Sample records for global silicate weathering

  1. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales

    E-print Network

    Hilley, George

    A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time (received for review February 15, 2008) Global silicate weathering drives long-time-scale fluctuations fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially

  2. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales

    Microsoft Academic Search

    George E. Hilley; Stephen Porder

    2008-01-01

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO2. While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 × 1013 mols of Si

  3. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    PubMed

    Hilley, George E; Porder, Stephen

    2008-11-01

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales. PMID:18952842

  4. Meta-gabbro weathering in the Georgia Piedmont, USA: implications for global silicate weathering rates

    Microsoft Academic Search

    Paul A. Schroeder; Nathan D. Melear; Larry T. West; Dixie A. Hamilton

    2000-01-01

    The mineral assemblages in a vertical weathering profile developed over a meta-gabbro terrain were studied for their stoichiometry and relative abundances. The site is located in the Piedmont Province in the southeast portion of the Appalachians orogenic belt in a forested residual landscape and a temperate climate. The soil is classified as a fine mixed thermic Ultic Hapludalf and defined

  5. Hf and Nd isotopes in marine sediments: Constraints on global silicate weathering

    Microsoft Academic Search

    G. Bayon; K. W. Burton; G. Soulet; N. Vigier; B. Dennielou; J. Etoubleau; E. Ponzevera; C. R. German; R. W. Nesbitt

    2009-01-01

    The combined use of Lu–Hf and Sm–Nd isotope systems potentially offers a unique perspective for investigating continental erosion, but little is known about whether, and to what extent, the Hf–Nd isotope composition of sediments is related to silicate weathering intensity. In this study, Hf and Nd elemental and isotope data are reported for marine muds, leached Fe-oxide fractions and zircon-rich

  6. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Millot, Romain; Gaillardet, Jérôme; Dupré, Bernard; Allègre, Claude Jean

    2002-02-01

    The chemical evolution of the surface of the Earth is controlled by the interaction of rainwaters, the atmosphere and the continental crust. That is the main reason why the knowledge of the parameters that control chemical denudation on Earth is of crucial importance. We report chemical and isotopic analyses for river waters from the Canadian Shield in order to estimate chemical weathering fluxes. We present a comparison of the chemical composition and Sr isotopic composition of a set of rivers sampled in the Slave Province (Northwest Territories, Canada) and in the Grenville Province (Québec, Canada). The surface waters of these high latitude catchments are very dilute, with the Slave rivers about three times more concentrated than the Grenville rivers. A detailed analysis of the Sr isotopic composition and chemical signature of these rivers shows that silicate weathering reactions are not the only mechanisms that control solute concentrations. An atmospheric component, constituted by the dissolution of evaporite and carbonate aerosols, is necessary to explain the dispersion of chemical ratios such as Ca/Na, Mg/Na, Sr/Na and Cl/Na. These aerosols probably have a local origin. Chemical denudation rates for the Slave Province are four times lower than those found in the Grenville Province (0.35 and 1.55 tons/km 2/yr respectively). Compared to a panel of surface waters from other shield areas of the world, the Slave Province appears to have the lowest chemical denudation rate in the world. In a chemical weathering rate vs. temperature plot, shield rivers define a triangular relationship, hot climate being able to produce the most variable denudation rates. But no simple relationship between chemical weathering rates and temperature or runoff is observed, in contrast to rivers draining basaltic areas. We show that a global power law (0.66 exponent) exists between chemical denudation rates and physical denudation rates, indicating that the shield areas with low mechanical denudation (such as the Slave Province or Cameroon) have also low chemical denudation rates. These results give importance to physical denudation in determining the chemical weathering rates of silicates. We think that any further modeling on Earth's long term climate will have to take into account this fundamental coupling between mechanical and chemical weathering fluxes.

  7. Li and ?7Li in Himalayan rivers: Proxies for silicate weathering?

    NASA Astrophysics Data System (ADS)

    K?sak?rek, Ba?ak; James, Rachael H.; Harris, Nigel B. W.

    2005-09-01

    This paper presents the first systematic survey of lithium and its isotopes in the dissolved load and suspended and bed sediments of tributaries of the Ganges, both before and after the monsoon. Locations were chosen in order to cover catchments draining both silicates and carbonates, at high (2000-4000 m) and low (550-1300 m) altitudes. Modelling of the dissolved composition shows that the Li / Ca ratio of the silicate endmember in Himalayan rivers is at least an order-of-magnitude higher than that of the carbonate endmember. Most of the dissolved Li (> 90%) is derived from silicates even in carbonate-dominated catchments. While the Sr-isotope composition of the dissolved load reflects that of the bedrock, the main control on its Li-isotope composition is fractionation during weathering. Fractionation between the dissolved and suspended load in silicate-dominated catchments is greatest at high altitude and lower at low altitude where weathering is more intense. Tributaries draining silicates have lower dissolved ?7Li values (by 2.3‰ to 4.2‰) following the monsoon when weathering is more intense because of higher runoff and elevated temperatures. Our data suggest that riverine Li fluxes largely reflect silicate weathering rates, while riverine ?7Li varies with weathering intensity. As rivers presently contribute ˜50% of the Li input to the oceans, seawater Li concentrations and ?7Li show potential as proxies for global silicate weathering processes.

  8. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologi...

  9. Direct effects of CO[sub 2] and temperature on silicate weathering: Possible implications for climate control

    SciTech Connect

    Brady, P.V. (Sandia National Laboratories, Albuquerque, NM (United States)); Carroll, S.A. (Lawrence Livermore National Lab., CA (United States))

    1994-04-01

    A critical uncertainty in models of the global carbon cycle and climate is the combined effect of organic activity, temperature, and atmospheric CO[sub 2] on silicate weathering. Here the authors present new dissolution rates of anorthite and augite which indicate that silicate weathering in organic-rich solutions is not directly affected by soil CO[sub 2] but is very sensitive to temperature. Apparently CO[sub 2] accelerates silicate weathering indirectly by fertilizing organic activity and the production of corrosive organic acids. The weathering dependencies highlight the ability of silicate weathering to act as a global thermostat and damp out climate change, when used as input in steady-state carbon cycle and climate models.

  10. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering.

    PubMed

    Quirk, Joe; Beerling, David J; Banwart, Steve A; Kakonyi, Gabriella; Romero-Gonzalez, Maria E; Leake, Jonathan R

    2012-12-23

    Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to 'trenching' of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO(2) and climate history. PMID:22859556

  11. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering

    PubMed Central

    Quirk, Joe; Beerling, David J.; Banwart, Steve A.; Kakonyi, Gabriella; Romero-Gonzalez, Maria E.; Leake, Jonathan R.

    2012-01-01

    Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to ‘trenching’ of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO2 and climate history. PMID:22859556

  12. Global ionospheric weather

    SciTech Connect

    Decker, D.T.; Doherty, P.H.

    1994-02-28

    In the last year, the authors have studied several issues that are critical for understanding ionospheric weather. Work on global F-region modeling has consisted of testing the Phillips Laboratory Global Theoretical Ionosphere Model. Comparisons with both data and other theoretical models have been successfully conducted and are ongoing. GPS observations, as well as data analysis, are also ongoing. Data have been collected for a study on the limitations in making absolute ionospheric measurements using GPS. Another study on ionospheric variability is the first of its kind using GPS data. The observed seasonal total electron content behavior is consistent with that determined from the Faraday rotation technique. Work on the FAA's Phase 1 Wide Area Differential GPS (WADGPS) Satellite Navigation Testbed Experiment also continues. Initial results indicate that stations using operational WADGPS should be located no greater than 430 km apart. Work comparing the authors electron-proton-H atom model to both observations and other models has been generally successful. They have successfully modeled the creation of high-latitude large-scale plasma structures using two separate mechanisms (time-varying global convection and meso-scale convection events).

  13. An Evaluation of Ethyl Silicate-Based Grouts for Weathered Silicate Stones

    NASA Astrophysics Data System (ADS)

    Dolph, Brittany Helen

    Culturally significant monuments made of weathered siliceous stone often display sub-surface condition issues such as cracks and voids. These issues require grouts that are ideally compatible with the composition and properties of the substrate. Based on the successful application of ethyl silicates as consolidants in recent literature, this study examines possible formulation pathways for the development of a grout incorporating ethyl silicate. Tetraethylorthosilicate (TEOS), dibutyltin dilaurate (DBTL) as a catalyst, silicone oil (PDMS), various grades of ground quartz, sepiolite, and hollow glass spheres were used in differing concentrations to create samples. These were visually and physically assessed on workability, separation, shrinkage, cracking, strength, and flexibility. Quantitative analysis was performed on selected formulations using UV-Vis-NIR reflectance spectroscopy in coordination with a weight loss experiment to investigate kinetics, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). Successful formulations tended to include oligomeric TEOS, crushed quartz of mixed grades, sepiolite powder, and PDMS, and show promise for future investigations.

  14. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA

    NASA Astrophysics Data System (ADS)

    Fortner, S. K.; Lyons, W. B.; Carey, A. E.; Shipitalo, M. J.; Welch, S. A.; Welch, K. A.

    2012-03-01

    Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologic timescales. Natural landscapes have been reshaped into agricultural ones to meet food needs for growing world populations. These processes modify soil properties, alter hydrology, affect erosion, and consequently impact water-soil-rock interactions such as chemical weathering. Dissolved silica (DSi), Ca2+, Mg2+, NO3-, and total alkalinity were measured in water samples collected from five small (0.0065 to 0.383 km2) gauged watersheds at the North Appalachian Experimental Watershed (NAEW) near Coshocton, Ohio, USA. The sampled watersheds in this unglaciated region include: a forested site (70+ year stand), mixed agricultural use (corn, forest, pasture), an unimproved pasture, tilled corn, and a recently (<3 yr) converted no-till corn field. The first three watersheds had perennial streams, but the two corn watersheds only produced runoff during storms and snowmelt. For the perennial streams, total discharge was an important control of dissolved silicate transport. Median DSi yields (2210-3080 kg km-2 yr-1) were similar to the median of annual averages between 1979-2009 for the much larger Ohio-Tennessee River Basin (2560 kg km-2 yr-1). Corn watersheds, which only had surface runoff, had substantially lower DSi yields (<530 kg km-2 yr-1) than the perennial-flow watersheds. The lack of contributions from Si-enriched groundwater largely explained their much lower DSi yields with respect to sites having baseflow. A significant positive correlation between the molar ratio of (Ca2++Mg2+)/alkalinity to DSi in the tilled corn and the forested site suggested, however, that silicate minerals weathered as alkalinity was lost via enhanced nitrification resulting from fertilizer additions to the corn watershed and from leaf litter decomposition in the forest. This same relation was observed in the Ohio-Tennessee River Basin where dominant landuse types include both agricultural lands receiving nitrogenous fertilizers and forests. Greater gains in DSi with respect to alkalinity losses in the Ohio-Tennessee River Basin than in the NAEW sites suggested that soils derived from younger Pleistocene glacial-till may yield more DSi relative to nitrogenous fertilizer applications than the older NAEW soils. Because silicate weathering occurs via acids released from nitrification, CO2 consumption estimates based on the assumption that silicate weathers via carbonic acid alone may be especially over-estimated in fertilized agricultural watersheds with little baseflow (i.e. 67 % overestimated in the corn till watershed). CO2 consumption estimates based on silicate weathering may be as much as 20 % lower than estimates derived from carbonic acid weathering alone for the Ohio-Tennessee River Basin between 1979-2009. Globally, this may mean that younger landscapes with soils favorable for agriculture are susceptible to fertilizer-enhanced silicate weathering. Increases in silicate weathering, however, may be offset by shifts in hydrology resulting from agricultural land management practices or even from soil silica losses in response to repeated acidification.

  15. Geotracker: a global weather snapshot

    Microsoft Academic Search

    Marcos Weskamp

    2003-01-01

    geoTracker is an application that provides a visitor-based snapshot of the global weather in near-real time.As each visitor enters the application they start on a world map at their location, and their current weather is displayed. Then, they can travel around the world looking at information for other cities in other countries. Most importantly, all user's paths are visible to

  16. The time scale of the silicate weathering negative feedback on atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Colbourn, G.; Ridgwell, A.; Lenton, T. M.

    2015-05-01

    The ultimate fate of CO2 added to the ocean-atmosphere system is chemical reaction with silicate minerals and burial as marine carbonates. The time scale of this silicate weathering negative feedback on atmospheric pCO2 will determine the duration of perturbations to the carbon cycle, be they geological release events or the current anthropogenic perturbation. However, there has been little previous work on quantifying the time scale of the silicate weathering feedback, with the primary estimate of 300-400 kyr being traceable to an early box model study by Sundquist (1991). Here we employ a representation of terrestrial rock weathering in conjunction with the "GENIE" (Grid ENabled Integrated Earth system) model to elucidate the different time scales of atmospheric CO2 regulation while including the main climate feedbacks on CO2 uptake by the ocean. In this coupled model, the main dependencies of weathering—runoff, temperature, and biological productivity—were driven from an energy-moisture balance atmosphere model and parameterized plant productivity. Long-term projections (1 Myr) were conducted for idealized scenarios of 1000 and 5000 PgC fossil fuel emissions and their sensitivity to different model parameters was tested. By fitting model output to a series of exponentials we determined the e-folding time scale for atmospheric CO2 drawdown by silicate weathering to be ˜240 kyr (range 170-380 kyr), significantly less than existing quantifications. Although the time scales for reequilibration of global surface temperature and surface ocean pH are similar to that for CO2, a much greater proportion of the peak temperature anomaly persists on this longest time scale; ˜21% compared to ˜10% for CO2.

  17. Chemical weathering in the Hong (Red) River basin: Rates of silicate weathering and their controlling factors

    NASA Astrophysics Data System (ADS)

    Moon, Seulgi; Huh, Youngsook; Qin, Jianhua; van Pho, Nguyen

    2007-03-01

    The Hong (Red) River drains the prominent Red River Fault Zone that has experienced various tectonic activities—intrusion of magma, exhumation of basement rocks, and influx of thermal waters—associated with the Cenozoic collision of India and Eurasia. We report dissolved major element and Sr isotope compositions of 43 samples from its three tributary systems (Da, Thao/Hong main channel, and Lo) encompassing summer and winter seasons. Carbonic acid ultimately derived from the atmosphere is the main weathering agent, and sulfuric acid from pyrite oxidation plays a minor role. Seasonality is manifested in higher calcite saturation index and Mg/TZ + and lower Ca/Mg in summer, suggesting calcite precipitation, and in higher Si/(Na ? + K) ratios in summer suggesting more intensive silicate weathering. We quantified the input from rain, evaporite, carbonate, and silicate reservoirs using forward and inverse models and examined the robustness of the results. Carbonate dissolution accounts for a significant fraction of total dissolved cations (55-97%), and weathering of silicates makes a minor contribution (1-40%). Our best estimate of the spatially averaged silicate weathering rate in the Hong basin is 170 × 10 3 mol/km 2/yr in summer and 51 × 10 3 mol/km 2/yr in winter. We tested for correlations between the rate of CO 2 consumption by silicate weathering and various climatic (air temperature, precipitation, runoff, and potential evapotranspiration) and geologic (relief, elevation, slope, and lithology) parameters calculated using GIS. Clear correlations do not emerge (except for ?CO 2 and runoff in winter) which we attribute to the complex geologic setting of the area, the seasonal regime change from physical-dominant in summer to chemical-dominant in winter, and the incoherent timescales involved for the different parameters tested.

  18. IS CHEMICAL INDEX OF ALTERATION (CIA) A RELIABLE PROXY FOR CHEMICAL WEATHERING IN GLOBAL DRAINAGE BASINS?

    E-print Network

    Yang, Shouye

    IS CHEMICAL INDEX OF ALTERATION (CIA) A RELIABLE PROXY FOR CHEMICAL WEATHERING IN GLOBAL DRAINAGE weathering of silicate rocks in continents as an important sink of atmospheric CO2 is of great significance for global environmental change. Rivers play a key role in earth surface processes and are regarded

  19. Lithium isotope ratios measured in scottish rivers and weathering of old silicate rocks

    Microsoft Academic Search

    N. Vigier; B. C. Reynolds; K. W. Burton; N. W. Rogers

    2003-01-01

    Silicate weathering is often considered as one of the most important sinks of atmospheric CO2 over geological timescales, but the palaeovariations of the silicate weathering rates are still debated and depend on the reliability of the chosen proxies. It has recently been suggested that Li isotopes significantly fractionate during continental erosion (Huh et al., 1999), and that 7Li measured in

  20. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA

    NASA Astrophysics Data System (ADS)

    Fortner, S. K.; Lyons, W. B.; Carey, A. E.; Shipitalo, M. J.; Welch, S. A.; Welch, K. A.

    2011-09-01

    Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologic timescales. Natural landscapes have been reshaped into agricultural ones to meet food needs for growing world populations. These processes modify soil properties, alter hydrology, affect erosion, and consequently impact water-soil-rock interactions such as chemical weathering. Dissolved silica (DSi), Ca2+, Mg2+, NO3-, and total alkalinity were measured in water samples collected from five small (0.65 to 38.3 ha) gauged watersheds at the North Appalachian Experimental Watershed (NAEW) near Coshocton, Ohio, USA. The sampled watersheds in this unglaciated region include: a forested site (70+ yr stand), mixed agricultural use (corn, forest, pasture), an unimproved pasture, tilled corn, and a recently (<3 yr) converted no-till corn field. The first three watersheds had perennial streams, but the two corn watersheds only produced runoff during storms and snowmelt. For the perennial streams, total discharge was an important control of dissolved silicate transport. Median DSi yields (22.1-30.8 kg ha-1 a-1) were similar to the median of annual averages between 1979-2009 for the much larger Ohio-Tennessee River Basin (25.6 kg ha-1 a-1). Corn watersheds, which only had surface runoff, had substantially lower DSi yields (<5.3 kg ha-1 a-1) than the perennial-flow watersheds. The lack of contributions from Si-enriched groundwater largely explained their much lower DSi yields with respect to sites having baseflow. A significant positive correlation between the molar ratio of (Ca2+ + Mg2)/alkalinity to DSi in the tilled corn and the forested site suggested, however, that silicate minerals weathered as alkalinity was lost via enhanced nitrification resulting from fertilizer additions to the corn watershed and from leaf litter decomposition in the forest. This same relation was observed in the Ohio-Tennessee River Basin where dominant landuse types include both agricultural lands receiving nitrogenous fertilizers and forests. Greater gains in DSi with respect to alkalinity losses in the Ohio-Tennessee River Basin than in the NAEW sites suggested that soils derived from younger Pleistocene glacial-till may yield more DSi relative to nitrogenous fertilizer applications than the older NAEW soils. Because silicate weathering occurs via acids released from nitrification, CO2 consumption estimates based on the assumption that silicate weathers via carbonic-acid alone may be especially over-estimated in fertilized agricultural watersheds with little baseflow (i.e. 67% overestimated in the corn till watershed). CO2 consumption estimates based on silicate weathering may be as much as an average of 8% lower than estimates derived from carbonic acid weathering alone for the Ohio-Tennessee River Basin between 1979-2009.

  1. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering.

    PubMed

    Misra, Sambuddha; Froelich, Philip N

    2012-02-17

    Weathering of uplifted continental rocks consumes carbon dioxide and transports cations to the oceans, thereby playing a critical role in controlling both seawater chemistry and climate. However, there are few archives of seawater chemical change that reveal shifts in global tectonic forces connecting Earth ocean-climate processes. We present a 68-million-year record of lithium isotopes in seawater (?(7)Li(SW)) reconstructed from planktonic foraminifera. From the Paleocene (60 million years ago) to the present, ?(7)Li(SW) rose by 9 per mil (‰), requiring large changes in continental weathering and seafloor reverse weathering that are consistent with increased tectonic uplift, more rapid continental denudation, increasingly incongruent continental weathering (lower chemical weathering intensity), and more rapid CO(2) drawdown. A 5‰ drop in ?(7)Li(SW) across the Cretaceous-Paleogene boundary cannot be produced by an impactor or by Deccan trap volcanism, suggesting large-scale continental denudation. PMID:22282473

  2. Global ocean data for global weather and climate monitoring

    E-print Network

    Stoffelen, Ad

    Jason-2 Global ocean data for global weather and climate monitoring #12;Global ocean data to meet réchauffement global stérilise les océans" (Sciences et Avenir) 19/2/2008 - "Schmelzendes Grönlandeis lässt understanding of global climatic factors that cause such phenomena as for example El Niño and La Niña

  3. Lithium isotope ratios measured in scottish rivers and weathering of old silicate rocks.

    NASA Astrophysics Data System (ADS)

    Vigier, N.; Reynolds, B. C.; Burton, K. W.; Rogers, N. W.

    2003-04-01

    Silicate weathering is often considered as one of the most important sinks of atmospheric CO2 over geological timescales, but the palaeovariations of the silicate weathering rates are still debated and depend on the reliability of the chosen proxies. It has recently been suggested that Li isotopes significantly fractionate during continental erosion (Huh et al., 1999), and that 7Li measured in large rivers could mainly reflect the degree of silicate weathering at large scales. Two main reasons have been proposed, the high Li contents in silicate minerals relative to carbonates, and the preferential uptake of 6Li by secondary clay minerals. Nevertheless, very few measurements have been made either on source minerals or on weathering products. In principle, the study of small silicated catchments should allow us to better constrain the factors controlling the fractionation of Li isotopes. A previous study has shown that 7Li measured in Icelandic basaltic rivers displays a large range (from 10 to 25.3) which correlates well with estimated weathering rates (Gislason et al., 1996). Here we present results for about 15 rivers located in Northern Scotland, which show little evidence for anthropogenic contamination, and draining mainly old silicated terrains (>500Ma). These rivers have been sampled twice, in May and in October 2002, in order to constrain the seasonal variations of the Li signature. Major and trace elements have also been measured, as well as the dissolved organic carbon. All rivers have very low Ca/Na and Mg/Na ratios (average of 0.38 and 0.17 respectively), that corresponds to the end-member previously defined for silicate rivers (Gaillardet et al, 1999), suggesting negligible contribution from carbonate dissolution. Li contents range between 0.2 and 1.2 ppb and are significantly greater than in Iceland rivers (up to 0.09 ppb). First results for the May 2002 samples show a restricted range in 7Li (from 16 to 22) relative to basaltic rivers of Iceland, and this range compares well with shield rivers of the Orinoco and the Mississipi basins (13 - 22). 7Li display negative trends with Ca/Na and Mg/Na, unlikely to be explained by carbonate dissolution since rivers with high Ca/Na and Mg/Na have higher Si content and lower 7Li. These trends could rather be explained by a mixing between a seawater component, probably of atmospheric origin, and an intensive weathering of Ca-Mg silicate minerals present in soils.

  4. Development of a Global Fire Weather Database

    NASA Astrophysics Data System (ADS)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; Pappenberger, F.; Tanpipat, V.; Wang, X.

    2015-06-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC = 1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRA's precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models.

  5. Control of Regional and Global Weather

    Microsoft Academic Search

    Alexander Bolonkin

    2007-01-01

    Author suggests and researches a new revolutionary idea for regional and global weather control. He offers to cover cities, bad regions of country, full country or a continent by a thin closed film with control clarity located at a top limit of the Earth troposphere (4 - 6 km). The film is supported at altitude by small additional atmospheric pressure

  6. Global weather prediction -Possible developments in the next decades -

    E-print Network

    Begstsson, Lennart

    Global weather prediction -Possible developments in the next decades - Professor Lennart Bengtsson) It is by now almost fifty years since I first read L. F. Richardsons book ,,Weather prediction by numerical in weather and weather prediction I found the book all in all exciting, although quite a bit eccentric

  7. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling.

    PubMed

    Willenbring, Jane K; von Blanckenburg, Friedhelm

    2010-05-13

    Over geologic timescales, CO(2) is emitted from the Earth's interior and is removed from the atmosphere by silicate rock weathering and organic carbon burial. This balance is thought to have stabilized greenhouse conditions within a range that ensured habitable conditions. Changes in this balance have been attributed to changes in topographic relief, where varying rates of continental rock weathering and erosion are superimposed on fluctuations in organic carbon burial. Geological strata provide an indirect yet imperfectly preserved record of this change through changing rates of sedimentation. Widespread observations of a recent (0-5-Myr) fourfold increase in global sedimentation rates require a global mechanism to explain them. Accelerated uplift and global cooling have been given as possible causes, but because of the links between rates of erosion and the correlated rate of weathering, an increase in the drawdown of CO(2) that is predicted to follow may be the cause of global climate change instead. However, globally, rates of uplift cannot increase everywhere in the way that apparent sedimentation rates do. Moreover, proxy records of past atmospheric CO(2) provide no evidence for this large reduction in recent CO(2) concentrations. Here we question whether this increase in global weathering and erosion actually occurred and whether the apparent increase in the sedimentation rate is due to observational biases in the sedimentary record. As evidence, we recast the ocean dissolved (10)Be/(9)Be isotope system as a weathering proxy spanning the past approximately 12 Myr (ref. 14). This proxy indicates stable weathering fluxes during the late-Cenozoic era. The sum of these observations shows neither clear evidence for increased erosion nor clear evidence for a pulse in weathered material to the ocean. We conclude that processes different from an increase in denudation caused Cenozoic global cooling, and that global cooling had no profound effect on spatially and temporally averaged weathering rates. PMID:20463736

  8. Isolation and the interaction between a mineral-weathering Rhizobium tropici Q34 and silicate minerals.

    PubMed

    Wang, Rong Rong; Wang, Qi; He, Lin Yan; Qiu, Gang; Sheng, Xia Fang

    2015-05-01

    The purposes of this study were to isolate and evaluate the interaction between mineral-weathering bacteria and silicate minerals (feldspar and biotite). A mineral-weathering bacterium was isolated from weathered rocks and identified as Rhizobium tropici Q34 based on 16S rRNA gene sequence analysis. Si and K concentrations were increased by 1.3- to 4.0-fold and 1.1- to 1.7-fold in the live bacterium-inoculated cultures compared with the controls respectively. Significant increases in the productions of tartaric and succinic acids and extracellular polysaccharides by strain Q34 were observed in cultures with minerals. Furthermore, significantly more tartaric acid and polysaccharide productions by strain Q34 were obtained in the presence of feldspar, while better growth and more citric acid production of strain Q34 were observed in the presence of biotite. Mineral dissolution experiments showed that the organic acids and polysaccharides produced by strain Q34 were also capable of promoting the release of Si and K from the minerals. The results showed that the growth and metabolite production of strain Q34 were enhanced in the presence of the minerals and different mineral exerted distinct impacts on the growth and metabolite production. The bio-weathering process is probably a synergistic action of organic acids and extracellular polysaccharides produced by the bacterium. PMID:25716616

  9. The short term climatic sensitivity of carbonate and silicate weathering fluxes: Insight from seasonal variations in river chemistry

    NASA Astrophysics Data System (ADS)

    Tipper, Edward T.; Bickle, Mike J.; Galy, Albert; West, A. Joshua; Pomiès, Catherine; Chapman, Hazel J.

    2006-06-01

    Large seasonal variations in the dissolved load of the headwater tributaries of the Marsyandi river (Nepal Himalaya) for major cations and 87Sr/ 86Sr ratios are interpreted to result from a greater dissolution of carbonate relative to silicate at high runoff. There is up to a 0.003 decrease in strontium isotope ratios and a factor of 3 reduction in the Si(OH) 4/Ca ratio during the monsoon. These variations, in small rivers sampling uniform lithologies, result from a different response of carbonate and silicate mineral dissolution to climatic forcing. Similar trends are observed in compiled literature data, from both Indian and Nepalese Himalayan rivers. Carbonate weathering is more sensitive to monsoonal runoff because of its faster dissolution kinetics. Silicate weathering increases relative to carbonate during the dry season, and may be more predominant in groundwater with longer water-rock interaction times. Despite this kinetic effect, silicate weathering fluxes are dominated by the monsoon flux, when between 50% and 70% of total annual silicate weathering flux occurs.

  10. 40K-40Ca systematics as a Tracer of Silicate Weathering: A Himalayan case study

    NASA Astrophysics Data System (ADS)

    Davenport, Jesse; Caro, Guillaume; France-Lanord, Christian

    2015-04-01

    This study investigates the use of the 40K-40Ca system as a tracer to better quantify the contributions of silicate and carbonate lithologies in the dissolved load of major Himalayan rivers. Previous work using Sr isotopes as a proxy for silicate weathering has been complicated by the redistribution of radiogenic 87Sr between silicate and carbonate lithologies, particularly in the Lesser Himalaya, where dolomites exhibit 87Sr/86Sr ratios as high as 0.85. The 40Ca signature of carbonates, on the other hand, appears to be remarkably resistant to metamorphism and dolomitization [1]. It was therefore anticipated that the 40K-40Ca system could circumvent issues associated with such secondary events, and yield more robust constraints on the relative contribution of silicate vs. carbonate lithologies in dissolved river loads. The main difficulty in applying the 40K-40Ca decay scheme as a tracer lies in the analytical precision required to measure small variations (~1 É?-unit) on the large 40Ca isotope (96.9%). This difficulty can now be overcome using the Finnigan Triton TIMS, which allows measurements of the 40Ca/44Ca ratio with external precision of 0.35 É?-unit in multidynamic mode. Using this method, we generated high-precision 40Ca data on carbonates/dolomites, bedload sediments, dissolved load, and clay samples originating from and representing the main litho-tectonic units of the Himalaya. Our results show that metamorphosed dolomites from the Lesser Himalaya (LH) exhibit no radiogenic 40Ca excess despite highly variable 87Sr/86Sr signatures (0.73-0.85). Thus, all Himalayan carbonates appear to be characterized by a homogeneous É?40Ca=0. In contrast, silicate material is radiogenic, with É?40Ca averaging +1 in the Tethyan Sedimentary Series (TSS), +1.6 in the High Himalaya crystalline (HHC) and +4 É?-units in the LH. Results obtained from a series of 35 Himalayan rivers (including the Brahmaputra, Ganga and its main tributaries) show that É?40Ca in the dissolved load is significantly influenced by silicate weathering, with É?40Ca ranging from +0.1 in rivers draining carbonate dominated catchments to +1.6 É?-units in rivers draining predominantly gneissic catchments of the High Himalaya. No simple relation exists between 87Sr and 40Ca systematics, which likely reflects the decoupling of Rb-Sr and K-Ca systems in LH dolomites. In contrast, 40Ca signatures correlate well with proxies of carbonate weathering such as Ca/Na or Mg/Na ratios. Overall, our results indicate that the 40Ca signature of Himalayan rivers primarily reflects the lithological nature of their erosional source, and highlight the significant contribution of HHC gneisses to the dissolved calcium budget of the Ganga and Brahmaputra. [1] Caro et al. (2010) EPSL 296, 124-132

  11. Silicate Weathering and Pervasive Authigenic Carbonate Precipitation Coupled to Methanogenesis in the Krishna-Godavari Basin, Offshore India

    NASA Astrophysics Data System (ADS)

    Solomon, E. A.; Spivack, A. J.; Kastner, M.; Torres, M. E.

    2014-12-01

    The cycling of methane in marine sediments has been actively studied for the past several decades, but less attention has been paid to the cycling of CO2 produced in methanogenic sediments. The National Gas Hydrate Program Expedition 01 cored 10 sites with the Joides Resolution drillship in the Krishna-Godavari basin, located on the southeastern margin of India. A comprehensive suite of pore water solute concentrations and isotope ratios were analyzed to investigate the distribution and concentration of gas hydrate along the margin, in situ diagenetic and metabolic reactions, fluid migration and flow pathways, and fluid and gas sources. This represents one of the most comprehensive pore water geochemical datasets collected at a continental margin to date, and provides the necessary tracers to better understand the processes and sinks controlling CO2 in margin sediments. Our results show that the CO2 produced through net microbial methanogenesis is effectively neutralized through silicate weathering throughout the sediment column drilled at each site (~100-300 m), buffering the pH of the sedimentary pore water and generating excess alkalinity through the same reaction sequence as continental silicate weathering. Most of the excess alkalinity produced through silicate weathering in the Krishna-Godavari basin is sequestered in Ca- and Fe-carbonates as a result of ubiquitous calcium release from weathering detrital silicates and Fe-reduction within the methanogenic sediments. Formation of secondary hydrous silicates (e.g. smectite) related to incongruent primary silicate dissolution acts as a significant sink for pore water Mg, K, Li, Rb, and B. The consumption of methane through anaerobic oxidation of methane, sequestration of methane in gas hydrate, and sequestration of dissolved inorganic carbon in authigenic carbonates keeps methanogenesis as a thermodynamically feasible catabolic pathway. Our results combined with previous indications of silicate weathering in anoxic sediments in the Sea of Okhotsk, suggest that silicate weathering coupled to microbial methanogenesis should be occurring in continental margins worldwide, providing a net sink of atmospheric CO2 over geologic timescales.

  12. Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering, Reverse Weathering and Seawater Chemistry

    NASA Astrophysics Data System (ADS)

    Marcott, S. A.; Bauska, T. K.; Sowers, T. A.; Edwards, J. S.; Buizert, C.; Kalk, M.; Brook, E.

    2011-12-01

    A clear connection exists between atmospheric greenhouse gases, climate, and ice sheet volume during glacial-interglacial cycles. Establishing the role of carbon dioxide (CO2), both as a feedback and forcing, during the most recent glacial and deglacial periods provides an excellent opportunity for understanding how this connection operates. To do this, a precise, high-resolution, well-dated record of atmospheric CO2 is a prerequisite. We will present a carbon dioxide record from 40-35 and 28-9 ka from the last glacial and deglacial periods from a new ice core from West Antarctica with an average sampling resolution of 25-50 yrs. Our record shows that CO2 variations during the glacial period have a clear relationship with abrupt climate changes in the Northern Hemisphere that continues into the deglacial period. In addition, instead of being gradual (several millennia), nearly half of the ~85ppm rise in CO2 during the deglaciation occurred in three abrupt 10-15ppm steps that took place in less than 100-200 yrs and were followed by concentration plateaus. Each transition was synchronous with abrupt changes in methane (CH4), suggesting a rapid reorganization of the carbon cycle. These rapid changes in atmospheric CO2 and CH4 concentrations are also recorded during the Heinrich Stadials of MIS 3, demonstrating an important mechanism that operates on centennial time scales during the glacial and deglaciation, which may point to important thresholds in the global carbon cycle. We will present our most recent results and newest interpretation.

  13. Volcanic and anthropogenic contributions to global weathering budgets

    Microsoft Academic Search

    Johan C. Varekamp; Ellen Thomas

    1998-01-01

    We evaluate whether the global weathering budget is near steady state for the pre-anthropogenic modern environment by assessing the magnitude of acidity-generating volcanic exhalations. The weathering rate induced by volcanic acid fluxes, of which the CO2 flux is the most important, can be expressed as an average release rate of dissolved silica, based on a model feldspar-weathering scheme, and the

  14. Global Numerical Weather Prediction at the National Meteorological Center

    Microsoft Academic Search

    E. Kalnay; M. Kanamitsu; W. E. Baker

    1990-01-01

    In this paper we describe the global numerical weather prediction system of the National Meteorological Center, and review recent improvements, the evolution in skill, and current research projects and plans.

  15. Electrochemical Acceleration of Carbonate and Silicate Weathering for CO2 Mitigation

    NASA Astrophysics Data System (ADS)

    Rau, G. H.; Carroll, S.

    2011-12-01

    Carbonate and many silicate minerals dissolve in strong acids, and such acids are commonly generated at the anode of a conventional saline water electrolysis cell. It was therefore reasoned that encasing such an anode with base minerals would lead to enhanced mineral dissolution and hence increased hydroxide (base) generation at the cathode, formed in course of splitting water, generating H2 and OH-. Subsequent exposue of the alkalized solution to CO2 (e.g., as in air) would lead to absorption of the CO2 and formation of stable dissolved or solid (bi)carbonates for carbon sequestration. Previously, it has been demonstrated that mineral carbonate encasement of a seawater electrolysis cell anode indeed generated basic solutions in excess of pH 9 that were subsequently neutralized via contact with air CO2, increasing the carbon content of the initial seawater by 30% (Rau, G.H. 2008. Environ Sci. Techol. 42, 8935-). To test such a weathering/CO2 capture scheme using silicate minerals, either powdered wollastonite or ultramafic rock standard (UM-4) was encased around the anode of an electrolysis cell composed of graphite electrodes and a 0.25M Na2SO4 electrolyte solution. After 0.5 to 1.5 hrs of electricity application (3.5Vdc, 5-10mA), the electrolyte pH rose to as much as 11.1 (initial and blank solution pH's <6.6). Subequent bubbling of these basic solutions with air lowered pH by at least 2 units and increased dissolve carbon content (primarily bicarbonate) by as much as 50X that of the blanks. While Ca2+ and Mg2+ concentrations were elevated, these were insufficient to balance the majority of the bicarbonate anions formed in solution. This suggests that in these experiments the silicate minerals acted as a neutralizer of the anolyte acid, H2SO4, forming mostly insoluble CaSO4 and MgSO4 at the anode. This then allowed NaOH normally produced at the cathode to accumulate in solution, in turn reacting with air CO2 to form NaHCO3. Longer electrolysis times and/or alternative electrolyte solutions might allow formation and precipitation of Ca or Mg carbonates. Such electrochemistry might ultimately provide a safe, efficient way to harness the planet's: i) large, off-peak or off-grid renewable electricity potential, ii) abundant basic minerals, and iii) vast natural brine electrolytes for large-scale air CO2 mitigation and carbon-negative H2 production.

  16. Global Particle Simulation as A Space Weather Model

    E-print Network

    Nishikawa, Ken-Ichi

    Global Particle Simulation as A Space Weather Model Ken Nishikawa Rutgers University http at the present time, but it will become a vital model · MHD simulations with localized particle simulations very's: Long geomagnetic tail, refined ionosphere models. · 1992: First global particle simulation

  17. Notes on a Vision for the Global Space Weather Enterprise

    NASA Astrophysics Data System (ADS)

    Head, James N.

    2015-07-01

    Space weather phenomena impacts human civilization on a global scale and hence calls for a global approach to research, monitoring, and operational forecasting. The Global Space Weather Enterprise (GSWE) could be arranged along lines well established in existing international frameworks related to space exploration or to the use of space to benefit humanity. The Enterprise need not establish a new organization, but could evolve from existing international organizations. A GSWE employing open architectural concepts could be arranged to promote participation by all interested States regardless of current differences in science and technical capacity. Such an Enterprise would engender capacity building and burden sharing opportunities.

  18. Downscaling Global Weather Forecast Outputs Using ANN for Flood Prediction

    Microsoft Academic Search

    Nam Do Hoai; Keiko Udo; Akira Mano

    2011-01-01

    Downscaling global weather prediction model outputs to individual locations or\\u000alocal scales is a common practice for operational weather forecast in order to\\u000acorrect the model outputs at subgrid scales. This paper presents an\\u000aempirical-statistical downscaling method for precipitation prediction which uses\\u000aa feed-forward multilayer perceptron (MLP) neural network. The MLP architecture\\u000awas optimized by considering physical bases that determine

  19. Weather

    NSDL National Science Digital Library

    Ms. LAi

    2007-02-08

    This project will help you understand the weather and investigate weather interactively. What are the components of weather? How do you measure weather? Investigate the WeatherScholastic: Weather WatchWeatherWeather Center for Our 4th Grade ...

  20. Parameterisation of a global daily weather generator for terrestrial ecosystem modelling

    Microsoft Academic Search

    A. D Friend

    1998-01-01

    Many global ecological models require globally-gridded daily weather data, but such data are not directly available from the current global network of weather stations. A method is described whereby a stochastic daily weather generator is parameterised to operate at the half-degree scale for the earth's terrestrial surface. The weather generator simulates 24 h shortwave irradiance, precipitation, maximum and minimum temperatures,

  1. A 40K-40Ca approach to tracing silicate and carbonate weathering in the Himalayan erosional system

    NASA Astrophysics Data System (ADS)

    Davenport, J.; Caro, G.; France-Lanord, C.

    2014-12-01

    Understanding the effects of chemical erosion on the geologic CO2 cycle and seawater chemistry requires the ability to differentiate between the relative contributions of silicate and carbonate weathering to the dissolved load of rivers. Previous approaches (i.e. major elemental budgets or Sr isotopic compositions) do not always produce a straightforward explanation to the question at hand. This is especially the case in the Himalaya, where Sr isotopic compositions are extreme even in carbonate phases owing to metamorphic redistribution of radiogenic 87Sr. The aim of this study is to investigate a new isotopic approach using the 40K-40Ca system to better quantify the contributions of silicate and carbonate lithologies in the dissolved load of major Himalayan rivers. The silicate upper crust, with a K/Ca ratio of 1, is expected to have developed a radiogenic ?40Ca of ca. +2 ?-units, while marine carbonates are characterized by a homogeneous ? 40Ca=0 [1]. The 40K-40Ca system was therefore expected to produce robust constraints on the relative contribution of silicate vs. carbonate lithologies in dissolved river loads. To this end, we present high precision 40Ca data on river sediments, dissolved river loads and bedrock representative of the main Himalayan formations. Our results show that dolomites from the Lesser Himalaya (LH) exhibit no radiogenic 40Ca excess despite highly variable 87Sr/86Sr signatures (0.73-0.85). In contrast, silicate material is radiogenic, with ?40Ca ranging between +1 in the Tethyan Sedimentary Series (TSS) to +4 ?-units in the LH. Results obtained from a series of 27 Himalayan rivers show that ?40Ca in the dissolved load is significantly influenced by silicate lithologies, with ?40Ca ranging from +0.1 in carbonate dominated catchments to +1.6 ?-units in rivers draining predominantly gneissic catchments of the High Himalaya. Coherent, two end-member mixing trends between ?40Ca and major elements suggest that the 40Ca signature of Himalayan rivers primarily reflects the lithological nature of their erosional source, and highlights the potential of the 40K-40Ca decay scheme as a tracer of silicate weathering. [1] Caro G., Papanastassiou D.A., Wasserburg G.J. 40K-40Ca isotopic constraints on the oceanic calcium cycle. Earth and Planetary Science Letters 2010;296: 124-132.

  2. What is the maximum potential for CO2 sequestration by "stimulated" weathering on the global scale?

    PubMed

    Hartmann, Jens; Kempe, Stephan

    2008-12-01

    Natural chemical weathering of silicate rocks is a significant sink for soil and atmospheric CO(2). Previous work suggested that natural chemical weathering may be stimulated by applying finely ground silicate rocks to agricultural areas or forests [stimulated weathering (SW)]. However, it remained unknown if this technique is practical to sequester globally significant amounts of CO(2) under realistic conditions. Applying first estimates of "normal treatment" amounts from a literature review, we report here a theoretical global maximum potential of 65 10(6) t sequestered C a(-1) if SW would be applied homogenously on all agricultural and forested areas of the world. This is equivalent to 0.9% of anthropogenic CO(2) emissions (reference period 2000-2005). First, however, the assumed application of SW on most of the considered areas is not economically feasible because of logistic issues, and second the net-CO(2) sequestration is expected to amount to only a fraction of consumed CO(2) due to the energy demand of the application itself (currently ~11%). Unless progress in application procedures is provided, the recent realistic maximum net-CO(2)-consumption potential is expected to be much smaller than 0.1% of anthropogenic emissions, and the SW would thus not be one of the key techniques to reduce atmospheric CO(2) concentration. However, literature suggests that for some agricultural areas (croplands) and specifically for rice production areas in humid climates, this SW may be a feasible tool to support international efforts to sequester CO(2). SW may be cost effective for those areas if linked to the CO(2)-emission certificate trade in the future, and increases in crop production are taken into account. PMID:18754090

  3. Global Navigation Satellite Systems and Space Weather: Building upon the International Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Gadimova, S. H.; Haubold, H. J.

    2014-01-01

    Globally there is growing interest in better unders tanding solar-terrestrial interactions, particularly patterns and trends in space weather. This is not only for scientific reasons, but also because the reliable operation of ground-based and space-based assets and infrastructures is increasingly dependent on their robustness against the detrimental effects of space weather. Consequently, in 2009, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) proposed the International Space Weather Initiative (ISWI), as a follow-up activity to the International Heliophysical Year 2007 (IHY2007), to be implemented under a three-year workplan from 2010 to 2012 (UNGA Document, A/64/20). All achievements of international cooperation and coordination for ISWI, including instrumentation, data analysis, modelling, education, training and public outreach, are made a vailable through the ISWI Newsletter and the ISWI Website (http://www.iswi-secretariat.org/). Since the last solar maximum in 2000, societal dependence on global navigation satellite system (GNSS) has increased substantially. This situation has brought increasing attention to the subject of space weather and its effects on GNSS systems and users. Results concerning the impact of space weather on GNSS are made available at the Information Portal (www.unoosa.org) of the International Committee on Global Navigati on Satellite Systems (ICG). This paper briefly reviews the curre nt status of ISWI with regard to GNSS.

  4. Space Weather Priorities for Kinetic-Global Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Onsager, T. G.

    2010-12-01

    Space weather is undergoing a major transformation whereby the demand for decision-capable information is beginning to far exceed our ability to produce the needed information. The limitations in our space weather capabilities are due to a number of factors, including a sparsity of data, limitations in our ability to assimilate data into our models, and the difficulties in modeling the diversity of scales and processes that control the solar-terrestrial environment. The increasing demand for space weather information creates the imperative to focus our research not only on improving our understanding of basic physical processes, but also on achieving specific outcomes that yield near-term progress in areas of high demand. Whereas, for example, full-physics, kinetic-global codes of particle acceleration and magnetic reconnection are important long-term goals, efforts to parameterize the sub-grid-scale physics or to implement intermediate solutions could lead to important near-term improvements in mitigating space weather impacts, as well as improve our understanding of the physical processes. This presentation will summarize the major areas where space weather information is needed, and discuss areas where advances in kinetic-global model development could have the most immediate impact on space weather services.

  5. Boron and Lithium isotopic signatures in rivers as proxies of silicate weathering regimes : the example of the Mackenzie river system, Canada (Invited)

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Millot, R.; Lemarchand, D.; Vigier, N.

    2009-12-01

    Large river systems integrate the diversity of weathering and transport conditions as well as the bedrock composition. They provide a unique opportunity to unravel the parameters operating within the critical zone of the Earth globally. Here, we present B and Li isotopes data measured in both the complementary soluble and suspended phases in the Mackenzie river (Northeastern Canada), one of the world largest river the Mackenzie river basin. An interesting parallel can be made between these two isotopic systems: - Both elements are predominantly derived from the weathering of silicate minerals and are thus relatively less affected by lithology. - Both elements are considerably fractionated during water/rock interactions during which they partition between the solid and liquid phases. Their respective geochemical signature is then strongly dependent upon geomorphic features of the Basin (mountains, plains, shield area). - Both isotopic systems are greatly fractionated by a preferential release in solution of the heavy isotope, which considerably help investigating the nature and magnitude of the weathering and transport processes in action. - And finally, strong evidences indicate that local groundwaters may control their transfer through the basin and imprint their isotopic signature as well. Because, boron and lithium have very different chemical behaviors, in particular distinct surface properties, their respective isotopes behave distinctly under same reactive transport conditions. This feature results in the absence of correlation between this two isotopic systems despite their apparent similarities. Then the coupled investigation of the Li and B isotopes during chemical weathering adds strong constraints on the weathering regimes operating at large scale and clearly encourages the multi-isotopic tracing of the critical zone processes.

