Science.gov

Sample records for global solar irradiation

  1. Modeling monthly mean variation of the solar global irradiation

    NASA Astrophysics Data System (ADS)

    Vindel, J. M.; Polo, J.; Zarzalejo, L. F.

    2015-01-01

    The monthly mean variation of the solar global reaching the Earth's surface has been characterized at a global level by a regression model. This model considers the monthly variation itself (to different horizons and even the maximum annual variation) as the study variable, and it is applied without using data corresponding to measured meteorological variable. Two explicative variables have been used, the variation of the extraterrestrial irradiation and the variation of the clear sky global horizontal irradiation. The work has been carried out from datasets including average global daily solar irradiation for each month of the year measured on the ground. The model quality has been proven to be very dependent of the temporal variation considered, in such a way that higher variations, that is to say, higher distances between months, lead to an improvement in the model outcomes.

  2. Fuzzy Sets Theory Applied for Computing Global Solar Irradiation

    NASA Astrophysics Data System (ADS)

    St. Boata, R.; Paulescu, M.; Tulcan-Paulescu, E.; Gravila, P.

    2011-10-01

    A new model to estimate daily global solar irradiation via air temperature data developed inside Takagi-Sugeno fuzzy approach is reported. A critical assessment of the model performance and limitations is conducted, overall results demonstrating a reasonable level of accuracy. The model uses as input only the daily air temperature extremes, worldwide the most available meteorological parameters, which greatly increases its area of application.

  3. Spatial and temporal variability of global surface solar irradiance

    NASA Technical Reports Server (NTRS)

    Bishop, James K. B.; Rossow, William B.

    1991-01-01

    Consideration is given to a fast scheme for computing surface solar irradiance using data from the International Satellite Cloud Climatology Project (ISCCP). Daily mean solar irradiances from the fast scheme reproduce the detailed global results from full radiative transfer model calculations to within 6 and 10 W/sq m over the ocean and land, respectively. Comparison of calculated monthly mean results using 5 m of ISCCP data (July 1983-July 1984) with climatology from the 1970s at six temperature-latitude ocean weather stations shows agreement within published estimates of interannual variability of monthly means at the individual stations. A further test against a 17-day time series at a continental site, where ground and satellite data were spatially and temporally coincident, showed an accuracy of better than 9 W/sq m on a daily basis and less than 4 percent bias in the 17-day mean. Frequently used bulk formulas for solar irradiance are also evaluated in each of these tests.

  4. Solar global horizontal and direct normal irradiation maps in Spain derived from geostationary satellites

    NASA Astrophysics Data System (ADS)

    Polo, J.

    2015-08-01

    Solar radiation derived from satellite imagery is a powerful and highly accurate technique for solar resource assessment due to its maturity and to the long term database of observation images available. This work presents the methodology developed at CIEMAT for mapping solar radiation from geostationary satellite information and it also shows solar irradiation maps of global horizontal and direct normal components elaborated for Spain. The maps presented here have been developed from daily solar irradiation estimated for eleven years of satellite images (2001-2011). An attempt to evaluate the uncertainty of the presented maps is made using ground measurements from 27 meteorological stations available in Spain for global horizontal irradiation obtained from the World Radiation Data Centre. In the case of direct normal irradiation the ground measurement database was scarce, having available only six ground stations with measurements for a period of 4 years. Yearly values of global horizontal irradiation are around 1800 kWh m-2 in most of the country and around 1950-2000 kWh m-2 for annual direct normal irradiation. Root mean square errors in monthly means were of 11% and of 29% for global horizontal and direct normal irradiation, respectively.

  5. Global surface solar irradiance product derived from SCIAMACHY FRESCO cloud fraction

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Stammes, Piet; Müller, Richard

    The FRESCO cloud retrieval algorithm has been developed as a simple but fast and efficient algorithm for GOME and SCIAMACHY (Koelemeijer et al., 2001; Fournier et al., 2006; Wang et al., 2008). FRESCO employs the O2 A band at 760 nm to retrieve the effective cloud fraction and cloud pressure using a simple Lambertian cloud model. The effective cloud fraction is a combination of geometric cloud fraction and cloud optical thickness, which yield the same reflectance at the top of the atmosphere as the cloud in the scene. It is well-known that clouds reduce the surface solar irradiance. Therefore the all-sky irradiance can be derived from the clear-sky irradiance with a scaling factor related to the cloud index. The cloud index is very similar to the effective cloud fraction by definition. The MAGIC (Mesoscale Atmospheric Global Irradiance Code) software converts the cloud index to the surface solar irradiance using the Heliosat method (Mueller et al. 2009). The MAGIC algorithm is also used by the CM-SAF surface solar irradiance product for clear sky cases. We applied the MAGIC software to FRESCO effective cloud fraction with slight modifications. In this presentation we will show the FRESCO-SSI monthly mean product and the comparison with the BSRN global irradiance data at Cabauw, the Netherlands and surface solar irradiance measurement at Tibetan plateau in China.

  6. Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning

    SciTech Connect

    Martin, Luis; Marchante, Ruth; Cony, Marco; Zarzalejo, Luis F.; Polo, Jesus; Navarro, Ana

    2010-10-15

    Due to strong increase of solar power generation, the predictions of incoming solar energy are acquiring more importance. Photovoltaic and solar thermal are the main sources of electricity generation from solar energy. In the case of solar thermal energy plants with storage energy system, its management and operation need reliable predictions of solar irradiance with the same temporal resolution as the temporal capacity of the back-up system. These plants can work like a conventional power plant and compete in the energy stock market avoiding intermittence in electricity production. This work presents a comparisons of statistical models based on time series applied to predict half daily values of global solar irradiance with a temporal horizon of 3 days. Half daily values consist of accumulated hourly global solar irradiance from solar raise to solar noon and from noon until dawn for each day. The dataset of ground solar radiation used belongs to stations of Spanish National Weather Service (AEMet). The models tested are autoregressive, neural networks and fuzzy logic models. Due to the fact that half daily solar irradiance time series is non-stationary, it has been necessary to transform it to two new stationary variables (clearness index and lost component) which are used as input of the predictive models. Improvement in terms of RMSD of the models essayed is compared against the model based on persistence. The validation process shows that all models essayed improve persistence. The best approach to forecast half daily values of solar irradiance is neural network models with lost component as input, except Lerida station where models based on clearness index have less uncertainty because this magnitude has a linear behaviour and it is easier to simulate by models. (author)

  7. A Comparison of Variable Total and Ultraviolet Solar Irradiance Inputs to 20 th Century Global Warming

    NASA Astrophysics Data System (ADS)

    Foukal, P. V.

    2002-05-01

    Analysis of spaceborne radiometry has shown that the total solar irradiance variation over the past two activity cycles was approximately proportional to the weighted difference between areas of dark spots and bright faculae and enhanced network. Empirical models of ultraviolet irradiance variation indicate that its behavior is dominated by changes in area of the bright component alone, whose photometric contrast increases at shorter wavelength.This difference in time behavior of total and UV irradiances could help to discriminate between their relative importance in forcing of global warming. Our recent digitization of archival Ca K images from Mt Wilson and NSO provides the first direct measurement of variations in area of the bright component, extending between 1915 and 1999 (previous models have relied on the sunspot number or other proxies to estimate the bright - component contribution). We use these more direct measurements to derive the time behavior of solar total and UV irradiance variation, over this period .We find that they are significantly different;the total irradiance variation accounts for over 80 percent of the variance in global temperature during this period, while the ultraviolet irradiance variation accounts for only about 20 percent. The amplitude of total irradiance variation in our model is smaller than required to influence global warming,in current climate models.Also, the impact of sulfate aerosol variations on the extended cooling between the 1940's and 1970's must be better understood before the significance of correlations between 20 th century global warming, and any solar activity index can be properly assessed. Despite these caveats, the lower correlation we find between global temperature and UV,compared to total, irradiance requires consideration in the search for physical mechanisms linking solar activity and climate. This work was supported in part under NASA grant NAG5-7607 to CRI, Inc., and NAG5-10998 to the Applied Physics

  8. Towards the automatic identification of cloudiness condition by means of solar global irradiance measurements

    NASA Astrophysics Data System (ADS)

    Sanchez, G.; Serrano, A.; Cancillo, M. L.

    2010-09-01

    This study focuses on the design of an automatic algorithm for classification of the cloudiness condition based only on global irradiance measurements. Clouds are a major modulating factor for the Earth radiation budget. They attenuate the solar radiation and control the terrestrial radiation participating in the energy balance. Generally, cloudiness is a limiting factor for the solar radiation reaching the ground, highly contributing to the Earth albedo. Additionally it is the main responsible for the high variability shown by the downward irradiance measured at ground level. Being a major source for the attenuation and high-frequency variability of the solar radiation available for energy purposes in solar power plants, the characterization of the cloudiness condition is of great interest. This importance is even higher in Southern Europe, where very high irradiation values are reached during long periods within the year. Thus, several indexes have been proposed in the literature for the characterization of the cloudiness condition of the sky. Among these indexes, those exclusively involving global irradiance are of special interest since this variable is the most widely available measurement in most radiometric stations. Taking this into account, this study proposes an automatic algorithm for classifying the cloudiness condition of the sky into three categories: cloud-free, partially cloudy and overcast. For that aim, solar global irradiance was measured by Kipp&Zonen CMP11 pyranometer installed on the terrace of the Physics building in the Campus of Badajoz (Spain) of the University of Extremadura. Measurements were recorded at one-minute basis for a period of study extending from 23 November 2009 to 31 March 2010. The algorithm is based on the clearness index kt, which is calculated as the ratio between the solar global downward irradiance measured at ground and the solar downward irradiance at the top of the atmosphere. Since partially cloudy conditions

  9. A technique for global monitoring of net solar irradiance at the ocean surface. II - Validation

    NASA Technical Reports Server (NTRS)

    Chertock, Beth; Frouin, Robert; Gautier, Catherine

    1992-01-01

    The generation and validation of the first satellite-based long-term record of surface solar irradiance over the global oceans are addressed. The record is generated using Nimbus-7 earth radiation budget (ERB) wide-field-of-view plentary-albedo data as input to a numerical algorithm designed and implemented based on radiative transfer theory. The mean monthly values of net surface solar irradiance are computed on a 9-deg latitude-longitude spatial grid for November 1978-October 1985. The new data set is validated in comparisons with short-term, regional, high-resolution, satellite-based records. The ERB-based values of net surface solar irradiance are compared with corresponding values based on radiance measurements taken by the Visible-Infrared Spin Scan Radiometer aboard GOES series satellites. Errors in the new data set are estimated to lie between 10 and 20 W/sq m on monthly time scales.

  10. Estimation of daily global solar irradiation under different sky conditions in central and southern Iran

    NASA Astrophysics Data System (ADS)

    Didari, Shohreh; Zand-Parsa, Shahrokh

    2015-10-01

    Daily global solar irradiation (R s) is one of the main inputs in environmental modeling. Because of the lack of its measuring facilities, high-quality and long-term data are limited. In this research, R s values were estimated based on measured sunshine duration and cloud cover of our synoptic meteorological stations in central and southern Iran during 2008, 2009, and 2011. Clear sky solar irradiation was estimated from linear regression using extraterrestrial solar irradiation as the independent variable with normalized root mean square error (NRMSE) of 4.69 %. Daily R s was calibrated using measured sunshine duration and cloud cover data under different sky conditions during 2008 and 2009. The 2011 data were used for model validation. According to the results, in the presence of clouds, the R s model using sunshine duration data was more accurate when compared with the model using cloud cover data (NRMSE = 11. 69 %). In both models, with increasing sky cloudiness, the accuracy decreased. In the study region, more than 92 % of sunshine durations were clear or partly cloudy, which received close to 95 % of total solar irradiation. Hence, it was possible to estimate solar irradiation with a good accuracy in most days with the measurements of sunshine duration.

  11. Models for obtaining daily global solar irradiation from air temperature data

    NASA Astrophysics Data System (ADS)

    Paulescu, M.; Fara, L.; Tulcan-Paulescu, E.

    2006-03-01

    The study presents a critical assessment of the possibility of global solar irradiation computation by using air temperature instead of sunshine duration with the classical Ångström equations. The reason for this approach comes from the fact that, although the air temperature is a worldwide measured meteorological parameter, this is rarely used in solar radiation estimation techniques. More than that, the literature is very silent concerning the testing of such models in Eastern Europe. Two new global solar irradiation models (to be called AEAT) related to solar irradiation under clear sky conditions and having the minimum and maximum daily air temperature as input parameters were tested and compared with others from the literature against data measured at five stations in Romania in the year 2000. The accuracy of AEAT is acceptable and comparable to that of the models which use sunshine duration or cloud amount as input parameters. Since temperature-based Ångström correlations are strongly sensitive to origin, the approach for AEAT as a tool for potential users is presented in detail. Additionally reported is a new method to increase the generality of AEAT concerning the extension of the geographical application area. Based on overall results it was concluded that air temperature successfully substitutes sunshine duration in the estimation of the available solar energy.

  12. Discrepant responses of the global electron content to the solar cycle and solar rotation variations of EUV irradiance

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Le, Huijun; Zhang, Hui

    2015-05-01

    In this paper, the responses of the ionosphere to the solar cycle and solar rotation variations of extreme ultraviolet (EUV) irradiance are comparatively investigated using daily mean global electron content (GEC) and 0.1-50 nm EUV daily flux. GEC is well correlated with EUV on both the solar cycle and solar rotation timescales; however, the responses of GEC to the solar cycle and solar rotation variations of EUV are significantly different in terms of the following two aspects: (1) There is a significant time lag between the solar rotation variations of GEC and EUV; the lag is dominated by a 1-day lag and generally presents a decrease trend with solar activity decreasing. For the solar cycle variations of GEC and EUV, however, there are no evident time lags. (2) The GEC versus EUV slopes are different for the solar cycle and solar rotation variations of GEC and EUV; the solar cycle GEC versus EUV slope is higher than the solar rotation GEC versus EUV slope, and this difference occurs in different seasons and latitudinal bands. The results present an aspect of the difference between ionospheric climatology and weather.

