for fresh powdered rock samples. This is consistent with the hypothesis that its high albedo is due to magnetic shielding from solar wind sputtering effects. Furthermore the observation that all Copernican craters we examined show some degree of space weathering and the extreme immaturity of Reiner Gamma materials show that space weathering of the surface and the resultant modification of UV spectra proceeds at a fast rate and is dominated by solar wind sputtering. Comparisons of the UV trends on other airless bodies (i.e., asteroids and Mercury) may prove fruitful for understanding the relative rates and causes of space weathering across the inner solar system.

  13. Teaching Weather Concepts.

    ERIC Educational Resources Information Center

    Sebastian, Glenn R.

    Ten exercises based on the weather map provided in the national newspaper "U.S.A. Today" are used to teach intermediate grade students about weather. An overview describes the history of "U.S.A. Today," the format of the newspaper's weather map, and the map's suitability for teaching weather concepts. Specific exercises, which are briefly…

  14. Weather in Your Life.

    ERIC Educational Resources Information Center

    Kannegieter, Sandy; Wirkler, Linda

    Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa…

  15. Yaquina Bay Weather & Tides

    E-print Network

    Wright, Dawn Jeannine

    Yaquina Bay Weather & Tides Clay Creech Phil Barbour #12;HMSC Weather Station #12;Temp-Humidity Sensor at Library #12;http://weather.hmsc.oregonstate.edu #12;#12;#12;#12;#12;#12;Archived Data is Available every 15 mins. #12;#12;A pyranometer measures solar radiation #12;#12;National Weather Service

  16. The mid-Cretaceous super plume, carbon dioxide, and global warming

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.

  17. Weather Derivative Valuation

    NASA Astrophysics Data System (ADS)

    Jewson, Stephen; Brix, Anders

    2005-04-01

    Weather Derivative Valuation is the first book to cover all the meteorological, statistical, financial and mathematical issues that arise in the pricing and risk management of weather derivatives. There are chapters on meteorological data and data cleaning, the modelling and pricing of single weather derivatives, the modelling and valuation of portfolios, the use of weather and seasonal forecasts in the pricing of weather derivatives, arbitrage pricing for weather derivatives, risk management, and the modelling of temperature, wind and precipitation. Specific issues covered in detail include the analysis of uncertainty in weather derivative pricing, time-series modelling of daily temperatures, the creation and use of probabilistic meteorological forecasts and the derivation of the weather derivative version of the Black-Scholes equation of mathematical finance. Written by consultants who work within the weather derivative industry, this book is packed with practical information and theoretical insight into the world of weather derivative pricing.

  18. Supporting Weather Data

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Since its founding in 1992, Global Science & Technology, Inc. (GST), of Greenbelt, Maryland, has been developing technologies and providing services in support of NASA scientific research. GST specialties include scientific analysis, science data and information systems, data visualization, communications, networking and Web technologies, computer science, and software system engineering. As a longtime contractor to Goddard Space Flight Center s Earth Science Directorate, GST scientific, engineering, and information technology staff have extensive qualifications with the synthesis of satellite, in situ, and Earth science data for weather- and climate-related projects. GST s experience in this arena is end-to-end, from building satellite ground receiving systems and science data systems, to product generation and research and analysis.

  19. Chemical Weathering in the Zambesi Basin: Assesment of the Carbon Dioxyde Comsumption by the Karu Basalt Province

    NASA Astrophysics Data System (ADS)

    Seyler, P. T.; Viers, J.; Aries, S.; Fournier, P.

    2014-12-01

    The quantification of the role of weathering in the carbon cycle and its interaction with climate and tectonics at the geological time scale is one of the key questions of the geoscientists. The consumption of atmospheric CO2 by silicate weathering indisputably plays the central role in the long term carbon budget and consequently on mean global climate. Through the composition of major elements in river waters, CO2 consumption by the alteration of continental rocks can be estimated. The aim of this study is to estimate of the chemical weathering rate of the Zambesi basin and the impact of Karoo basalt province on chemical atmospheric consumption, evaluated from a database of major elements. The Karroo basalts outcrop erupted around 183 +/2 2 106 take place in the Upper and the Middle Zambezi, covering a surface of 9600 km2. The Zambesi Basin, located between 8° and 20° south latitude and between 16.5 and 36 east longitude, is the fourth largest in Africa. The catchment has a total area of some 1,281,000 km2, the mean annual temperature is 19,3°C and the annual rainfall varies from nearly 2 000 mm to 600 mm. During the sampling period, the annual runoff at Victoria Fall gauging Station ranged between 50 to 2000 m3/s ie 6.9 to 0.6 l/s/km2. The consumption rate of atmospheric CO2 associated with the chemical weathering was calculated from riverine HCO3- concentrations. During the weathering of volcanic rocks, all dissolved carbonates originate from atmospheric/sil CO2. Values of CO2 consumption rates are relatively high, about 0.024 1012 mol/yr, and are comparable to Deccan Traps consumption rates.

  20. Development and initial application of the global-through-urban weather research and forecasting model with chemistry (GU-WRF/Chem)

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Karamchandani, Prakash; Glotfelty, Timothy; Streets, David G.; Grell, Georg; Nenes, Athanasios; Yu, Fangqun; Bennartz, Ralf

    2012-10-01

    A unified model framework with online-coupled meteorology and chemistry and consistent model treatments across spatial scales is required to realistically simulate chemistry-aerosol-cloud-radiation-precipitation-climate interactions. In this work, a global-through-urban WRF/Chem model (i.e., GU-WRF/Chem) has been developed to provide such a unified model framework to simulate these important interactions across a wide range of spatial scales while reducing uncertainties from the use of offline-coupled model systems with inconsistent model treatments. Evaluation against available observations shows that GU-WRF/Chem is capable of reproducing observations with comparable or superior fidelity than existing mesoscale models. The net effect of atmospheric aerosols is to decrease shortwave and longwave radiation, NO2photolysis rate, near-surface temperature, wind speed at 10-m, planetary boundary layer height, and precipitation as well as to increase relative humidity at 2-m, aerosol optical depths, column cloud condensation nuclei, cloud optical thickness, and cloud droplet number concentrations at all scales. As expected, such feedbacks also change the abundance and lifetimes of chemical species through changing radiation, atmospheric stability, and the rates of many meteorologically-dependent chemical and microphysical processes. The use of higher resolutions in progressively nested domains from the global to local scale notably improves the model performance of some model predictions (especially for chemical predictions) and also captures spatial variability of aerosol feedbacks that cannot be simulated at a coarser grid resolution. Simulated aerosol, radiation, and cloud properties exhibit small-to-high sensitivity to various nucleation and aerosol activation parameterizations. Representing one of the few unified global-through-urban models, GU-WRF/Chem can be applied to simulate air quality and its interactions with meteorology and climate and to quantify the impact of global change on urban/regional air quality across various spatial scales.

  1. Potential for Increased Assimilation of Snpp Data Via Direct Readout to Hourly-Updated Global/Regional Numerical Weather Prediction Models for Situational Awareness

    NASA Astrophysics Data System (ADS)

    Benjamin, S.; Lin, H.; Weygandt, S.; Hu, M.; Alexander, C.

    2014-12-01

    Smaller data latency through direct readout will be crucial for hourly updated regional operational models run currently (e.g., NOAA Rapid Refresh (RAP) and 3-km HRRR) and also for future global hourly updated models. Most polar orbiter radiance data are not currently meeting data cut-off availability requirements (~30 minutes) for the current NOAA RAP model. Modest improvement in overall RAP forecast skill is available with full polar-orbiter data availability if data latency was smaller (Lin et al. 2015 a,b) To some extent, this is addressed through "partial cycling" catch-up cycles in RAP, but partial cycling requires parallel NWP cycles and use of more computer resources. Better satellite data coverage (enhanced with reduced data latency) improves forecast skill not only through direct use of more data over more geographic areas but also through improved bias correction leading to more effective use of observations and less data rejection. Increased use of hourly updated models (RAP and HRRR) is clearly occurring for improved decision making. RARS (Regional ATOVS Retransmission Services) is a precursor to full direct readout availability. Initial development toward a global rapid refresh capability now underway and smaller satellite data latency will be critical for successful demonstration of 3h and 1h global updating.

  2. The Influence of Suspended Metal in Silicate Liquid on Metal/Silicate Partitioning: A Numerical Study

    NASA Technical Reports Server (NTRS)

    Borisov, A.; Jones, J. H.

    2000-01-01

    We peformed a series of metal/silicate partitioning thought experiments where contamination of the silicate by metal increases as the size of the charge decreases. Unfortunately, regression of this entirely artificial dataset leads to very reasonable result.

  3. Selective weathering of shocked minerals and chondritic enrichment of the Martian fines

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.

    1987-01-01

    In a recent paper, Boslough and Cygan reported the observation of shock-enhanced chemical weathering kinetics of three silicate minerals. Based on the experimental data and on those of Tyburczy and Ahrens for enhanced dehydration kinetics of shocked serpentine, a mechnaism is proposed by which shock-activated minerals are selectively weathered on the surface of Mars. The purpose of the present abstract is to argue on the basis of relative volumes of shocked materials that, as a direct consequence of selective weathering, the composition of the weathered surface units on Mars should be enriched in meteoritic material.

  4. Progress in Space Weather Predictions and Applications

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.

    The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now being replaced by integrated knowledge-based neurocomputing and MHD methods. Within in the ESA Space Weather Programme Study a real-time forecast service has been developed of space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist asks for a real-time predictions of a global index as input for a MHD model calculating the radiation dose for EVAs. A power system operator asks for a prediction of the local value of a geomagnetically induced current. A science tourist wants to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric weather and climate changes from the variation of the space weather.

  5. Fair weather terrestrial atmospheric electricity

    NASA Astrophysics Data System (ADS)

    Harrison, G.

    Atmospheric electricity is one of the oldest experimental topics in atmospheric science. The fair weather aspects, although having less dramatic effects than thunderstorm electrification, link the microscale behaviour of ion clusters to currents flowing on the global scale. This talk will include a survey of some past measurements and measurement methods, as atmospheric electrical data from a variety of sites and eras are now being used to understand changes in atmospheric composition. Potential Gradient data was the original source of information on the global atmospheric electrical circuit, and similar measurements can now be used to reconstruct past air pollution concentrations, and black carbon loading.

  6. Building a Weather-Ready Nation Fall Weather Safety

    E-print Network

    Building a Weather-Ready Nation Fall Weather Safety www.weather.gov/safety Wildfire ­ Drought ­ Hurricanes ­ Wind ­ Early Season Winter ­ Flood #12;Building a Weather-Ready Nation Wildfire Safety smoking materials. weather.gov/wildfire www.weather.gov/safety #12;Building a Weather-Ready Nation

  7. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes

    NASA Astrophysics Data System (ADS)

    Bi, Lei; Yang, Shouye; Li, Chao; Guo, Yulong; Wang, Quan; Liu, James T.; Yin, Ping

    2015-09-01

    The East China Sea is characterized by wide continental shelf receiving a huge input of terrigenous matter from both large rivers and mountainous rivers, which makes it an ideal natural laboratory for studying sediment source-to-sink transport processes. This paper presents mineralogical and geochemical data of the clays and bulk sediments from the rivers entering the East China Sea, aiming to investigate the general driving mechanism of silicate weathering and sediment transport processes in East Asian continental margin. Two types of river systems, tectonically stable continental rivers and tectonically active mountainous rivers, coexist in East Asia. As the direct weathering products, clays can better reflect the silicate weathering regimes within the two river systems. Provenance rock types are not the dominant factor causing silicate weathering intensity difference existed in the East Asian rivers. The silicate weathering intensity of tectonically stable river basins is primarily driven by monsoon climate, and the sediment transfer is relatively slow because of natural trapping process and increasing damming effect. The geochemistry of these river-borne sediments can thus indicate paleo-weathering intensities in East Asian continent. In contrast, silicate weathering intensity in tectonically active mountainous rivers is greatly limited by strong physical erosion despite the high temperature and highest monsoon rainfall. The factors controlling silicate weathering in tectonically active catchments are complex and thus, it should be prudent to use river sediment records to decipher paleoclimate change. These two different silicate weathering regimes and sediment transport processes are manifestations of the landscape evolution and overall dominate the sedimentation in Asian continental margin.

  8. Cumulate Fragments in Silicic Ignimbrites

    NASA Astrophysics Data System (ADS)

    Bachmann, O.; Ellis, B. S.; Wolff, J.

    2014-12-01

    Increasingly, studies are concluding that silicic ignimbrites are the result of the amalgamation of multiple discrete magma batches. Yet the existence of discrete batches presents a conundrum for magma generation and storage; if silicic magma batches are not generated nearly in situ in the upper crust, they must traverse, and reside within, a thermally hostile environment with large temperature gradients, resulting in low survivability in their shallow magmatic hearths. The Snake River Plain (Idaho, USA) is a type example of this 'multi-batch' assembly with ignimbrites containing multiple populations of pyroxene crystals, glass shards, and crystal aggregates. The ubiquitous crystal aggregates hint at a mechanism to facilitate the existence of multiple, relatively small batches of rhyolite in the upper crust. These aggregates contain the same plagioclase, pyroxene, and oxide mineral compositions as single phenocrysts of the same minerals in their host rocks, but they have significantly less silicic bulk compositions and lack quartz and sanidine, which occur as single phenocrysts in the deposits. This implies significant crystallization followed by melt extraction from mushy reservoir margins. The extracted melt then continues to evolve (crystallizing sanidine and quartz) while the melt-depleted margins provide an increasingly rigid and refractory network segregating the crystal-poor batches of magma. The hot, refractory, margins insulate the crystal-poor lenses, allowing (1) extended residence in the upper crust, and (2) preservation of chemical heterogeneities among batches. In contrast, systems that produce cumulates richer in low-temperature phases (quartz, K-feldspars, and/or biotite) favour remelting upon recharge, leading to less segregation of eruptible melt pockets and the formation of gradationally zoned ignimbrites. The occurrence of similar crystal aggregates from a variety of magmatic lineages suggests the generality of this process.

  9. Multi-proxy Reconstruction of Seawater Chemistry Across K-Pg Boundary: Tracking Weathering Feedbacks in Response to Extreme Carbon Cycle Perturbation

    NASA Astrophysics Data System (ADS)

    Misra, S.; Elderfield, H.

    2014-12-01

    On geologic time scales concentrations of atmospheric CO2, a greenhouse gas and critical mediator of Earth's surface temperature and climate, is thought to be controlled by a balance between CO2 input from mantle degassing through volcanism and metamorphism and consumption via temperature-sensitive chemical weathering of tectonically uplifted continental rocks. This interplay between global climate and tectonic uplift also controls the delivery of cations to the oceans. Hence, past changes in seawater chemistry provide a powerful archive of the interplay and feedback between climate and tectonics. Mass Extinction Events, like that at K-Pg boundary, are characterized by rapid, global Carbon Cycle Perturbations either from increased mantle degassing or by incineration of the continents due to extra-terrestrial impact. It is hypothesized that enhanced chemical weathering of continental silicate rocks consumes this excess CO2 and restores steady-state. Lithium, B, and Mg are conservative ions in seawater that are isotopically homogeneous with a residence time much longer than the oceanic mixing time. As a result, ?7LiSW, ?11BSW, and ?26MgSW, recorded by marine calcites reflect a global picture and secular variations in isotopic composition of these elements within periods shorter than their residence time must thus reflect imbalances between the sources and sinks of these elements to and from the ocean. Cenozoic ?7LiSW shows an abrupt 5‰ drop across the K-Pg boundary, simultaneous with the seawater Ir and Os isotope spikes. This rapid decrease in ?7LiSW is due to a large instantaneous delivery of isotopically light Li to the oceans and cannot be produced by an impactor nor by Deccan trap volcanism, suggesting large-scale continental denudation. We will create high-resolution ?7LiSW, ?11BSW, and ?26MgSW records across K-Pg boundary using planktonic and benthic foraminifera from multiple ODP/DSDP sites to quantify the amount of C excursion and the response of continental weathering feedbacks to regain climatic steady states. This multi-proxy approach will help quantify the extent of CCP; time scale and magnitude of continental chemical weathering response; and the contribution of both carbonate rock and silicate rock weathering in CO2 drawdown across carbon cycle excursion episodes.

  10. Physical and chemical weathering. [of Martian surface and rocks

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Arvidson, Raymond E.; Zolotov, Mikhail IU.

    1992-01-01

    Physical and chemical weathering processes that might be important on Mars are reviewed, and the limited observations, including relevant Viking results and laboratory simulations, are summarized. Physical weathering may have included rock splitting through growth of ice, salt or secondary silicate crystals in voids. Chemical weathering probably involved reactions of minerals with water, oxygen, and carbon dioxide, although predicted products vary sensitively with the abundance and physical form postulated for the water. On the basis of kinetics data for hydration of rock glass on earth, the fate of weathering-rind formation on glass-bearing Martian volcanic rocks is tentatively estimated to have been on the order of 0.1 to 4.5 cm/Gyr; lower rates would be expected for crystalline rocks.

  11. The quiet revolution of numerical weather prediction.

    PubMed

    Bauer, Peter; Thorpe, Alan; Brunet, Gilbert

    2015-09-01

    Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world. PMID:26333465

  12. Lunar space weathering at ultraviolet wavelengths

    NASA Astrophysics Data System (ADS)

    Denevi, B. W.; Robinson, M. S.; Sato, H.; Hapke, B.; McEwen, A. S.; Hawke, B. R.

    2011-10-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images nearly the entire Moon each month through two ultraviolet (UV) filters (bandpasses centered at 321 and 360 nm) and five visible filters (415, 566, 604, 643, and 689 nm) [1]. Global coverage at UV wavelengths provides a fresh opportunity to examine the rate and causes of space weathering on the Moon. We find that UV observations provide a new tool to more confidently identify the least weathered material. Only the youngest craters (<~100 My) appear fresh in the UV, and the UV reflectance of lunar swirls is consistent with limited space weathering.

  13. The quiet revolution of numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Bauer, Peter; Thorpe, Alan; Brunet, Gilbert

    2015-09-01

    Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.

  14. Pilot weather advisor

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Seth, S.; Crabill, N. L.; Shipley, S. T.; Graffman, I.; Oneill, J.

    1992-01-01

    The results of the work performed by ViGYAN, Inc., to demonstrate the Pilot Weather Advisor cockpit weather data system using a broadcast satellite communication system are presented. The Pilot Weather Advisor demonstrated that the technical problems involved with transmitting significant amount of weather data to an aircraft in-flight or on-the-ground via satellite are solvable with today's technology. The Pilot Weather Advisor appears to be a viable solution for providing accurate and timely weather information for general aviation aircraft.

  15. Space Weathering on Icy Satellites in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Clark, Roger N.; Perlman, Zachary; Pearson, Neil; Cruikshank, Dale P.

    2014-11-01

    Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV is expected to be weaker in the outer Solar System simply because intensities are lower. However, cosmic rays from inner to outer solar system would be similar to first order. Similarly with micrometeoroid bombardment. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini VIMS instrument has spatially mapped satellite surfaces and the rings from .35-5 microns and the UVIS instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system. The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships of some of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4-2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils, another indicator of space weathered material.

  16. Silicate Glass Corrosion Mechanism revisited

    NASA Astrophysics Data System (ADS)

    Geisler, Thorsten; Lenting, Christoph; Dohmen, Lars

    2015-04-01

    Understanding the mechanism(s) of aqueous corrosion of nuclear waste borosilicate glasses is essential to predict their long-term aqueous durability in a geologic repository. Several observations have been made with compositionally different silicate glasses that cannot be explained by any of the established glass corrosion models. These models are based on diffusion-controlled ion exchange and subsequent structural reorganisation of a leached, hydrated residual glass, leaving behind a so-called gel layer. In fact, the common observation of lamellar to more complex pattern formation observed in experiment and nature, the porous structure of the corrosion layer, an atomically sharp boundary between the corrosion zone and the underlying pristine glass, as well as results of novel isotope tracer and in situ, real time experiments rather support an interface-coupled glass dissolution-silica reprecipitation model. In this model, the congruent dissolution of the glass is coupled in space and time to the precipitation and growth of amorphous silica at an inwardly moving reaction front. We suggest that these coupled processes have to be considered to realistically model the long-term performance of silicate glasses in aqueous environments.

  17. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Modified magnesium silicate polymer (generic). 721...Substances § 721.9513 Modified magnesium silicate polymer (generic). ...substance identified generically as modified magnesium silicate polymer (PMN...

  18. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Modified magnesium silicate polymer (generic). 721...Substances § 721.9513 Modified magnesium silicate polymer (generic). ...substance identified generically as modified magnesium silicate polymer (PMN...

  19. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Modified magnesium silicate polymer (generic). 721...Substances § 721.9513 Modified magnesium silicate polymer (generic). ...substance identified generically as modified magnesium silicate polymer (PMN...

  20. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Modified magnesium silicate polymer (generic). 721...Substances § 721.9513 Modified magnesium silicate polymer (generic). ...substance identified generically as modified magnesium silicate polymer (PMN...

  1. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Modified magnesium silicate polymer (generic). 721...Substances § 721.9513 Modified magnesium silicate polymer (generic). ...substance identified generically as modified magnesium silicate polymer (PMN...

  2. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122...Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  3. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122...Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  4. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122...Anticaking Agents § 582.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  5. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122...Anticaking Agents § 582.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  6. High-latitude filtering in a global grid-point model using model normal modes. [Fourier filters for synoptic weather forecasting

    NASA Technical Reports Server (NTRS)

    Takacs, L. L.; Kalnay, E.; Navon, I. M.

    1985-01-01

    A normal modes expansion technique is applied to perform high latitude filtering in the GLAS fourth order global shallow water model with orography. The maximum permissible time step in the solution code is controlled by the frequency of the fastest propagating mode, which can be a gravity wave. Numerical methods are defined for filtering the data to identify the number of gravity modes to be included in the computations in order to obtain the appropriate zonal wavenumbers. The performances of the model with and without the filter, and with a time tendency and a prognostic field filter are tested with simulations of the Northern Hemisphere winter. The normal modes expansion technique is shown to leave the Rossby modes intact and permit 3-5 day predictions, a range not possible with the other high-latitude filters.