  6. Global Weather's Problem Child--El Nino.

    ERIC Educational Resources Information Center

    Rasmusson, Eugene M.

    1984-01-01

    Discusses the nature and effects of the El Nino/Southern Oscillation phenomenon. Indicates that new understanding of the phenomenon from current data will provide a global view of climate that has never before been within reach. (JN)

  7. Sodium-calcium ion exchange in the weathering of shales: Implications for global weathering budgets

    Microsoft Academic Search

    T. E. Cerling; B. L. Pederson; K. L. Von Damm

    1989-01-01

    Unpolluted rivers and streams that drain marine shales show an excess of sodium compared to chloride and a deficiency of calcium and magnesium compared to sulfate and alkalinity. This is due in part to cation exchange of sodium for divalent cations on clay minerals. Consideration of the global weathering budget suggest that up to 34% of the sodium in the

  8. The contribution of weathering of the main Alpine rivers on the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Donnini, Marco; Probst, Jean-Luc; Probst, Anne; Frondini, Francesco; Marchesini, Ivan; Guzzetti, Fausto

    2013-04-01

    On geological time-scales the carbon fluxes from the solid Earth to the atmosphere mainly result from volcanism and metamorphic-decarbonation processes, whereas the carbon fluxes from atmosphere to solid Earth mainly depend on weathering of silicates and carbonates, biogenic precipitation and removal of CaCO3 in the oceans and volcanic gases - seawater interactions. Quantifying each contribution is critical. In this work, we estimate the atmospheric CO2 uptake by weathering in the Alps, using results of the study of the dissolved loads transported by 33 main Alpine rivers. The chemical composition of river water in unpolluted areas is a good indicator of surface weathering processes (Garrels and Mackenzie, 1971; Drever, 1982; Meybeck, 1984; Tardy, 1986; Berner and Berner, 1987; Probst et al., 1994). The dissolved load of streams originates from atmospheric input, pollution, evaporite dissolution, and weathering of carbonate and silicate rocks, and the application of mass balance calculations allows quantification of the different contributions. In this work, we applied the MEGA (Major Element Geochemical Approach) geochemical code (Amiotte Suchet, 1995; Amiotte Suchet and Probst, 1996) to the chemical compositions of the selected rivers in order to quantify the atmospheric CO2 consumed by weathering in Alpine region. The drainage basins of the main Alpine rivers were sampled near the basin outlets during dry and flood seasons. The application of the MEGA geochemical consisted in several steps. First, we subtracted the rain contribution in river waters knowing the X/Cl (X = Na, K, Mg, Ca) ratios of the rain. Next, we considered that all (Na+K) came from silicate weathering. The average molar ratio Rsil = (Na+K)/(Ca+Mg) for rivers draining silicate terrains was estimated from unpolluted French stream waters draining small monolithological basins (Meybeck, 1986; 1987). For the purpose, we prepared a simplified geo-lithological map of Alps according to the lithological classification of Meybeck (1986, 1987). Then for each basin we computed Rsil weighted average considering the surface and the mean precipitation for the surface area of each lithology. Lastly, we estimated the (Ca+Mg) originating from carbonate weathering as the remaining cations after silicate correction. Depending on time-scales of the phenomena (shorter than about 1 million year i.e., correlated to the short term carbon cycle, or longer than about 1 million years i.e., correlated to the long-term carbon cycle), we considered different equations for the quantification of the atmospheric CO2 consumed by weathering (Huh, 2010). The results show the net predominance of carbonate weathering on fixing atmospheric CO2 and that, considering the long-term carbon cycle, the amount of atmospheric CO2 uptake by weathering is about one order of magnitude lower than considering the short-term carbon cycle. Moreover, considering the short-term carbon cycle, the mean CO2 consumed by Alpine basins is of the same order of magnitude of the mean CO2 consumed by weathering by the 60 largest rivers of the world estimated by Gaillardet et al. (1999). References Amiotte-Suchet, P. "Cycle Du Carbone, Érosion Chimique Des Continents Et Transfert Vers Les Océans." Sci. Géol. Mém. Strasbourg 97 (1995): 156. Amiotte-Suchet, P., and J.-L. Probst. "Origins of dissolved inorganic carbon in the Garonne river waters: seasonal and interannual variations." Sci. Géologiques Bull. Strasbourg 49, no. 1-4 (1996): 101-126. Berner, E.K., and R.A. Berner. The Global Water Cycle. Geochemistry and Environment. Prentice Halle. Engelwood Cliffs, NJ, 1987. Drever, J.L. The Geochemistry of Natural Waters. Prentice Hall, 1982. Gaillardet, J., B. Dupré, P. Louvat, and C.J. Allègre. "Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers." Chemical Geology 159 (1999): 3-30. Garrels, R.M., and F.T. Mackenzie. Evolution of Sedimentary Rocks. New York: W.W. Nortonand, 1971. Huh, Y. "Estimation of Atmospheric CO2 Uptake by Silicat

  9. Global weather prediction and high-end computing at nasa

    Microsoft Academic Search

    Shian-Jiann Lin; ROBERT ATLAS; Kao-San Yeh

    2004-01-01

    The authors demonstrate the current capabilities of NASA's finite-volume General Circulation Model in high-resolution global weather prediction and discuss its development path in the foreseeable future. This model is a prototype of a future NASA Earth-modeling system intended to unify development activities across various disciplines within NASA's Earth Science Enterprise.

  10. IMPACT OF ATMOSPHERIC MOTION VECTORS ON GLOBAL NUMERICAL WEATHER PREDICTION

    Microsoft Academic Search

    Jean-Noël Thépaut; Niels Bormann; Claire Delsol; Graeme Kelly

    The importance of satellite data at large is now such that they provide the main sources of information for numerical weather prediction (NWP) models. However, the role played by Atmospheric Motion Vectors (AMVs), evaluated via a series of Observing System Experiments (OSEs), remains essential in the Global Observing System (GOS). It is in particular shown that geostationary AMVs contribute to

  11. Global Weather Prediction and High-End Computing at NASA

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert; Yeh, Kao-San

    2003-01-01

    We demonstrate current capabilities of the NASA finite-volume General Circulation Model an high-resolution global weather prediction, and discuss its development path in the foreseeable future. This model can be regarded as a prototype of a future NASA Earth modeling system intended to unify development activities cutting across various disciplines within the NASA Earth Science Enterprise.

  12. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    PubMed Central

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago. PMID:25583135

  13. The global geochemical cycles of iron and calcium: using novel isotope systems to understand weathering, global mass budgets, natural reaction rates, and paleoclimate

    E-print Network

    Fantle, Matthew

    weathering, global mass budgets, natural reaction rates, and paleoclimate by Matthew Scott Fantle B systems to understand weathering, global mass budgets, natural reaction rates, and paleoclimate Copyright novel isotope systems to understand weathering, global mass budgets, natural reaction rates

  14. Z .Journal of Geochemical Exploration 62 1998 149159 Volcanic and anthropogenic contributions to global weathering

    E-print Network

    Royer, Dana

    to global weathering budgets J.C. Varekamp ) , E. Thomas 1 Department of Earth and EnÕironmental Sciences Abstract We evaluate whether the global weathering budget is near steady state for the pre is slightly smaller than the estimated global riverine silica flux. After adjustment for carbonate weathering

  15. VISUAL QUERY OF TIME-DEPENDENT 3D WEATHER IN A GLOBAL GEOSPATIAL

    E-print Network

    Shaw, Chris

    1 VISUAL QUERY OF TIME-DEPENDENT 3D WEATHER IN A GLOBAL GEOSPATIAL ENVIRONMENT William Ribarsky WEATHER IN A GLOBAL GEOSPATIAL ENVIRONMENT William Ribarsky, Nickolas Faust, Zachary Wartell, Christopher stream of large scale, time-dependent, 3D weather data in a global environment. The structure supports

  16. Entropy Shows that Global Warming Should Cause Increased Variability in the Weather

    E-print Network

    John Michael Williams

    2001-02-21

    Elementary physical reasoning seems to leave it inevitable that global warming would increase the variability of the weather. The first two terms in an approximation to the global entropy are used to show that global warming has increased the free energy available to drive the weather, and that the variance of the weather should increase correspondingly.

  17. Silicate weathering of soil-mantled slopes in an active Alpine landscape

    NASA Astrophysics Data System (ADS)

    Norton, Kevin P.; von Blanckenburg, Friedhelm

    2010-09-01

    Despite being located on high, steep, actively uplifting, and formerly glaciated slopes of the Swiss Central Alps, soils in the upper Rhone Valley are depleted by up to 50% in cations relative to their parent bedrock. This depletion was determined by a mass loss balance based on Zr as a refractory element. Both Holocene weathering rates and physical erosion rates of these slopes are unexpectedly low, as measured by cosmogenic 10Be-derived denudation rates. Chemical depletion fractions, CDF, range from 0.12 to 0.48, while the average soil chemical weathering rate is 33 ± 15 t km -2 yr -1. Both the cosmogenic nuclide-derived denudation rates and model calculations suggest that these soils have reached a weathering steady-state since deglaciation 15 ky ago. The weathering signal varies with elevation and hillslope morphology. In addition, the chemical weathering rates decrease with elevation indicating that temperature may be a dominant controlling factor on weathering in these high Alpine basins. Model calculations suggest that chemical weathering rates are limited by reaction kinetics and not the supply rate of fresh material. We compare hillslope and catchment-wide weathering fluxes with modern stream cation flux, and show that high relief, bare-rock slopes exhibit much lower chemical weathering rates despite higher physical erosion rates. The low weathering fluxes from rocky, rapidly eroding slopes allow for the broader implication that mountain building, while elevating overall denudation rates, may not cause increased chemical weathering rates on hillslopes. In order for this sediment to be weathered, intermediate storage, for instance in floodplains, is required.

  18. The Global Distribution of Weathered Glass on Mars

    NASA Astrophysics Data System (ADS)

    Horgan, B.; Chojnacki, M.; Lai, J.; Clarke, D.; Joseph, J.; Bell, J. F.

    2012-12-01

    Weathered iron-bearing glass has been identified as the primary phase in over ten million square kilometers of low-albedo deposits in the northern lowlands of Mars, based on visible to near-infrared (0.36-2.5 ?m) spectra from the OMEGA imaging spectrometer onboard Mars Express (Horgan and Bell, 2012). The glass exhibits a concave blue slope in the near-infrared that is consistent with a leached glass rind. This rind is formed during exposure of glass to at least slightly acidic fluids under water-limited conditions, and is commonly observed in dry volcanic environments on Earth. The proposed origin for these materials is explosive volcanism, potentially triggered due to ice-magma interactions in the late Hesperian or Amazonian, followed by post-depositional acidic weathering at the surface. A possible analog for these glass-rich sedimentary terrains are the extensive sand plains, dune fields, and flood plains of Iceland, which are composed of glass-rich (50-90%) volcaniclastic sediments formed during sub-glacial eruptions. The large scale of the martian deposits suggests widespread (and potentially ice-related) explosive volcanism either in the northern lowlands or near the dichotomy boundary. This possibility raises the question: How widespread are glass-rich deposits on Mars globally? To address this question, we have developed a global set of visible/near-infrared OMEGA mosaics at 1 km/pixel resolution. Preliminary analysis of this data set indicates that the concave spectral slope that we associate with weathered glass is present in large portions of the Syrtis Major region, within Mawrth Vallis, and in several dozen dune fields in the regions of Syrtis Major, Arabia Terra, Valles Marineris, and the Argyre Basin. Higher resolution CRISM observations of several Valles Marineris dune fields appear to confirm these preliminary results, as spectra within the dune fields are consistent with iron-bearing glass (Chojnacki et al., 2012). We are currently working to extend this analysis globally, and to search for correlations with deposit types, sediment sources, and predicted distributions of pyroclastic deposits from the major volcanic edifices. However, even these preliminary results strongly suggest that weathered glass is a major component of global martian sediments. An additional source of information regarding the nature and distribution of these deposits is their inferred composition from thermal infrared spectra. The dark, glassy deposits of the northern lowlands are the type locality for the globally distributed TES Surface Type 2 (ST2) composition, which differs from the olivine-basaltic Surface Type 1 by requiring an additional high-silica component. Based on the correlation between the glass and ST2 in the northern lowlands, we hypothesize that the weathered glassy rinds may be the high-silica component of ST2 in this region. In order to determine whether there is a global correlation between ST2 and weathered glass, we have compared global maps of TES ST2 spectral indices with OMEGA weathered glass spectral indices. We have initially focused on dune fields as mapped by the Mars Global Digital Dunes Database, which reveal at least a qualitative correlation between ST2 and weathered glass. Further analysis will produce a quantitative comparison of the two data sets in the dune fields as well as in other low albedo terrains.

  19. Generalized inversion of a global numerical weather prediction model

    Microsoft Academic Search

    A. F. Bennett; B. S. Chua; L. M. Leslie

    1996-01-01

    Summary We construct the generalized inverse of a global numerical weather prediction (NWP) model, in order to prepare initial conditions for the model at time “t=0 hrs”. The inverse finds a weighted, least-squares best-fit to the dynamics for -24tt=-24, and to data att=-24,t=-18,t=-12 andt=0. That is, the inverse is a weak-constraint, four-dimensional variational assimilation scheme. The best-fit is found by

  20. Influence of weather and global warming in chloride ingress into concrete: a stochastic approach

    E-print Network

    Paris-Sud XI, Université de

    Influence of weather and global warming in chloride ingress into concrete: a stochastic approach E the influence of weather conditions and global warming on chloride ingress into concrete. The assessment including seasonal variations and global warming is also proposed in this work. Three scenarios of global

  1. Recent progress in global, medium range numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Källén, Erland

    2015-04-01

    Future improvements in global, medium-range weather forecasts will come from a combination of initial state and model error reductions. Data assimilation advances are crucial, we have to utilise all the available observations efficiently by optimising the assimilation algorithms. Model error reductions will come from improved resolution in space as well as more accurate parameterisations of subgridscale, physical processes. Some examples from recent work at ECMWF will be presented. Ensemble methods are used both to assess the prediction errors in the medium range as well as estimating error correlations for use in variational data assimilation. Examples of this work will also be given

  2. Weather

    NSDL National Science Digital Library

    Ms. Stearns

    2008-10-25

    This is a first grade weather unit. SEASONS Fall Winter Build a Snowman Spring Summer What things determine and effect the weather? Cloud Precipitation Sunshine Temperature Visibility Wind Direction Wind Force WEATHER VIDEOS Tornado Hurricane Hail Lightning FUN AND GAMES Dress the Bear for the Weather The Great Weather Race Game Weather coloring books for kids ...

  3. Parallel Geometric Multigrid for Global Weather Prediction S.D. Buckeridge and R. Scheichl

    E-print Network

    Burton, Geoffrey R.

    Parallel Geometric Multigrid for Global Weather Prediction S.D. Buckeridge and R. Scheichl Bath Geometric Multigrid for Global Weather Prediction Sean D. Buckeridge and Robert Scheichl Dept. Mathematical. The parallel implementation scales almost optimally on up to 64 processors, so that a global solve of the quasi

  4. Parallel Geometric Multigrid for Global Weather Prediction S.D. Buckeridge and R. Scheichl

    E-print Network

    Wirosoetisno, Djoko

    Parallel Geometric Multigrid for Global Weather Prediction S.D. Buckeridge and R. Scheichl Bath Geometric Multigrid for Global Weather Prediction Sean Buckeridge and Robert Scheichl Dept. Mathematical implementation scales almost optimally on up to 256 processors, so that a global solve of the quasi- geostrophic

  5. Weathering along a periglacial stream, Western Greenland

    Microsoft Academic Search

    M. Evans; S. Beal

    2009-01-01

    Chemical weathering of Ca-Mg silicate minerals followed by marine carbonate precipitation is the fundamental sink for atmospheric CO2 in the long-term carbon cycle. Weathering of silicates along the margins of large ice sheets has been implicated in reducing atmospheric CO2 and impacting global climate despite low temperatures and a lack of significant soil cover; conditions not traditionally considered conducive to

  6. The Southern Ocean silicon trap: Data-constrained estimates of regenerated silicic acid, trapping efficiencies, and global transport paths

    NASA Astrophysics Data System (ADS)

    Holzer, Mark; Primeau, François W.; DeVries, Timothy; Matear, Richard

    2014-01-01

    We analyze an optimized model of the global silicon cycle embedded in a data-assimilated steady ocean circulation. Biological uptake is modeled by conditionally restoring silicic acid in the euphotic zone to observed concentrations where the modeled concentrations exceed the observational climatology. An equivalent linear model is formulated to which Green-function-based transport diagnostics are applied. We find that the models' opal export through 133 m depth is 166 ± 24 Tmol Si/yr, with the Southern Ocean (SO) providing ˜70% of this export, ˜50% of which dissolves above 2000 m depth. The global-scale gradients of the opal dissolution rate are primarily meridional, while the global-scale gradients of phosphate remineralization are primarily vertical. The mean depth of the temperature-dependent silicic-acid regeneration reaches 2300 m in the SO, compared to 600 m for phosphate remineralization. Silicic acid is stripped out of the euphotic zone far more efficiently than phosphate, with only (34 ± 5)% of the global silicic-acid inventory being preformed, compared to (61 ± 7)% for phosphate. Subantarctic and tropical waters contribute most of the ocean's regenerated silicic acid, while Antarctic waters provide most of the preformed silicic acid. About half of the global silicic-acid inventory is trapped in transport paths connecting successive SO utilizations, with silicic acid last utilized in the SO having only a (5 ± 2)% chance of being next utilized outside the SO. This trapping depletes subantarctic mode waters of silicic acid relative to phosphate, which has a (44 ± 2)% probability of escaping successive SO utilization.

  7. Shaken and Stirred: A Combined Reaction-Diffusion and Random Rate Model for the Temporal Evolution and Earthquake-induced Hydrodynamics of Silicate Mineral Weathering

    NASA Astrophysics Data System (ADS)

    Evaristo, J. A.; Willenbring, J.

    2013-12-01

    The time dependency of silicate mineral weathering has been explored in the literature in terms of processes and features that are intrinsic and extrinsic to the mineral [1]. However, although the advent of sophisticated reactive transport models has allowed for coupling increasingly complex reaction and transport processes [2,3], a simple and fundamental understanding of the temporal evolution of weathering is lacking. Here, we propose that a purely deterministic approach may not be sufficient given the inherent differences in reactivity over space and time. Therefore, we explore how a combined reaction-diffusion and random rate model - informed by a stochastic distribution of weathering rates K (T-1) - might be able to explain not only the temporal evolution but also the hydrodynamics of weathering during earthquakes; the latter being purportedly described by time-dependent property permeability (L2). Preliminary model results show that (1) an increase in dimensionless quantity ?rp, where ? is the diffusion length (L-1) and rp is the distance between pores (L), leads to a decrease in minimum reaction rate with time from the relation Kmin ? e-?rp/rp ; (2) at a given porosity, a time-dependent decrease in reactivity arises as permeability decreases due to decreasing pore size (and therefore increasing rp), which in turn may be related to the time-dependent feedback between dissolution and precipitation; (3) while permeability is lower in older soils, transient stresses as during earthquakes [4], may induce more efficient "declogging" of pores in these soils than in younger soils due to higher hydrodynamic viscous shear stress, thereby, resulting in a coseismic change in stream discharge Q; and (4) subsequent weathering beyond t~Kmin-1 exhibits a fall in rates, marking the cessation of logarithmic decay possibly due to dissolution-precipitation feedback. [1] White and Brantley (2003), Chem. Geol. 202, 479. [2] Lichtner P.C. (1996), Mineralogical Society of America, 1-81. [3] Maher K., Steefel C.I., White A.F. and Stonestrom D.A. (2009), Geochim. Cosmochim. Acta 73, 2804-2831. [4] Manga M., Beresnev I., Brodsky E. E., Elkhoury J. E., Elsworth D., Ingebritsen S. E., Mays D.C., and Wang C.Y. (2012), Rev. Geophys., 50, RG2004. (A) The evolution of reaction rates K(y-1) derived from published weathering rates as a first-order process. A similar scaling exponent was reported in the decay of marine organic carbon by Middelburg et al. (1993), K(t)=0.21t-0.99; and Rothman and Forney (2007) K(t)=0.23t-1. (B) Plot of global permeability (Gleeson et al. 2011) across a wide range of consolidated and loose hydrolithologies (different symbols) versus corresponding weathering rates from the reaction-diffusion model. Broken line approximates an inflection point (?log10 k -14.5 m2) based on the logistic curve fit (red line). Range of predicted reaction rates agree well with rates derived from the field.

  8. Weather

    NSDL National Science Digital Library

    Rachelle Tuttle

    2005-10-25

    Meteorologists study the weather by recording and analyzing data. You can become an amateur meteorologist by building your own weather station and keeping a record of your measurements. After a while, you\\'ll notice the weather patterns that allow meteorologists to forecast the weather. Tasks: 1. As a group you will build a weather station outside. 2. Your group will build instruments to measure the weather. 3. Each person will record the data in personal weather journals. Process: 1.Since weather happens outside, you\\'ll need to make ...

  9. Characteristics of precipitation regimes during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Ahrens, Glen D.; Paegle, Julia N.

    1986-01-01

    Rainfall data were used in conjunction with heating rate values obtained from GLA/NASA to describe large scale heating changes and concurrent circulation fluctuations for weekly averages during the Special Observing Period I (January-March 1979) of the Global Weather Experiment. The GLA diabatic heating rates were obtained as residues of the thermodynamic energy equation during the four-dimensional data assimilation cycle (as described by Kalnay and Baker, 1984). In week one, the heating and rainfall rate profiles display a positive anomaly on the West Pacific in both fields. The anomaly appears to propagate eastward into the East Pacific and South America by the fifth week. By the week four, the negative anomaly over the Indian Ocean becomes positive. These heating patterns are reflected on positive divergent anomalies at 200 mb analyzed for the same periods. The stream-function anomalies display anticyclonic circulations over the heating anomalies.

  10. Transport properties of interfacial Si-rich layers formed on silicate minerals during weathering: Implications for environmental concerns

    NASA Astrophysics Data System (ADS)

    Daval, Damien; Rémusat, Laurent; Bernard, Sylvain; Wild, Bastien; Micha, Jean-Sébastien; Rieutord, François; Fernandez-Martinez, Alejandro

    2015-04-01

    The dissolution of silicate minerals is of primary importance for various processes ranging from chemical weathering to CO2 sequestration. Whether it determines the rates of soil formation, CO2 uptake and its impact on climate change, channeling caused by hydrothermal circulation in reservoirs of geothermal power plants, durability of radioactive waste confinement glasses or geological sequestration of CO2, the same strategy is commonly applied for determining the long term evolution of fluid-rock interactions. This strategy relies on a bottom-up approach, where the kinetic rate laws governing silicate mineral dissolution are determined from laboratory experiments. However, a long-standing problem regarding this approach stems from the observation that laboratory-derived dissolution rates overestimate their field counterparts by orders of magnitude, casting doubt on the accuracy and relevance of predictions based on reactive-transport simulations. Recently [1], it has been suggested that taking into account the formation of amorphous Si-rich surface layers (ASSL) as a consequence of mineral dissolution may contribute to decrease the large gap existing between laboratory and natural rates. Our ongoing study is aimed at deciphering the extent to which ASSL may represent a protective entity which affects the dissolution rate of the underlying minerals, both physically (passivation) and chemically (by promoting the formation of a local chemical medium which significantly differs from that of the bulk solution). Our strategy relies on the nm-scale measurement of the physicochemical properties (diffusivity, thickness and density) of ASSL formed on cleavages of a model mineral (wollastonite) and their evolution as a function of reaction progress. Our preliminary results indicate that the diffusivity of nm-thick ASSL formed on wollastonite surface is ~1,000,000 times smaller than that reported for an aqueous medium, as estimated from the monitoring of the progression of a tracer in nm-thick ASSL by means of nanoSIMS analyses. However, estimated diffusion coefficients remain up to 20 orders of magnitude greater than those corresponding to solid-state diffusion, indicating that such ASSL were not formed through a solid-state transformation of wollastonite. In addition, the estimation of diffusion coefficients of the tracer for samples recovered after two different time durations indicates that such a diffusion coefficient may decrease with time. This result may be explained by the spontaneous evolution of the density of ASSL, which increased as the dissolution reaction proceeds, as shown from modeling of time-resolved in situ X-ray reflectivity spectra obtained on the dissolving surfaces. Overall, these results emphasize the need for the recognition of the importance of the interfacial fluid/mineral medium for adequately modeling the dissolution kinetics of silicate minerals relevant for environmental concerns. [1] Daval, D. et al., 2013. Geochim Cosmochim Acta 107, 121-134.

  11. Weather

    NSDL National Science Digital Library

    Ms. Hendricks

    2007-12-06

    Introduction: How much do you know about weather? What kinds of weather do we have surrounding us? What is the weather like today? You may know a lot about weather already, you may not. Either way, you will learn more now as we take a look into what causes our weather and the methods we use to record and predict it. We will all become meteorologists, which are scientists who study the atmosphere and can predict weather. Put on your raincoats, and lets started! Task: You are the resident meteorologist at a local news station. It is your job to record and predict the weather each day, and then present it that night on the evening news. Not only should you be able to show the weather that we will be experiencing right ...

  12. Weather

    NSDL National Science Digital Library

    The National Oceanic and Atmospheric Administration (NOAA) provides these two Websites on weather. The first site serves as a major hub for information related to weather, with links to primary data sources, forecasts, maps, images (such as the latest satellite imagery for North America), and a wealth of other data, including space weather. Researchers will also find links to national weather research centers and other related agencies.

  13. Weather

    NSDL National Science Digital Library

    Miss Jennie

    2009-10-22

    What are the different types of weather? In this project you will compare different types of weather by drawing pictures and making it into a flip book. First you will begin by learning about the different types of weather. Read about each topic. Then get together with your partner and draw a picture of each type of weather. 1. Thunder storm Thunder storm Thunder storm Kids 2. Lightning Lightning Lightning picture 3. Tornado Tornadoes Tornado Kids 4. ...

  14. Global weathering variations inferred from marine radiogenic isotope records

    Microsoft Academic Search

    Kevin W. Burton

    2006-01-01

    Determining the past record of chemical weathering is essential for understanding changes in climate and atmospheric CO2, such as those that occur throughout the Cenozoic (the last 65 my). Many natural radiogenic isotopes in seawater are sensitive to variations in chemical weathering, but taken alone cannot distinguish such changes from those caused by variations in erosional source (such as composition,

  15. Numerical Weather Prediction (NWP) and hybrid ARMA/ANN model to predict global radiation

    E-print Network

    Paris-Sud XI, Université de

    Numerical Weather Prediction (NWP) and hybrid ARMA/ANN model to predict global radiation Cyril a hybrid ARMA/ANN model and data issued from a numerical weather prediction model (ALADIN). We particularly it to an ARMA model from a rule based on the analysis of hourly data series. This model has been used

  16. Global Cooperation in the Science of Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2011-01-01

    The international space science community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by SCOSTEP and the International Space Weather Initiative (ISWI). The ISWI program is a continuation of the successful International Heliophysical Year (IHY) program. These programs have brought scientists together to tackle the scientific issues behind space weather. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and ISWI activities that promote space weather science via complementary approaches in international scientific collaborations. capacity building. and public outreach.

  17. 1956 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 28, NO. 6, DECEMBER 2000 An Adaptive MHD Method for Global Space Weather

    E-print Network

    Stout, Quentin F.

    for Global Space Weather Simulations Darren L. De Zeeuw, Tamas I. Gombosi, Clinto P. T. Groth, Kenneth G plasma flows are described to demonstrate the validity and capabilities of the approach for space weather weather. I. INTRODUCTION SPACE weather is of growing importance to the scientific community and refers

  18. Weather

    NSDL National Science Digital Library

    Edheads offers a Macromedia Flash Player enhanced interactive module allowing students to predict the weather by examining weather maps. Through this website, users can become familiar with the concepts of warm and cold fronts, wind direction and speed, air pressure, and humidity. Teachers looking to incorporate this site in their classroom can check out the "Teacher's Guide" for helpful hints on using the site with students.

  19. Reduction of forecast error for global numerical weather prediction by The Florida State University (FSU) Superensemble

    Microsoft Academic Search

    R. S. Ross; T. N. Krishnamurti

    2005-01-01

    Summary The skill of the FSU Superensemble technique as applied to global numerical weather prediction is evaluated extensively in this paper. The global mass and motion fields for year 2000 and precipitation over the domain 55?S to 55?N for year 2001, as predicted by the Superensemble, the ensemble member models, and the mean of the ensemble members, are evaluated by

  20. Stormy Weather: 101 Solutions to Global Climate Change.

    ERIC Educational Resources Information Center

    Dauncey, Guy

    This document presents 101 solutions to global climate change. These solutions are actions that are well suited to every level of society. This book creates awareness about global climate change. The history of Earth and the greenhouse effect are discussed, and explanations and solutions to global climate change are provided including traveling…

  1. The Air Force Global Weather Central operational boundary-layer model

    Microsoft Academic Search

    Kenneth D. Hadeen; Arnold L. Friend

    1972-01-01

    A limited-area seven-layer physical-numerical model for the lower tropospheric region (surface - 1600m) is described. The grid interval, approximately 190km, is half that of the standard numerical weather-prediction grid used in the hemispheric free atmospheric operational model at the Air Force Global Weather Central (AFGWC). This model is an integral part of the complete AFGWC meso-scale (sub-synoptic) numerical analysis and

  2. Convex Error Growth Patterns in a Global Weather Model

    Microsoft Academic Search

    John Harlim; Michael Oczkowski; James A. Yorke; Eugenia Kalnay; Brian R. Hunt

    2005-01-01

    We investigate the error growth, that is, the growth in the distance E between two typical solutions of a weather model. Typically E grows until it reaches a saturation value Es. We find two distinct broad log-linear regimes, one for E below 2% of Es and the other for E above. In each, log((E\\/Es) grows as if satisfying a linear

  3. Seafloor weathering controls on atmospheric CO{sub 2} and global climate

    SciTech Connect

    Brady, P.V. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Gislason, S.R. [Univ. of Iceland, Reykjavik (Iceland)] [Univ. of Iceland, Reykjavik (Iceland)

    1997-03-01

    Alteration of surficial marine basalts at low temperatures (<40{degrees}C) is a potentially important sink for atmospheric CO{sub 2} over geologic time. Petrologic analyses, thermodynamic calculations, and experimental weathering results point to extensive Ca leaching and consumption of marine CO{sub 2} during alteration. Basalt weathering in seawater-like solutions is sensitive to temperature. The activation energy for initial basalt weathering in seawater is 41-65 U kJ mol{sup -1}. If seafloor weathering temperatures are set by deep ocean fluids under high fluid to rock ratios the feedback between weathering and atmospheric CO{sub 2} is indirect, but sizeable. If the bulk of seafloor weathering occurs in the presence of low-temperature hydrothermal fluids, the weathering feedback depends on the linkage between spreading rates and heat flow. In either case, the primary linkage between seafloor weathering and the global carbon cycle appears to be thermal as opposed to chemical. 81 refs., 4 figs., 2 tabs.

  4. Water - The key to global change. [of weather and climate

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald A.

    1988-01-01

    The role of water in processes of global change is discussed. The importance of water in global warming, the loss of biological diversity, the activity of the El Nino southern oscillation, and the melting of polar ice are examined. Plans for a mission to measure tropical rainfall using a two frequency radar, a visible/IR radiometer and a passive microwave radiometer are noted. The way in which global change is affected by changes in patterns of available water is considered.

  5. Global markets and the differential effects of climate and weather on conflict

    NASA Astrophysics Data System (ADS)

    Meng, K. C.; Hsiang, S. M.; Cane, M. A.

    2011-12-01

    Both climate and weather have been attributed historically as possible drivers for violence. Previous empirical studies have either focused on isolating local idiosyncratic weather variation or have conflated weather with spatially coherent climatic changes. This paper provides the first study of the differential impacts of climate and weather variation by employing methods developed in earlier work linking the El Nino Southern Oscillation (ENSO) with the onset of civil conflicts. By separating the effects of climate from local weather, we are able to test possible mechanisms by which atmospheric changes can cause violence. It is generally difficult to separate the effect of year-to-year climate variations from other global events that might drive conflict. We avoid this problem by examining the set of tropical countries that are strongly teleconnected to ENSO. For this region, the ENSO cycle parallels the common year-to-year pattern of violence. Using ENSO, we isolate the influence of climatic changes from other global determinants of violence and compare it with the effect of local weather variations. We find that while climate affects the onset of civil conflicts in teleconnected countries, local weather has no significant effect. Productivity overall as well as across major sectors is more affected by local weather than by climatic variation. This is particularly evident in the agricultural sector where total value and cereal yield decline much greater from a 1°C increase in local temperature than a 1°C increase in ENSO. However, when examining the effect on food prices, we find that ENSO is associated with a large and statistically significant increase in cereal prices but no effect from hotter local temperatures. Altogether, this evidence points toward the ability of global and regional commodity markets to insure against the effects of local weather variation and their limitations in containing losses from aggregate shocks such as El Nino events. We posit that conflict reacts to climate and not weather because climatic events trigger not only local agricultural losses but also increased food prices as a result of an aggregate decline in output. This is because in an open economy, idiosyncratic weather variation alone would not lead to higher prices. These results are informative in understanding the impacts of anthropogenic global change, which would yield variation exhibiting spatial coherence beyond the extent of existing markets.

  6. Weather

    NSDL National Science Digital Library

    Ms. Caitlin

    2009-10-21

    In the project you will learn about thunderstorms and tornadoes and play a weather matching game. What exactly are thunderstorms and tornadoes? Use your T- chart to explain some facts about a thunderstorm and a tornado as we review each. T-Chart Begin by reviewing what a thunderstorm is and how they form. Thunderstorm information What is a thunderstorm? What are thunderstorms most likely to occur? What causes thunder? Next review what a tornado ...

  7. Stable runoff and weathering fluxes into the oceans over Quaternary climate cycles

    NASA Astrophysics Data System (ADS)

    von Blanckenburg, Friedhelm; Bouchez, Julien; Ibarra, Daniel E.; Maher, Kate

    2015-07-01

    Throughout the Quaternary period, the Earth’s surface has been subject to large changes in temperature and precipitation associated with fluctuations between glacial and interglacial states that have affected biogeochemical cycling. However, the effect of these climate oscillations on weathering is debated, with climate modelling efforts using empirical relationships between measures of climate and weathering suggesting minimal changes in global weathering rates between these two climate states. The ratio of the cosmogenic isotope 10Be, which is produced in the atmosphere and deposited to the oceans and the land surface, to 9Be, which is introduced to the oceans by the riverine silicate weathering flux, can be used to track relative weathering fluxes. Here we apply this proxy to marine sediment beryllium records spanning the past two million years, and find no detectable shifts in inputs from global silicate weathering into the oceans. Using climate model simulations of the Last Glacial Maximum along with a model for silicate weathering, we find that there was large regional variability in runoff between glacial and interglacial periods, but that this regional variability was insufficient to shift global weathering fluxes. We suggest that this stability in weathering explains the observation that the removal of CO2 from the atmosphere by silicate weathering has been in approximate balance with CO2 degassing over the past 600,000 years.

  8. A fully implicit scheme for global numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Augenbaum, J. M.; Cohn, S. E.; Dee, D. P.; Isaacson, E.; Marchesin, D.

    1985-01-01

    A fast-slow factored scheme is presented for use with shallow-water primitive equation numerical weather prediction models. The technique was developed to reduce the rotational mode errors which arise when the fast and slow terms of the governing differential equations are treated simultaneously. The method factors out the fast and slow terms along the coordinate directions by means of a modified Crank-Nicolson scheme. A finite-difference spatial discretization is carried out in the zonal and meridional directions to reduce the factorization error to near-zero, and that time steps of 60-90 min can be used to obtain acceptably accurate results, even in the presence of fine spatial structures in the flow.

  9. Calcium isotopes in a proglacial weathering environment: Damma glacier, Switzerland

    Microsoft Academic Search

    Ruth S. Hindshaw; Ben C. Reynolds; Jan G. Wiederhold; Ruben Kretzschmar; Bernard Bourdon

    2010-01-01

    Calcium is a key element in global biogeochemical cycles. It is an essential nutrient and the dissolution of Ca from silicate minerals is intimately linked to the global carbon cycle. Yet relatively few studies have utilized the potential of stable Ca isotopes to directly investigate (as opposed to using Sr isotopes) processes affecting Ca during initial weathering and subsequent cycling

  10. Satellite remote sensing of meteorological parameters for global numerical weather prediction

    Microsoft Academic Search

    R. G. Isaacs; R. N. Hoffman; L. D. Kaplan

    1986-01-01

    Remote sensing of meteorological parameters helps to provide the initial conditions for numerical weather prediction (NWP). Desired fields include those of temperature, moisture, winds, clouds, and surface properties. For high horizontal resolution and global coverage, satellite data are an unrivaled source of information. The basic form of this information is satellite sensor-incident, wavelength-dependent radiance (or equivalently, brightness temperature). The process

  11. The Global Weather Experiment1. The Observational Phase Through the First Special Observing Period

    Microsoft Academic Search

    R. J. Fleming; T. M. Kaneshige; W. E. McGovern

    1979-01-01

    An unprecedented analysis of the atmosphere of planet Earth is currently underway with the involvement of over 140 countries in the Global Weather Experiment-the largest international scientific experiment yet attempted. After many years of planning, the Operational Year began in December of 1978. Following the field phase and data management phase, a multi-year evaluation and research program will commence and

  12. System implementation for US Air Force Global Theater Weather Analysis and Prediction System (GTWAPS)

    Microsoft Academic Search

    Kathy L. Simunich; Scott C. Pinkerton; John G. Michalakes; John H. Christiansen

    1997-01-01

    The Global Theater Weather Analysis and Prediction System (GTWAPS) is intended to provide war fighters and decision makers with timely, accurate, and tailored meteorological and oceanographic (METOC) information to enhance effective employment of battlefield forces. Of critical importance to providing METOC theater information is the generation of meteorological parameters produced by numerical prediction models and application software at the Air

  13. Parallel, AMR MHD for Global Space Weather Simulations

    Microsoft Academic Search

    Kenneth G. Powell; Darren L. De Zeeuw; Igor V. Sokolov; Gábor Tóth; Tamas Gombosi; Quentin Stout

    This paper presents the methodology behind and results of adaptive mesh refinement in global magnetohydrodynamic models of the space environment. Techniques used in solving the governing equations of semi-relativistic magnetohydrodynamics (MHD) are presented. These techniques include high-resolution upwind schemes, block-based solution-adaptive grids, explicit, implicit and partial-implicit time-stepping, and domain decomposition for parallelization. Recent work done in coupling the MHD model

  14. RNCEP: global weather and climate data at your fingertips

    Microsoft Academic Search

    M. U. Kemp; Loon van E. E; J. Shamoun-Baranes; W. Bouten

    2012-01-01

    Atmospheric conditions strongly in?uence ecological systems, and tools that simplify the access and processing of atmospheric data can greatly facilitate ecological research. We have developed RNCEP, a package of functions in the open-source R language, to access, organise and visualise freely available atmospheric data from two long-term high-quality data sets with global coverage. These functions retrieve data, via the Internet,

  15. The global greenhouse and Washington, D.C., weather

    NASA Astrophysics Data System (ADS)

    Recently, Hansen et al. [1992] discussed climate change in terms of what might be noticeable to residents of cities such as Washington, D.C., and Tokyo. Washington is particularly important because of possible influences on the decision-making system centered there. Globally, the decade of the 1980s was the warmest on record, with 5 of the warmest years ever recorded (given in descending order by the Climate Institute as 1988, 1983, 1987, 1989, 1981). This forum piece focuses on record daily temperatures, an item not previously considered [Doe, 1990]; however, more conventional topics also will be discussed.

  16. Global Muon Detector Network Used for Space Weather Applications

    NASA Astrophysics Data System (ADS)

    Rockenbach, M.; Dal Lago, A.; Schuch, N. J.; Munakata, K.; Kuwabara, T.; Oliveira, A. G.; Echer, E.; Braga, C. R.; Mendonça, R. R. S.; Kato, C.; Kozai, M.; Tokumaru, M.; Bieber, J. W.; Evenson, P.; Duldig, M. L.; Humble, J. E.; Al Jassar, H. K.; Sharma, M. M.; Sabbah, I.

    2014-08-01

    In this work, we summarize the development and current status of the Global Muon Detector Network (GMDN). The GMDN started in 1992 with only two muon detectors. It has consisted of four detectors since the Kuwait-city muon hodoscope detector was installed in March 2006. The present network has a total of 60 directional channels with an improved coverage of the sunward Interplanetary Magnetic Field (IMF) orientation, making it possible to continuously monitor cosmic ray precursors of geomagnetic storms. The data analysis methods developed also permit precise calculation of the three dimensional cosmic ray anisotropy on an hourly basis free from the atmospheric temperature effect and analysis of the cosmic ray precursors free from the diurnal anisotropy of the cosmic ray intensity.

  17. What's Up With the Weather? : NOVA and Frontline Examine the Truth About Global Warming

    NSDL National Science Digital Library

    This site corresponds with the April 18, 2000 episode of Nova's "What's up with the Weather: the Truth About Global Warming." and is an in-depth look at the issue of global warming by NOVA and FRONTLINE. Numerous subjects are addressed, including the burning of fossil fuels, alternative energy sources including biomass energy, wind and solar power, alternative vehicles, and space-based solar power systems, the evidence for global warming in ice cores, and the threat of rising sea level. The differing views on global warming are presented, as is an interactive exercise meant to help the user determine the amount of CO2 produced from their daily activities. A section discussing frequently asked questions can be accessed, as well as a teachers guide for creating a class lesson discussing global warming.

  18. Operations Challenges from the FORMOSAT-3\\/COSMIC Constellation for Global Earth Weather Monitoring

    Microsoft Academic Search

    Chen-Joe Fong; Nick Yen; Vicky Chu; Shao-Shing Chen; Sien Chi

    2007-01-01

    The joint Taiwan-U.S. FORMOSAT-3\\/COSMIC spacecraft constellation, consisting of six LEO satellites, is the world's first operational GPS radio occultation mission for global Earth weather forecast, climate monitoring, atmospheric, ionospheric and geodesy researches. The FORMOSAT-3\\/COSMIC satellites were launched successfully from Vandenberg on April 15, 2006 into the same orbit plane of the designated 516 km circular parking orbit altitude. After the

  19. Generalized inversion of a global numerical weather prediction model, II: Analysis and implementation

    Microsoft Academic Search

    A. F. Bennett; B. S. Chua; L. M. Leslie

    1997-01-01

    Summary This is a sequel to Bennett, Chua and Leslie (1996), concerning weak-constraint, four-dimensional variational assimilation of reprocessed cloud-track wind observations (Velden, 1992) into a global, primitive-equation numerical weather prediction model. The assimilation is performed by solving the Euler-Lagrange equations associated with the variational principle. Bennett et al. (1996) assimilate 2436 scalar wind components into their model over a 24-hour

  20. Recent results from the GISS model of the global atmosphere. [circulation simulation for weather forecasting

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.

    1975-01-01

    Large numerical atmospheric circulation models are in increasingly widespread use both for operational weather forecasting and for meteorological research. The results presented here are from a model developed at the Goddard Institute for Space Studies (GISS) and described in detail by Somerville et al. (1974). This model is representative of a class of models, recently surveyed by the Global Atmospheric Research Program (1974), designed to simulate the time-dependent, three-dimensional, large-scale dynamics of the earth's atmosphere.

  1. Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph

    2008-01-01

    Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.

  2. An improved technique for global solar radiation estimation using numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Shamim, M. A.; Remesan, R.; Bray, M.; Han, D.

    2015-07-01

    Global solar radiation is the driving force in hydrological cycle especially for evapotranspiration (ET) and is quite infrequently measured. This has led to the reliance on indirect techniques of estimation for data scarce regions. This study presents an improved technique that uses information from a numerical weather prediction (NWP) model (National Centre for Atmospheric Research NCAR's Mesoscale Meteorological model version 5 MM5), for the determination of a cloud cover index (CI), a major factor in the attenuation of the incident solar radiation. The cloud cover index (CI) together with the atmospheric transmission factor (KT) and output from a global clear sky solar radiation were then used for the estimation of global solar radiation for the Brue catchment located in the southwest of England. The results clearly show an improvement in the estimated global solar radiation in comparison to the prevailing approaches.

  3. The analysis sensitivity to tropical winds from the Global Weather Experiment

    NASA Technical Reports Server (NTRS)

    Paegle, J.; Paegle, J. N.; Baker, W. E.

    1986-01-01

    The global scale divergent and rotational flow components of the Global Weather Experiment (GWE) are diagnosed from three different analyses of the data. The rotational flow shows closer agreement between the analyses than does the divergent flow. Although the major outflow and inflow centers are similarly placed in all analyses, the global kinetic energy of the divergent wind varies by about a factor of 2 between different analyses while the global kinetic energy of the rotational wind varies by only about 10 percent between the analyses. A series of real data assimilation experiments has been performed with the GLA general circulation model using different amounts of tropical wind data during the First Special Observing Period of the Global Weather Experiment. In exeriment 1, all available tropical wind data were used; in the second experiment, tropical wind data were suppressed; while, in the third and fourth experiments, only tropical wind data with westerly and easterly components, respectively, were assimilated. The rotational wind appears to be more sensitive to the presence or absence of tropical wind data than the divergent wind. It appears that the model, given only extratropical observations, generates excessively strong upper tropospheric westerlies. These biases are sufficiently pronounced to amplify the globally integrated rotational flow kinetic energy by about 10 percent and the global divergent flow kinetic energy by about a factor of 2. Including only easterly wind data in the tropics is more effective in controlling the model error than including only westerly wind data. This conclusion is especially noteworthy because approximately twice as many upper tropospheric westerly winds were available in these cases as easterly winds.

  4. Global Weather States and Their Properties from Passive and Active Satellite Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Tselioudis, George; Rossow, William; Zhang, Yuanchong; Konsta, Dimitra

    2013-01-01

    In this study, the authors apply a clustering algorithm to International Satellite Cloud Climatology Project (ISCCP) cloud optical thickness-cloud top pressure histograms in order to derive weather states (WSs) for the global domain. The cloud property distribution within each WS is examined and the geographical variability of each WS is mapped. Once the global WSs are derived, a combination of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical cloud structure retrievals is used to derive the vertical distribution of the cloud field within each WS. Finally, the dynamic environment and the radiative signature of the WSs are derived and their variability is examined. The cluster analysis produces a comprehensive description of global atmospheric conditions through the derivation of 11 WSs, each representing a distinct cloud structure characterized by the horizontal distribution of cloud optical depth and cloud top pressure. Matching those distinct WSs with cloud vertical profiles derived from CloudSat and CALIPSO retrievals shows that the ISCCP WSs exhibit unique distributions of vertical layering that correspond well to the horizontal structure of cloud properties. Matching the derived WSs with vertical velocity measurements shows a normal progression in dynamic regime when moving from the most convective to the least convective WS. Time trend analysis of the WSs shows a sharp increase of the fair-weather WS in the 1990s and a flattening of that increase in the 2000s. The fact that the fair-weather WS is the one with the lowest cloud radiative cooling capability implies that this behavior has contributed excess radiative warming to the global radiative budget during the 1990s.