  13. Solar total irradiance variations and the global sea surface temperature record

    SciTech Connect

    Reid, G.C. Univ. of Colorado, Boulder )

    1991-02-20

    The record of globally averaged sea surface temperature (SST) over the past 130 years shows a highly significant correlation with the envelope of the 11-year cycle of solar activity over the same period. This correlation could be explained by a variation in the sun's total irradiance (the solar constant) that is in phase with the solar-cycle envelope, supporting and updating an earlier conclusion by Eddy (1976) that such variations could have played a major role in climate change over the past millennium. Measurements of the total irradiance from spacecraft, rockets, and balloons over the past 25 years have provided evidence of long-term variations and have been used to develop a simple linear relationship between irradiance and the envelope of the sunspot cycle. This relationship has been used to force a one-dimensional model of the thermal structure of the ocean, consisting of a 100-m mixed layer coupled to a deep ocean and including a thermohaline circulation. The model was started in the mid-seventeenth century, at the time of the Maunder Minimum of solar activity, and mixed-layer temperatures were calculated at 6-month intervals up to the present. The total range of irradiance values during the period was about 1%, and the total range of SST was about 1C. Cool periods, when temperatures were about 0.5C below present-day values, were found in the early decades of both the nineteenth and twentieth centuries. The results can be taken as indicating that solar variability has been an important contributor to global climate variations in recent decades. The growing atmospheric burden of greenhouse gases may well have played an important role in the immediate past.

  14. Correlation between total solar irradiance and global land temperatures for the last 120 years

    NASA Astrophysics Data System (ADS)

    Varonov, A.; Shopov, Y. Y.

    2016-02-01

    We analyze the solar impact on one of the main Earth climate system components—the land-near-surface air temperature—during the past 120 years. Using statistical analysis, a correlation between the variations of the total solar irradiance and of the annual-mean land-near-surface air temperatures was found. An unknown time lag between both data sets was expected to be present due to the complexity of the Earth's climate system leading to a delayed response to changes in influencing factors. We found the best correlation with coefficient over 90% for a 14-year shift of the annual mean land temperature record ahead with data before 1970, while the same comparison with data until 2006 yields 61% correlation. These results show the substantially higher influence of the total solar irradiance on the global land temperatures before 1970. The decline of this influence during the last 40 years could be attributed to the increasing concentration of anthropogenic greenhouse gases in the Earth's atmosphere.

  15. Investigation of the effect of contrails on global irradiance and solar energy production

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Rennhofer, Marcus; Baumgartner, Dietmar; Wagner, Jochen; Laube, Wolfgang; Gadermaier, Josef

    2013-04-01

    In the present study we investigate the effect of contrails on global shortwave radiation and on Photovoltaic module performance. This investigation is performed using continuous hemispherical fish eye photographs of the sky, diffuse and direct shortwave measurements and short circuit current measurements of a-Si, c-Si and CdTe PV modules. These measurements have been performed at the solar observatory Kanzelhöhe (1540 m.a.s.l) located in the southern part of Austria during a period of one and half year. The time resolution of the measurements is one minute, which allows to accurately follow the formation-eventually the disappearance- or the movement of the contrails in the sky. Using the fish eye photographs we identified clear sky days with a high contrail persistence. We especially look at situations where the contrails were shading the sun. Results show that contrails shading the sun may reduce the global radiation by up to 60%. In general we however observe that during days with a high contrail persistence the diffuse irradiance is slightly increased. Finally a statistic of the contrail persistence during the period of measurement is presented and conclusions as to the relevance for the solar energy production are drawn.

  16. CMSAF products Cloud Fraction Coverage and Cloud Type used for solar global irradiance estimation

    NASA Astrophysics Data System (ADS)

    Badescu, Viorel; Dumitrescu, Alexandru

    2016-01-01

    Two products provided by the climate monitoring satellite application facility (CMSAF) are the instantaneous Cloud Fractional Coverage (iCFC) and the instantaneous Cloud Type (iCTY) products. Previous studies based on the iCFC product show that the simple solar radiation models belonging to the cloudiness index class n CFC = 0.1-1.0 have rRMSE values ranging between 68 and 71 %. The products iCFC and iCTY are used here to develop simple models providing hourly estimates for solar global irradiance. Measurements performed at five weather stations of Romania (South-Eastern Europe) are used. Two three-class characterizations of the state-of-the-sky, based on the iCTY product, are defined. In case of the first new sky state classification, which is roughly related with cloud altitude, the solar radiation models proposed here perform worst for the iCTY class 4-15, with rRMSE values ranging between 46 and 57 %. The spreading error of the simple models is lower than that of the MAGIC model for the iCTY classes 1-4 and 15-19, but larger for iCTY classes 4-15. In case of the second new sky state classification, which takes into account in a weighted manner the chance for the sun to be covered by different types of clouds, the solar radiation models proposed here perform worst for the cloudiness index class n CTY = 0.7-0.1, with rRMSE values ranging between 51 and 66 %. Therefore, the two new sky state classifications based on the iCTY product are useful in increasing the accuracy of solar radiation models.

  17. CMSAF products Cloud Fraction Coverage and Cloud Type used for solar global irradiance estimation

    NASA Astrophysics Data System (ADS)

    Badescu, Viorel; Dumitrescu, Alexandru

    2016-08-01

    Two products provided by the climate monitoring satellite application facility (CMSAF) are the instantaneous Cloud Fractional Coverage (iCFC) and the instantaneous Cloud Type (iCTY) products. Previous studies based on the iCFC product show that the simple solar radiation models belonging to the cloudiness index class n CFC = 0.1-1.0 have rRMSE values ranging between 68 and 71 %. The products iCFC and iCTY are used here to develop simple models providing hourly estimates for solar global irradiance. Measurements performed at five weather stations of Romania (South-Eastern Europe) are used. Two three-class characterizations of the state-of-the-sky, based on the iCTY product, are defined. In case of the first new sky state classification, which is roughly related with cloud altitude, the solar radiation models proposed here perform worst for the iCTY class 4-15, with rRMSE values ranging between 46 and 57 %. The spreading error of the simple models is lower than that of the MAGIC model for the iCTY classes 1-4 and 15-19, but larger for iCTY classes 4-15. In case of the second new sky state classification, which takes into account in a weighted manner the chance for the sun to be covered by different types of clouds, the solar radiation models proposed here perform worst for the cloudiness index class n CTY = 0.7-0.1, with rRMSE values ranging between 51 and 66 %. Therefore, the two new sky state classifications based on the iCTY product are useful in increasing the accuracy of solar radiation models.

  18. Total ozone column, water vapour and aerosol effects on erythemal and global solar irradiance in Marsaxlokk, Malta

    NASA Astrophysics Data System (ADS)

    Bilbao, Julia; Román, Roberto; Yousif, Charles; Mateos, David; de Miguel, Argimiro

    2014-12-01

    Observations of erythemal (UVER; 280-400 nm) and total solar shortwave irradiance (SW; 305-2800 nm), total ozone column (TOC), water vapour column (w), aerosol optical depth (AOD) and Ångström exponent (α) were carried out at Marsaxlokk, in south-east Malta. These measurements were recorded during a measurement campaign between May and October 2012, aimed at studying the influence of atmospheric compounds on solar radiation transfer through the atmosphere. The effects of TOC, AOD and w on UVER and SW (global, diffuse and direct) irradiance were quantified using irradiance values under cloud-free conditions at different fixed solar zenith angles (SZA). Results show that UVER (but not SW) irradiance correlates well with TOC. UVER variations ranged between -0.24% DU-1 and -0.32% DU-1 with all changes being statistically significant. Global SW irradiance varies with water vapour column between -2.44% cm-1 and -4.53% cm-1, these results proving statistically significant and diminishing when SZA increases. The irradiance variations range between 42.15% cm-1 and 20.30% cm-1 for diffuse SW when SZA varies between 20° and 70°. The effect of aerosols on global UVER is stronger than on global SW. Aerosols cause a UVER reduction of between 28.12% and 52.41% and a global SW reduction between 13.46% and 41.41% per AOD550 unit. Empirical results show that solar position plays a determinant role, that there is a negligible effect of ozone on SW radiation, and stronger attenuation by aerosol particles in UVER radiation.

  19. Stochastic model to describe atmospheric attenuation from yearly global solar irradiation

    NASA Astrophysics Data System (ADS)

    Vindel, J. M.; Polo, J.; Zarzalejo, L. F.; Ramírez, L.

    2015-02-01

    A new stochastic model to describe atmospheric attenuation from yearly global solar irradiation has been developed and implemented. The proposed model takes into account the consideration that the whole of all attenuating elements can be thought of as a population where the higher the number of individuals the lesser the clearness index. Thus, the inverse of the clearness index is considered as the variable of a stochastic process. From the proposed master equation as starting point, the new model is characterized by transition rates (assessed from a growing parameter - G - and a decreasing parameter - D) which depend mainly on the climatological characteristics at each location. In this sense, different regions with an attenuation level calculated from the yearly global irradiation have been established using the Köppen-Geiger climate classification as a first approach. The model parameters G and D have been determined for different regions using the inverse of the clearness index as variable. The probability density function obtained after the application of the stochastic model for each climate zone shows how the index mode increases from the zones with lower levels of attenuation to those with higher levels of attenuation. This result confirms the proposed null hypothesis related to the use of the inverse of the clearness index as an attenuation population indicator. The fit between the empirical data and the data provided for the model is good enough according to a Kolmogorov-Smirnov test with a significance level of 0.05. Nevertheless, it is necessary to slightly modify the climate zones of Köppen-Geiger initial classification for a better explanation of the atmospheric attenuation. This climate zones modification can be considered as an additional result.

  20. Simulation Study of Effects of Solar Irradiance and Sea Surface Temperature on Monsoons and Global Circulation

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Mehta, V.; Lau, W. K.-M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A recent version of the GEOS 2 GCM was used to isolate the roles of the annual cycles of solar irradiation and/or sea-surface temperatures (SSTs) on the simulated circulation and rainfall. Four 4-year long integrations were generated with the GCM. The first integration, called Control Case, used daily-interpolated SSTs from a 30 year monthly SST climatology that was obtained from the analyzed SST-data, while the solar irradiation at the top of the atmosphere was calculated normally at hourly intervals. The next two cases prescribed the SSTs or the incoming solar irradiance at the top of the atmosphere at their annual mean values, respectively while everything else was kept the same as in the Control Case. In this way the influence of the annual cycles of both external forcings was isolated.

  1. Global upper ocean heat storage response to radiative forcing from changing solar irradiance and increasing greenhouse gas/aerosol concentrations

    NASA Astrophysics Data System (ADS)

    White, Warren B.; Cayan, Daniel R.; Lean, Judith

    1998-09-01

    We constructed gridded fields of diabatic heat storage changes in the upper ocean from 20°S to 60°N from historical temperature profiles collected from 1955 to 1996. We filtered these 42 year records for periods of 8 to 15 years and 15 to 30 years, producing depth-weighted vertical average temperature (DVT) changes from the sea surface to the top of the main pycnocline. Basin and global averages of these DVT changes reveal decadal and interdecadal variability in phase across the Indian, Pacific, Atlantic, and Global Oceans, each significantly correlated with changing surface solar radiative forcing at a lag of 0+/-2 years. Decadal and interdecadal changes in global average DVT are 0.06°+/-0.01°K and 0.04°K+/-0.01°K, respectively, the same as those expected from consideration of the Stefan-Boltzmann radiation balance (i.e., 0.3°K per Wm-2) in response to 0.1% changes in surface solar radiative forcing of 0.2 Wm-2 and 0.15 Wm-2, respectively. Global spatial patterns of DVT changes are similar to temperature changes simulated in coupled ocean-atmosphere models, suggesting that natural modes of Earth's variability are phase-locked to the solar irradiance cycle. A trend in global average DVT of 0.15°K over this 42 year record cannot be explained by changing surface solar radiative forcing. But when we consider the 0.5 Wm-2 increase in surface radiative forcing estimated from the increase in atmospheric greenhouse gas and aerosol (GGA) concentrations over this period [Intergovernmental Panel on Climate Change, 1995], the Stefan-Boltzmann radiation balance yields this observed change. Moreover, the sum of solar and GGA surface radiative forcing can explain the relatively sharp increase in global and basin average DVT in the late 1970's.