  7. The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Bullen, T.D.; Vivit, D.V.; Schulz, M.; Fitzpatrick, J.

    1999-01-01

    The effects of climatic temperature variations (5-35??C) on chemical weathering are investigated both experimentally using flow-through columns containing fresh and weathered granitoid rocks and for natural granitoid weathering in watersheds based on annual solute discharge. Although experimental Na and Si effluent concentrations are significantly higher in the fresh relative to the weathered granitoids, the proportional increases in concentration with increasing temperature are similar. Si and Na exhibit comparable average apparent activation energies (E(a)) of 56 and 61 kJ/mol, respectively, which are similar to those reported for experimental feldspar dissolution measured over larger temperature ranges. A coupled temperature-precipitation model, using an expanded database for solute discharge fluxes from a global distribution of 86 granitoid watersheds, produces an apparent activation energy for Si (51 kJ/mol), which is also comparable to those derived from the experimental study. This correlation reinforces evidence that temperature does significantly impact natural silicate weathering rates. Effluent K concentrations in the column study are elevated with respect to other cations compared to watershed discharge due to the rapid oxidation/dissolution of biotite. K concentrations are less sensitive to temperature, resulting in a lower average E(a) value (27 kJ/mol) indicative of K loss from lower energy interlayer sites in biotite. At lower temperatures, initial cation release from biotite is significantly faster than cation release from plagioclase. This agrees with reported higher K/Na ratios in cold glacial watersheds relative to warmer temperate environments. Increased release of less radiogenic Sr from plagioclase relative to biotite at increasing temperature produces corresponding decreases in 87Sr/86Sr ratios in the column effluents. A simple mixing calculation using effluent K/Na ratios, Sr concentrations and 87Sr/86Sr ratios for biotite and plagioclase approximates stoichiometric cation ratios from biotite/plagioclase dissolution at warmer temperatures (35??C), but progressively overestimates the relative proportion of biotite with decreasing temperature. Ca, Mg, and Sr concentrations closely correlate, exhibit no consistent trends with temperature, and are controlled by trace amounts of calcite or exchange within weathered biotite. The inability of the watershed model to differentiate a climate signal for such species correlates with the lower temperature dependence observed in the experimental studies.

  8. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2437 Magnesium silicate. (a) Product....

  9. Decreased water flowing from a forest amended with calcium silicate

    PubMed Central

    Green, Mark B.; Bailey, Amey S.; Bailey, Scott W.; Battles, John J.; Campbell, John L.; Driscoll, Charles T.; Fahey, Timothy J.; Lepine, Lucie C.; Likens, Gene E.; Ollinger, Scott V.; Schaberg, Paul G.

    2013-01-01

    Acid deposition during the 20th century caused widespread depletion of available soil calcium (Ca) throughout much of the industrialized world. To better understand how forest ecosystems respond to changes in a component of acidification stress, an 11.8-ha watershed was amended with wollastonite, a calcium silicate mineral, to restore available soil Ca to preindustrial levels through natural weathering. An unexpected outcome of the Ca amendment was a change in watershed hydrology; annual evapotranspiration increased by 25%, 18%, and 19%, respectively, for the 3 y following treatment before returning to pretreatment levels. During this period, the watershed retained Ca from the wollastonite, indicating a watershed-scale fertilization effect on transpiration. That response is unique in being a measured manipulation of watershed runoff attributable to fertilization, a response of similar magnitude to effects of deforestation. Our results suggest that past and future changes in available soil Ca concentrations have important and previously unrecognized implications for the water cycle. PMID:23530239

  10. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  11. National Weather Service

    MedlinePLUS

    ... Tornadoes Space Weather Sun (Ultraviolet Radiation) Safety Campaigns Wind Drought Winter Weather Fog INFORMATION Owlie's Kids Page ... Advisory For Rough Bar Small Craft Advisory Brisk Wind Advisory Wind Advisory Frost Advisory Beach Hazards Statement ...

  12. Winter Weather: Frostbite

    MedlinePLUS

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... related health problems. More Information: Hypothermia Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ...

  13. Winter Weather: Hypothermia

    MedlinePLUS

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... be successfully resuscitated. More Information: Frostbite Disasters & Severe Weather ... Heat Floods Hurricanes Landslides Tornadoes Tsunamis ...

  14. Winter Weather: Indoor Safety

    MedlinePLUS

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... Outdoor Safety Winter PSAs and Podcasts Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ...

  15. Winter Weather Emergencies

    MedlinePLUS

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  16. Intelligent weather agent for aircraft severe weather avoidance 

    E-print Network

    Bokadia, Sangeeta

    2002-01-01

    avoidance capability has increased. In this thesis, an intelligent weather agent is developed for general aviation aircraft. Using a radar image from an onboard weather radar, the intelligent weather agent determines the safest path around severe weather...

  17. Hot Weather Tips

    MedlinePLUS

    ... FCA - A A + A You are here Home HOT Weather Tips Printer-friendly version We all suffer in hot weather. However, for elderly and disabled people and ... stress and following these tips for dealing with hot weather. Wear cool clothing: See that the person ...

  18. American Weather Stories.

    ERIC Educational Resources Information Center

    Hughes, Patrick

    Weather has shaped United States' culture, national character and folklore; at times it has changed the course of history. The seven accounts compiled in this publication highlight some of the nation's weather experiences from the hurricanes that threatened Christopher Columbus to the peculiar run of bad weather that has plagued American…

  19. Weather Fundamentals: Meteorology. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) looks at how meteorologists gather and interpret current weather data collected from sources…

  20. Severe Weather Perceptions.

    ERIC Educational Resources Information Center

    Abrams, Karol

    Severe weather is an element of nature that cannot be controlled. Therefore, it is important that the general public be aware of severe weather and know how to react quickly and appropriately in a weather emergency. This study, done in the community surrounding the Southern Illinois University at Carbondale, was conducted to compile and analyze…

  1. Aviation weather services

    NASA Technical Reports Server (NTRS)

    Sprinkle, C. H.

    1983-01-01

    The primary responsibilities of the National Weather Service (NWS) are to: provide warnings of severe weather and flooding for the protection of life and property; provide public forecasts for land and adjacent ocean areas for planning and operation; and provide weather support for: production of food and fiber; management of water resources; production, distribution and use of energy; and efficient and safe air operations.

  2. A preliminary study of the impact of the ERS 1 C band scatterometer wind data on the European Centre for Medium-Range Weather Forecasts global data assimilation system

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.

    1993-01-01

    A preliminary assessment of the impact of the ERS 1 scatterometer wind data on the current European Centre for Medium-Range Weather Forecasts analysis and forecast system has been carried out. Although the scatterometer data results in changes to the analyses and forecasts, there is no consistent improvement or degradation. Our results are based on comparing analyses and forecasts from assimilation cycles. The two sets of analyses are very similar except for the low level wind fields over the ocean. Impacts on the analyzed wind fields are greater over the southern ocean, where other data are scarce. For the most part the mass field increments are too small to balance the wind increments. The effect of the nonlinear normal mode initialization on the analysis differences is quite small, but we observe that the differences tend to wash out in the subsequent 6-hour forecast. In the Northern Hemisphere, analysis differences are very small, except directly at the scatterometer locations. Forecast comparisons reveal large differences in the Southern Hemisphere after 72 hours. Notable differences in the Northern Hemisphere do not appear until late in the forecast. Overall, however, the Southern Hemisphere impacts are neutral. The experiments described are preliminary in several respects. We expect these data to ultimately prove useful for global data assimilation.

  3. Impact cratering: The process and its effects on planetary evolution. [and silicate-carbonate reactions on Venus

    NASA Technical Reports Server (NTRS)

    Grieve, R. A. F.

    1984-01-01

    The potential for silicate-carbon dioxide reactions as a geochemical weathering agent on Venus was studied. A tholetitic basalt close to the composition determined by the XRF experiment at the Venera 14 sites was subjected to high temperature and pressure (with pure CO2 as the pressure medium) for varying time durations. The starting basalt material and the run products were examined optically and by X-ray diffraction and electron microscopy. The kinetics of the silicate-carbonate reactions is discussed. A study to elucidate details of impact processes and to assess the effects of impact cratering on planetary evolution is mentioned.

  4. Building a Weather-Ready Nation Winter Weather Safety

    E-print Network

    Building a Weather-Ready Nation Winter Weather Safety Snow & Ice ­ Blizzards ­ Freezing Rain & Sleet ­ Cold Temperatures ­ Wind ­ Flooding ­ Fog www.weather.gov/safety #12;Building a Weather-Ready Nation Winter Weather Hazards Winter Weather Safety · Snow & Ice · Blizzards · Freezing Rain & Sleet

  5. Convective Weather Avoidance with Uncertain Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots are likely to avoid. The automated system periodically updates forecasts and reassesses rerouting decisions in order to account for changing weather predictions. The main objectives are to reroute flights to avoid convective weather regions and determine the resulting complexity due to rerouting. The eventual goal is to control and reduce complexity while rerouting flights during the 20 minute - 2 hour planning period. A three-hour simulation is conducted using 4800 flights in the national airspace. The study compares several metrics against a baseline scenario using the same traffic and weather but with rerouting disabled. The results show that rerouting can have a negative impact on congestion in some sectors, as expected. The rerouting system provides accurate measurements of the resulting complexity in the congested sectors. Furthermore, although rerouting is performed only in the 20-minute - 2-hour range, it results in a 30% reduction in encounters with nowcast weather polygons (100% being the ideal for perfectly predictable and accurate weather). In the simulations, rerouting was performed for the 20-minute - 2-hour flight time horizon, and for the en-route segment of air traffic. The implementation uses CWAM, a set of polygons that represent probabilities of pilot deviation around weather. The algorithms were implemented in a software-based air traffic simulation system. Initial results of the system's performance and effectiveness were encouraging. Simulation results showed that when flights were rerouted in the 20-minute - 2-hour flight time horizon of air traffic, there were fewer weather encounters in the first 20 minutes than for flights that were not rerouted. Some preliminary results were also obtained that showed that rerouting will also increase complexity. More simulations will be conducted in order to report conclusive results on the effects of rerouting on complexity. Thus, the use of the 20-minute - 2-hour flight time horizon weather avoidance teniques performed in the simulation is expected to provide benefits for short-term weather avoidan

  6. Mesoporous Silicate Materials in Sensing

    PubMed Central

    Melde, Brian J.; Johnson, Brandy J.; Charles, Paul T.

    2008-01-01

    Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through co-condensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  7. Geo-neutrinos and Silicate Earth Enrichment of U and Th

    E-print Network

    Steve Dye

    2010-08-30

    The terrestrial distribution of U, Th, and K abundances governs the thermal evolution, traces the differentiation, and reflects the bulk composition of the earth. Comparing the bulk earth composition to chondritic meteorites estimates the net amounts of these radiogenic heat-producing elements available for partitioning to the crust, mantle, and core. Core formation enriches the abundances of refractory lithophile elements, including U and Th, in the silicate earth by ~1.5. Global removal of volatile elements potentially increases this enrichment to ~2.8. The K content of the silicate earth follows from the ratio of K to U. Variable enrichment produces a range of possible heat-producing element abundances in the silicate earth. A model assesses the essentially fixed amounts of U, Th, and K in the approximately closed crust reservoir. Subtracting these sequestered crustal amounts from the variable amounts in the silicate earth results in a range of possible mantle allocations, leaving global dynamics and thermal evolution poorly constrained. Terrestrial antineutrinos from {\\beta}-emitting daughter nuclei in the U and Th decay series traverse the earth with negligible attenuation. The rate at which large subsurface instruments observe these geo-neutrinos depends on the distribution of U and Th relative to the detector. Geo-neutrino observations with sensitivity to U and Th in the mantle are able to estimate silicate earth enrichment, leading to a more complete understanding of the origin, accretion, differentiation, and thermal history of the planet.

  8. Major ion chemistry of the Son River, India: Weathering processes, dissolved fluxes and water quality assessment

    NASA Astrophysics Data System (ADS)

    Maharana, Chinmaya; Gautam, Sandeep Kumar; Singh, Abhay Kumar; Tripathi, Jayant K.

    2015-08-01

    River Son, draining diverse lithologies in the subtropical climate of the peninsular sub-basin of the Ganga basin, is one of the major tributaries of the Ganga River. The chemistry of major ions in the surface water of the Son River was studied in detail to determine various source(s) and processes controlling its water chemistry, seasonal and spatial variations in water chemistry, dissolved fluxes and chemical denudation rate (CDR). The study shows that Ca2+, Mg2+ and HCO 3- are major ionic species in the river water. Most of the measured parameters exhibit a relatively lower concentration in the post-monsoon as compared to pre-monsoon season. The water chemistry highlights the influence of continental weathering aided by secondary contributions from ground water, saline/alkaline soils and anthropogenic activities in the catchment. Results also reflect the dominance of carbonate weathering over silicate weathering in controlling water composition. The Son River delivers about 4.2 million tons of dissolved loads annually to the Ganga River, which accounts for ˜6% of the total annual load carried by the Ganga River to the Bay of Bengal. The average CDR of the Son River is 59.5 tons km -2 yr -1, which is less than the reported 72 tons km -2 yr -1 of the Ganga River and higher than the global average of 36 tons km -2 yr -1. The water chemistry for the pre-monsoon and post-monsoon periods shows a strong seasonal control on solute flux and CDR values. The water chemistry indicates that the Son River water is good to excellent in quality for irrigation and also suitable for drinking purposes.

  9. Planetary surface weathering

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1986-01-01

    The weathering of planetary surfaces is treated. Both physical and chemical weathering (reactions between minerals or mineraloids and planetary volatiles through oxidation, hydration, carbonation, or solution processes) are discussed. Venus, earth, and Mars all possess permanent atmospheres such that weathering should be expected to significantly affect their respective surfaces. In contrast, Mercury and the moon lack permanent atmospheres but conceivably could experience surface weathering in response to transient atmospheres generated by volcanic or impact cratering events. Weathering processes can be postulated for other rocky objects including Io, Titan, asteroids, and comets.

  10. Weathering: methods and techniques to measure

    NASA Astrophysics Data System (ADS)

    Lopez-Arce, P.; Zornoza-Indart, A.; Alvarez de Buergo, M.; Fort, R.

    2012-04-01

    Surface recession takes place when weathered material is removed from the rocks. In order to know how fast does weathering and erosion occur, a review of several methods, analyses and destructive and non-destructive techniques to measure weathering of rocks caused by physico-chemical changes that occur in bedrocks due to salt crystallization, freezing-thaw, thermal shock, influence of water, wind, temperature or any type of environmental agent leading to weathering processes and development of soils, in-situ in the field or through experimental works in the laboratory are addressed. From micro-scale to macro-scale, from the surface down to more in depth, several case studies on in-situ monitoring of quantification of decay on soils and rocks from natural landscapes (mountains, cliffs, caves, etc) or from urban environment (foundations or facades of buildings, retaining walls, etc) or laboratory experimental works, such as artificial accelerated ageing tests (a.a.e.e.) or durability tests -in which one or more than one weathering agents are selected to assess the material behaviour in time and in a cyclic way- performed on specimens of these materials are summarised. Discoloration, structural alteration, precipitation of weathering products (mass transfer), and surface recession (mass loss) are all products of weathering processes. Destructive (SEM-EDX, optical microscopy, mercury intrusion porosimetry, drilling resistance measurement, flexural and compression strength) and Non-destructive (spectrophotocolorimetry, 3D optical surface roughness, Schmidt hammer rebound tester, ultrasound velocity propagation, Nuclear Magnetic Resonance NMR, X ray computed micro-tomography or CT-scan, geo-radar differential global positioning systems) techniques and characterization analyses (e.g. water absorption, permeability, open porosity or porosity accessible to water) to assess their morphological, physico-chemical, mechanical and hydric weathering; consolidation products or methods to stop or to slow down their weathering or durability and stability of soils and rocks are also topics where the methods and techniques deal with the quantification of weathering. Cultural stone weathering studies contribute substantially to the knowledge of weathering rates revealing the importance of specific weathering agents and weathering factors.

  11. Opportunities and Challenges for Space Weather Forecasting (Invited)

    NASA Astrophysics Data System (ADS)

    Onsager, T. G.

    2010-12-01

    Although space weather disturbances have been relatively minor throughout the recent minimum of solar cycle, the demand for space weather information has increased dramatically. This has occurred among the commercial and government sectors within the U.S. as well as throughout an expanding number of countries internationally. This presentation will discuss the opportunities and the challenges associated with this growth in space weather interest. One key opportunity is with the increasing access to data and shared products from partner organizations throughout the world. For example, the World Meteorological Organization is now participating in the coordination of space weather data and products and raising the awareness of the importance of space weather globally. Our major challenge is to provide the timely and accurate space weather information needed to support the increasing demand. Priorities for new capabilities needed today as well as activities focused on coordinating the growing international interest in space weather will be presented.

  12. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    SciTech Connect

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  13. MINERAL WEATHERING RATES FROM SMALL-PLOT EXPERIMENTS, WMP SITE, BEAR BROOKS, MAINE

    EPA Science Inventory

    The pH-dependence of silicate mineral weathering rates was measured in small-plot experiments at the Bear Brooks Watershed Manipulation Project site in Maine, U.S.A. ix 2 m2 plots were acidified with solutions of HCL in deionized water at pH values of 2, 2.5, and 3. Acid applicat...

  14. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal

    SciTech Connect

    Sarin, M.M.; Krishnaswami, S.; Dilli, K.; Somayajulu, B.L.K. ); Moore, W.S. )

    1989-05-01

    The Ganga-Brahmaputra, one of the worlds's largest river systems, is first in terms of sediment transport and fourth in terms of water discharge. A detailed and systematic study of the major ion chemistry of these rivers and their tributaries, as well as the clay mineral composition of the bed sediments has been conducted. The chemistry of the highland rivers are all dominated by carbonate weathering; (Ca + Mg) and HCO{sub 3} account for about 80% of the cations and anions. In the lowland rivers, HCO{sub 3} excess over (Ca + Mg) and a relatively high contribution of (Na + K) to the total cations indicate that silicate weathering and/or contributions from alkaline/saline soils and ground waters could be important sources of major ions to these waters. The chemistry of the Ganga and the Yamuna in the lower reaches is by and large dictated by the chemistry of their tributaries and their mixing proportions. The highland rivers weather acidic rocks, whereas the others flow initially through basic effusives. The Ganga-Brahmaputra river system transports about 130 million tons of dissolved salts to the Bay of Bengal, which is nearly 3% of the global river flux to the oceans. The chemical denudation rates for the Ganga and the Brahmaputra basins are about 72 and 105 tons{center dot}km{sup {minus}2}{center dot}yr{sup {minus}1}, respectively, which are factors of 2 to 3 higher than the global average. The high denudation rate, particularly in the Brahmaputra, is attributable to high relief and heavy rainfall.

  15. Biological and Organic Chemical Decomposition of Silicates. Chapter 7.2

    NASA Technical Reports Server (NTRS)

    Silverman, M. P.

    1979-01-01

    The weathering of silicate rocks and minerals, an important concern of geologists and geochemists for many years, traditionally has been approached from strictly physical and chemical points of view. Biological effects were either unrecognized, ignored, or were mentioned in passing to account for such phenomena as the accumulation of organic matter in sediments or the generation of reducing environments. A major exception occurred in soil science where agricultural scientists, studying the factors important in the development of soils and their ability to nourish and sustain various crops, laid the foundation for much of what is known of the biological breakdown of silicate rocks and minerals. The advent of the space age accelerated the realization that many environmental problems and geo- chemical processes on Earth can only be understood in terms of ecosystems. This in turn, spurred renewed interest and activity among modem biologists, geologists and soil scientists attempting to unravel the intimate relations between biology and the weathering of silicate rocks and minerals of the earth surface.

  16. Biological and Organic Chemical Decomposition of Silicates. Chapter 7.2

    NASA Technical Reports Server (NTRS)

    Sliverman, M. P.

    1979-01-01

    The weathering of silicate rocks and minerals, an important concern of geologists and geochemists for many years, traditionally has been approached from strictly physical and chemical points of view. Biological effects were either unrecognized, ignored, or were mentioned in passing to account for such phenomena as the accumulation of organic matter in sediments or the generation of reducing environments. A major exception occurred in soil science where agricultural scientists, studying the factors important in the development of soils and their ability to nourish and sustain various crops, laid the foundation for much of what is known of the biological breakdown of silicate rocks and minerals. The advent of the space age accelerated the realization that many environmental problems and geochemical processes on Earth can only be understood in terms of ecosystems. This in turn, spurred renewed interest and activity among modem biologists, geologists and soil scientists attempting to unravel the intimate relations between biology and the weathering of silicate rocks and minerals of the earth's surface.

  17. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  18. Mars surface weathering products and spectral analogs: Palagonites and synthetic iron minerals

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Morris, R. V.; Lauer, H. V., Jr.

    1992-01-01

    There are several hypotheses regarding the formation of Martian surface fines. These surface fines are thought to be products of weathering processes occurring on Mars. Four major weathering environments of igneous rocks on Mars have been proposed; (1) impact induced hydrothermal alterations; (2) subpermafrost igneous intrusion; (3) solid-gas surface reactions; and (4) subaerial igneous intrusion over permafrost. Although one or more of these processes may be important on the Martian surface, one factor in common for all these processes is the reaction of solid or molten basalt with water (solid, liquid, or gas). These proposed processes, with the exception of solid-gas surface reactions, are transient processes. The most likely product of transient hydrothermal processes are layer silicates, zeolites, hydrous iron oxides and palagonites. The long-term instability of hydrous clay minerals under present Martian conditions has been predicted; however, the persistence of such minerals due to slow kinetics of dehydration, or entrapment in permafrost, where the activity of water is high, can not be excluded. Anhydrous oxides of iron (e.g., hematite and maghemite) are thought to be stable under present Martian surface conditions. Oxidative weathering of sulfide minerals associated with Martian basalts has been proposed. Weathering of sulfide minerals leads to a potentially acidic permafrost and the formation of Fe(3) oxides and sulfates. Weathering of basalts under acidic conditions may lead to the formation of kaolinite through metastable halloysite and metahalloysite. Kaolinite, if present, is thought to be a thermodynamically stable phase at the Martian surface. Fine materials on Mars are important in that they influence the surface spectral properties; these fines are globally distributed on Mars by the dust storms and this fraction will have the highest surface area which should act as a sink for most of the absorbed volatiles near the surface of Mars. Therefore, the objectives of this study were to: (1) examine the fine fraction mineralogy of several palagonitic materials from Hawaii; and (2) compare spectral properties of palagonites and submicron sized synthetic iron oxides with the spectral properties of the Martian surface.

  19. Detection of solar wind-produced water in irradiated rims on silicate minerals

    PubMed Central

    Bradley, John P.; Ishii, Hope A.; Gillis-Davis, Jeffrey J.; Ciston, James; Nielsen, Michael H.; Bechtel, Hans A.; Martin, Michael C.