  5. Influence of cirrus clouds on weather and climate processes A global perspective

    NASA Technical Reports Server (NTRS)

    Liou, K.-N.

    1986-01-01

    Current understanding and knowledge of the composition and structure of cirrus clouds are reviewed and documented in this paper. In addition, the radiative properties of cirrus clouds as they relate to weather and climate processes are described in detail. To place the relevance and importance of cirrus composition, structure and radiative properties into a global perspective, pertinent results derived from simulation experiments utilizing models with varying degrees of complexity are presented; these have been carried out for the investigation of the influence of cirrus clouds on the thermodynamics and dynamics of the atmosphere. In light of these reviews, suggestions are outlined for cirrus-radiation research activities aimed toward the development and improvement of weather and climate models for a physical understanding of cause and effect relationships and for prediction purposes.

  6. Hindcast simulations of global high-impact weather on the Earth Simulator. Case 1: the August 2002 storms

    Microsoft Academic Search

    W. Ohfuchi; T. Enomoto

    2003-01-01

    Severe storms associated with downstream development are sometimes poorly predicted in numerical models. Improving their predictablity is one of the goals in THORPEX. In association with this project, hindcast simulations of high-impact weather are attempted with a high-resolution global atmospheric model on the Earth Simulator. Our preliminary calculations targeting the Baiu (Meiyu) front, typhoons and winter storms show that global

  7. Vertical structure of the wind field during the special observing period I of the global weather experiment

    Microsoft Academic Search

    J. N. Paegle; Z. Zhen; G. Sampson

    1984-01-01

    Summary The vertical structure of the global atmosphere is analyzed for selected periods of the Special Observing Period I (SOP-I) for the Global Weather Experiment (GWE). The analysis consists of projection of the streamfunction and velocity potential at 200 and 850 mb on spherical harmonics and of the wind and height fields on the normal modes of a linearized form

  8. Long Range Weather Prediction III: Miniaturized Distributed Sensors for Global Atmospheric Measurements

    SciTech Connect

    Teller, E; Leith, C; Canavan, G; Wood, L

    2001-11-13

    We continue consideration of ways-and-means for creating, in an evolutionary, ever-more-powerful manner, a continually-updated data-base of salient atmospheric properties sufficient for finite differenced integration-based, high-fidelity weather prediction over intervals of 2-3 weeks, leveraging the 10{sup 14} FLOPS digital computing systems now coming into existence. A constellation comprised of 10{sup 6}-10{sup 9} small atmospheric sampling systems--high-tech superpressure balloons carrying early 21st century semiconductor devices, drifting with the local winds over the meteorological spectrum of pressure-altitudes--that assays all portions of the troposphere and lower stratosphere remains the central feature of the proposed system. We suggest that these devices should be active-signaling, rather than passive-transponding, as we had previously proposed only for the ground- and aquatic-situated sensors of this system. Instead of periodic interrogation of the intra-atmospheric transponder population by a constellation of sophisticated small satellites in low Earth orbit, we now propose to retrieve information from the instrumented balloon constellation by existing satellite telephony systems, acting as cellular tower-nodes in a global cellular telephony system whose ''user-set'' is the atmospheric-sampling and surface-level monitoring constellations. We thereby leverage the huge investment in cellular (satellite) telephony and GPS technologies, with large technical and economic gains. This proposal minimizes sponsor forward commitment along its entire programmatic trajectory, and moreover may return data of weather-predictive value soon after field activities commence. We emphasize its high near-term value for making better mesoscale, relatively short-term weather predictions with computing-intensive means, and its great long-term utility in enhancing the meteorological basis for global change predictive studies. We again note that adverse impacts of weather involve continuing costs of the order of 1% of GDP, a large fraction of which could be retrieved if high-fidelity predictions of two weeks forward applicability were available. These {approx}$10{sup 2} B annual savings dwarf the <$1 B costs of operating a rational, long-range weather prediction system of the type proposed.

  9. On the role of clouds in the fair weather part of the global electric circuit

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J. G.; Lucas, G. M.; Thayer, J. P.; Mallios, S. A.

    2014-08-01

    Clouds in the fair weather return path of the global electric circuit (GEC) reduce conductivity because of the limited mobility of charge due to attachment to cloud water droplets, effectively leading to a loss of ions. A high-resolution GEC model, which numerically solves the current continuity equation in combination with Ohm's law, is used to show that return currents partially flow around clouds, with current divergence above the cloud and convergence below the cloud. An analysis of this effect is presented for various types of clouds, i.e., for different altitude extents and for different horizontal dimensions, finding that the effect is most pronounced for high clouds with a diameter below 100 km. Based on these results, a method to calculate column and global resistance is developed that can account for all cloud sizes and altitudes. The CESM1(WACCM) (Community Earth System Model - Whole Atmosphere Community Climate Model) as well as ISCCP (International Satellite Cloud Climatology Project) cloud data are used to calculate the effect of this phenomenon on global resistance. From CESM1(WACCM), it is found that when including clouds in the estimate of resistance the global resistance increases by up to 73%, depending on the parameters used. Using ISCCP cloud cover leads to an even larger increase, which is likely to be overestimated because of time averaging of cloud cover. Neglecting current divergence/convergence around small clouds overestimates global resistance by up to 20% whereas the method introduced by previous studies underestimates global resistance by up to 40%. For global GEC models, a~conductivity parameterization is developed to account for the current divergence/convergence phenomenon around clouds. Conductivity simulations from CESM1(WACCM) using this parameterization are presented.

  10. Applying ultra-high resolution Global weather-climate models for hurricane predictions: past progresses and future directions (Invited)

    NASA Astrophysics Data System (ADS)

    Lin, S.

    2010-12-01

    Recent advances in parallel computing, numerical solvers for partial differential equations on the sphere, and physical parameterizations for atmospheric models have increasingly made the usual classification between weather/climate models and regional/global models seem artificial. Researchers have been using regional weather models with a domain encompassing a significant portion of the globe for regional "climate simulations". On the other hand, global models originally developed for climate simulations are now fully capable of running at meso-scale or even cloud-resolving resolution for experimental weather-hurricane predictions. In this presentation, a review of the progresses made at NOAA, NASA, and elsewhere in applying global weather-climate models at very high spatial resolution for hurricane predictions, with temporal scale ranging from a few days to seasonal, will be given. To improve both track and intensity predictions within a global modeling framework, we will also explore computationally efficient approaches for applying a variable-resolution (via stretching, self-consistent nesting, and/or adaptive grids) global model that can simultaneously resolve internal structures of a hurricane and a consistent steering flow that is global in nature.

  11. Proceedings of the First National Workshop on the Global Weather Experiment: Current Achievements and Future Directions, volume 2, part 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An assessment of the status of research using Global Weather Experiment (GWE) data and of the progress in meeting the objectives of the GWE, i.e., better knowledge and understanding of the atmosphere in order to provide more useful weather prediction services. Volume Two consists of a compilation of the papers presented during the workshop. These cover studies that addressed GWE research objectives and utilized GWE information. The titles in Part 2 of this volume include General Circulation Planetary Waves, Interhemispheric, Cross-Equatorial Exchange, Global Aspects of Monsoons, Midlatitude-Tropical Interactions During Monsoons, Stratosphere, Southern Hemisphere, Parameterization, Design of Observations, Oceanography, Future Possibilities, Research Gaps, with an Appendix.

  12. Carbon dioxide efficiency of terrestrial enhanced weathering.

    PubMed

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-01

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance. PMID:24597739

  13. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    SciTech Connect

    Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; Pereira, Jose M.; Hurtt, George C.

    2015-01-01

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spread over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.

  14. HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers

    NASA Astrophysics Data System (ADS)

    Le Page, Y.; Morton, D.; Bond-Lamberty, B.; Pereira, J. M. C.; Hurtt, G.

    2015-02-01

    Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human-Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spread over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.

  15. Tropopause Folds: Global Climatology and their Impact on Extreme Weather Events

    NASA Astrophysics Data System (ADS)

    Skerlak, B.; Sprenger, M.; Pfahl, S.; Wernli, H.

    2014-12-01

    Folded structures in the tropopause, so-called tropopause folds, are intimately linked to upper-level frontogenesis and jet-stream dynamics. They play an important role for stratosphere-troposphere exchange, the dynamical coupling of upper- and lower troposphere, and can be important for generating severe weather events. Together with the filamentation and roll-up of streamers and the formation of cut-off lows, tropopause folds are a prime example for the complex dynamical structure of the UTLS on time scales from hours to days. For case studies, in-situ data or detailed manual analysis of model output often allow for an unambiguous identification of the tropopause. Obtaining a global, long-term perspective of this phenomenon, however, requires an automated and objective identification method. We present an elaborated three-dimensional labelling algorithm, based on an isosurface of potential vorticity (PV), that allows to objectively separate stratospheric and tropospheric air in complex situations in polar regions and in situations with diabatically and/or frictionally generated PV anomalies typically found near extratropical cyclones. We apply this algorithm to the ERA-Interim reanalysis data set from 1979 to 2012 to compile a robust global climatology of tropopause folds. We present geographical and seasonal distributions of fold frequencies for three classes of folds as defined by their vertical extent (shallow, medium and deep). Typical synoptic situations associated with deep tropopause folds like cyclonically curved jets are discussed and we investigate their potential impact on extreme weather events. For example, the frequency of wind speed extremes at 700 hPa is in many areas significantly higher if a tropopause fold is present.

  16. A Real-time 3D Visualization of Global MHD Simulation for Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Murata, K.; Matsuoka, D.; Kubo, T.; Shimazu, H.; Tanaka, T.; Fujita, S.; Watari, S.; Miyachi, H.; Yamamoto, K.; Kimura, E.; Ishikura, S.

    2006-12-01

    Recently, many satellites for communication networks and scientific observation are launched in the vicinity of the Earth (geo-space). The electromagnetic (EM) environments around the spacecraft are always influenced by the solar wind blowing from the Sun and induced electromagnetic fields. They occasionally cause various troubles or damages, such as electrification and interference, to the spacecraft. It is important to forecast the geo-space EM environment as well as the ground weather forecasting. Owing to the recent remarkable progresses of super-computer technologies, numerical simulations have become powerful research methods in the solar-terrestrial physics. For the necessity of space weather forecasting, NICT (National Institute of Information and Communications Technology) has developed a real-time global MHD simulation system of solar wind-magnetosphere-ionosphere couplings, which has been performed on a super-computer SX-6. The real-time solar wind parameters from the ACE spacecraft at every one minute are adopted as boundary conditions for the simulation. Simulation results (2-D plots) are updated every 1 minute on a NICT website. However, 3D visualization of simulation results is indispensable to forecast space weather more accurately. In the present study, we develop a real-time 3D webcite for the global MHD simulations. The 3-D visualization results of simulation results are updated every 20 minutes in the following three formats: (1)Streamlines of magnetic field lines, (2)Isosurface of temperature in the magnetosphere and (3)Isoline of conductivity and orthogonal plane of potential in the ionosphere. For the present study, we developed a 3-D viewer application working on Internet Explorer browser (ActiveX) is implemented, which was developed on the AVS/Express. Numerical data are saved in the HDF5 format data files every 1 minute. Users can easily search, retrieve and plot past simulation results (3D visualization data and numerical data) by using the STARS (Solar-terrestrial data Analysis and Reference System). The STARS is a data analysis system for satellite and ground-based observation data for solar-terrestrial physics.

  17. Constellation of CubeSats for Realtime Ionospheric E-field Measurements for Global Space Weather

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Swenson, C.; Pilinski, M.; Fish, C. S.; Neilsen, T. L.; Stromberg, E. M.; Azeem, I.; Barjatya, A.

    2014-12-01

    Inexpensive and robust space-weather monitoring instruments are needed to fill upcoming gaps in the Nation's ability to meet requirements for space weather specification and forecasting. Foremost among the needed data are electric fields, since they drive global ionospheric and thermospheric behavior, and because there are relatively few ground-based measurements. We envisage a constellation of CubeSats to provide global coverage of the electric field and its variability. The DICE (Dynamic Ionosphere CubeSat Experiment) mission was a step towards this goal, with two identical 1.5U CubeSats, each carrying three space weather instruments: (1) double probe instruments to measure AC and DC electric fields; (2) Langmuir probes to measure ionospheric electron density, and; (3) a magnetometer to measure field-aligned currents. DICE launched in October 2011. DICE was the first CubeSat mission to observe a Storm Enhanced Density event, fulfilling a major goal of the mission. Due to attitude control anomalies encountered in orbit, the DICE electric field booms have not yet been deployed. Important lessons have been learned for the implementation of a spin-stabilized CubeSat, and the design and performance of the Attitude Determination & Control System (ADCS). These lessons are now being applied to the DIME SensorSat, a risk-reduction mission that is capable of deploying flexible electric field booms up to a distance of 10-m tip-to-tip from a 1.5U CubeSat. DIME will measure AC and DC electric fields, and will exceed several IORD-2 threshold requirements. Ion densities, and magnetic fields will also be measured to characterize the performance of the sensor in different plasma environments. We show the utility of a constellation of electric field measurements, describe the DIME SensorSat, and demonstrate how the measurement will meet or exceed IORD requirements. The reduced cost of these sensors will enable constellations that can, for the first time, adequately resolve the spatial and temporal variability in ionospheric electrodynamics. DICE and DIME are collaborations between ASTRA and Space Dynamics Lab/Utah State University.

  18. Arctic Sea Ice Hits Record Low--Extreme Weather to Come? Global warming to blame for highest observed decline, scientists say.

    E-print Network

    South Bohemia, University of

    Arctic Sea Ice Hits Record Low--Extreme Weather to Come? Global warming to blame for highest" the previous record, set in 2007. The chief culprit? Global warming. The potential upshot? Longer and more intense extreme-weather events such as heat waves, cold spells, and droughts. On Monday, researchers

  19. Evaluation of ice and snow content in the global numerical weather prediction model GME with CloudSat

    Microsoft Academic Search

    S. Reitter; K. Fröhlich; A. Seifert; S. Crewell; M. Mech

    2011-01-01

    The present study evaluates the global numerical weather prediction model GME with respect to the grid-scale parameterization of frozen particles, both ice and snow, focusing on the performance of a diagnostic versus a prognostic precipitation scheme. As a reference, CloudSat Cloud Profiling Radar observations are utilized - the so far only near-globally available data set which vertically resolves clouds. Both

  20. Evaluation of ice and snow content in the global numerical weather prediction model GME with CloudSat

    Microsoft Academic Search

    S. Eikenberg; K. Fröhlich; A. Seifert; S. Crewell; M. Mech

    2011-01-01

    The present study evaluates the global numerical weather prediction model GME with respect to frozen particles, both ice and snow, focusing on the performance of a diagnostic versus a prognostic precipitation scheme. As a reference, CloudSat Cloud Profiling Radar observations are utilized - the so far only near-globally available data set which vertically resolves clouds. Both the observation-to-model and the

  1. Global silicate mineralogy of the Moon from the Diviner lunar radiometer.

    PubMed

    Greenhagen, Benjamin T; Lucey, Paul G; Wyatt, Michael B; Glotch, Timothy D; Allen, Carlton C; Arnold, Jessica A; Bandfield, Joshua L; Bowles, Neil E; Donaldson Hanna, Kerri L; Hayne, Paul O; Song, Eugenie; Thomas, Ian R; Paige, David A

    2010-09-17

    We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes. PMID:20847266

  2. Numerical Weather Prediction (NWP) and hybrid ARMA/ANN model to predict global radiation

    E-print Network

    Voyant, Cyril; Paoli, Christophe; Nivet, Marie Laure

    2012-01-01

    We propose in this paper an original technique to predict global radiation using a hybrid ARMA/ANN model and data issued from a numerical weather prediction model (ALADIN). We particularly look at the Multi-Layer Perceptron. After optimizing our architecture with ALADIN and endogenous data previously made stationary and using an innovative pre-input layer selection method, we combined it to an ARMA model from a rule based on the analysis of hourly data series. This model has been used to forecast the hourly global radiation for five places in Mediterranean area. Our technique outperforms classical models for all the places. The nRMSE for our hybrid model ANN/ARMA is 14.9% compared to 26.2% for the na\\"ive persistence predictor. Note that in the stand alone ANN case the nRMSE is 18.4%. Finally, in order to discuss the reliability of the forecaster outputs, a complementary study concerning the confidence interval of each prediction is proposed

  3. Evaluating a system of systems approach for integrated global weather, climate, and hazard monitoring

    NASA Astrophysics Data System (ADS)

    Birk, Ronald; Baldauf, Brian; Ohlemacher, Rick; Andreoli, Leo

    2008-08-01

    Northrop Grumman Corporation (NGC) provides systems and technologies to ensure national security based on technologies - from undersea to outer space, and in cyberspace. With a heritage of developing and integrating science instruments on space platforms and airborne systems, NGC is conducting analysis of alternatives for a global observing system that integrates data collected from geostationary and polar-orbiting satellites with Unmanned Aerial System (UAS) platforms. This enhanced acquisition of environmental data will feed decision support systems such as the TouchTable ® to deliver improved decision making capabilities. Rapidly fusing and displaying multiple types of weather and ocean observations, imagery, and environmental data with geospatial data to create an integrated source of information for end users such as emergency managers and planners will deliver innovative solutions to improve disaster warning, mitigate disaster impacts, and reduce the loss of life and property. We present analysis of alternatives of combinations of sensor platforms that integrate space and airborne systems with ground and ocean observing sensors and form the basis for vertically integrated global observing systems with the capacity to improve measurements associated with hazard and climate-related uncertainties. The analyses include candidate sensors deployed on various configurations of satellites that include NPOESS, GOES R, and future configurations, augmented by UAS vehicles including Global Hawk, configured to deliver innovative environmental data collection capabilities over a range of environmental conditions, including severe hazards, such as hurricanes and extreme wildland fires. Resulting approaches are evaluated based on metrics that include their technical feasibility, capacity to be integrated with evolving Earth science models and relevant decision support tools, and life cycle costs.

  4. The Global Cloud Re-Analysis at the Air Force Weather Agency

    NASA Astrophysics Data System (ADS)

    Nobis, T. E.

    2014-12-01

    Air Force Weather (AFW) has documented requirements for real-time cloud analysis to support DoD missions around the world. To meet these needs, AFW utilizes the Cloud Depiction and Forecast System (CDFS) II system to develop an hourly cloud analysis. The system creates cloud masks at pixel level from 16 different satellite sources, diagnoses cloud layers, reconciles the pixel level data to a regular grid by instrument class, and optimally merges the various instrument classes to create a final multi-satellite analysis. The time sensitive nature of some DoD missions requires that an analysis be created as quickly as possible after a given hour. Currently, CDFS II creates an analysis at thirteen minutes after the hour of interest to balance operation needs with available satellite data. While this does produce a skillful analysis, it has been long recognized that much of the satellite data available for a given hour arrives too late to be available for the analysis. Many of the DoD missions do not carry such stringent time requirements and may be able to wait some time if doing so increases the skill of the analysis considerably. Missions of interest include the development of cloud climatologies and statistical post processing of NWP cloud information. In addition, a more complete analysis would provide a better source for validation. To this end, AFW has undertaken to examine the potential value of a cloud re-analysis that would be created some time after the given hour of interest in an effort to maximize the use of available data and minimize the overall global pixel age. This presentation will present the results of efforts to create the cloud re-analysis including the methodology, impact on global pixel age and on the overall cloud characterization.

  5. Application of dynamical systems theory to global weather phenomena revealed by satellite imagery

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Ebisuzaki, Wesley; Maasch, Kirk A.; Oglesby, Robert; Pandolfo, Lionel; Tang, Chung-Muh

    1989-01-01

    Theoretical studies of low frequency and seasonal weather variability; dynamical properties of observational and general circulation model (GCM)-generated records; effects of the hydrologic cycle and latent heat release on extratropical weather; and Earth-system science studies are summarized.

  6. NASA Scatterometer Provides Global Ocean-Surface Wind Fields with More Structures than Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Tang, W.; Polito, P. S.

    1998-01-01

    The major differences between monthly-mean ocean-surface wind fields derived from the observations of the National Aeronautics and Space Administration (NASA) Scatterometer (NSCAT) and produced by the operational numerical weather prediction (NWP) model of the European Center for Medium-Range Weather Forecasts are found in coastal and equatorial regions, where the sharp changes are smoothed over in NWP products.

  7. Tropopause folds in ERA-Interim: Global climatology and relation to extreme weather events

    NASA Astrophysics Data System (ADS)

    Škerlak, Bojan; Sprenger, Michael; Pfahl, Stephan; Tyrlis, Evangelos; Wernli, Heini

    2015-05-01

    Tropopause folds are intimately linked to upper level frontogenesis and jet stream dynamics. They play an important role for stratosphere-troposphere exchange, the dynamical coupling of upper and lower tropospheric levels, and for generating severe weather events. This study presents a global climatology of tropopause folds using ERA-Interim reanalysis data from 1979 to 2012 and a refined version of a previously developed 3-D labeling and fold identification algorithm. This algorithm objectively separates stratospheric and tropospheric air in complex situations, e.g., in regions with strong low-level inversions, and in extratropical cyclones where diabatically generated potential vorticity anomalies typically occur. Three classes of tropopause folds are defined (shallow, medium, and deep), and their geographical distribution, vertical extent, and seasonal cycle are investigated. Most shallow folds occur along the subtropical jet stream, in agreement with previous studies. Hot spots of medium and deep tropopause folds are found west of Australia and along the coast of Antarctica in the Southern Hemisphere and around the east coast of North America in the Northern Hemisphere. Seasonal cycles show maxima in winter for all fold classes. Medium and deep folds are frequently associated with surface wind gust and precipitation extremes, as quantified for folds over the southern Indian Ocean. Wind gust extremes occur mainly in an elongated band upstream and equatorward of folds, whereas precipitation extremes occur mainly east and poleward of folds. Overall, in the considered region, about 20% of medium folds and 33% of deep folds are associated with surface wind or precipitation extremes in the vicinity of the fold.

  8. GEM-AQ, an on-line global multiscale chemical weather modelling system: model description and evaluation of gas phase chemistry processes

    Microsoft Academic Search

    J. W. Kaminski; L. Neary; J. Struzewska; J. C. McConnell; A. Lupu; J. Jarosz; K. Toyota; S. L. Gong; J. Côté; X. Liu; K. Chance; A. Richter

    2008-01-01

    Tropospheric chemistry and air quality processes were implemented on-line in the Global Environmental Multiscale weather prediction model. The integrated model, GEM-AQ, was developed as a platform to investigate chemical weather at scales from global to urban. The current chemical mechanism is comprised of 50 gas-phase species, 116 chemical and 19 photolysis reactions, and is complemented by a sectional aerosol module

  9. Chemical weathering and CO? consumption in the Lower Mekong River.

    PubMed

    Li, Siyue; Lu, X X; Bush, Richard T

    2014-02-15

    Data on river water quality from 42 monitoring stations in the Lower Mekong Basin obtained during the period 1972-1996 was used to relate solute fluxes with controlling factors such as chemical weathering processes. The total dissolved solid (TDS) concentration of the Lower Mekong varied from 53 mg/L to 198 mg/L, and the median (114 mg/L) was compared to the world spatial median value (127 mg/L). Total cationic exchange capacity (Tz(+)) ranged from 729 to 2,607 ?molc/L, and the mean (1,572 ?molc/L) was 1.4 times higher than the world discharge-weighted average. Calcium and bicarbonate dominated the annual ionic composition, accounting for ~70% of the solute load that equalled 41.2×10(9)kg/y. TDS and major elements varied seasonally and in a predictable way with river runoff. The chemical weathering rate of 37.7t/(km(2)y), with respective carbonate and silicate weathering rates of 27.5t/(km(2) y) (13.8mm/ky) and 10.2t/(km(2) y) (3.8mm/ky), was 1.5 times higher than the global average. The CO2 consumption rate was estimated at 191×10(3)molCO2/(km(2)y) for silicate weathering, and 286×10(3)molCO2/(km(2)y) by carbonate weathering. In total, the Mekong basin consumed 228×10(9)molCO2/y and 152×10(9)molCO2/y by the combined weathering of carbonate and silicate, constituting 1.85% of the global CO2 consumption by carbonate weathering and 1.75% by silicates. This is marginally higher than its contribution to global water discharge ~1.3% and much higher than (more than three-fold) its contribution to world land surface area. Remarkable CO2 consumed by chemical weathering (380×10(9)mol/y) was similar in magnitude to dissolved inorganic carbon as HCO3(-) (370×10(9)mol/y) exported by the Mekong to the South China Sea. In this landscape, atmospheric CO2 consumption by rock chemical weathering represents an important carbon sink with runoff and physical erosion controlling chemical erosion. PMID:24291559

  10. Passive millimeter-wave retrieval of global precipitation utilizing satellites and a numerical weather prediction model

    E-print Network

    Surussavadee, Chinnawat

    2007-01-01

    This thesis develops and validates the MM5/TBSCAT/F([lambda]) model, composed of a mesoscale numerical weather prediction (NWP) model (MM5), a two-stream radiative transfer model (TBSCAT), and electromagnetic models for ...

  11. Estimation of weathering rates and CO2 drawdown based on solute load: Significance of granulites and gneisses dominated weathering in the Kaveri River basin, Southern India

    NASA Astrophysics Data System (ADS)

    Pattanaik, J. K.; Balakrishnan, S.; Bhutani, R.; Singh, P.

    2013-11-01

    The solute load of the Kaveri River (South India) and its tributaries draining diverse Precambrian terrains during pre-monsoon and monsoon periods was determined. Using average annual flow, total drainage area and atmospheric input corrected major ion concentrations of these rivers chemical weathering rates, annual fluxes of different ionic species to the ocean and CO2 consumption rates were estimated. Bicarbonate is the most dominant ion (27-79% of anion budget) in all the river samples collected during monsoon period followed by Ca2+, whereas, in case of pre-monsoon water samples Na+ is the most dominant ion (in meq/l). Two approaches were adopted to estimate silicate and carbonate weathering rates in the drainage basin. At Musuri silicate weathering rate (SWR) is 9.44 ± 0.29 tons/km2/a and carbonate weathering rate (CWR) is 1.46 ± 0.16 tons/km2/a. More than 90% of the total ionic budget is derived from weathering of silicates in the Kaveri basin. CO2 consumption rate in the basin for silicate weathering FCO2sil is 3.83 ± 0.12 × 105 mol/km2/a (upper limit), which is comparable with the Himalayan rivers at upper reaches. For carbonate weathering (FCO2carb) CO2 consumption rate is 0.15 ± 0.03 × 105 mol/km2/a in the Kaveri basin. The lower limit of CO2 consumption rate corrected for H2SO4 during silicate and carbonate weathering is FCO2sil is 3.24 × 1005 mol/km2/a and FCO2carb 0.13 × 105 mol/km2/a respectively. CO2 sequestered due to silicate weathering in the Kaveri basin is 25.41 (±0.82) × 109 mol/a which represents 0.21 (±0.01)% of global CO2 drawdown. This may be due to tropical climatic condition, high rainfall during both SW and NE monsoon and predominance of silicate rocks in the Kaveri basin.

  12. Estimation of confidence intervals of global horizontal irradiance obtained from a weather prediction model

    NASA Astrophysics Data System (ADS)

    Ohtake, Hideaki; Gari da Silva Fonseca, Joao, Jr.; Takashima, Takumi; Oozeki, Takashi; Yamada, Yoshinori

    2014-05-01

    Many photovoltaic (PV) systems have been installed in Japan after the introduction of the Feed-in-Tariff. For an energy management of electric power systems included many PV systems, the forecast of the PV power production are useful technology. Recently numerical weather predictions have been applied to forecast the PV power production while the forecasted values invariably have forecast errors for each modeling system. So, we must use the forecast data considering its error. In this study, we attempted to estimate confidence intervals for hourly forecasts of global horizontal irradiance (GHI) values obtained from a mesoscale model (MSM) de-veloped by the Japan Meteorological Agency. In the recent study, we found that the forecasted values of the GHI of the MSM have two systematical forecast errors; the first is that forecast values of the GHI are depended on the clearness indices, which are defined as the GHI values divided by the extraterrestrial solar irradiance. The second is that forecast errors have the seasonal variations; the overestimation of the GHI forecasts is found in winter while the underestimation of those is found in summer. The information of the errors of the hourly GHI forecasts, that is, confidence intervals of the forecasts, is of great significance for planning the energy management included a lot of PV systems by an electric company. On the PV systems, confidence intervals of the GHI forecasts are required for a pinpoint area or for a relatively large area control-ling the power system. For the relatively large area, a spatial-smoothing method of the GHI values is performed for both the observations and forecasts. The spatial-smoothing method caused the decline of confidence intervals of the hourly GHI forecasts on an extreme event of the GHI forecast (a case of large forecast error) over the relatively large area of the Tokyo electric company (approximately 68 % than for a pinpoint forecast). For more credible estimation of the confidence intervals, it is required to consider the location of the installed PV systems or its capacity over the region.

  13. Vertical structure of the wind field during the Special Observing Period I of the Global Weather Experiment

    NASA Technical Reports Server (NTRS)

    Paegle, J. N.; Paegle, J.; Zhen, Z.; Sampson, G.

    1986-01-01

    The vertical structure of the global atmosphere is analyzed for selected periods of the Special Observing Period I (SOP-I) for the Global Weather Experiment (GWE). The analysis consists of projection of the stream-function and velocity potential at 200 and 850 mb on spherical harmonics and of the wind and height fields on the normal modes of a linearized form of the primitive equations for a basic state at rest. The kinematic vertical structure is discussed in terms of correlation coefficients of the 200 mb and 850 mb winds and analysis of the internal and external normal modes of the primitive equations. The reliability of the results is checked by applying the same analysis methods to data sets obtained from three different institutions: Geophysical Fluid Dynamics Laboratory (GFDL), European Center for Medium Range Weather Forecasting (ECMWF), and Goddard Laboratory for the Atmospheres (GLA). It is found that, on a global basis, vertically reversing circulations are as important as the equivalent barotropic structures. For the verticaly reversing components, the gravity and mixed Rossby-gravity modes have contributions of the same order of magnitude as those of the Rossby modes in tropical latitudes.

  14. The ocean is critical to the Earth's global systems, regulating weather and climate, the concentration of greenhouse gases in the atmosphere, the re-cycling

    E-print Network

    Johannesson, Henrik

    Abstract The ocean is critical to the Earth's global systems, regulating weather and climate resources. Through evaporation to cloud formation to rain, the ocean rejuvenates the Earth's drinking water. There is a growing need and demand for more systematic ocean information at local, national, regional, and global

  15. The global relocatable regional weather prediction model of the German Military Geophysical Office

    Microsoft Academic Search

    Thomas Prenosil; Richard Amtmann; Heinz Derichs

    1999-01-01

    A regional numerical weather prediction system, consisting of an analysis scheme, a forecast model and a variety of interpretation, visualization and military application tools, named `BLM' has been routinely operating at the German Military Geophysical Office (GMGO) since 1984. At that time, the grid domain was confined to Central Europe and parts of the North Atlantic, where a polar stereographic

  16. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering.

    PubMed

    Mills, Benjamin; Lenton, Timothy M; Watson, Andrew J

    2014-06-24

    A shift toward higher atmospheric oxygen concentration during the late Proterozoic has been inferred from multiple indirect proxies and is seen by many as a prerequisite for the emergence of complex animal life. However, the mechanisms controlling the level of oxygen throughout the Proterozoic and its eventual rise remain uncertain. Here we use a simple biogeochemical model to show that the balance between long-term carbon removal fluxes via terrestrial silicate weathering and ocean crust alteration plays a key role in determining atmospheric oxygen concentration. This balance may be shifted by changes in terrestrial weatherability or in the generation rate of oceanic crust. As a result, the terrestrial chemical weathering flux may be permanently altered--contrasting with the conventional view that the global silicate weathering flux must adjust to equal the volcanic CO2 degassing flux. Changes in chemical weathering flux in turn alter the long-term supply of phosphorus to the ocean, and therefore the flux of organic carbon burial, which is the long-term source of atmospheric oxygen. Hence we propose that increasing solar luminosity and a decrease in seafloor spreading rate over 1,500-500 Ma drove a gradual shift from seafloor weathering to terrestrial weathering, and a corresponding steady rise in atmospheric oxygen. Furthermore, increased terrestrial weatherability during the late Neoproterozoic may explain low temperature, increases in ocean phosphate, ocean sulfate, and atmospheric oxygen concentration at this time. PMID:24927553

  17. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering

    PubMed Central

    Mills, Benjamin; Lenton, Timothy M.; Watson, Andrew J.

    2014-01-01

    A shift toward higher atmospheric oxygen concentration during the late Proterozoic has been inferred from multiple indirect proxies and is seen by many as a prerequisite for the emergence of complex animal life. However, the mechanisms controlling the level of oxygen throughout the Proterozoic and its eventual rise remain uncertain. Here we use a simple biogeochemical model to show that the balance between long-term carbon removal fluxes via terrestrial silicate weathering and ocean crust alteration plays a key role in determining atmospheric oxygen concentration. This balance may be shifted by changes in terrestrial weatherability or in the generation rate of oceanic crust. As a result, the terrestrial chemical weathering flux may be permanently altered—contrasting with the conventional view that the global silicate weathering flux must adjust to equal the volcanic CO2 degassing flux. Changes in chemical weathering flux in turn alter the long-term supply of phosphorus to the ocean, and therefore the flux of organic carbon burial, which is the long-term source of atmospheric oxygen. Hence we propose that increasing solar luminosity and a decrease in seafloor spreading rate over 1,500–500 Ma drove a gradual shift from seafloor weathering to terrestrial weathering, and a corresponding steady rise in atmospheric oxygen. Furthermore, increased terrestrial weatherability during the late Neoproterozoic may explain low temperature, increases in ocean phosphate, ocean sulfate, and atmospheric oxygen concentration at this time. PMID:24927553

  18. Generating tangent linear and adjoint versions of NASA\\/GMAO's Fortran90 global weather forecast model

    Microsoft Academic Search

    Ralf Giering; Thomas Kaminski; Ricardo Todling; Ronald Errico; Ronald Gelaro; Nathan Winslow

    The NASA finite volume General Circulation Model (fvGCM) is a three-dimensional Navier-Stokes solver that is being used for quasi-operational weather forecasting at NASA-GSFC. By means of TAF, ecient tangent linear and adjoint versions are generated from the Fortran-90 source code of fvGCM's dynamical core. fvGCM's parallelisa- tion capabilities based on OpenMP and MPI have been transferred to the tangent linear

  19. Tangent Linear and Adjoint Versions of NASA\\/GMAO’s Fortran 90 Global Weather Forecast Model

    Microsoft Academic Search

    Ralf Giering; Thomas Kaminski; Ricardo Todling; Ronald Errico; Ronald Gelaro; Nathan Winslow

    The NASA finite-volume General Circulation Model (fvGCM) is a three-dimensional Navier-Stokes solver being used for quasi-operational weather forecasting at NASA\\/GMAO. We use the automatic differentiation tool TAF to generate eficient tangent linear and adjoint versions from the Fortran 90 source code of fvGCM’s dynamical core. fvGCM’s parallelisation capabilities based on OpenMP and MPI have been transferred to the tangent linear

  20. The Mid-Cretaceous Super Plume, carbon dioxide, and global warming

    Microsoft Academic Search

    Ken Caldeira; Michael R. Rampino

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. We developed a carbonate-silicate cycle model to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. We

  1. Thermal Expansion Calculation of Silicate Glasses at 210°C, Based on the Systematic Analysis of Global Databases

    SciTech Connect

    Fluegel, Alex

    2010-10-01

    Thermal expansion data for more than 5500 compositions of silicate glasses were analyzed statistically. These data were gathered from the scientific literature, summarized in SciGlass© 6.5, a new version of the well known glass property database and information system. The analysis resulted in a data reduction from 5500 glasses to a core of 900, where the majority of the published values is located within commercial glass composition ranges and obtained over the temperature range 20 to 500°C. A multiple regression model for the linear thermal expansivity at 210°C, including error formula and detailed application limits, was developed based on those 900 core data from over 100 publications. The accuracy of the model predictions is improved about twice compared to previous work because systematic errors from certain laboratories were investigated and corrected. The standard model error (precision) was 0.37 ppm/K, with R² = 0.985. The 95% confidence interval for individual predictions largely depends on the glass composition of interest and the composition uncertainty. The model is valid for commercial silicate glasses containing Na2O, CaO, Al2O3, K2O, MgO, B2O3, Li2O, BaO, ZrO2, TiO2, ZnO, PbO, SrO, Fe2O3, CeO2, fining agents, and coloring and de-coloring components. In addition, a special model for ultra-low expansion glasses in the system SiO2-TiO2 is presented. The calculations allow optimizing the time-temperature cooling schedule of glassware, the development of glass sealing materials, and the design of specialty glass products that are exposed to varying temperatures.

  2. Space Weather Monitors -- A Global Education and Small Instruments Program for the IHY 2007

    NASA Astrophysics Data System (ADS)

    Scherrer, D. K.; Mitchell, R.; Cohen, M.; Clark, W.; Styner, R.; Roche, A.; Scherrer, P.; Inan, U.; Lee, S.; Winegarden, S.; Tan, J.; Khanal, S.

    2005-12-01

    Earth's ionosphere reacts strongly to the intense x-ray and ultraviolet radiation released by the Sun during solar events and by lightning during thunderstorms. Students around the world can directly monitor and track these sudden ionospheric disturbances (SIDs) by using a receiver to monitor the signal strength from distant VLF transmitters, and noting unusual changes as the waves bounce off the ionosphere. Stanford's Solar Center, in conjunction with the Space, Telecommunications and Radioscience Laboratory and local educators, have developed inexpensive ionospheric disturbance monitors that students can install and use at their local schools. Students "buy in" to the project by building their own antenna, a simple structure costing little and taking a couple hours to assemble. Data collection and analysis is handled by a local PC. Stanford is providing a centralized data repository where students can exchange and discuss data. Two versions of the monitors exist -- a low-cost version (nicknamed "SID") designed to detect solar flares, and a more sensitive version ("AWESOME") that provides both solar and nighttime research-quality data. Both monitors are currently being placed in high schools and community colleges around the US. Students will have the opportunity to work with a researcher "mentor" to collect and interpret data. Our space weather monitors have been chosen as educational and small intruments projects for deployment to 191 countries around the world for the International Heliophysical Year, 2007. Our presentation will focus on the educational aspects of the Space Weather Monitor program.

  3. Atmospheric CO2 Removal by Enhancing Weathering

    NASA Astrophysics Data System (ADS)

    Koster van Groos, A. F.; Schuiling, R. D.

    2014-12-01

    The increase of the CO2 content in the atmosphere by the release of anthropogenic CO2 may be addressed by the enhancement of weathering at the surface of the earth. The average emission of mantle-derived CO2 through volcanism is ~0.3 Gt/year (109 ton/year). Considering the ~3.000 Gt of CO2 present in the atmosphere, the residence time of CO2 in the earth's atmosphere is ~10,000 years. Because the vast proportion of carbon in biomass is recycled through the atmosphere, CO2 is continuously removed by a series of weathering reactions of silicate minerals and stored in calcium and magnesium carbonates. The addition of anthropogenic CO2 from fossil fuel and cement production, which currently exceeds 35 Gt/year and dwarfs the natural production 100-fold, cannot be compensated by current rates of weathering, and atmospheric CO2 levels are rising rapidly. To address this increase in CO2 levels, weathering rates would have to be accelerated on a commensurate scale. Olivine ((Mg,Fe)2SiO4) is the most reactive silicate mineral in the weathering process. This mineral is the major constituent in relatively common ultramafic rocks such as dunites (olivine content > 90%). To consume the current total annual anthropogenic release of CO2, using a simplified weathering reaction (Mg2SiO4 + 4CO2 + 4H2O --> 2 Mg2+ + 4HCO3- + H4SiO4) would require ~30 Gt/year or ~8-9 km3/year of dunite. This is a large volume; it is about double the total amount of ore and gravel currently mined (~ 17 Gt/year). To mine and crush these rocks to <100 ?m costs ~ 8/ton. The transport and distribution over the earth's surface involves additional costs, that may reach 2-5/ton. Thus, the cost of remediation for the release of anthropogenic CO2 is 300-400 billion/year. This compares to a 2014 global GDP of ~80 trillion. Because weathering reactions require the presence of water and proceed more rapidly at higher temperatures, the preferred environments to enhance weathering are the wet tropics. From a socio-economic view, this would require a transfer of funds to some of the poorest and neediest countries. An additional benefit is that weathered ultramafic rocks produce some of the most fertile soils. It also would contribute directly to the remediation of ocean acidification.

  4. Weather Girl Goes Rogue

    NSDL National Science Digital Library

    Deep Rogue Ram

    This humorous video suggests what might happen if a weather forecaster reported the weather in the context of climate change. There is a sharp contrast between the anchor focusing on short-term local concerns and the weather forecaster describing what is happening on a long-term global basis.

  5. Global precipitation retrieval algorithm trained for SSMIS using a numerical weather prediction model: Design and evaluation

    E-print Network

    Surussavadee, Chinnawat

    This paper presents and evaluates a global precipitation retrieval algorithm for the Special Sensor Microwave Imager/Sounder (SSMIS). It is based on those developed earlier for the Advanced Microwave Sounding Unit (AMSU) ...

  6. Global-scale Observations of the Limb and Disk (GOLD) - New Observing Capabilities for Space Weather Specification and Forecasting

    NASA Astrophysics Data System (ADS)

    Eastes, R.; Codrescu, M.; McClintock, W.; Aksnes, A.; Anderson, D.; Andersson, L.; Burns, A.; Budzien, S.; Daniell, R.; Dymond, K.; Eparvier, F.; Harvey, J.; Immel, T.; Krywonos, A.; Lankton, M.; Lumpe, J.; Prolss, G.; Richmond, A.; Rusch, D.; Siegmund, O.; Solomon, S.; Strickland, D.; Woods, T.

    2007-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) mission of opportunity will fly an ultraviolet imaging spectrograph on a geostationary satellite to measure neutral densities and temperatures in the thermosphere and ionosphere. GOLD will provide the first global-scale observations of temperatures in the lower thermosphere, in addition to more familiar measurements such as aurora location and energy input; peak electron densities in the nighttime ionosphere; and atomic oxygen to molecular nitrogen (O/N2) ratios. GOLD can provide nearly continuous real-time observations of one hemisphere. In addition to measurements on the disk of the Earth, GOLD will also provide measurements of molecular oxygen densities and the temperature profile in the lower thermosphere on the limb of the Earth from stellar occultations. Combined with the advanced models now available, measurements from GOLD will revolutionize our understanding of the global-scale response of the thermosphere and ionosphere to geomagnetic and solar forcing. GOLD is being proposed as a mission of opportunity in response to the Small Explorer (SMEX) and Missions of Opportunity from NASA's Science Mission Directorate, and it would leverage the scheduled solar (Solar Dynamics Observatory) and radiation belt (Radiation Belt Storm Probes) measurements. The data and knowledge gained from GOLD will enhance space weather specification and forecasting capabilities.

  7. A comparison of water vapor derived from GPS occultations and global weather analyses

    Microsoft Academic Search

    E. R. Kursinski; G. A. Hajj

    2000-01-01

    Despite its fundamental importance in radiative transfer, atmospheric dynamics, and the hydrological cycle, atmospheric water is inadequately characterized particularly at a global scale. Occultation measurements from the Global Positioning System (GPS) should improve upon this situation. Individual occultations yield profiles of specific humidity accurate to 0.2 to 0.5 g\\/kg providing sensitive measurements of lower and middle tropospheric water vapor with

  8. Applications of the TIROS-N sounding and cloud motion wind enhancement for the FGGE 'special effort'. [Global Weather Experiment

    NASA Technical Reports Server (NTRS)

    Atlas, R.

    1980-01-01

    In January of 1978, a panel of experts recommended that a 'special effort' be made to enhance and edit satellite soundings and cloud tracked winds in data sparse regions. It was felt that these activities would be necessary to obtain maximum benefits from an evaluation of satellite data during the Global Weather Experiment (FGGE). The 'special effort' is being conducted for the two special observing periods of FGGE. More than sixty cases have been selected for enhancement on the basis of meteorological interest. These cases include situations of blocking, cutoff low development, cyclogenesis, and tropical circulations. The sounding data enhancement process consists of supplementing the operational satellite sounding data set with higher resolution soundings in meteorologically active regions, and with new soundings where data voids or soundings of questionable quality exist.

  9. Weather One

    NSDL National Science Digital Library

    1969-12-31

    From the University of Illinois Extension comes the Weather One instructional Web site for kids. The lesson consists of six pages that cover various weather related topics including seasons, clouds, the atmosphere, wind, global warming, and storms. Each page describes the particular subject, provides related photographs, and contains several activities that reinforce the learning. For example, the clouds page shows how kids can make a cloud and create a collage out of simple material found around the house. The effective organization and clean look of the site will surely make it easy for students to follow and enjoy.

  10. Global chemical weather forecasts for field campaign planning: predictions and observations of large-scale features during MINOS, CONTRACE, and INDOEX

    Microsoft Academic Search

    M. G. Lawrence; P. J. Rasch; R. von Kuhlmann; J. Williams; H. Fischer; M. de Reus; J. Lelieveld; P. J. Crutzen; M. Schultz; P. Stier; H. Huntrieser; J. Heland; A. Stohl; C. Forster; H. Elbern; H. Jakobs; R. R. Dickerson

    2003-01-01

    The first global tropospheric forecasts of O3 and its precursors have been used in the daily flight planning of field measurement campaigns. The 3-D chemistry-transport model MATCH-MPIC is driven by meteorological data from a weather center (NCEP) to produce daily 3-day forecasts of the global distributions of O3 and related gases, as well as regional CO tracers. This paper describes

  11. Global chemical weather forecasts for field campaign planning: predictions and observations of large-scale features during MINOS, CONTRACE, and INDOEX

    Microsoft Academic Search

    M. G. Lawrence; P. J. Rasch; R. von Kuhlmann; J. Williams; H. Fischer; M. de Reus; J. Lelieveld; P. J. Crutzen; M. Schultz; P. Stier; H. Huntrieser; J. Heland; A. Stohl; C. Forster; H. Elbern; H. Jakobs; R. R. Dickerson

    2002-01-01

    The first global tropospheric forecasts of O3 and its precursors have been used in the daily flight planning of field measurement campaigns. The 3-D chemistry-transport model MATCH-MPIC is driven by meteorological data from a weather center (NCEP) to produce daily 3-day forecasts of the global distributions of O3 and related gases, as well as regional CO tracers. This paper describes

  12. Variational Assimilation of TMI Rain Type and Precipitation Retrievals into Global Numerical Weather Prediction

    Microsoft Academic Search

    Kazumasa AONASHI; Nobuo YAMAZAKI; Hirotaka KAMAHORI; Kiyotoshi TAKAHASHI; Fahua LIU; Kazuo YOSHIDA

    2004-01-01

    A One-dimensional Variational Method (1DVAR) was developed in the present study for the assimilation of convective and stratiform rain flags, and precipitation retrieved from TMI into a Japan Meteorological Agency (JMA) global NWP system. In order to simplify the observational operators of the 1DVAR, it was assumed that the rain flags (precipitation) were functions of total water content (divergence) alone.