  2. Quantitative Assessment of the Integrated Response in Global Heat and Moisture Budgets to Changing Solar Irradiance

    NASA Technical Reports Server (NTRS)

    White, Warren B.; Cayan, Daniel R.; Dettinger, Michael; Sharber, James (Technical Monitor)

    2001-01-01

    Earlier, we found time sequences of basin- and global-average upper ocean temperature (that is, diabatic heat storage above the main pycnocline) for 40 years from 1955-1994 and of sea surface temperature for 95 years from 1900-1994 associated with changes in the Sun's radiative forcing on decadal and interdecadal timescales, lagging by 10 deg.- 30 deg. of phase and confined to the upper 60-120 m. Yet, the observed changes in upper ocean temperature (approx. 0.1 K) were approximately twice those expected from the Stefan-Boltzmann black-body radiation law for the Earth's surface, with phase lags (0 deg. to 30 deg. of phase) much shorter than the 90 deg. phase shift expected as well. Moreover, White et al. (1997, 1998) found the Earth's global decadal mode in covarying SST and SLP anomalies phase locked to the decadal signal in the Sun's irradiance. Yet, Allan (2000) found this decadal signal also characterized by patterns similar to those observed on biennial and interannual time scales; that is, the Troposphere Biennial Oscillation (TBO) and the El Nino and the Southern Oscillation (ENSO). This suggested that small changes in the Sun's total irradiance could excite this global decadal mode in the Earth's ocean-atmosphere-terrestrial system similar to those excited internally on biennial and interannual period scales. This is a significant finding, proving that energy budget models (that is, models based on globally-averaged radiation balances) yield unrealistic responses. Thus, the true response must include positive and negative feedbacks in the Earth's ocean-atmosphere-terrestrial system as its internal mode (that is, the natural mode of the system) respond in damped resonance to quasi-periodic decadal changes in the Sun's irradiance. Moreover, these responses are not much different from those occurring internally on biennial and interannual period scales.

  3. Solar Spectral Irradiance and Climate

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Woods, T.; Cahalan, R.

    2012-01-01

    Spectrally resolved solar irradiance is recognized as being increasingly important to improving our understanding of the manner in which the Sun influences climate. There is strong empirical evidence linking total solar irradiance to surface temperature trends - even though the Sun has likely made only a small contribution to the last half-century's global temperature anomaly - but the amplitudes cannot be explained by direct solar heating alone. The wavelength and height dependence of solar radiation deposition, for example, ozone absorption in the stratosphere, absorption in the ocean mixed layer, and water vapor absorption in the lower troposphere, contribute to the "top-down" and "bottom-up" mechanisms that have been proposed as possible amplifiers of the solar signal. New observations and models of solar spectral irradiance are needed to study these processes and to quantify their impacts on climate. Some of the most recent observations of solar spectral variability from the mid-ultraviolet to the near-infrared have revealed some unexpected behavior that was not anticipated prior to their measurement, based on an understanding from model reconstructions. The atmospheric response to the observed spectral variability, as quantified in climate model simulations, have revealed similarly surprising and in some cases, conflicting results. This talk will provide an overview on the state of our understanding of the spectrally resolved solar irradiance, its variability over many time scales, potential climate impacts, and finally, a discussion on what is required for improving our understanding of Sun-climate connections, including a look forward to future observations.

  4. Solar irradiance short wave radiation users guide

    NASA Astrophysics Data System (ADS)

    Martinolich, Paul; Arnone, Robert A.

    1995-05-01

    Solar irradiance for short wave radiation (400-700 nm) at the sea surface can be calculated using inputs obtained from satellite systems and model estimates. The short wave solar irradiance is important for estimating the surface heating that occurs in the near surface and estimating the available irradiance for biological growth in the upper ocean. The variability of the solar irradiance is believed to have significant influence on the global carbon cycle. This users guide provides an understanding of the models and operational procedures for using the software and understanding the results.

  5. A New method for identifying possible causal relationships between CO2, total solar irradiance and global temperature change

    NASA Astrophysics Data System (ADS)

    Seip, Knut L.; Grøn, Øyvind

    2015-11-01

    We apply a novel method based upon "before" and "after" relationships to investigate and quantify interconnections between global temperature anomaly (GTA), as response variable, and greenhouse gases (CO2) and total solar irradiance (TSI) as candidate causal variables for the period 1880 to 2010. The most likely interpretations of our results for the 6 to 8 years cyclic components of the variables are that during the period 1929 to 1936, CO2 significantly leads GTA. However, during the period 1960-2003, GTA apparently leads CO2, that is, the peaks (and troughs) in GTA are in front of, and close to, the peaks (and troughs) in CO2. For time windows outside these periods, we did not find significant before or after-relations. An alternative interpretation is that there is a shift between short (≈1.5 year) and long (≈5 years) durations between cause and effect. Relationships between GTA and TSI suggest that "inertia" of the global sea, land, and atmosphere system leads to delays longer than half their common cycle length of about 10 years. Based on the interaction patterns between the variables GTA, CO2, and TSI, we suggest the possibility that a new regime for how the variables interact started around 1960. From trend forms, and not considering physical mechanisms, we found that the trend in CO2 contributes ≈ 90 %, and the trend in TSI ≈ 10 %, to the trend in GTA during the last 130 years.

  6. Solar influences on global change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Monitoring of the Sun and the Earth has yielded new knowledge essential to this debate. There is now no doubt that the total radiative energy from the Sun that heats the Earth's surface changes over decadal time scales as a consequence of solar activity. Observations indicate as well that changes in ultraviolet radiation and energetic particles from the Sun, also connected with the solar activity, modulate the layer of ozone that protects the biosphere from the solar ultraviolet radiation. This report reassesses solar influences on global change in the light of this new knowledge of solar and atmospheric variability. Moreover, the report considers climate change to be encompassed within the broader concept of global change; thus the biosphere is recognized to be part of a larger, coupled Earth system. Implementing a program to continuously monitor solar irradiance over the next several decades will provide the opportunity to estimate solar influences on global change, assuming continued maintenance of observations of climate and other potential forcing mechanisms. In the lower atmosphere, an increase in solar radiation is expected to cause global warming. In the stratosphere, however, the two effects produce temperature changes of opposite sign. A monitoring program that would augment long term observations of tropospheric parameters with similar observations of stratospheric parameters could separate these diverse climate perturbations and perhaps isolate a greenhouse footprint of climate change. Monitoring global change in the troposphere is a key element of all facets of the United States Global Change Research Program (USGCRP), not just of the study of solar influences on global change. The need for monitoring the stratosphere is also important for global change research in its own right because of the stratospheric ozone layer.

  7. Analysis of the total solar irradiance composite and their contribution to global mean air surface temperature rise

    NASA Astrophysics Data System (ADS)

    Scafetta, N.

    2008-12-01

    Herein I discuss and propose updated satellite composites of the total solar irradiance covering the period 1978-2008. The composites are compiled from measurements made with the three ACRIM experiments. Measurements from the NIMBUS7/ERB, the ERBS/ERBE satellite experiments and a total solar irradiance proxy reconstruction are used to fill the gap from June 1989 to October 1991 between ACRIM1 and ACRIM2 experiments. The result of the analysis does suggests that the total solar irradiance did increase from 1980 to 2002. The climate implications of the alternative satellite composites are discussed by using a phenomenological climate model which depends on two characteristics time response at tau1 =0.4 year and tau2=8-12 years, as determined phenomenologically [Scafetta, JGR 2008]. Reconstructions of total solar irradiance signature on climate during the last four centuries are discussed. The solar variability appears to have significantly contributed to climate change during the last four centuries, including the last century. Indirectly, the model suggests that the preindustrial climate experienced a large variability which is incompatible with an Hockey Stick temperature graph.

  8. Global and diffuse solar irradiance modelling over north-western Europe using MAR regional climate model : validation and construction of a 30-year climatology

    NASA Astrophysics Data System (ADS)

    Beaumet, Julien; Doutreloup, Sébastien; Fettweis, Xavier; Erpicum, Michel

    2015-04-01

    Solar irradiance modelling is crucial for solar resource management, photovoltaic production forecasting and for a better integration of solar energy in the electrical grid network. For those reasons, an adapted version of the Modèle Atmospheric Regional (MAR) is being developed at the Laboratory of Climatology of the University of Liège in order to provide high quality modelling of solar radiation, wind and temperature over north-western Europe. In this new model version, the radiation scheme has been calibrated using solar irradiance in-situ measurements and CORINE Land Cover data have been assimilated in order to improve the modelling of 10 m wind speed and near-surface temperature. In this study, MAR is forced at its boundary by ERA-40 reanalysis and its horizontal resolution is 10 kilometres. Diffuse radiation is estimated using global radiation from MAR outputs and a calibrated version of Ruiz-Arias et al., (2010) sigmoid model. This study proposes to evaluate the method performance for global and diffuse radiation modelling at both the hourly and daily time scale using data from the European Solar Radiation Atlas database for the weather stations of Uccle (Belgium) and Braunschweig (Germany). After that, a 30-year climatology of global and diffuse irradiance for the 1981-2010 period over western Europe is built. The created data set is then analysed in order to highlight possible regional or seasonal trends. The validity of the results is then evaluated after comparison with trends found in in-situ data or from different studies from the literature.

  9. Reconstruction of solar UV irradiance since 1974

    NASA Astrophysics Data System (ADS)

    Krivova, N. A.; Solanki, S. K.; Wenzler, T.; Podlipnik, B.

    2009-09-01

    Variations of the solar UV irradiance are an important driver of chemical and physical processes in the Earth's upper atmosphere and may also influence global climate. Here we reconstruct solar UV irradiance in the range 115-400 nm over the period 1974-2007 by making use of the recently developed empirical extension of the Spectral And Total Irradiance Reconstruction (SATIRE) models employing Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) data. The evolution of the solar photospheric magnetic flux, which is a central input to the model, is described by the magnetograms and continuum images recorded at the Kitt Peak National Solar Observatory between 1974 and 2003 and by the Michelson Doppler Imager instrument on SOHO since 1996. The reconstruction extends the available observational record by 1.5 solar cycles. The reconstructed Ly-α irradiance agrees well with the composite time series by Woods et al. (2000). The amplitude of the irradiance variations grows with decreasing wavelength and in the wavelength regions of special interest for studies of the Earth's climate (Ly-α and oxygen absorption continuum and bands between 130 and 350 nm) is 1-2 orders of magnitude stronger than in the visible or if integrated over all wavelengths (total solar irradiance).

  10. A New Look at Solar Irradiance Variation

    NASA Astrophysics Data System (ADS)

    Foukal, Peter

    2012-08-01

    We compare total solar irradiance (TSI) and ultraviolet ( F uv) irradiance variation reconstructed using Ca K facular areas since 1915, with previous values based on less direct proxies. Our annual means for 1925 - 1945 reach values 30 - 50 % higher than those presently used in IPCC climate studies. A high facula/sunspot area ratio in spot cycles 16 and 17 seems to be responsible. New evidence from solar photometry increases the likelihood of greater seventeenth century solar dimming than expected from the disappearance of magnetic active regions alone. But the large additional brightening in the early twentieth century claimed from some recent models requires complete disappearance of the magnetic network. The network is clearly visible in Ca K spectroheliograms obtained since the 1890s, so these models cannot be correct. Changes in photospheric effective temperature invoked in other models would be powerfully damped by the thermal inertia of the convection zone. Thus, there is presently no support for twentieth century irradiance variation besides that arising from active regions. The mid-twentieth century irradiance peak arising from these active regions extends 20 years beyond the early 1940s peak in global temperature. This failure of correlation, together with the low amplitude of TSI variation and the relatively weak effect of Fuv driving on tropospheric temperature, limits the role of solar irradiance variation in twentieth century global warming.

  11. The effects of sunspots on solar irradiance

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Silva, S.; Woodard, M.; Willson, R. C.

    1982-01-01

    It is pointed out that the darkness of a sunspot on the visible hemisphere of the sun will reduce the solar irradiance on the earth. Approaches are discussed for obtaining a crude estimate of the irradiance deficit produced by sunspots and of the total luminosity reduction for the whole global population of sunspots. Attention is given to a photometric sunspot index, a global measure of spot flux deficit, and models for the compensating flux excess. A model is shown for extrapolating visible-hemisphere spot areas to the invisible hemisphere. As an illustration, this extrapolation is used to calculate a very simple model for the reradiation necessary to balance the flux deficit.

  12. Modeling Solar Lyman Alpha Irradiance

    NASA Technical Reports Server (NTRS)

    Pap, J.; Hudson, H. S.; Rottman, G. J.; Willson, R. C.; Donnelly, R. F.; London, J.

    1990-01-01

    Solar Lyman alpha irradiance is estimated from various solar indices using linear regression analyses. Models developed with multiple linear regression analysis, including daily values and 81-day running means of solar indices, predict reasonably well both the short- and long-term variations observed in Lyman alpha. It is shown that the full disk equivalent width of the He line at 1083 nm offers the best proxy for Lyman alpha, and that the total irradiance corrected for sunspot effect also has a high correlation with Lyman alpha.

  13. Solar variability in irradiance and oscillations

    NASA Technical Reports Server (NTRS)

    Kuhn, Jeff R.

    1995-01-01

    The signature of the solar cycle appears in helioseismic frequencies and splittings. It is known that the changing outer superadiabatic region of the sun is responsible for this. The deeper solar-cycle mechanism from the surface changes, and, in particular, how magnetic fields perturb the global modes, the solar irradiance and the luminosity, is discussed. The irradiance and helioseismic changes are described. The interpretation of seismic and photometric data is discussed, considering current one-dimensional models and phenomenology. It is discussed how the long term solar-cycle luminosity effect could be caused by changes occurring near the base of the convection zone (CZ). It is shown that a thin toroidal flux sheath at the top of the radiative zone changed the thermal stratification immediately below the CZ over a solar-cycle timescale in two ways: the temperature of the magnetized fluid becomes hotter than the surrounding fluid, and the temperature gradient steepens above the magnetized region. The testing of CZ dynamics and extension of numerical experiments to global scales are considered.

  14. Total Solar Irradiance Variability: A Review

    NASA Technical Reports Server (NTRS)

    Pap, Judit M.