    2014-01-01

    The solar wind (SW), composed of predominantly ?1-keV H+ ions, produces amorphous rims up to ?150 nm thick on the surfaces of minerals exposed in space. Silicates with amorphous rims are observed on interplanetary dust particles and on lunar and asteroid soil regolith grains. Implanted H+ may react with oxygen in the minerals to form trace amounts of hydroxyl (?OH) and/or water (H2O). Previous studies have detected hydroxyl in lunar soils, but its chemical state, physical location in the soils, and source(s) are debated. If ?OH or H2O is generated in rims on silicate grains, there are important implications for the origins of water in the solar system and other astrophysical environments. By exploiting the high spatial resolution of transmission electron microscopy and valence electron energy-loss spectroscopy, we detect water sealed in vesicles within amorphous rims produced by SW irradiation of silicate mineral grains on the exterior surfaces of interplanetary dust particles. Our findings establish that water is a byproduct of SW space weathering. We conclude, on the basis of the pervasiveness of the SW and silicate materials, that the production of radiolytic SW water on airless bodies is a ubiquitous process throughout the solar system. PMID:24449869

  20. Detection of solar wind-produced water in irradiated rims on silicate minerals.

    PubMed

    Bradley, John P; Ishii, Hope A; Gillis-Davis, Jeffrey J; Ciston, James; Nielsen, Michael H; Bechtel, Hans A; Martin, Michael C

    2014-02-01

    The solar wind (SW), composed of predominantly ?1-keV H(+) ions, produces amorphous rims up to ?150 nm thick on the surfaces of minerals exposed in space. Silicates with amorphous rims are observed on interplanetary dust particles and on lunar and asteroid soil regolith grains. Implanted H(+) may react with oxygen in the minerals to form trace amounts of hydroxyl (-OH) and/or water (H2O). Previous studies have detected hydroxyl in lunar soils, but its chemical state, physical location in the soils, and source(s) are debated. If -OH or H2O is generated in rims on silicate grains, there are important implications for the origins of water in the solar system and other astrophysical environments. By exploiting the high spatial resolution of transmission electron microscopy and valence electron energy-loss spectroscopy, we detect water sealed in vesicles within amorphous rims produced by SW irradiation of silicate mineral grains on the exterior surfaces of interplanetary dust particles. Our findings establish that water is a byproduct of SW space weathering. We conclude, on the basis of the pervasiveness of the SW and silicate materials, that the production of radiolytic SW water on airless bodies is a ubiquitous process throughout the solar system. PMID:24449869

  1. Characterization of silicate/Si(001) interfaces

    NASA Astrophysics Data System (ADS)

    Copel, M.; Cartier, E.; Narayanan, V.; Reuter, M. C.; Guha, S.; Bojarczuk, N.

    2002-11-01

    Many of the proposed high permittivity gate dielectrics for silicon-based microelectronics rely on a stack configuration, with an SiO2 buffer layer to provide an interface. We describe a means for creating gate dielectrics with a direct yttrium silicate-silicon interface through the solid-state reaction of yttria and silicon oxynitride, avoiding the preparation of an oxide-free silicon surface. Characterization by medium-energy ion scattering indicates complete consumption of the underlying oxide through silicate formation during high-temperature annealing. Furthermore, the silicate dielectric exhibits small flat-band voltage shifts, indicating low quantities of charge, without passivation steps. Creation of a silicate-silicon interfaces by a simple route may enable the study of an alternate class of dielectrics.

  2. Influence of Silicate Melt Composition on Metal/Silicate Partitioning of W, Ge, Ga and Ni

    NASA Technical Reports Server (NTRS)

    Singletary, S. J.; Domanik, K.; Drake, M. J.

    2005-01-01

    The depletion of the siderophile elements in the Earth's upper mantle relative to the chondritic meteorites is a geochemical imprint of core segregation. Therefore, metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle. The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. Several recent studies have shown the importance of silicate melt composition on the partitioning of siderophile elements between silicate and metallic liquids. It has been demonstrated that many elements display increased solubility in less polymerized (mafic) melts. However, the importance of silicate melt composition was believed to be minor compared to the influence of oxygen fugacity until studies showed that melt composition is an important factor at high pressures and temperatures. It was found that melt composition is also important for partitioning of high valency siderophile elements. Atmospheric experiments were conducted, varying only silicate melt composition, to assess the importance of silicate melt composition for the partitioning of W, Co and Ga and found that the valence of the dissolving species plays an important role in determining the effect of composition on solubility. In this study, we extend the data set to higher pressures and investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid.

  3. [Staghorn silicate calculi: a case report].

    PubMed

    Toba, Tomotaka; Koike, Hiroshi; Nobushita, Tomohiro

    2012-07-01

    A 71-year-old woman complaining of fever and left flank pain was referred to our hospital. She had no history of taking any silicate-containing antiacids. She was diagnosed with left staghorn renal stone and repeated extracorporeal shock wave lithotripsy was performed. Analysis of the stones revealed silica calculi. Forty-nine cases of silica calculi have been reported in Japan, but this is the first case of nearly pure staghorn silicate calculi. PMID:22895127

  4. Peroxide-assisted syntheses of metal silicates

    SciTech Connect

    Burlitch, J.M.

    1993-12-31

    Peroxide-containing intermediates have played pivotal roles in new synthesis of several magnesium silicates including olivine, forsterite, transition metal-doped forsterite, and enstatite. The involvement of a little-known hydroperoxide of magnesium will be discussed. Elaboration of the synthesis methodology has produced layered silicates such as the fluoro-mica, potassium fluorophlogopite, and a fluoro-talc that has a higher level of substitution of hydroxide by fluoride than any previously reported.

  5. Peralkaline silicic volcanic rocks in northwestern nevada.

    PubMed

    Noble, D C; Chipman, D W; Giles, D L

    1968-06-21

    Late Tertiary silicic ashflow tuffs and lavas peralkaline in chemical character (atomic Na + K greater than Al), mainly comendites, occur over wide areas in northwestern Nevada and appear to be widespread in southeastern Oregon. Such peralkaline rocks-which are not uncommon in the western United States-and other chemically unusual silicic rocks are found near the margins rather than toward the center of the Great Basin. PMID:17800671

  6. A Weathering Index for CK and R Chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Huber, Heinz

    2006-01-01

    We present a new weathering index (wi) for the metallic-Fe-Ni-poor chondrite groups (CK and R) based mainly on transmitted light observations of the modal abundance of crystalline material that is stained brown in thin sections: wi-0, <5 vol%; wi-1, 5-25 vol%; wi-2,25-50 vol%; wi-3,50- 75 vol%; wi-4, 75-95 vol%; wi-5, >95 vol%, wi-6, significant replacement of mafic silicates by phyllosilicates. Brown staining reflects mobilization of oxidized iron derived mainly from terrestrial weathering of Ni-bearing sulfide. With increasing degrees of terrestrial weathering of CK and R chondrites, the sulfide modal abundance decreases, and S, Se, and Ni become increasingly depleted. In addition, bulk Cl increases in Antarctic CK chondrites, probably due to contamination from airborne sea mist.

  7. Tales of future weather

    NASA Astrophysics Data System (ADS)

    Hazeleger, W.; van den Hurk, B. J. J. M.; Min, E.; van Oldenborgh, G. J.; Petersen, A. C.; Stainforth, D. A.; Vasileiadou, E.; Smith, L. A.

    2015-02-01

    Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to avoid climate change and in adaptation to changes. The traditional approach uses ensembles of climate model simulations, statistical bias correction, downscaling to the spatial and temporal scales relevant to decision-makers, and then translation into quantities of interest. The veracity of this approach cannot be tested, and it faces in-principle challenges. Alternatively, numerical weather prediction models in a hypothetical climate setting can provide tailored narratives for high-resolution simulations of high-impact weather in a future climate. This 'tales of future weather' approach will aid in the interpretation of lower-resolution simulations. Arguably, it potentially provides complementary, more realistic and more physically consistent pictures of what future weather might look like.

  8. Rock Weathering and Damage

    NASA Astrophysics Data System (ADS)

    Hoke, G. D.; Turcotte, D. L.

    2001-12-01

    Weathering of rock surfaces is often associated with a surface dissolution process. Chemical interactions occur on grain boundaries where diffusion is the controlling process. A dissolution boundary layer (rind) develops adjacent to the weathering surface. We quantify the extent of dissolution by introducing a damage variable f; f = 0 for pristine rock and when f = f0, the rock disintegrates. We assume that the variations of the damage variable are given by the diffusion equation. We solve two problems. The first is for the structure of the transient dissolution boundary layer prior to surface disintegration. We find an incubation time ti before active weathering (disintegration) begins. The second is the solution for steady-state weathering with a constant weathering velocity vw. Our results are entirely consistent with weathering studies on Carrera marble gravestones in the United Kingdom.

  9. Weathering and damage

    NASA Astrophysics Data System (ADS)

    Hoke, Gregory D.; Turcotte, Donald L.

    2002-10-01

    Weathering of rock surfaces is often associated with a surface dissolution process. Chemical interactions occur on grain boundaries and diffusion is the controlling process. A dissolution boundary layer (rind) develops adjacent to the weathering surface. We quantify the extent of dissolution by introducing a damage variable f, f = 0 for pristine rock, and when f = f0 the rock disintegrates. We assume that the variations of the damage variable are given by the diffusion equation. We solve two problems. The first is for the structure of the transient dissolution boundary layer prior to surface disintegration. We find an incubation time ti before active weathering (disintegration) begins. The second is the solution for steady state weathering with a constant weathering velocity vw. Our results are entirely consistent with weathering studies on Carrera marble gravestones in the United Kingdom.

  10. Thermodynamics and Kinetics of Silicate Vaporization

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  11. Weather and climate

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.

  12. Setups for Weathering Tests 

    E-print Network

    Unknown

    2011-08-17

    quickly transform into a raindrop heavy enough to fall to the ground. Texas has a rather extensive weather modifica- tion program. ? The first statewide program, the Colorado River Municipal Water District, is one of the oldest weather modification... programs in the world. Established in 1971 to generate runoff into Lake Thomas and E.V. Spence Reservoir on the Colorado River, this program covers 2.6 million acres between Lubbock and Midland. ? The West Texas Weather Modification Association...

  13. The Weather and Climate Toolkit

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.; Hankins, B.

    2010-12-01

    The Weather and Climate Toolkit (WCT) is free, platform independent software distributed from NOAA’s National Climatic Data Center (NCDC). The WCT allows the visualization and data export of weather and climate data, including Radar, Satellite and Model data. By leveraging the NetCDF for Java library and Common Data Model, the WCT is extremely scalable and capable of supporting many new datasets in the future. Gridded NetCDF files (regular and irregularly spaced, using Climate-Forecast (CF) conventions) are supported, along with many other formats including GRIB. The WCT provides tools for custom data overlays, Web Map Service (WMS) background maps, animations and basic filtering. The export of images and movies is provided in multiple formats. The WCT Data Export Wizard allows for data export in both vector polygon/point (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, Gridded NetCDF) formats. These data export features promote the interoperability of weather and climate information with various scientific communities and common software packages such as ArcGIS, Google Earth, MatLAB, GrADS and R. The WCT also supports an embedded, integrated Google Earth instance. The Google Earth Browser Plugin allows seamless visualization of data on a native 3-D Google Earth instance linked to the standard 2-D map. Level-II NEXRAD data for Hurricane Katrina GPCP (Global Precipitation Product), visualized in 2-D and internal Google Earth view.

  14. Pilot Weather Advisor System

    NASA Technical Reports Server (NTRS)

    Lindamood, Glenn; Martzaklis, Konstantinos Gus; Hoffler, Keith; Hill, Damon; Mehrotra, Sudhir C.; White, E. Richard; Fisher, Bruce D.; Crabill, Norman L.; Tucholski, Allen D.

    2006-01-01

    The Pilot Weather Advisor (PWA) system is an automated satellite radio-broadcasting system that provides nearly real-time weather data to pilots of aircraft in flight anywhere in the continental United States. The system was designed to enhance safety in two distinct ways: First, the automated receipt of information would relieve the pilot of the time-consuming and distracting task of obtaining weather information via voice communication with ground stations. Second, the presentation of the information would be centered around a map format, thereby making the spatial and temporal relationships in the surrounding weather situation much easier to understand

  15. NASA's Sentinels Monitoring Weather and Climate: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Herring, David; Gutro, Rob; Huffman, George; Halverson, Jeff

    2002-01-01

    Weatherwise is probably the most popular newstand magazine focusing on the subject of weather. It is published six times per year and includes features on weather, climate, and technology. This article (to appear in the January/February Issue) provides a comprehensive review of NASA s past, present, and future contributions in satellite remote sensing for weather and climate processes. The article spans the historical strides of the TIROS program through the scientific and technological innovation of Earth Observer-3 and Global Precipitation Measurement (GPM). It is one of the most thorough reviews of NASA s weather and climate satellite efforts to appear in the popular literature.

  16. Steps toward interstellar silicate dust mineralogy

    NASA Technical Reports Server (NTRS)

    Dorschner, J.; Guertler, J.; Henning, TH.

    1989-01-01

    One of the most certain facts on interstellar dust is that it contains grains with silicon oxygen tetrahedra (SOT), the internal vibrations of which cause the well known silicate bands at 10 and 18 microns. The broad and almost structureless appearance of them demonstrates lack of translation symmetry in these solids that must be considered amorphous or glassy silicates. There is no direct information on the cations in these interstellar silicates and on the number of bridging oxygens per tetrahedron (NBO). Comparing experimental results gained on amorphous silicates, e.g., silicate glasses, of cosmically most abundant metals (Mg, Fe, Ca, Al) with the observations is the only way to investigate interstellar silicate dust mineralogy (cf, Dorschner and Henning, 1986). At Jena University Observatory IR spectra of submicrometer-sized grains of pyroxene glasses (SSG) were studied. Pyroxenes are common minerals in asteroids, meteorites, interplanetary, and supposedly also cometary dust particles. Pyroxenes consist of linearly connected SOT (NBO=2). In the vitreous state reached by quenching melted minerals, the SOT remain nearly undistorted (Si-O bond length unchanged); the Si-O-Si angles at the bridging oxygens of pyroxenes, however, scatter statistically. Therefore, the original cation oxygen symmetry of the crystal (octahedral and hexahedral coordination by O) is completely lost. The blended bands at 10 and 18 microns lose their diagnostic differences and become broad and structureless. This illustrates best the basic problem of interstellar silicate mineral diagnostics. Optical data of glasses of enstatite, bronzite, hypersthene, diopside, salite, and hedenbergite have been derived. Results of enstatite (E), bronzite (B), and hypersthene (H) show very good agreement with the observed silicate features in the IR spectra of evolutionarily young objects that show P-type silicate signature according to the classification by Gurtler and Henning (1986). Compositional parameters and main characteristics of experimental SSG spectra in IR for the glasses E, B, and H are shown in tabular form. Results fit excellently the relations derived by Koike and Hasegawa (1987) and suggest that the band ratio of the astronomical silicate by Draine and Lee (1984) is too low.

  17. Barium in the Yamuna River System in the Himalaya: Sources, fluxes, and its behavior during weathering and transport

    NASA Astrophysics Data System (ADS)

    Dalai, Tarun K.; Krishnaswami, S.; Sarin, M. M.

    2002-12-01

    Systematic measurements of Ba in waters and bed sediments of the Yamuna and many of its tributaries in the Himalaya (Yamuna River System) have been carried out. Dissolved Ba in the Yamuna River System (YRS) ranges from 17 to 871 nM. Streams near the source region draining predominantly granites/gneisses have lower abundance of Ba, <100 nM compared with those in the lower reaches. These data, coupled with those available for major ion composition of these rivers and their sediments, have been used to determine the contributions of silicates and carbonates, the two major lithologies in the drainage basin, to dissolved Ba in YRS. In YRS, dissolved Ba shows significant covariations with Na*, Si, Ca, and Mg. Using Na* as an index, it is estimated that silicates are an important source of Ba to many of the rivers; in a few streams in the lower reaches, however, they account for only <20% of measured Ba. Carbonate weathering, which dominates the major ion composition of YRS rivers, contributes on average ˜30% of dissolved Ba. Together, silicates and carbonates roughly balance measured Ba in many of the rivers, whereas in a few streams, Ba contributions from additional sources are needed to balance the budget. Prospective sources include organic matter/phosphorites. Plot of 1/Ba versus 87Sr/86Sr shows a two-component mixing trend, one with low Ba-high 87Sr/86Sr (silicates) and the other with high Ba-low 87Sr/86Sr (carbonates, phosphorites). Ba also shows significant positive correlation with dissolved Re and SO4. A likely explanation for the Ba-Re-SO4 association is that they are supplied from organic matter/phosphorites/carbonates assemblages through H2SO4 weathering. In YRS bed sediments, Ba shows significant correlation with K and Al. Ba/Na and Ba/Sr in these sediments are higher than those in granites of the Higher Himalaya. These observations can be explained in terms of (1) differential release of these elements during weathering, Ba being less mobile because of its association with weathering resistant minerals or (2) "nonconservative" behavior of Ba in rivers resulting in its removal from dissolved to particulate phases. Either way, these results indicate that Ba is less mobile relative to Na and Sr. Dissolved Ba flux from the YRS basin is ˜5 times more than that from the Ganga headwaters, a result consistent with higher physical and chemical erosion in the YRS basin. The Yamuna and the Ganga together transport ˜5.4 × 106 mol yr-1 of Ba out of the Himalaya, which is ˜10% of the dissolved Ba flux from the Ganga at Bangladesh, roughly the same as their contribution to water discharge. The rate of Ba mobilization in the Yamuna and the Ganga basins in the Himalaya is a factor of ˜2 higher than the global average.

  18. Space weathering of surface organic materials on dark primitive small bodies

    NASA Astrophysics Data System (ADS)

    Moroz, L. V.

    To interpret results of groundbased and spacecraft optical observations of small solar system bodies in terms of composition, it is important to understand how various surface alteration processes affect surface optical properties of such objects. Space weathering - bombardment of airless bodies with charged particles and micrometeorites - may significantly modify spectral characteristics of the uppermost layers of small bodies. Laboratory simulations of space weathering processes are needed for correct interpretation of spectrophotometric observations. Silicate rocks dominate the surfaces of planets and small bodies in the inner solar system. Ices and organic components appear to be important in the outer solar system. Laboratory experiments show that space weathering of silicate targets and hydrocarbon-bearing ices induces their darkening and reddening (unless ices are severely weathered). Here we discuss first space weathering simulation experiments (irradiation with low energy ions, simulation of micrometeorite impacts using pulsed lasers) performed on complex organic targets and primitive meteorites (carbonaceous chondrites) containing complex organic components. These new experiments imply essentially different space weathering trend - namely, neutralization of spectral slope caused by carbonization of originally red organic components. These new findings may explain, for example, color-diameter trends observed within populations of low albedo outer belt asteroids (Cybeles, Hildas and Trojans). Such space weathering effects should be also taken into account while interpreting spectrophotometric observations of other small bodies presumably containing complex organic materials - Trans-Neptunian objects, comets and dark planetary satellites.

  19. Weather and emotional state

    NASA Astrophysics Data System (ADS)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions, while those who are emotionally unstable have a stronger dependence to the impacts of the weather.

  20. Weather and Culture.

    ERIC Educational Resources Information Center

    Contemporary Learning Center, Houston, TX.

    This document is a minicourse on the interaction of weather, environment, and culture. It is designed for the high school student to read and self-administer. Performance objectives, enabling activities, and postassessment questions are given for each of eight modules. The modules are: (1) Basic Facts About Your Weather Known As Rain, (2) The…

  1. Designing a Weather Station

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  2. Tracking Weather Satellites.

    ERIC Educational Resources Information Center

    Martin, Helen E.

    1996-01-01

    Describes the use of weather satellites in providing an exciting, cohesive framework for students learning Earth and space science and in providing a hands-on approach to technology in the classroom. Discusses the history of weather satellites and classroom satellite tracking. (JRH)

  3. Weathering Database Technology

    ERIC Educational Resources Information Center

    Snyder, Robert

    2005-01-01

    Collecting weather data is a traditional part of a meteorology unit at the middle level. However, making connections between the data and weather conditions can be a challenge. One way to make these connections clearer is to enter the data into a database. This allows students to quickly compare different fields of data and recognize which…

  4. Weather Cardboard Carpentry

    ERIC Educational Resources Information Center

    DeBruin, Jerome E.

    1977-01-01

    Included are instructions and diagrams for building weather instruments (wind vane, Celsius temperature scale, and anemometer) from simple tools and Tri-Wall, a triple-thick corrugated cardboard. Ordering sources for Tri-Wall are listed. Additional weather instruments that can be constructed are suggested. (CS)

  5. People and Weather.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides: (1) background information on ways weather influences human lives; (2) activities related to this topic; and (3) a ready-to-copy page with weather trivia. Each activity includes an objective, list of materials needed, recommended age level(s), subject area(s), and instructional strategies. (JN)

  6. Home Weatherization Visit

    ScienceCinema

    Chu, Steven

    2013-05-29

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

  7. Teacher's Weather Sourcebook.

    ERIC Educational Resources Information Center

    Konvicka, Tom

    This book is a teaching resource for the study of weather-related phenomena. A "weather unit" is often incorporated into school study because of its importance to our daily lives and because of its potential to cut across disciplinary content. This book consists of two parts. Part I covers the major topics of atmospheric science such as the modern…

  8. Mild and Wild Weather.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Presents background information and six activities that focus on clouds, precipitation, and stormy weather. Each activity includes an objective, recommended age level(s), subject area(s), and instructional strategies. Also provided are two ready-to-copy pages (a coloring page on lightning and a list of weather riddles to solve). (JN)

  9. Weather Fundamentals: Clouds. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…

  10. Weather Fundamentals: Wind. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) describes the roles of the sun, temperature, and air pressure in creating the incredible power…

  11. Exercising in Cold Weather

    MedlinePLUS

    ... www.nia.nih.gov/Go4Life Exercising in Cold Weather Exercise has benefits all year, even during winter. ... activities when it’s cold outside: l Check the weather forecast. If it’s very windy or cold, exercise ...

  12. On Observing the Weather

    ERIC Educational Resources Information Center

    Crane, Peter

    2004-01-01

    Rain, sun, snow, sleet, wind... the weather affects everyone in some way every day, and observing weather is a terrific activity to attune children to the natural world. It is also a great way for children to practice skills in gathering and recording information and to learn how to use simple tools in a standardized fashion. What better way to…

  13. Fabulous Weather Day

    ERIC Educational Resources Information Center

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  14. Weatherizing a Structure.