  13. Parallel, Adaptive-Mesh-Refinement MHD for Global Space-Weather Simulations

    Microsoft Academic Search

    Kenneth G. Powell; Tamas I. Gombosi; Darren L. De Zeeuw; Aaron J. Ridley; Igor V. Sokolov; Quentin F. Stout; Ga´bor To´th

    2003-01-01

    The first part of this paper reviews some issues representing major computational challenges for global MHD models of the space environment. These issues include mathematical formulation and discretization of the governing equations that ensure the proper jump conditions and propagation speeds, regions of relativistic Alfve´n speed, and controlling the divergence of the magnetic field. The second part of the paper

  14. Atmospheric Angular Momentum Forecasts as Novel Tests of Global Numerical Weather Prediction Models

    Microsoft Academic Search

    M. J. Bell; R. Hide; G. Sakellarides

    1991-01-01

    The global circulation of the terrestrial atmosphere exhibits fluctuations of considerable amplitude in all three components of its total angular momentum on interannual, seasonal and shorter timescales. The fluctuations must be intimately linked with nonlinear barotropic and baroclinic energetic conversion processes throughout the whole atmosphere and it is advocated that studies of routinely produced determinations of atmospheric angular momentum (AAM)

  15. Investigating the Climate System: WEATHER. Global Awareness Tour. Problem-Based Classroom Modules

    ERIC Educational Resources Information Center

    Passow, Michael J.

    2003-01-01

    With support from National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center, Institute for Global Environmental Strategies (IGES) has developed educational materials that incorporate information and data from the Tropical Rainfall Measuring Mission (TRMM), a joint satellite mission between the United States and Japan.…

  16. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    E-print Network

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  17. The Australian Subtropical Jet during the Second Observing Period of the Global Weather Experiment

    Microsoft Academic Search

    Julia E. Nogues-Paegle; Zhao Zhen

    1987-01-01

    The upper-level circulation of the Southern Hemisphere winter is characterized by two distinct zonal wind maxima: a subtropical jet found in the vicinity of Australia and the western Pacific Ocean, and a polar jet which maximizes in the Indian Ocean in the 45°-55°S latitudinal belt. This paper describes the global characteristics of the atmosphere for cases with strong subtropical jets

  18. Frequencies and Characteristics of Global Oceanic Precipitation from Shipboard Present-Weather Reports

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.

    1995-01-01

    Ship reports of present weather obtained from the Comprehensive Ocean-Atmosphere Data Set are analyzed for the period 1958-91 in order to elucidate regional and seasonal variations in the climatological frequency, phase, intensity, and character of oceanic precipitation. Specific findings of note include the following: 1) The frequency of thunderstorm reports, relative to all precipitation reports, is a strong function of location, with thunderstorm activity being favored within 1000-3000 km of major tropical and subtropical land masses, while being quite rare at other locations, even within the intertropical convergence zone. 2) The latitudinal frequency of precipitation over the southern oceans increases steadily toward the Antarctic continent and shows relatively little seasonal variation. The frequency of convective activity, however, shows considerable seasonal variability, with sharp winter maxima occurring near 38 deg. latitude in both hemispheres. 3) Drizzle is the preferred form of precipitation in a number of regions, most of which coincide with known regions of persistent marine stratus and stratocumulus in the subtropical highs. Less well documented is the high relative frequency of drizzle in the vicinity of the equatorial sea surface temperature front in the eastern Pacific. 4) Regional differences in the temporal scale of precipitation events (e.g., transient showers versus steady precipitation) are clearly depicted by way of the ratio of the frequency of precipitation at the observation time to the frequency of all precipitation reports, including precipitation during the previous hour. The results of this study suggest that many current satellite rainfall estimation techniques may substantially underestimate the fractional coverage or frequency of precipitation poleward of 50 deg. latitude and in the subtropical dry zones. They also draw attention to the need to carefully account for regional differences in the physical and spatial properties of rainfall when developing calibration relationships for satellite algorithms.

  19. The role of a silicate pump in driving new production

    Microsoft Academic Search

    Richard C. Dugdale; Frances P. Wilkerson; Hans J. Minas

    1995-01-01

    In the past, the importance of silicate as a limiting nutrient for new production in the ocean, and in determining global productivity and carbon budgets, has been relegated to the lower ranks compared to the role of nitrogen and, more recently, iron. This paper describes a “silicate pump” that acts in diatom-dominated communities to enhance the loss of silicate from

  20. Steady- and non-steady-state carbonate-silicate controls on atmospheric CO 2

    NASA Astrophysics Data System (ADS)

    Sundquist, Eric T.

    Two contrasting hypotheses have recently been proposed for the past long-term relation between atmospheric CO 2 and the carbonate-silicate geochemical cycle. One approach (Berner, 1990) suggests that CO 2 levels have varied in a manner that has maintained chemical weathering and carbonate sedimentation at a steady state with respect to tectonically controlled decarbonation reactions. A second approach (Raymo et al., 1988), applied specificlly to the late Cenozoic, suggests a decrease in CO 2 caused by an uplift-induced increase in chemical weathering, without regard to the rate of decarbonation. According to the steady-state (first) hypothesis, increased weathering and carbonate sedimentation are generally associated with increasing atmospheric CO 2, whereas the uplift (second) hypothesis implies decreasing CO 2 under the same conditions. An ocean-atmosphere-sediment model has been used to assess the response of atmospheric CO 2 and carbonate sedimentation to global perturbations in chemical weathering and decarbonation reactions. Although this assessment is theoretical and cannot yet be related to the geologic record, the model simulations compare steady-state and non-steady-state carbonate-silicate cycle response. The e-fold response time of the 'CO 2-weathering' feedback mechanism is between 300 and 400 ka. The response of carbonate sedimentation is much more rapid. These response times provide a measure of the strength of steady-state assumptions, and imply that certain systematic relations are sustained throughout steady-state and non-steady-state scenarios for the carbonate-silicate cycle. The simulations suggest that feedbacks can maintain the system near a steady state, but that non-steady-state effects may contribute to long-term trends. The steady-state and uplift hypotheses are not necessarily incompatible over time scales of a few million years.

  1. Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2

    USGS Publications Warehouse

    Sundquist, E.T.

    1991-01-01

    Two contrasting hypotheses have recently been proposed for the past long-term relation between atmospheric CO2 and the carbonate-silicate geochemical cycle. One approach (Berner, 1990) suggests that CO2 levels have varied in a manner that has maintained chemical weathering and carbonate sedimentation at a steady state with respect to tectonically controlled decarbonation reactions. A second approach (Raymo et al., 1988), applied specificlly to the late Cenozoic, suggests a decrease in CO2 caused by an uplift-induced increase in chemical weathering, without regard to the rate of decarbonation. According to the steady-state (first) hypothesis, increased weathering and carbonate sedimentation are generally associated with increasing atmospheric CO2, whereas the uplift (second) hypothesis implies decreasing CO2 under the same conditions. An ocean-atmosphere-sediment model has been used to assess the response of atmospheric CO2 and carbonate sedimentation to global perturbations in chemical weathering and decarbonation reactions. Although this assessment is theoretical and cannot yet be related to the geologic record, the model simulations compare steady-state and non-steady-state carbonate-silicate cycle response. The e-fold response time of the 'CO2-weathering' feedback mechanism is between 300 and 400 ka. The response of carbonate sedimentation is much more rapid. These response times provide a measure of the strength of steady-state assumptions, and imply that certain systematic relations are sustained throughout steady-state and non-steady-state scenarios for the carbonate-silicate cycle. The simulations suggest that feedbacks can maintain the system near a steady state, but that non-steady-state effects may contribute to long-term trends. The steady-state and uplift hypotheses are not necessarily incompatible over time scales of a few million years. ?? 1991.

  2. Geography & Weather. Weather Mapping.

    ERIC Educational Resources Information Center

    Mogil, H. Michael; Levine, Barbara G.

    1990-01-01

    Presented are 35 activities that center around television and newspaper weather reports. Geography, weather, and other disciplines are included as well as various grade levels. Available resource materials are listed and their uses explained. Parent, administrator, and other faculty member involvement is emphasized. (KR)

  3. RECONSTRUCTING CORONAL MASS EJECTIONS WITH COORDINATED IMAGING AND IN SITU OBSERVATIONS: GLOBAL STRUCTURE, KINEMATICS, AND IMPLICATIONS FOR SPACE WEATHER FORECASTING

    SciTech Connect

    Liu Ying; Luhmann, Janet G.; Lin, Robert P.; Bale, Stuart D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Thernisien, Arnaud [Universities of Space Research Association, Columbia, MD 21044 (United States); Vourlidas, Angelos [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Davies, Jackie A., E-mail: liuxying@ssl.berkeley.ed [Space Science and Technology Department, Rutherford Appleton Laboratory, Didcot (United Kingdom)

    2010-10-20

    We reconstruct the global structure and kinematics of coronal mass ejections (CMEs) using coordinated imaging and in situ observations from multiple vantage points. A forward modeling technique, which assumes a rope-like morphology for CMEs, is used to determine the global structure (including orientation and propagation direction) from coronagraph observations. We reconstruct the corresponding structure from in situ measurements at 1 AU with the Grad-Shafranov method, which gives the flux-rope orientation, cross section, and a rough knowledge of the propagation direction. CME kinematics (propagation direction and radial distance) during the transit from the Sun to 1 AU are studied with a geometric triangulation technique, which provides an unambiguous association between solar observations and in situ signatures; a track fitting approach is invoked when data are available from only one spacecraft. We show how the results obtained from imaging and in situ data can be compared by applying these methods to the 2007 November 14-16 and 2008 December 12 CMEs. This merged imaging and in situ study shows important consequences and implications for CME research as well as space weather forecasting: (1) CME propagation directions can be determined to a relatively good precision as shown by the consistency between different methods; (2) the geometric triangulation technique shows a promising capability to link solar observations with corresponding in situ signatures at 1 AU and to predict CME arrival at the Earth; (3) the flux rope within CMEs, which has the most hazardous southward magnetic field, cannot be imaged at large distances due to expansion; (4) the flux-rope orientation derived from in situ measurements at 1 AU may have a large deviation from that determined by coronagraph image modeling; and (5) we find, for the first time, that CMEs undergo a westward migration with respect to the Sun-Earth line at their acceleration phase, which we suggest is a universal feature produced by the magnetic field connecting the Sun and ejecta. The importance of having dedicated spacecraft at L4 and L5, which are well situated for the triangulation concept, is also discussed based on the results.

  4. Reconnaissance of Field Sites for the Study of Chemical Weathering on the Guayana Shield, South America

    SciTech Connect

    Steefell, C I

    2003-02-01

    Despite the fact that chemical weathering of silicate rocks plays an important role in the draw-down of CO{sub 2} over geologic time scales (Berner and Berner, 1996), the overall controls on the rate of chemical weathering are still not completely understood. Lacking a mechanistic understanding of these controls, it remains difficult to evaluate a hypothesis such as that presented by Raymo and Ruddiman (1992), who suggested that enhanced weathering and CO{sub 2} draw-down resulting from the uplift of the Himalayas contributed to global cooling during the Cenozoic. At an even more fundamental level, the three to four order of magnitude discrepancy between laboratory and field weathering rates is still unresolved (White et al., 1996). There is as yet no comprehensive, mechanistic model for silicate chemical weathering that considers the coupled effects of precipitation, vadose zone flow, and chemical reactions. The absence of robust process models for silicate weathering and the failure to resolve some of these important questions may in fact be related-the controls on the overall rates of weathering cannot be understood without considering the weathering environment as one in which multiple, time-dependent chemical and physical processes are coupled (Malmstrom, 2000). Once chemical weathering is understood at a mechanistic process level, the important controls on chemical weathering (physical erosion, temperature, precipitation) can be folded into larger scale models tracking the global carbon cycle. Our goal in this study was to carry out the preliminary work needed to establish a field research site for chemical weathering om the Cuayana Shield in South America. The Guayana Shield is a Precambrian province greater than 1.5 billion years old covering portions of Venezuela, Guyana (the country), Surinam, French Guiana, and Brazil (Figure 1). More important than the age of the rocks themselves, however, is the age of the erosion surface developed on the Shield, with estimates ranging as old as 65 million years. Preserved mostly in highlands, this very old erosion surface represents an end-member site where physical erosion has been significantly slower than the rate of chemical weathering. Much of the Shield is also noteworthy for the fact that chemical weathering is still occurring today, thus offering the chance to study a system in which a present day weathering regime is accompanied by an integrated weathering record over millions of years (Soler and Lasaga, 2000). If rates of chemical weathering can be determined for this very old weathering system where physical erosion is minor, they can then be compared with rates determined from sites with similar annual temperatures and rainfall, but much higher physical erosion rates. Comparative studies of this kind can provide a parameterization of chemical weathering rates as a function of physical erosion and tectonic uplift that can be used in global models for the carbon cycle.

  5. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Pogge von Strandmann, Philip A. E.; Jenkyns, Hugh C.; Woodfine, Richard G.

    2013-08-01

    The Ocean Anoxic Event 2 (OAE2) about 93.5 million years ago was marked by high atmospheric CO2 concentration, rapid global warming and marine anoxia and euxinia. The event lasted for about 440,000 years and led to habitat loss and mass extinction. The marine anoxia is thought to be linked to enhanced biological productivity, but it is unclear what triggered the increased production and what allowed the subsequent rapid climate recovery. Here we use lithium isotope measurements from carbonates spanning the interval including OAE2 to assess the role of silicate weathering. We find the lightest values of the Li isotope ratio (?7Li) during OAE2, indicating high levels of weathering--and therefore atmospheric CO2 removal--which we attribute to an enhanced hydrological cycle. We use a geochemical model to simulate the evolution of ?7Li and the Ca, Sr and Os isotope tracers. Our simulations suggest a scenario in which the eruption of a large igneous province led to high atmospheric CO2 concentrations and rapid global warming, which initiated OAE2. The simulated warming was accompanied by a roughly 200,000 year pulse of accelerated weathering of mafic silicate rocks, which removed CO2 from the atmosphere. The weathering also delivered nutrients to the oceans that stimulated primary productivity. We suggest that this process, together with the burial of organic carbon, allowed the rapid recovery and stabilization from the greenhouse state.

  6. The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling.

    PubMed

    Thorley, Rachel M S; Taylor, Lyla L; Banwart, Steve A; Leake, Jonathan R; Beerling, David J

    2014-09-11

    On million-year timescales, carbonate rock weathering exerts no net effect on atmospheric CO2 concentration. However, on timescales of decades-to-centuries, it can contribute to sequestration of anthropogenic CO2 and increase land-ocean alkalinity flux, counteracting ocean acidification. Historical evidence indicates this flux is sensitive to land use change, and recent experimental evidence suggests that trees and their associated soil microbial communities are major drivers of continental mineral weathering. Here, we review key physical and chemical mechanisms by which the symbiotic mycorrhizal fungi of forest tree roots potentially enhance carbonate rock weathering. Evidence from our ongoing field study at the UK's national pinetum confirms increased weathering of carbonate rocks by a wide range of gymnosperm and angiosperm tree species that form arbuscular (AM) or ectomycorrhizal (EM) fungal partnerships. We demonstrate that calcite-containing rock grains under EM tree species weather significantly faster than those under AM trees, an effect linked to greater soil acidification by EM trees. Weathering and corresponding alkalinity export are likely to increase with rising atmospheric CO2 and associated climate change. Our analyses suggest that strategic planting of fast-growing EM angiosperm taxa on calcite- and dolomite-rich terrain might accelerate the transient sink for atmospheric CO2 and slow rates of ocean acidification. PMID:25211602

  7. Weather assessment and forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.

  8. Weather Forecasting

    NSDL National Science Digital Library

    This activity is designed to give students an understanding of how to forecast weather and how to use weather reports for their personal benefit. They will be able to tell what weather is, read weather instruments, understand basic cloud formations in relation to the weather, and make forecasts for two days in advance.

  9. Fair weather atmospheric electricity

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.

    2011-06-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in "fair weather" regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  10. Severe Weather on the Web: Computer Lab for WEST Severe Weather Module

    E-print Network

    Jiang, Haiyan

    Severe Weather on the Web: Computer Lab for WEST Severe Weather Module Summary: Students tropical cyclone database webpage.It provides TRMM satellite observations of global tropical cyclones Weather Service-- National Weather Hazards Website: http://www.weather.gov/view/largemap.php --This

  11. Enhanced weathering strategies for cooling the planet and saving coral reefs

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Quirk, J.; Thorley, R.; Kharecha, P. A.; Hansen, J. E.; Ridgwell, A. J.; Lomas, M.; Banwart, S. A.

    2014-12-01

    Acceleration of the chemical weathering sink for atmospheric CO2 via distribution of pulverized silicate rocks across terrestrial landscapes has been proposed as a macro-engineering Carbon Dioxide Removal (CDR) scheme, but its effectiveness and response to ongoing global change is poorly understood. We employ a detailed spatially resolved weathering model driven by two ensemble Representative Concentration Pathway (RCP) projections of 21st Century climate (RCP8.5 and RCP4.5) to assess enhanced weathering and examine feedbacks on atmospheric CO2 and ocean carbonate biogeochemistry. Atmospheric CO2 reduction of ~100-260 ppm by year 2100, the range depending mainly on rock composition, is obtained by spreading 5 kg m-2 yr-1 over 20 Mkm2 tropical weathering 'hotspots'. Ocean acidification is neutralized in RCP4.5 and ameliorated in RCP8.5 due to enhanced land-ocean export of weathered alkalinity products and reduced CO2 forcings, and the aragonite saturation state of surface oceans is raised to >3.5, thus avoiding likely extinction of coral reef ecosystems. We suggest that accelerated weathering has substantial potential to help limit global warming and benefits to marine life not obtained from other CDR approaches, but major issues of cost, social acceptability, and potential unanticipated consequences should encourage urgent efforts to phase down fossil fuel emissions.

  12. Weather Watch

    ERIC Educational Resources Information Center

    Bratt, Herschell Marvin

    1973-01-01

    Suggests a number of ways in which Federal Aviation Agency weather report printouts can be used in teaching the weather section of meteorology. These weather sequence reports can be obtained free of charge at most major airports. (JR)

  13. Weather Vane

    NSDL National Science Digital Library

    Fresno Community Science Workshop

    2011-01-01

    In this meteorology activity, learners build weather vanes using straws, paperclips, and cardstock. Learners will explore wind and air resistance as well as how weather vanes are used to understand and predict weather.

  14. Weathering and weathering rates of natural stone

    NASA Astrophysics Data System (ADS)

    Winkler, Erhard M.

    1987-06-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the rocks' permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of the causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between disolution, crack-corrosion, and expansion-contraction cycies triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  15. From short-range barotropic modelling to extended-range global weather prediction: a 40-year perspective

    Microsoft Academic Search

    Lennart Bengtsson

    1999-01-01

    At the end of the 20th century, we can look back on a spectacular development of numerical weather prediction, which has, practically uninterrupted, been going on since the middle of the century. High-resolution predictions for more than a week ahead for any part of the globe are now routinely produced and anyone with an Internet connection can access many of

  16. Living in the Weather

    NSDL National Science Digital Library

    National Science Teachers Association (NSTA)

    2006-12-13

    What is weather? Is climate different from weather? It doesn't matter where you live or where you travel, weather patterns influence your daily life. In this guide, students will engage in exploring and predicting the conditions in the atmosphere that are responsible for weather patterns and climatic conditions, and investigate how extreme weather impacts humans and the environment. While many of the keywords embedded into the "Living in the Weather" themes will be familiar, do your students really understand them? This guide provides teacher-tested, reliable links that allow you and your students to "surf" the internet in a quest to better understand how atmospheric conditions directly relate to weather on Earth. Understanding weather and climate can be a great opportunity for you to engage students in topics and themes that connect Earth and space science, life science, and physical science in a real way. The National Science Education Standards (NSES) focus on the study of weather and climate and their impact on human life. This guide uses the ongoing work and technology of the National Oceanic and Atmospheric Administration (known to the public simply as NOAA). NOAA scientists study our planet Earth in a global way. Working together with scientists worldwide, NOAA scientists study the diversity of living organisms (including humans) and their impact on our environment--not only in our country but in every country and continent around the world.

  17. UM Weather

    NSDL National Science Digital Library

    Sponsored by The Weather Underground at the University of Michigan at Ann Arbor, UM Weather bills itself as the "Internet's premier source of weather information." The site offers several general audience tools such as the Fast Forecast for any city in the US, ski weather, and weather cams. But, it also provides access to over two dozen weather software packages, a new computer model forecasts page, and most impressively a list of close to 400 other weather related Web sites. Professionals and researchers will appreciate the non-technical feel of the site and the valuable information they can procure from it.

  18. Severe Weather

    NSDL National Science Digital Library

    National Science Teachers Association (NSTA)

    2005-04-01

    Meteorologists disagree as to what constitutes severe weather. However, most concur that thunderstorms, tornadoes, and hurricanes, all considered to be "convective" weather, fit the definition of severe weather, which is a weather condition likely to cause hardship. This science guide will explore each of the three weather phenomena. By virtue of their locations, most students are familiar with at least one of the three severe weather events. Students who tour the web sites will have an opportunity to make connections between the familiar and the perhaps less understood weather events.

  19. Basalt Weathering Rates Across Scales

    NASA Astrophysics Data System (ADS)

    Navarresitchler, A.; Brantley, S.

    2006-12-01

    Weathering of silicate minerals is a known sink for atmospheric CO2. An estimated 30%-35% of the consumption of CO2 from continental silicate weathering can be attributed to basalt weathering (Dessert et al., 2003). To assess basalt weathering rates we examine weathering advance rates of basalt (w, mm/yr) reported at four scales: denudation rates from basalt watersheds (tens of kilometers), rates of soil formation from soil profiles developed on basaltic parent material of known age (meters), rates of weathering rind formation on basalt clasts (centimeters), and laboratory dissolution rates (millimeters). Basalt weathering advance rates calculated for watersheds range between 0.36 and 9.8x10-3 mm/yr. The weathering advance rate for a basalt soil profile in Hawaii is 8.0x10-3 mm/yr while advance rates for clasts range from 5.6x10-6 to 2.4x10-4 mm/yr. Batch and mixed flow laboratory experiments performed at circum- neutral pH yield advance rates of 2.5x10^{-5} to 3.4x10-7 mm/yr when normalized to BET surface area. These results show increasing advance rates with both increasing scale (from laboratory to watersheds) and increasing temperature. If we assume that basalt weathers at an intrinsic rate that applies to all scales then we conclude that variations in weathering advance rates arise from variations in surface area measurement at different scales (D); therefore, basalt weathering is a fractal system. We measure a fractal dimension (dr) of basalt weathering of 2.2. For Euclidean geometries, measured surface area does not vary with the scale at which it is measured and dr equals 2. For natural surfaces, surface area is related to the scale at which it is measured. As scale increases, the minimum size of the surface irregularities that are measurable also increases. The ratio between BET and geometric normalized laboratory dissolution rates has been defined as a roughness parameter, ?, which ranges from ~10-100. We extend the definition of this roughness parameter to compare weathering advance rates at varying scales. Given that, w=10^{-3.7}D^{0.23} we can use the fractal dimension of basalt weathering to define the roughness factor for basalt weathering as, ?=wD1/wD2=(D1/D2)^{0.23}.

  20. Prediction versus Projection: How weather forecasting and

    E-print Network

    Howat, Ian M.

    Context: Global http://data.giss.nasa.gov/ #12;Numerical Weather Prediction Collect ObservationsPrediction versus Projection: How weather forecasting and climate models differ. Aaron B. Wilson Weather and Climate? · Weather*: The state of the atmosphere, mainly with respect to its effects upon life

  1. BBC Weather

    NSDL National Science Digital Library

    At this website, the BBC offers an array of materials dealing with weather. Meteorologists can discover employment opportunities. Individuals with spectacular photographs of weather phenomenon can submit their images to the photo gallery. Students and educators can find introductory materials on basic weather concepts, forecasting, extreme events, and broadcasting the weather. The website offers fun weather-related games and projects, a meteorology glossary, and links to other educational websites.

  2. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Kauristie, Kirsti; Aylward, Alan D.; Denardini, Clezio M.; Gibson, Sarah E.; Glover, Alexi; Gopalswamy, Nat; Grande, Manuel; Hapgood, Mike; Heynderickx, Daniel; Jakowski, Norbert; Kalegaev, Vladimir V.; Lapenta, Giovanni; Linker, Jon A.; Liu, Siqing; Mandrini, Cristina H.; Mann, Ian R.; Nagatsuma, Tsutomu; Nandy, Dibyendu; Obara, Takahiro; Paul O'Brien, T.; Onsager, Terrance; Opgenoorth, Hermann J.; Terkildsen, Michael; Valladares, Cesar E.; Vilmer, Nicole

    2015-06-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. We recognize that much progress has been made and continues to be made with a powerful suite of research observatories on the ground and in space, forming the basis of a Sun-Earth system observatory. But the domain of space weather is vast - extending from deep within the Sun to far outside the planetary orbits - and the physics complex - including couplings between various types of physical processes that link scales and domains from the microscopic to large parts of the solar system. Consequently, advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun-Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recommend advances through priority focus (1) on observation-based modeling throughout the Sun-Earth system, (2) on forecasts more than 12 h ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solar-wind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4) on developing a comprehensive specification of space climate, including the characterization of extreme space storms to guide resilient and robust engineering of technological infrastructures. The roadmap clusters its implementation recommendations by formulating three action pathways, and outlines needed instrumentation and research programs and infrastructure for each of these. An executive summary provides an overview of all recommendations.

  3. Weather and Climate

    NSDL National Science Digital Library

    This site features visual resources and supporting data that illustrate the relationship between weather and climate. Resources are divided by topic including climate resources, weather forecasting, warnings and data, and evidence for global warming. Visualizations and data sets include GIS-based animated maps, static maps, simple animations, and links to real-time stream gauge data. This site provides an array of visual resources that help demonstrate the difference between weather and climate and may be incorporated into lectures, labs, or other activities.

  4. Weather Report

    NSDL National Science Digital Library

    This printable weather report is designed to help students easily note a field site's important meteorological details. The one-page PDF form asks for the following information: date, temperature, precipitation, weather type, and wind speed (based on environmental clues).

  5. Winter Weather

    MedlinePLUS

    ... About CDC.gov . Natural Disasters and Severe Weather Earthquakes Being Prepared Emergency Supplies Home Hazards Indoor Safety ... What's New A - Z Index Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis Volcanoes ...

  6. Weather Talk

    NSDL National Science Digital Library

    Weather Talk is a primer on weather and naval meteorology. It provides a brief overview of major weather elements and is presented in a non-mathematical way, so that the reader will have a better understanding of the basic mechanisms of weather and use it to their advantage and safety in planning and carrying out their own activities. The site explains temperature, wind, pressure, atmospheric moisture, air masses and fronts, thunderstorms, tornadoes, hurricanes, and climatology.

  7. A Century of Monitoring Weather and Crops: The Weekly Weather and Crop Bulletin

    Microsoft Academic Search

    Thomas R. Heddinghaus; Douglas M. Le Comte

    1992-01-01

    Publication of a national weekly weather summary called the Weekly Weather Chronicle began in 1872. This summary was the precursor of today's Weekly Weather and Crop Bulletin (WWCB), a publication that reports global weather and climate conditions relevant to agricultural interests, as well as current national activities and assessments of crop and livestock conditions. The WWCB is produced by the

  8. Sensitivity of the boreal forest-mire ecotone CO2, CH4, and N2O global warming potential to rainy and dry weather

    NASA Astrophysics Data System (ADS)

    ?upek, Boris; Minkkinen, Kari; Vesala, Timo; Nikinmaa, Eero

    2015-04-01

    In a mosaic of well drained forests and poorly drained mires of boreal landscape the weather events such as drought and rainy control greenhouse gas dynamics and ecosystem global warming potential (GWP). In forest-mire ecotone especially in ecosystems where CO2 sink is nearly balanced with CO2 source, it's fairly unknown whether the net warming effect of emissions of gases with strong radiative forcing (CH4 and N2O) could offset the net cooling effect of CO2 sequestration. We compared the net ecosystem CO2 exchange (NEE) estimated from the carbon sequestrations of forest stands and forest floor CO2 fluxes against CH4 and N2O fluxes of nine forest/mire site types along the soil moisture gradient in Finland. The ground water of nine sites changed between 10 m in upland forests and 0.1 m in mires, and weather during three years ranged between exceptionally wet and dry for the local climate. The NEE of upland forests was typically a sink of CO2, regardless the weather. Though, xeric pine forest was estimated to be a source of CO2 during wet and intermediate year and became a weak sink only in dry year. The NEE of forest-mire transitions ranged between a sink in dry year, while increased stand carbon sequestration could offset the reduced forest floor CO2 emission, and a source in wet year. The NEE of two sparsely forested mires strongly differed. The lawn type mire was balanced around zero and the hummock type mire was relatively strong NEE sink, regardless the weather. Generally, nearly zero N2O emission could not offset the cooling effect of net CH4 sink and net CO2 sink of upland forest and forest-mire transitions. However in sparsely forested mires, with N2O emission also nearly zero, the CH4 emission during wet and intermediate year played important role in turning the net cooling effect of NEE into a net warming. When evaluating GWP of boreal landscapes, undisturbed forest-mire transitions should be regarded as net cooling ecosystems instead of hotspots of net warming.

  9. Predicting the Weather

    NSDL National Science Digital Library

    This Topic in Depth explores the science behind predicting the weather. First, the United States Search and Rescue Task Force describe the basic tools and knowledge used to create weather forecasts (1). Students can find concise, clear explanations of weather, fronts and air masses, high and low pressure, precipitation, and water vapor and humidity as well. By performing the activities presented in the second website, fourth grade students can learn about weather instruments and data collection (2). This website, produced by the Government of Saskatchewan, also explores how the weather can impact local communities. Third, Edheads offers a Macromedia Flash Player enhanced interactive module allowing students to predict the weather by examining weather maps (3 ). Through this website, users can become familiar with the concepts of warm and cold fronts, wind direction and speed, air pressure, and humidity. The fourth website, supplied by Annenberg / CPB, discusses weather satellites, Doppler radar, and additional tools forecasters use to predict the weather (4). Students can find a wind chill calculator along with a brief discussion of the history of forecasting and weather lore. Next, NOAA provides graphics for five forecast models: the ETA, the Global Forecast System (GFS), the Wave Watch III (WW3), the Nested Grid model (NGM), and the Rapid Update Cycle (RUC) (5). Outputs are available for North America, North Pacific, Western North Atlantic, and the Polar Ice Drift. Users can find links to detailed descriptions of the inputs and history of each model. Sixth, the British government's Met Office describes numerical modeling and its components (6). Students and educators can learn about the future in forecasting as well as educational opportunities with the Cooperative Program for Meteorology, Education, and Training (COMET).

  10. World Weather

    NSDL National Science Digital Library

    Elias, Jaume Sanchez

    2014-02-20

    What's going on in the world of weather? Are there storms around Sri Lanka? What about the snows of Kilimanjaro? These can be pressing questions, indeed, and the World Weather app is a great way to stay in touch with weather patterns around the globe. Users will find that they can just type in a city name to see the current weather and also zoom around the globe as they see fit. It's a remarkable addition to the world of existing weather tracking apps and is compatible with all operating systems.

  11. Weather Watcher

    NSDL National Science Digital Library

    Singer, Mike

    As spring progresses, weather conditions can continue to fluctuate dramatically, something that may foil vacation plans or other outings. Keeping that in mind, visitors may do well to download the Weather Watcher application created by Mike Singer. With this application, users may automatically retrieve the current weather conditions, look through hourly forecasts, keep abreast of severe weather alerts, and take a look at weather maps for almost any city world-wide. This application is compatible with all systems running Windows 98 and above.

  12. The role of nitrification in silicate hydrolysis in soils near Santa Cruz, CA

    NASA Astrophysics Data System (ADS)

    Kyker-Snowman, E.; White, A.; Lawrence, C. R.; Schulz, M. S.

    2013-12-01

    In some ecosystems, nitrification (microbial conversion of ammonium to nitrate) may supplant carbonic acid as a source of acidity and drive silicate weathering. Recent studies have explored the impact that ammonium fertilizer addition to soils has on weathering of various mineral types (Pacheco et al. 2013) and demonstrated directly that ammonium addition to soils can increase carbonate weathering (Gandois et al. 2011). Some evidence points to a role for nitrification in silicate weathering at a series of coastal grassland terraces near Santa Cruz, CA. Weathering rates in these soils have been estimated using the byproducts of silicate hydrolysis (Cl--adjusted Na+ and other cations). If carbonic acid from dissolved CO2 is the source of acidity in silicate hydrolysis, bicarbonate should balance the cations produced during weathering. However, in the Santa Cruz soils nitrate is the dominant anion balancing cation concentrations. High concentrations of CO2 (>1%) at depths greater than 1m may provide additional support for nitrification-based silicate hydrolysis at Santa Cruz. We evaluate the role of nitrification in silicate weathering for soils from the Santa Cruz Marine Terrace Chronosequence using a column ammonium-addition experiment and a basic weathering model. The column experiment uses ammonium inputs in excess of natural inputs and measures weathering products in eluted fluids over time. The model incorporates more realistic estimates of ammonium input and explores whether the observed concentrations of cations, nitrate and CO2 seen at Santa Cruz can be explained by nitrification-driven acidity or if other inputs need to be considered. Gandois, L, Perrin, A-S, and Probst, A. 2011. Impact of nitrogenous fertiliser-induced proton release on cultivated soils with contrasting carbonate contents: A column experiment. Geochimica et Cosmochimica Acta 75 pp. 1185-1198. Pacheco, F, Landim, P, and Szocs, T. 2013. Anthropogenic impacts on mineral weathering: A statistical perspective. Applied Geochemistry 36 pp. 34-48.

  13. The impact of tropical wind data on the analysis and forcasts of the GLA GCM for the global weather experiment

    NASA Technical Reports Server (NTRS)

    Paegle, Jan; Baker, W. E.

    1985-01-01

    It is well-known that divergent wind estimates are much more dependent upon the analysis system than are estimates of the rotational wind. This conclusion is supported in recent analyses of FGGE SOP1 data produced by the Goddard Laboratory for Atmospheres (GLA), the Geophysical Fluid Dynamics Laboratory (GFDL) and the European Center for Medium Range Weather Forecasting (ECMWF). These analyses differ in the forecast models that are used for the four-dimensional assimilation, in the data rejection criteria, and, to a certain extent, in the data density. Because the final divergent wind is a product of both model constraints and observation, it is relevant to inquire how much of each goes into the final product. We presently investigate this question through a systematic analysis of tropical data that are sampled at different densities by the GLA GCM.

  14. Mitigation of Atmospheric Delay in SAR Absolute Ranging Using Global Numerical Weather Prediction Data: Corner Reflector Experiments at 3 Different Test Sites

    NASA Astrophysics Data System (ADS)

    Cong, Xiaoying; Balss, Ulrich; Eineder, Michael

    2015-04-01

    The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the Base of Far-Distributed Test Sites; EUSAR 2014; 10th European Conference on Synthetic Aperture Radar; Proceedings of. VDE, 2014: 1-4. [3] Eineder M., Balss U., Gisinger C., et al. TerraSAR-X pixel localization accuracy: Approaching the centimeter level, Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE, 2014: 2669-2670. [4] Cong X., Balss U., Eineder M., et al. Imaging Geodesy -- Centimeter-Level Ranging Accuracy With TerraSAR-X: An Update. Geoscience and Remote Sensing Letters, IEEE, 2012, 9(5): 948-952. [5] Cong X. SAR Interferometry for Volcano Monitoring: 3D-PSI Analysis and Mitigation of Atmospheric Refractivity. München, Technische Universität München, Dissertation, 2014.

  15. Norcholestane in Miocene Onnagawa siliceous sediments, Japan

    SciTech Connect

    Suzuki, Noriyuki; Sampei, Yoshikazu; Koga, Osamu (Shimane Univ. (Japan))

    1993-09-01

    A significant amount of 24-norcholestane with 20R, 5[alpha](H), 14[alpha](H), 17[alpha](H) stereochemistry is often found in marine siliceous sediments of the Middle Miocene Onnagawa Formation, Japan. Some Onnagawa siliceous sediments are abnormally abundant in 24-norcholestane. The primary production in the northeastern Japan Sea during the Middle Miocene was markedly increased due to the invasion of nutrient-rich cold seawater from the north accompanied by the tectonic opening of the Japan Sea. 24-norcholestane in high relative abundance is derived mainly from the marine diatoms which were enhanced during this event. The drastic ecological change caused by rapid tectonic opening of the Japan Sea and global climatic deterioration during Middle Miocene time is suggested to be influential in the formation of 24-norcholestane-rich Onnagawa siliceous sediments.

  16. The influence of tropical wind data on the analysis and forecasts of the GLAS GCM for the Global Weather Experiment

    NASA Technical Reports Server (NTRS)

    Paegle, J.; Baker, W. E.

    1985-01-01

    Several densities of tropical divergent wind data were included in a fourth-order GCM to examine the effects on the accuracy of the model predictions. The experiments covered assimilation of all available tropical wind data, no tropical wind data between 20 deg N and 20 deg S, only westerly tropical wind data and only easterly tropical wind data. The predictions were all made for the 200 mb upper troposphere. Elimination of tropical data produced excessively strong upper tropospheric westerlies which in turn amplified the globally integrated rotational flow kinetic energy by around 10 percent and doubled the global divergent flow kinetic energy. Retaining only easterly wind data, ameliorated most of the error. Inclusion of all the tropical wind data however, did not lead to overall positive effects, as the data were linked to tropical wave energetics and ageostrophic winds which were already assimilated in the model.

  17. Weather Instruments

    NSDL National Science Digital Library

    This Topic in Depth discusses the variety of instruments used to collect climate and weather data. The first two websites provide simple introductions to the many weather instruments. Bethune Academy's Weather Center (1) discusses the functions of psychrometers, anemometers, weather balloons, thermometers, and barometers. The Illinois State Water Survey (2) furnishes many images of various instruments that collect data daily for legal issues, farmers, educators, students, and researchers. The third website (3), created by the Center for Improving Engineering and Science Education (CIESE), provides a classroom activity to educate users on how to build and use weather instruments. By the end of the group project, students should know all about wind vanes, rain gauges, anemometers, and thermometers. Next, the Miami Museum of Science provides a variety of activities to help students learn about the many weather instruments including wind scales and wind chimes (4). Students can learn about the wind, air pressure, moisture, and temperature. At the fifth website, the Tyson Research Center at Washington University describes the devices it uses in its research (5). At the various links, users can find out the center's many projects that utilize meteorological data such as acid rain monitoring. The sixth website, a pdf document created by Dr. John Guyton at the Mississippi State University Extension Service, provides guidance to teachers about the education of weather patterns and instruments (6). Users can find helpful information on pressure systems, humidity, cloud patterns, and much more. Next, the University of Richmond discusses the tools meteorologists use to learn about the weather (7). While providing materials about the basic tools discussed in the other websites, this site also offers information about weather satellites, radar, and computer models. After discovering the many weather instruments, users can learn about weather data output and analysis at the Next Generation Weather Lab website (8). This expansive website provides an abundance of surface data and upper air data as well as satellite and radar images for the United States.

  18. Jetstream: An Online Weather School

    NSDL National Science Digital Library

    2006-01-01

    Jetstream is an online weather school from the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service. Materials featured here include a selection of modules on weather on the web, the atmosphere, global weather, synoptic meteorology and other topics. A certificate of completion for each module can be printed by students who successfully complete their work. A topic matrix provides access to the sections for each module, beginning with an introduction and ending with review questions. In addition, an appendix for teachers features a glossary, list of acronyms, downloading instructions, answers to review questions, and overviews of the lesson plans within each module.

  19. KoninklijkNederlandsMeteorologischInstituut Changes in extreme weather

    E-print Network

    Stoffelen, Ad

    KoninklijkNederlandsMeteorologischInstituut Changes in extreme weather in Africa under global:Percentagechangeinprecipitationaround2050comparedwith1971-2000in6models. #12;Changes in extreme weather in Africa under global warming:ObservedandsimulatedsummerrainfallinsouthernAfricazone2(Zimbabweandsurroundings). #12;Changes in extreme weather in Africa under global warming

  20. Some topics on geochemistry of weathering: a review.

    PubMed

    Formoso, Milton L L

    2006-12-01

    Weathering is a complex process comprising physical disaggregation, chemical and biological decomposition of rocks and minerals transforming complex structure minerals in simpler ones. Hydrolysis of silicates is perhaps the most important process but associated certainly to biological weathering. It is discussed the role ofwaters: activities/concentrations of chemical species, pH, Eh, importance of complexes. Weathering is not only a destructive process. It can concentrate chemical species and form mineral deposits (kaolin, bauxite, Fe, Mn, P, Nb, Au). Weathering studies are important in pedology, engineering geology, hydrogeology, paleoclimatology and ecology. The use of stonemeal is based upon the study of rock weathering. PMID:17143414

  1. Oceans, Climate and Weather

    NSDL National Science Digital Library

    Kimberly Lightle

    2006-01-01

    What is the difference between weather and climate? What do the oceans have to do with them? Weather is the day-to-day state of the atmosphere and its short-term (minutes to weeks) variation. Climate is typically described by the regional patterns of seasonal temperature and precipitation over 30 years. The averages of annual temperature, rainfall, cloud cover, and depth of frost penetration are all typical climate-related statistics. The oceans influence the worlds climate by storing solar energy and distributing it around the planet through currents and atmospheric winds.This publication is all about developing your students understandings of earths oceans and the major effect they have on climate. Understanding and interpreting local weather data and understanding the relationship between weather and climate are important first steps to understanding larger-scale global climate changes. Activities that ask students to collect and analyze local weather data as well as analyze global data can be found in the Lessons and Activities section. Analyzing and interpreting data is a major focus of this publication. Numerous data sets can be found in the Sources for Real Data section. The Background Information section and the article Tomorrows Forecast will help reinforce your own content knowledge.

  2. Quantification of physical weathering rates using thermodynamics

    Microsoft Academic Search

    F. Gans; S. Arens; S. J. Schymanski; A. Kleidon

    2010-01-01

    Physical weathering plays an important role in the global rock cycle in that it breaks up primary rock, thereby increasing the surface area for chemical weathering and providing the substrate for soil formation. We use a simple, thermodynamics based approach to quantify magnitudes of weathering, their spatial variation across climatic regions and their sensitivity to climatic change. Our approach is

  3. Weather Forecasting

    NSDL National Science Digital Library

    Twin Cities Public Television, Inc.

    2005-01-01

    This activity (on page 2 of the PDF) is a full inquiry investigation into meteorology and forecasting. Learners will research weather folklore, specifically looking for old-fashioned ways of predicting the weather. Then, they'll record observations of these predictors along with readings from their own homemade barometer, graphing the correct predictions for analysis. Relates to linked video, DragonflyTV: Forecasting.

  4. The effect of rock composition on cyanobacterial weathering of crystalline basalt and rhyolite.

    PubMed

    Olsson-Francis, K; Simpson, A E; Wolff-Boenisch, D; Cockell, C S

    2012-09-01

    The weathering of volcanic rocks contributes significantly to the global silicate weathering budget, effecting carbon dioxide drawdown and long-term climate control. The rate of chemical weathering is influenced by the composition of the rock. Rock-dwelling micro-organisms are known to play a role in changing the rate of weathering reactions; however, the influence of rock composition on bio-weathering is unknown. Cyanobacteria are known to be a ubiquitous surface taxon in volcanic rocks. In this study, we used a selection of fast and slow growing cyanobacterial species to compare microbial-mediated weathering of bulk crystalline rocks of basaltic and rhyolitic composition, under batch conditions. Cyanobacterial growth caused an increase in the pH of the medium and an acceleration of rock dissolution compared to the abiotic controls. For example, Anabaena cylindrica increased the linear release rate (R(i)(l)) of Ca, Mg, Si and K from the basalt by more than fivefold (5.21-12.48) and increased the pH of the medium by 1.9 units. Although A. cylindrica enhanced rhyolite weathering, the increase in R(i)(l) was less than threefold (2.04-2.97) and the pH increase was only 0.83 units. The R(i)(l) values obtained with A. cylindrica were at least ninefold greater with the basalt than the rhyolite, whereas in the abiotic controls, the difference was less than fivefold. Factors accounting for the slower rate of rhyolite weathering and lower biomass achieved are likely to include the higher content of quartz, which has a low rate of weathering and lower concentrations of bio-essential elements, such as, Ca, Fe and Mg, which are known to be important in controlling cyanobacterial growth. We show that at conditions where weathering is favoured, biota can enhance the difference between low and high Si-rock weathering. Our data show that cyanobacteria can play a significant role in enhancing rock weathering and likely have done since they evolved on the early Earth. PMID:22694082

  5. Weather Forecasting

    NSDL National Science Digital Library

    John Nielsen-Gammon

    1996-09-01

    Weather Forecasting is a set of computer-based learning modules that teach students about meteorology from the point of view of learning how to forecast the weather. The modules were designed as the primary teaching resource for a seminar course on weather forecasting at the introductory college level (originally METR 151, later ATMO 151) and can also be used in the laboratory component of an introductory atmospheric science course. The modules assume no prior meteorological knowledge. In addition to text and graphics, the modules include interactive questions and answers designed to reinforce student learning. The module topics are: 1. How to Access Weather Data, 2. How to Read Hourly Weather Observations, 3. The National Collegiate Weather Forecasting Contest, 4. Radiation and the Diurnal Heating Cycle, 5. Factors Affecting Temperature: Clouds and Moisture, 6. Factors Affecting Temperature: Wind and Mixing, 7. Air Masses and Fronts, 8. Forces in the Atmosphere, 9. Air Pressure, Temperature, and Height, 10. Winds and Pressure, 11. The Forecasting Process, 12. Sounding Diagrams, 13. Upper Air Maps, 14. Satellite Imagery, 15. Radar Imagery, 16. Numerical Weather Prediction, 17. NWS Forecast Models, 18. Sources of Model Error, 19. Sea Breezes, Land Breezes, and Coastal Fronts, 20. Soundings, Clouds, and Convection, 21. Snow Forecasting.

  6. Do disease cycles follow changes in weather? Researchers ponder global warming`s effect on the carriers of human illness

    SciTech Connect

    Brown, K.S.

    1996-07-01

    Two years ago, Mother Nature one-upped an Institute of Medicine (IOM) committee big time. In 1991, the committee had wracked its collective brains to come up with a plausible epidemic scenario for a report on disease emergence. The team finally settled on a potential southern US outbreak of yellow fever, a well-known African viral disease carried by mosquitoes. The idea was realistic, if not particularly imaginative. Yellow fever is an old problem. Shortly after the report on microbe-induced epidemics was released, Mother Nature displayed tremendous creativity. In the spring of 1993, a mysterious virus began killing young people in the Southwest. The culprit turned out to be a previously unrecognized strain of hantavirus, which causes a deadly respiratory disease. Emerging from its natural host, the common deer mouse, the hantavirus strain affected at least 131 people. Half died. Today, emerging viruses have shocked the public and sent scientists searching for causes of epidemics and factors that determine how serious disease outbreaks might be be. One factor gaining attention climate. To learn how global warming might affect mosquitoes, mice and other microbe carriers, biologists are studying diseases within an environmental context. This article discusses the work in this area and some of the results, speculations, and future areas of interest.