    1996-01-01

    Observations of total solar irradiance from space within the last two decaades convinced the skeptics that total irradiance varies over a wide range of periodicities: from minutes to the 11-year solar activity cycle. Analyses based on these space-borne observations have demonstrated that the irradiance variations are directly related to changes at the photosphere and the solar interior.

  15. Solar Irradiance: Observations, Proxies, and Models (Invited)

    NASA Astrophysics Data System (ADS)

    Lean, J.

    2013-12-01

    Solar irradiance has been measured from space for more than thirty years. Variations in total (spectrally integrated) solar irradiance associated with the Sun's 11-year activity cycle and 27-day rotation are now well characterized. But the magnitude, and even the sign, of spectral irradiance changes at near ultraviolet, visible and near infrared wavelengths, remain uncertain on time scales longer than a few months. Drifts in the calibration of the instruments that measure solar irradiance and incomplete understanding of the causes of irradiance variations preclude specification of multi-decadal solar irradiance variations with any confidence, including whether, or not, irradiance levels were lower during the 2008-2009 anomalously low solar activity minimum than in prior minima. The ultimate cause of solar irradiance variations is the Sun's changing activity, driven by a sub-surface dynamo that generates magnetic features called sunspots and faculae, which respectively deplete and enhance the net radiative output. Solar activity also alters parameters that have been measured from the ground for longer periods and with greater stability than the solar irradiance datasets. The longest and most stable such record is the Sun's irradiance at 10.7 cm in the radio spectrum, which is used frequently as a proxy indicator of solar irradiance variability. Models have been developed that relate the solar irradiance changes - both total and spectral - evident in extant databases to proxies chosen to best represent the sunspot darkening and facular brightening influences. The proxy models are then used to reconstruct solar irradiance variations at all wavelengths on multi-decadal time scales, for input to climate and atmospheric model simulations that seek to quantity the Sun's contribution to Earth's changing environment. This talk provides an overview of solar total and spectral irradiance observations and their relevant proxies, describes the formulation and construction of

  16. Forecasting solar extreme and far ultraviolet irradiance

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Hock, R. A.; Schooley, A. K.; Toussaint, W. A.; White, S. M.; Arge, C. N.

    2015-03-01

    A new method is presented to forecast the solar irradiance of selected wavelength ranges within the extreme ultraviolet (EUV) and far ultraviolet (FUV) bands. The technique is similar to a method recently published by Henney et al. (2012) to predict solar 10.7 cm (2.8 GHz) radio flux, abbreviated F10.7, utilizing advanced predictions of the global solar magnetic field generated by a flux transport model. In this and the previous study, we find good correlation between the absolute value of the observed photospheric magnetic field and selected EUV/FUV spectral bands. By evolving solar magnetic maps forward 1 to 7 days with a flux transport model, estimations of the Earth side solar magnetic field distribution are generated and used to forecast irradiance. For example, Pearson correlation coefficient values of 0.99, 0.99, and 0.98 are found for 1 day, 3 day, and 7 day predictions, respectively, of the EUV band from 29 to 32 nm. In the FUV, for example, the 160 to 165 nm spectral band, correlation values of 0.98, 0.97, and 0.96 are found for 1 day, 3 day, and 7 day predictions, respectively. In the previous study, the observed F10.7 signal is found to correlate well with strong magnetic field (i.e., sunspot) regions. Here we find that solar EUV and FUV signals are significantly correlated with the weaker magnetic fields associated with plage regions, suggesting that solar magnetic indices may provide an improved indicator (relative to the widely used F10.7 signal) of EUV and FUV nonflaring irradiance variability as input to ionospheric and thermospheric models.

  17. Variability of solar ultraviolet irradiance

    NASA Technical Reports Server (NTRS)

    Pap, J. M.; Donnelly, R. F.; Hudson, H. S.; Rottman, G. J.; Willson, R. C.

    1991-01-01

    A model of solar Lyman alpha irradiance developed by multiple linear regression analysis, including the daily values and 81-day running means of the full disk equivalent width of the Helium line at 1083 nm, predicts reasonably well both the short- and long-term variations observed in Lyman alpha. In contrast, Lyman alpha models calculated from the 10.7-cm radio flux overestimate the observed variations in the rising portion and maximum period of solar cycle, and underestimates them during solar minimum. Models are shown of Lyman alpha based on the He-line equivalent width and 10.7-cm radio flux for those time intervals when no satellite observations exist, namely back to 1974 and after April 1989, when the measurements of the Solar Mesosphere Satellite were terminated.

  18. Updates to ISO 21348 (determining solar irradiances)

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    2012-07-01

    The ISO 21348 (Determining Solar Irradiances) International Standard is going through a document update. A consensus solar spectrum, solar indices/proxies descriptions, solar model descriptions, and solar measurement descriptions are among the Annexes that are proposed to the standard. These topics will be reviewed and described. The International Standards Organization (ISO) published IS 21348 in 2007 after 7 years of development by the international scientific community. In ISO, documents are reviewed on a regular basis and reaffirmed, updated, or deleted according to the votes of national delegations represented in ISO. IS 21348 provides guidelines for specifying the process of determining solar irradiances. Solar irradiances are reported through products such as measurement sets, reference spectra, empirical models, theoretical models and solar irradiance proxies or indices. These products are used in scientific and engineering applications to characterize within the natural space environment solar irradiances that are relevant to space systems and materials. Examples of applications using input solar irradiance energy include the determination of atmospheric densities for spacecraft orbit determination, attitude control and re-entry calculations, as well as for debris mitigation and collision avoidance activity. Direct and indirect pressure from solar irradiance upon spacecraft surfaces also affects attitude control separately from atmospheric density effects. Solar irradiances are used to provide inputs for a) calculations of ionospheric parameters, b) photon-induced radiation effects, and c) radiative transfer modeling of planetary atmospheres. Input solar irradiance energy is used to characterize material properties related to spacecraft thermal control, including surface temperatures, reflectivity, absorption and degradation. Solar energy applications requiring a standard process for determining solar irradiance energy include i) solar cell power

  19. Evidence for Trends, and Lack Thereof, in Surface Solar Irradiance as Seen in Calibration-error-free Records of Cloud Shortwave Transmission for the Past Three Decades at Five Globally Diverse Sites

    NASA Astrophysics Data System (ADS)

    Dutton, E. G.

    2004-05-01

    clear skies over the extended periods. We examine three decades of typically calibrated pyranometer data at five globally diverse sites and nearly 45 years of direct solar beam irradiance record at one site using these techniques and find interesting but small variations in cloud and clear sky transmittance over this time period. The surface records examined are from: Barrow, Alaska; Boulder, Colorado; Mauna Loa, Hawaii; American Samoa; and the South Pole. Since the early 1990s considerable effort has been expended by the international irradiance measurement community to greatly increase the routine accuracy of surface solar irradiance observations so that direct analysis of long term changes in irradiance will be more readily verifiable. The second portion of this paper summarizes a related recent paper in JGR/Atmos. by the author.

  20. Evolution Character Analysis of Total Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Xiang, N. B.

    2013-05-01

    The significant periods of total solar irradiance are 35 days and 26 days in solar cycle 23 and 24, respectively. It is inferred that the solar quasi-rotation periods are 35 days and 26 days in solar cycle 23 and 24, respectively. The value of total solar irradiance in solar cycle 24 minimum should be close to the value of Maunder minimum. On short time scales, sunspots should be the main reason to cause variations of total solar irradiance on the scale of one solar rotation cycle to several months, but not the unique one, and the variations of total solar irradiance are notrelated with the Mg II index on the scale of a few days to one solar rotation cycle.

  1. Future Satellite Observations of Solar Irradiance

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; Rottman, G.; Woods, T.; Lawrence, G.; Harder, J.; McClintock, W.; Kopp, G.

    2003-01-01

    Required solar irradiance measurements for climate studies include those now being made by the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) onboard the SORCE satellite, part of the Earth Observing System fleet of NASA satellites. Equivalent or better measures of Total Solar Irradiance (TSI) and Spectral Solar Irradiance (SSI, 200 to 2000 nm) are planned for the post-2010 satellites of the National Polar-orbiting Operational Environmental Satellite System ("OESS). The design life of SORCE is 5 years, so a "Solar Irradiance Gap Filler" EOS mission is being planned for launch in the 2007 time frame, to include the same TSI and SSI measurements. Besides avoiding any gap, overlap of the data sources is also necessary for determination of possible multi-decadal trends in solar irradiance. We discuss these requirements and the impacts of data gaps, and data overlaps, that may occur in the monitoring of the critical solar radiative forcing.

  2. Thematic Mapper bandpass solar exoatmospheric irradiances

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Barker, J. L.

    1987-01-01

    Based on solar irradiance data published by Neckel and Labs (1984) and Iqbal (1983), the solar exoatmospheric irradiances for Thematic Mapper (TM) bands 1, 2, 3, and 4 have been calculated. Results vary by up to 1 percent from previous published values, which were based on the earlier data of Neckel and Labs. For TM bands 5 and 7, integrated solar exoatmospheric irradiances have also been recalculated using solar irradiance data published by Labs and Neckel (1968), Arvesen et al. (1969), and Iqbal (1983). These irradiances vary by up to 6 percent from previously published results, which were based on data published by Thekaekara (1972).

  3. Solar activity and the mean global temperature

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Sloan, T.; Wolfendale, A. W.

    2009-01-01

    The variation with time from 1956 to 2002 of the globally averaged rate of ionization produced by cosmic rays in the atmosphere is deduced and shown to have a cyclic component of period roughly twice the 11 year solar cycle period. Long term variations in the global average surface temperature as a function of time since 1956 are found to have a similar cyclic component. The cyclic variations are also observed in the solar irradiance and in the mean daily sun spot number. The cyclic variation in the cosmic ray rate is observed to be delayed by 2-4 years relative to the temperature, the solar irradiance and daily sun spot variations suggesting that the origin of the correlation is more likely to be direct solar activity than cosmic rays. Assuming that the correlation is caused by such solar activity, we deduce that the maximum recent increase in the mean surface temperature of the Earth which can be ascribed to this activity is {\\lesssim }14% of the observed global warming.

  4. ADAPT/HMI Global Solar Magnetic Maps

    NASA Astrophysics Data System (ADS)

    Henney, C. J.; Arge, C. N.; Shurkin, K.; Schooley, A. K.; Hickmann, K. S.; Godinez, H. C.

    2015-12-01

    Global solar magnetic maps are the primary input to coronal and heliospheric models used to estimate geoeffective space weather events. The ADAPT (Air Force Data Assimilative Photospheric flux Transport) model has recently been modified to utilize line-of-sight magnetograms observed from the Helioseismic and Magnetic Imager (HMI) to create global flux distribution maps. Compared to ground-based observations, data assimilation of inferred photospheric magnetic field data close to the solar limb is possible as a result of the high quality of HMI magnetograms. Estimation of the global magnetic field distribution continues to be challenging, however, since less than half of the solar surface is viewable via spectropolarimetric measurements at any given time. The lack of farside solar magnetic field observations results in temporal and spatial discontinuities within the global maps at the east-limb boundary (where the observational time difference is greater than two weeks and continuously present) and at the poles (where quality observations are not available for each pole for ~5 months, once per year). In this presentation, we will discuss the progress towards improved data assimilation, modeling the evolution of active regions and polar fields, incorporating helioseismic farside and full-Stokes vector data, and forecasting the solar wind, F10.7 (i.e., the solar 10.7 cm radio flux), and extreme ultraviolet (EUV) irradiance.

  5. Studying Solar Irradiance Variability with Wavelet Technique

    NASA Technical Reports Server (NTRS)

    Vigouroux, Anne; Pap, Judit

    1995-01-01

    The detection of variations in solar irradiance by satellite-based experiments during the last 17 years stimulated modelling efforts to help to identify their causes and to provide estimates for irradiance data when no satellite observations exist.

  6. Long-Term Solar Irradiance Variability

    NASA Technical Reports Server (NTRS)

    Pap, J. M.

    1996-01-01

    Measurements of the solar energy throughout the solar spectrum and understanding its variability provide important information about the physical processes and structural changes in the solar interior and in the solar atmosphere...The aim of this paper is to discuss the solar-cycle-related long-term changes in solar total and UV irradiances. The spaceborne irradiance observations are compared to ground-based indices of solar magnetic activity, such as the Photometric Sunspot Index, full disk magnetic flux, and the Mt. Wilson Magnetic Plage Strength Index.

  7. Solar spectral irradiance model validation using Solar Spectral Irradiance and Solar Radius measurements

    NASA Astrophysics Data System (ADS)

    Thuillier, Gérard; Zhu, Ping; Shapiro, Alexander; Sofia, Sabatino; Tagirov, Rinat; Van Ruymbeke, Michel; Schmutz, Werner

    2016-04-01

    The importance of the reliable solar spectral irradiance (SSI) data for solar and climate physics is now well acknowledged. In particular, the irradiance time series are necessary for most of the current studies concerning climate evolution. However, space instruments are vulnerable to the degradation due to the environment while ground based measurements are limited in wavelength range and need atmospheric effects corrections. This is why SSI modeling is necessary to understand the mechanism of the solar irradiance variability and to provide long and uninterrupted irradiance records to climate and Earth atmosphere scientists. Here we present COSI (COde for Solar Irradiance) model of the SSI variability. The COSI model is based on the Non local thermodynamic Equilibrium Spectral SYnthesis Code (NESSY). We validate NESSY by two independent datasets: - The SSI at solar minimum occurring in 2008, - The radius variation with wavelength and absolute values determined from PREMOS and BOS instruments onboard the PICARD spacecraft. Comparisons between modeling and measured SSI will be shown. However, since SSI measurements have an accuracy estimated between 2 to 3%, the comparison with the solar radius data provides a very important additional constrains on model. For that, 17 partial solar occultations by the Moon are used providing solar radii clearly showing the dependence of the solar radius with wavelength. These results are compared with the NESSY predictions. The agreement between NESSY and observations is within the model and measurements accuracy.