    ERIC Educational Resources Information Center

    Metz, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with weatherizing a structure. Its objective is for the student to be able to analyze factors related to specific structures that indicate need for weatherizing activities and to determine steps to correct defects in structures that…

  15. Diversity history of Cenozoic marine siliceous plankton

    NASA Astrophysics Data System (ADS)

    Lazarus, David; Renaudie, Johan

    2014-05-01

    Marine planktonic diatoms and polycystine radiolarians, both with shells of opaline silica, make up a large part of the deep-sea sediment fossil record. Diatom export of organic material to the deep ocean and sediments strongly affects the global carbon cycle; while both groups compete for, and are regulated by the availability of, dissolved silica derived from global weathering. Diatoms and radiolarians also both have a relatively (compared to foraminifera or coccolithophores) complex biogeography, with diverse, endemic polar and tropical assemblages. Changes in past diatom and radiolarian diversity can be used to understand how the ocean's biologic pump has evolved, how co-evolution between groups occurs, and how nutrient availability controls evolutionary change. Lazarus et al. (2014) recently showed that diatom diversity increased by a factor of ca 3.5X over the Cenozoic, with a temporary peak in the latest Eocene, a late Oligocene-early Miocene low interval, very strong diversification in the late Miocene-early Pliocene, and minor decline in the late Pliocene-Recent. Only Phanerozoic scale radiolarian diversity estimates have been available until now, and these are strongly biased by sample size. We employed similar data (NSB database) and methods (1 my bins, 'sqs' subsampling, outlier removal using Pacman trims) as Lazarus et al. (2014) to calculate, for the first time, a detailed estimate of radiolarian diversity history, and origination and extinction rates over the last 50 my, the period for which sufficient NSB data is available. Radiolarian diversity increases almost monotonically by a factor of 5, with relatively rapid increases in the mid Eocene (high relative origination) and early Miocene (due to low extinction rates), and a moderate decline in the Plio-Pleistocene due to high extinction rates. Combined high rates of both extinction and origination, with little diversity change, are seen at the Eocene-Oligocene boundary. Most of these events can be related to changing global paleoceanographic conditions. Radiolarians show a major decrease in Cenozoic silica usage, apparently due to the rise of diatoms and consequent reduction of surface water silica concentrations (Lazarus et al. 2009). This inference based on diatom diversity has been confirmed (Renaudie et al., this meeting) with new estimates showing Cenozoic increasing rates of global diatom silica deposition. Our new radiolarian results show this did not negatively impact radiolarian diversity. Presumably increasing diversity from increasing faunal provinciality dominated Cenozoic radiolarian diversity dynamics, similar to the diversity controls on diatoms (Lazarus et al. 2014). Lazarus et al. (2009). PNAS 106:9333-9338. Lazarus et al. (2014). PLOS One (in press).

  16. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The data also indicate that DXVliQP2O5 decrease in the same order, but DOVLiQP2O5 and DOpx/LiQP205 are likely constant, respectively equal to 0.08(3) and 0.007(4), in contrast, DG1ILiQP205 increases from 0.15(3) to 0.36(10) as garnet becomes majoritic, thus silica-enriched, and may also depend on liquid composition (SiO2, P2O5 and Na2O wt%).

  17. Weathering, Soil Production, and Erosion Across Climatic and Tectonic Gradients

    NASA Astrophysics Data System (ADS)

    Norton, K. P.; Larsen, I. J.

    2014-12-01

    Weathering is one of the fundamental processes that sustain life on our planet. Physical weathering breaks down rock for soil production and chemical weathering is thought to operate as the ultimate long-term negative feedback on atmospheric CO2 concentrations. There remains, however, uncertainty as to the relationship between chemical and physical weathering at very fast rates. If chemical weathering becomes kinetically limited at rapid erosion rates, as has been shown in a number of locations around the globe, then the fastest erosion rates will be associated with reduced chemical weathering. This has led to a debate as to whether tectonically active mountain ranges or rolling plains are the main source of CO2 drawdown through silicate weathering. At the heart of this debate is the dearth of chemical weathering data at fast erosion rates. New cosmogenic nuclide-derived denudation rates from the West Coast of the New Zealand Southern Alps are among the fastest in the world and are linearly correlated with chemical weathering rates. The associated soil production rates reach an order of magnitude faster than previous estimates and far exceed the suggested maximum soil production rate. This suggests that very fast weathering and soil production is possible in such active landscapes and extreme climates. We investigate the controls on these rapid rates with a climate-driven soil production model. At the most basic level, soil production requires chemical weathering of primary minerals to secondary minerals. We apply soil production models with both exponential and hump-shaped dependencies on soil thickness. Mean annual temperature and precipitation are incorporated in the form of a modified Arrhenius equation that controls the maximum soil production rate. When applied to the Southern Alps, the model predicts very rapid soil production that matches the magnitude of the cosmogenic nuclide-derived rates. High annual precipitation in the Southern Alps supports rapid soil generation through increased chemical weathering rates and extensive vegetation cover. When applied more broadly, the climate-dependent soil production model suggests that actively eroding mountain belts may display a linear relationship between weathering and erosion in strongly orographic settings, such as in New Zealand's Southern Alps.

  18. Winter Weather Frequently Asked Questions

    MedlinePLUS

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... Weather Information on Specific Types of Emergencies Winter Weather Frequently Asked Questions Language: English Español (Spanish) Recommend ...

  19. Food Safety for Warmer Weather

    MedlinePLUS

    ... Fight Off Food Poisoning Food Safety for Warmer Weather In warm-weather months, who doesn’t love to get outside ... to keep foods safe to eat during warmer weather. If you’re eating or preparing foods outside, ...

  20. Environmental Education Tips: Weather Activities.

    ERIC Educational Resources Information Center

    Brainard, Audrey H.

    1989-01-01

    Provides weather activities including questions, on weather, heating the earth's surface, air, tools of the meteorologist, clouds, humidity, wind, and evaporation. Shows an example of a weather chart activity. (RT)

  1. Solar structure and terrestrial weather

    NASA Technical Reports Server (NTRS)

    Wilcox, J. M.

    1976-01-01

    The possibility that solar activity has discernible effects on terrestrial weather is considered. Research involving correlation of weather conditions with solar and geomagnetic activity is discussed.

  2. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  3. Coal weathering studies

    SciTech Connect

    Alvarez, R.; Barriocanal, C.; Casal, M.D.; Diez, M.A.; Gonzalez, A.I.; Pis, J.J.; Canga, C.S.

    1996-12-31

    Weathering studies were carried out on coal/blend piles stored in the open yard at the INCAR facilities. Firstly, a typical and complex coal blend used by the Spanish Steel Company, ENSIDESA, prepared and ground at industrial scale, was stored. Several methods have been applied for detecting weathering in coals, Gieseler maximum fluidity being the most sensitive indicator of the loss of thermoplastic properties. Carbonization tests were carried out in a semi-industrial and a movable-wall ovens available at the INCAR Coking Test Plant. In addition to the measurements of internal gas pressure and cooling pressure, laboratory tests to measure expansion/contraction behavior of coals were performed. There is a clear decrease in internal gas pressure with weathering, measured in the semi-industrial oven. A decrease in wall pressure after two months of weathering followed by a period of stabilization lasting practically ten months were observed. As regards coke quality, no significant changes were produced over a storing period of ten months, but after this date impairment was observed. The behavior of selected individual coals stored without grinding, which are components of the blend, was rather different. Some coals showed a maximum wall pressure through the weathering period. Coke quality improved with some coals and was impaired with others due to weathering. It should be pointed out that slight weathering improved coke quality not only in high-volatile and fluid coals but also in medium-volatile coals.

  4. Initial effects of vegetation on Hawaiian basalt weathering rates

    SciTech Connect

    Cochran, M.F.; Berner, R.A. )

    1992-01-01

    Weathering of Ca and Mg silicates on land and ensuing precipitation and burial of Ca and Mg carbonates in marine sediments is the principal sink for carbon dioxide from the atmosphere/ocean system on geologic time scales. Model calculations of ancient atmospheric CO[sub 2] partial pressure depend strongly on the authors assumptions about the enhancement of silicate weathering rates first by primitive terrestrial biota, then by the appearance and evolution of the vascular plants. Aa and pahoehoe basalts were collected from Mauna Loa and Kilauea volcanoes on the island of Hawaii. Flows ranged in age (one year to several thousand years) and in ambient climate. Where possible, each flow was sampled beneath a suite of current plant covers: none, lichens, and higher plants. Rocks were embedded in epoxy to preserve the plant-rock interface, then sectioned and subjected to electron probe microanalysis. During initial weathering, vascular plants appeared to promote congruent dissolution of minerals (particularly olivine and Ca-rich plagioclase) and glass near the surfaces of underlying basalts. In the neighborhood of roots, primary cracks widened with time into networks of open channels. This effect was observed prior to the formation of measurable leached zones in exterior grains and prior to the appearance of secondary minerals. As a result, initial mass loss from young, plant-covered basalts appeared to be up to one or more orders of magnitude greater than from bare-rock controls. Despite earlier reports of substantial enhancement of Hawaiian basalt weathering rates by the lichen Stereocaulon vulcani, weathering observed beneath this lichen was comparable to that of unvegetated rocks.

  5. GEOSS interoperability for Weather, Ocean and Water

    NASA Astrophysics Data System (ADS)

    Richardson, David; Nyenhuis, Michael; Zsoter, Ervin; Pappenberger, Florian

    2013-04-01

    "Understanding the Earth system — its weather, climate, oceans, atmosphere, water, land, geodynamics, natural resources, ecosystems, and natural and human-induced hazards — is crucial to enhancing human health, safety and welfare, alleviating human suffering including poverty, protecting the global environment, reducing disaster losses, and achieving sustainable development. Observations of the Earth system constitute critical input for advancing this understanding." With this in mind, the Group on Earth Observations (GEO) started implementing the Global Earth Observation System of Systems (GEOSS). GEOWOW, short for "GEOSS interoperability for Weather, Ocean and Water", is supporting this objective. GEOWOW's main challenge is to improve Earth observation data discovery, accessibility and exploitability, and to evolve GEOSS in terms of interoperability, standardization and functionality. One of the main goals behind the GEOWOW project is to demonstrate the value of the TIGGE archive in interdisciplinary applications, providing a vast amount of useful and easily accessible information to the users through the GEO Common Infrastructure (GCI). GEOWOW aims at developing funcionalities that will allow easy discovery, access and use of TIGGE archive data and of in-situ observations, e.g. from the Global Runoff Data Centre (GRDC), to support applications such as river discharge forecasting.TIGGE (THORPEX Interactive Grand Global Ensemble) is a key component of THORPEX: a World Weather Research Programme to accelerate the improvements in the accuracy of 1-day to 2 week high-impact weather forecasts for the benefit of humanity. The TIGGE archive consists of ensemble weather forecast data from ten global NWP centres, starting from October 2006, which has been made available for scientific research. The TIGGE archive has been used to analyse hydro-meteorological forecasts of flooding in Europe as well as in China. In general the analysis has been favourable in terms of forecast skill and concluded that the use of a multi-model forecast is beneficial. Long term analysis of individual centres, such as the European Centre for Medium-Range Weather Forecasts (ECMWF), has been conducted in the past. However, no long term and large scale study has been performed so far with inclusion of different global numerical models. Here we present some initial results from such a study.

  6. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    SciTech Connect

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (?400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  7. Silicate Abundance and its Significance in the Hooghly-Matla Estuary, India (Invited)

    NASA Astrophysics Data System (ADS)

    Ghosh, T.; Akhand, A.

    2010-12-01

    Sea water contains in suspension a wide spectrum of siliceous materials. The surface water abounds with organisms such as diatoms and radiolarians having skeletons composed of non-crystalline form of hydrated silica. A very high level of silicate (130-140 ?M) noticed in the Bay of Bengal nearer the confluence of the rivers, where nutrient levels are appreciably higher during southwest monsoon period (March-October) in contrast to other seasons (CSMCRI, 2007). The relatively high (>5 µg) silicate values at the Ganges head (Bay of Bengal) is attributable to river runoff during the same period (CSMCRI, 2007). In general, the concentration of inorganic phosphate, nitrate and silicate increased in the direction of Antarctic Sea, particularly around 40° S latitude, in the proximity of sub-tropical convergence. In comparison to Atlantic and Pacific oceans, the concentration of nutrients in the Indian Ocean is almost twice (Venkataramana, 2007). The mean value of 102.9±43.2 ?M for silicate in Hooghly estuary is found lower than worldwide average river water concentration of 147.8±93.6 ?M (Gems, 2002). Seasonal variation of river runoff of silicate shows maximum value of 12.6×109 mol during monsoon; thereafter, its value decreased to 2.54 and 1.33×109 mol during post-monsoon and pre-monsoon, respectively. The net residual flows of 4.91, 1.47 and 0.5×109 mol and the exchange flux of 6.95, 0.94 and 0.51×109 mol is found at the estuary during monsoon, post-monsoon and pre-monsoon, respectively. The annual flux of silicate out of the estuary is estimated to be 15.28×109 mol (428×103 t), about 93% of the total fluvial flux. The non-conservative flux of silicate removed from the water column is found to be 1.12 × 109 mol (31.0×103 t), which is about 5% in the global scale (0.6×106 t year-1) (Tregguer et al.,1995). Nitrate, Phosphate and Silicate, have been studied in the Hooghly-Matla estuarine complex and compared with selected previous studies. It is observed that both nitrate and phosphate concentrations remained almost stable varied (between 19.28 and 19.4?M for DIN and between 1.61and 1.99?M for DRP) during the period between 1975 and 2001, but silicate shows a distinct increasing trend from 35.6 to 102.9?M (Nandy et al., 1983; NIO, 1986; Ghosh et al., 1992). These also conforms our study, with the concentration of silicate from 19.97 µ M to 72.73 µ M during pre-monsoon and 48.26 µ M to 103.19 µ M during the monsoon in the Hooghly-Matla estuarine complex. High concentrations of biogenic silica in tidal marshes are necessary for maximum benthic diatom production which in turn helps high secondary production of commercial fish and crustaceans (Courtney, 2007). The Gross Primary Productivity is found to be increased in three stations of these estuaries (27.32±5.06 mg/m3/ hr in 1990, 33.58±14 mg/m3/ hr in 2000 and 44.36±5.91 mg/m3/ hr in 2007) (Biswas et. al., 2009), with the increasing trend of silicate within this estuarine complex. The increasing trend of total catches in the Eastern and Western Indian Ocean (FAO, 1998), of which the Bay of Bengal is an important part (Islam, 2003), justify the interrelation. Thus, these findings are ascertaining the interrelation between the increasing trend of silicate concentration with the enhanced primary productivity, which in turn increase the fish yield in the Hooghly-Matla estuarine complex on the Bay of Bengal.

  8. NOAA's National Weather Service Building a Weather-Ready Nation

    E-print Network

    NOAA's National Weather Service Building a Weather-Ready Nation For more information, please visit: www.noaa.gov and www.nws.noaa.gov NOAA's National Weather Service (NWS) is the Nation's official source for weather and water data, forecasts, and warnings. From information accessed on your smartphone

  9. Rates of oxidative weathering on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Implicit in the mnemonic 'MSATT' (Mars surface and atmosphere through time) is that rates of surface processes on Mars through time should be investigated, including studies of the kinetics and mechanism of oxidative weathering reactions occurring in the Martian regolith. Such measurements are described. Two major elements analyzed in the Viking Lander XRF experiment that are most vulnerable to atmospheric oxidation are iron and sulfur. Originally, they occurred as Fe(2+)-bearing silicate and sulfide minerals in basaltic rocks on the surface of Mars. However, chemical weathering reactions through time have produced ferric- and sulfate-bearing assemblages now visible in the Martian regolith. Such observations raise several question about: (1) when the oxidative weathering reactions took place on Mars; (2) whether or not the oxidized regolith is a fossilized remnant of past weathering processes; (3) deducting chemical interactions of the ancient Martian atmosphere with its surface from surviving phases; (4) possible weathering reactions still occurring in the frozen regolith; and (5) the kinetics and mechanism of past and present-day oxidative reactions on Mars. These questions may be addressed experimentally by studying reaction rates of dissolution and oxidation of basaltic minerals, and by identifying reaction products forming on the mineral surfaces. Results for the oxidation of pyrrhotite and dissolved ferrous iron are reported.

  10. Microfabrics in Siliceous Hotsprings: Yellowstone National Park, Wyoming

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.; Westall, F.

    2001-01-01

    Microfabrics shed light on the mechanisms governing siliceous sinter precipitation, the profound effects of microorganisms, as well as a conventional facies model for siliceous hotsprings. Additional information is contained in the original extended abstract.

  11. Slow advance of the weathering front during deep, supply-limited saprolite formation in the tropical Highlands of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Hewawasam, Tilak; von Blanckenburg, Friedhelm; Bouchez, Julien; Dixon, Jean L.; Schuessler, Jan A.; Maekeler, Ricarda

    2013-10-01

    Silicate weathering - initiated by major mineralogical transformations at the base of ten meters of clay-rich saprolite - generates the exceptionally low weathering flux found in streams draining the crystalline rocks of the mountainous and humid tropical Highlands of Sri Lanka. This conclusion is reached from a thorough investigation of the mineralogical, chemical, and Sr isotope compositions of samples within a regolith profile extending >10 m from surface soil through the weathering front in charnockite bedrock (a high-grade metamorphic rock), corestones formed at the weathering front, as well as from the chemical composition of the dissolved loads in nearby streams. Weatherable minerals and soluble elements are fully depleted at the top of the profile, showing that the system is supply-limited, such that weathering fluxes are controlled directly by the supply of fresh minerals. We determine the weathering rates using two independent means: (1) in situ-produced cosmogenic nuclides in surface soil and creek sediments in the close vicinity of the regolith combined with immobile element mass balance across the regolith and (2) river dissolved loads. Silicate weathering rates determined from both approaches range from 16 to 36 t km-2 y-1, corresponding to a weathering front advance rate of 6-14 mm ky-1. These rates agree across the 101 to 104 y time scales over which our rate metrics integrate, suggesting that the weathering system operates at steady state. Within error these rates are furthermore compatible with those obtained by modeling the advance rate of the weathering front from chemical gradients and mineral dissolution rates. The silicate weathering flux out of the weathering profile, measured on small creeks, amounts to 84% of the profile’s export flux; the remaining 16% is contributed by non-silicate, atmospheric-derived input. The silicate weathering flux, as measured by dissolved loads in large catchments, amounts to ca. 50% of the total dissolved flux; the remainder being contributed by dust, rain, and weathering of local marble bands. Spheroidal weathering is the key processes of converting the fresh bedrock into saprolite at the weathering front. The mineralogical composition of weathering rinds shows that the sequence of mineral decomposition is: pyroxene; plagioclase; biotite; K-feldspar. Observable biotite alteration does not appear to initiate spheroidal weathering within corestones; therefore, we infer that other processes than biotite oxidation, like pyroxene oxidation, clay formation from pyroxene and plagioclase decomposition, the development of secondary porosity by plagioclase dissolution, or even microbiologic processes at depth enable the coupling between slow advance of the weathering front and slow erosion at the surface. The comparison to tectonically more active tropical landscapes lets us conclude that the combination of hard rock with tightly interlocked mineral grains and slow erosion in the absence of tectonically-induced landscape rejuvenation lead to these exceptionally low weathering rates.

  12. Space Weather Needs of an Evolving Customer Base (Invited)

    NASA Astrophysics Data System (ADS)

    Rutledge, B.; Viereck, R. A.; Onsager, T. G.

    2013-12-01

    Great progress has been made in raising the global awareness of space weather and the associated impacts on Earth and our technological systems. However, significant gaps still exist in providing comprehensive and easily understood space weather information, products, and services to the diverse and growing customer base. As technologies, such as Global Navigation Satellite Systems (GNSS), have become more ingrained in applications and fields of work that previously did not rely on systems sensitive to space weather, the customer base has grown substantially. Furthermore, the causes and effects of space weather can be difficult to interpret without a detailed understanding of the scientific underpinnings. In response to this change, space weather service providers must address this evolution by both improving services and by representing space weather information and impacts in ways that are meaningful to each facet of this diverse customer base. The NOAA Space Weather Prediction Center (SWPC) must work with users, spanning precision agriculture, emergency management, power grid operators and beyond, to both identify unmet space weather service requirements and to ensure information and decision support services are provided in meaningful and more easily understood forms.

  13. Waste glass weathering

    SciTech Connect

    Bates, J.K.; Buck, E.C.

    1993-12-31

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass.

  14. Weather Information Processing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  15. Weathering of Martian Evaporites

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; Velbel, M. A.; Thomas-Keprta, K. L.; Longazo, T. G.; McKay, D. S.

    2001-01-01

    Evaporites in martian meteorites contain weathering or alteration features that may provide clues about the martian near-surface environment over time. Additional information is contained in the original extended abstract.

  16. Cold Weather Pet Safety

    MedlinePLUS

    ... as huskies and other dogs bred for colder climates, are more tolerant of cold weather; but no ... the winter to generate enough body heat and energy to keep them warm – talk to your veterinarian ...

  17. Interpreting Weather Maps.

    ERIC Educational Resources Information Center

    Smith, P. Sean; Ford, Brent A.

    1994-01-01

    Presents a brief introduction of our atmosphere, a guide to reading and interpreting weather maps, and a set of activities to facilitate teachers in helping to enhance student understanding of the Earth's atmosphere. (ZWH)

  18. Neighborhood Weatherization, Houston 

    E-print Network

    Fowler, M.

    2011-01-01

    . Referrals http://www.click2houston.com/video/24501979/index.html 2010 CLEAResult. All rights reserved. Milestone Celebration 2010 CLEAResult. All rights reserved. 10,000 Homes Weatherized 2010 CLEAResult. All rights reserved. CATEE...

  19. Weathering in a Cup.

    ERIC Educational Resources Information Center

    Stadum, Carol J.

    1991-01-01

    Two easy student activities that demonstrate physical weathering by expansion are described. The first demonstrates ice wedging and the second root wedging. A list of the needed materials, procedure, and observations are included. (KR)

  20. Neutralization of atmospheric acidity by chemical weathering in an alpine drainage basin in the North Cascade mountains

    SciTech Connect

    Drever, J.I.; Hurcomb, D.R.

    1986-03-01

    The most important weathering reaction that neutralizes incoming atmospheric acidity in the South Cascade Lake basin is weathering of calcite, which occurs in trace amounts in veins, on joint surfaces, and as a subglacial surficial deposit. Although the basin is underlain by igneous and high-grade metamorphic rocks, weathering of plagioclase is quantitatively negligible; the principal silicate weathering reaction is alteration of biotite to vermiculite. These conclusions are based on mass-balance calculations involving runoff compositions and on mineralogical observations. For predictive modeling of the effects of increased acid deposition, it is essential to identify the relevant weathering reactions. Feldspar weathering is commonly not an important source of solutes in alpine basins underlain by granitic rocks. 30 references, 2 figures, 1 table.

  1. Utilization of Live Localized Weather Information for Sustainable Agriculture

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Usher, J.