  7. Nanoporus Silicate Frameworks Nanoporous Copper Silicates with One-Dimen-

    E-print Network

    Wang, Xiqu

    Nanoporus Silicate Frameworks Nanoporous Copper Silicates with One-Dimen- sional 12-Ring Channel arrays of nanometer sizes, are important because of their applications as catalysts and molecular sieves to copper­oxygen polyhedra is suggested by the known structures of several dense copper silicate phases

  8. Planetary Weather

    NSDL National Science Digital Library

    This lesson plan is part of the DiscoverySchool.com lesson plan library for grades 6-8. It focuses on the weather conditions on other planets. After learning more about weather patterns, students research the weather on a given planet and create a visual display of the conditions there. It includes objectives, materials, procedures, discussion questions, evaluation ideas, suggested readings, and vocabulary. There are videos available to order which complement this lesson, and links to teaching tools for making custom quizzes, worksheets, puzzles and lesson plans.

  9. Weather Tools

    NSDL National Science Digital Library

    The Miami Museum of Science provides a variety of activities to help students learn about the many weather instruments including wind scales and wind chimes. Students can learn about the wind, air pressure, moisture, and temperature.

  10. Gravestone Weathering

    NSDL National Science Digital Library

    Leanne Wiberg

    2000-01-01

    In this activity (located on pages 9-14 of PDF), learners visit a cemetery to examine the distinguishing characteristics of rock weathering. After researching stone weathering and acid rain, learners apply their knowledge to collect data related to chemical decomposition and physical disintegration at a cemetery site. This detailed lesson guide includes tips for educators, pre/post activity suggestions, hands-outs, and background information.

  11. Exploring Weather

    NSDL National Science Digital Library

    Miss Emily

    2010-01-29

    Second Grade Standard 3: Students will develop an understanding of their environment. Objective 2: Observe and describe weather. Indicator a: Observe and describe patterns of change in weather. Monday, February 1st: Look at the five-day forecast for Salt Lake City, Utah at Five day forecasts. The high temperature for the day will be in red and the low temperature will be in blue. Make sure you look at the temperature listed in degrees Farenheit (F) not degrees Celcius (C). Make ...

  12. Weather Creator

    NSDL National Science Digital Library

    KShumway

    2009-09-28

    This project explores factors that help create severe winter weather. An interactive simulation provides hands-on experience, followed by guiding questions and resource exploration. Form groups of three. Explore the following simulation: Weather Maker Simulator Use the simulation to answer the following questions on paper. 1. In general, when are winds formed? 2. When winds are blowing, how can you get them to stop? 3. What can you do to make it rain or even snow? 4. Does it always snow when ...

  13. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery

    Microsoft Academic Search

    David L. Kidder; Thomas R. Worsley

    2004-01-01

    Permian waning of the low-latitude Alleghenian\\/Variscan\\/Hercynian orogenesis led to a long collisional orogeny gap that cut down the availability of chemically weatherable fresh silicate rock resulting in a high-CO2 atmosphere and global warming. The correspondingly reduced delivery of nutrients to the biosphere caused further increases in CO2 and warming. Melting of polar ice curtailed sinking of O2- and nutrient-rich cold

  14. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  15. The extent of disorder and properties of silicate glasses, melts and layer-silicates: Spectroscopic analysis and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun

    Silicate glasses and melts have long been studied not only because of their geologic relevance to natural magmas but also because of their technological applications to the glass industry. The inherent aspect of silicate glasses and melts are extent of disorder among framework units and the distribution of internal structural variables. This dissertation is for a systematic exploration of the extent of disorder in silicate glasses, melts and layer-silicates using NMR spectroscopy and analysis both by theoretical prediction based on statistical thermodynamics and by quantum chemical calculations. The objective of the dissertation includes exploration of the consequences of the degree of disorder of the system on physical properties of interest to geologists and material scientists. The degree of randomness in framework in silicate glasses including borosilicate and aluminosilicates was quantified using the models introducing order parameters such as the degree of Al avoidance and the degree of inter-mixing. The model in conjunction with input from high-resolution NMR and quantum chemical calculations was used to calculate the configurational thermodynamic properties in these glasses. We presented general framework for understanding the extent of short-range order in framework silicates, demonstrating that a more complete description of the macroscopic thermodynamic properties of silicates can be derived from information on the degree of framework disorder and provides another strong link between structures of melts and properties. Bond angle and length distributions, one aspect of topological disorder in this system, were also quantified using these methods. 17O MQ (multiple quantum) MAS NMR at high fields were applied to better understand reactivity of oxygen sites in layer silicates which are one of the most dominant constituents of the Earth's surfaces. Several basal and apical oxygen sites in model clay minerals were resolved, providing improved prospects for atomic scale understanding on the geochemical processes such as weathering.

  16. Forecasting wave height probabilities with numerical weather prediction models

    E-print Network

    Stevenson, Paul

    to reflect uncertainty in current global weather conditions. In this paper a method for post of 51 global 10-day forecasts, which are produced daily using a version of the ECMWF numerical weatherForecasting wave height probabilities with numerical weather prediction models Mark S. Roulstona

  17. Evaluating the role of sulfide-weathering in the formation of sulfates or carbonates on Mars

    NASA Astrophysics Data System (ADS)

    Dehouck, E.; Chevrier, V.; Gaudin, A.; Mangold, N.; Mathé, P.-E.; Rochette, P.

    2012-08-01

    Orbital and landed missions to Mars have revealed complex sulfate- and Fe-oxide-bearing mineralogical assemblages, which have been interpreted as the result of a late planet-wide acidic period due to large SO2 emissions. However, this global scenario does not explain the recent discovery of Hesperian and Noachian-aged carbonates in several regions, because they should have been dissolved by the acidic conditions, nor the restriction of sulfate occurrences in preferential regions. Here we present the results of a 4-year-long experimental study designed to test the impact of Fe-sulfides (pyrrhotite Fe0.9S) on the weathering of basaltic silicates (olivine, clino- and orthopyroxene) under an early-Martian-like, CO2-rich atmosphere. Our weathered silicate/sulfide mixtures showed complex parageneses containing elemental sulfur, hydrated sulfates (gypsum, hexahydrite, jarosite) and Fe-(oxy)hydroxides. Olivine-only samples produced nesquehonite, an Mg-carbonate precursor of hydromagnesite and magnesite. These secondary phases are similar to those observed in the Martian sulfate- and carbonate-bearing deposits. Therefore, we propose a geochemical model in which, on the one hand, Martian sulfates mainly formed from weathering of sulfide-enriched basalts producing locally acidic environments and, on the other hand, carbonates were preserved and could even have formed in regions initially devoid of sulfides, thereby resolving the apparent paradox arising from the possible coeval formation of the two types of minerals. These results raise doubts on the need for a global acidic event to produce the sulfate-bearing assemblages, suggest that regional sequestration of sulfate deposits is due to regional differences in sulfide content of the bedrock, and pave the way for reevaluating the likelihood that early sediments preserved biosignatures from the earliest times.

  18. The Weather Doctor

    NSDL National Science Digital Library

    Heidorn, Keith C.

    Published by Spectrum Educational Enterprises, The Weather Doctor Web site is maintained by meteorologist Keith Heidorn. Visitors to the site will find everything from the joys of weather watching, to making rain, to weather history, to much more. Coming from someone who clearly enjoys what they do, this site explores unique aspects of weather including weather people, weather history, and weather and arts.

  19. Wild Weather

    NSDL National Science Digital Library

    2012-08-03

    In this online, interactive module, students learn about severe weather (thunderstorms, hurricanes, tornadoes, and blizzards) and the key features for each type of "wild weather" using satellite images. The module is part of an online course for grades 7-12 in satellite meteorology, which includes 10 interactive modules. The site also includes lesson plans developed by teachers and links to related resources. Each module is designed to serve as a stand-alone lesson, however, a sequential approach is recommended. Designed to challenge students through the end of 12th grade, middle school teachers and students may choose to skim or skip a few sections.

  20. Unisys Weather

    NSDL National Science Digital Library

    The Unisys weather website offers a host of weather analyses and forecasts. In the Analyses link, visitors can find satellite images as well as surface, upper air, and radar images. Visitors can learn the intricacies of Unisys's many forecast models such as the Nested Grid Model (NGM), Aviation Model, and the Rapid Update Cycle (RUC) Model. Users can find archived hurricane data for the Atlantic, the Eastern Pacific, and the Western Pacific. The site also furnishes archived surface maps, infrared satellite images, upper air charts, and sea surface temperature (SST) plots.

  1. Weather Forecasting

    NSDL National Science Digital Library

    In this online, interactive module, students will learn how to interpret weather patterns from satellite images, predict storm paths and forecast the weather for their area. The module is part of an online course for grades 7-12 in satellite meteorology, which includes 10 interactive modules. The site also includes lesson plans developed by teachers and links to related resources. Each module is designed to serve as a stand-alone lesson, however, a sequential approach is recommended. Designed to challenge students through the end of 12th grade, middle school teachers and students may choose to skim or skip a few sections.

  2. Wonderful Weather

    NSDL National Science Digital Library

    Ms. Broadhead

    2007-11-06

    Second Grade Standard 3: Students will develop an understanding of their environment. Objective 2: Observe and describe weather. Indicator a: Observe and describe patterns of change in weather. Monday November 6th: Look at the five-day forecast for Logan Utah at Five Day Forecast in Utah. The high temperature for the day will be in red and the low temperature will be in blue. Look at the temperature listed in degrees Farenheit (F) not degrees Celcius (C). Make a bar graph for the ...

  3. Weather Forecasting

    NSDL National Science Digital Library

    2010-01-01

    Weather Forecasting is one of several online guides produced by the Weather World 2010 project at the University of Illinois. These guides use multimedia technology and the dynamic capabilities of the web to incorporate text, colorful diagrams, animations, computer simulations, audio, and video to introduce topics and concepts in the atmospheric sciences. This module introduces forecast methods and the numerous factors one must consider when attempting to make an accurate forecast. Sections include forecasting methods for different scenarios, surface features affecting forecasting, forecasting temperatures for day and night, and factors for forecasting precipitation.

  4. Thermochemistry of Silicates

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).

  5. Deducing Weathering Processes Using Silicon Isotopes in the Ganges Alluvial Plain, India

    NASA Astrophysics Data System (ADS)

    Frings, P.; De La Rocha, C. L.; Fontorbe, G.; Chakrapani, G.; Clymans, W.; Conley, D. J.

    2014-12-01

    The Ganges Alluvial Plain ('GAP') is the sedimentary infill of the foreland basin created during Himalayan orogeny. Freshly eroded material from the Himalaya and southern cratonic tributaries is deposited into a system with long water-sediment interaction times, creating potential for further generation of river weathering fluxes. To quantify weathering processes in the GAP, 51 sites including all major tributaries were sampled in a September 2013 campaign and analysed for major and minor ions, Ge/Si ratios and ?30Si, ?13C and ?18O. Net dissolved Si (DSi) and major cation yields are 2 to 5 times lower in the GAP than the Himalaya, and at a whole basin scale approximate the global average, indicating that the plain apparently moderates the efficiency of Himalayan weathering rates. Mainstem ?30Si spans 0.81 to 1.93‰ (see figure) and gives the impression of a system buffered to moderate DSi and ?30Si. Ge/Si ratios (µmol/mol) are higher than expected in the Himalaya (>3), reflecting input of Ge-enriched water from hot springs, and decline to ~1.4 in the GAP. For the Himalayan sourced rivers, ?30Si increases with distance from the Himalayan front, and can not be explained entirely by conservative mixing with higher ?30Si peninsular and GAP streams. To a first degree, the ?30Si data suggest incorporation of Si into secondary minerals as the key fractionating process, and that this occurs both in situ during initial weathering and progressively in the GAP. Partitioning of solutes between sources is complicated in the GAP. Consistent with previous work, carbonate weathering dominates the ion fluxes, but with substantial contributions from saline/alkaline soil salts, the chlorination of wastewater and highly variable rainfall chemistry. Due to these contributions, precisely inferring the input from silicate weathering is difficult. We introduce a novel method to infer silicate-weathering rates that exploits the fractionation of Si during clay formation to account for the loss of DSi from solution.

  6. Putting Weather into Weather Derivatives

    NASA Astrophysics Data System (ADS)

    Smith, L. A.; Smith, L. A.

    2001-12-01

    Just as weather forecasting has a colorful and often farsighted history within geophysics, financial mathematics has a long and turbulent history within mathematics. Thus it is no surprise that the intersection of real physics and real financial mathematics provides a rich source of problems and insight in both fields. This presentation targets open questions in one such intersection: quantifying ``weather risk.'' There is no accepted (operational) method for including deterministic information from simulation models (numerical weather forecasts, either best guess or by ensemble forecasting methods), into the stochastic framework most common within financial mathematics. Nor is there a stochastic method for constructing weather surrogates which has been proven successful in application. Inasmuch as the duration of employable observations is short, methods of melding short term, medium-range and long term forecasts are needed. On these time scales, model error is a substantial problem, while many methods of traditional statistical practice are simply inappropriate given our physical understanding of the system. A number of specific open questions, along with a smaller number of potential solutions, will be presented. >http://www.maths.ox.ac.uk/~lenny/WeatherRisk

  7. Seafloor weathering buffering climate: numerical experiments

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching reactions, carbonate precipitation, and clay formation.

  8. The Weather Radar Toolkit, National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center's support of interoperability and the Global Earth Observation System of Systems (GEOSS)

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.

    2006-12-01

    In February 2005, 61 countries around the World agreed on a 10 year plan to work towards building open systems for sharing geospatial data and services across different platforms worldwide. This system is known as the Global Earth Observation System of Systems (GEOSS). The objective of GEOSS focuses on easy access to environmental data and interoperability across different systems allowing participating countries to measure the "pulse" of the planet in an effort to advance society. In support of GEOSS goals, NOAA's National Climatic Data Center (NCDC) has developed radar visualization and data exporter tools in an open systems environment. The NCDC Weather Radar Toolkit (WRT) loads Weather Surveillance Radar 1988 Doppler (WSR-88D) volume scan (S-band) data, known as Level-II, and derived products, known as Level-III, into an Open Geospatial Consortium (OGC) compliant environment. The application is written entirely in Java and will run on any Java- supported platform including Windows, Macintosh and Linux/Unix. The application is launched via Java Web Start and runs on the client machine while accessing these data locally or remotely from the NCDC archive, NOAA FTP server or any URL or THREDDS Data Server. The WRT allows the data to be manipulated to create custom mosaics, composites and precipitation estimates. The WRT Viewer provides tools for custom data overlays, Web Map Service backgrounds, animations and basic filtering. The export of images and movies is provided in multiple formats. The WRT Data Exporter allows for data export in both vector polygon (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, NetCDF, GrADS) formats. By decoding the various Radar formats into the NetCDF Common Data Model, the exported NetCDF data becomes interoperable with existing software packages including THREDDS Data Server and the Integrated Data Viewer (IDV). The NCDC recently partnered with NOAA's National Severe Storms Lab (NSSL) to decode Sigmet C-band Doppler radar data providing the NCDC Viewer/Data Exporter the functionality to read C-Band. This also supports a bilateral agreement between the United States and Canada for data sharing and to support interoperability with the US WSR-88D and Environment Canada radar networks. In addition, the NCDC partnered with the University of Oklahoma to develop decoders to read a test bed of distributed X- band radars that are funded through the Collaborative Adaptive Sensing of the Atmosphere (CASA) project. The NCDC is also archiving the National Mosaic and Next Generation QPE (Q2) products from NSSL, which provide products such as three-dimensional reflectivity, composite reflectivity and precipitation estimates at a 1 km resolution. These three sources of Radar data are also supported in the WRT.

  9. Chemical weathering in the Three Rivers region of Eastern Tibet

    NASA Astrophysics Data System (ADS)

    Noh, Hyonjeong; Huh, Youngsook; Qin, Jianhua; Ellis, Andre

    2009-04-01

    Three large rivers - the Chang Jiang (Yangtze), Mekong (Lancang Jiang) and Salween (Nu Jiang) - originate in eastern Tibet and run in close parallel over 300 km near the eastern Himalayan syntaxis. Seventy-four river water samples were collected mostly during the summer season from 1999 to 2004. Their major element compositions vary widely, with total dissolved solids (TDS) ranging from 31 to 3037 mg/l, reflecting the complex geologic makeup of the vast drainage basins. The major ion distribution of the main channel samples primarily reflects the weathering of carbonates. Evaporite dissolution prevails in the headwater samples of the Chang Jiang in the Tibetan Plateau interior, as evidenced by the high TDS (928 and 3037 mg/l) and the Na-Cl dominant major element composition. Local tributary samples of the Mekong and Salween, draining the Lincang Batholith and the Tengchong Volcano, show distinctive silicate weathering signatures. We used five reservoirs - rain, halite, sulfate, carbonate, and silicate - in a forward model to calculate the contribution from silicate weathering to the total dissolved load and to estimate the consumption rate of atmospheric CO 2 by silicate weathering. Carbonate weathering accounts for about 50% of the total cationic charge (TZ +) in the samples of the Mekong and the Salween exiting the Tibetan Plateau. In the "exit" sample of the Chang Jiang, 45% of TZ + is from halite dissolution inherited from the extreme headwater tributaries in the interior of the plateau, and carbonates contribute only 26% to the TZ +. The net rate of CO 2 consumption by silicate weathering is (103-121) × 10 3 mol km -2 year -1, lower than the rivers draining the Himalayan front. GIS-based analyses indicate that runoff and relief can explain 52% of the spread in the rate of atmospheric CO 2 drawdown by silicate weathering, but other climatic (temperature, precipitation, potential evapotranspiration) and geomorphic (elevation, slope) factors also show collinearity. Only qualitative conclusions can be drawn for the significance of lithology due to lack of digitized lithologic information. The effect of the peculiar drainage pattern due to tectonic forcing is not readily apparent in the major element composition or in increased chemical weathering rates. The 87Sr/ 86Sr ratios and the silicate weathering rates are in general lower in the Three Rivers than in the rivers draining the Himalayan front.

  10. Today's Weather

    NSDL National Science Digital Library

    This activity is part of Planet Diary and contains an online exploration of weather maps. Students use current maps to learn about and locate different features such as low-pressure areas and fronts. They then explore how these are related to severe storms.

  11. Weather Stations

    NSDL National Science Digital Library

    This is a series of seven brief activities about Jupiter's atmosphere and weather. Learners will look at Jupiter's distinct banded appearance, violent storms, and clouds of many different colors. The activities are part of Explore! Jupiter's Family Secrets, a series designed to engage children in space and planetary science in libraries and informal learning environments.

  12. Weather Alert

    NSDL National Science Digital Library

    Integrated Teaching and Learning Program,

    Students discuss the characteristics of storms, including the relationship of weather fronts and storms. Using everyday materials, they develop models of basic lightning detection systems (similar to a Benjamin Franklin design) and analyze their models to determine their effectiveness as community storm warning systems.

  13. Weather Science Hotlist

    NSDL National Science Digital Library

    1969-12-31

    The Franklin Institute Online offers the metadata Web site Weather Science Hotlist. The page contains dozens of links organized into ten topics that include Online Exhibits, Weather Right Now, Background Information, Severe Weather, El Nino/ La Nina, Historical Weather, Career Connections, Activities, Atmosphere, and Weather Forecasting. A great source for anyone looking for online weather information.

  14. Weather Cycles

    NSDL National Science Digital Library

    Mrs. Mitchell

    2010-09-23

    We are professionals in the teaching profession. We designed this project for children ranging from 4th grade to 6th grade. This project explores factors that help create severe winter weather. An interactive simulation provides hands-on experience, followed by guiding questions and resource exploration. YOU WILL NEED: Paper with copied questions, Overhead projector and Students broken up into groups of 3. Form groups of three. Have each group explore the following simulation: Weather Maker Simulator Have students use the simulation to answer the following questions on paper. They should be discussing the questions in their groups. 1. In general, when are winds formed? 2. When winds are blowing, how can you get them to stop? 3. What ...

  15. On the Use of QuikSCAT Scatterometer Measurements of Surface Winds for Marine Weather Prediction

    E-print Network

    Kurapov, Alexander

    and ECMWF global numerical weather prediction models considerably underestimated the spatial variability Centre for Medium-Range Weather Forecasts (ECMWF) global numerical weather prediction (NWP) modelsOn the Use of QuikSCAT Scatterometer Measurements of Surface Winds for Marine Weather Prediction

  16. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 172.410 Section 172.410 Food...HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium...

  17. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 172.410 Section 172.410 Food...HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium...

  18. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 172.410 Section 172.410 Food...HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium...

  19. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food...HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium...

  20. Weathering fluxes to the Gulf of Mexico from the Pliocene to Holocene based on radiogenic isotopes

    NASA Astrophysics Data System (ADS)

    Portier, A. M.; Martin, E. E.; Hemming, S. R.; Thierens, M. M.; Raymo, M. E.

    2014-12-01

    Chemical weathering of the continents plays a key role in the global carbon cycle and delivers solutes to the ocean. Past studies, documented using radiogenic isotopes of detrital and seawater samples, show the intensity of weathering varies with climate over a range of time scales.. We analyzed Pb and Nd isotopic values of seawater extracted from dispersed Fe-Mn oxides, <2?m (clay) and <63?m (silt) detrital fractions of Pliocene to Holocene sediment from Gulf of Mexico ODP Site 625B to evaluate long term variations in weathering fluxes for three time slices: the Pliocene/early Pleistocene, Mid Pleistocene Transition (MPT), and late Pleistocene/Holocene. We also examine short term glacial/interglacial variations. Little variation is seen in Nd isotopes of detrital fractions with age, suggesting little change in the average age of material delivered to the Gulf. Seawater Nd values become less radiogenic over the Pleistocene, consistent with observed changes in Caribbean seawater. Pb isotopes of silt fractions are also relatively constant through time, but clay fractions are more radiogenic at the MPT and dispersed Fe-Mn oxides trend to more radiogenic values in the late Pleistocene. Consequently, the Pb isotopes of dispersed Fe-Mn oxides tend to be less radiogenic than the detrital fractions in samples older than 2000 ka and more radiogenic than the detrital fractions, particularly clays, at the MPT. This may reflect greater incongruent silicate weathering during the MPT, a change in weathering conditions that could be consistent with the Regolith Hypothesis. Over glacial/interglacial timescales, dispersed Fe-Mn oxides Pb isotopes become more radiogenic than detrital fractions, and clay fractions become more radiogenic than silt fractions, during glacial periods. However, all fractions have similar values during interglacials. This pattern is distinct from previous studies that found enhanced incongruent silicate weathering during warm intervals, but is consistent with recent work finding a correlation with carbonate content, whereby low carbonate during glacials at Site 625 corresponds to a greater offset between leachate and detrital Pb isotopes. Biases from "heavy mineral effects" and changes in circulation during periods of lower sea level also need to be considered.

  1. Amending Numerical Weather Prediction forecasts using GPS

    E-print Network

    Stoffelen, Ad

    Amending Numerical Weather Prediction forecasts using GPS Integrated Water Vapour: a case study to validate the amounts of humidity in Numerical Weather Prediction (NWP) model forecasts. This paper presents a case in which the operational limited area model at KNMI (as well as the global model of ECMWF

  2. Weather Radar signals with Alpha Stable Distributions

    Microsoft Academic Search

    M LAGHA

    This work, treats about a modeling of the weather precipitation echoes detected by a weather pulse Doppler radar. The methods used for the simulation of the Doppler spectrum, and I & Q signals representing the precipitations radar echoes, is based on a macroscopic models, i.e. random processes with assigned spectra. We propose global model, with a power spectrum having a

  3. Image processing for weather satellite cloud segmentation

    Microsoft Academic Search

    I. J. H. Leung; J. E. Jordan

    1995-01-01

    Image segmentation of weather satellite imagery is an important first step in an automated weather forecasting system. Accurate cloud extraction is also important in the determination of solar radiative transfer in atmospheric research, where satellite observations are used as inputs to global climate models to predict climatic change. Most of the current cloud extraction algorithms tend to be quite complicated

  4. The rise and fall of continental arcs: Interplays between magmatism, uplift, weathering, and climate

    NASA Astrophysics Data System (ADS)

    Lee, Cin-Ty A.; Thurner, Sally; Paterson, Scott; Cao, Wenrong

    2015-09-01

    Continental arcs, such as the modern Andes or the Cretaceous Sierra Nevada batholith, are some of the highest topographic features on Earth. Continental arc volcanoes may produce more CO2 than most other types of volcanoes due to the interaction of magmas with sedimentary carbonates stored in the continental upper plate. As such, global flare-ups in continental arc magmatism may amplify atmospheric CO2 concentrations, leading to climatic warming. However, the high elevations of continental arcs may also enhance orographic precipitation and change global atmospheric circulation patterns, possibly increasing the efficiency of chemical weathering and drawdown of atmospheric CO2, which may subdue the climatic warming response to volcanic activity. To better evaluate the climatic response, we develop models that integrate magmatic crustal thickening, topographic uplift, isostasy and erosion. The topographic response is used to predict how soil formation rates, soil residence times, and chemical weathering rates vary during and after a magmatic episode. Although magmatism leads to crustal thickening, which requires topographic uplift, highest elevations peak ?10 My after magmatism ends. Relatively high elevations, which enhance erosion and chemical weathering of the continental arc, persist for tens of million years after magmatism ends, depending on erosion kinetics. It has recently been suggested that the Cretaceous-Paleogene greenhouse (high atmospheric CO2 and warm climate) coincided with a global chain of continental arcs, whereas mid- to late Cenozoic icehouse conditions (low atmospheric CO2 and cold climate) coincided with a lull in continental arc activity after 50 Ma. Application of our models to the Sierra Nevada (California, USA) continental arc, which represents a segment of this global Cretaceous-Paleogene continental arc, reproduces the observed topographic and erosional response. Our models require that the newly formed continental arc crust remained high and continued to erode and weather well after (>50 My) the end of magmatism. Thus, in the aftermath of a global continental arc flare-up, both the total volcanic inputs of CO2 decline and the average weatherability of continents increases, the latter due to the increased proportion of widespread remnant topography available for weathering and erosion. This combination leads to a decrease in the long-term baseline of carbon in the ocean/atmosphere system, leading to cooling. Mid-Cenozoic cooling is often attributed solely to increased weathering rates associated with India-Eurasian collision and the Himalayan orogeny. However, the total area of now-extinct Cretaceous-Paleogene continental arcs is 1.3-2 times larger than that of the Himalayan range front and the Tibetan plateau combined, suggesting that weathering of these remnant volcanic arcs may also play a role in drawing down CO2 through silicate weathering and subsequent carbonate burial. In summary, if global continental arc flare-ups lead to greenhouse conditions, long-lived icehouse conditions should follow in the aftermath due to decreased CO2 inputs and an increase in regional weathering efficiency of remnant arc topography.

  5. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. A11, PAGES 25,05325,078, NOVEMBER 1, 2000 Global three-dimensional MHD simulation of a space weather

    E-print Network

    De Zeeuw, Darren L.

    the potential, as well as current limitations, of the MHD-based space weather model for enhancing conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribu- tion grids, thereby leading to broad socioeconomic losses [Wright, 1997

  6. GLOBAL CHANGE RESEARCH NEWS #33: PUBLICATION OF RESEARCH AGENDA FROM UNITED STATES - CANADA SYMPOSIUM ON NORTH AMERICAN CLIMATE CHANGE AND WEATHER EXTREMES

    EPA Science Inventory

    A three-day workshop on climate variability and change and extreme weather events in North America was held in October 1999 in Atlanta, Georgia. The workshop was a bi-national effort conducted under the auspices of a United States - Canada agreement fostering cooperation on activ...

  7. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K\\/sub T\\/ for 248 national weather service stations

    Microsoft Academic Search

    C. L. Knapp; T. L. Stoffel; S. D. Whitaker

    1980-01-01

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling

  8. Insolation data manual: Long-term monthly averages of solar radiation, temperature, degree-days and global KT for 248 National Weather Service stations

    Microsoft Academic Search

    C. L. Knapp; T. L. Stoffel; S. D. Whitaker

    1980-01-01

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling

  9. Calcium isotopes in a proglacial weathering environment: Damma glacier, Switzerland

    Microsoft Academic Search

    Ruth S. Hindshaw; Ben C. Reynolds; Jan G. Wiederhold; Ruben Kretzschmar; Bernard Bourdon

    2011-01-01

    The biogeochemical cycling and isotopic fractionation of calcium during the initial stages of weathering were investigated in an alpine soil chronosequence (Damma glacier, Switzerland). This site has a homogeneous silicate lithology and minimal biological impacts due to sparse vegetation cover. Calcium isotopic compositions, obtained by TIMS using a 43Ca–46Ca double spike, were measured in the main Ca pools. During this

  10. Interannual variability of Martian weather

    Microsoft Academic Search

    C. B. Leovy; J. E. Tillman; W. R. Guest; J. Barnes

    1985-01-01

    Pressure, temperature, imaging, and wind data from the Mutch Memorial Station, the Viking lander located in Mars' subtropics, are used to demonstrate the existence of two disctinct regimes of northern hemisphere winter weather on Mars. One of these regime is characterized by one or more intense global dust storms in which the optical depth reaches about 5 over most of

  11. Position Announcement Weather Decision Technologies, Inc.

    E-print Network

    Droegemeier, Kelvin K.

    environment with common open source tools. Must be a "self-starter" with attention to detail and a desire Focus on enhancing WDT's short term global (0-12 h) weather intelligence by building upon existing

  12. Investigating Weather and Climate with Google Earth

    NSDL National Science Digital Library

    Environmental Literacy and Inquiry Working Group at Lehigh University

    In this activity, students use Google Earth to explore global temperature changes during a recent 50 - 58 year period. They also explore, analyze, and interpret climate patterns of 13 different cities, and analyze differences between weather and climate patterns.

  13. Weather Activities

    NSDL National Science Digital Library

    This entertaining, interactive website is the perfect tool to educate users about the basics of weather forecasting and reporting. The two educational modules, created by EdHeads, each contain three levels and are designed for grades four through nine. While discovering how to predict a three-day forecast, students learn about warm and cold fronts, wind direction and speed, high and low pressure systems, isobars, and humidity. Teachers can find a helpful guide discussing how best to use the site as well as providing an overview of science standards, lesson plans, and pre- and post-tests for students.

  14. Weather Tamers

    NSDL National Science Digital Library

    Donna R. Sterling

    2007-03-01

    Problem-based learning experiences that extend at least two weeks provide an opportunity for students to investigate a real-world problem while learning science content and skills in an exciting way. Meteorology provides a wealth of problems students can investigate while learning specific science concepts and skills found frequently in middle level national and state curricula standards. The hands-on activity described in this article helps students learn about the science behind weather events by planning, constructing, and testing models of cities exposed to a series of simulated hurricanes and tornado conditions.

  15. Mountain Weather

    NSDL National Science Digital Library

    Mountains can be awe-inspiring both for the vistas they provide and for the weather events and long-term climate systems they support. This interactive feature illustrates how a moisture-laden air mass interacts with a mountain slope to produce characteristic patterns of precipitation over the mountain and surrounding areas. Viewers can see how clouds and precipitation form as the air mass ascends the windward side of the peak, and observe the rain shadow created on the leeward side by the descending, warmed, and moisture-depleted air. A background essay and list of discussion questions supplement the interactive feature.

  16. Weather Photography

    NSDL National Science Digital Library

    Ph.D. student Harald Edens describes himself as a "photographer of lightning, clouds, atmospheric optical phenomena and astronomy". His Web site entitled Weather Photography proves this by providing a stunning collection of photographs and movies of atmospheric optics, lightning, clouds, and astronomy. The author describes how the photographs were taken, what equipment was used, and even discusses many of the phenomenon being observed such as mirages and halos. An added bonus of this very interesting site is that the author generously allows free personal use of the photographs.

  17. Destructive Weather

    NSDL National Science Digital Library

    alizabethirwin

    2010-11-03

    What are the effects of different types of destructive weather? Learn All About Hurricanes Record on your chart 3 things that you learned. Watch a Hurricane Video These are the devastating Effects of Hurricanes Learn All About Tornadoes Record on your chart 3 things that you learned. Watch a Tornado Video These are the devastating Effects of tornadoes Learn All About Thunderstorms Record on your chart 3 things that you learned. These are the devastating Effects of thunderstorms Follow these important tips To keep safe. ...

  18. Short Communication: Earth is (mostly) flat, but mountains dominate global denudation: apportionment of the continental mass flux over millennial time scales, revisited

    NASA Astrophysics Data System (ADS)

    Willenbring, J. K.; Codilean, A. T.; Ferrier, K. L.; McElroy, B.; Kirchner, J. W.

    2014-01-01

    Carbon dioxide consumption by silicate mineral weathering and the subsequent precipitation of carbonate sediments sequesters CO2 over geologic timescales. The rate of this carbon sequestration is coupled to rates of continental erosion, which exposes fresh minerals to weathering. Steep mountain landscapes represent a small fraction of continental surfaces but contribute disproportionately to global erosion rates. However, the relative contributions of Earth's much vaster, but more slowly eroding, plains and hills remain the subject of debate. Recently, Willenbring et al. (2013) analyzed a compilation of denudation rates and topographic gradients and concluded that low-gradient regions dominate global denudation fluxes and silicate weathering rates. Here, we show that Willenbring et al. (2003) topographic and statistical analyses were subject to methodological errors that affected their conclusions. We correct these errors, and reanalyze their denudation rate and topographic data. In contrast to the results of Willenbring et al. (2013), we find that the denudation flux from the steepest 10% of continental topography nearly equals the flux from the other 90% of the continental surface combined. This new analysis implies global denudation fluxes of ∼23 Gt yr-1, roughly five times the value reported in Willenbring et al. (2013) and closer to previous estimates found elsewhere in the literature. Although low-gradient landscapes make up a small proportion of the global fluxes, they remain important because of the human reliance, and impact, on these vast areas.

  19. Astrophysics Noise: A Space Weather Signal

    NASA Astrophysics Data System (ADS)

    Collier, Michael R.; Sibeck, David G.; Cravens, Thomas E.; Robertson, Ina P.; Omidi, Nick

    2010-06-01

    Imagine the accuracy of terrestrial weather forecasts if society relied on only a handful of isolated weather stations to supply all the input to meteorological models. Yet that is precisely the daunting situation faced by space weather forecasters, who seek to predict when and how ejections of plasma from the Sun will interact with the Earth's magnetosphere. These interactions can damage spacecraft electronics, produce spurious global positioning and navigation readings, interfere with radio communications, and disrupt electrical power line grids on the ground. Though modern society increasingly relies on satellite technology and electrical conveniences, only a handful of operating heliophysics missions supply the bulk of space weather model inputs.

  20. The Weather Dude

    NSDL National Science Digital Library

    Walker, Nick.

    2002-01-01

    The Weather Dude is a weather education Web site offered by meteorologist Nick Walker of The Weather Channel. For kids, the site offers a great online textbook entitled Weather Basics, which explains everything from precipitation to the seasons, using simple text and fun graphics. Other fun things for kids include weather songs, questions and quizzes, weather proverbs, and more. Teachers are also provided with helpful resources such as weather activity sheets and printable blank maps, as well as many other links to weather forecasts and information that will help make teaching about weather fun.

  1. Visually Accurate Multi-Field Weather Visualization Purdue University

    E-print Network

    Utah, University of

    -dimensional, and involve global scale phenomena. Less commonly, but no less importantly, weather events are examinedVisually Accurate Multi-Field Weather Visualization Kirk Riley Purdue University kriley Abstract Weather visualization is a difficult problem because it com- prises volumetric multi-field data

  2. Weather Prediction Models

    NASA Astrophysics Data System (ADS)

    Bacmeister, Julio T.

    Awareness of weather and concern about weather in the proximate future certainly must have accompanied the emergence of human self-consciousness. Although weather is a basic idea in human existence, it is difficult to define precisely.

  3. Winter Weather Checklists

    MedlinePLUS

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... Weather Information on Specific Types of Emergencies Winter Weather Checklists Language: English Español (Spanish) Recommend on Facebook ...

  4. Hot Weather Tips

    MedlinePLUS

    HOT Weather Tips Printer-friendly version We all suffer in hot weather. However, for elderly and disabled people and ... stress and following these tips for dealing with hot weather. Wear cool clothing: See that the person ...

  5. Ion implantation in silicate glasses

    SciTech Connect

    Arnold, G.W.

    1993-12-01

    This review examines the effects of ion implantation on the physical properties of silicate glasses, the compositional modifications that can be brought about, and the use of metal implants to form colloidal nanosize particles for increasing the nonlinear refractive index.

  6. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  7. The Behaviour of Uranium and Lithium Isotopes During Basalt Weathering and Erosion

    NASA Astrophysics Data System (ADS)

    Pogge von Strandmann, P. A.; Burton, K. W.; James, R. H.; van Calsteren, P.; Gislason, S.

    2005-12-01

    Basalt weathering rates are higher than for many other silicate rocks, and thus exert a strong control on atmospheric CO2 [1]. Moreover, variations in weathering in response to climatic or tectonic change will inevitably affect chemical fluxes to the oceans. Li isotopes potentially provide key information on weathering rates, but their behaviour in the riverine and estuarine environment remains poorly constrained. While U-series nuclides can give information on both the weathering process and the timescale over which it occurs, comparison of both U and Li provides some insight into the processes which govern the geochemical cycles of each element. This study presents new U and Li isotope data for rivers draining basalt terrains in Iceland and Sao Miguel (Azores). Both of these islands are essentially monolithologic, but have different climatic regimes, and variations in river chemistry are linked to differences in the weathering environment, rather than to rock type. River waters from Iceland were taken from both a large catchment in the west of the island, an associated estuary, and from glacial rivers in the south. The U concentration in the rivers ranges from 0.2 to 20 ng/l, and rises from 3 ng/l to almost 3 ?g/l in the estuary, showing conservative behaviour in the mixing zone. Li concentrations range from 0.02 to 1.05 ?g/l in the rivers, and rise to 160 ?g/l in the estuary. Li also behaves conservatively in the mixing zone. For the Azores U and Li river concentrations range from 3 to 212 ng/l and from 0.09 to 3.5 ?g/l, respectively. Highest concentrations are linked to hydrothermal input. Uranium activity ratios (234U/238U) range from 1.13 to 2.14 in Iceland, and from 1.02 to 1.92 in the Azores, showing that silicate weathering can yield a large range of values (down to 1, which is secular equilibrium). Lowest U concentrations typically correspond to highest activity ratios, especially in glacial rivers. The behaviour of U in the catchment shows mixing between the inputs of glaciers, groundwater and hydrothermal water. The 234U/238U ratios in the colloidal fractions are closer to secular equilibrium than their host waters, indicating that these isotopes do not partition equally between the dissolved and colloidal phases. Li isotope values for rivers in Iceland range from 10 to 33 ‰, with low values due to hydrothermal input and high values stemming from superficial weathering in glacial rivers, indicating significant fractionation during weathering of the source basalts. These results indicate that although both elements behave conservatively in the mixing zone, the isotope signal to the oceans may be significantly modified by the weathering environment, in particular the balance of physical/chemical weathering and for U the presence of a colloidal phase. [1] Dessert, C. et al., 2001. Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the Sr-87/Sr-86 ratio of seawater. EPSL, 188(3-4): 459-474. [2] Riotte, J. et al., 2003. Uranium colloidal transport and origin of the U-234-U-238 fractionation in surface waters: new insights from Mount Cameroon. Chem Geol, 202(3-4): 365-381.

  8. THE BIOCOMPATIBILITY OF MESOPOROUS SILICATES

    PubMed Central

    Hudson, Sarah; Padera, Robert F.; Langer, Robert; Kohane, Daniel S.

    2008-01-01

    Micro- and nano- mesoporous silicate particles are considered potential drug delivery systems because of their ordered pore structures, large surface areas and the ease with which they can be chemically modified. However, few cytotoxicity or biocompatibility studies have been reported, especially when silicates are administered in the quantities necessary to deliver low-potency drugs. The biocompatibility of mesoporous silicates of particle sizes ~ 150 nm, ~ 800 nm and ~ 4 µm and pore sizes of 3 nm, 7 nm and 16 nm respectively are examined here. In vitro, mesoporous silicates showed a significant degree of toxicity at high concentrations with mesothelial cells. Following subcutaneous injection of silicates in rats, the amount of residual material decreased progressively over three months, with good biocompatibility on histology at all time points. In contrast, intra peritoneal and intra venous injections in mice resulted in death or euthanasia. No toxicity was seen with subcutaneous injection of the same particles in mice. Microscopic analysis of the lung tissue of the mice indicates that death may be due to thrombosis. Although local tissue reaction to mesoporous silicates was benign, they caused severe systemic toxicity. This toxicity could be mitigated by modification of the materials. PMID:18675454

  9. The Weathering of Micrometeorites

    NASA Astrophysics Data System (ADS)

    Van Ginneken, M.; Genge, M. J.; Folco, L.

    2014-09-01

    Despite the favorable conditions for their preservation, micrometeorites from Antarctica are affected by terrestrial weathering. Here we present a comprehensive work on the weathering of micrometeorites from Antarctica.

  10. Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum

    E-print Network

    Ahmad, Sajjad

    Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum Sodium Silicate, Montmorillonite, Pyrophyllite, and Zeolite1 This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium

  11. The mid-Cretaceous super plume, carbon dioxide, and global warming

    SciTech Connect

    Caldeira, K. (New York Univ., New York (United States)); Rampino, M.R. (New York Univ., New York (United States) NASA Goddard Inst. for Space Studies, New York, NY (United States))

    1991-06-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. The authors developed a carbonate-silicate cycle model to quantify the possible climatic effects of these CO{sub 2} releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO{sub 2}. They find that CO{sub 2} emissions resulting from super-plume tectonics could have produced atmospheric CO{sub 2} levels from 3.7 to 14.7 times the modern pre-industrial value of 285 ppm. Based on the temperature sensitivity to CO{sub 2} increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7C over today's global mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO{sub 2} emissions could be in the range of 7.6 to 12.5C, within the 6 to 14C range previously estimated for mid-Cretaceous warming. CO{sub 2} releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20% of the mid-Cretaceous increase in atmospheric CO{sub 2}.

  12. Monitoring ice-capped active Vol?an Villarrica, southern Chile, using terrestrial photography combined with automatic weather stations and global positioning systems

    NASA Astrophysics Data System (ADS)

    Rivera, Andrés; Corripio, Javier G.; Brock, Ben; Clavero, Jorge; Wendt, Jens

    Volcán Villarrica (39°25?12?S, 71°56?27?W; 2847 m a.s.l.) is an active ice-capped volcano located in the Chilean lake district. The surface energy balance and glacier frontal variations have been monitored for several years, using automatic weather stations and satellite imagery. In recent field campaigns, surface topography was measured using Javad GPS receivers. Daily changes in snow-, ice- and tephra-covered areas were recorded using an automatic digital camera installed on a rock outcrop. In spite of frequently damaging weather conditions, two series of consecutive images were obtained, in 2006 and 2007. These photographs were georeferenced to a resampled 90 m pixel size SRTM digital elevation model and the reflectance values normalized according to several geometric and atmospheric parameters. The resulting daily maps of surface albedo are used as input to a distributed glacier-melt model during a 12 day mid-summer period. The spatial pattern of cumulative melt is complex and controlled by the distribution of airfall and wind-blown tephra, with extremely high melt rates occurring downwind of the crater and exposed ash banks. The camera images are also used to visualize the pattern of glacier crevassing. The results demonstrate the value of terrestrial photography in understanding the energy and mass balance of the glacier, including the generation of meltwater, and the potential value of the technique for monitoring volcanic activity and potential hazards associated with ice-volcano interactions during eruptive activity.

  13. Regional input to joint European space weather service

    Microsoft Academic Search

    I. Stanislawska; A. Belehaki; F. Jansen; D. Heynderickx; J. Lilensten; M. Candidi

    2006-01-01

    The basis for elaborating within COST 724 Action Developing the scientific basis for monitoring modeling and predicting Space Weather European space weather service is rich by many national and international activities which provide instruments and tools for global as well as regional monitoring and modeling COST 724 stimulates coordinates and supports Europe s goals of development and global cooperation by

  14. Backyard Weather Station

    NSDL National Science Digital Library

    2014-09-18

    Students use their senses to describe what the weather is doing and predict what it might do next. After gaining a basic understanding of weather patterns, students act as state park engineers and design/build "backyard weather stations" to gather data to make actual weather forecasts.

  15. Yaquina Bay Weather & Tides

    E-print Network

    Wright, Dawn Jeannine

    Yaquina Bay Weather & Tides Clay Creech Phil Barbour #12;HMSC Weather Station #12;Temp-Humidity Sensor at Library #12;http://weather.hmsc.oregonstate.edu #12;#12;#12;#12;#12;#12;Archived Data is Available every 15 mins. #12;#12;A pyranometer measures solar radiation #12;#12;National Weather Service

  16. The Weather and Climate

    E-print Network

    Lovejoy, Shaun

    The Weather and Climate Emergent Laws and Multifractal Cascades Shaun LovEjoy and DaniEL SChErTzEr #12;2/15/12 DRAFT TABLE OF CONTENTS 1 DRAFT 1 The Weather And The Climate:2 Emergent Laws, weather, low frequency weather and the climate1 1.2.7 The scaling of the atmospheric boundary conditions2

  17. Understanding Weather

    NSDL National Science Digital Library

    This lesson plan is part of the DiscoverySchool.com lesson plan library for grades 6-8. It focuses on the naturally-occurring greenhouse effect on Earth, and its connection to global warming. Students build model greenhouses to see how this process works. Included are objectives, materials, procedures, discussion questions, evaluation ideas, suggested readings, and vocabulary. There are videos available to order which complement this lesson, an audio-enhanced vocabulary list, and links to teaching tools for making custom quizzes, worksheets, puzzles and lesson plans.

  18. Weather Derivative Valuation

    NASA Astrophysics Data System (ADS)

    Jewson, Stephen; Brix, Anders

    2005-04-01

    Weather Derivative Valuation is the first book to cover all the meteorological, statistical, financial and mathematical issues that arise in the pricing and risk management of weather derivatives. There are chapters on meteorological data and data cleaning, the modelling and pricing of single weather derivatives, the modelling and valuation of portfolios, the use of weather and seasonal forecasts in the pricing of weather derivatives, arbitrage pricing for weather derivatives, risk management, and the modelling of temperature, wind and precipitation. Specific issues covered in detail include the analysis of uncertainty in weather derivative pricing, time-series modelling of daily temperatures, the creation and use of probabilistic meteorological forecasts and the derivation of the weather derivative version of the Black-Scholes equation of mathematical finance. Written by consultants who work within the weather derivative industry, this book is packed with practical information and theoretical insight into the world of weather derivative pricing.