  8. White Paper on SBUV/2 Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; DeLand, Matthew T.; Cebula, Richard P.

    1996-01-01

    The importance of solar irradiance measurements by the Solar Backscatter Ultraviolet, Model 2 (SBUV/2) instruments on NOAA's operational satellites is described. These measurements are necessary accurately monitor the long-term changes in the global column ozone amount, the altitude distribution of ozone in the upper stratosphere, and the degree to which ozone changes are caused by anthropogenic sources. Needed to accomplish these goals are weekly solar irradiance measurements at the operational ozone wavelengths, daily measurements of the Mg II proxy index, instrument-specific Mg II scale factors, and daily measurements of the solar spectral irradiance at photochemically important wavelengths. Two solar measurement schedules are provided: (1) a baseline schedule for all instruments except the NOAA-14 instrument and (2) a modified schedule for the NOAA-14 SBUV/2 instrument. This latter schedule is needed due to the NOAA-14 grating drive problems.

  9. Correlations of solar cycle 22 UV irradiance

    NASA Technical Reports Server (NTRS)

    Floyd, L.; Brueckner, G.; Crane, P.; Prinz, D.; Herring, L.

    1997-01-01

    The solar ultraviolet spectral irradiance monitor (SUSIM) onboard the upper atmosphere research satellite (UARS) is an absolutely calibrated UV spectrometer which has measured the solar spectral irradiance over the wavelengths 115 nm to 410 nm since October 1991. This data set now extends for about six years from near the peak of solar cycle 22, through its minimum, to the initial rise associated with solar cycle 23. Generally, the time series of UV spectral irradiances obtained shows behavior similar to that of other solar activity indices. The conditions on the sun, which can in result in dominant 13.5-day periodicity, are analyzed and illustrated. It is found that any combination of presence or absence of dominant 13.5-day in UV irradiance and solar wind velocity is possible depending entirely on the particular surface distribution and orientation of solar active regions.

  10. Solar irradiance observed from PVO and inferred solar rotation

    NASA Astrophysics Data System (ADS)

    Wolff, Charles L.; Hoegy, Walter R.

    1990-08-01

    Solar irradiance in the extreme ultraviolet flux (EUV) has been monitored for 11 years by the Pioneer Venus Orbiter (PVO). Since the experiment moves around the Sun with the orbital rate of Venus rather than that of Earth, the measurement gives us a second viewing location from which to begin unravelling which irradiance variations are intrinsic to the Sun, and which are merely rotational modulations whose periods depend on the motion of the observer. Researchers confirm an earlier detection, made with only 8.6 years of data, that the EUV irradiance is modulated by rotation rates of two families of global oscillation modes. One family is assumed to be r-modes occupying the convective envelope and sharing its rotation, while the other family (g-modes) lies in the radiative interior which as a slower rotation. Measured power in r-modes of low angular harmonic number indicates that the Sun's envelope rotated about 0.7 percent faster near the last solar maximum (1979 thru 1982) than it did during the next rise to maximum (1986 to 1989). No change was seen in the g-mode family of lines, as would be expected from the much greater rotational inertia of the radiative interior.

  11. Global irradiance calibration of multifilter UV radiometers

    NASA Astrophysics Data System (ADS)

    Piedehierro, A. A.; Cancillo, M. L.; Serrano, A.; Antón, M.; Vilaplana, J. M.

    2016-01-01

    It is well known that the amount of ultraviolet solar radiation (UV) reaching the Earth's surface is governed by stratospheric ozone, which has exhibited notable variations since the late 1970s. A thorough monitoring of UV radiation requires long-term series of accurate measurements worldwide, and to keep track of its evolution, it is essential to use high-quality instrumentation with an excellent long-term performance capable of detecting low UV signal. There are several UV monitoring networks worldwide based on multifilter UV radiometers; however, there is no general agreement about the most suitable methodology for the global irradiance calibration of these instruments. This paper aims to compare several calibration methods and to analyze their behavior for different ranges of solar zenith angle (SZA). Four methods are studied: the two currently most frequently used methods referred to in the literature and two new methods that reduce systematic errors in calibrated data at large solar zenith angles. The results evidence that proposed new methods show a clear improvement compared to the classic approaches at high SZA, especially for channels 305 and 320 nm. These two channels are of great interest for calculating the total ozone column and other products such as dose rates of biological interest in the UV range (e.g., the erythemal dose).

  12. Solar spectral irradiance and total solar irradiance at a solar minimum

    NASA Astrophysics Data System (ADS)

    Benevolenskaya, E. E.; Shapovalov, S. N.; Kostuchenko, I. G.

    2014-12-01

    Results are presented for a wavelet analysis of solar spectral irradiance (SSI) in the ultraviolet to infrared range and total solar irradiance (TSI). The study is based on data collected by the Solar Radiation and Climate Experiment ( SORCE) satellite from March 10, 2007 to January 23, 2010. Cross-wavelet analysis finds relationships of varying degrees of tightness between SSI, TSI, and magnetic flux in a sunspot zone on the surface rotation timescales of solar activity complexes. Wavelet coherence shows how magnetic flux variations within a latitudinal sunspot zone are related with spectral irradiance variations. For example, variations in ultraviolet radiation at UV 200.5 nm are in phase with those of the magnetic flux associated with solar activity complexes. However, there is an unusual interval UV 310 to 380 nm, in which coherent structures disappear and UV radiation variations do not follow the changes in the magnetic flux.

  13. Estimation of monthly global solar irradiation using the Hargreaves-Samani model and an artificial neural network for the state of Alagoas in northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Lyra, Gustavo Bastos; Zanetti, Sidney Sára; Santos, Anderson Amorim Rocha; de Souza, José Leonaldo; Lyra, Guilherme Bastos; Oliveira-Júnior, José Francisco; Lemes, Marco Antônio Maringolo

    2016-08-01

    The monthly global solar irradiation ( H g) was estimated using the Hargreaves-Samani model (HS) with three different approaches for determining the k r coefficient and using an artificial neural network (ANN). The data consisted of long-term climate series measured at eight conventional meteorological stations in the state of Alagoas and its borders in northeastern Brazil. The approaches to determine the k r coefficient of the HS model included (i) the method proposed by Hargreaves (1994) (0.190 and 0.162 for coastal and interior regions, respectively), (ii) a method analogous to the previous except with altitude correction, and (iii) k r fitted with local climatic data. A new spatial interpolation method is also proposed to determine k r as a function of geographical coordinates and altitude. The fitted local values of k r (0.168-0.179 and 0.189-0.231 for interior and coastal stations, respectively) exhibited a strong dependence ( r 2 = 0.81) on latitude, longitude, and altitude. The estimates of H g obtained with the HS model using fitted local values of k r and those using the ANN were similar (determination coefficient - r 2 = 0.75 and Willmontt agreement coefficient - d = 0.93) and better than those from the HS model using an altitude-corrected k r ( r 2 = 0.68 and d = 0.90) or the values proposed by Hargreaves (1994) ( r 2 = 0.57 and d = 0.85). The estimates of H g were less accurate and precise for the coastal stations, where cloudiness and humidity are high and the thermal amplitude is small.

  14. The Global Solar Dynamo

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Dikpati, M.; Brandenburg, A.

    2016-02-01

    A brief summary of the various observations and constraints that underlie solar dynamo research are presented. The arguments that indicate that the solar dynamo is an alpha-omega dynamo of the Babcock-Leighton type are then shortly reviewed. The main open questions that remain are concerned with the subsurface dynamics, including why sunspots emerge at preferred latitudes as seen in the familiar butterfly wings, why the cycle is about 11 years long, and why the sunspot groups emerge tilted with respect to the equator (Joy's law). Next, we turn to magnetic helicity, whose conservation property has been identified with the decline of large-scale magnetic fields found in direct numerical simulations at large magnetic Reynolds numbers. However, magnetic helicity fluxes through the solar surface can alleviate this problem and connect theory with observations, as will be discussed.

  15. Solar irradiance measurements - Minimum through maximum solar activity

    NASA Technical Reports Server (NTRS)

    Lee, R. B., III; Gibson, M. A.; Shivakumar, N.; Wilson, R.; Kyle, H. L.; Mecherikunnel, A. T.

    1991-01-01

    The Earth Radiation Budget Satellite (ERBS) and the NOAA-9 spacecraft solar monitors were used to measure the total solar irradiance during the period October 1984 to December 1989. Decreasing trends in the irradiance measurements were observed as sunspot activity decreased to minimum levels in 1986; after 1986, increasing trends were observed as sunspot activity increased. The magnitude of the irradiance variability was found to be approximately 0.1 percent between sunspot minimum and maximum (late 1989). When compared with the 1984 to 1989 indices of solar magnetic activity, the irradiance trends appear to be in phase with the 11-year sunspot cycle. Both irradiance series yielded 1,365/sq Wm as the mean value of the solar irradiance, normalized to the mean earth/sun distance. The monitors are electrical substitution, active-cavity radiometers with estimated measurement precisions and accuracies of less than 0.02 and 0.2 percent, respectively.

  16. A reconstruction of solar irradiance using a flux transport model

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Krivova, Natalie; Solanki, Sami K.; Jiang, Jie

    2012-07-01

    Solar irradiance is one of the important drivers of the Earth's global climate, but it has only been measured for the past 33 years. Its reconstructions are therefore crucial to study longer term variations relevant to climate timescales. Most successful in reproducing the measured irradiance variations have being the models that are based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field. Our SATIRE-S model is one of these, which uses solar full-disc magnetograms as an input, and these are available for less than four decades. To reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. The concept of overlapping ephemeral region cycles is used to describe the secular change in the irradiance.

  17. Evaluation of solar irradiance models for climate studies

    NASA Astrophysics Data System (ADS)

    Ball, William; Yeo, Kok-Leng; Krivova, Natalie; Solanki, Sami; Unruh, Yvonne; Morrill, Jeff

    2015-04-01

    Instruments on satellites have been observing both Total Solar Irradiance (TSI) and Spectral Solar Irradiance (SSI), mainly in the ultraviolet (UV), since 1978. Models were developed to reproduce the observed variability and to compute the variability at wavelengths that were not observed or had an uncertainty too high to determine an accurate rotational or solar cycle variability. However, various models and measurements show different solar cycle SSI variability that lead to different modelled responses of ozone and temperature in the stratosphere, mainly due to the different UV variability in each model, and the global energy balance. The NRLSSI and SATIRE-S models are the most comprehensive reconstructions of solar irradiance variability for the period from 1978 to the present day. But while NRLSSI and SATIRE-S show similar solar cycle variability below 250 nm, between 250 and 400 nm SATIRE-S typically displays 50% larger variability, which is however, still significantly less then suggested by recent SORCE data. Due to large uncertainties and inconsistencies in some observational datasets, it is difficult to determine in a simple way which model is likely to be closer to the true solar variability. We review solar irradiance variability measurements and modelling and employ new analysis that sheds light on the causes of the discrepancies between the two models and with the observations.

  18. Advanced solar irradiances applied to satellite and ionospheric operational systems

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Schunk, Robert; Eccles, Vince; Bouwer, Dave

    Satellite and ionospheric operational systems require solar irradiances in a variety of time scales and spectral formats. We describe the development of a system using operational grade solar irradiances that are applied to empirical thermospheric density models and physics-based ionospheric models used by operational systems that require a space weather characterization. The SOLAR2000 (S2K) and SOLARFLARE (SFLR) models developed by Space Environment Technologies (SET) provide solar irradiances from the soft X-rays (XUV) through the Far Ultraviolet (FUV) spectrum. The irradiances are provided as integrated indices for the JB2006 empirical atmosphere density models and as line/band spectral irradiances for the physics-based Ionosphere Forecast Model (IFM) developed by the Space Environment Corporation (SEC). We describe the integration of these irradiances in historical, current epoch, and forecast modes through the Communication Alert and Prediction System (CAPS). CAPS provides real-time and forecast HF radio availability for global and regional users and global total electron content (TEC) conditions.

  19. TSIS: The Total Solar Irradiance Sensor

    NASA Astrophysics Data System (ADS)

    Sparn, T.; Pilewskie, P.; Harder, J.; Kopp, G.; Richard, E.; Fontenla, J.; Woods, T.

    2008-12-01

    The Total Solar Irradiance Sensor (TSIS) is a dual-instrument package that will acquire solar irradiance in the next decade on the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Originally de-manifested during the 2006 NPOESS restructuring, TSIS was restored following a decision by the NPOESS Executive Committee earlier this year because of its critical role in determining the natural forcings of the climate system and the high priority given it by the 2007 Earth Science Decadal Survey. TSIS is comprised of the Total Irradiance Monitor, or TIM, which measures the total solar irradiance (TSI) that is incident at the boundaries of the atmosphere; and the Spectral Irradiance Monitor, or SIM, which measures solar spectral irradiance (SSI) from 200 nm to 2400 nm (96 percent of the TSI). The TSIS TIM and SIM are heritage instruments to those currently flying on the NASA Solar Irradiance and Climate Experiment (SORCE). Both were selected as part of the TSIS because of their unprecedented measurement accuracy and stability, and because both measurements are essential to constraining the energy input to the climate system and interpreting the response of climate to external forcing. This paper will describe those attributes of TSIS which uniquely define its capability to continue the 30-year record of TSI and to extend the new 5-year record of SSI. The role of the solar irradiance data record in the present climate state, as well as in past and future climate change, will also be presented.