    2010-09-01

    Authors: Jim Anderson VP, Global Network and Business Development WeatherBug® Professional Jeremy Usher Managing Director, Europe WeatherBug® Professional Localized, real-time weather information is vital for day-to-day agronomic management of all crops. The challenge for agriculture is twofold in that local and timely weather data is not often available for producers and farmers, and it is not integrated into decision-support tools they require. Many of the traditional sources of weather information are not sufficient for agricultural applications because of the long distances between weather stations, meaning the data is not always applicable for on-farm decision making processes. The second constraint with traditional weather information is the timeliness of the data. Most delivery systems are designed on a one-hour time step, whereas many decisions in agriculture are based on minute-by-minute weather conditions. This is especially true for decisions surrounding chemical and fertilizer application and frost events. This presentation will outline how the creation of an agricultural mesonet (weather network) can enable producers and farmers with live, local weather information from weather stations installed in farm/field locations. The live weather information collected from each weather station is integrated into a web-enabled decision support tool, supporting numerous on-farm agronomic activities such as pest management, or dealing with heavy rainfall and frost events. Agronomic models can be used to assess the potential of disease pressure, enhance the farmer's abilities to time pesticide applications, or assess conditions contributing to yield and quality fluctuations. Farmers and industry stakeholders may also view quality-assured historical weather variables at any location. This serves as a record-management tool for viewing previously uncharted agronomic weather events in graph or table form. This set of weather tools is unique and provides a significant enhancement to the agronomic decision-support process. Direct benefits to growers can take the form of increased yield and grade potential, as well as savings in money and time. Pest management strategies become more efficient due to timely and localized disease and pest modelling, and increased efficacy of pest and weed control. Examples from the Canadian Wheat Board (CWB) WeatherFarm weather network will be utilized to illustrate the processes, decision tools and benefits to producers and farmers.

  2. The space-weather enterprise: past, present, and future

    NASA Astrophysics Data System (ADS)

    Siscoe, G.

    2000-09-01

    Space-weather impacts society in diverse ways. Societies' responses have been correspondingly diverse. Taken together these responses constitute a space weather ``enterprise'', which has developed over time and continues to develop. Technological systems that space-weather affects have grown from isolated telegraph systems in the 1840s to ocean and continent-spanning cable communications systems, from a generator electrifying a few city blocks in the 1880s to continent-spanning networks of high-tension lines, from wireless telegraphy in the 1890s to globe-spanning communication by radio and satellites. To have a name for the global totality of technological systems that are vulnerable to space weather, I suggest calling it the cyberelectrosphere. When the cyberelectrosphere was young, scientists who study space weather, engineers who design systems that space weather affects, and operators of such systems - the personnel behind the space-weather enterprise - were relatively isolated. The space-weather enterprise was correspondingly incoherent. Now that the cyberelectrosphere has become pervasive and indispensable to most segments of society, the space weather enterprise has become systematic and coherent. At present it has achieved considerable momentum, but it has barely begun to realize the level of effectiveness to which it can aspire, as evidenced by achievements of a corresponding but more mature enterprise in meteorology, a field which provides useful lessons. The space-weather enterprise will enter a new phase after it matures roughly to where the tropospheric weather enterprise is now. Then it will become indispensable for humankind's further global networking through technology and for humankind's further utilization of and expansion into space.

  3. Iron isotopic fractionation during continental weathering

    SciTech Connect

    Fantle, Matthew S.; DePaolo, Donald J.

    2003-10-01

    The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

  4. An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon. (1) Weathering reactions in the volcanics

    SciTech Connect

    Banfield, J.F.; Veblen, D.R. ); Jones, B.F. )

    1991-10-01

    Abert Lake in south-central Oregon provides a site suitable for the study of sequential weathering and diagenetic events. In this first of two papers, transmission electron microscopy was used to characterize the igneous mineralogy, subsolidus alteration assemblage, and the structural and chemical aspects of silicate weathering reactions that occur in the volcanic rocks that outcrop around the lake. Olivine and pyroxene replacement occurred topotactically, whereas feldspar and glass alteration produced randomly oriented smectite in channels and cavities. The tetrahedral, octahedral, and interlayer compositions of the weathering products, largely dioctahedral smectites, varied with primary mineral composition, rock type, and as the result of addition of elements released from adjacent reaction sites. The variability within and between the smectite assemblages highlights the microenvironmental diversity, fluctuating redox conditions, and variable solution chemistry associated with mineral weathering reactions in the surficial environment. Late-stage exhalative and aqueous alteration of the volcanics redistributed many components and formed a variety of alkali and alkali-earth carbonate, chloride, sulfate, and fluoride minerals in vugs and cracks. Overall, substantial Mg, Si, Na, Ca, and K are released by weathering reactions that include the almost complete destruction of the Mg-smectite that initially replaced olivine. The leaching of these elements from the volcanics provides an important source of these constituents in the lake water. The nature of subsequent diagenetic reactions resulting from the interaction between the materials transported to the lake and the solution will be described in part.

  5. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  6. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  7. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  8. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  9. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  10. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  11. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  12. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  13. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  14. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  15. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum calcium silicate. 182.2122 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation....

  16. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  17. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  18. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  19. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  20. 40 CFR 721.10495 - Metal silicate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Metal silicate (generic). 721.10495... Substances § 721.10495 Metal silicate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as metal silicate (PMN P-05-634) is subject...

  1. 40 CFR 721.10495 - Metal silicate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Metal silicate (generic). 721.10495... Substances § 721.10495 Metal silicate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as metal silicate (PMN P-05-634) is subject...

  2. Inorganic Plant Nutrients: Nitrogen, Phosphorus, Silicate Introduction

    E-print Network

    Jochem, Frank J.

    . The biogeochemical cycle of nitrogen is further complicated by the different forms in which nitrogen can occurLab 3: Inorganic Plant Nutrients: Nitrogen, Phosphorus, Silicate Introduction Compounds of nitrogen processes. Concentrations of nitrogen and phosphorus, on the other hand, are highly dynamic because they may

  3. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  4. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  5. Dynamic Fatigue of a Titanium Silicate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).

  6. Chemically bonded phospho-silicate ceramics

    DOEpatents

    Wagh, Arun S. (Orland Park, IL); Jeong, Seung Y. (Westmont, IL); Lohan, Dirk (Chicago, IL); Elizabeth, Anne (Chicago, IL)

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  7. Silicates in Ultra-Luminous Infrared Galaxies

    E-print Network

    M. M. Sirocky; N. A. Levenson; M. Elitzur; H. W. W. Spoon; L. Armus

    2008-01-30

    We analyze the mid-infrared (MIR) spectra of ultraluminous infrared galaxies (ULIRGs) observed with the Spitzer Space Telescope's Infrared Spectrograph. Dust emission dominates the MIR spectra of ULIRGs, and the reprocessed radiation that emerges is independent of the underlying heating spectrum. Instead, the resulting emission depends sensitively on the geometric distribution of the dust, which we diagnose with comparisons of numerical simulations of radiative transfer. Quantifying the silicate emission and absorption features that appear near 10 and 18um requires a reliable determination of the continuum, and we demonstrate that including a measurement of the continuum at intermediate wavelength (between the features) produces accurate results at all optical depths. With high-quality spectra, we successfully use the silicate features to constrain the dust chemistry. The observations of the ULIRGs and local sightlines require dust that has a relatively high 18/10um absorption ratio of the silicate features (around 0.5). Specifically, the cold dust of Ossenkopf et al. (1992) is consistent with the observations, while other dust models are not. We use the silicate feature strengths to identify two families of ULIRGs, in which the dust distributions are fundamentally different. Optical spectral classifications are related to these families. In ULIRGs that harbor an active galactic nucleus, the spectrally broad lines are detected only when the nuclear surroundings are clumpy. In contrast, the sources of lower ionization optical spectra are deeply embedded in smooth distributions of optically thick dust.

  8. Silicate Atmospheres, Clouds, and Fractional Vaporization of

    E-print Network

    ­ Jupiter's moon Io is dominated by S, and may have lost lighter volatiles such as H, C, and N due used the MAGMA code to calculate the composition of a silicate atmosphere formed by heating fractional vaporization · Results give the composition of the atmosphere and total pressure · Fractional

  9. Hazardous Weather Plan Support Document

    E-print Network

    Huang, Haiying

    StormReady Hazardous Weather Plan Support Document Annex A Warning #12;ii Ver. 3.0 05/2014 RECORD OF CHANGES StormReady Hazardous Weather Plan Support Document 12 to Annex A Warning Change # Date of Change. REPORTING DAMAGE TO THE NATIONAL WEATHER SERVICE.....................6 VIII. GLOSSARY OF WEATHER TERMS

  10. Thermoset polymer-layered silicic acid nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Zhen

    Nanocomposites are formed when phase mixing occurs on a nanometer length scale. Due to the improved phase morphology and interfacial properties, nanocomposites exhibit mechanical properties superior to conventional composites. Toyota researchers first demonstrated that organoclay could be exfoliated in a nylon-6 matrix to greatly improve the thermal and mechanical properties of the polymer, which has resulted in a practical application in the automobile industry. A great deal of research has been conducted on organic-inorganic hybrid composites in which smectite clays are used as reinforcement agents. However, little work has been devoted to derivatives of other layered inorganic solids. In the present work, the first examples of organic polymer-layered silicic acid nanocomposites have been prepared by formation of a cured epoxy polymer network in the presence of organo cation exchange forms of magadiite. The exfoliation of silicate nanolayers in the epoxy matrix was achieved by in-situ intragallery polymerization during the thermosetting process. In general, the tensile properties, solvent resistance, barrier properties and chemical stability of the polymer matrix are greatly improved by the embedded silicate nanolayers when the matrix is flexible (sub-ambient Tg). The improvement of properties are dependent on the silicate loading, the degree of nanolayer separation and interfacial properties. Interestingly, the exfoliation also affects the polymer elasticity in a favorable way. The mechanism leading to nanocomposite formation is proposed. One exfoliated epoxy-magadiite nanocomposite/composition possessed unique transparent optical properties. The exfoliation chemistry was successfully extended to the other members of the layered silicic acid family. A new approach also was developed to prepare thermoset epoxy polymer-layered silicate nanocomposites in which curing agents can be directly intercalated into the intragallery without the need for alkylammonium ions on the exchange sites. This new development has resulted in a greater improvement in the overall properties of thermoset polymer-clay nanocomposites. The exfoliation chemistry was extended further to other thermoset silicone polymer systems. The new polysiloxane-layered silicic acid nanocomposites were prepared with promising mechanical properties. Some fundamental chemistry and physics issues regarding nanocomposite formation were elucidated by this research work, particularly with regard to the relationship of microstructure and interfacial factors to the mechanical properties of the nanocomposites.

  11. 2011 Space Weather Workshop to Be Held in April

    NASA Astrophysics Data System (ADS)

    Peltzer, Thomas

    2011-04-01

    The annual Space Weather Workshop will be held in Boulder, Colo., 26-29 April 2011. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda will include presentations on space weather impacts on the Global Positioning System (GPS), the Solar Terrestrial Relations Observatory's (STEREO) mission milestone of a 360° view of the Sun, the latest from NASA's Solar Dynamics Observatory (SDO), and space weather impacts on emergency response by the Federal Emergency Management Agency (FEMA). Additionally, the vulnerabilities of satellites and the power grid to space weather will be addressed. Additional highlights will include the Commercial Space Weather Interest Group's (CSWIG) roundtable session and a presentation from the Office of the Federal Coordinator for Meteorology (OFCM). The CSWIG roundtable session on the growth of the space weather enterprise will feature distinguished panelists. As always, lively interaction between the audience and the panel is anticipated. The OFCM will present the National Space Weather Program's new strategic plan.

  12. Grain Growth and Silicates in Dense Clouds

    NASA Technical Reports Server (NTRS)

    Pendeleton, Yvonne J.; Chiar, J. E.; Ennico, K.; Boogert, A.; Greene, T.; Knez, C.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.; Whittet, D.

    2006-01-01

    Interstellar silicates are likely to be a part of all grains responsible for visual extinction (Av) in the diffuse interstellar medium (ISM) and dense clouds. A correlation between Av and the depth of the 9.7 micron silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well 'mixed. In the di&se ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233,321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5 146, Barnard 68, Chameleon I and Serpens dense clouds. Our data set spans an Av range between 2 and 35 magnitudes. All lines of sight show the 9.7 micron silicate feature. The Serpens data appear to follow the diffuse ISM correlation line whereas the data for the other clouds show a non-linear correlation between the depth of the silicate feature relative to Av, much like the trend observed in the Taurus data. In fact, it appears that for visual extinctions greater than about 10 mag, tau(9.7) begins to level off. This decrease in the growth of the depth of the 9.7 micron feature with increasing Av could indicate the effects of grain growth in dense clouds. In this poster, we explore the possibility that grain growth causes an increase in opacity (Av) without causing a corresponding increase in tau(9.7).

  13. Micro Weather Stations for Mars

    NASA Technical Reports Server (NTRS)

    Crisp, David; Kaiser, William J.; VanZandt, Thomas R.; Hoenk, Michael E.; Tillman, James E.

    1995-01-01

    A global network of weather stations will be needed to characterize the near-surface environment on Mars. Here, we review the scientific and measurement objectives of this network. We also show how these objectives can be met within the cost-constrained Mars Surveyor Program by augmenting the Mars Pathfinder-derived landers with large numbers of very small (less than 5 liter), low-mass (less than 5 kg), low-power, low-cost Mini-meteorological stations. Each station would include instruments for measuring atmospheric. pressures, temperatures, wind velocities, humidity, and airborne dust abundance. They would also include a data handling, telemetry, power, atmospheric entry, and deployment systems in a rugged package capable of direct entry and a high-impact landing. In this paper, we describe these systems and summarize the data-taking strategies and data volumes needed to achieve the surface meteorology objectives for Mars.

  14. Solubility of palladium in silicate melts: Implications for core formation in the Earth

    NASA Astrophysics Data System (ADS)

    Borisov, A.; Palme, H.; Spettel, B.

    1994-01-01

    Palladium solubilities in silicate melts of anorthite-diopside-eutectic composition were determined at a wide range of oxygen fugacities, from pure O 2 to fo2 slightly below the iron-wüstite buffer and at temperatures ranging from 1343 to 1472°C. Experiments were performed by heating palladiumloops with silicates inside a gas controlled furnace. Palladium concentrations were determined by neutron activation analysis. Repeated analyses of the glasses after removal of the outer layers and several reversed experiments with initially high Pd in the glass showed that equilibrium was attained in the experiments. At 1350°C concentrations of Pd in silicate melts range from 428 ppm to 1.2 ppm with decreasing palladium content at decreasing oxygen fugacities. The dependence of log Pd on log fo2 indicates a change in valence of the dominant palladium species in the silicate melt. The data can be explained by the presence of complexes containing Pd 2+ and Pd 0. Alternatively, a good fit is obtained by assuming mixtures of Pd 2+, Pd 1+and Pd 0 in the melt with increasing contributions of the lower valence species at increasingly reducing conditions. Solubilities increase with temperature at fixed oxygen fugacities independent of the absolute fugacity. This is an unexpected result. From the solubility data, metal/silicate partition coefficients were calculated using known activity coefficients of Pd in Fe-metal. Extrapolations were made to higher temperatures and lower oxygen fugacities. A palladium metal/silicate partition coefficient of 1.6 · 10 7 is inferred for 1623 K and IW-2. Extrapolation to 3500 K leads to a partition coefficient of 3.8 · 10 3. From earlier data on Ir solubilités, a metal/silicate partition coefficient of 2 · 10 8 was estimated for the same conditions. The high absolute metal/silicate partition coefficients for Pd and Ir and the large difference between the two partition coefficients are not compatible with a global core/mantle equilibrium as a source of the highly siderophile elements in the Earth mantle. The data favour models invoking the accretion of a late chondritic veneer after core formation without further metal segregation.

  15. Nanometre-scale evidence for interfacial dissolution-reprecipitation control of silicate glass corrosion.

    PubMed

    Hellmann, Roland; Cotte, Stéphane; Cadel, Emmanuel; Malladi, Sairam; Karlsson, Lisa S; Lozano-Perez, Sergio; Cabié, Martiane; Seyeux, Antoine

    2015-03-01

    Silicate glasses are durable solids, and yet they are chemically unstable in contact with aqueous fluids-this has important implications for numerous industrial applications related to the corrosion resistance of glasses, or the biogeochemical weathering of volcanic glasses in seawater. The aqueous dissolution of synthetic and natural glasses results in the formation of a hydrated, cation-depleted near-surface alteration zone and, depending on alteration conditions, secondary crystalline phases on the surface. The long-standing accepted model of glass corrosion is based on diffusion-coupled hydration and selective cation release, producing a surface-altered zone. However, using a combination of advanced atomic-resolution analytical techniques, our data for the first time reveal that the structural and chemical interface between the pristine glass and altered zone is always extremely sharp, with gradients in the nanometre to sub-nanometre range. These findings support a new corrosion mechanism, interfacial dissolution-reprecipitation. Moreover, they also highlight the importance of using analytical methods with very high spatial and mass resolution for deciphering the nanometre-scale processes controlling corrosion. Our findings provide evidence that interfacial dissolution-reprecipitation may be a universal reaction mechanism that controls both silicate glass corrosion and mineral weathering. PMID:25559424

  16. Amorphous Silicates in Primitive Meteoritic Materials: Acfer 094 and IDPs

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Nakamura-Messenger, K.; Messenger, S.; Walker, Robert M.

    2009-01-01

    The abundance of presolar grains is one measure of the primitive nature of meteoritic materials. Presolar silicates are abundant in meteorites whose matrices are dominated by amorphous silicates such as the unique carbonaceous chondrite Acfer 094. Presolar silicates are even more abundant in chondritic-porous interplanetary dust particles (CP-IDPs). Amorphous silicates in the form of GEMS (glass with embedded metal and sulfides) grains are a major component of CP IDPs. We are studying amorphous silicates in Acfer 094 matrix in order to determine whether they are related to the GEMS grains in CPIDPs

  17. Space Weather Workshop 2010 to Be Held in April

    NASA Astrophysics Data System (ADS)

    Peltzer, Thomas

    2010-03-01

    The annual Space Weather Workshop will be held in Boulder, Colo., 27-30 April 2010. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda include ionospheric storms and their impacts on the Global Navigation Satellite System (GNSS), an update on NASA's recently launched Solar Dynamics Observatory (SDO), and new space weather-related activities in the Federal Emergency Management Agency (FEMA). Also this year, the Commercial Space Weather Interest Group will feature a presentation by former NOAA administrator, Vice Admiral Conrad Lautenbacher, U.S. Navy (Ret.).

  18. Calibration of Smartphone-Based Weather Measurements Using Pairwise Gossip

    PubMed Central

    Zamora, Jane Louie Fresco; Kashihara, Shigeru; Yamaguchi, Suguru

    2015-01-01

    Accurate and reliable daily global weather reports are necessary for weather forecasting and climate analysis. However, the availability of these reports continues to decline due to the lack of economic support and policies in maintaining ground weather measurement systems from where these reports are obtained. Thus, to mitigate data scarcity, it is required to utilize weather information from existing sensors and built-in smartphone sensors. However, as smartphone usage often varies according to human activity, it is difficult to obtain accurate measurement data. In this paper, we present a heuristic-based pairwise gossip algorithm that will calibrate smartphone-based pressure sensors with respect to fixed weather stations as our referential ground truth. Based on actual measurements, we have verified that smartphone-based readings are unstable when observed during movement. Using our calibration algorithm on actual smartphone-based pressure readings, the updated values were significantly closer to the ground truth values. PMID:26421312

  19. Weather from the Stratosphere?

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Thompson, David W. J.; Shuckburgh, Emily F.; Norton, Warwick A.; Gillett, Nathan P.

    2006-01-01

    Is the stratosphere, the atmospheric layer between about 10 and 50 km, important for predicting changes in weather and climate? The traditional view is that the stratosphere is a passive recipient of energy and waves from weather systems in the underlying troposphere, but recent evidence suggests otherwise. At a workshop in Whistler, British Columbia (1), scientists met to discuss how the stratosphere responds to forcing from below, initiating feedback processes that in turn alter weather patterns in the troposphere. The lowest layer of the atmosphere, the troposphere, is highly dynamic and rich in water vapor, clouds, and weather. The stratosphere above it is less dense and less turbulent (see the figure). Variability in the stratosphere is dominated by hemispheric-scale changes in airflow on time scales of a week to several months. Occasionally, however, stratospheric air flow changes dramatically within just a day or two, with large-scale jumps in temperature of 20 K or more. The troposphere influences the stratosphere mainly through atmospheric waves that propagate upward. Recent evidence shows that the stratosphere organizes this chaotic wave forcing from below to create long-lived changes in the stratospheric circulation. These stratospheric changes can feed back to affect weather and climate in the troposphere.

  20. New weather index

    NASA Astrophysics Data System (ADS)

    Scientists at the National Oceanic and Atmospheric Administration (NOAA) and the University of Delaware have refined the wind-chill factor, a common measurement of weather discomfort, into a new misery register called the weather stress index. In addition to the mix of temperature and wind speed data used to calculate wind chill, the recipe for the index adds two new ingredients—humidity and a dash of benchmark statistics—to estimate human reaction to weather conditions. NOAA says that the weather stress index estimates human reaction to weather conditions and that the reaction depends on variations from the ‘normal’ conditions in the locality involved.Discomfort criteria for New Orleans, La., and Bismarck, N.D., for example, differ drastically. According to NOAA, when it's the middle of winter and it's -10°C with a relative humidity of 80% and 24 km/h winds, persons in New Orleans would be highly stressed while those in Bismarck wouldn't bat an eye.

  1. Realtime Space Weather Forecasts Via Android Phone App

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Haacke, B.; Reynolds, A.

    2010-12-01

    For the past several years, ASTRA has run a first-principles global 3-D fully coupled thermosphere-ionosphere model in real-time for space weather applications. The model is the Thermosphere-Ionosphere Mesosphere Electrodynamics General Circulation Model (TIMEGCM). ASTRA also runs the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) in real-time. Using AMIE to drive the high latitude inputs to the TIMEGCM produces high fidelity simulations of the global thermosphere and ionosphere. These simulations can be viewed on the Android Phone App developed by ASTRA. The SpaceWeather app for the Android operating system is free and can be downloaded from the Google Marketplace. We present the current status of realtime thermosphere-ionosphere space-weather forcasting and discuss the way forward. We explore some of the issues in maintaining real-time simulations with assimilative data feeds in a quasi-operational setting. We also discuss some of the challenges of presenting large amounts of data on a smartphone. The ASTRA SpaceWeather app includes the broadest and most unique range of space weather data yet to be found on a single smartphone app. This is a one-stop-shop for space weather and the only app where you can get access to ASTRA’s real-time predictions of the global thermosphere and ionosphere, high latitude convection and geomagnetic activity. Because of the phone's GPS capability, users can obtain location specific vertical profiles of electron density, temperature, and time-histories of various parameters from the models. The SpaceWeather app has over 9000 downloads, 30 reviews, and a following of active users. It is clear that real-time space weather on smartphones is here to stay, and must be included in planning for any transition to operational space-weather use.