  19. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    E-print Network

    2011-01-01

    resolutions to which global weather and climate models areAt present, global and even regional weather and seasonalglobal oceans. However, the manifestations of environmental change, not to speak of the demand for weather

  20. Supporting Weather Data

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Since its founding in 1992, Global Science & Technology, Inc. (GST), of Greenbelt, Maryland, has been developing technologies and providing services in support of NASA scientific research. GST specialties include scientific analysis, science data and information systems, data visualization, communications, networking and Web technologies, computer science, and software system engineering. As a longtime contractor to Goddard Space Flight Center s Earth Science Directorate, GST scientific, engineering, and information technology staff have extensive qualifications with the synthesis of satellite, in situ, and Earth science data for weather- and climate-related projects. GST s experience in this arena is end-to-end, from building satellite ground receiving systems and science data systems, to product generation and research and analysis.

  1. The Joint Agricultural Weather Facility's Operational Assessment Program.

    NASA Astrophysics Data System (ADS)

    Motha, Raymond P.; Heddinghaus, Thomas R.

    1986-09-01

    The Joint Agricultural Weather Facility (JAWF), a cooperative effort between the Climate Analysis Center, NMC/NWS/NOAA (National Meteorological Center/National Weather Service/National Oceanic and Atmospheric Administration) and the World Agricultural Outlook Board, U.S. Department of Agriculture (USDA), focuses on weather anomalies and their effects on the crop-yield potential in major international crop areas. The basic mission is to provide an objective procedure for translating the flow of global weather information into timely and accurate assessments of growing-season conditions which ultimately impact on global agricultural production and trade. Daily monitoring of satellite weather images and meteorological data provides the framework for agricultural weather analysis. Daily. weekly, and seasonal summaries are processed and merged with historical weather and crop data for evaluation of the crop-yield potential. Information is disseminated at routine briefings, in written summaries, and through informal discussions.

  2. Weather Camp 2012 "Weather and Climate All Around Us"

    E-print Network

    Farritor, Shane

    Weather Camp 2012 "Weather and Climate All Around Us" Are you interested in the weather? Come to Weather Camp at UNL What is Weather Camp? For more information Weather camp is a week long day camp for students who will be 11-14 years old at the time of the camp Most of the activities at Weather Camp 2012

  3. Chemical Weathering in the Zambesi Basin: Assesment of the Carbon Dioxyde Comsumption by the Karu Basalt Province

    NASA Astrophysics Data System (ADS)

    Seyler, P. T.; Viers, J.; Aries, S.; Fournier, P.

    2014-12-01

    The quantification of the role of weathering in the carbon cycle and its interaction with climate and tectonics at the geological time scale is one of the key questions of the geoscientists. The consumption of atmospheric CO2 by silicate weathering indisputably plays the central role in the long term carbon budget and consequently on mean global climate. Through the composition of major elements in river waters, CO2 consumption by the alteration of continental rocks can be estimated. The aim of this study is to estimate of the chemical weathering rate of the Zambesi basin and the impact of Karoo basalt province on chemical atmospheric consumption, evaluated from a database of major elements. The Karroo basalts outcrop erupted around 183 +/2 2 106 take place in the Upper and the Middle Zambezi, covering a surface of 9600 km2. The Zambesi Basin, located between 8° and 20° south latitude and between 16.5 and 36 east longitude, is the fourth largest in Africa. The catchment has a total area of some 1,281,000 km2, the mean annual temperature is 19,3°C and the annual rainfall varies from nearly 2 000 mm to 600 mm. During the sampling period, the annual runoff at Victoria Fall gauging Station ranged between 50 to 2000 m3/s ie 6.9 to 0.6 l/s/km2. The consumption rate of atmospheric CO2 associated with the chemical weathering was calculated from riverine HCO3- concentrations. During the weathering of volcanic rocks, all dissolved carbonates originate from atmospheric/sil CO2. Values of CO2 consumption rates are relatively high, about 0.024 1012 mol/yr, and are comparable to Deccan Traps consumption rates.

  4. Battery components employing a silicate binder

    DOEpatents

    Delnick, Frank M. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM); Odinek, Judy G. (Rio Rancho, NM)

    2011-05-24

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  5. Iron-magnesium silicate bioweathering on Earth (and Mars?).

    PubMed

    Fisk, M R; Popa, R; Mason, O U; Storrie-Lombardi, M C; Vicenzi, E P

    2006-02-01

    We examined the common, iron-magnesium silicate minerals olivine and pyroxene in basalt and in mantle rocks to determine if they exhibit textures similar to bioweathering textures found in glass. Our results show that weathering in olivine may occur as long, narrow tunnels (1-3 microm in diameter and up to 100 microm long) and as larger irregular galleries, both of which have distinctive characteristics consistent with biological activity. These weathering textures are associated with clay mineral by-products and nucleic acids. We also examined olivine and pyroxene in martian meteorites, some of which experienced preterrestrial aqueous alteration. Some olivines and pyroxenes in the martian meteorite Nakhla were found to contain tunnels that are similar in size and shape to tunnels in terrestrial iron-magnesium silicates that contain nucleic acids. Though the tunnels found in Nakhla are similar to the biosignatures found in terrestrial minerals, their presence cannot be used to prove that the martian alteration features had a biogenic origin. The abundance and wide distribution of olivine and pyroxene on Earth and in the Solar System make bioweathering features in these minerals potentially important new biosignatures that may play a significant role in evaluating whether life ever existed on Mars. PMID:16551226

  6. Hydrochemical and Isotopic Constraints on the Temporal and Spatial Variability of Chemical Weathering and CO2 Fluxes: An Example From the Australian Victorian Alps

    NASA Astrophysics Data System (ADS)

    Hagedorn, B.; Cartwright, I.

    2007-12-01

    Water from a network of 11 pristine rivers draining the Australian Victorian Alps was collected at different locations during (i) high discharge (June 2006) and (ii) low discharge (February 2007) conditions and was analyzed for dissolved major ions, ?2H and ?18O, and ?34S of dissolved sulphate. River water chemistry implies that solutes are largely derived from precipitation and chemical weathering of silicate lithologies. Cl/Br ratios as low as 30 molar suggest that rivers have not dissolved halite, however, higher salinity (?100 mmol/L) winter samples have intermediate Cl/Br ratios (600 to 2000 molar) that are attributed to minor halite dissolution at the onset of the rainy season. Subsequent mixing of river water homogenizes ratios and evaporation is the dominant process that increases downstream salinities. Oxygen and Hydrogen isotopes also indicate that mixing and evaporation have occurred. Despite the lack of carbonate outcrops in the study area and uniform negative calcite saturation indices, the dissolution of hydrothermal calcite may account for up to 67% of the total dissolved cations, generating up to 92% of all dissolved Ca and Mg. The sulphur isotope data (16 to 20°CDT) indicates that the dissolved SO4 is derived predominantly from atmospheric deposition and minor gypsum weathering and not from bacterial reduction of FeS. This militates against sulphuric acid weathering in Victorian rivers. Si/(Na* + K*) ratios suggest that silicate weathering is dominated by the transformation of plagioclase (An40) to smectite and, to a lesser extend, the production of kaolinite. In total, chemical weathering consumes 17.6 x 106 (summer) to 71.59 x 106(winter) mol/km2/yr CO2, with the highest values in rivers draining the basement outcrops rather than sedimentary rocks. This range is at the upper end of the global scale and shows that the predominance of fresh silicate lithologies exerts the main control on higher CO2 fluxes; temperature and runoff, in turn, are crucial variables for the inter- seasonal variability in this region. Data on discharge and major ion chemistry, measured in regular intervals between 1977 and 1990, support this; however, the timing of absolute maxima of Si/(Na* + K*) and CO2 flux peaks do not coincide. We suggest that the combination of dissolution of diatoms that precipitated under low flow- and high temperature conditions in the tributaries and Na-adsorption by suspended clay particles, that were probably redistributed locally after bushfires and/or duststorms during drought periods in the early 1980's, as mechanisms to spontaneously elevate Si/(Na* + K*) ratios and, when coupled with irregular discharge fluctuations, explain deviations from seasonal CO2 fluxes.

  7. The Weather Man

    NSDL National Science Digital Library

    Mrs. Emma Grasser

    2012-09-27

    This project is designed to let you be "The Weather Man" and control the weather through simulation, and hands on experience, followed by guided questioning and resource exploration. Form groups of three. Explore the following simulation: Weather Maker Simulator Use the simulation to answer the following questions on paper. 1. How does humility play a role in weather? How does more or less change weather? 2. What is water vapor? Where does it come from? 3. What happens when the weather drops below zero degrees? ...

  8. Science Sampler: Weather RATS

    NSDL National Science Digital Library

    Mary Taft

    2006-02-01

    Weather RATS, or Weather Research and Tracking Systems, is a collaborative effort among a national network of K-12 students, their teachers, wireless weather stations, internet data sharing, and professional engineers and meteorologists. Weather Rats is a new way to teach K-12 science and technology by tracking and comparing weather data from schools in Massachusetts, Arizona, Oklahoma, and Puerto Rico. In addition, it is hoped through this enriching project that Weather RATS will inspire many more students, especially girls and minorities, to pursue careers in science and engineering as a result of this project.

  9. Pilot weather advisor

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Seth, S.; Crabill, N. L.; Shipley, S. T.; Graffman, I.; Oneill, J.

    1992-01-01

    The results of the work performed by ViGYAN, Inc., to demonstrate the Pilot Weather Advisor cockpit weather data system using a broadcast satellite communication system are presented. The Pilot Weather Advisor demonstrated that the technical problems involved with transmitting significant amount of weather data to an aircraft in-flight or on-the-ground via satellite are solvable with today's technology. The Pilot Weather Advisor appears to be a viable solution for providing accurate and timely weather information for general aviation aircraft.

  10. Interactive Weather Information Network

    NSDL National Science Digital Library

    Offered by the National Oceanic and Atmospheric Administration (NOAA), the Interactive Weather Information Network (IWIN) is a collection of interactive weather maps and satellite images that is updated every five seconds. Visitors can see cloud cover animation loops, NEXRAD Radar images of precipitation, a map of all current weather fronts, and an interactive national map to see information about any particular state. Other information on the site includes a listing of any active weather warnings, a link for world weather data, and more, making this a must-see site for all those users interested in the most current weather happenings anywhere.

  11. Weather and Precipitation

    NSDL National Science Digital Library

    Ms. Jones

    2012-04-12

    How are different types of weather common in our everyday life? How can we use what we know about weather to go about everyday activities? First, use the Weather Chart to write down what you learn from each website. Then, go to Weather Information Website #1 and click on "What's the Weather?" to dress the bear for the day. Make sure you write it down on your graphic organizer. Next, go to Weather Information Website #3 and explore at least 5(clouds, thunderstorms, winter storms, etc.) of ...

  12. The mid-Cretaceous super plume, carbon dioxide, and global warming

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.

  13. Multi-proxy Reconstruction of Seawater Chemistry Across K-Pg Boundary: Tracking Weathering Feedbacks in Response to Extreme Carbon Cycle Perturbation

    NASA Astrophysics Data System (ADS)

    Misra, S.; Elderfield, H.

    2014-12-01

    On geologic time scales concentrations of atmospheric CO2, a greenhouse gas and critical mediator of Earth's surface temperature and climate, is thought to be controlled by a balance between CO2 input from mantle degassing through volcanism and metamorphism and consumption via temperature-sensitive chemical weathering of tectonically uplifted continental rocks. This interplay between global climate and tectonic uplift also controls the delivery of cations to the oceans. Hence, past changes in seawater chemistry provide a powerful archive of the interplay and feedback between climate and tectonics. Mass Extinction Events, like that at K-Pg boundary, are characterized by rapid, global Carbon Cycle Perturbations either from increased mantle degassing or by incineration of the continents due to extra-terrestrial impact. It is hypothesized that enhanced chemical weathering of continental silicate rocks consumes this excess CO2 and restores steady-state. Lithium, B, and Mg are conservative ions in seawater that are isotopically homogeneous with a residence time much longer than the oceanic mixing time. As a result, ?7LiSW, ?11BSW, and ?26MgSW, recorded by marine calcites reflect a global picture and secular variations in isotopic composition of these elements within periods shorter than their residence time must thus reflect imbalances between the sources and sinks of these elements to and from the ocean. Cenozoic ?7LiSW shows an abrupt 5‰ drop across the K-Pg boundary, simultaneous with the seawater Ir and Os isotope spikes. This rapid decrease in ?7LiSW is due to a large instantaneous delivery of isotopically light Li to the oceans and cannot be produced by an impactor nor by Deccan trap volcanism, suggesting large-scale continental denudation. We will create high-resolution ?7LiSW, ?11BSW, and ?26MgSW records across K-Pg boundary using planktonic and benthic foraminifera from multiple ODP/DSDP sites to quantify the amount of C excursion and the response of continental weathering feedbacks to regain climatic steady states. This multi-proxy approach will help quantify the extent of CCP; time scale and magnitude of continental chemical weathering response; and the contribution of both carbonate rock and silicate rock weathering in CO2 drawdown across carbon cycle excursion episodes.

  14. Internet Weather Links: Weather and Weather Related Lesson Plans

    NSDL National Science Digital Library

    The Internet Weather Links is a collection of lesson plans provided by the Utah Education Network's Weather Report Web site. The activities are organized by grade level from kindergarten to fourth grade and include such topics as Sunny Colors, Weather in a Box, Changes Due to Freezing, and Geological Features. Each lesson is well organized with explanations of its objectives, intended learning outcomes, and instructional procedures. Downloadable documents, related links, extensions to the lesson, and even rating systems for teachers are also provided, making it a great resource especially for use with younger students.

  15. Weather Camp 2012: Weather and Climate All Around Us Are you interested in the weather?

    E-print Network

    Farritor, Shane

    Weather Camp 2012: Weather and Climate All Around Us Are you interested in the weather? Come to Weather Camp at UNL! What is Weather Camp? For more information Weather camp is a week-long day camp for students who will be 11-14 years old at the time of the camp. Most of the activities at Weather Camp 2012

  16. Space Weathering: A Lesson from Itokawa

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Hiroi, T.; Nimura, T.

    Reflectance spectra of S-type asteroids are different from those of ordinary chondrites There are also spectral differences between lunar rocks and soils of the similar composition These spectral mismatches are explained by the so-called space weathering S-type asteroids exhibit more overall depletion and reddening of spectra and more weakening of absorption bands relative to ordinary chondrites Formation of nanophase metallic iron particles due to high velocity dust impacts as well as sputtering by solar wind would be responsible for the spectral change We succeeded in reproducing the spectral change expected in space weathering using nano-second pulse laser irradiation on silicates simulating high-velocity dust impacts We confirmed the formation of nanophase iron particles using TEM Sasaki S et al 2001 Nature 410 555-557 We considered regolith-like surface condition is essential for space weathering since evaporated materials may condense with nano-iron particles on the surfaces of other particles The size-dependent transition from Q-type ordinary chondrite-like objects to S-type objects also suggested that regolith is scarce abundant on objects smaller larger than the transition size Binzel R P et al 2004 Icarus 170 259-294 In 2005 Hayabusa spacecraft rendezvoused an S-type asteroid 25143 Itokawa with size of 550m and performed a color imaging by onboard camera AMICA Approximately 80 of Itokawa s surface is rough and boulder-rich but it has a somewhat weathered

  17. Intelligent weather agent for aircraft severe weather avoidance

    E-print Network

    Bokadia, Sangeeta

    2002-01-01

    avoidance capability has increased. In this thesis, an intelligent weather agent is developed for general aviation aircraft. Using a radar image from an onboard weather radar, the intelligent weather agent determines the safest path around severe weather...

  18. On Observing the Weather

    NSDL National Science Digital Library

    Peter Crane

    2004-05-01

    In this article, Mount Washington Observatory meteorologist Tim Markle shares the ins and outs of his daily weather-observing routine and offers insights on making weather observations at home or at school.

  19. Winter Weather: Hypothermia

    MedlinePLUS

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... be successfully resuscitated. More Information: Frostbite Disasters & Severe Weather ... Heat Floods Hurricanes Landslides Tornadoes Tsunamis ...

  20. Winter Weather: Indoor Safety

    MedlinePLUS

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... Outdoor Safety Winter PSAs and Podcasts Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ...

  1. In Depth Winter Weather

    NSDL National Science Digital Library

    2012-01-01

    Winter Weather is an In-Depth Special Report form the National Center for Atmospheric Research. It contains articles, images, activities, video clips, and interactive graphs to inform learners about meteorology and weather in the colder seasons.

  2. Winter Weather: Outdoor Safety

    MedlinePLUS

    ... About CDC.gov . Natural Disasters and Severe Weather Earthquakes Being Prepared Emergency Supplies Home Hazards Indoor Safety ... What's New A - Z Index Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis Volcanoes ...

  3. Winter Weather: Frostbite

    MedlinePLUS

    ... About CDC.gov . Natural Disasters and Severe Weather Earthquakes Being Prepared Emergency Supplies Home Hazards Indoor Safety ... What's New A - Z Index Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis Volcanoes ...

  4. How's the Weather Today?

    NSDL National Science Digital Library

    This lesson plan asks students to think about the weather in their area and introduces them to weather and temperature trends in different latitudes of the United States. They will look at the current weather map and record the high temperatures for a few cities. They will conclude by drawing pictures of themselves outdoors in their hometown and in another place that has different weather.

  5. Enviropedia: Introduction to Weather

    NSDL National Science Digital Library

    2007-12-12

    This resource provides an overview of weather, the day-to-day changes in temperature, air pressure, moisture, wind, cloudiness, rainfall and sunshine. Links embedded in the text provide access to descriptions of cloud types and to information on weather hazards such as fog, hurricanes, thunderstorms, and tornadoes. Other topics include meteorology, weather measurements, and weather mapping. Materials are also provided on the water cycle and its elements, such as evaporation, uplift and cooling of air, dew point, condensation, and precipitation.

  6. Stormfax Weather Services

    NSDL National Science Digital Library

    2002-06-10

    This site offers links to a variety of weather information, including national, international and local weather maps and forecasts, satellite and radar imagery, and severe weather warnings. There are also links to diverse resources such as fire maps, glacier inventories, snow depths, storm surges and tropical storms. There are reports and advisories about El Nino and La Nina. The site also has a glossary of weather terms and conversion charts for temperature, wind speed and atmospheric pressure.

  7. Space Weather Now

    NSDL National Science Digital Library

    Space Environment Center

    The Space Weather Now page is intended to give the non-technical user a "plain language" look at space weather. It includes information about relevant events and announcements, data from and about different instruments and satellites watching various aspects of space weather, alerts and advisories, daily themes of products and services, and links appropriate for the various groups of users.

  8. Aviation weather services

    NASA Technical Reports Server (NTRS)

    Sprinkle, C. H.

    1983-01-01

    The primary responsibilities of the National Weather Service (NWS) are to: provide warnings of severe weather and flooding for the protection of life and property; provide public forecasts for land and adjacent ocean areas for planning and operation; and provide weather support for: production of food and fiber; management of water resources; production, distribution and use of energy; and efficient and safe air operations.

  9. Climate and Weather

    NSDL National Science Digital Library

    National Geographic

    This video discusses the differences between climate and weather by defining and presenting examples of each. When presenting examples of weather, the video focuses on severe events and how meteorologists predict and study the weather using measurement, satellites, and radar. The climate focus is primarily on an overview of climate zones.

  10. Weather Fundamentals: Meteorology. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) looks at how meteorologists gather and interpret current weather data collected from sources…

  11. Weather Maps in Motion

    NSDL National Science Digital Library

    Charles Burrows

    In this activity, students learn to interpret current weather maps. They will observe weather map loop animations on the internet, learn the concept of Zulu time (Universal Time Coordinated, UTC) and visualize the movement of fronts and air masses. They will then analyze a specific weather station model, generate a meteogram from their observations, and answer a set of questions about their observations.

  12. METEOROLOGICAL Weather and Forecasting

    E-print Network

    Hawai'i at Manoa, University of

    AMERICAN METEOROLOGICAL SOCIETY Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary School of Ocean and Earth Science and Technology University of Hawaii at Manoa U.S.A. Yun-Ching Lin submitted to Weather and Forecasting July 05, 2010 Corresponding author: Dr. Mong-Ming Lu, Central Weather

  13. Spaceborne weather radar

    Microsoft Academic Search

    Robert Meneghini; Toshiaki Kozu

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of

  14. Weather Data Gamification 

    E-print Network

    Gargate, Rohit

    2013-07-25

    . With the huge amount of weather data available, we have designed and developed a fantasy weather game. People manage a team of cities with the goal of predicting weather better than other players in their league, and in the process gain an understanding...

  15. Modifying Silicates for Better Dispersion in Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces, the co-ion exchange strengthens the polymer/silicate interface and ensures irreversible separation of the silicate layers. One way in which it does this is to essentially tether one amine of each diamine molecule to a silicate surface, leaving the second amine free for reaction with monomers during the synthesis of a polymer. In addition, the incorporation of alkyl ammonium ions into the galleries at low concentration helps to keep low the melt viscosity of the oligomer formed during synthesis of the polymer and associated processing - a consideration that is particularly important in the case of a highly cross-linked, thermosetting polymer. Because of the chemical bonding between the surface-modifying amines and the monomers, even when the alkyl ammonium ions become degraded at high processing temperature, the silicate layers do not aggregate and, hence, nanometer-level dispersion is maintained.

  16. Convective Weather Avoidance with Uncertain Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots are likely to avoid. The automated system periodically updates forecasts and reassesses rerouting decisions in order to account for changing weather predictions. The main objectives are to reroute flights to avoid convective weather regions and determine the resulting complexity due to rerouting. The eventual goal is to control and reduce complexity while rerouting flights during the 20 minute - 2 hour planning period. A three-hour simulation is conducted using 4800 flights in the national airspace. The study compares several metrics against a baseline scenario using the same traffic and weather but with rerouting disabled. The results show that rerouting can have a negative impact on congestion in some sectors, as expected. The rerouting system provides accurate measurements of the resulting complexity in the congested sectors. Furthermore, although rerouting is performed only in the 20-minute - 2-hour range, it results in a 30% reduction in encounters with nowcast weather polygons (100% being the ideal for perfectly predictable and accurate weather). In the simulations, rerouting was performed for the 20-minute - 2-hour flight time horizon, and for the en-route segment of air traffic. The implementation uses CWAM, a set of polygons that represent probabilities of pilot deviation around weather. The algorithms were implemented in a software-based air traffic simulation system. Initial results of the system's performance and effectiveness were encouraging. Simulation results showed that when flights were rerouted in the 20-minute - 2-hour flight time horizon of air traffic, there were fewer weather encounters in the first 20 minutes than for flights that were not rerouted. Some preliminary results were also obtained that showed that rerouting will also increase complexity. More simulations will be conducted in order to report conclusive results on the effects of rerouting on complexity. Thus, the use of the 20-minute - 2-hour flight time horizon weather avoidance teniques performed in the simulation is expected to provide benefits for short-term weather avoidan

  17. High-latitude filtering in a global grid-point model using model normal modes. [Fourier filters for synoptic weather forecasting

    NASA Technical Reports Server (NTRS)

    Takacs, L. L.; Kalnay, E.; Navon, I. M.

    1985-01-01

    A normal modes expansion technique is applied to perform high latitude filtering in the GLAS fourth order global shallow water model with orography. The maximum permissible time step in the solution code is controlled by the frequency of the fastest propagating mode, which can be a gravity wave. Numerical methods are defined for filtering the data to identify the number of gravity modes to be included in the computations in order to obtain the appropriate zonal wavenumbers. The performances of the model with and without the filter, and with a time tendency and a prognostic field filter are tested with simulations of the Northern Hemisphere winter. The normal modes expansion technique is shown to leave the Rossby modes intact and permit 3-5 day predictions, a range not possible with the other high-latitude filters.

  18. Weather affects us

    NSDL National Science Digital Library

    Kimmy

    2009-11-09

    2nd grade weather unit. The students will learn how weather affects us in our daily lives Read and view the video on meteorologists Kid Meteorologist Learn about clouds - watch S'cool Clouds All About Clouds Do scholastic: weather watch and game Weather Read winter storms Interactive Weather Web Pages Read a reason for the season A Reason for the Season Read about precipitation Precipitation Read and view video on flooding Flood: Farming and Erosion Read about air pressure It's a Breeze: How Air Pressure Affects You Read about Hurricanes Hurricanes Do the activities and read ...

  19. Opportunities and Challenges for Space Weather Forecasting (Invited)

    NASA Astrophysics Data System (ADS)

    Onsager, T. G.

    2010-12-01

    Although space weather disturbances have been relatively minor throughout the recent minimum of solar cycle, the demand for space weather information has increased dramatically. This has occurred among the commercial and government sectors within the U.S. as well as throughout an expanding number of countries internationally. This presentation will discuss the opportunities and the challenges associated with this growth in space weather interest. One key opportunity is with the increasing access to data and shared products from partner organizations throughout the world. For example, the World Meteorological Organization is now participating in the coordination of space weather data and products and raising the awareness of the importance of space weather globally. Our major challenge is to provide the timely and accurate space weather information needed to support the increasing demand. Priorities for new capabilities needed today as well as activities focused on coordinating the growing international interest in space weather will be presented.

  20. Investigating impacts of forest fires in Alaska and western Canada on regional weather over the northeastern United States using CAM5 global simulations to constrain transport to a WRF-Chem regional domain

    NASA Astrophysics Data System (ADS)

    Zhao, Zhan; Kooperman, Gabriel J.; Pritchard, Michael S.; Russell, Lynn M.; Somerville, Richard C. J.

    2014-06-01

    An aerosol-enabled globally driven regional modeling system has been developed by coupling the National Center for Atmospheric Research's Community Atmosphere Model version 5 (CAM5) with the Weather Research and Forecasting model with chemistry (WRF-Chem). In this modeling system, aerosol-enabled CAM5, a state-of-the-art global climate model is downscaled to provide coherent meteorological and chemical boundary conditions for regional WRF-Chem simulations. Aerosol particle emissions originating outside the WRF-Chem domain can be a potentially important nonlocal aerosol source. As a test case, the potential impacts of nonlocal forest fire aerosols on regional precipitation and radiation were investigated over the northeastern United States during the summer of 2004. During this period, forest fires in Alaska and western Canada lofted aerosol particles into the midtroposphere, which were advected across the United States. WRF-Chem simulations that included nonlocal biomass burning aerosols had domain-mean aerosol optical depths that were nearly three times higher than those without, which reduced peak downwelling domain-mean shortwave radiation at the surface by ~25 W m-2. In this classic twin experiment design, adding nonlocal fire plume led to near-surface cooling and changes in cloud vertical distribution, while variations in domain-mean cloud liquid water path were negligible. The higher aerosol concentrations in the simulation with the fire plume resulted in a ~10% reduction in domain-mean precipitation coincident with an ~8% decrease in domain-mean CAPE. A suite of simulations was also conducted to explore sensitivities of meteorological feedbacks to the ratio of black carbon to total plume aerosols, as well as to overall plume concentrations. Results from this ensemble revealed that plume-induced near-surface cooling and CAPE reduction occur in a wide range of conditions. The response of moist convection was very complex because of strong thermodynamic internal variability.

  1. National Weather Service- Severe Weather Awareness

    NSDL National Science Digital Library

    This website provides access to information designed to protect and prepare individuals from severe weather. Materials presented here include forecasts for aviation and marine interests and the general public, maps, statistical data, educational materials, publications, and links to related sites.

  2. A preliminary study of the impact of the ERS 1 C band scatterometer wind data on the European Centre for Medium-Range Weather Forecasts global data assimilation system

    NASA Technical Reports Server (NTRS)

    Hoffman, Ross N.

    1993-01-01

    A preliminary assessment of the impact of the ERS 1 scatterometer wind data on the current European Centre for Medium-Range Weather Forecasts analysis and forecast system has been carried out. Although the scatterometer data results in changes to the analyses and forecasts, there is no consistent improvement or degradation. Our results are based on comparing analyses and forecasts from assimilation cycles. The two sets of analyses are very similar except for the low level wind fields over the ocean. Impacts on the analyzed wind fields are greater over the southern ocean, where other data are scarce. For the most part the mass field increments are too small to balance the wind increments. The effect of the nonlinear normal mode initialization on the analysis differences is quite small, but we observe that the differences tend to wash out in the subsequent 6-hour forecast. In the Northern Hemisphere, analysis differences are very small, except directly at the scatterometer locations. Forecast comparisons reveal large differences in the Southern Hemisphere after 72 hours. Notable differences in the Northern Hemisphere do not appear until late in the forecast. Overall, however, the Southern Hemisphere impacts are neutral. The experiments described are preliminary in several respects. We expect these data to ultimately prove useful for global data assimilation.

  3. Global Ensemble Predictions of 2009's Tropical Cyclones Initialized with an Ensemble Kalman Filter

    E-print Network

    Hamill, Tom

    Laboratory, Global Systems Division, Boulder, Colorado 1st revision, submitted to Monthly Weather summer tropical cyclones (TCs) from two experimental global numerical weather prediction ensemble1 Global Ensemble Predictions of 2009's Tropical Cyclones Initialized with an Ensemble Kalman

  4. Understanding Space Weather Customers in GPS-Reliant Industries

    Microsoft Academic Search

    Jennifer Meehan; Genene Fisher; William Murtagh

    2010-01-01

    Since the last solar maximum, society has become extremely reliant on the Global Positioning System (GPS), which is often referred to as the ``fourth utility'' behind electricity, water, and natural gas. As the economy depends more and more on positioning, navigation, and timing, society's vulnerability to space weather continues to increase because space weather can be a significant cause of

  5. Climate Change and Farm Use of Weather Information

    Microsoft Academic Search

    Ikrom S. Artikov; Gary D. Lynne

    2005-01-01

    More rapid than normal global climate change as represented by rising temperatures and more erratic and severe weather events have heightened the interest in how farmers use weather information. The greenhouse influence through driving climate change will likely be affecting agricultural efforts for some years to come. It behooves us to pay attention to this phenomenon, and especially put effort

  6. Metr 6803: Numerical Weather Prediction Syllabus: Spring 2013 M / W 10:00-11:15, NWC 5930

    E-print Network

    Droegemeier, Kelvin K.

    - concepts - applications 4. Numerical Weather Analysis II - local and global polynomial interpolationMetr 6803: Numerical Weather Prediction Syllabus: Spring 2013 M / W ­ 10:00-11:15, NWC 5930 weather analysis (NWA) and numerical weather prediction (NWP)? - why are they important? - how "good

  7. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  8. Weather and climate. [review of satellite observations

    NASA Technical Reports Server (NTRS)

    Atlas, D.

    1981-01-01

    Highlights of recent progress and the directions of future advances in the application of space observations to weather and climate are reviewed. In mesometeorology and severe storms, satellite stereography of cloud topography and temperature profiling from GOES-VAS promise dramatic developments in both nowcasting and prediction. In global weather, the initial results from the year long Global Weather Experiment conclusively demonstrate the enhanced forecast skill emanating from the use of satellite data, especially cloud track winds and temperature profiles. In climate, empirical studies and numerical experiments point to the feasibility of useful climate predictions on monthly and seasonal time scales. They also indicate the kinds of surface boundary conditions to which climate is sensitive and which need to be observed from space.

  9. Silicate absorption in heavily obscured galaxy nuclei

    E-print Network

    P. F. Roche; C. Packham; D. K. Aitken; R. E. Mason

    2006-10-19

    Spectroscopy at 8-13 microns with T-ReCS on Gemini-S is presented for 3 galaxies with substantial silicate absorption features, NGC 3094, NGC 7172 and NGC 5506. In the galaxies with the deepest absorption bands, the silicate profile towards the nuclei is well represented by the emissivity function derived from the circumstellar emission from the red supergiant, mu Cephei which is also representative of the mid-infrared absorption in the diffuse interstellar medium in the Galaxy. There is spectral structure near 11.2 microns in NGC 3094 which may be due to a component of crystalline silicates. In NGC 5506, the depth of the silicate absorption increases from north to south across the nucleus, suggestive of a dusty structure on scales of 10s of parsecs. We discuss the profile of the silicate absorption band towards galaxy nuclei and the relationship between the 9.7 micron silicate and 3.4 micron hydrocarbon absorption bands.

  10. Silicate stabilization studies in propylene glycol

    SciTech Connect

    Schwartz, S.A. [ARCO Chemical Co., Newtown Square, PA (United States)

    1999-08-01

    In most North American and many European coolant formulations, the corrosion inhibition of heat-rejecting aluminum surfaces is provided by alkali metal silicates. But, their tendency towards polymerization, leading to gelation and/or precipitation, can reduce the effectiveness of a coolant. This paper presents the results of experiments which illustrate formulation-dependent behavior of inorganic silicate in propylene glycol compositions. Specific examples of the effects of glycol matrix, stabilizer type, and hard water on silicate stabilization are provided.

  11. El Nino: Making Sense of the Weather

    NSDL National Science Digital Library

    Sharron Sample

    1999-07-27

    This El Nino site explains the abnormal warming of surface ocean waters in the eastern tropical Pacific and how it affects global weather, ocean circulation, and coral reef ecosystems. The activities involve wind direction and the Coriolis effect, global wind patterns, and cloud formation. There are sections comparing normal conditions to El Nino conditions and a video clip of the 1982-1983 El Nino event showing the movement of warm water across the Pacific region.

  12. International Collaboration in Space Weather Situational Awareness

    Microsoft Academic Search

    David Boteler; Larisa Trichtchenko; Donald Danskin

    2010-01-01

    Space weather is a global phenomena so interntional collaboration is necessary to maintain awareness of potentially dangerous conditions. The Regional Warning Centres (RWCs) of the International Space Environment Service were set up during the International Geophysical Year to alert the scientific community to conditions requiring special measurements. The information sharing continues to this day with URSIGRAM messages exchanged between RWCs

  13. Weather Changing Waves Chartered from Space

    NSDL National Science Digital Library

    This article explains how the TOPEX/Poseidon satellite has been used to track large-scale ocean waves called Rossby waves. This new data indicates that the waves may move faster than previously thought, which may have implications for global weather forecasting. Links to related sites are provided.

  14. NOAA Daily Weather Maps

    NSDL National Science Digital Library

    Hydrometeorological Prediction Center

    2011-01-01

    The charts on this website are the principal charts of the former Weather Bureau publication, "Daily Weather Map." They are the Surface Weather Map, the 500-Millibar Height Contours chart, the Highest and Lowest Temperatures chart, and the Precipitation Areas and Amounts chart. For each day, simple charts are arranged on a single page. These charts are the surface analysis of pressure and fronts, color shading, in ten degree intervals,of maximum and minimum temperature, 500-Millibar height contours, and color shaded 24-hour total precipitation. These charts act as links to their respective Daily Weather Map charts. All charts are derived from the operational weather maps prepared at the National Centers for Environmental Prediction, Hydrometeorological Prediction Center, National Weather Service.

  15. Global Climate Change

    NSDL National Science Digital Library

    Integrated Teaching and Learning Program,

    Students learn how the greenhouse effect is related to global warming and how global warming impacts our planet, including global climate change. Extreme weather events, rising sea levels, and how we react to these changes are the main points of focus of this lesson.

  16. LOCAL TALENT, GLOBAL IMPACT

    E-print Network

    Paxton, Anthony T.

    to make global weather forecasts more accurate and help scientists better understand climate change? 55LOCAL TALENT, GLOBAL IMPACT SHOWCASING THE IMPACT OF WORLD-CLASS RESEARCH AT QUEEN'S THURSDAY, 13's is at the forefront of global information security - developing technology that counters cyber attacks and helps

  17. Global warming elucidated

    Microsoft Academic Search

    Shen

    1995-01-01

    The meaning of global warming and its relevance to everyday life is explained. Simple thermodynamics is used to predict an oscillatory nature of the change in climate due to global warming. Global warming causes extreme events and bad weather in the near term. In the long term it may cause the earth to transition to another equilibrium state through many

  18. Space Weather Media Viewer

    NSDL National Science Digital Library

    2011-01-01

    This is version 3 of the space Weather Media Viewer, created to work with the space Weather Action Center to see near-real time data and to provide additional images and resources available for educational use. It features easy downloads that can also be added to news reports and space weather reports. It was designed for ease in adding any media (videos, images) data.

  19. Everything Weather- Archived Data

    NSDL National Science Digital Library

    2001-01-01

    Users can obtain current weather forecasts for their own areas by entering a ZIP code, or they can access a large archive of historic data on severe weather (tornadoes, hail, high winds, hurricanes). Materials presented in the archive include dates, times, and intensities of storms, a photo gallery, maps, radar and other satellite data, storm chaser reports, and links to other weather sites. Raw data can be found in several forms for teachers wishing to have unprocessed data to work with.

  20. Weather and climate

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.

  1. Weather and Climate Data

    NSDL National Science Digital Library

    The Weather and Climate Data site for the Center for Ocean-Land-Atmosphere Studies (COLA) contains analyses of current conditions and the state of the atmosphere; weather forecasts; metropolitan quick-look weather summaries and meteograms; short-term climate outlooks for temperature, precipitation and soil moisture; El Nino forecasts for understanding the ocean-atmosphere system; and maximum potential hurricane intensity maps showing potential minimum pressure and potential maximum winds for the oceans.

  2. Winter weather activity

    NSDL National Science Digital Library

    Whitney Frankovic

    2009-09-28

    This project explores factors that help create severe winter weather. An interactive simulation provides hands-on experience, followed by guiding questions and resource exploration. Weather Maker Simulator Use the weather simulation above to answer the following questions in complete sentences on paper. 1. In general, when are winds formed? 2. When winds are blowing, how can you get them to stop? 3. What usually happens when there is a large difference between the temperatures? 4. What happens when there is high ...

  3. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt

    NASA Astrophysics Data System (ADS)

    Kent, D. V.; Muttoni, G.

    2013-03-01

    The small reservoir of carbon dioxide in the atmosphere (pCO2) that modulates climate through the greenhouse effect reflects a delicate balance between large fluxes of sources and sinks. The major long-term source of CO2 is global outgassing from sea-floor spreading, subduction, hotspot activity, and metamorphism; the ultimate sink is through weathering of continental silicates and deposition of carbonates. Most carbon cycle models are driven by changes in the source flux scaled to variable rates of ocean floor production, but ocean floor production may not be distinguishable from being steady since 180 Ma. We evaluate potential changes in sources and sinks of CO2 for the past 120 Ma in a paleogeographic context. Our new calculations show that decarbonation of pelagic sediments by Tethyan subduction contributed only modestly to generally high pCO2 levels from the Late Cretaceous until the early Eocene, and thus shutdown of this CO2 source with the collision of India and Asia at the early Eocene climate optimum at around 50 Ma was inadequate to account for the large and prolonged decrease in pCO2 that eventually allowed the growth of significant Antarctic ice sheets by around 34 Ma. Instead, variation in area of continental basalt terranes in the equatorial humid belt (5° S-5° N) seems to be a dominant factor controlling how much CO2 is retained in the atmosphere via the silicate weathering feedback. The arrival of the highly weatherable Deccan Traps in the equatorial humid belt at around 50 Ma was decisive in initiating the long-term slide to lower atmospheric pCO2, which was pushed further down by the emplacement of the 30 Ma Ethiopian Traps near the equator and the southerly tectonic extrusion of SE Asia, an arc terrane that presently is estimated to account for 1/4 of CO2 consumption from all basaltic provinces that account for ~1/3 of the total CO2 consumption by continental silicate weathering (Dessert et al., 2003). A negative climate-feedback mechanism that (usually) inhibits the complete collapse of atmospheric pCO2 is the accelerating formation of thick cation-deficient soils that retard chemical weathering of the underlying bedrock. Nevertheless, equatorial climate seems to be relatively insensitive to pCO2 greenhouse forcing and thus with availability of some rejuvenating relief as in arc terranes or thick basaltic provinces, silicate weathering in this venue is not subject to a strong negative feedback, providing an avenue for ice ages. The safety valve that prevents excessive atmospheric pCO2 levels is the triggering of silicate weathering of continental areas and basaltic provinces in the temperate humid belt. Excess organic carbon burial seems to have played a negligible role in atmospheric pCO2 over the Late Cretaceous and Cenozoic.

  4. The Weather and Climate Toolkit

    NASA Astrophysics Data System (ADS)

    Ansari, S.; Del Greco, S.; Hankins, B.

    2010-12-01

    The Weather and Climate Toolkit (WCT) is free, platform independent software distributed from NOAA’s National Climatic Data Center (NCDC). The WCT allows the visualization and data export of weather and climate data, including Radar, Satellite and Model data. By leveraging the NetCDF for Java library and Common Data Model, the WCT is extremely scalable and capable of supporting many new datasets in the future. Gridded NetCDF files (regular and irregularly spaced, using Climate-Forecast (CF) conventions) are supported, along with many other formats including GRIB. The WCT provides tools for custom data overlays, Web Map Service (WMS) background maps, animations and basic filtering. The export of images and movies is provided in multiple formats. The WCT Data Export Wizard allows for data export in both vector polygon/point (Shapefile, Well-Known Text) and raster (GeoTIFF, ESRI Grid, VTK, Gridded NetCDF) formats. These data export features promote the interoperability of weather and climate information with various scientific communities and common software packages such as ArcGIS, Google Earth, MatLAB, GrADS and R. The WCT also supports an embedded, integrated Google Earth instance. The Google Earth Browser Plugin allows seamless visualization of data on a native 3-D Google Earth instance linked to the standard 2-D map. Level-II NEXRAD data for Hurricane Katrina GPCP (Global Precipitation Product), visualized in 2-D and internal Google Earth view.

  5. Net-Weather

    NSDL National Science Digital Library

    Net-Weather presents a host of meteorological information for the UK at this website. Users can find out seasonal, monthly, 10-day, and additional relevant weather forecasts. The Charts and Data link offers live satellite images, links to numerous forecast models, and data on sea temperatures and anomalies. For people who like winter and snow, the website offers interesting stories about famous British winters as well as snow reports. The Net-Weather Forum is a great place to discuss any weather-related topic.

  6. Pilot Weather Advisor System

    NASA Technical Reports Server (NTRS)

    Lindamood, Glenn; Martzaklis, Konstantinos Gus; Hoffler, Keith; Hill, Damon; Mehrotra, Sudhir C.; White, E. Richard; Fisher, Bruce D.; Crabill, Norman L.; Tucholski, Allen D.

    2006-01-01

    The Pilot Weather Advisor (PWA) system is an automated satellite radio-broadcasting system that provides nearly real-time weather data to pilots of aircraft in flight anywhere in the continental United States. The system was designed to enhance safety in two distinct ways: First, the automated receipt of information would relieve the pilot of the time-consuming and distracting task of obtaining weather information via voice communication with ground stations. Second, the presentation of the information would be centered around a map format, thereby making the spatial and temporal relationships in the surrounding weather situation much easier to understand

  7. Winter Storm (weather)

    NSDL National Science Digital Library

    Aubree Miller

    2009-09-28

    This project explores factors that help create severe winter weather. An interactive simulation provides hands-on experience, followed by guiding questions and resource exploration. First think about these questions: 1. What is your favorite aspect of winter weather? 2. How does the weather effect your everyday life? Form groups of THREE. Explore the following simulation: Weather Maker Simulator Use the simulation to answer the following questions on paper... 1. In general, when are winds formed? 2. When winds are blowing, how can you ...

  8. Washington Post Weather

    NSDL National Science Digital Library

    The Washington Post makes a bid for the already crowded Internet weather market with WeatherPost. Coverage includes current conditions and four-day forecasts for 3,600 cities worldwide, as well as snapshot and time-lapse satellite maps (provided by Accu Weather). For US cities, users may also access UV and air quality maps and data, as well as seasonal maps (snow cover, tanning index, heat index, and BeachCast) and other radar images such as precipitation. Users may enter a city name into the homepage search box, or may browse by country or state/province. The historical weather database offers compiled monthly average weather data for nearly 1,000 cities worldwide; the database is searchable. An aspect of the site that sets it apart from many other weather pages is the weather reference desk, which includes a weather glossary, weather calculators (JavaScript converters for temperature, wind chill, heat index, etc.) and a page devoted to storm chasers.

  9. Cumulate Fragments in Silicic Ignimbrites

    NASA Astrophysics Data System (ADS)

    Bachmann, O.; Ellis, B. S.; Wolff, J.

    2014-12-01

    Increasingly, studies are concluding that silicic ignimbrites are the result of the amalgamation of multiple discrete magma batches. Yet the existence of discrete batches presents a conundrum for magma generation and storage; if silicic magma batches are not generated nearly in situ in the upper crust, they must traverse, and reside within, a thermally hostile environment with large temperature gradients, resulting in low survivability in their shallow magmatic hearths. The Snake River Plain (Idaho, USA) is a type example of this 'multi-batch' assembly with ignimbrites containing multiple populations of pyroxene crystals, glass shards, and crystal aggregates. The ubiquitous crystal aggregates hint at a mechanism to facilitate the existence of multiple, relatively small batches of rhyolite in the upper crust. These aggregates contain the same plagioclase, pyroxene, and oxide mineral compositions as single phenocrysts of the same minerals in their host rocks, but they have significantly less silicic bulk compositions and lack quartz and sanidine, which occur as single phenocrysts in the deposits. This implies significant crystallization followed by melt extraction from mushy reservoir margins. The extracted melt then continues to evolve (crystallizing sanidine and quartz) while the melt-depleted margins provide an increasingly rigid and refractory network segregating the crystal-poor batches of magma. The hot, refractory, margins insulate the crystal-poor lenses, allowing (1) extended residence in the upper crust, and (2) preservation of chemical heterogeneities among batches. In contrast, systems that produce cumulates richer in low-temperature phases (quartz, K-feldspars, and/or biotite) favour remelting upon recharge, leading to less segregation of eruptible melt pockets and the formation of gradationally zoned ignimbrites. The occurrence of similar crystal aggregates from a variety of magmatic lineages suggests the generality of this process.

  10. A Weathering Index for CK and R Chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Huber, Heinz

    2006-01-01

    We present a new weathering index (wi) for the metallic-Fe-Ni-poor chondrite groups (CK and R) based mainly on transmitted light observations of the modal abundance of crystalline material that is stained brown in thin sections: wi-0, <5 vol%; wi-1, 5-25 vol%; wi-2,25-50 vol%; wi-3,50- 75 vol%; wi-4, 75-95 vol%; wi-5, >95 vol%, wi-6, significant replacement of mafic silicates by phyllosilicates. Brown staining reflects mobilization of oxidized iron derived mainly from terrestrial weathering of Ni-bearing sulfide. With increasing degrees of terrestrial weathering of CK and R chondrites, the sulfide modal abundance decreases, and S, Se, and Ni become increasingly depleted. In addition, bulk Cl increases in Antarctic CK chondrites, probably due to contamination from airborne sea mist.

  11. Models for silicate melt viscosity

    NASA Astrophysics Data System (ADS)

    Giordano, D.; Russell, K.; Moretti, R.; Mangiacapra, A.; Potuzak, M.; Romano, C.; Dingwell, D. B.