  20. Models of Solar Irradiance Variability and the Instrumental Temperature Record

    NASA Technical Reports Server (NTRS)

    Marcus, S. L.; Ghil, M.; Ide, K.

    1998-01-01

    The effects of decade-to-century (Dec-Cen) variations in total solar irradiance (TSI) on global mean surface temperature Ts during the pre-Pinatubo instrumental era (1854-1991) are studied by using two different proxies for TSI and a simplified version of the IPCC climate model.

  1. The Next Spaceflight Solar Irradiance Sensor: TSIS

    NASA Astrophysics Data System (ADS)

    Kopp, Greg; Pilewskie, Peter; Richard, Erik

    2016-05-01

    The Total and Spectral Solar Irradiance Sensor (TSIS) will continue measurements of the solar irradiance with improved accuracies and stabilities over extant spaceflight instruments. The two TSIS solar-observing instruments include the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) for measuring total- and spectral- solar-irradiance, respectively. The former provides the net energy powering the Earth’s climate system while the latter helps attribute where that energy is absorbed by the Earth’s atmosphere and surface. Both spaceflight instruments are assembled and being prepared for integration on the International Space Station. With operations commencing in late 2017, the TSIS is intended to overlap with NASA’s ongoing SOlar Radiation and Climate Experiment (SORCE) mission, which launched in 2003 and contains the first versions of both the TIM and SIM instruments, as well as with the TSI Calibration Transfer Experiment (TCTE), which began total solar irradiance measurements in 2013. We summarize the TSIS’s instrument improvements and intended solar-irradiance measurements.

  2. Variability of Solar Irradiances Using Wavelet Analysis

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2007-01-01

    We have used wavelets to analyze the sunspot number, F10.7 (the solar irradiance at a wavelength of approx.10.7 cm), and Ap (a geomagnetic activity index). Three different wavelets are compared, showing how each selects either temporal or scale resolution. Our goal is an envelope of solar activity that better bounds the large amplitude fluctuations form solar minimum to maximum. We show how the 11-year cycle does not disappear at solar minimum, that minimum is only the other part of the solar cycle. Power in the fluctuations of solar-activity-related indices may peak during solar maximum but the solar cycle itself is always present. The Ap index has a peak after solar maximum that appears to be better correlated with the current solar cycle than with the following cycle.

  3. Spectral solar irradiance before and during a Harmattan dust spell

    SciTech Connect

    Adeyefa, Z.D.; Holmgren, B.

    1996-09-01

    Measurements of the ground-level spectral distributions of the direct, diffuse and global solar irradiance between 300 and 1100 nm were made at Akure (7.15{degree}N, 5.5{degree}E), Nigeria, in December 1991 before and during a Harmattan dust spell employing a spectroradiometer (LICOR LI-1800) with 6 nm resolution. The direct spectral solar irradiance which was initially reduced before the dust storm was further attenuated by about 50% after the spell. Estimated values of the Angstrom turbidity coefficient {beta} indicated an increase of about 146% of this parameter while the Angstrom wavelength-exponent {alpha} decreased by about 65% within the 2-day study period. The spectral diffuse-to-direct and diffuse-to-global ratios suggest that the main cause of the significant reduction in solar irradiance at the surface was the scattering by the aerosol which led to an increase in the diffuse component. The global irradiance though reduced, was less sensitive to changing Harmattan conditions. It is recommended that solar energy devices that use radiation from Sun and sky be used under fluctuating Harmattan conditions. There are some deviations from the Angstrom formula under very turbid Harmattan conditions which could be explained by the relative increase of the particle sizes. 31 refs., 12 figs., 3 tabs.

  4. Quality assessment of solar UV irradiance measured with array spectroradiometers

    NASA Astrophysics Data System (ADS)

    Egli, Luca; Gröbner, Julian; Hülsen, Gregor; Bachmann, Luciano; Blumthaler, Mario; Dubard, Jimmy; Khazova, Marina; Kift, Richard; Hoogendijk, Kees; Serrano, Antonio; Smedley, Andrew; Vilaplana, José-Manuel

    2016-04-01

    The reliable quantification of ultraviolet (UV) radiation at the earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers (ASRMs) are small, light, robust and cost-effective instruments, and are increasingly used for spectral irradiance measurements. Within the European EMRP ENV03 project "Solar UV", new devices, guidelines and characterization methods have been developed to improve solar UV measurements with ASRMs, and support to the end user community has been provided. In order to assess the quality of 14 end user ASRMs, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the blind intercomparison revealed that ASRMs, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema-weighted UV index - in particular at large solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available ASRMs within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range of solar zenith angles. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 and 400 nm under all atmospheric conditions.

  5. Quality assessment of solar UV irradiance measured with array spectroradiometers

    NASA Astrophysics Data System (ADS)

    Egli, L.; Gröbner, J.; Hülsen, G.; Bachmann, L.; Blumthaler, M.; Dubard, J.; Khazova, M.; Kift, R.; Hoogendijk, K.; Serrano, A.; Smedley, A. R. D.; Vilaplana, J.-M.

    2015-12-01

    The reliable quantification of ultraviolet (UV) radiation at the Earth's surface requires accurate measurements of spectral global solar UV irradiance in order to determine the UV exposure to human skin and to understand long-term trends in this parameter. Array spectroradiometers are small, light, robust and cost effective instruments and are increasingly used for spectral irradiance measurements. Within the European EMRP-ENV03 project "Solar UV", new devices, guidelines, and characterization methods have been developed to improve solar UV measurements with array spectroradiometers and support to the end-user community has been provided. In order to assess the quality of 14 end-user array spectroradiometers, a solar UV intercomparison was held on the measurement platform of the World Radiation Center (PMOD/WRC) in Davos, Switzerland, from 10 to 17 July 2014. The results of the intercomparison revealed that array spectroradiometers, currently used for solar UV measurements, show a large variation in the quality of their solar UV measurements. Most of the instruments overestimate the erythema weighted UV index - in particular at low solar zenith angles - due to stray light contribution in the UV-B range. The spectral analysis of global solar UV irradiance further supported the finding that the uncertainties in the UV-B range are very large due to stray light contribution in this wavelength range. In summary, the UV index may be detected by some commercially available array spectroradiometer within 5 % compared to the world reference spectroradiometer, if well characterized and calibrated, but only for a limited range or solar zenith angle. Generally, the tested instruments are not yet suitable for solar UV measurements for the entire range between 290 to 400 nm under all atmospheric conditions.

  6. Rotational Variability in Ultraviolet Solar Spectral Irradiance

    NASA Astrophysics Data System (ADS)

    Snow, M. A.; Richard, E. C.; Harder, J. W.; Thuillier, G. O.

    2011-12-01

    There are currently many observations and models of the Solar Spectral Irradiance (SSI) in the ultraviolet (UV). The models and the observations are often in agreement, but sometimes have significant differences. Using the decline of solar cycle 23 and the rise of solar cycle 24 as a test case, we will investigate the systematic differences between the short term SSI variation observed by satellite instruments and the predictions of proxy models.

  7. Solar EUV irradiance for space weather applications

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.

    2015-12-01

    Solar EUV irradiance is an important driver of space weather models. Large changes in EUV and x-ray irradiances create large variability in the ionosphere and thermosphere. Proxies such as the F10.7 cm radio flux, have provided reasonable estimates of the EUV flux but as the space weather models become more accurate and the demands of the customers become more stringent, proxies are no longer adequate. Furthermore, proxies are often provided only on a daily basis and shorter time scales are becoming important. Also, there is a growing need for multi-day forecasts of solar EUV irradiance to drive space weather forecast models. In this presentation we will describe the needs and requirements for solar EUV irradiance information from the space weather modeler's perspective. We will then translate these requirements into solar observational requirements such as spectral resolution and irradiance accuracy. We will also describe the activities at NOAA to provide long-term solar EUV irradiance observations and derived products that are needed for real-time space weather modeling.

  8. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    NASA Technical Reports Server (NTRS)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; Lowther, S. E.; Lillehei, P. T.; Bryant, R. G.

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  9. Solar extreme ultraviolet irradiance: Present, past, and future

    NASA Astrophysics Data System (ADS)

    Lean, J. L.; Woods, T. N.; Eparvier, F. G.; Meier, R. R.; Strickland, D. J.; Correira, J. T.; Evans, J. S.

    2011-01-01

    New models of solar extreme ultraviolet (EUV) irradiance variability are constructed in 1 nm bins from 0 to 120 nm using multiple regression of the Mg II and F10.7 solar activity indices with irradiance observations made during the descending phase of cycle 23. The models have been used to reconstruct EUV spectra daily since 1950, annually since 1610, to forecast daily EUV irradiance and to estimate future levels in cycle 24. A two-component model developed by scaling the observed rotational modulation of the two solar indices underestimates the solar cycle changes that the Solar EUV Experiment (SEE) reports at wavelengths shorter than 40 nm and longer than 80 nm. A three-component model implemented by including an additional term derived from the smoothed Mg II index better reproduces the measurements at all wavelengths. The three-component model is consistent with variations in the EUV energy from 0 to 45 nm that produces the far ultraviolet (FUV) terrestrial dayglow observed by the Global Ultraviolet Imager (GUVI). However, the spectral structure of this third component is complex, and its origin is uncertain. Analogous two- and three-component models are also developed with absolute scales determined by the NRLEUV2 spectrum of the quiet Sun rather than by the SEE average spectrum. Assessment of the EUV absolute spectrum and variability of the four different models indicate that during solar cycle 23, the EUV irradiance (0 to 120 nm) increased 100 ± 30%, from 2.9 ± 0.2 to 5.8 ± 0.9 mWm-2, and may have been as low as 1.9 ± 0.5 mWm-2 during the 17th-century Maunder Minimum. Near the peak of upcoming solar cycle 24, EUV irradiance is expected to increase 40% to 80% above the 2008 minimum values.

  10. The solar irradiance: observations and modelling

    NASA Astrophysics Data System (ADS)

    Cessateur, Gaël; Schmutz, Werner; Shapiro, Alexander

    2015-04-01

    The knowledge of the solar spectral irradiance (SSI) and its variability is an essential parameter for space weather and space climate studies. Many observations of the SSI have been performed in a recent past, but the level of confidence is rather low when considering long time scales, since space instruments are often suffering from degradation problems. Many SSI models have been also developed, and some of them are excellent inputs for many space climate models. We will then review the different data sets available of the SSI for the short term time-scales as well as for the long term, including both observations and models. We will also emphasize about our new irradiance model, COSIR for Code of Solar Irradiance Reconstruction, which is successful at reproducing the solar rotational modulation as seen in the PREMOS, Virgo and SORCE data.

  11. Solar Irradiance Observations during Solar Cycles 22 and 23

    NASA Astrophysics Data System (ADS)

    White, O. R.; de Toma, G.; Chapman, G. A.; Walton, S. R.; Preminger, D. G.; Cookson, A. M.; Harvey, K. L.; Livingston, W. C.

    2002-05-01

    We present a study of Total Solar Irradiance (TSI) variations during solar cycles 22 and 23 from 1986 to the present. We will review the recent measurements of solar magnetism, solar activity, and radiative variability from both ground-based and space observatories and compare TSI observations with empirical models of solar irradiance variability based on facular and sunspot observations. To estimate facular/plage and sunspot contribution to TSI we use the photometric indices derived from the SFO full-disk solar images from 1988 to the present in the CaIIK line at 393.4nm and in the red continuum at 672.3 nm. In these indices, each solar structure is included with its measured contrast and area. We also use the MgII core-to-wing index from space observatories as an alternative index for plages and network. Comparison of the rising and maximum phases of the two solar cycles, shows that cycle 23 is magnetically weaker with sunspot and facular area almost a factor of two lower than in solar cycle 22. However, analysis of multi-wavelength observations indicate that different wavelengths respond differently to the decreased magnetic activity during solar cycle 23.

  12. Solar total and spectral irradiance reconstruction over last 9000 years

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Ju; Usoskin, Ilya; Krivova, Natalie; Solanki, Sami K.

    2016-07-01

    Although the mechanisms of solar influence on Earth climate system are not yet fully understood, solar total and spectral irradiance are considered to be among the main determinants. Solar total irradiance is the total flux of solar radiative energy entering Earth's climate system, whereas the spectral irradiance describes this energy is distributed over the spectrum. Solar irradiance in the UV band is of special importance since it governs chemical processes in the middle and upper atmosphere. On timescales of the 11-year solar cycle and shorter, solar irradiance is measured by space-based instruments while models are needed to reconstruct solar irradiance on longer timescale. The SATIRE-M model (Spectral And Total Irradiance Reconstruction over millennia) is employed in this study to reconstruct solar irradiance from decadal radionuclide isotope data such as 14C and 10Be stored in tree rings and ice cores, respectively. A reconstruction over the last 9000 years will be presented.

  13. Total Irradiance Monitor Observations of Total Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Kopp, G.

    2007-12-01

    The Total Irradiance Monitor (TIM) is the most recent instrument launched to measure total solar irradiance (TSI) from space. This electrical substitution radiometer has on-orbit degradation tracking to provide very stable long- term measurements of the net solar radiation incident on the Earth, and the instrument continues the 29-year record of this natural driver of Earth climate. Currently flying on the SOlar Radiation and Climate Experiment (SORCE), the TIM has been providing stable, low-noise, and accurate measurements of TSI since early 2003. The TIM will next be flying on NASA's Glory climate mission and is one instrument of the Total Solar Irradiance Sensor (TSIS) selected to continue this important climate record well into the future. The SORCE/TIM has created renewed interest in the TSI absolute value and has acquired the first measurements of the total radiant energy released by large solar flares. Improvements in ground-based calibrations starting with the Glory/TIM will establish traceability linking current to upcoming measurements, solidifying the existing TSI climate data record in the undesirable event of a future data gap.