  2. Asymmetric silicate dust distribution toward the silicate carbon star BM Gem

    E-print Network

    Keiichi Ohnaka; Hideyuki Izumiura; Christoph Leinert; Thomas Driebe; Gerd Weigelt; Markus Wittkowski

    2008-07-21

    Silicate carbon stars show the 10 micron silicate emission, despite their carbon-rich photospheres. They are considered to have circumbinary or circum-companion disks, which serve as a reservoir of oxygen-rich material shed by mass loss in the past. We present N-band spectro-interferometric observations of the silicate carbon star BM Gem using MIDI at the Very Large Telescope Interferometer (VLTI). Our aim is to probe the spatial distribution of oxygen-rich dust with high spatial resolution. BM Gem was observed with VLTI/MIDI at 44--62 m baselines using the UT2-UT3 and UT3-UT4 baseline configurations. The N-band visibilities observed for BM Gem show a steep decrease from 8 to ~10 micron and a gradual increase longward of ~10 micron, reflecting the optically thin silicate emission feature emanating from sub-micron-sized amorphous silicate grains. The differential phases obtained at baselines of ~44--46 m show significant non-zero values (~ -70 degrees) in the central part of the silicate emission feature between ~9 and 11 micron, revealing a photocenter shift and the asymmetric nature of the silicate emitting region. The observed N-band visibilities and differential phases can be fairly explained by a simple geometrical model in which the unresolved star is surrounded by a ring with azimuthal brightness modulation. The best-fit model is characterized by a broad ring (~70 mas across at 10 micron) with a bright region which is offset from the unresolved star by ~20 mas at a position angle of ~280 degrees. This model can be interpreted as a system with a circum-companion disk and is consistent with the spectroscopic signatures of an accretion disk around an unseen companion recently discovered in the violet spectrum of BM Gem.

  3. Incipient space weathering observed on the surface of Itokawa dust particles.

    PubMed

    Noguchi, T; Nakamura, T; Kimura, M; Zolensky, M E; Tanaka, M; Hashimoto, T; Konno, M; Nakato, A; Ogami, T; Fujimura, A; Abe, M; Yada, T; Mukai, T; Ueno, M; Okada, T; Shirai, K; Ishibashi, Y; Okazaki, R

    2011-08-26

    The reflectance spectra of the most abundant meteorites, ordinary chondrites, are different from those of the abundant S-type (mnemonic for siliceous) asteroids. This discrepancy has been thought to be due to space weathering, which is an alteration of the surfaces of airless bodies exposed to the space environment. Here we report evidence of space weathering on particles returned from the S-type asteroid 25143 Itokawa by the Hayabusa spacecraft. Surface modification was found in 5 out of 10 particles, which varies depending on mineral species. Sulfur-bearing Fe-rich nanoparticles exist in a thin (5 to 15 nanometers) surface layer on olivine, low-Ca pyroxene, and plagioclase, which is suggestive of vapor deposition. Sulfur-free Fe-rich nanoparticles exist deeper inside (<60 nanometers) ferromagnesian silicates. Their texture suggests formation by metamictization and in situ reduction of Fe(2+). PMID:21868670

  4. Space Weather Workshop

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2004-01-01

    This workshop will focus on what space weather is about and its impact on society. An overall picture will be "painted" describing the Sun's influence through the solar wind on the near-Earth space environment, including the aurora, killer electrons at geosynchronous orbit, million ampere electric currents through the ionosphere and along magnetic field lines, and the generation of giga-Watts of natural radio waves. Reference material in the form of Internet sites will be provided so that teachers can discuss space weather in the classroom and enable students to learn more about this topic.

  5. Olympian weather forecasting

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    A unique public-private partnership will provide detailed weather information at the 2002 Winter Olympics in Utah, 8-24 February About 50 meteorologists with the National Weather Service (NWS) and several private groups will work in the background to provide accurate forecasts.This is the first time that U.S. government and private meteorologists will share forecasting responsibilities for the Olympics, according to the Salt Lake Organizing Committee for the Olympic Games. The partnership includes meteorologists with the University of Utah and KSL-TV in Salt Lake City.

  6. Cooling rate calculations for silicate glasses.

    NASA Astrophysics Data System (ADS)

    Birnie, D. P., III; Dyar, M. D.

    1986-03-01

    Series solution calculations of cooling rates are applied to a variety of samples with different thermal properties, including an analog of an Apollo 15 green glass and a hypothetical silicate melt. Cooling rates for the well-studied green glass and a generalized silicate melt are tabulated for different sample sizes, equilibration temperatures and quench media. Results suggest that cooling rates are heavily dependent on sample size and quench medium and are less dependent on values of physical properties. Thus cooling histories for glasses from planetary surfaces can be estimated on the basis of size distributions alone. In addition, the variation of cooling rate with sample size and quench medium can be used to control quench rate.

  7. Weather impacts on space operations

    NASA Astrophysics Data System (ADS)

    Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.

    The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.

  8. Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps, India: Rates of basalt weathering and their controls

    NASA Astrophysics Data System (ADS)

    Das, A.; Krishnaswami, S.; Sarin, M. M.; Pande, K.

    2005-04-01

    Rates of chemical and silicate weathering of the Deccan Trap basalts, India, have been determined through major ion measurements in the headwaters of the Krishna and the Bhima rivers, their tributaries, and the west flowing streams of the Western Ghats, all of which flow almost entirely through the Deccan basalts. Samples ( n = 63) for this study were collected from 23 rivers during two consecutive monsoon seasons of 2001 and 2002. The Total dissolved solid (TDS) in the samples range from 27 to 640 mg l -1. The rivers draining the Western Ghats that flow through patches of cation deficient lateritic soils have lower TDS (average: 74 mg l -1), whereas the Bhima (except at origin) and its tributaries that seem to receive Na, Cl, and SO 4 from saline soils and anthropogenic inputs have values in excess of 170 mg l -1. Many of the rivers sampled are supersaturated with respect to calcite. The chemical weathering rates (CWR) of "selected" basins, which exclude rivers supersaturated in calcite and which have high Cl and SO 4, are in range of ˜3 to ˜60 t km -2 y -1. This yields an area-weighted average CWR of ˜16 t km -2 y -1 for the Deccan Traps. This is a factor of ˜2 lower than that reported for the Narmada-Tapti-Wainganga (NTW) systems draining the more northern regions of the Deccan. The difference can be because of (i) natural variations in CWR among the different basins of the Deccan, (ii) "selection" of river basin for CWR calculation in this study, and (iii) possible contribution of major ions from sources, in addition to basalts, to rivers of the northern Deccan Traps. Silicate weathering rates (SWR) in the selected basins calculated using dissolved Mg as an index varies between ˜3 to ˜60 t km -2 y -1, nearly identical to their CWR. The Ca/Mg and Na/Mg in these rivers, after correcting for rain input, are quite similar to those in average basalts of the region, suggesting near congruent release of Ca, Mg, and Na from basalts to rivers. Comparison of calculated and measured silicate-Ca in these rivers indicates that at most ˜30% of Ca can be of nonsilicate origin, a likely source being carbonates in basalts and sediments. The chemical and silicate weathering rates of the west flowing rivers of the Deccan are ˜4 times higher than the east flowing rivers. This difference is due to the correspondingly higher rainfall and runoff in the western region and thus reemphasises the dominant role of runoff in regulating weathering rates. The silicon weathering rate (SWR) in the Krishna Basin is ˜15 t km -2 y -1, within a factor of ˜2 to those in the Yamuna, Bhagirathi, and Alaknanda basins of the Himalaya, suggesting that under favourable conditions (intense physical weathering, high runoff) granites and the other silicates in the Himalaya weather at rates similar to those of Deccan basalts. The CO 2 consumption rate for the Deccan is deduced to be ˜3.6 × 10 5 moles km -2 y -1 based on the SWR. The rate, though, is two to three times lower than reported for the NTW rivers system; it still reinforces the earlier findings that, in general, basalts weather more rapidly than other silicates and that they significantly influence the atmospheric CO 2 budget on long-term scales.

  9. Conductimetric determination of decomposition of silicate melts

    NASA Technical Reports Server (NTRS)

    Kroeger, C.; Lieck, K.

    1986-01-01

    A description of a procedure is given to detect decomposition of silicate systems in the liquid state by conductivity measurements. Onset of decomposition can be determined from the temperature curves of resistances measured on two pairs of electrodes, one above the other. Degree of decomposition can be estimated from temperature and concentration dependency of conductivity of phase boundaries. This procedure was tested with systems PbO-B2O3 and PbO-B2O3-SiO2.

  10. SILICATE EVOLUTION IN BROWN DWARF DISKS

    SciTech Connect

    Riaz, B.

    2009-08-10

    We present a compositional analysis of the 10 {mu}m silicate spectra for brown dwarf disks in the Taurus and Upper Scorpius (UppSco) star-forming regions, using archival Spitzer/Infrared Spectrograph observations. A variety in the silicate features is observed, ranging from a narrow profile with a peak at 9.8 {mu}m, to nearly flat, low-contrast features. For most objects, we find nearly equal fractions for the large-grain and crystalline mass fractions, indicating both processes to be active in these disks. The median crystalline mass fraction for the Taurus brown dwarfs is found to be 20%, a factor of {approx}2 higher than the median reported for the higher mass stars in Taurus. The large-grain mass fractions are found to increase with an increasing strength in the X-ray emission, while the opposite trend is observed for the crystalline mass fractions. A small 5% of the Taurus brown dwarfs are still found to be dominated by pristine interstellar medium-like dust, with an amorphous submicron grain mass fraction of {approx}87%. For 15% of the objects, we find a negligible large-grain mass fraction, but a >60% small amorphous silicate fraction. These may be the cases where substantial grain growth and dust sedimentation have occurred in the disks, resulting in a high fraction of amorphous submicron grains in the disk surface. Among the UppSco brown dwarfs, only usd161939 has a signal-to-noise ratio high enough to properly model its silicate spectrum. We find a 74% small amorphous grain and a {approx}26% crystalline mass fraction for this object.

  11. Neutron Diffraction Study of Silicate Perovskites

    NASA Astrophysics Data System (ADS)

    Mao, H. K.; van Orman, J.; Fei, Y.; Hemley, R. J.; Loveday, J.; Nelmes, R.; Smith, R. I.

    2002-12-01

    The oxygen deficiency and cation-site distribution of silicate perovskite control its physical and chemical properties, including density, bulk modulus, defect mobility, ionic transport, flow behavior, oxidation states, hydration, and minor-element solubility. These properties of perovskite, in turn control the geophysical and geochemical processes of the Earth. The possibility of oxygen deficiency was first recognized in perovskite with minor amounts of Al replacing Mg and Si [1, 2], and its significance is compared to the analogous defect perovskite in ceramics [3]. Basic crystallographic characteristics of the silicate perovskite, including the lattice parameters of the orthorhombic unit cell, the Pbmn space group, and atomic positions, were previously determined by x-ray diffraction [4]. The defect crystallography of silicate perovskite, however, cannot be measured by x-rays because the relevant ions (Mg2+, Al3+, Si4+ and O2-) are isoelectronic. These ions have very different neutron cross-section and can be readily resolved by neutron diffraction. Using multianvil apparatus, we synthesized perovskite samples at 1700°C and 25-28 GPa. We perform multiple runs to accumulate 3 mm3 sample each for the MgSiO3 end member and MgSiO3 plus 5 weight %\\ Al2O3 in perovskite structure. Excellent powder diffraction data were collected at the POLARIS Beamline of ISIS, Rutherford Appleton Lab, and were subjected to Rietveld analysis. Neutron derived information sheds light on the unusual effects found for Al3+ substitution on the compressibility of the silicate perovskite [1]. 1. J. Zhang and D. J. Weidner, Science 284, 782 (1999). 2. J. P. Brodholt, Nature 407, 620 (2000). 3. A. Navrotsky, Science 284, 1788 (1999). 4. N. L. Ross and R. M. Hazen, Phys. Chem. Minerals 17, 228 (1990).

  12. Space Weather Forecasting at NASA GSFC Space Weather Research Center

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kuznetsova, M. M.; Pulkkinen, A.; Maddox, M. M.; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.; Evans, R. M.; Berrios, D.; Mullinix, R.

    2012-12-01

    The NASA GSFC Space Weather Research Center (http://swrc.gsfc.nasa.gov) is committed to providing research forecasts and notifications to address NASA's space weather needs - in addition to its critical role in space weather education. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, weekly summaries and reports, and most recently - video casts. In this presentation, we will focus on how near real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), enable space weather forecasting and quality space weather products provided by our Center. A few critical near real-time data streams for space weather forecasting will be identified and discussed.

  13. Adsorption of dimeric surfactants in lamellar silicates

    NASA Astrophysics Data System (ADS)

    Balcerzak, Mateusz; Pietralik, Zuzanna; Domka, Ludwik; Skrzypczak, Andrzej; Kozak, Maciej

    2015-12-01

    The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay - hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1?-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d001) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH2 and CH3 groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  14. Lead-silicate glass optical microbubble resonator

    SciTech Connect

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1??m diameter, silica microfiber at a wavelength of circa 775?nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38??m (single-stem) and 48??m (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3?×?10{sup 5} (single-stem) and 7?×?10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  15. Lead-silicate glass optical microbubble resonator

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald; Chormaic, Síle Nic

    2015-02-01

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 ?m diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 ?m (single-stem) and 48 ?m (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 105 (single-stem) and 7 × 106 (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  16. Studies on crystalline microporous vanadium silicates

    SciTech Connect

    Reddy, K.R.; Ramaswamy, A.V.; Ratnasamy, P. )

    1993-09-01

    The synthesis and catalytic properties of V-NCL-1, a novel vanadium silicate, large-pore molecular sieve in various oxidation reactions, are described. The reactions include the oxidation of n-octane, cyclohexane, toluene, trimethylbenzenes, and naphthalene. In the as-synthesized form, most of the vanadium in V-NCL-1 is present as atomically dispersed and isolated V[sup 4+] located in framework positions, though not necessarily in tetrahedral coordination. On calcination in air, the vanadium ions are oxidized to the pentavalent state. In addition, part of the vanadium leaves lattice locations and forms nonframework clusters. When the oxidized sample is reduced, V[sup 4+] ions are formed again. The three-dimensional silicate structure of the molecular sieve is intact during all these treatments. Due to the presence of large pores, V-NCL-1 is able to oxidize bulky molecules such as mesitylene and naphthalene. Unlike their titanium analogs, vanadium silicates are able to oxyfunctionalize the primary carbon atoms in alkanes and the side chains in alkylaromatics. 18 refs., 7 figs., 9 tabs.

  17. Sulfide mineralization: Its role in chemical weathering of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1988-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produced degradation products in the Martian regolith. By analogy with terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato- and hydroxo-complex ions and sols formed gossans above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite) and silica (opal). Underlying groundwater, now permafrost, contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, etc., which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates and phyllosilicates during dust storms on Mars.

  18. HRTEM study comparing naturally and experimentally weathered pyroxenoids

    NASA Astrophysics Data System (ADS)

    Banfield, Jillian F.; Ferruzzi, Giulio G.; Casey, William H.; Westrich, Henry R.

    1995-01-01

    The mineralogy and chemistry of both naturally and experimentally weathered MnSiO3 chain silicate minerals (rhodonite and pyroxmangite) were compared. In natural MnSiO3, high-resolution transmission-electron microscope observations reveal that alteration begins at grain boundaries and planar defects parallel to the silicate chains that represent junctions between regions with different chain periodicities. Dissolution along these defects results in elongate etch pits that may be partly filled by smectite. Smectite (Ca0.3Mn2.2Zn0.4Al0.1Si4O10(OH)2) also develops in larger etches at grain boundaries. The Zn apparently released by weathering of coexisting sphalerite, may facilitate crystallization of manganesesmectite; rhodochrosite is also an initial product. X-ray diffraction patterns from highly altered materials reveal only rhodochrosite and quartz. Simplified reactions are H2CO3(aq)+4MnSiO3(s)=Mn3Si4O((s)+MnCO3(s) accompanied by 3H2CO3(aq)+Mn3Si4O((s)=3MnCO3(s)+4SiO2(s)+4H2O(1) Pyroxenoid dissolution is incongruent under experimental conditions. A 3-7 nm-thic layer of amorphous silica is present at the mineral surface after ˜ 2000 h of reaction in acidic and near-neutral pH solutions that were undersaturated with respect to bulk amorphous silica. This thin layer of polymeric silica, which is absent on unreacted grains, is interpreted to have formed largely by incongruent dissolution at the mineral surface as protons in solution rapidly exchange for near-surface Mn. The layer may also contain silica readsorbed back onto the surface from solution. The net result is that silica from the pyroxenoid is redistributed directly into reaction products. Upon aging in air for a year, leached layers partially recrystallize. Both natural and experimental reactions produce secondary products by direct modification of the pyroxenoid surface. Manganese does not change oxidation state in the early stages of weathering in either setting. Unlike orthosilicates, compositional variations exert only a secondary control on chain silicate dissolution rates. For all chain silicate minerals, depolymerization of the silicate anion probably limits overall dissolution rates. As the thickness of the modified layer increases, rates may be further suppressed by diffusion (through the leached surface in the case of experimental reactions, and through secondary minerals in the case of natural weathering). The rates for wollastonite are exceptional in that the mineral dissolves more rapidly than other chain silicates and because leaching reactions are more pronounced. Natural surface modification reactions appear to be distinctive in that they occur in the presence of higher concentrations of metal cations. Clay mineral formation may be promoted by periodic drying.

  19. Weatherization Works: An interim report of the National Weatherization Evaluation

    SciTech Connect

    Brown, M.A.; Berry, L.G.; Kinney, L.F.

    1993-11-01

    The National Weatherization Evaluation is the first comprehensive evaluation of the Weatherization Assistance Program since 1984. The evaluation was designed to accomplish the following goals: Estimate energy savings and cost effectiveness; Assess nonenergy impacts; Describe the weatherization network; Characterize the eligible population and resources; and Identify factors influencing outcomes and opportunities for the future. As a national program, weatherization incorporates considerable diversity due to regional differences. Therefore, evaluation results are presented both in aggregate and for three climate regions: cold, moderate and hot.

  20. METEOROLOGICAL Weather and Forecasting

    E-print Network

    Rutledge, Steven

    AMERICAN METEOROLOGICAL SOCIETY Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary Publications. This preliminary version of the manuscript may be downloaded, distributed, and cited, but please, as observed from data collected from three Doppler radars and electrical power infrastructure damage reports

  1. METEOROLOGICAL Monthly Weather Review

    E-print Network

    Maryland at College Park, University of

    AMERICAN METEOROLOGICAL SOCIETY Monthly Weather Review EARLY ONLINE RELEASE This is a preliminary.d.williams@reading.ac.uk #12;2 Abstract In a recent study, Williams (2009) introduced a simple modification to the widely used. In the present paper, the effects of the modification are comprehensively evaluated in the SPEEDY atmospheric

  2. What Makes the Weather?

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides (1) background information showing how the sun, earth, air, and water work together to create weather; (2) six activities on this topic; and (3) a ready-to-copy coloring page on the water cycle. Each activity includes an objective, list of materials needed, recommended age level(s), subject area(s), and instructional strategies. (JN)

  3. Weather, Climate, and You.

    ERIC Educational Resources Information Center

    Blai, Boris, Jr.

    Information from the American Institute of Medical Climatologists on human responses to weather and climatic conditions, including clouds, winds, humidity, barometric pressure, heat, cold, and other variables that may exert a pervasive impact on health, behavior, disposition, and the level of efficiency with which individuals function is reviewed.…

  4. Weathering crusts on peridotite

    NASA Astrophysics Data System (ADS)

    Bucher, Kurt; Stober, Ingrid; Müller-Sigmund, Hiltrud

    2015-05-01

    Chemical weathering of dark-green massive peridotite, including partly serpentinized peridotite, produces a distinct and remarkable brown weathering rind when exposed to the atmosphere long enough. The structure and mineral composition of crusts on rocks from the Ronda peridotite, Spain, have been studied in some detail. The generic overall weathering reaction serpentinized peridotite + rainwater = weathering rind + runoff water describes the crust-forming process. This hydration reaction depends on water supply from the outcrop surface to the reaction front separating green peridotite from the brown crust. The reaction pauses after drying and resumes at the front after wetting. The overall net reaction transforms olivine to serpentine in a volume-conserving replacement reaction. The crust formation can be viewed as secondary serpentinization of peridotite that has been strongly altered by primary hydrothermal serpentinization. The reaction stoichiometry of the crust-related serpentinization is preserved and reflected by the composition of runoff waters in the peridotite massif. The brown color of the rind is caused by amorphous Fe(III) hydroxide, a side product from the oxidation of Fe(II) released by the dissolution of fayalite component in olivine.

  5. Rainy Weather Science.

    ERIC Educational Resources Information Center

    Reynolds, Karen

    1996-01-01

    Presents ideas on the use of rainy weather for activities in the earth, life, and physical sciences. Topics include formation and collision of raindrops, amount and distribution of rain, shedding of water by plants, mapping puddles and potholes, rainbow formation, stalking storms online, lightning, and comparing particles in the air before and…

  6. Weather in Motion.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The ATS-111 weather satellite, launched on November 18, 1967, in a synchronous earth orbit 22,000 miles above the equator, is described in this folder. The description is divided into these topics: the satellite, the camera, the display, the picture information, and the beneficial use of the satellite. Photographs from the satellite are included.…

  7. Satellite Weather Watch.

    ERIC Educational Resources Information Center

    Summers, R. Joe

    1982-01-01

    Describes an inexpensive (about $1,500) direct-readout ground station for use in secondary school science/mathematics programs. Includes suggested activities including, among others, developing map overlays, operating station equipment, interpreting satellite data, developing weather forecasts, and using microcomputers for data storage, orbit…

  8. Weather Specialist (AFSC 25120).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This correspondence course is designed for self-study to help military personnel to attain the rating of weather specialist. The course is organized in three volumes. The first volume, containing seven chapters, covers background knowledge, meteorology, and climatology. In the second volume, which also contains seven chapters, surface…

  9. Microbial Weathering of Olivine

    NASA Technical Reports Server (NTRS)

    McKay, D. S.; Longazo, T. G.; Wentworth, S. J.; Southam, G.

    2002-01-01

    Controlled microbial weathering of olivine experiments displays a unique style of nanoetching caused by biofilm attachment to mineral surfaces. We are investigating whether the morphology of biotic nanoetching can be used as a biosignature. Additional information is contained in the original extended abstract.

  10. Weathering the Double Whammy.

    ERIC Educational Resources Information Center

    Wellman, Jane V.

    2002-01-01

    Discusses how governing boards can help their institutions weather the "double-whammy" of doing more with less: identify the institution's short-term and long-term challenges; refocus the institution's mission, planning, and programming; assess and integrate the institution's tuition, aid, and outreach strategies; redouble the institution's…

  11. Dress for the Weather

    ERIC Educational Resources Information Center

    Glen, Nicole J.; Smetana, Lara K.