    2004-12-01

    The prediction of viscosity in silicate liquids, over the range of temperatures and compositions encountered in nature, remains one of the most challenging and elusive goals in Earth Sciences. Recent work has demonstrated that there are now sufficient experimental measurements of melt viscosity to create new viscosity models to replace previous Arrhenian models [1],[2] and extend the compositional range of more recent non-Arrhenian models [3]. Most recently, [4] have developed an empirical strategy for accurately predicting viscosities over a very wide range of anhydrous silicate melt compositions (e.g., rhyolite to basanite). Future models that improve upon this work, will probably extend the composition range of the model to consider, at least, H2O and other volatile components and may utilize a compositional basis that reflects melt structure. In preparation for the next generation model, we explore the attributes of the three most common equations that could be used to model the non-Arrhenian viscosity of multicomponent silicate melts. The equations for the non-Arrhenian temperature dependence of viscosity (? ) include: a) Vogel-Fulcher-Tammann (VFT): log ? = A + B/(T - C) b) Adam and Gibbs (AG): log ? = A + B/[T log (T/C)], and c) Avramov (Av): log ? = A + [B/T]? We use an experimental database of approximately 900 high-quality viscosity measurements on silicate melts to test the ability of each equation to capture the experimental data. These equations have different merits [5]. VFT is purely empirical in nature. The AG model has a quasi-theoretical basis that links macroscopic transport properties directly to thermodynamic properties via the configurational entropy. Lastly, the model proposed by Avramov adopts a form designed to relate the fit parameter (? ) to the fragility of the melt. [1] Shaw, H.R., 1972. Am J Science, 272, 438-475. [2] Bottinga Y. and Weill, D., 1972. Am J Science, 272, 438-475. [3] Hess, K.U. and Dingwell, D.B, 1996, Am Min, 81, 1297-1300. [4] D. Giordano & D.B. Dingwell, 2003. EPSL. 208, 337 (and related corrige EPSL 221, 449) [5] J.K. Russell, D. Giordano & D.B. Dingwell, 2003. Am Min 88, 1390

  12. Decreased water flowing from a forest amended with calcium silicate

    PubMed Central

    Green, Mark B.; Bailey, Amey S.; Bailey, Scott W.; Battles, John J.; Campbell, John L.; Driscoll, Charles T.; Fahey, Timothy J.; Lepine, Lucie C.; Likens, Gene E.; Ollinger, Scott V.; Schaberg, Paul G.

    2013-01-01

    Acid deposition during the 20th century caused widespread depletion of available soil calcium (Ca) throughout much of the industrialized world. To better understand how forest ecosystems respond to changes in a component of acidification stress, an 11.8-ha watershed was amended with wollastonite, a calcium silicate mineral, to restore available soil Ca to preindustrial levels through natural weathering. An unexpected outcome of the Ca amendment was a change in watershed hydrology; annual evapotranspiration increased by 25%, 18%, and 19%, respectively, for the 3 y following treatment before returning to pretreatment levels. During this period, the watershed retained Ca from the wollastonite, indicating a watershed-scale fertilization effect on transpiration. That response is unique in being a measured manipulation of watershed runoff attributable to fertilization, a response of similar magnitude to effects of deforestation. Our results suggest that past and future changes in available soil Ca concentrations have important and previously unrecognized implications for the water cycle. PMID:23530239

  13. Cloud information for FIRE from surface weather reports

    NASA Technical Reports Server (NTRS)

    Hahn, Carole J.; Warren, Stephen G.; London, Julius

    1990-01-01

    Surface weather observations of clouds were analyzed to obtain a global cloud climatology (Warren et al, 1986; 1988). The form of the synoptic weather code limits the types of cloud information which are available from these reports. Comparison of surface weather reports with instrumental observations during the FIRE field experiments can help to clarify the operational definitions which were made in the climatology because of the nature of the synoptic code. The long-term climatology from surface weather observations is also useful background for planning the location and timing of intensive field experiments.

  14. NASA's Sentinels Monitoring Weather and Climate: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Herring, David; Gutro, Rob; Huffman, George; Halverson, Jeff

    2002-01-01

    Weatherwise is probably the most popular newstand magazine focusing on the subject of weather. It is published six times per year and includes features on weather, climate, and technology. This article (to appear in the January/February Issue) provides a comprehensive review of NASA s past, present, and future contributions in satellite remote sensing for weather and climate processes. The article spans the historical strides of the TIROS program through the scientific and technological innovation of Earth Observer-3 and Global Precipitation Measurement (GPM). It is one of the most thorough reviews of NASA s weather and climate satellite efforts to appear in the popular literature.

  15. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122...Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  16. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122...Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  17. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122...Anticaking Agents § 582.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  18. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122...Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  19. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122...Anticaking Agents § 582.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  20. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122...Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  1. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122...Anticaking Agents § 582.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  2. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122...Anticaking Agents § 582.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  3. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122...Anticaking Agents § 582.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  4. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122...Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2...

  5. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Modified magnesium silicate polymer (generic). 721...Substances § 721.9513 Modified magnesium silicate polymer (generic). ...substance identified generically as modified magnesium silicate polymer (PMN...

  6. Multilingual Weather Forecast Generation System

    Microsoft Academic Search

    Tianfang Yao; Dongmo Zhang; Qian Wang

    The MLWFA (Multilingual Weather Forecasts Assistant) system will be demonstrated. It is developed to generate the multilingual text of the weather forecasts automatically. The raw data from the weather observation can be used to generate the weather element chart. According to the weather change trend, the forecasters can directly modify the value Of the element on the chart, such as

  7. GPU Computing in Space Weather Modeling

    NASA Astrophysics Data System (ADS)

    Feng, X.; Zhong, D.; Xiang, C.; Zhang, Y.

    2013-04-01

    Space weather refers to conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and that affect human life or health. In order to make the real- or faster than real-time numerical prediction of adverse space weather events and their influence on the geospace environment, high-performance computational models are required. The main objective in this article is to explore the application of programmable graphic processing units (GPUs) to the numerical space weather modeling for the study of solar wind background that is a crucial part in the numerical space weather modeling. GPU programming is realized for our Solar-Interplanetary-CESE MHD model (SIP-CESE MHD model) by numerically studying the solar corona/interplanetary solar wind. The global solar wind structures is obtained by the established GPU model with the magnetic field synoptic data as input. The simulated global structures for Carrington rotation 2060 agrees well with solar observations and solar wind measurements from spacecraft near the Earth. The model's implementation of the adaptive-mesh-refinement (AMR) and message passing interface (MPI) enables the full exploitation of the computing power in a heterogeneous CPU/GPU cluster and significantly improves the overall performance. Our initial tests with available hardware show speedups of roughly 5x compared to traditional software implementation. This work presents a novel application of GPU to the space weather study.

  8. Goldschmidt Conference Abstracts 2008 A41 Artificial chemical weathering of

    E-print Network

    Politècnica de Catalunya, Universitat

    -0025, Japan (tsakamoto@cis.ac.jp) "Acid rain" is one of the global environmental problems. In order to predict the each mineral surface and examined using XRD and TEM. The leached sample solutions were analyzed transformation to rodingites featuring a range of Ca-Al and Ca-silicates. Rodingites are often thought

  9. Blocking-related extreme weather events in the LMDZ4 atmospheric model: Sensitivity to model resolution

    E-print Network

    Feigon, Brooke

    Blocking-related extreme weather events in the LMDZ4 atmospheric model: Sensitivity to model weather events are often caused by persistent and quasi-stationary weather regimes, such as blocking) between a global climate model ("MASTER", 300 km) and a regional climate model ("SLAVE", 100 km over

  10. Silicate Glass Corrosion Mechanism revisited

    NASA Astrophysics Data System (ADS)

    Geisler, Thorsten; Lenting, Christoph; Dohmen, Lars

    2015-04-01

    Understanding the mechanism(s) of aqueous corrosion of nuclear waste borosilicate glasses is essential to predict their long-term aqueous durability in a geologic repository. Several observations have been made with compositionally different silicate glasses that cannot be explained by any of the established glass corrosion models. These models are based on diffusion-controlled ion exchange and subsequent structural reorganisation of a leached, hydrated residual glass, leaving behind a so-called gel layer. In fact, the common observation of lamellar to more complex pattern formation observed in experiment and nature, the porous structure of the corrosion layer, an atomically sharp boundary between the corrosion zone and the underlying pristine glass, as well as results of novel isotope tracer and in situ, real time experiments rather support an interface-coupled glass dissolution-silica reprecipitation model. In this model, the congruent dissolution of the glass is coupled in space and time to the precipitation and growth of amorphous silica at an inwardly moving reaction front. We suggest that these coupled processes have to be considered to realistically model the long-term performance of silicate glasses in aqueous environments.

  11. Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada

    NASA Astrophysics Data System (ADS)

    Millot, Romain; Gaillardet, J. érôme; Dupré, Bernard; Allègre, Claude Jean

    2003-04-01

    The main scope of this study is to investigate parameters controlling chemical weathering rates for a large river system submitted to subarctic climate. More than 110 river water samples from the Mackenzie River system (northern Canada) have been sampled and analyzed for major and trace elements and Sr isotopic ratios in the dissolved phase. The three main morphological units are reflected in water chemistry. Rivers from the Canadian Shield are very dilute, dominated by silicate weathering (Millot et al., 2002), whereas the rivers of the Rocky and Mackenzie Mountains as well as the rivers of the sedimentary Interior Platform are dominated by carbonate weathering and are SO 4 rich. Compared to the rivers of the Mackenzie and Rocky Mountains, the rivers of the interior plains are organic, silica, and Na rich and constitute the dominant input term to the Mackenzie River mainstream. Rivers of the Canadian Shield area do not significantly contribute to the Mackenzie River system. Using elemental ratios and Sr isotopic ratios, a mathematical inversion procedure is presented that distinguishes between solutes derived from silicate weathering and solutes derived from carbonate weathering. Carbonate weathering rates are mostly controlled by runoff, which is higher in the mountainous part of the Mackenzie basin. These rates are comparable to the carbonate weathering rates of warmer areas of the world. It is possible that part of the carbonate weathering is controlled by sulfide oxidative weathering, but its extent remains difficult to assess. Conversely to what was stated by Edmond and Huh (1997), overall silicate weathering rates in the Mackenzie basin are low, ranging from 0.13 to 4.3 tons/km 2/yr (Na + K + Ca + Mg), and confirm the negative action of temperature on silicate weathering rates for river basins in cold climates. In contrast to what has been observed in other large river systems such as the Amazon and Ganges Rivers, silicate weathering rates appear 3 to 4 times more elevated in the plains than in the mountainous headwaters. This contradicts the "Raymo hypothesis" (Raymo and Ruddiman, 1992). Isotopic characterization of suspended material clearly shows that the higher weathering rates reported for the plains are not due to the weathering of fine sediments produced in the mountains (e.g., by glaciers) and deposited in the plains. Rather, the relatively high chemical denudation rates in the plains are attributed to lithology (uncompacted shales), high mechanical denudation, and the abundance of soil organic matter derived from incomplete degradation and promoting crystal lattice degradation by element complexation. The three- to fourfold factor of chemical weathering enhancement between the plains and mountains is similar to the fourfold factor of enhancement found by Moulton et al. (2000) between unvegetated and vegetated watershed. This study confirms the negative action of temperature on silicate weathering for cold climate but shows that additional factors, such as organic matter, associated with northern watersheds are able to counteract the effect of temperature. This acceleration by a factor of 4 in the plains is equivalent to a 6°C increase in temperature.

  12. Availability of phosphorus in calcium silicate slag

    Microsoft Academic Search

    D. L. Anderson; G. H. Snyder; J. D. Warren

    1992-01-01

    Significant yield increases of sugarcane and rice have been observed in the Everglades Agricultural Area of Florida from application of soluble silicon as calcium silicate slag. Although calcium silicate slag contains trace quantities of P, significant quantities of P can be applied using commercial rates of slag. This may be of concern to both the agronomists responsible for determining P

  13. The speciation of water in silicate melts

    Microsoft Academic Search

    Edward Stolper

    1982-01-01

    Previous models of water solubility in silicate melts generally assume essentially complete reaction of water molecules to hydroxyl groups. In this paper a new model is proposed that is based on the hypothesis that the observed concentrations of molecular water and hydroxyl groups in hydrous silicate glasses reflect those of the melts from which they were quenched. The new model

  14. The geopolymerisation of alumino-silicate minerals

    Microsoft Academic Search

    Hua Xu; J. S. J. Van Deventer

    2000-01-01

    Geopolymers are similar to zeolites in chemical composition, but they reveal an amorphous microstructure. They form by the co-polymerisation of individual alumino and silicate species, which originate from the dissolution of silicon and aluminium containing source materials at a high pH in the presence of soluble alkali metal silicates. It has been shown before that geopolymerisation can transform a wide

  15. Home Weatherization Visit

    SciTech Connect

    Chu, Steven

    2009-01-01

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

  16. People and Weather.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides: (1) background information on ways weather influences human lives; (2) activities related to this topic; and (3) a ready-to-copy page with weather trivia. Each activity includes an objective, list of materials needed, recommended age level(s), subject area(s), and instructional strategies. (JN)

  17. Weather Fundamentals: Clouds. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…

  18. Tracking Weather Satellites.

    ERIC Educational Resources Information Center

    Martin, Helen E.

    1996-01-01

    Describes the use of weather satellites in providing an exciting, cohesive framework for students learning Earth and space science and in providing a hands-on approach to technology in the classroom. Discusses the history of weather satellites and classroom satellite tracking. (JRH)

  19. Weather Fundamentals: Wind. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) describes the roles of the sun, temperature, and air pressure in creating the incredible power…

  20. Designing a Weather Station

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  1. Weather Vane and Anemometer

    NSDL National Science Digital Library

    Watsonville Environmental Science Workshop

    2011-01-01

    In this meteorology activity, learners construct simple devices to measure the direction and speed of wind. Learners will explore wind and air resistance as well as how weather vanes and generators work to analyze weather patterns. Note: a drill and other specialty tools are required for this activity, but are not included in the cost of materials.

  2. Home Weatherization Visit

    ScienceCinema

    Chu, Steven

    2013-05-29

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

  3. Northwest Weather Watch

    NSDL National Science Digital Library

    Sue Palewicz

    This educational module is designed to teach students about predicting weather. This includes a series of activites about clouds, moisture, air and rain for students to complete. There are curriculum connections to art, writing and math as well as links for more resources and live weather data.

  4. Teacher's Weather Sourcebook.

    ERIC Educational Resources Information Center

    Konvicka, Tom

    This book is a teaching resource for the study of weather-related phenomena. A "weather unit" is often incorporated into school study because of its importance to our daily lives and because of its potential to cut across disciplinary content. This book consists of two parts. Part I covers the major topics of atmospheric science such as the modern…

  5. Weather and radar interactions

    Microsoft Academic Search

    J. P. Booth

    2005-01-01

    This paper discusses the effects of weather on radar system performance. This discussion were based on computer simulations and climatological data. The relationships between frequency and range were explored as they interact with the weather. This effort is being conducted in the RF Technology Division of the Applied Sensors, Guidance, and Electronics Directorate, US Army Aviation and Missile Research, Development,

  6. Advanced Aviation Weather Forecasts

    Microsoft Academic Search

    Marilyn M. Wolfson; David A. Clark

    2006-01-01

    n The U.S. air transportation system faces a continuously growing gap between the demand for air transportation and the capacity to meet that demand. Two key obstacles to bridging this gap are traffic delays due to en route severe- weather conditions and airport weather conditions. Lincoln Laboratory has been addressing these traffic delays and related safety problems under the Federal

  7. New weather forecasting aid

    NASA Astrophysics Data System (ADS)

    A new, computerized weather analysis and display system developed by the National Oceanic and Atmospheric Administration (NOAA) is being used to provide air traffic controllers in Colorado with up-to-date information on weather systems that could affect aircraft within their control areas. The system, called PROFS (Prototype Regional Observing and Forecasting Services), was under development for four years at NOAA's Environmental Research Laboratories in Boulder, and is undergoing operational evaluation at the Federal Aviation Administration's (FAA's) Denver Air Route Traffic Control Center in Longmont, Colo. FAA officials see the new system as a first step in upgrading the weather support services for the nation's air traffic control system. Originally created to help National Weather Service personnel with their forecasting duties (Eos, April 13, 1982, p. 233), the PROFS system was specially tailored for aviation use before being installed at the Longmont center. The system uses computers to process weather data from satellites, regional radar, wind profilers, a network of automated weather stations in eastern Colorado, and other sources, some of which are not normally available to forecasters. When this information is collected and formatted, weather personnel at the center can choose from several types of visual display on their terminals, depending on what information they require. The forecasters can then make printed copies of any display and distribute them within moments to controllers who use the information to alert air traffic to storms, wind shifts, and other weather disturbances.

  8. Winter Weather Frequently Asked Questions

    MedlinePLUS

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... Weather Information on Specific Types of Emergencies Winter Weather Frequently Asked Questions Language: English Español (Spanish) Recommend ...

  9. Weather Event Simulator Weather Event Simulator

    E-print Network

    Training Branch National Weather Service Norman, OK John Ferree Warning Decision Training Branch National for Applied Behavioral Science D iscus Audio/ Teac Le #12;Learn By DoingLearn By Doing #12;Simulations Improve ­ All Major Airlines ­ Flight Schools #12;Simulations Improve Job Performance Simulations Improve Job

  10. Parallel geometric multigrid for global weather prediction

    Microsoft Academic Search

    Sean D. Buckeridge; Robert Scheichl

    2010-01-01

    The subject of this work is an optimal and scalable parallel geometric multigrid solver for elliptic problems on the sphere. The use of fast elliptic solvers is cr ucial to the forecasting and data assim- ilation tools used at the UK Met Offi ce, and the preconditioned Krylov subspace solvers currently used do not perform well for large problem sizes

  11. Global weathering of aromatic engineering thermoplastics

    Microsoft Academic Search

    J. E. Pickett; M. M. Gardner; D. A. Gibson; S. T. Rice

    2005-01-01

    The rates of gloss loss and color shift for 24 aromatic engineering thermoplastics at nine exposure sites world-wide have been compared relative to a commercial Miami exposure site. The scatter among individual samples was large, but on average, light dose alone was enough to account for almost all of the rate differences among the various sites for these materials. Temperature,

  12. Estimating and Correcting Global Weather Model Error

    Microsoft Academic Search

    Christopher M. Danforth; Eugenia Kalnay; Takemasa Miyoshi

    2007-01-01

    The purpose of the present study is to explore the feasibility of estimating and correcting systematic model errors using a simple and efficient procedure, inspired by papers by Leith as well as DelSole and Hou, that could be applied operationally, and to compare the impact of correcting the model integration with statistical corrections performed a posteriori. An elementary data assimilation

  13. Global weather requirements for precipitation measurements

    NASA Technical Reports Server (NTRS)

    Clark, J. H. E.

    1981-01-01

    Results of a radar study of summertime convection in the high plains of Kansas are presented which demonstrate the importance of the small scale structure of precipitation to the overall production of precipitation in a storm. The smaller scale structure must be modeled to develop valid relationships between satellite observables and precipitation amount. The Kansas results suggest that just the observation of the number and spacings of the active regions of convection (thunderstorms) is sufficient to provide an estimate of water flux with an uncertainty of less than a factor of two.

  14. Satellite Constellation Monitors Global and Space Weather

    Microsoft Academic Search

    Chio-Zong Frank Cheng; Ying-Hwa Kuo; Richard A. Anthes; Lance Wu

    2006-01-01

    Six identical microsatellites were successfully launched into a circular low Earth orbit from Vandenberg Air Force Base, Calif., at 0140 UTC on 15 April 2006. Termed the Formosa Satellite 3 and Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3\\/COSMIC) mission, the new constellation's primary science goal is to obtain vertical profiles in near-real time of temperature, pressure, and water

  15. Global Warming

    NSDL National Science Digital Library

    Ms. Schultz

    2007-12-03

    Use the links below to complete your research. The Heat Over Global Warming God and Global Warming Robert Redford: Business Warming Up to Environment Emission Impossible? Senator Stepping Up on Climate Control Interview: Bill McKibben Climate Change and the Media Senate Hearings Five Questions with Environmental Writer Tom Philpott Home Grown Oil, Politics Bribes E2: Energy The Greens Online NewsHour: The Global Warming Debate NewsHour Extra: Global Warming Linked to Humans NewsHour Extra: Global Warming Fears Lead to Ratification of the Kyoto Protocol Frontline: Doubters of Global Warming Journey to Planet Earth: The State of the Planet: Global Warming What s Up With the Weather? Some of the below resources were found in the book Global Warming : Opposing Viewpoints (available in the MRC) The Heritage Foundation - Global Warming Rainforest Alliance Doing a global warming search in this website will result in a list of various articles Sierra Club - homepage eLibrary (Proquest) is now available through the

  16. Space Weather CD

    NSDL National Science Digital Library

    2013-04-10

    This is a software package about space weather: what it is and what it does in space and here on Earth. The disc includes software that displays movies and images of the aurora and of the Sun in various wavelengths from the ground and from orbiting NASA spacecraft; a tutorial about what space weather is and how the aurora is formed; and more. Users will also find real-time space weather conditions from current satellite missions and can download the latest data without leaving the Space Weather application. A TicTacToe game is also included that tests space weather knowledge. The disc contains many other Space Weather resources, programs, sounds, and games for use at home or school, and there are several educational websites included in full on the disc for offline viewing. In addition there is an exhaustive list of links to a variety of space weather resources available online. The disc is available for free from a number of sites if downloaded.

  17. Weather satellite launched

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-06-01

    NASA launched on 24 May the weather satellite GOES-N, the first of the new N series of Geostationary Operational Environmental Satellites. The satellite, which becomes GOES-13 once it reaches its final orbit, joins the U.S. National Oceanic and Atmospheric Administration collection of weather satellites that provide the agency with data for weather forecasts and warnings. The GOES-N series has several improvements over previous GOES satellites. A highly stable pointing platform will allow improved performance from the satellite's sounder-which gathers atmospheric data- and its imager. In addition, the satellite will enable NOAA to improve forecasts and warnings of solar disturbances.

  18. Weather and Climate

    NSDL National Science Digital Library

    Medina, Philip

    This unit introduces younger students to the concepts of weather and climate. Topics include the structure of the atmosphere, the definitions of weather and climate, and temperature and how it is measured. There are also discussions of heat transfers (radiation, conduction, convection), air pressure, wind, and the Coriolis effect. Other topics include types of storms, larger-scale weather systems such as pressure systems and fronts, and factors (insolation, land-sea breezes, orographic effect) that influence the climate in a given region. A vocabulary list and downloadable, printable student worksheets are provided.

  19. Wonderful World of Weather

    NSDL National Science Digital Library

    2006-01-01

    This website uses real time data for many activities for learning about the weather. It can be modified to fit virtually any grade level. The project is broken up into 3 sets of lessons; Introductory Activities, Real Time Data Activities, and Language Arts Activities. Each lesson gives a recommended time for completion, to help keep students and teachers on track. There is a helpful teachers guide section with background information about real time data, curriculum standards, and assessment suggestions. Th students gallery has many examples of real projects other students have already created. There is also a helpful reference guide, with information on real time weather, projects, and weather lesson plans.

  20. Sun, weather, and climate

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1985-01-01

    The general field of sun-weather/climate relationships, that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown causal mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climatic trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments.

  1. Weather Observing Fundamentals

    NSDL National Science Digital Library

    COMET

    2014-03-11

    "Weather Observing Fundamentals" provides guidance for U.S. Navy Aerographer's Mates, Quartermasters, and civilian observers tasked with taking and reporting routine, special, and synoptic observations. Although the focus of this lesson is on shipboard observations, much of the content applies to land-based observing and reporting as well. The lesson details standard procedures for taking accurate weather observations and for encoding those observations on COMNAVMETOCCOM Report 3141/3. Exercises throughout the lesson and four weather identification drills at the end provide learners with opportunities to practice and build their skills. The lesson covers a large amount of content. You may wish to work through the material in multiple sessions.

  2. World Weather Information Service

    NSDL National Science Digital Library

    The World Meteorological Organization Web site offers the World Weather Information Service page. Here, visitors will find official weather forecasts and climatological information for selected cities worldwide. Users choose a particular continent and country, and are then presented with a list of various cities they can get information on. This includes the date and time of the current forecast, minimum and maximum temperatures for that day, a general cloud description, and a monthly review of various data for that city. If for nothing else, the site does a good job of providing a very straightforward and easy way to find weather information from hundreds of cities around the globe.

  3. Detection of solar wind-produced water in irradiated rims on silicate minerals.

    PubMed

    Bradley, John P; Ishii, Hope A; Gillis-Davis, Jeffrey J; Ciston, James; Nielsen, Michael H; Bechtel, Hans A; Martin, Michael C

    2014-02-01

    The solar wind (SW), composed of predominantly ?1-keV H(+) ions, produces amorphous rims up to ?150 nm thick on the surfaces of minerals exposed in space. Silicates with amorphous rims are observed on interplanetary dust particles and on lunar and asteroid soil regolith grains. Implanted H(+) may react with oxygen in the minerals to form trace amounts of hydroxyl (-OH) and/or water (H2O). Previous studies have detected hydroxyl in lunar soils, but its chemical state, physical location in the soils, and source(s) are debated. If -OH or H2O is generated in rims on silicate grains, there are important implications for the origins of water in the solar system and other astrophysical environments. By exploiting the high spatial resolution of transmission electron microscopy and valence electron energy-loss spectroscopy, we detect water sealed in vesicles within amorphous rims produced by SW irradiation of silicate mineral grains on the exterior surfaces of interplanetary dust particles. Our findings establish that water is a byproduct of SW space weathering. We conclude, on the basis of the pervasiveness of the SW and silicate materials, that the production of radiolytic SW water on airless bodies is a ubiquitous process throughout the solar system. PMID:24449869

  4. Space Weather Needs of an Evolving Customer Base (Invited)

    NASA Astrophysics Data System (ADS)

    Rutledge, B.; Viereck, R. A.; Onsager, T. G.

    2013-12-01

    Great progress has been made in raising the global awareness of space weather and the associated impacts on Earth and our technological systems. However, significant gaps still exist in providing comprehensive and easily understood space weather information, products, and services to the diverse and growing customer base. As technologies, such as Global Navigation Satellite Systems (GNSS), have become more ingrained in applications and fields of work that previously did not rely on systems sensitive to space weather, the customer base has grown substantially. Furthermore, the causes and effects of space weather can be difficult to interpret without a detailed understanding of the scientific underpinnings. In response to this change, space weather service providers must address this evolution by both improving services and by representing space weather information and impacts in ways that are meaningful to each facet of this diverse customer base. The NOAA Space Weather Prediction Center (SWPC) must work with users, spanning precision agriculture, emergency management, power grid operators and beyond, to both identify unmet space weather service requirements and to ensure information and decision support services are provided in meaningful and more easily understood forms.

  5. dsclim: A software package to downscale climate scenarios at regional scale using a weather-typing

    E-print Network

    , weather-typing, france, SAFRAN, SCRATCH08, tool, software #12;Introduction Nowadays, global climatedsclim: A software package to downscale climate scenarios at regional scale using a weather-typing based statistical methodology Christian Pagé Laurent Terray Julien Boé Climate Modelling and Global

  6. ANL/ALCF/ESP-13/1 Climate-Weather Modeling Studies Using a Prototype

    E-print Network

    Kemner, Ken

    ANL/ALCF/ESP-13/1 Climate-Weather Modeling Studies Using a Prototype Global Cloud-System Resolving Laboratory, or UChicago Argonne, LLC. #12;ANL/ALCF/ESP-13/1 Climate-Weather Modeling Studies Using a Prototype Global Cloud-System Resolving Model ALCF-2 Early Science Program Technical Report prepared

  7. Global neodymium–hafnium isotope systematics — revisited

    Microsoft Academic Search

    Tina van de Flierdt; Steven L. Goldstein; Sidney R. Hemming; Martin Roy; Martin Frank; Alex N. Halliday

    2007-01-01

    Global Nd–Hf isotope systematics can be mainly described with two linear arrays, the global silicate Earth array (“the terrestrial array”) and the global ferromanganese crust and nodule array (”the seawater array”). The offset between these two arrays provides evidence for the sources and mechanisms by which these elements are added to ocean water. However, the reason for this offset is

  8. The space-weather enterprise: past, present, and future

    NASA Astrophysics Data System (ADS)

    Siscoe, G.

    2000-09-01

    Space-weather impacts society in diverse ways. Societies' responses have been correspondingly diverse. Taken together these responses constitute a space weather ``enterprise'', which has developed over time and continues to develop. Technological systems that space-weather affects have grown from isolated telegraph systems in the 1840s to ocean and continent-spanning cable communications systems, from a generator electrifying a few city blocks in the 1880s to continent-spanning networks of high-tension lines, from wireless telegraphy in the 1890s to globe-spanning communication by radio and satellites. To have a name for the global totality of technological systems that are vulnerable to space weather, I suggest calling it the cyberelectrosphere. When the cyberelectrosphere was young, scientists who study space weather, engineers who design systems that space weather affects, and operators of such systems - the personnel behind the space-weather enterprise - were relatively isolated. The space-weather enterprise was correspondingly incoherent. Now that the cyberelectrosphere has become pervasive and indispensable to most segments of society, the space weather enterprise has become systematic and coherent. At present it has achieved considerable momentum, but it has barely begun to realize the level of effectiveness to which it can aspire, as evidenced by achievements of a corresponding but more mature enterprise in meteorology, a field which provides useful lessons. The space-weather enterprise will enter a new phase after it matures roughly to where the tropospheric weather enterprise is now. Then it will become indispensable for humankind's further global networking through technology and for humankind's further utilization of and expansion into space.

  9. Rates of Chemical Weathering

    NSDL National Science Digital Library

    Michael Passow

    In this activity, students will investigate the weathering of rocks by chemical processes. They will use effervescent cleansing tablets as a model for rock, and vary surface area, temperature, and acidity to see how rapidly the "rock" dissolves. This investigation will help them understand three of the factors that affect the rate of chemical weathering and develop better understanding of how to design controlled experiments by exploring only one experimental variable at a time.

  10. Sun, weather, and climate

    Microsoft Academic Search

    J. R. Herman; R. A. Goldberg

    1985-01-01

    The general field of sun-weather\\/climate relationships that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown casual mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climate trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5)

  11. Wonderful World of Weather

    NSDL National Science Digital Library

    2011-01-01

    This standards-based unit has been created for use by students in the elementary grades to investigate weather phenomena both locally as well as in other places around the world. By using hands-on activities and real-time data investigations, students develop a basic understanding of how weather can be described in measurable quantities. The lesson plans have been designed to allow teachers to select the ones which fit into their curriculum, and to allow for flexibility in implementation.

  12. Weather Radar Network Design

    Microsoft Academic Search

    Francesc Junyent; V. Chandrasekar

    2008-01-01

    The Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) is investigating the use of dense networks of short-range radars for weather sensing. A first test-bed of this new paradigm is currently deployed in southwest Oklahoma. The potential benefits of closely deployed, overlapping, short-range weather radars are easy to see intuitively amounting to a greater ability to measure

  13. Weathering and Erosion

    NSDL National Science Digital Library

    2012-06-26

    In this multi-station lab, learners conduct a series of experiments to explore the processes and effects of weathering and erosion. Using the results from these explorations, learners design and conduct an experiment comparing the rate of erosion in different biomes. Use this activity to teach weathering and erosion, and also to illustrate how scientists often use the results of one experiment to inspire another. This activity is intended to be conducted over multiple meetings.

  14. An Ocean of Weather

    NSDL National Science Digital Library

    In this lesson, students will investigate the close relationship between the ocean and the atmosphere to determine the extent the ocean affects the Earth's weather in the South Atlantic Bight region. As they study this relationship, students will learn that the ocean and atmosphere work together as a system. They will experiment to find out that heat transfer from the ocean is a cause of much of Earth's weather and will make and explain an ocean water cycle.

  15. Rates of oxidative weathering on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Implicit in the mnemonic 'MSATT' (Mars surface and atmosphere through time) is that rates of surface processes on Mars through time should be investigated, including studies of the kinetics and mechanism of oxidative weathering reactions occurring in the Martian regolith. Such measurements are described. Two major elements analyzed in the Viking Lander XRF experiment that are most vulnerable to atmospheric oxidation are iron and sulfur. Originally, they occurred as Fe(2+)-bearing silicate and sulfide minerals in basaltic rocks on the surface of Mars. However, chemical weathering reactions through time have produced ferric- and sulfate-bearing assemblages now visible in the Martian regolith. Such observations raise several question about: (1) when the oxidative weathering reactions took place on Mars; (2) whether or not the oxidized regolith is a fossilized remnant of past weathering processes; (3) deducting chemical interactions of the ancient Martian atmosphere with its surface from surviving phases; (4) possible weathering reactions still occurring in the frozen regolith; and (5) the kinetics and mechanism of past and present-day oxidative reactions on Mars. These questions may be addressed experimentally by studying reaction rates of dissolution and oxidation of basaltic minerals, and by identifying reaction products forming on the mineral surfaces. Results for the oxidation of pyrrhotite and dissolved ferrous iron are reported.

  16. Global chemical erosion over the last 250 my: Variations due to changes in paleogeography, paleoclimate, and paleogeology

    SciTech Connect

    Gibbs, M.T.; Bluth, G.J.S.; Fawcett, P.J.; Kump, L.R.

    1999-07-01

    The authors utilize predictions of runoff from two series of GENESIS (version 1.02) climate model experiments to calculate chemical erosion rates for 12 time slices that span the Mesozoic and Cenozoic. A set of control experiments where geography is altered according to published paleogeographic reconstructions and atmospheric pCO{sub 2} is held fixed at the present-day value was designed to elucidate climate sensitivity to geography alone. A second series of experiments, where the (elevated) atmospheric CO{sub 2} level for each time slice was adapted from Berner (1991), was executed to determine the additional climate sensitivity to this parameter. By holding other climate forcing factors (for example, vegetation) constant throughout the sequence of experiments the authors evaluate the effects of systematic/coherent paleogeographic changes on runoff and temperature, and thus on global rates of chemical weathering. By using empirical relationships between runoff and bicarbonate fluxes for different rock types and maps of paleogeology they calculate global bicarbonate fluxes, taking into account spatial variations in lithology and hydrology. They find that spatial variations in lithology account for little variation in the total or silicate chemical erosion rates. Calculations suggest a weaker-than-expected CO{sub 2}-climate weathering feedback. The reasonable atmospheric pCO{sub 2} variations specified for the climate-model simulations do not lead to climatic effects that support large changes in the chemical erosion rate, compared to those generated by changing paleogeography. In general, however, they find that silicate weathering rates are similar to outgassing rates of volcanic and methamorphic CO{sub 2}.

  17. 2012 Severe Weather Awareness Guide

    E-print Network

    Meyers, Steven D.

    Florida's 2012 Severe Weather Awareness Guide 2012 Severe Weather Awareness Guide F L O R I D A D I of Emergency Management #12;Florida's Severe Weather Awareness Guide 2 Florida is affected by many natural. That is why I am proud to present the 2012 Severe Weather Awareness Guide. By reading this guide you can learn

  18. Recall of Television Weather Reports.

    ERIC Educational Resources Information Center

    Hyatt, David; And Others

    1978-01-01

    A Minneapolis/St. Paul telephone survey revealed that most people interviewed relied on radio weather reports for weather information, that the amount of weather information retained from radio and television forecasts was minimal, and that most people were satisfied with television weather reports. (GW)

  19. Assimilation of precipitation measurements for prediction of extreme weather events

    Microsoft Academic Search

    A. Hou; S. Zhang; J.-L. Li

    2003-01-01

    Rainfall observations derived from Tropical Rrainfall Measuring Mission (TRMM) and Special Sensor Microwave\\/Imager (SSM\\/I) instruments have been shown to be useful for improving global analysis and forecasts. Numerical weather prediction (NWP) and data assimilation centers have begun operational use of these data. Between now and launching of the proposed Global Precipitation Measurement (GPM) mission in 2007, there will be a

  20. Comparison of The Christiansen Feature Position and Lunar Iron: Evidence for Space Weathering Effects

    NASA Astrophysics Data System (ADS)

    Lucey, P. G.; Paige, D. A.; Greenhagen, B. T.; Allen, C.; Bandfield, J. L.; Bowles, N.; Hanna, K.; Glotch, T. D.; Thomas, I. R.; Wyatt, M. B.

    2009-12-01

    Diviner’s three channels near 8-microns characterize an infrared emissivity maximum called the Christiansen Feature (CF) which is has been established as compositional indicator in laboratory experiments. Laboratory measurements show that the CF is related to silicate polymerization and occurs at shorter wavelengths for feldspathic minerals and longer wavelengths for mafic minerals. Laboratory experiments regarding the effect of space weathering on this feature have not been conclusive. The Diviner Lunar Radiometer Experiment data begin to illustrate these effects. Because the hosts of iron in lunar materials are the mafic minerals pyroxene and olivine (with the rare ilmenite-rich maria being the chief exception), the CF wavelength position, roughly proportional to mafic mineral abundance, should correlate with iron abundance. Deviations from this correlation will be due to variations in mineral chemistry, olivine-pyroxene ratio, and possibly, space weathering effects. Using Clementine-derived global FeO estimates, calibrated to Lunar Prospector gamma-ray spectrometer iron data, we regressed iron on a global CF map with 12 km spatial resolution. The residuals of the difference between the FeO based CF prediction and the CF measurements show differences we attribute to rock and soil composition, but also, in the highlands, the effects of space weathering. The residual image (CF predicted from FeO, minus CF measured by Diviner) correlates reasonably well with optical maturity derived from visible and near-IR measurements. Using laboratory soils, optical maturity has been shown to be a reliable maturity indicator. Large fresh craters, including Tycho and Jackson, as well as a host of lesser craters, that show bright ray patterns but are not compositionally distinct from the background, show both CF and optical maturity anomalies. Specifically, fresh highland craters show shorter wavelength CF positions than mature highland background The origin of the CF dependence upon soil maturity is not known. Optical maturity is dominated by the abundance of nanophase iron that causes darkening, reddening, and loss of spectral contrast with space exposure. It is not clear how the CF, being a wavelength position parameter, could be affected by nanophase iron. However, soil maturity includes a host of other effects including prodigious production of glass, grain size evolution, and implantation of solar wind gases. At the 12km scale at which we are measuring there could also be macroscopic, but sub-pixel effects as well, such as variations in the rock-soil ratio. Further investigation of the Diviner data and supporting laboratory measurements will be used to understand this phenomenon.

  1. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate...with an absorbent tipped applicator to the surface of a new restoration to exclude temporarily fluids from its surface. (b)...

  2. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate...with an absorbent tipped applicator to the surface of a new restoration to exclude temporarily fluids from its surface. (b)...

  3. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate...with an absorbent tipped applicator to the surface of a new restoration to exclude temporarily fluids from its surface. (b)...

  4. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate...with an absorbent tipped applicator to the surface of a new restoration to exclude temporarily fluids from its surface. (b)...

  5. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate...with an absorbent tipped applicator to the surface of a new restoration to exclude temporarily fluids from its surface. (b)...

  6. Zeolite synthesis in hydrated silicate ionic liquids.

    PubMed

    van Tendeloo, Leen; Haouas, Mohamed; Martens, Johan A; Kirschhock, C E A; Breynaert, Eric; Taulelle, Francis

    2015-01-01

    Hydrated alkali silicate ionic liquids (HSIL) were prepared by hydrolysis of tetraethoxysilane (TEOS) in alkali hydroxide-water mixtures, inducing coacervation and phase separation. The resulting optically clear, homogenous silicate ionic liquid offers exceptional potential for monitoring zeolite crystallisation. This enhanced synthesis route provides access to analysis of speciation, mechanistic details of zeolite formation, and brings organic-template-free zeolite synthesis by design within reach. PMID:25886652

  7. Interpreting the 10 micron Astronomical Silicate Feature

    Microsoft Academic Search

    Janet E. Bowey

    1998-01-01

    10micron spectra of silicate dust in the diffuse medium towards Cyg OB2 no. 12 and towards field and embedded objects in the Taurus Molecular Cloud (TMC) were obtained with CGS3 at the United Kingdom Infrared Telescope (UKIRT). Cold molecular-cloud silicates are sampled in quiescent lines of sight towards the field stars Taurus-Elias 16 and Elias 13, whilst observations of the

  8. Effect of calcium silicate substrate on thermal

    Microsoft Academic Search

    Robert H. White

    A recent revision of the ICBO building code specified the use of a calcium silicate substrate in the fire testing of thermal barriers for foam plastics. Twelve small-scale vertical ASTM E 119 fire exposure tests were conducted on specimens of 1\\/2-inch gypsum board or 5\\/8-inch plywood as the thermal barrier and 1\\/2-inch calcium silicate board or l-inch aluminum foil-faced foam

  9. Peroxide-assisted syntheses of metal silicates

    SciTech Connect

    Burlitch, J.M. [Cornell Univ., Ithaca, NY (United States)

    1993-12-31

    Peroxide-containing intermediates have played pivotal roles in new synthesis of several magnesium silicates including olivine, forsterite, transition metal-doped forsterite, and enstatite. The involvement of a little-known hydroperoxide of magnesium will be discussed. Elaboration of the synthesis methodology has produced layered silicates such as the fluoro-mica, potassium fluorophlogopite, and a fluoro-talc that has a higher level of substitution of hydroxide by fluoride than any previously reported.

  10. A structural model for binary silicate systems

    Microsoft Academic Search

    P. L. Lin; A. D. Pelton

    1979-01-01

    A structural model is presented for binary silicate systems of the typeMO-SiO2, whereMO is a basic oxide, in which silicate tetrahedra and oxygen “bridges” are treated as structural units. One single formalism\\u000a applies over the entire composition range from pureMO, where the model reduces to a simple orthosilicate anion model, to pure SiO2, where the model reduces to a simple

  11. Silicates characterization as potential bacteriocin-carriers

    Microsoft Academic Search

    Carolina Ibarguren; M. Carina Audisio; E. Mónica Farfán Torres; María C. Apella

    2010-01-01

    Two different silicates, zeosil and expanded perlite, were characterized as potential carriers of a bacteriocin with anti-Listeria monocytogenes activity, produced by Enterococcus faecium CRL1385. Specific surface areas showed a value significantly higher for zeosil (146m2 g?1) than for perlite (0.65m2 g?1). Potential zeta measurements revealed that both silicates had negatively charged surfaces between pH 2 and 11, but zeosil presented

  12. Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Wu, Lingling; Huh, Youngsook; Qin, Jianhua; Du, Gu; van Der Lee, Suzan

    2005-11-01

    We examined the fluvial geochemistry of the Huang He (Yellow River) in its headwaters to determine natural chemical weathering rates on the northeastern Qinghai-Tibet Plateau, where anthropogenic impact is considered small. Qualitative treatment of the major element composition demonstrates the dominance of carbonate and evaporite dissolution. Most samples are supersaturated with respect to calcite, dolomite, and atmospheric CO 2 with moderate (0.710-0.715) 87Sr/ 86Sr ratios, while six out of 21 total samples have especially high concentrations of Na, Ca, Mg, Cl, and SO 4 from weathering of evaporites. We used inversion model calculations to apportion the total dissolved cations to rain-, evaporite-, carbonate-, and silicate-origin. The samples are either carbonate- or evaporite-dominated, but the relative contributions of the four sources vary widely among samples. Net CO 2 consumption rates by silicate weathering (6-120 × 10 3 mol/km 2/yr) are low and have a relative uncertainty of ˜40%. We extended the inversion model calculation to literature data for rivers draining orogenic zones worldwide. The Ganges-Brahmaputra draining the Himalayan front has higher CO 2 consumption rates (110-570 × 10 3 mol/km 2/yr) and more radiogenic 87Sr/ 86Sr (0.715-1.24) than the Upper Huang He, but the rivers at higher latitudes are similar to or lower than the Upper Huang He in CO 2 uptake by silicate weathering. In these orogenic zones, silicate weathering rates are only weakly coupled with temperature and become independent of runoff above ˜800 mm/yr.

  13. Weather and The Water Cycle

    NSDL National Science Digital Library

    Mrs. Merritt

    2005-10-15

    Students will be able to do activities dealing with weather and water cycles. Learn what makes weather wet and wild, forcast and predict weather. Webweather For Kids Learn about tornadoes and hurricanes. Kidstorm Learn about the water cycles. water Cycles Now click on the following link: Interactive weather maker 1. How much change in temperature is needed to make it snow? On the right side of the page click on Weather Detective Web Quest. Follow the ...

  14. Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting, and catchment weathering

    Microsoft Academic Search

    Zhangdong Jin; Fuchun Li; Junji Cao; Sumin Wang; Jimin Yu

    2006-01-01

    To advance the understanding of sediment distribution, catchment weathering, hydraulic sorting, and sediment provenance in a tectonically stable basin, the geochemistry of surface sediment samples from Daihai Lake in north China is presented. Mud bulk sediments were analyzed for 10 major and 30 trace elements, organic carbon, and nitrogen and for 87Sr\\/86Sr ratios in silicate fraction (acid insoluble, AI) and

  15. Carbon fluxes, pCO 2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives

    Microsoft Academic Search

    Kevin Telmer; Jan Veizer

    1999-01-01

    Isotopic composition of dissolved inorganic carbon (?13CDIC) in the Ottawa River basin is about ?8 and ?16‰ for lowland carbonate and upland silicate tributaries, respectively. This suggests that (1) the source of DIC to the Ottawa River is soil respiration and carbonate weathering, (2) exchange with the atmosphere is unidirectional or volumetrically unimportant, and (3) in-river respiration and photosynthesis are

  16. Micro Weather Stations for Mars

    NASA Technical Reports Server (NTRS)

    Crisp, David; Kaiser, William J.; VanZandt, Thomas R.; Hoenk, Michael E.; Tillman, James E.

    1995-01-01

    A global network of weather stations will be needed to characterize the near-surface environment on Mars. Here, we review the scientific and measurement objectives of this network. We also show how these objectives can be met within the cost-constrained Mars Surveyor Program by augmenting the Mars Pathfinder-derived landers with large numbers of very small (less than 5 liter), low-mass (less than 5 kg), low-power, low-cost Mini-meteorological stations. Each station would include instruments for measuring atmospheric. pressures, temperatures, wind velocities, humidity, and airborne dust abundance. They would also include a data handling, telemetry, power, atmospheric entry, and deployment systems in a rugged package capable of direct entry and a high-impact landing. In this paper, we describe these systems and summarize the data-taking strategies and data volumes needed to achieve the surface meteorology objectives for Mars.

  17. Organically modified silicate aerogels, ``Aeromosils``

    SciTech Connect

    Kramer, S.J.; Mackenzie, J.D. [Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering; Rubio-Alonso, F. [CSIC, Madrid (Spain). Inst. de Ceramica y Vidrio

    1996-12-31

    Aerogels derived from sol-gel oxides such as silica have become quite scientifically popular because of their extremely low densities, high surface areas, and their interesting optical, dielectric, thermal and acoustic properties. However, their commercial applicability has thus far been rather limited, due in great part to their brittleness and hydrophilicity. In prior work by the research group, modifying silicate gel structures with flexible, organic containing polymers such as polydimethylsiloxane imparted significant compliance (even rubbery behavior) and hydrophobicity. These materials have been referred to as Ormosils. This study expounds on the current effort to extend these desirable properties to aerogels, and in-so-doing, creating novel ``Aeromosils``. Reactive incorporation of hydroxy-terminal polydimethylsiloxane (PDMS) into silica sol-gels was made using both acid and two-step acid/base catalyzed processes. Aerogels were derived by employing the supercritical CO{sub 2} technique. Analyses of microstructure were made using nitrogen adsorption (BET surface area and pore size distribution), and some mechanical strengths were derived from tensile strength testing. Interesting Aeromosil properties obtained include optical transparency, surface areas of up to 1,200 m{sup 2}/g, rubberiness, and better strength than corresponding silica aerogels with elongations at break exceeding 5% in some cases.