  14. Deep solar minimum and global climate changes

    PubMed Central

    Hady, Ahmed A.

    2013-01-01

    This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue. PMID:25685420

  15. Deep solar minimum and global climate changes.

    PubMed

    Hady, Ahmed A

    2013-05-01

    This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue. PMID:25685420

  16. Deep solar minimum and global Climate Changes

    NASA Astrophysics Data System (ADS)

    Abdel Hady, Ahmed

    2012-07-01

    This paper examines the deep minimum of solar cycle 23 and its likely impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 100 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activities are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue.

  17. Deep solar minimum and global climate changes

    NASA Astrophysics Data System (ADS)

    Hady, Ahmed A.

    2013-05-01

    This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue.

  18. SOLAR/SOLSPEC ultraviolet solar spectral irradiance variability since 2008

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Bolsee, David; Hauchecorne, Alain; Meftah, Mustapha; Bekki, Slimane; Pereira, Nuno

    2016-07-01

    The SOLAR/SOLSPEC experiment measures the Solar Spectral Irradiance (SSI) from the Space Station since April 2008. Measurements are carried between 166 nm and 3088 nm by three double-monochromators. SSI, particularly in the ultraviolet, is a key input to determine the dynamics and coupling of Earth's atmosphere in response to solar and terrestrial inputs. In-flight operations and performances of the instrument, including corrections, will be presented for the 8 years of the mission. After an accurate calibration following recent special on-orbit new operations, we present the variability measured in the UV by SOLAR/SOLSPEC. The accuracy of these measurements will be discussed.

  19. Ionospheric Change and Solar EUV Irradiance

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  20. Electron irradiation of modern solar cells

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Miyahira, T. F.

    1977-01-01

    A number of modern solar cell types representing 1976 technology (as well as some older types) were irradiated with 1 MeV electrons (and a limited number with 2 MeV electrons and 10 MeV protons). After irradiation, the cells were annealed, with I-V curves measured under AMO at 30 C. The purpose was to provide data to be incorporated in the revision of the solar cell radiation handbook. Cell resistivities ranged from 2 to 20 ohm-cm, and cell thickness from 0.05 to 0.46 mm. Cell types examined were conventional, shallow junction, back surface field (BSF), textured, and textured with BSF.

  1. Surface solar irradiance from SCIAMACHY measurements: algorithm and validation

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.; Mueller, R.

    2011-02-01

    Broadband surface solar irradiances (SSI) are, for the first time, derived from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY) satellite measurements. The retrieval algorithm, called FRESCO (Fast REtrieval Scheme for Clouds from Oxygen A band) SSI, is similar to the Heliosat method. In contrast to the standard Heliosat method, the cloud index is replaced by the effective cloud fraction derived from the FRESCO cloud algorithm. The MAGIC (Mesoscale Atmospheric Global Irradiance Code) algorithm is used to calculate clear-sky SSI. The SCIAMACHY SSI product is validated against the globally distributed BSRN (Baseline Surface Radiation Network) measurements and compared with the ISCCP-FD (International Satellite Cloud Climatology Project Flux Dataset) surface shortwave downwelling fluxes (SDF). For one year of data in 2008, the mean difference between the instantaneous SCIAMACHY SSI and the hourly mean BSRN global irradiances is -4 W m-2(-1%) with a standard deviation of 101 W m-2 (20%). The mean difference between the globally monthly mean SCIAMACHY SSI and ISCCP-FD SDF is less than -12 W m-2 (-2%) for every month in 2006 and the standard deviation is 62 W m-2 (12%). The correlation coefficient is 0.93 between SCIAMACHY SSI and BSRN global irradiances and is greater than 0.96 between SCIAMACHY SSI and ISCCP-FD SDF. The evaluation results suggest that the SCIAMACHY SSI product achieves similar mean bias error and root mean square error as the surface solar irradiances derived from polar orbiting satellites with higher spatial resolution.

  2. Surface solar irradiance from SCIAMACHY measurements: algorithm and validation

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.; Mueller, R.

    2011-05-01

    Broadband surface solar irradiances (SSI) are, for the first time, derived from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY) satellite measurements. The retrieval algorithm, called FRESCO (Fast REtrieval Scheme for Clouds from the Oxygen A band) SSI, is similar to the Heliosat method. In contrast to the standard Heliosat method, the cloud index is replaced by the effective cloud fraction derived from the FRESCO cloud algorithm. The MAGIC (Mesoscale Atmospheric Global Irradiance Code) algorithm is used to calculate clear-sky SSI. The SCIAMACHY SSI product is validated against globally distributed BSRN (Baseline Surface Radiation Network) measurements and compared with ISCCP-FD (International Satellite Cloud Climatology Project Flux Dataset) surface shortwave downwelling fluxes (SDF). For one year of data in 2008, the mean difference between the instantaneous SCIAMACHY SSI and the hourly mean BSRN global irradiances is -4 W m-2 (-1 %) with a standard deviation of 101 W m-2 (20 %). The mean difference between the globally monthly mean SCIAMACHY SSI and ISCCP-FD SDF is less than -12 W m-2 (-2 %) for every month in 2006 and the standard deviation is 62 W m-2 (12 %). The correlation coefficient is 0.93 between SCIAMACHY SSI and BSRN global irradiances and is greater than 0.96 between SCIAMACHY SSI and ISCCP-FD SDF. The evaluation results suggest that the SCIAMACHY SSI product achieves similar mean bias error and root mean square error as the surface solar irradiances derived from polar orbiting satellites with higher spatial resolution.

  3. Solar Irradiance and Thermospheric Airglow Rocket Experiments

    NASA Astrophysics Data System (ADS)

    Solomon, Stanley C.

    1998-01-01

    This report describes work done in support of the Solar Irradiance and Thermospheric Air-glow Rocket Experiments at the University of Colorado for NASA grant NAG5-5021 under the direction of Dr. Stanley C. Solomon. (The overall rocket program is directed by Dr. Thomas N. Woods, formerly at the National Center for Atmospheric Research, and now also at the University of Colorado, for NASA grant NAG5-5141.) Grant NAG5-5021 provided assistance to the overall program through analysis of airglow and solar data, support of two graduate students, laboratory technical services, and field support. The general goals of the rocket program were to measure the solar extreme ultraviolet spectral irradiance, measure the terrestrial far-ultraviolet airglow, and analyze their relationship at various levels of solar activity, including near solar minimum. These have been met, as shown below. In addition, we have used the attenuation of solar radiation as the rocket descends through the thermosphere to measure density changes. This work demonstrates the maturity of the observational and modeling methods connecting energetic solar photon fluxes and airglow emissions through the processes of photoionization and photoelectron production and loss. Without a simultaneous photoelectron measurement, some aspects of this relationship remain obscure, and there are still questions pertaining to cascade contributions to molecular and atomic airglow emissions. However, by removing the solar irradiance as an "adjustable parameter" in the analysis, significant progress has been made toward understanding the relationship of far-ultraviolet airglow emissions to the solar and atmospheric conditions that control them.

  4. The influence of solar spectral variations on global radiative balance

    NASA Astrophysics Data System (ADS)

    Gao, Feng-Ling; Tao, Le-Ren; Cui, Guo-Min; Xu, Jia-Liang; Hua, Tse-Chao

    2015-01-01

    The total solar irradiance (TSI) has been the sole solar input in many climate models for lack of long and reliable time series of solar spectral irradiance (SSI) measurements currently. However, based on the recent SSI measurements by the Solar Radiation and Climate Experiment, which is able to provide full and accurate SSI measurements, the influence of SSI variations on global radiative balance between the descending phase of previous solar cycle in December 2007 and the ascending phase of the current solar cycle in the first half 2010 has been studied in this paper. The results show that the relatively larger TSI in the first half 2010 was mainly due to the ultraviolet and near infrared radiation enhancements, with average increases of 0.11% in 200-400 nm and 0.05% in 760-4000 nm respectively, while the radiation in visible region of 400-760 nm decreased by 0.05%. According to the measurements of ozone from the Aura-Microwave Limb Sounder satellite, the global average stratospheric ozone increased markedly in the layer of 25-40 km at the same time. The visible radiation decrease and stratospheric ozone increase together contributed to the smaller solar radiation at the tropopause for each month of the first half 2010 as compared with that in December 2007, with the maximum decrease of 0.15 W m-2 in March 2010. The study reveals that SSI variations in the ascending solar phase may also cool the Earth-atmosphere system.

  5. Irradiation chemistry in the outer solar system

    NASA Astrophysics Data System (ADS)

    Brown, Michael E.

    2014-11-01

    The dark, reddish tinged surfaces of icy bodies in the outer solar are usually attributed to the long term irradiation of simple hydrocarbons such as methane leading to the loss of hydrogen and the production of long carbon chains. While methane is stable and detected on the most massive bodies in the Kuiper belt, evidence of active irradiation chemistry is scant except for the presence of ethane on methane-rich Makemake and possible detections of ethane on more methane-poor Pluto and Quaoar. We have obtained deep high signal-to-noise spectra of Makemake from 1.5 to 2.5 microns in an attempt to trace the radiation chemistry in the outer solar system beyond the initial ethane formation. We present the first astrophysical detections of solid ethylene, acetylene, and possibly propane -- all expected products of the continued irradiation of methane, and use these species to map the chemical pathway from methane to long-chain hydrocarbons.

  6. Solar cycle variation in UV solar spectral irradiance

    NASA Astrophysics Data System (ADS)

    Leng Yeo, Kok; Krivova, Natalie; Solanki, Sami K.

    2015-08-01

    Solar spectral irradiance, SSI, in the UV has been measured from space, almost without interruption, since 1978. This is accompanied by the development of models aimed at reconstructing SSI by relating its variability to solar magnetic activity. The various satellite records and model reconstructions differ significantly in terms of the variation over the solar cycle, with the consequence that their application to climate models yield qualitatively different results. Here, we highlight the key discrepancies between available records and reconstructions, and discuss the possible underlying causes.

  7. Contributions of the Solar Ultraviolet Irradiance to the Total Solar Irradiance During Large Flares

    NASA Astrophysics Data System (ADS)

    Woods, T. N.; Kopp, G.

    2005-12-01

    The TIMED satellite was launched in December 2001 and the SORCE satellite was launched in January 2003. Since then the solar activity has evolved from solar maximum conditions to moderately low activity in 2005. The XUV Photometer System (XPS), aboard both TIMED and SORCE, is measuring the solar soft X-ray (XUV) irradiance shortward of 34 nm with 7-10 nm spectral resolution and the bright hydrogen emission at 121.5 nm. The XPS instrument is best known for observing over 200 flares during the TIMED mission with its 3% solar observing duty cycle and over 800 flares during the SORCE mission with its 70% duty cycle. The XUV radiation, being mostly from coronal emissions, varies more than other wavelengths in the solar spectrum during a flare event, with each flare lasting from minutes to hours. The XPS measurements indicate variations by a factor of 50 for the largest flares during the October-November 2003 solar storm period and that the XUV variations can be as much as 20% of the total flare energy as determined from the total solar irradiance (TSI) measurements by the SORCE Total Irradiance Monitor (TIM). The flare variations of the solar XUV irradiance and TSI will be discussed in the context of the TIMED and SORCE missions and their relationship to the GOES X-ray flare measurements.

  8. Global Horizontal Irradiance Anomalies in Long Term Series Over India

    NASA Astrophysics Data System (ADS)

    Cony, Marco; Liria, Juan; Weisenberg, Ralf; Serrano, Enrique

    2014-05-01

    India has a high potential for solar energy applications due to its geographic position within the Sun Belt and the large number of cloudless days in many regions of the country. However, certain regions of India, particularly those largely populated, can exhibit large aerosol loading in the atmosphere as a consequence of anthropogenic emissions that could have a negative feedback in the solar resource potential. This effect, named as solar dimming, has already been observed in India, and in some other regions in the world, by some authors using ground data from the last two decades. The recent interest in the promotion of solar energy applications in India highlights the need of extending and improving the knowledge of the solar radiation resources in this country, since most of the long term measurements available correspond to global horizontal radiation (GHI) and most of them are also located big cities or highly populated areas. In addition, accurate knowledge on the aerosol column quantification and on its dynamical behavior with high spatial resolution is particularly important in the case of India, due to their impact on direct normal irradiation. Long term studies of solar irradiation over India can be performed using monthly means of GHI measurements from the Indian Meteorological Department. Ground data are available from 1964 till today through the World Radiation Data Centre that publish these values in the web. This work shows a long term analysis of GHI using anomalies techniques over ten different sites over India. Besides, techniques of linear trends have been applied for to show the evolution over this period. The analysis of anomalies has also found two periods of different behavior. From 1964 till 1988 the anomalies observed were positive and the last 20 years seems to be a period of negative anomalies. The results exhibit a decreasing trend and negative anomalies confirming thus the darkening effect already reported by solar dimming studies

  9. Modeled soft X-ray solar irradiances

    NASA Technical Reports Server (NTRS)

    Tobiska, W. Kent

    1994-01-01

    Solar soft X-rays have historically been inaccurately modeled in both relative variations and absolute magnitudes by empirical solar extreme ultraviolet (EUV) irradiance models. This is a result of the use of a limited number of rocket data sets which were primarily associated with the calibration of the AE-E satellite EUV data set. In this work, the EUV91 solar EUV irradiance model has been upgraded to improve the accuracy of the 3.0 to 5.0 nm relative irradiance variations. The absolute magnitude estimate of the flux in this wavelength range has also been revised upwards. The upgrade was accomplished by first digitizing the SOLRAD 11 satellite 4.4 to 6.0 nm measured energy flux data set, then extracting and extrapolating a derived 3.0 to 5.0 nm photon flux from these data, and finally by performing a correlation between these derived data and the daily and 81-day mean 10.7 cm radio flux emission using a multiple linear regression technique. A correlation coefficient of greater than 0.9 was obtained between the dependent and independent data sets. The derived and modeled 3.0 to 5.0 nm flux varies by more than an order of magnitude over a solar cycle, ranging from a flux below 1 x 10(exp 8) to a flux greater than 1 x 10(exp 9) photons per sq cm per sec. Solar rotational (27-day) variations in the flux magnitude are a factor of 2. The derived and modeled irradiance absolute values are an order of magnitude greater than previous values from rocket data sets related to the calibration of the AE-E satellite.