    2010-01-01

    "If someone were traveling to our area for the first time during this time of year, what would you tell them to bring to wear? Why?" This question was used to engage students in a guided-inquiry unit about how climate differs from weather. In this lesson, students explored local and national data sets to give "travelers" advice when preparing for…

  12. A global cloud map of the nearest known brown dwarf.

    PubMed

    Crossfield, I J M; Biller, B; Schlieder, J E; Deacon, N R; Bonnefoy, M; Homeier, D; Allard, F; Buenzli, E; Henning, Th; Brandner, W; Goldman, B; Kopytova, T

    2014-01-30

    Brown dwarfs--substellar bodies more massive than planets but not massive enough to initiate the sustained hydrogen fusion that powers self-luminous stars--are born hot and slowly cool as they age. As they cool below about 2,300 kelvin, liquid or crystalline particles composed of calcium aluminates, silicates and iron condense into atmospheric 'dust', which disappears at still cooler temperatures (around 1,300 kelvin). Models to explain this dust dispersal include both an abrupt sinking of the entire cloud deck into the deep, unobservable atmosphere and breakup of the cloud into scattered patches (as seen on Jupiter and Saturn). However, hitherto observations of brown dwarfs have been limited to globally integrated measurements, which can reveal surface inhomogeneities but cannot unambiguously resolve surface features. Here we report a two-dimensional map of a brown dwarf's surface that allows identification of large-scale bright and dark features, indicative of patchy clouds. Monitoring suggests that the characteristic timescale for the evolution of global weather patterns is approximately one day. PMID:24476888

  13. The Beryllium-10(meteoric)/ Beryllium-9 ratio as a new tracer of weathering and erosion rates

    NASA Astrophysics Data System (ADS)

    von Blanckenburg, F.; Bouchez, J.; Wittmann, H.; Dannhaus, N.

    2012-04-01

    A perfect clock of the stability of the Earth surface is one that combines a first isotope the flux of which depends on the release rate during erosion, and a second isotope produced at constant rate. The ratio of the meteoric cosmogenic nuclide 10Be to stable 9Be, suggested to serve as proxy for weathering and erosion over the late Cenozoic [1], is such a system. We provide a quantitative framework for its use. In a weathering zone some of the 9Be, present typically in 2ppm concentrations in silicate minerals, is released and partitioned between a reactive phase (adsorbed to clay and hydroxide surfaces, given the high partition coefficients at intermediate pH), and into the dissolved phase. The combined mass flux of both phases is defined by the soil formation rate and a mineral dissolution rate - and is hence proportional to the chemical weathering rate and the denudation rate. At the same time, the surface of the weathering zone is continuously exposed to fallout of meteoric 10Be. This 10Be percolates into the weathering zone where it mixes with dissolved 9Be. Both isotopes may exchange with the adsorbed Be, given that equilibration rate of Be is fast relative to soil residence times. Hence a 10Be/9Be(reactive) ratio results from which the total denudation rate can be calculated. A prerequisite is that the flux of meteoric 10Be is known from field experiments or from global production models [2]. In rivers, when reactive Be and dissolved Be equilibrate, a catchment-wide denudation rate can be determined from both sediment and a sample of filtered river water. We have tested this approach in sediment-bound Be [3] and dissolved Be in water [4] of the Amazon and Orinoco basin. The reactive Be was extracted from sediment by combined hydroxylamine and HCl leaches. In the Amazon trunk stream, the Orinoco, Apure, and La Tigra river 10Be/9Be(dissolved) agrees well with 10Be/9Be(reactive), showing that in most rivers these two phases equilibrate. 10Be/9Be ratios range from 5 - 10-9 for the Brazilian shield rivers to 2 - 10-10 for the Beni river draining the Andes, corresponding to denudation rates of 0.01mm/yr for the shields and 0.5mm/yr for the Andes, compatible with denudation rates from in situ-produced cosmogenic 10Be [3]. 10-50% of the 9Be was mobilised from bedrock. Once delivered to the ocean, this riverine Be, be it dissolved or reactive, will eventually drive 10Be/9Be ratios of ocean water and disclose global denudation rates - at the present and in the sedimentary record from the past. [1] Willenbring and von Blanckenburg, Nature 465, 2010 [2] Willenbring and von Blanckenburg, Earth Science Reviews 98, 2010 [3] Wittmann et al., Geol Soc. Am. Bull., 123, 2011 [4] Brown, E. et al., Geochim Cosmochim Acta 56, 1992

  14. Briefing highlights space weather risks to GPS

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  15. Chemical Weathering of Soils from the Dry Valleys of Antarctica: a Terrestrial Analog of Martian Weathering Processes

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.

    1985-01-01

    Martian soil subjected to chemical weathering processes could contain the following likely constituents: (1) fresh primary silicate material; (2) partially altered primary silicates; (3) secondary minerals, possibly including clay minerals, evaporites, carbonates, sulfates, hydrates, and zeolites; and (4) altered volcanic glass or impact glass. The soil may also include palogonite and other alteration products and secondary minerals. It is unlikely therefore that an equilibrium assemblage of minerals would be present. From the detailed study of the soils from the Dry Valleys of Antarctica, it is obvious that the complex processes in operation produce major changes in the parent materials, depending upon where the constituents reside and the degree to which weathering and diagenesis operates. It is clear that natural near surface environments, even in very cold and dry regions, may produce extremely complex soils. Extreme caution must be taken when interpreting the results and drawing conclusions, especially about possible processes operating in regoliths in cold, arid environments similar to those of the Dry Valleys or Mars.

  16. Bringing Weather into Your Classroom.

    ERIC Educational Resources Information Center

    Mogil, H. Michael

    1979-01-01

    Discusses meteorological resources available to classroom teachers. Describes in detail the National Oceanic and Atmospheric Administration (NOAA) Weather Radio and the A.M. Weather Show on Public Broadcasting Service (PBS). Includes addresses where teachers can get more information. (MA)

  17. Cold Weather and Cardiovascular Disease

    MedlinePLUS

    ... High Blood Pressure Tools & Resources Stroke More Cold Weather and Cardiovascular Disease Updated:Sep 16,2015 Th ... Heart Health • Watch, Learn & Live Animations Library Cold Weather Fitness Guide Popular Articles 1 Understanding Blood Pressure ...

  18. Diseases associated with exposure to silica and nonfibrous silicate minerals. Silicosis and Silicate Disease Committee

    SciTech Connect

    Not Available

    1988-07-01

    Silicosis, a disease of historical importance, continues to occur cryptically today. Its pathogenesis is under ongoing study as new concepts of pathobiology evolve. In this article, the gross and microscopic features of the disease in the lungs and the lesions in lymph nodes and other viscera are described. These tissue changes are then discussed in the context of clinical disease and other possible or established complications of silica exposure (ie, scleroderma and rheumatoid arthritis, glomerulonephritis, and bronchogenic carcinoma). Silicates are members of a large family of common minerals, some of which have commercial importance. Silicates are less fibrogenic than silica when inhaled into the lungs, but cause characteristic lesions after heavy prolonged exposure. The features of these disease conditions are described herein. Various aspects of the mineralogy and tissue diagnosis of silicosis and lung disease due to silicates are reviewed. An overview of contemporary regulatory considerations is provided.204 references.

  19. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1995-01-01

    A resource for teaching about the consequences of global warming. Discusses feedback from the temperature increase, changes in the global precipitation pattern, effects on agriculture, weather extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the global community cope with global warming. (LZ)

  20. Carbon-dioxide-rich silicate melt in the Earth's upper mantle.

    PubMed

    Dasgupta, Rajdeep; Mallik, Ananya; Tsuno, Kyusei; Withers, Anthony C; Hirth, Greg; Hirschmann, Marc M

    2013-01-10

    The onset of melting in the Earth's upper mantle influences the thermal evolution of the planet, fluxes of key volatiles to the exosphere, and geochemical and geophysical properties of the mantle. Although carbonatitic melt could be stable 250?km or less beneath mid-oceanic ridges, owing to the small fraction (?0.03 wt%) its effects on the mantle properties are unclear. Geophysical measurements, however, suggest that melts of greater volume may be present at ?200?km (refs 3-5) but large melt fractions are thought to be restricted to shallower depths. Here we present experiments on carbonated peridotites over 2-5?GPa that constrain the location and the slope of the onset of silicate melting in the mantle. We find that the pressure-temperature slope of carbonated silicate melting is steeper than the solidus of volatile-free peridotite and that silicate melting of dry peridotite?+?CO(2) beneath ridges commences at ?180?km. Accounting for the effect of 50-200?p.p.m. H(2)O on freezing point depression, the onset of silicate melting for a sub-ridge mantle with ?100?p.p.m. CO(2) becomes as deep as ?220-300?km. We suggest that, on a global scale, carbonated silicate melt generation at a redox front ?250-200?km deep, with destabilization of metal and majorite in the upwelling mantle, explains the oceanic low-velocity zone and the electrical conductivity structure of the mantle. In locally oxidized domains, deeper carbonated silicate melt may contribute to the seismic X-discontinuity. Furthermore, our results, along with the electrical conductivity of molten carbonated peridotite and that of the oceanic upper mantle, suggest that mantle at depth is CO(2)-rich but H(2)O-poor. Finally, carbonated silicate melts restrict the stability of carbonatite in the Earth's deep upper mantle, and the inventory of carbon, H(2)O and other highly incompatible elements at ridges becomes controlled by the flux of the former. PMID:23302861

  1. An aem-tem study of weathering and diagenesis, Abert Lake, Oregon: I. Weathering reactions in the volcanics

    USGS Publications Warehouse

    Banfield, J.F.; Jones, B.F.; Veblen, D.R.

    1991-01-01

    Abert Lake in south-central Oregon provides a site suitable for the study of sequential weathering and diagenetic events. In this first of two papers, transmission electron microscopy was used to characterize the igneous mineralogy, subsolidus alteration assemblage, and the structural and chemical aspects of silicate weathering reactions that occur in the volcanic rocks (basalts, basaltic andesites, and dacitic/ rhyolitic extrusive and pyroclastics) that outcrop around the lake. Olivine and pyroxene replacement occurred topotactically, whereas feldspar and glass alteration produced randomly oriented smectite in channels and cavities. The tetrahedral, octahedral, and interlayer compositions of the weathering products, largely dioctahedral smectites, varied with primary mineral composition, rock type, and as the result of addition of elements released from adjacent reaction sites. Weathering of the highly evolved, Fe-rich Jug Mountain complex at the north end of the lake produced a homogeneous smectite assemblage that contrasts with the heterogeneous smectite assemblage replacing the volcanics along the eastern margin of the lake. The variability within and between the smectite assemblages highlights the microenvironmental diversity, fluctuating redox conditions, and variable solution chemistry associated with mineral weathering reactions in the surficial environment. Late-stage exhalative and aqueous alteration of the volcanics redistributed many components and formed a variety of alkali and alkali-earth carbonate, chloride, sulfate, and fluoride minerals in vugs and cracks. Overall, substantial Mg, Si, Na, Ca, and K are released by weathering reactions that include the almost complete destruction of the Mg-smectite that initially replaced olivine. The leaching of these elements from the volcanics provides an important source of these constituents in the lake water. The nature of subsequent diagenetic reactions resulting from the interaction between the materials transported to the lake and the solution will be described in part II (Banfield et al., 1991). ?? 1991.

  2. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; Gopalswamy, Nat; Thompson, Barbara

    2009-01-01

    The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).

  3. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph; Gopalswamy, Nathanial; Thompson, Barbara

    2010-01-01

    The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).

  4. Weather Fundamentals: Climate & Seasons. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes), describes weather patterns and cycles around the globe. The various types of climates around…

  5. Weather Forecasting for Radio Astronomy

    E-print Network

    Groppi, Christopher

    Weather Forecasting for Radio Astronomy Part I: The Mechanics and Physics Ronald J Maddalena August 1, 2008 #12;Outline Part I Background -- research inspirations and aspirations Vertical weather, .... Part II Results on refraction & air mass (with Jeff Paradis) Part III Results on opacity, weather

  6. Severe Weather Planning for Schools

    ERIC Educational Resources Information Center

    Watson, Barbara McNaught; Strong, Christopher; Bunting, Bill

    2008-01-01

    Flash floods, severe thunderstorms, and tornadoes occur with rapid onset and often no warning. Decisions must be made quickly and actions taken immediately. This paper provides tips for schools on: (1) Preparing for Severe Weather Emergencies; (2) Activating a Severe Weather Plan; (3) Severe Weather Plan Checklist; and (4) Periodic Drills and…

  7. Weather Forecasting for Radio Astronomy

    E-print Network

    Groppi, Christopher

    Weather Forecasting for Radio Astronomy Lecture for the 2009 REU Summer Students Ronald J Maddalena July, 2009 #12;The influence of the weather at cm- and mm-wavelengths Opacity Calibration System, telescope productivity Past conditions Calibration Weather statistics Telescope productivity, hardware

  8. SEVERE WEATHER EMERGENCY RESPONSE PROCEDURE

    E-print Network

    MacMillan, Andrew

    SEVERE WEATHER EMERGENCY RESPONSE PROCEDURE © Alberta Health Services 2014 Page 1 of 8 SEVERE WEATHER EMERGENCY RESPONSE PROCEDURE ALGORITHM Switchboard/DesignateSupervisor/Designate SiteAdministration/ Designate(onsite) StaffMember becomesawareof SevereWeather · Determine need to establish Site Command Post

  9. Olivine Weathering in Soil, and Its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment

    PubMed Central

    ten Berge, Hein F. M.; van der Meer, Hugo G.; Steenhuizen, Johan W.; Goedhart, Paul W.; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO2 on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO2 sequestration (‘enhanced weathering’). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha?1. Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha?1 (14.8% of dose, OLIV1) to 2240 kg ha?1 (1.1%, OLIV4). This corresponds to gross CO2 sequestration of 290 to 2690 kg ha?1 (29 103 to 269 103 kg km?2.) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the ‘enhanced weathering’ concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop. PMID:22912685

  10. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features ranged from tens to a few microns with textures that remained relatively sharp and were crystallographically controlled. These results were comparable to that observed in the "naturally" weathered comparison/reference grains. Chemical analysis by EDS indicates these textures correlated with the relative loss of Mg and Fe cations by diffusional processes. In contrast the biotic results indicated changes in the etching patterns on the scale of hundreds of nm, which are neither sharp nor crystallographically controlled (nanoetching). Organisms, organic debris and/or extracellular polymeric substances (biofilm) were often in close proximity or direct contact with the nanoetching. While there are many poorly constrained variables in natural weathering experiments to contend with, such as the time scale, the chemistry of the fluids and degree of biologic participation, some preliminary observations can be made: (1) certain distinct surface textures appear correlated with the specific processes giving rise to these textures; (2) the process of diffusing cations can produce many similar styles of surface textural changes; and (3) the main difference between abiotic and biotically produced weathering is the scale (microns versus nanometers) and the style (crystallographically versus noncrystallographically controlled) of the textural features. Further investigation into nanosize scale surface textures should attempt to quantify both textures and chemical changes of the role of microorganisms in the weathering of silicates. Additional experiments addressing nanoscale textures of shock features for comparison with the current data set.

  11. The biodegradation of layered silicates under the influence of cyanobacterial-actinomycetes associations

    NASA Astrophysics Data System (ADS)

    Ivanova, Ekaterina

    2013-04-01

    The weathering of sheet silicates is well known to be related to local and global geochemical cycles. Content and composition of clay minerals in soil determine the sorption properties of the soil horizons, water-holding capacity of the soil, stickiness, plasticity, etc. Microorganisms have a diverse range of mechanisms of minerals' structure transformation (acid- and alkali formation, biosorption, complexing, etc). One of the methods is an ability of exopolysaccharide-formation, in particular the formation of mucus, common to many bacteria, including cyanobacteria. Mucous covers cyanobacteria are the specific econiches for other bacteria, including actinomycetes. The objective was to analyze the structural changes of clay minerals under the influence of the cyanobacterial-actinomycetes associative growth. The objects of the study were: 1) the experimental symbiotic association, consisting of free-living heterocyst-formative cyanobacterium Anabaena variabilis Kutz. ATCC 294132 and actinomycete Streptomyces cyaneofuscatus FR837630, 2) rock samples obtained from the Museum of the Soil Science Department of the Lomonosov Moscow State University: kaolinite, consisting of kaolin (96%) Al4 (OH) 8 [Si4O10]; mixed with hydromica, chlorite and quartz; vermiculite, consisting of vermiculite (Ca, Mg, ...)*(Mg, Fe)3(OH)2[(Si, Al)4O10]*4H2O and trioctahedral mica (biotite). The mineralogical compositions of the rocks were determined by the universal X-ray Diffractometer Carl Zeiss Yena. The operationg regime was kept constant (30 kv, 40 mA). The cultivation of the association of actinomycete S. cyanoefuscatus and cyanobacterium A. variabilis caused a reduction in the intensity of kaolinite and hydromica reflexes. However, since both (mica and kaolinite) components have a rigid structure, the significant structural transformation of the minerals was not revealed. Another pattern was observed in the experiment, where the rock sample of vermiculite was used as the mineral substrate. The associative growth of S. cyaneofuscatus and A. variabilis led to the transformation of minerals indicated by the significant decreasing of the intensity of the reflections of vermiculite as well as biotite. Reduction in the intensity of the basal reflections of vermiculite (d001, d004 and d005) three times indicates the process of biodestruction of this component of the rock. The formation of the swelling phase - the product of biotite transformation into the mica-vermicullite mixed-layer formation was revealed. The study demonstrates the differences in the transformation of clay minerals under the influence of cyanobacterial-actinomycetes association, depending on minerals' crystal chemistry and it's resistance to weathering. The rate of the process transformation of micas into the mixed-layer formation depends on their structure - trioctahedral mica (biotite, part of vermiculite sample) are transformated much faster than dioctahedral. The growth of associative thallus and monocultures of cyanobacterium and actinomycete promoted the removal of potassium (?), magnesium (Mg) and aluminum (Al) from the crystal lattice of the rock sample of vermiculite. Leaching of elements due to the influence of associative thallus exceeded the release of cations observed in the sample under the influence of the growth of cyanobacterium and streptomycete monocultures and in the control sample of vermiculite. Therefore, the association's biodegradation impact on the mineral structure was significantly greater than the influence of the monocultures of cyanobacteria and actinomycetes.

  12. The Earliest Solar System Weathering: Mega-Solar-Wind Effects in Early Solar System Silicates

    NASA Astrophysics Data System (ADS)

    Wetteland, C. J.; Sickafus, K. E.; McSween, H. Y.; Taylor, L. A.

    2015-11-01

    Early solar materials may be exposed to large fluxes of high-energy protons during stellar evolution. Experimental results indicate that small fragments of minerals may be melted, and low Z atoms can be transmuted to exotic isotopes.

  13. Abiotic: water !, Soil, Sunlight, wind, air, weather,

    E-print Network

    Lawrence, Deborah

    ·Chemical ·Habitat ·Solar ·Water ·Nutrients ·Soil ·Geology ·Topography ·Atmosphere ·Climate ·Weather Climate/WeatherAbiotic: water !, Soil, Sunlight, wind, air, weather, climate Biotic: soil, organisms (flora Abiotic Components Air Water Sun Soil matrix Weather (Wind Temp) Climate geology Topography Nutrients

  14. Lithium Isotope Evidence for Cryogenian Post-Glaciation Enhanced Weathering and CO2 Drawdown

    NASA Astrophysics Data System (ADS)

    Pogge von Strandmann, P.; Ridgwell, A. J.; Kasemann, S.; Elliott, T.

    2014-12-01

    The growth of continental ice sheets at equatorial sealevel during the Neoproterozoic Marinoan are of considerable interest, because they may have served as a filter for animal evolution and atmospheric oxygenation. Further, the hypothesised post-glacial extreme greenhouse state provides the opportunity to test climate system responses to rapid warming. In particular, the debate focuses on whether the ubiquitous post-glacial deposition of cap carbonates and associated negative ?13C excursion was caused by an enhanced weathering-driven delivery of atmospheric CO2 to the oceans, or by the thermal destabilisation of marine methane hydrates. Lithium isotopes are a relatively novel tracer of continental weathering. Li is almost entirely situated in silicates, rather than carbonates, and its isotopic fractionation in rivers is demonstrably due to the intensity of silicate weathering. In addition, Li isotope fractionation remains constant in marine carbonates, regardless of changes in temperature or type of skeletal calcite. Determination of Li isotope ratios through several well-characterised sections of the Otavi Group, NW Namibia, indicates similar trends, with ?7Li decreasing sharply by ~13‰, with the isotopic minimum occurring within the cap carbonates, and before the ?13C minimum. The ?7Li values are the lowest ever recorded in carbonate. These trends strongly suggest a significant increase in the intensity of silicate weathering during the deglaciation. Combining these data with a series of Earth system models coupled to ?13C allows a comprehensive interpretation of the changes in continental weathering and atmospheric pCO2, and the link between the two, during the deposition of the cap carbonates. Together, this data-model approach helps elucidate climate system behaviour during this period of rapid and extreme climate warming.

  15. A mathematical model for examining tectonic and climatic controls on chemical weathering and CO2 consumption

    NASA Astrophysics Data System (ADS)

    Li, D. D.; Jacobson, A. D.; McInerney, D. J.

    2010-12-01

    We develop a 1D reactive-transport model to examine how chemical weathering and atmospheric CO2 consumption at the soil profile scale vary as a function of tectonic uplift rate and climate (i.e., temperature and soil water velocity). The model consists of coupled mass conservation equations describing how solid and solute concentrations vary temporally and spatially during isovolumetric weathering of “granite” consisting of 30% plagioclase (An20) and up to 3% disseminated calcite. Our goal is to identify factors that optimize silicate (plagioclase) versus carbonate (calcite) weathering because only silicate weathering regulates long-term atmospheric CO2 levels. Net reaction rates, and hence net elemental release rates, are proportional to mineral modal abundances and the departure from thermodynamic equilibrium. The Arrhenius and Van’t Hoff equations are used to estimate the temperature dependence of rate and equilibrium constants, respectively. We assume that pCO2 controls soil pH and allow that plagioclase weathers either congruently or incongruently to kaolinite. Our interpretation focuses on the propagation of mineral reaction fronts. Two end-member scenarios are considered. The first scenario, which is similar to several previously published models, considers steady-state conditions where mineral reaction fronts propagate at the same velocity as the uplift rate but remain stationary with respect to depth. The second scenario considers non-steady-state conditions where the reaction front velocity is a function of the uplift rate. For infinitely thick profiles, the non-steady-state equations can be solved analytically using the method of characteristics. The reaction front velocity positively correlates with the equilibrium solubility concentration and the soil water velocity but negatively correlates with the uplift rate. The analytical solution readily applies to tectonically stable regimes and non-eroding landscapes where local equilibrium conditions fix the reaction front geometry but fronts propagate downward with time. Here, kinetics has no bearing on the timescale of mineral depletion. Plagioclase has a slow front velocity and persists for long timescales, whereas calcite has a fast front velocity and persists for short timescales. The non-steady-state equations are solved numerically for profiles with a finite thickness, where the solution may reach steady-state for sufficiently high uplift rates and/or low soil water velocities. Here, minerals weather kinetically under far-from-equilibrium conditions. Carbonate weathering dominates because calcite weathers orders of magnitude faster than plagioclase. We integrate reaction fronts to calculate bulk atmospheric CO2 consumption rates. Initial results show that silicate weathering dominates in tectonically stable regimes with high temperature and high soil water velocity.