  18. Present weathering rates in a humid tropical watershed: Nsimi, South Cameroon

    NASA Astrophysics Data System (ADS)

    Braun, Jean-Jacques; Ngoupayou, Jules Remy Ndam; Viers, Jérôme; Dupre, Bernard; Bedimo Bedimo, Jean-Pierre; Boeglin, Jean-Loup; Robain, Henri; Nyeck, Brunot; Freydier, Rémi; Nkamdjou, Luc Sigha; Rouiller, James; Muller, Jean-Pierre

    2005-01-01

    The study of biogeochemical and hydrological cycles in small experimental watersheds on silicate rocks, common for the Temperate Zone, has not yet been widely applied to the tropics, especially humid areas. This paper presents an updated database for a six-year period for the small experimental watershed of the Mengong brook in the humid tropics (Nsimi, South Cameroon). This watershed is developed on Precambrian granitoids (North Congo shield) and consists of two convexo-concave lateritic hills surrounding a large flat swamp covered by hydromorphic soils rich in upward organic matter. Mineralogical and geochemical investigations were carried out in the protolith, the saprolite, the hillside lateritic soils, and the swamp hydromorphic soils. Biomass chemical analyses were done for the representative species of the swamp vegetation. The groundwater was analysed from the parent rock/saprolite weathering front to the upper fringe in the hillside and swamp system. The chemistry of the wet atmospheric and throughfall deposits and the Mengong waters was monitored. In the Nsimi watershed the carbon transfer occurs primarily in an organic form and essentially as colloids produced by the slow biodegradation of the swamp organic matter. These organic colloids contribute significantly to the mobilization and transfer of Fe, Al, Zr, Ti, and Th in the uppermost first meter of the swamp regolith. When the organic colloid content is low (i.e., in the hillside groundwater), Th and Zr concentrations are extremely low (<3 pmol/L, ICP-MS detection limits). Strongly insoluble secondary thorianite (ThO 2) and primary zircon (ZrSiO 4) crystals control their mobilization, respectively. This finding thus justifies the potential use of both these elements as inert elements for isoelement mass balance calculations pertaining to the hillside regolith. Chloride can not be used as a conservative tracer of hydrological processes and chemical weathering in this watershed. Biogenic recycling significantly influences the low-Cl input fluxes. Sodium is a good tracer of chemical weathering in the watershed. The sodium solute flux corrected from cyclic salt input was used to assess the chemical weathering rate. Even though low (2.8 mm/kyr), the chemical weathering rate predominates over the mechanical weathering rate (1.9 mm/kyr). Compared to the Rio Icacos watershed, the most studied tropical site, the chemical weathering fluxes of silica and sodium in the Mengong are 16 and 40 times lower, respectively. This is not only related to the protective role of the regolith, thick in both cases, but also to differences in the hydrological functioning. This is to be taken into account in the calculations of the carbon cycle balance for large surfaces like that of the tropical forest ecosystems on a stable shield at the global level.

  19. Weather from the Stratosphere?

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Thompson, David W. J.; Shuckburgh, Emily F.; Norton, Warwick A.; Gillett, Nathan P.

    2006-01-01

    Is the stratosphere, the atmospheric layer between about 10 and 50 km, important for predicting changes in weather and climate? The traditional view is that the stratosphere is a passive recipient of energy and waves from weather systems in the underlying troposphere, but recent evidence suggests otherwise. At a workshop in Whistler, British Columbia (1), scientists met to discuss how the stratosphere responds to forcing from below, initiating feedback processes that in turn alter weather patterns in the troposphere. The lowest layer of the atmosphere, the troposphere, is highly dynamic and rich in water vapor, clouds, and weather. The stratosphere above it is less dense and less turbulent (see the figure). Variability in the stratosphere is dominated by hemispheric-scale changes in airflow on time scales of a week to several months. Occasionally, however, stratospheric air flow changes dramatically within just a day or two, with large-scale jumps in temperature of 20 K or more. The troposphere influences the stratosphere mainly through atmospheric waves that propagate upward. Recent evidence shows that the stratosphere organizes this chaotic wave forcing from below to create long-lived changes in the stratospheric circulation. These stratospheric changes can feed back to affect weather and climate in the troposphere.

  20. Isotopic insights into sources of acid driving weathering across a mountain-floodplain transition in the Amazon headwaters of Peru

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; Clark, K.; Paris, G.; Adkins, J. F.; West, A.

    2012-12-01

    The carbon budget associated with mineral weathering depends on the extent to which weathering is driven by strong acids (e.g., H2SO4, HNO3) as opposed to weak acids derived from atmospheric CO2 (e.g., H2CO3, organic acids). It has remained difficult to accurately partition acid sources associated with carbonate and silicate weathering, presenting an obstacle to quantifying weathering drawdown of CO2. Moreover, little is known about how acid sources change along material pathways from mountains, where rocks are eroded, producing reactive carbonate and silicate minerals, but also sulfides that generate H2SO4, and floodplains, where the resulting sediment is transported, deposited, and chemically reworked. Such mountain-floodplain transitions are increasingly recognized as important weathering reactors, making it important to quantify any associated variation in acid sources. In this study, these questions are addressed using the dissolved major element geochemistry, the carbon isotopic composition of dissolved inorganic carbon (?13C DIC), and the sulfur isotopic composition of dissolved sulfate (?34S) of rivers draining the Peruvian Andes and Madre de Dios floodplain. The dissolved major element geochemistry of the Andean headwater catchments suggests inputs of sulfuric acid (from the oxidation of sulfide minerals) but is also consistent with the weathering of sulfate minerals. The ?13C DIC values of river water samples from the Andean catchments provide key constraints and range from -18 to -5 ‰, which is consistent with the mixing of DIC derived from the weathering of silicates by respired CO2 and from the weathering of carbonates by either atmospheric CO2 or sulfuric acid. In order to distinguish between the two possible carbonate weathering agents, we calculated the fraction of carbonate-derived DIC both using an isotope mass balance model and a mineral mass balance model. These results were compared assuming either pure sulfuric acid or atmospheric CO2 weathering. The results of the two models match only if carbonate weathering is driven by sulfuric acid, and if a significant portion of silicate mineral weathering is also driven by sulfuric acid. In the floodplain, low ?13C DIC values in river waters indicate that respired CO2 is the dominant weathering agent of both carbonate and silicate minerals. This indicates that there is a major change in the sources of acidity between the Andes and the Madre de Dios floodplain, which suggests that not only do floodplains promote silicate mineral weathering, as recently identified elsewhere, but this floodplain weathering is also driven to a greater extent by acids derived from CO2, when compared to weathering in the Andes. To further constrain the importance of sulfuric acid weathering in this system, the ?34S of sulfate will be measured and used to determine the source of sulfate and its role in mineral dissolution independently of the major element and ?13C DIC data.

  1. Steps toward interstellar silicate dust mineralogy

    NASA Technical Reports Server (NTRS)

    Dorschner, J.; Guertler, J.; Henning, TH.

    1989-01-01

    One of the most certain facts on interstellar dust is that it contains grains with silicon oxygen tetrahedra (SOT), the internal vibrations of which cause the well known silicate bands at 10 and 18 microns. The broad and almost structureless appearance of them demonstrates lack of translation symmetry in these solids that must be considered amorphous or glassy silicates. There is no direct information on the cations in these interstellar silicates and on the number of bridging oxygens per tetrahedron (NBO). Comparing experimental results gained on amorphous silicates, e.g., silicate glasses, of cosmically most abundant metals (Mg, Fe, Ca, Al) with the observations is the only way to investigate interstellar silicate dust mineralogy (cf, Dorschner and Henning, 1986). At Jena University Observatory IR spectra of submicrometer-sized grains of pyroxene glasses (SSG) were studied. Pyroxenes are common minerals in asteroids, meteorites, interplanetary, and supposedly also cometary dust particles. Pyroxenes consist of linearly connected SOT (NBO=2). In the vitreous state reached by quenching melted minerals, the SOT remain nearly undistorted (Si-O bond length unchanged); the Si-O-Si angles at the bridging oxygens of pyroxenes, however, scatter statistically. Therefore, the original cation oxygen symmetry of the crystal (octahedral and hexahedral coordination by O) is completely lost. The blended bands at 10 and 18 microns lose their diagnostic differences and become broad and structureless. This illustrates best the basic problem of interstellar silicate mineral diagnostics. Optical data of glasses of enstatite, bronzite, hypersthene, diopside, salite, and hedenbergite have been derived. Results of enstatite (E), bronzite (B), and hypersthene (H) show very good agreement with the observed silicate features in the IR spectra of evolutionarily young objects that show P-type silicate signature according to the classification by Gurtler and Henning (1986). Compositional parameters and main characteristics of experimental SSG spectra in IR for the glasses E, B, and H are shown in tabular form. Results fit excellently the relations derived by Koike and Hasegawa (1987) and suggest that the band ratio of the astronomical silicate by Draine and Lee (1984) is too low.

  2. Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/ 86Sr ratio of seawater

    NASA Astrophysics Data System (ADS)

    Dessert, Céline; Dupré, Bernard; François, Louis M.; Schott, Jacques; Gaillardet, Jérôme; Chakrapani, Govind; Bajpai, Sujit

    2001-06-01

    The impact of the Deccan Traps on chemical weathering and atmospheric CO 2 consumption on Earth is evaluated based on the study of major elements, strontium and 87Sr/ 86Sr isotopic ratios of the main rivers flowing through the traps, using a numerical model which describes the coupled evolution of the chemical cycles of carbon, alkalinity and strontium and allows one to compute the variations in atmospheric pCO 2, mean global temperature and the 87Sr/ 86Sr isotopic ratio of seawater, in response to Deccan trap emplacement. The results suggest that the rate of chemical weathering of Deccan Traps (21-63 t/km 2/yr) and associated atmospheric CO 2 consumption (0.58-2.54×10 6 mol C/km 2/yr) are relatively high compared to those linked to other basaltic regions. Our results on the Deccan and available data from other basaltic regions show that runoff and temperature are the two main parameters which control the rate of CO 2 consumption during weathering of basalts, according to the relationship: f=R f×C 0exp-Ea/R1/T- 1/298where f is the specific CO 2 consumption rate (mol/km 2/yr), Rf is runoff (mm/yr), C0 is a constant (=1764 ?mol/l), Ea represents an apparent activation energy for basalt weathering (with a value of 42.3 kJ/mol determined in the present study), R is the gas constant and T is the absolute temperature (°K). Modelling results show that emplacement and weathering of Deccan Traps basalts played an important role in the geochemical cycles of carbon and strontium. In particular, the traps led to a change in weathering rate of both carbonates and silicates, in carbonate deposition on seafloor, in Sr isotopic composition of the riverine flux and hence a change in marine Sr isotopic composition. As a result, Deccan Traps emplacement was responsible for a strong increase of atmospheric pCO 2 by 1050 ppmv followed by a new steady-state pCO 2 lower than that in pre-Deccan times by 57 ppmv, implying that pre-industrial atmospheric pCO 2 would have been 20% higher in the absence of Deccan basalts. pCO 2 evolution was accompanied by a rapid warming of 4°C, followed after 1 Myr by a global cooling of 0.55°C. During the warming phase, continental silicate weathering is increased globally. Since weathering of continental silicate rocks provides radiogenic Sr to the ocean, the model predicts a peak in the 87Sr/ 86Sr ratio of seawater following the Deccan Traps emplacement. The amplitude and duration of this spike in the Sr isotopic signal are comparable to those observed at the Cretaceous-Tertiary boundary. The results of this study demonstrate the important control exerted by the emplacement and weathering of large basaltic provinces on the geochemical and climatic changes on Earth.

  3. New weather radar coming

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    What would you call the next generation of radar for severe weather prediction? NEXRAD, of course. A prototype for the new system was recently completed in Norman, Okla., and by the early 1990s up to 195 stations around the United States will be tracking dangerous weather and sending faster, more accurate, and more detailed warnings to the public.NEXRAD is being built for the Departments of Commerce, Transportation, and Defense by the Unisys Corporation under a $450 million contract signed in December 1987. Th e system will be used by the National Weather Service, the Federal Aviation Administration (FAA), and the U.S. Air Force and Navy. The NEXRAD radar tower in Norman is expected to be operational in October.

  4. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  5. Titan's Methane Weather

    NASA Astrophysics Data System (ADS)

    Roe, Henry G.

    2012-05-01

    Conditions in Titan's troposphere are near the triple point of methane, the second most abundant component of its atmosphere. Our understanding of Titan's lower atmosphere has shifted considerably in the past decade. Ground-based observations, Hubble Space Telescope images, and data returned from the Cassini and Huygens spacecraft show that Titan's troposphere hosts a methane-based meteorology in direct analogy to the water-based meteorology of Earth. What once was thought to be a quiescent place, lacking in clouds or localized weather and changing only subtly on long seasonal timescales, is now understood to be a dynamic system with significant weather events regularly occurring against the backdrop of dramatic seasonal changes. Although the observational record of Titan's weather covers only a third of its 30-year seasonal cycle, Titan's atmospheric processes appear to be more closely analogous to those of Earth than to those of any other object in our solar system.

  6. Silicate matrix for actinide wastes

    SciTech Connect

    Smelova, T.V.; Krylova, N.V.; Yudintsev, S.V.; Nikonov, B.S.

    2000-07-01

    Secure immobilization of actinide wastes of complex compositions from the weapons-related program is a very real and difficult problem emerging both in Russia and the United States. Prospective materials to incorporate the wastes are ceramics and glass-ceramics consisting of durable crystalline actinide-containing phases. This paper focuses on the chemical, thermal, and radiation stabilities of two silicate-based garnet-britholite forms. The samples were produced by inductive melting in a cold crucible. Their compositions in weight percent were as follows: 27.1/29.2 CaO; 25.8/15.4 Fe{sub 2}O{sub 3}; 29.1/31.4 SiO{sub 2}; {minus}/3.0 La{sub 2}O{sub 3}; 8.0/5.0 Ce{sub 2}O{sub 3}; {minus}/8.0 Nd{sub 2}O{sub 3}; {minus}/2.0 EuO; 10.0/{minus}Gd{sub 2}O{sub 3}, and {minus}/6.0 ZrO{sub 2}. Scanning electron microscopy/energy-dispersive spectroscopy and X-ray research shows that the first sample is composed of synthetic garnet (70 vol%), britholite (15%), pyroxene-wollastonite (10%), and spinel (5%). A specific feature of the second sample is the existence of glass, which reached up to 90%. The results allow one to conclude that garnet with stoichiometry A{sub 3}{sup VIII}B{sub 2}{sup VI}(SiO{sub 4}){sub 3}, A = (Ca, Fe{sup 2+}, REE{sup 3+}), B = Fe{sup 3+}, Zr{sup 4+} and britholite {minus}(Ca{sup 2+}, REE{sup 3+}){sub 5}Is{sub 3}O{sub 12.5} have great isomorphic capacities with respect to various species of waste streams.

  7. Weather and Climate

    NSDL National Science Digital Library

    2012-08-03

    This background chapter reviews the basic principles of meteorology that educators need to guide inquiry activities in the classroom. Topics include structure of the atmosphere, Coriolis effect, water cycle, greenhouse effect, cyclones, anticyclones, and jet streams. This is chapter 2 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations.

  8. Wonderful World of Weather

    NSDL National Science Digital Library

    2003-01-01

    This standards-based module uses hands-on activities and real-time data investigations to allow students in the elementary grades to investigate weather phenomena both locally as well as in other places around the world. By using hands-on activities and real-time data investigations, the students will develop a basic understanding of how weather can be described in measurable quantities, such as temperature, wind and precipitation. The lesson plans which make up this module have been designed to allow teachers to select the ones which fit into their curriculum to allow for flexibility in implementation

  9. Wisconsin Weather Stories

    NSDL National Science Digital Library

    University of Wisconsin meteorologists and folklorists along with Wisconsin teachers created this website to offer classroom materials "that integrate earth science, social studies, language arts, and math." Students can learn about severe weather and the importance of forecasting by listening to and reading people's accounts. Each lesson contains benchmarks and standards for grades four, eight, and twelve; as well as many fun activities. The website features a concise glossary and many links where teachers can discover more resources. Visitors who remember the weather discussed, such as the Ice Bowl of 1967, can find out how to submit their accounts to the website.

  10. Indigenous Weather Knowledge

    NSDL National Science Digital Library

    Produced by the Commonwealth Bureau of Meteorology, this Web site exhibits seasonal weather calendars created by Indigenous people thousands of years ago. The site first discusses the Aboriginal people in Australia and their methods for dealing with past climate changes. Studying the calendars, users will notice that Indigenous people dealt with climate on a local scale and recognized a varying number of seasons. For comparison, the site presents the Bureau of Meteorology's Temperature and Rainfall Graphs and climate group classification maps. Because it is still in the early stages of development, users should revisit this site to learn more about Aboriginal knowledge of weather and climate.

  11. Weather and Health

    NSDL National Science Digital Library

    COMET

    2008-11-25

    This course will help meteorologists and others broaden their understanding of the impacts of weather and climate on public health, including the impacts of heat waves and cold temperatures, winter storms and thunderstorms, flooding, drought, poor air quality, tornadoes, hurricanes, wildfire, UV radiation, and others. This course is directed to broadcast meteorologists, in particular, who play a critical role in the community by helping the public to protect against weather-related health threats and by promoting good health. The course also describes the public health communication system, providing information about reliable public health services, tools, and resources.

  12. Weather Depot 1.21

    NSDL National Science Digital Library

    As a quote commonly misattributed to Mark Twain goes, "Everyone talks about the weather, but no one does a thing about it." This little program from the folks at Weather Depot won't allow users to modify weather conditions, but it will let users customize their own weather planner (with hourly and daily updates), view regional radar, and view a map of current temperatures around the United States. Additionally, users may look up current road conditions, and view weather Web cams. Weather Depot 1.21 is compatible with all systems running Windows 98 and higher.

  13. Increasing NOAA's computational capacity to improve global forecast modeling

    E-print Network

    Hamill, Tom

    . Introduction Global atmospheric forecast models are the backbone of NOAA's weather predictions. While 1 Increasing NOAA's computational capacity to improve global forecast modeling A NOAA, Physical Sciences Division Michael Fiorino and Steven E. Koch NOAA Earth System Research Lab, Global

  14. Ahmed, Rose, Figliozzi & Jacob 1 Commuter Cyclist's Sensitivity to Changes in Weather: Insight from Two Cities with

    E-print Network

    Bertini, Robert L.

    riding in adverse weather. Following global policy, Portland, Oregon and Brisbane, Queensland has beenAhmed, Rose, Figliozzi & Jacob 1 Commuter Cyclist's Sensitivity to Changes in Weather: Insight from between various weather conditions and commuter bicyclist volume in two cities (Portland, USA and Brisbane

  15. Weatherization Works!: Weatherization Assistance Program Close-Up Fact Sheet

    SciTech Connect

    D& R International

    2001-10-10

    The United States demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  16. Space Weather Forecasting at NASA GSFC Space Weather Research Center

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kuznetsova, M. M.; Pulkkinen, A.; Maddox, M. M.; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.; Evans, R. M.; Berrios, D.; Mullinix, R.

    2012-12-01

    The NASA GSFC Space Weather Research Center (http://swrc.gsfc.nasa.gov) is committed to providing research forecasts and notifications to address NASA's space weather needs - in addition to its critical role in space weather education. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, weekly summaries and reports, and most recently - video casts. In this presentation, we will focus on how near real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), enable space weather forecasting and quality space weather products provided by our Center. A few critical near real-time data streams for space weather forecasting will be identified and discussed.

  17. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The data also indicate that DXVliQP2O5 decrease in the same order, but DOVLiQP2O5 and DOpx/LiQP205 are likely constant, respectively equal to 0.08(3) and 0.007(4), in contrast, DG1ILiQP205 increases from 0.15(3) to 0.36(10) as garnet becomes majoritic, thus silica-enriched, and may also depend on liquid composition (SiO2, P2O5 and Na2O wt%).

  18. Weatherization Works: An interim report of the National Weatherization Evaluation

    SciTech Connect

    Brown, M.A.; Berry, L.G. [Oak Ridge National Lab., TN (United States); Kinney, L.F. [Synertech Systems Corp., Syracuse, NY (United States)

    1993-11-01

    The National Weatherization Evaluation is the first comprehensive evaluation of the Weatherization Assistance Program since 1984. The evaluation was designed to accomplish the following goals: Estimate energy savings and cost effectiveness; Assess nonenergy impacts; Describe the weatherization network; Characterize the eligible population and resources; and Identify factors influencing outcomes and opportunities for the future. As a national program, weatherization incorporates considerable diversity due to regional differences. Therefore, evaluation results are presented both in aggregate and for three climate regions: cold, moderate and hot.

  19. Weather automation studies at the Otis Weather Test Facility

    Microsoft Academic Search

    D. A. Chisholm

    1978-01-01

    A description of the Otis Weather Test Facility (WTF) is presented, taking into account the distribution of surface-based and tower-mounted instrumentation at the WTF, the automation of the rotating beam ceilometer, the present weather decision tree, and slant visual range techniques. A demonstration model of a Modular Automated Weather System (MAWS) is also considered. The versatility of MAWS results from

  20. Worldwide Marine Weather Broadcasts.

    ERIC Educational Resources Information Center

    Department of the Navy, Washington, DC.

    This publication is a source of marine weather broadcast information in all areas of the world where such service is provided. This publication was designed for the use of U.S. naval and merchant ships. Sections 1 through 4 contain details of radio telegraph, radio telephone, radio facsimile, and radio teleprinter transmissions, respectively. The…

  1. Winter Storms Weather Quizzes

    E-print Network

    and report more exact measurements. As it comes closer to land, special weather radars track the hurricane, the sea may rise as high as 25 feet above normal high tide! That is taller than six kids standing on each up all the small things laying around your yard, like toys, tools and flower pots and bring them

  2. Weather and Flight Testing

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  3. Weather, Climate, and You.

    ERIC Educational Resources Information Center

    Blai, Boris, Jr.

    Information from the American Institute of Medical Climatologists on human responses to weather and climatic conditions, including clouds, winds, humidity, barometric pressure, heat, cold, and other variables that may exert a pervasive impact on health, behavior, disposition, and the level of efficiency with which individuals function is reviewed.…

  4. Winds, Weather, and Deserts

    NSDL National Science Digital Library

    Timothy Heaton

    This site contains 17 questions on the topic of wind and weathering, which covers the Coriolis Effect and wind characteristics. This is part of the Principles of Earth Science course at the University of South Dakota. Users submit an answer and are provided immediate verification.

  5. Weather in Motion.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The ATS-111 weather satellite, launched on November 18, 1967, in a synchronous earth orbit 22,000 miles above the equator, is described in this folder. The description is divided into these topics: the satellite, the camera, the display, the picture information, and the beneficial use of the satellite. Photographs from the satellite are included.…

  6. Satellite Weather Watch.

    ERIC Educational Resources Information Center

    Summers, R. Joe

    1982-01-01

    Describes an inexpensive (about $1,500) direct-readout ground station for use in secondary school science/mathematics programs. Includes suggested activities including, among others, developing map overlays, operating station equipment, interpreting satellite data, developing weather forecasts, and using microcomputers for data storage, orbit…

  7. Sunspots and Space Weather

    NSDL National Science Digital Library

    This activity is part of Planet Diary and is an online investigation for students in how sunspots impact space weather between the Sun and Earth. Students research solar maximum and minimum as well as recent sunspot numbers to determine a connection between the numbers and solar activity. This page is accompanied by a page of websites for further resources.

  8. METEOROLOGICAL Monthly Weather Review

    E-print Network

    Rutledge, Steven

    Science, Colorado State University, Fort Collins, Colorado Submitted to Monthly Weather Review 9 September 2010 Corresponding Author Address: Angela K. Rowe Department of Atmospheric Science Colorado State subsequent freezing to produce graupel. Similar features were also observed in an isolated cell over

  9. Blogging About the Weather

    NSDL National Science Digital Library

    Kyle Evans

    2010-04-01

    Since the majority of the content standards related to weather focus on forecasting, elementary students often spend a lot of time studying cloud types, fronts, storms, and using a barometer to read air pressure. Although this allows students to "do" scie

  10. Weathering crusts on peridotite

    NASA Astrophysics Data System (ADS)

    Bucher, Kurt; Stober, Ingrid; Müller-Sigmund, Hiltrud

    2015-05-01

    Chemical weathering of dark-green massive peridotite, including partly serpentinized peridotite, produces a distinct and remarkable brown weathering rind when exposed to the atmosphere long enough. The structure and mineral composition of crusts on rocks from the Ronda peridotite, Spain, have been studied in some detail. The generic overall weathering reaction serpentinized peridotite + rainwater = weathering rind + runoff water describes the crust-forming process. This hydration reaction depends on water supply from the outcrop surface to the reaction front separating green peridotite from the brown crust. The reaction pauses after drying and resumes at the front after wetting. The overall net reaction transforms olivine to serpentine in a volume-conserving replacement reaction. The crust formation can be viewed as secondary serpentinization of peridotite that has been strongly altered by primary hydrothermal serpentinization. The reaction stoichiometry of the crust-related serpentinization is preserved and reflected by the composition of runoff waters in the peridotite massif. The brown color of the rind is caused by amorphous Fe(III) hydroxide, a side product from the oxidation of Fe(II) released by the dissolution of fayalite component in olivine.

  11. Brazilian Space Weather Program

    Microsoft Academic Search

    Antonio Padilha; Hisao Takahashi; Eurico de Paula; Hanumant Sawant; Haroldo de Campos Velho; Icaro Vitorello; Joaquim Costa; Jonas Souza; José Cecatto; Odim Mendes; Walter Demétrio Gonzalez Alarcon

    2008-01-01

    A space weather program is being initiated at the Brazilian National Institute for Space Research (INPE) to study events from their initiation on the sun to their impacts on the earth, including their effects on space-based and ground-based technological systems. The program is built on existing capabilities at INPE, which include scientists with a long tradition and excellence in the

  12. Weather Specialist (AFSC 25120).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This correspondence course is designed for self-study to help military personnel to attain the rating of weather specialist. The course is organized in three volumes. The first volume, containing seven chapters, covers background knowledge, meteorology, and climatology. In the second volume, which also contains seven chapters, surface…

  13. Weather and the Sky

    NSDL National Science Digital Library

    Houghton Mifflin Science

    This self-contained module on weather and objects in the sky includes a range of fun activities that students can perform in the classroom and at home with family members. They impart important concepts such as observation, identification, measurement, and differentiation.

  14. The Weather Watchers.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Background information and six activities on predicting weather are provided. Each activity includes an objective, list of materials needed, recommended age level(s), subject area(s), and instructional strategies. Also included are several ready-to-copy worksheets. (JN)

  15. Gulf of Maine: Weather

    NSDL National Science Digital Library

    Lessons and activities from the Gulf of Maine Research Institute (formerly Gulf of Maine Aquarium), focused on hurricanes, El Nino, fog, and volcanic eruptions. Emphasis on important hurricanes of the past. Resources include lessons, guides for simple experiments, and a student weather network. Downloadable materials and additional webpages also provided.

  16. Paradata for 'Weather Instruments ~^ Weather InstrumentsWeather Instruments for Measuring the Climate of IllinoisBuilding and Using Weather InstrumentsWeather ToolsTyson Research Center Weather Station EquipmentSchool Garden Weather Station MeteorologyNext Generation Weather Lab'

    NSDL National Science Digital Library

    This record contains paradata for the resource 'Weather Instruments ~^ Weather InstrumentsWeather Instruments for Measuring the Climate of IllinoisBuilding and Using Weather InstrumentsWeather ToolsTyson Research Center Weather Station EquipmentSchool Garden Weather Station MeteorologyNext Generation Weather Lab'

  17. Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps, India: Rates of basalt weathering and their controls

    NASA Astrophysics Data System (ADS)

    Das, A.; Krishnaswami, S.; Sarin, M. M.; Pande, K.

    2005-04-01

    Rates of chemical and silicate weathering of the Deccan Trap basalts, India, have been determined through major ion measurements in the headwaters of the Krishna and the Bhima rivers, their tributaries, and the west flowing streams of the Western Ghats, all of which flow almost entirely through the Deccan basalts. Samples ( n = 63) for this study were collected from 23 rivers during two consecutive monsoon seasons of 2001 and 2002. The Total dissolved solid (TDS) in the samples range from 27 to 640 mg l -1. The rivers draining the Western Ghats that flow through patches of cation deficient lateritic soils have lower TDS (average: 74 mg l -1), whereas the Bhima (except at origin) and its tributaries that seem to receive Na, Cl, and SO 4 from saline soils and anthropogenic inputs have values in excess of 170 mg l -1. Many of the rivers sampled are supersaturated with respect to calcite. The chemical weathering rates (CWR) of "selected" basins, which exclude rivers supersaturated in calcite and which have high Cl and SO 4, are in range of ˜3 to ˜60 t km -2 y -1. This yields an area-weighted average CWR of ˜16 t km -2 y -1 for the Deccan Traps. This is a factor of ˜2 lower than that reported for the Narmada-Tapti-Wainganga (NTW) systems draining the more northern regions of the Deccan. The difference can be because of (i) natural variations in CWR among the different basins of the Deccan, (ii) "selection" of river basin for CWR calculation in this study, and (iii) possible contribution of major ions from sources, in addition to basalts, to rivers of the northern Deccan Traps. Silicate weathering rates (SWR) in the selected basins calculated using dissolved Mg as an index varies between ˜3 to ˜60 t km -2 y -1, nearly identical to their CWR. The Ca/Mg and Na/Mg in these rivers, after correcting for rain input, are quite similar to those in average basalts of the region, suggesting near congruent release of Ca, Mg, and Na from basalts to rivers. Comparison of calculated and measured silicate-Ca in these rivers indicates that at most ˜30% of Ca can be of nonsilicate origin, a likely source being carbonates in basalts and sediments. The chemical and silicate weathering rates of the west flowing rivers of the Deccan are ˜4 times higher than the east flowing rivers. This difference is due to the correspondingly higher rainfall and runoff in the western region and thus reemphasises the dominant role of runoff in regulating weathering rates. The silicon weathering rate (SWR) in the Krishna Basin is ˜15 t km -2 y -1, within a factor of ˜2 to those in the Yamuna, Bhagirathi, and Alaknanda basins of the Himalaya, suggesting that under favourable conditions (intense physical weathering, high runoff) granites and the other silicates in the Himalaya weather at rates similar to those of Deccan basalts. The CO 2 consumption rate for the Deccan is deduced to be ˜3.6 × 10 5 moles km -2 y -1 based on the SWR. The rate, though, is two to three times lower than reported for the NTW rivers system; it still reinforces the earlier findings that, in general, basalts weather more rapidly than other silicates and that they significantly influence the atmospheric CO 2 budget on long-term scales.

  18. Briefing highlights space weather risks to GPS

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-07-01

    Solar storms, which are expected to increase as the Sun nears the most active phase of the solar cycle, can disrupt a variety of technologies on which society relies. Speakers at a 22 June briefing on Capitol Hill in Washington, D. C., focused on how space weather can affect the Global Positioning System (GPS), which is used in a wide range of industries, including commercial air travel, agriculture, national security, and emergency response. Rocky Stone, chief technical pilot for United Airlines, noted that GPS allows more aircraft to be in airspace, saves fuel, and helps aircraft move safely on runways. “Improvements in space weather forecasting need to be pursued,” he said. Precision GPS has also “changed the whole nature of farming,” said Ron Hatch, Director of Navigation Systems, NavCom Technology/John Deere. GPS makes it possible for tractors to be driven in the most efficient paths and for fertilizer and water to be applied precisely to the areas that most need them. Space weather-induced degradation of GPS signals can cause significant loss to farms that rely on GPS. Elizabeth Zimmerman, Deputy Associate Administrator for the Office of Response and Recovery at the Federal Emergency Management Agency (FEMA), described how FEMA relies on GPS for disaster recovery. The agency is developing an operations plan for dealing with space weather, she said.

  19. Space Weather: A Research Perspective

    NSDL National Science Digital Library

    The National Research Council (NRC) sponsors the Space Weather: A Research Perspective Website. Space weather occurs due to the behavior of the sun, the "nature of Earth's magnetic field and atmosphere, and our location in the solar system." Space weather research will be useful for space weather forecasting, satellite troubleshooting, and gaining a greater understanding of Earth's place in space. To further understand space weather, the user can browse through sections such as What is Space Weather, The Elements of Near-Earth Space, Practical Consequences of Space Weather, and Earth-Space Meteorology, among others. Each section provides images, diagrams, and descriptions. Weather links and resources, as well as a glossary, round out the site.

  20. Mineral weathering rates from small-plot experiments, WMP Site, Bear Brooks, Maine, USA. Book chapter

    Microsoft Academic Search

    J. I. Drever; N. G. Swoboda-Colberg

    1993-01-01

    The pH-dependence of silicate mineral weathering rates was measured in small-plot experiments at the Bear Brooks Watershed Manipulation Project site in Maine, USA. Six 2 sq m plots were acidified with solutions of HCl in deionized water at pH values of 2, 2.5, and 3. Acid application was at the rate of 3 cm\\/week for approximately 26 weeks per year

  1. Implications of the enhanced Brewer-Dobson circulation in European Centre for Medium-Range Weather Forecasts reanalysis ERA40 for the stratosphere-troposphere exchange of ozone in global chemistry transport models

    Microsoft Academic Search

    T. P. C. van Noije; H. J. Eskes; M. van Weele; P. F. J. van Velthoven

    2004-01-01

    The European Centre for Medium-Range Weather Forecasts 45-year reanalysis (ERA-40) exhibits an enhanced Brewer-Dobson circulation, as is demonstrated for the year 1997 by examining the air mass transport across the 100-hPa level and the tropopause. On the basis of a linearized ozone (Linoz) scheme for stratospheric chemistry it is estimated that the corresponding net downward transport of ozone to the

  2. Weather Specialist/Aerographer's Mate.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This course trains Air Force personnel to perform duties prescribed for weather specialists and aerographer's mates. Training includes meteorology, surface and ship observation, weather radar, operation of standard weather instruments and communications equipment, and decoding and plotting of surface and upper air codes upon standard maps and…

  3. Science Sampler: Clever with weather

    NSDL National Science Digital Library

    David Crowder

    2011-02-01

    In eighth-grade Earth science at Louisville Middle School in Louisville, Colorado, students learn how large-scale weather patterns such as the jet stream and weather fronts interact to generate local weather conditions. The authors have developed a modeli

  4. Weather Forecasting for Radio Astronomy

    E-print Network

    Groppi, Christopher

    Weather Forecasting for Radio Astronomy Part I: The Mechanics and Physics Ronald J Maddalena August 1, 2008 #12;Outline Part I Background -- research inspirations and aspirations Vertical weather, .... Part II Results on refraction & air mass (with Jeff Paradis) Part III Results on opacity, weather

  5. Making a Space Weather Script

    NSDL National Science Digital Library

    2012-08-03

    In this activity, learners write space weather reports using current data about the Sun and create a broadcast script to present the researched information to an audience. Several activities are related to this lesson, including "Understanding our Sun", "Sharing New Knowledge", and “Making Your Space Weather Action Center" in the Space Weather teacher's guide.

  6. Space weather activities in Australia

    Microsoft Academic Search

    D. Cole

    2004-01-01

    Space Weather Plan Australia has a draft space weather plan to drive and focus appropriate research into services that meet future industry and social needs. The Plan has three main platforms, space weather monitoring and service delivery, support for priority research, and outreach to the community. The details of monitoring, service, research and outreach activities are summarised. A ground-based network

  7. Weather impacts on space operations

    Microsoft Academic Search

    J. Madura; B. Boyd; W. Bauman; N. Wyse; M. Adams

    1992-01-01

    The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology

  8. US weather satellites and services

    NASA Astrophysics Data System (ADS)

    The weather satellites and services of the National Weather Service of the National Oceanic and Atmospheric Administration are discussed. The economy and public safety of Washington State, monitoring of the extreme weather conditions around Mount St. Helens and search and rescue satellites are included.

  9. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; Gopalswamy, Nat; Thompson, Barbara

    2009-01-01

    The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).

  10. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph; Gopalswamy, Nathanial; Thompson, Barbara

    2010-01-01

    The International Heliophysical Year (IHY), an international program of scientific collaboration to understand the external drivers of planetary environments, has come to an end. The IHY was a major international event of great interest to the member States, which involved the deployment of new instrumentation, new observations from the ground and in space, and an education component. We propose to continue the highly successful collaboration between the heliophysics science community and the United Nations Basic Space Science (UNBSS) program. One of the major thrust of the IHY was to deploy arrays of small instruments such as magnetometers, radio antennas, GPS receivers, all-sky cameras, particle detectors, etc. around the world to provide global measurements of heliospheric phenomena. The United Nations Basic Space Science Initiative (UNBSSI) played a major role in this effort. Scientific teams were organized through UNBSS, which consisted of a lead scientist who provided the instruments or fabrication plans for instruments in the array. As a result of the this program, scientists from UNBSS member states now participate in the instrument operation, data collection, analysis, and publication of scientific results, working at the forefront of science research. As part of this project, support for local scientists, facilities and data acquisition is provided by the host nation. In addition, support at the Government level is provided for local scientists to participate. Building on momentum of the IHY, we propose to continue the highly successful collaboration with the UNBSS program to continue the study of universal processes in the solar system that affect the interplanetary and terrestrial environments, and to continue to coordinate the deployment and operation of new and existing instrument arrays aimed at understanding the impacts of Space Weather on Earth and the near-Earth environment. Toward this end, we propose a new program, the International Space Weather Initiative (ISWI).

  11. An aem-tem study of weathering and diagenesis, Abert Lake, Oregon: I. Weathering reactions in the volcanics

    USGS Publications Warehouse

    Banfield, J.F.; Jones, B.F.; Veblen, D.R.

    1991-01-01

    Abert Lake in south-central Oregon provides a site suitable for the study of sequential weathering and diagenetic events. In this first of two papers, transmission electron microscopy was used to characterize the igneous mineralogy, subsolidus alteration assemblage, and the structural and chemical aspects of silicate weathering reactions that occur in the volcanic rocks (basalts, basaltic andesites, and dacitic/ rhyolitic extrusive and pyroclastics) that outcrop around the lake. Olivine and pyroxene replacement occurred topotactically, whereas feldspar and glass alteration produced randomly oriented smectite in channels and cavities. The tetrahedral, octahedral, and interlayer compositions of the weathering products, largely dioctahedral smectites, varied with primary mineral composition, rock type, and as the result of addition of elements released from adjacent reaction sites. Weathering of the highly evolved, Fe-rich Jug Mountain complex at the north end of the lake produced a homogeneous smectite assemblage that contrasts with the heterogeneous smectite assemblage replacing the volcanics along the eastern margin of the lake. The variability within and between the smectite assemblages highlights the microenvironmental diversity, fluctuating redox conditions, and variable solution chemistry associated with mineral weathering reactions in the surficial environment. Late-stage exhalative and aqueous alteration of the volcanics redistributed many components and formed a variety of alkali and alkali-earth carbonate, chloride, sulfate, and fluoride minerals in vugs and cracks. Overall, substantial Mg, Si, Na, Ca, and K are released by weathering reactions that include the almost complete destruction of the Mg-smectite that initially replaced olivine. The leaching of these elements from the volcanics provides an important source of these constituents in the lake water. The nature of subsequent diagenetic reactions resulting from the interaction between the materials transported to the lake and the solution will be described in part II (Banfield et al., 1991). ?? 1991.

  12. Microfabrics in Siliceous Hotsprings: Yellowstone National Park, Wyoming

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.; Westall, F.

    2001-01-01

    Microfabrics shed light on the mechanisms governing siliceous sinter precipitation, the profound effects of microorganisms, as well as a conventional facies model for siliceous hotsprings. Additional information is contained in the original extended abstract.

  13. Effects of particulate matter from gasoline and diesel vehicle exhaust emissions on silicate stones sulfation

    NASA Astrophysics Data System (ADS)

    Simão, J.; Ruiz-Agudo, E.; Rodriguez-Navarro, C.

    The effects of particulate matter (PM) from diesel and leaded gasoline motor vehicles exhaust emissions on sulfation of granites, syenite and gabbro stones have been experimentally studied. Abundant gypsum crystals and corrosion features developed on stones covered with diesel PM (DPM) following 72 h exposure to 100 ppm SO 2 at a relative humidity of 100%. In contrast, very small amounts of gypsum were observed on stones covered with gasoline PM (GPM), while no effect was observed on naked control stones. Abundant elemental C and Fe-rich particles in DPM play a critical role in the catalytic oxidation of SO 2 and the formation of H 2SO 4, which is responsible for silicate stone sulfation. Conversely, organic C and Pb-rich particles that are main components of GPM, do not play a significant role in sulfation. The response of each stone type towards sulfation is related to the stability of their constituent silicate minerals towards acid attack. Thus, the stones most susceptible to sulfation are those including nepheline (syenite), olivine, and pyroxene (gabbro), while granites in general, are most resistant to sulfation-related chemical weathering. These results help to explain how black (gypsum) crusts develop on silicate stones, and support limitations for (diesel) vehicular traffic and emission loads in urban centers.

  14. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): a pot experiment.

    PubMed

    ten Berge, Hein F M; van der Meer, Hugo G; Steenhuizen, Johan W; Goedhart, Paul W; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO(2) on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO(2) sequestration ('enhanced weathering'). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha(-1). Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha(-1) (14.8% of dose, OLIV1) to 2240 kg ha(-1) (1.1%, OLIV4). This corresponds to gross CO(2) sequestration of 290 to 2690 kg ha(-1) (29 10(3) to 269 10(3) kg km(-2).) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the 'enhanced weathering' concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop. PMID:22912685

  15. Rapid soil production and weathering in the Southern Alps, New Zealand.

    PubMed

    Larsen, Isaac J; Almond, Peter C; Eger, Andre; Stone, John O; Montgomery, David R; Malcolm, Brendon

    2014-02-01

    Evaluating conflicting theories about the influence of mountains on carbon dioxide cycling and climate requires understanding weathering fluxes from tectonically uplifting landscapes. The lack of soil production and weathering rate measurements in Earth's most rapidly uplifting mountains has made it difficult to determine whether weathering rates increase or decline in response to rapid erosion. Beryllium-10 concentrations in soils from the western Southern Alps, New Zealand, demonstrate that soil is produced from bedrock more rapidly than previously recognized, at rates up to 2.5 millimeters per year. Weathering intensity data further indicate that soil chemical denudation rates increase proportionally with erosion rates. These high weathering rates support the view that mountains play a key role in global-scale chemical weathering and thus have potentially important implications for the global carbon cycle. PMID:24436184

  16. Nanometre-scale evidence for interfacial dissolution–reprecipitation control of silicate glass corrosion

    NASA Astrophysics Data System (ADS)

    Hellmann, Roland; Cotte, Stéphane; Cadel, Emmanuel; Malladi, Sairam; Karlsson, Lisa S.; Lozano-Perez, Sergio; Cabié, Martiane; Seyeux, Antoine

    2015-03-01

    Silicate glasses are durable solids, and yet they are chemically unstable in contact with aqueous fluids—this has important implications for numerous industrial applications related to the corrosion resistance of glasses, or the biogeochemical weathering of volcanic glasses in seawater. The aqueous dissolution of synthetic and natural glasses results in the formation of a hydrated, cation-depleted near-surface alteration zone and, depending on alteration conditions, secondary crystalline phases on the surface. The long-standing accepted model of glass corrosion is based on diffusion-coupled hydration and selective cation release, producing a surface-altered zone. However, using a combination of advanced atomic-resolution analytical techniques, our data for the first time reveal that the structural and chemical interface between the pristine glass and altered zone is always extremely sharp, with gradients in the nanometre to sub-nanometre range. These findings support a new corrosion mechanism, interfacial dissolution–reprecipitation. Moreover, they also highlight the importance of using analytical methods with very high spatial and mass resolution for deciphering the nanometre-scale processes controlling corrosion. Our findings provide evidence that interfacial dissolution–reprecipitation may be a universal reaction mechanism that controls both silicate glass corrosion and mineral weathering.

  17. Photoionization of silicate glasses exposed to IR femtosecond pulses

    Microsoft Academic Search

    O. M Efimov; L. B Glebov; S Grantham; M Richardson

    1999-01-01

    Photoionization of alkali-silicate, boro-silicate, lead-silicate and photosensitive multi-component silicate glasses has been studied under exposure to infrared femtosecond laser pulses at irradiance below the thresholds of laser-induced damage and catastrophic self-focusing. It is proved that the supercontinuum that is generated in all glasses studied as a result of the femtosecond laser pulses spectral broadening extends up to the short-wavelength part

  18. Space Weather and Management of Environmental Risks and Hazards

    NASA Astrophysics Data System (ADS)

    Pirjola, R.; Kauristie, K.; Lappalainen, H.

    "Space Weather" is defined as electromagnetic and particle conditions in the space environment that can disturb space-borne and ground-based technological systems (e.g. satellite operation, telecommunication, aviation, electric power transmission) and even endanger human health. Thus, space weather is of great importance to the society since people are dependent on reliable operation of modern technology, interruptions of which may lead to large economical and other losses. Physical processes involved in space weather constitute a complicated chain from the Sun to the Earth's surface. Thus, a full understanding of space weather and the risks it produces requires expertise in many different disciplines of science and technology. Space weather is a new subject among the natural risks and hazards which threaten the society and its infrastructure (although the first observations of ground effects of space weather were already made about 150 years ago). Monitoring systems for the management of other risks, such as floods, forest fires, etc., and for security are, to a great extent, based on satellite observations. Spacecraft and the communication between satellites and the ground are vulnerable to space weather. Thus, besides being a direct risk to technological systems, space weather may also be indirectly adverse to risk management. These two aspects of space weather are considered in a proposal to be submitted to EU's Sixth Framework Programme under the "Aeronautics and Space" priority in the "Global Monitoring for Environment and Security (GMES) / Risk Management" area in March 2004. The proposal coordinated by the Finnish Meteorological Institute with five to ten participating institutes is called SW-RISK ("Space Weather - Risk Indices from Scientific Know-how").

  19. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  20. Ensemble Space Weather Forecasting with the SWMF

    NASA Astrophysics Data System (ADS)

    Frazin, R. A.; van der Holst, B.; Manchester, W.; Sokolov, I.; Huang, Z.; Gombosi, T. I.

    2014-12-01

    An accurate, physics-based model of the heliosphere that extends from the Sun to the Earth and beyond is the ``holy grail'' of space weather forecasting. Global models that start in the corona (or below) are driven by representations of the full-Sun photospheric magnetic field. Traditionally, the full-Sun magnetic field has been provided by synoptic magnetograms, which are created over a 28 day period and are not an accurate representation of the magnetic field at any given time. Recently, several groups have been producing so-called ``synchronic maps,'' which fuse magnetograms and models including differential rotation, meridional transport and diffusion to create time-dependent full-Sun magnetic field maps. Here, we include a variety of synchronic and synoptic maps to create an ensemble space weather model and report on the results.