  16. Rapid soil production and weathering in the Southern Alps, New Zealand.

    PubMed

    Larsen, Isaac J; Almond, Peter C; Eger, Andre; Stone, John O; Montgomery, David R; Malcolm, Brendon

    2014-02-01

    Evaluating conflicting theories about the influence of mountains on carbon dioxide cycling and climate requires understanding weathering fluxes from tectonically uplifting landscapes. The lack of soil production and weathering rate measurements in Earth's most rapidly uplifting mountains has made it difficult to determine whether weathering rates increase or decline in response to rapid erosion. Beryllium-10 concentrations in soils from the western Southern Alps, New Zealand, demonstrate that soil is produced from bedrock more rapidly than previously recognized, at rates up to 2.5 millimeters per year. Weathering intensity data further indicate that soil chemical denudation rates increase proportionally with erosion rates. These high weathering rates support the view that mountains play a key role in global-scale chemical weathering and thus have potentially important implications for the global carbon cycle. PMID:24436184

  17. Permian Minimum and the Following Major Rise in Seawater 87Sr/86Sr Linked to the Glaciation/Deglaciation and Resultant Change in Weathering Rate

    NASA Astrophysics Data System (ADS)

    Kani, T.; Isozaki, Y.

    2014-12-01

    We report a detailed secular change of the middle Middle to early Late Permian seawater 87Sr/86Sr ratio for and Akasaka and Kamura carbonates (Japan) deposited on mid-Pansalassan seamounts and for Shizipo carbonates (South China) deposited on the shallow marine shelf. In these coeval sections, extremely low values (<0.7069; the lowest values of the Phanerozoic) continued from upper Wordian (middle Middle Permian) to the topmost Capitanian (upper Middle Permian) barren interval immediately below the Middle-Late Permian boundary characterized by the major crisis of large-tested fusulines and rugose corals. Immediately after ca. 5 m.y.-long minimum interval, the major rise in 87Sr/86Sr was started and the rate of the rise (0.00007/m.y.) continued in period of time containing 21 m.y. until early Triassic (~239 Ma), that is faster than the Cenozoic major rise (0.00003/m.y.).?The most significant shift through Phanerozoic in Sr isotope trend can be explained by the remarkable changes in continental erosion/weathering rate; in particular, by the onset of glaciation and the following deglaciation, that is supported by global sea level change, in addition to the initial doming/rifting of Pangea. After the Capitanian cooling, the long-term climatic regime shifted to a warmer one during which inland ice sheet was removed to expose old crustal silicates for to erosion/weathering. A mantle plume impingiment might lead a domal uplift that accelerate weathering. Highly radiogenic continental Sr could enter the ocean along the new drainage systems developed with the rifting.

  18. Extreme space weather studies: Addressing societal needs

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.

    2014-12-01

    Extreme space weather events can adversely impact the operations of critical modern-day technological infrastructure such as high-voltage electric power transmission grids. Understanding of coupled magnetosphere-ionosphere dynamics under extreme solar wind driving conditions is still a major challenge mainly because of a lack of data during such time intervals. This presentation will highlight some of the past and on-going investigations on extreme space weather events, and how these investigations are used to address societal needs. Particularly, I will describe how first principles physics-based 3-D global MHD models are playing a major role in advancing our knowledge on extreme geomagnetically induced currents. These MHD models represent a very important component of attempts to understand the response of the magnetosphere-ionosphere system to varying solar wind conditions.

  19. Extreme Weather Events: Lessons for Climate Change

    NASA Astrophysics Data System (ADS)

    Hooke, William H.

    2001-04-01

    To cope with coming climate change will require that we: (1) assess our future vulnerabilities; (2) mitigate our anthropogenic contributions; and (3) adapt where possible. Since our abilities in these three areas are limited, we must (4) accelerate our research and (5) step up our technology development across the board. Our task is made more daunting because climate and weather impact society largely through extremes, including: cycles of drought and flood, hurricanes, great winter storms, and myriad other hazards. This reality has two profound implications: (a) to forecast societal impacts of climate variability requires a predictive understanding of just how projected climate change will reflect/impact the number, intensity, path, and duration of extreme events. Such capability is not in hand. (b) by studying how societies worldwide build resilience to today's weather extremes, and by adopting best practices locally, everywhere, we can go a long way toward building global resilience with respect to future climate change.

  20. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  1. Whether weather affects music

    NASA Astrophysics Data System (ADS)

    Aplin, Karen L.; Williams, Paul D.

    2012-09-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London [Richardson, 2012]. Of course, an important part of what we see and hear is not only the people with whom we interact but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant because we are exposed to it directly and daily. The weather was a great source of inspiration for artists Claude Monet, John Constable, and William Turner, who are known for their scientifically accurate paintings of the skies [e.g., Baker and Thornes, 2006].

  2. Stream geochemistry, chemical weathering and CO 2 consumption potential of andesitic terrains, Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Goldsmith, Steven T.; Carey, Anne E.; Johnson, Brent M.; Welch, Susan A.; Lyons, W. Berry; McDowell, William H.; Pigott, Jeffrey S.

    2010-01-01

    Recent studies of chemical weathering of andesitic-dacitic material on high-standing islands (HSIs) have shown these terrains have some of the highest observed rates of chemical weathering and associated CO 2 consumption yet reported. However, the paucity of stream gauge data in many of these terrains has limited determination of chemical weathering product fluxes. In July 2006 and March 2008, stream water samples were collected and manual stream gauging was performed in watersheds throughout the volcanic island of Dominica in the Lesser Antilles. Distinct wet and dry season solute concentrations reveal the importance of seasonal variations on the weathering signal. A cluster analysis of the stream geochemical data shows the importance of parent material age on the overall delivery of solutes. Observed Ca:Na, HCO 3:Na and Mg:Na ratios suggest crystallinity of the parent material may also play an important role in determining weathering fluxes. From total dissolved solids concentrations and mean annual discharge calculations we calculate chemical weathering yields of (6-106 t km -2 a -1), which are similar to those previously determined for basalt terrains. Silicate fluxes (3.1-55.4 t km -2 a -1) and associated CO 2 consumption (190-1575 × 10 3 mol km -2 a -1) determined from our study are among the highest determined to date. The calculated chemical fluxes from our study confirm the weathering potential of andesitic-dacitic terrains and that additional studies of these terrains are warranted.

  3. INDICATION OF INSENSITIVITY OF PLANETARY WEATHERING BEHAVIOR AND HABITABLE ZONE TO SURFACE LAND FRACTION

    SciTech Connect

    Abbot, Dorian S.; Ciesla, Fred J.; Cowan, Nicolas B.

    2012-09-10

    It is likely that unambiguous habitable zone terrestrial planets of unknown water content will soon be discovered. Water content helps determine surface land fraction, which influences planetary weathering behavior. This is important because the silicate-weathering feedback determines the width of the habitable zone in space and time. Here a low-order model of weathering and climate, useful for gaining qualitative understanding, is developed to examine climate evolution for planets of various land-ocean fractions. It is pointed out that, if seafloor weathering does not depend directly on surface temperature, there can be no weathering-climate feedback on a waterworld. This would dramatically narrow the habitable zone of a waterworld. Results from our model indicate that weathering behavior does not depend strongly on land fraction for partially ocean-covered planets. This is powerful because it suggests that previous habitable zone theory is robust to changes in land fraction, as long as there is some land. Finally, a mechanism is proposed for a waterworld to prevent complete water loss during a moist greenhouse through rapid weathering of exposed continents. This process is named a 'waterworld self-arrest', and it implies that waterworlds can go through a moist greenhouse stage and end up as planets like Earth with partial ocean coverage. This work stresses the importance of surface and geologic effects, in addition to the usual incident stellar flux, for habitability.

  4. Receivers Gather Data for Climate, Weather Prediction

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Signals from global positioning system (GPS) satellites are now being used for more than just location and navigation information. By looking at the radio waves from GPS satellites, a technology developed at NASA s Jet Propulsion Laboratory (JPL) not only precisely calculates its position, but can also use a technique known as radio occultation to help scientists study the Earth s atmosphere and gravity field to improve weather forecasts, monitor climate change, and enhance space weather research. The University Corporation for Atmospheric Research (UCAR), a nonprofit group of universities in Boulder, Colorado, compares radio occultation to the appearance of a pencil when viewed though a glass of water. The water molecules change the path of visible light waves so that the pencil appears bent, just like molecules in the air bend GPS radio signals as they pass through (or are occulted by) the atmosphere. Through measurements of the amount of bending in the signals, scientists can construct detailed images of the ionosphere (the energetic upper part of the atmosphere) and also gather information about atmospheric density, pressure, temperature, and moisture. Once collected, this data can be input into weather forecasting and climate models for weather prediction and climate studies. Traditionally, such information is obtained through the use of weather balloons. In 1998, JPL started developing a new class of GPS space science receivers, called Black Jack, that could take precise measurements of how GPS signals are distorted or delayed along their way to the receiver. By 2006, the first demonstration of a GPS radio occultation constellation was launched through a collaboration among Taiwan s National Science Council and National Space Organization, the U.S. National Science Foundation, NASA, the National Oceanic and Atmospheric Administration (NOAA), and other Federal entities. Called the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), JPL was responsible for designing COSMIC s primary instrument - based on its revolutionary Black Jack receiver.

  5. Experiments of water formation on warm silicates

    SciTech Connect

    He, Jiao; Vidali, Gianfranco

    2014-06-10

    When dust grains have a higher temperature than they would have in dense clouds, and when H, H{sub 2}, and O{sub 2} have a negligible residence time on grains, the formation of water should still be possible via the hydrogenation of OH and Eley-Rideal-type reactions. We determined that the OH desorption energy from an amorphous silicate surface is at least 143 meV (1656 K). This is 400 K higher than the value previously used in chemical models of the interstellar medium and is possibly as high as 410 meV (4760 K). This extends the temperature range for the efficient formation of water on grains from about 30 K to at least 50 K, and possibly over 100 K. We do not find evidence that water molecules leave the surface upon formation. Instead, through a thermal programmed desorption experiment, we find that water formed on the surface of an amorphous silicate desorbs at around 160 K. We also measured the cross-sections for the reaction of H and D with an O{sub 3} layer on an amorphous silicate surface at 50 K. The values of the cross-sections, ?{sub H} = 1.6 ± 0.27 Å{sup 2} and ?{sub D} = 0.94 ± 0.09 Å{sup 2}, respectively, are smaller than the size of an O{sub 3} molecule, suggesting the reaction mechanism is more likely Eley-Rideal than hot-atom. Information obtained through these experiments should help theorists evaluate the relative contribution of water formation on warm grains versus in the gas phase.

  6. Weather satellite activity mixed

    NASA Astrophysics Data System (ADS)

    On August 21 at 7:15 P.M. EDT, controllers lost contact with the NOAA-13 weather satellite due to a power system failure aboard the craft. Almost simultaneously, however, representatives of U.S. and European agencies signed an agreement promising mutual cooperation and backup of one another's geostationary weather satellites, effective when both agencies have systems in place, expected in 1995.The newest in a series of polar-orbiting weather satellites, NOAA-13 was launched on August 9 from Vandenburg Air Force Base, Calif., to monitor the Earth's ocean and atmosphere, collecting data for direct transmission to users around the world and to central data-processing centers. According to officials at NASA and the National Oceanographic and Atmospheric Administration, the spacecraft showed steadily decreasing battery voltages and currents during ground passes after 3:45 EDT on August 21, although output from the solar panels remained normal. Charles E. Thienel, NASA Goddard Space Flight Center, Greenbelt, Md., stated that these circumstances indicate a failure in the circuitry between the solar arrays and the batteries.

  7. Green Bank Weather Dana S. Balser

    E-print Network

    Balser, Dana S.

    Green Bank Weather Dana S. Balser #12;Weather Resources 1. Weather Stations 2. Weather Forecasts (NOAA/Maddalena) 3. Pyrgeometer 4. 86 GHz Tipping Radiometer 5. 12 GHz Interferometer #12;Weather Parameters 1 May 2004 to 1 March 2007 speedwindousInstantaneV :Hz)(12StationWeather e

  8. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Sarin, M. M.; Krishnaswami, S.; Dilli, K.; Somayajulu, B. L. K.; Moore, W. S.

    1989-05-01

    The Ganga-Brahmaputra, one of the world's largest river systems, is first in terms of sediment transport and fourth in terms of water discharge. A detailed and systematic study of the major ion chemistry of these rivers and their tributaries, as well as the clay mineral composition of the bed sediments has been conducted. The chemistry of the highland rivers (upper reaches of the Ganga, the Yamuna, the Brahmaputra, the Gandak and the Ghaghra) are all dominated by carbonate weathering; (Ca + Mg) and HCO 3 account for about 80% of the cations and anions. In the lowland rivers (the Chambal, the Betwa and the Ken), HCO 3 excess over (Ca + Mg) and a relatively high contribution of (Na + K) to the total cations indicate that silicate weathering and/or contributions from alkaline/saline soils and groundwaters could be important sources of major ions to these waters. The chemistry of the Ganga and the Yamuna in the lower reaches is by and large dictated by the chemistry of their tributaries and their mixing proportions. Illite is the dominant clay mineral (about 80%) in the bedload sediments of the highland rivers. Kaolinite and chlorite together constitute the remaining 20% of the clays. In the Chambal, Betwa and Ken, smectite accounts for about 80% of the clays. This difference in the clay mineral composition of the bed sediments is a reflection of the differences in the geology of their drainage basins. The highland rivers weather acidic rocks, whereas the others flow initially through basic effusives. The Ganga-Brahmaputra river system transports about 130 million tons of dissolved salts to the Bay of Bengal, which is nearly 3% of the global river flux to the oceans. The chemical denudation rates for the Ganga and the Brahmaputra basins are about 72 and 105 tons· km -· yr -1, respectively, which are factors of 2 to 3 higher than the global average. The high denudation rate, particularly in the Brahmaputra, is attributable to high relief and heavy rainfall.

  9. High-pressure rare earth silicates: Lanthanum silicate with barium phosphate structure, holmium silicate apatite, and lutetium disilicate type X

    SciTech Connect

    Fleet, Michael E. . E-mail: mfleet@uwo.ca; Liu Xiaoyang

    2005-11-15

    The phase relations of a wide selection of rare earth disilicates have been investigated up to 10 GPa and 1700 deg. C using piston cylinder and multi-anvil equipment. Single-crystal X-ray structures have been obtained for the following high-pressure phases: (1) La{sub 2.67}(SiO{sub 4}){sub 2}: monoclinic, space group C2/m, Z=2, a=9.419(2), b=5.445(1), c=7.214(1) A, {beta}=115.71(3){sup o}, R=0.042; disordered Ba{sub 3}(PO{sub 4}){sub 2} structure type, with 3xb and 7xb superstructures identified. (2) Ho{sub 8.67}(SiO{sub 4}){sub 6}(OH){sub 2}: hexagonal, P6{sub 3}/m, Z=1, a=9.3221(4), c=6.7347(2) A, R=0.026; silicate hydroxyapatite. (3) Lu{sub 2}Si{sub 2}O{sub 7}: tetragonal, P4{sub 1}2{sub 1}2, Z=4, a=6.5620(2), c=11.9535(4) A, R=0.023; type X diorthosilicate structure, and the silicate analogue of tetragonal Er{sub 2}Ge{sub 2}O{sub 7}.

  10. Noble gas diffusion in silicate liquids

    NASA Astrophysics Data System (ADS)

    Amalberti, J.; Burnard, P.; Laporte, D.

    2013-12-01

    Fractionated noble gas relative abundances (Ne/Ar, Kr/Ar and Xe/Ar) and isotopic compositions (40Ar/36Ar, 38Ar/36Ar, 20Ne/22Ne, 21Ne/22Ne) are found in volcanic materials, notably in pumices (1-3). This has generally been interpreted as fractionation resulting from diffusion. However, there is some disagreement as to whether this fractionation occurs during high temperature magmatic processes (3) or due to diffusion of air into solidified pyroclastic deposits (2). We show that differences in relative noble gas diffusivities (e.g. D4He vs D40Ar, where D is the diffusivity) and isotopic diffusivities (e.g. D40Ar vs D36Ar) reduce at high temperatures (Fig). These results predict minimal fractionation of noble gases during magmatic processes. However, it is important to note that these diffusivities were measured in silicate glasses; the relative noble diffusivities in silicate liquids are poorly known. We have developed a new experimental protocol which will to determine the diffusivities of the noble gases and their isotopes in the liquid state. A graphite crucible c. 0.3 mm diameter and c. 20mm deep is filled with powdered glass of the desired composition, heated to 1773 K for 15 minutes and quenched to form a glass cylinder within the crucible. The crucible is then placed in a low pressure (1 bar) controlled atmosphere vertical furnace and heated at high temperatures (1673-1773K) for 2 hours in a pure N2 atmosphere. At this point noble gases (He and Ar) are introduced into the furnace and allowed to diffuse into the cylinder of liquid for durations of between 30 and 90. After quenching, the glass cylinder, preserving its' diffusion profile, is sawed into c. 1mm thick discs which are measured by conventional noble gas mass spectrometry for noble gas abundances (He, Ar) and isotopes (40,38,36Ar). The results will be presented at the conference. References 1 Kaneoka, I. Earth Planet Sci Letts 48, 284-292 (1980). 2 Pinti, D. L., Wada, N. & Matsuda, J. J. Volcan Geotherm Res 88, 279-289 (1999). 3 Ruzie, L. & Moreira, M. J. Volcan Geotherm Res 192, 142-150 (2010). FIGURE: diffusion of 4He, 40Ar, 38Ar, 36Ar in silicate glass. Our experiments show that at high temperature, there is little or no diffusive fractionation of noble gases (abundances or isotopes) in silicate glasses. Therefore diffusive fractionation of noble gas abundances or isotope ratios can only occur at relatively low temperatures (< 1113 K)

  11. Silicate liquid immiscibility in isothermal crystallization experiments

    NASA Astrophysics Data System (ADS)

    Longhi, J.

    The role of silicate liquid immiscibility (SLI) in the petrogenesis of lunar granites was investigated in experiments in which four glasses were synthesized from reagent-grade oxides and carbonates with the compositions of two of the sets of coexisting liquids reported by Hess et al. (1975): a KREEP basalt derivative and a mare basalt derivative. Isothermal crystallization experiments showed that SLI is a stable phenomenon in residual lunar liquids saturated with plagioclase, and is likely to produce large compositional separations. The results indicate that controlled-cooling-rate experiments of Rutherford et al. (1974), and Hess et al. (1975, 1978) were substantially correct analogs of the natural process of liquid immiscibility.

  12. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, M.S.; Chen, J.M.; Yang, R.T.

    1980-02-28

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  13. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, Ming-Shing (Laramie, WY, NJ); Chen, James M. (Rahway, NJ); Yang, Ralph T. (Amherst, NY)

    1982-01-01

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  14. Microbial dissolution of silicate materials. Final report

    SciTech Connect

    Schwartzman, D.

    1996-03-26

    The objective of this research was to better understand the role of selected thermophilic bacteria in the colonization and dissolution of silicate minerals, with potential applications to the HDR Project. The demonstration of enhanced dissolution from microbial effects is critically dependent on providing a mineral bait within a media deficient in the critical nutrient found in the mineral (e.g., Fe). Reproducible experimental conditions in batch experiments require agitation to expose mineral powders, as well as nearly similar initial conditions for both inoculated cultures and controls. It is difficult, but not impossible to ensure reproducible conditions with microbes favoring filamentous growth habits.

  15. Lithium metaborate flux in silicate analysis

    USGS Publications Warehouse

    Ingamells, C.O.

    1970-01-01

    Lithium metaborate is an effective flux for silicates and other rock-forming minerals. The glass resulting from fusion is mechanically strong, reasonably nonhygroscopic, and is readily soluble in dilute acids. These characteristics lead to its use in X-ray spectrography and in methods which require whole-rock solutions, such as atomic absorption and emission spectrometry. Difficulties have been encountered in the use of such techniques : a high-quality reagent has been difficult to obtain ; fusion conditions must be rather closely controlled; graphite crucibles used in the fusions need special treatment. Methods for overcoming these difficulties are outlined. Selected procedures for various instrumental methods of analysis are described. ?? 1970.

  16. Determination of chlorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.

    1959-01-01

    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  17. Ultra-thin silicate films on metals.

    PubMed

    Shaikhutdinov, Shamil; Freund, Hans-Joachim

    2015-11-11

    Silica is one of the key materials in many modern technological applications. 'Surface science' approach for understanding surface chemistry on silica-based materials, on the one hand, and further miniaturization of new generation electronic devices, on the other, all these face the necessity of rational design of the ultrathin silica films on electrically conductive substrates. The review updates recent studies in this field. Despite the structural complexity and diversity of silica, substantial progress has recently been achieved in understanding of the atomic structure of truly 2D silicates. PMID:26459605

  18. Evaporation Induced Isothermal Crystallization of Silicate Melt

    NASA Astrophysics Data System (ADS)

    Nagahara, H.

    1996-03-01

    In order to investigate and role of evaporation and crystallization kinetics for silicate melt, isothermal vacuum experiments were carried out in the system MgO-SiO2. Due to successive evaporation, melt crystallized olivine at a fixed temperature. The evaporation rates and bulk chemical composition of residues varied with time, and reached a steady state. The pressure-composition phase diagram for the system at a fixed temperature well explains the experimental results. The results suggest a possibility of isothermal formation of chondrules (and some CAIs) at low pressures where evaporation takes place continuously.

  19. Ultra-thin silicate films on metals

    NASA Astrophysics Data System (ADS)

    Shaikhutdinov, Shamil; Freund, Hans-Joachim

    2015-11-01

    Silica is one of the key materials in many modern technological applications. ‘Surface science’ approach for understanding surface chemistry on silica-based materials, on the one hand, and further miniaturization of new generation electronic devices, on the other, all these face the necessity of rational design of the ultrathin silica films on electrically conductive substrates. The review updates recent studies in this field. Despite the structural complexity and diversity of silica, substantial progress has recently been achieved in understanding of the atomic structure of truly 2D silicates.

  20. Activity composition relationships in silicate melts

    SciTech Connect

    Glazner, A.F.

    1990-01-01

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)