  10. Solar Ultraviolet Irradiance Variability During the Decline of Cycle 23

    NASA Astrophysics Data System (ADS)

    Snow, M. A.; McClintock, W. E.; Woods, T. N.; Harder, J. W.; Richard, E. C.

    2010-12-01

    Observations from the SOLar-STellar Irradiance Comparision Experiment (SOLSTICE) on the SOlar Radiation and Climate Experiment (SORCE) began in 2003 and continue through the present. This time period includes the decline of solar cycle 23 through solar minimum. SOLSTICE measures solar irradiance from 115 nm to 300 nm with a spectral resolution of 0.1 nm. The variability seen by SORCE SOLSTICE is greater than the variability recorded by the instruments on the Upper Atmosphere Research Satellite(UARS). This poster will describe the magnitude and uncertainty of solar irradiance variability in the ultraviolet part of the spectrum during the SORCE mission with comparisons to irradiance models based on UARS measurements.

  11. Open Surface Solar Irradiance Observations - A Challenge

    NASA Astrophysics Data System (ADS)

    Menard, Lionel; Nüst, Daniel; Jirka, Simon; Maso, Joan; Ranchin, Thierry; Wald, Lucien

    2015-04-01

    The newly started project ConnectinGEO funded by the European Commission aims at improving the understanding on which environmental observations are currently available in Europe and subsequently providing an informational basis to close gaps in diverse observation networks. The project complements supporting actions and networking activities with practical challenges to test and improve the procedures and methods for identifying observation data gaps, and to ensure viability in real world scenarios. We present a challenge on future concepts for building a data sharing portal for the solar energy industry as well as the state of the art in the domain. Decision makers and project developers of solar power plants have identified the Surface Solar Irradiance (SSI) and its components as an important factor for their business development. SSI observations are crucial in the process of selecting suitable locations for building new plants. Since in-situ pyranometric stations form a sparse network, the search for locations starts with global satellite data and is followed by the deployment of in-situ sensors in selected areas for at least one year. To form a convincing picture, answers must be sought in the conjunction of these EO systems, and although companies collecting SSI observations are willing to share this information, the means to exchange in-situ measurements across companies and between stakeholders in the market are still missing. We present a solution for interoperable exchange of SSI data comprising in-situ time-series observations as well as sensor descriptions based on practical experiences from other domains. More concretely, we will apply concepts and implementations of the Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC). The work is based on an existing spatial data infrastructure (SDI), which currently comprises metadata, maps and coverage data, but no in-situ observations yet. This catalogue is already registered in the

  12. Calculation of direct normal irradiation from global horizontal irradiation

    NASA Astrophysics Data System (ADS)

    Rodrigo, Pedro; Pérez-Higueras, Pedro J.; Almonacid, Florencia; Hontoria, Leocadio; Fernández, Eduardo F.; Rus, Catalina; Fernández, Juan I.; Gómez, Pedro; Almonacid, Gabino

    2012-10-01

    Concentrator Photovoltaic (CPV) systems only work with the Direct Normal Irradiance (DNI), so a knowledge of DNI data is required for the design and evaluation of these kinds of systems. DNI is not always measured at ground meteorological stations due to equipment costs. In recent years, several spatial databases that estimate DNI from satellite data have been developed. These databases are a very useful tool for CPV applications. However, the databases present uncertainty and provide different values of DNI. This lack of DNI data and the uncertainty of available data contrast with the availability of reliable global horizontal irradiation data, which is easy to find or measure. In this paper, a simple procedure for estimating DNI from global horizontal irradiation is presented. It does not try to improve the existing methods, but meets the basic requirements for the analysis of CPV systems. The method can be easily implemented in a spreadsheet or in computer programs in renewable energy and its accuracy is similar than that of the existing databases.

  13. Estimating Ultraviolet Solar Irradiance from Total Solar Irradiance: A Nine City Comparison

    NASA Astrophysics Data System (ADS)

    Clark, Eugene

    2010-10-01

    This paper presents new empirical equations that estimate hourly solar ultraviolet irradiance from the measured total solar irradiance and the solar zenith angle. These equations are based on data taken in 4 US cities (San Antonio, TX, Atlanta, GA, Albany, NY and Fairbanks, AK). Data taken in all 4 of these US cities utilized Eppley model PSP and TUVR radiometers. The response of the TUVR is dominated by UVA, but also includes some of the UVB region of the spectrum. The empirical equations based on the US data are compared with previously published equations based on data measured in 4 cities in Spain and one city in northern China. In all nine cities, the UV fraction of the total solar irradiance increases from about 4% under cloud free conditions to about 8% under heavily overcast conditions.

  14. Fall 2010 Total Solar Irradiance Calibration Workshop

    NASA Astrophysics Data System (ADS)

    Morrill, J. S.; Socker, D. G.; Willson, R. C.; Kopp, G.

    2010-12-01

    As part of a NASA-Sponsored program to understand the differences in Total Solar Irradiance (TSI) results reported by various space-based radiometers, the Naval Research Laboratory is hosting a Total Solar Irradiance Calibration Workshop. This workshop is a follow-on meeting to a similar workshop hosted by the National Institute for Standards and Technology in 2005. These workshops have been attended by many of the PI teams of the past and current TSI measuring instruments. The discussions at these workshops have addressed calibration methods and the numerous instrumental differences that need to be understood in order to bring the complete ensemble of results onto a common scale. In this talk we will present an overview of the NRL Calibration Workshop which will include results of recent calibration studies at various laboratories and have involved several TSI instruments.

  15. Solar Irradiance, Plage and SOHO UV Images

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.; Manross, Kevin

    1996-05-01

    Calcium K and H alpha plage and sunspot area have been monitored using Big Bear Observatory images on the INTERNET since November of 1992. The purpose of the project is to determine the correlation of changing plage area and solar irradiance changes. We also monitor changes in the K2 spec- tral index provided daily from Sacramento Peak. With the recent launching of the SOHO satellite, we are able to monitor the plage in the He II 304 Angstroms UV image. This image is near the top of the chromosphere nar or just under the transition region. The images show limb brightening as expected. Since it is widely believed that short time scale changes in the UV may be the dominant cause for low amplitude solar irradiance changes, the comparison of the "plage" ara in these UV images to those in conventional visible images should prove instructive.

  16. Electron irradiation of tandem junction solar cells

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Miyahira, T. F.; Scott-Monck, J. A.

    1979-01-01

    The electrical behavior of 100 micron thick tandem junction solar cells manufactured by Texas Instruments was studied as a function of 1 MeV electron fluence, photon irradiation, and 60 C annealing. These cells are found to degrade rapidly with radiation, the most serious loss occurring in the blue end of the cell's spectral response. No photon degradation was found to occur, but the cells did anneal a small amount at 60 C.

  17. Long-term variations in total solar and UV irradiances

    NASA Technical Reports Server (NTRS)

    Pap, J. M.; Floyd, L.; Lee, R. B.; Parker, D.; Puga, L.; Ulrich, R.; Varadi, F.; Viereck, R.

    1997-01-01

    The variations of total solar and UV irradiances during solar cycles 21 and 22 are compared. The total solar irradiance data used were obtained by the SMM/active cavity radiometer irradiance monitoring (ACRIM) 1, upper atmosphere research satellite (UARS)/ACRIM 2 and ERBS experiments. The space-based irradiance observations are compared to the Mount Wilson Magnetic Plage and Photometric Sunspot Index, which is derived from the area and position of sunspots published by the NOAA World Data Center Solar Geophysical Data Catalog. It is found that the variations in solar UV irradiance were similar during the maximum and minimum of solar cycles 21 and 22. The possible reasons for the differences in the irradiance values during the minima of the two solar cylces are discussed.

  18. Implications of solar irradiance variability upon long-term changes in the Earth's atmospheric temperatures

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III

    1992-01-01

    From 1979 through 1987, it is believed that variability in the incoming solar energy played a significant role in changing the Earth's climate. Using high-precision spacecraft radiometric measurements, the incoming total solar irradiance (total amount of solar power per unit area) and the Earth's mean, global atmospheric temperatures were found to vary in phase with each other. The observed irradiance and temperature changes appeared to be correlated with the 11-year cycle of solar magnetic activity. During the period from 1979 through 1985, both the irradiance and temperature decreased. From 1985 to 1987, they increased. The irradiance changed approximately 0.1 percent, while the temperature varied as much as 0.6 C. During the 1979-1987 period, the temperatures were forecasted to rise linearly because of the anthropogenic build-up of carbon dioxide and the hypothesized 'global warming', 'greenhouse effect', scenarios. Contrary to these scenarios, the temperatures were found to vary in a periodic manner in phase with the solar irradiance changes. The observed correlations between irradiance and temperature variabilily suggest that the mean, global temperature of the Earth may decline between 1990 and 1997 as solar magnetic activity decreases.

  19. Solar Irradiance: Recent Results and Future Research Plans

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.

    2009-05-01

    The solar irradiance, being the radiance integrated over the full disk, is the primary energy input for Earth's environment. Understanding the solar input is key for several terrestrial research topics concerning, to name a few, atmospheric ozone photochemistry, natural forcings on climate change, and improving space weather forecasting. From a solar physics viewpoint, the solar irradiance offers interesting challenges on understanding the sources of the variability of the solar irradiance, which has a strong dependence in wavelength and varies over all time periods from seconds to centuries. Recent solar irradiance results from the TIMED and SORCE satellite missions, such as concerning the current solar cycle minimum, will be presented. In addition, some outstanding questions for solar irradiance research will be addressed within the context of how they can be answered with the new missions, SDO, Glory, and PICARD, that are expected to be launched in late 2009.

  20. Photometric quantities for solar irradiance modeling

    NASA Astrophysics Data System (ADS)

    Preminger, D. G.; Walton, S. R.; Chapman, G. A.

    2002-11-01

    We analyze photometric quantities for the modeling of the total solar irradiance, S. These quantities are derived from full-disk solar images taken at the San Fernando Observatory. We introduce a new quantity, the photometric sum, Σ, which is the sum over an entire image of each pixel's contribution to the irradiance in that image. Σ combines both bright and dark features; and because the sum is over the entire image, it will include low contrast features that cannot be identified directly. Specifically, we examine Σr, Σb, and ΣK, the photometric sums over broadband red, broadband blue, and 1-nm bandpass Ca II K images, respectively. Σr and Σb measure the effects of solar features on the variability in S at two different continuum wavelengths. ΣK measures the variability in spectral lines due to solar features. We find that Σr and Σb have no long-term trend. ΣK, however, varies in phase with the solar cycle. We carry out several multiple linear regressions on the value of S from cycle 22; the best fit uses Σr and ΣK and reproduces the observed composite S with a multiple regression coefficient R = 0.96. We conclude that the long-term change in S over the solar cycle can be accounted for by the variability in the spectral lines as measured by ΣK, assuming no change in the quiet Sun; the contribution of the continuum to the variations in S is only on active region timescales.

  1. Does a slowly varying component of solar irradiance exist?

    NASA Astrophysics Data System (ADS)

    Foukal, P.

    2003-04-01

    Fluctuations of total irradiance, S, caused by sunspots and faculae, are too small (˜0.1%) to force current climate models. Recent reconstructions of S incorporate an additional, slowly varying component, which follows the smoothed spot or group number, or the cycle period. But evidence for this larger (0.2--0.5%) variation, originally based on photometry of sun-like stars, is weakened by recent findings that true solar analog stars are difficult to find. Also, disappearance of the chromospheric network in the early 20th century, implied by these reconstructions, is not observed in archival solar images. I will show some new evidence for an additional component, suggested by the high correlation found between global temperature and the (small-amplitude) variation of S reconstructed using recently digitized facular areas between 1915--1999.The UV irradiance variation modeled from the same data exhibits much lower correlation with global warming, so it is less likely to account for a solar activity signature in 20th century climate. This indirect evidence suggests a mechanism that might amplify the small modulation of S caused specifically by the net effect of bright faculae and dark spots. We now recognize that amplification on multi-decadal time scales could only operate in near- photospheric layers, given the enormous thermal inertia of the deeper solar atmosphere. Also, increasingly tight constraints on such a mechanism are placed by solar photometry and radiometry, by spectro-photometric monitoring of the quiet photospheric effective temperature, and by absence of detectable solar diameter variations. The shrinking set of mechanisms that might satisfy these constraints deserves closer study, and I will discuss some interesting new observational diagnostics, such as bolometric imaging of the photosphere, planned to search for such processes. But at present, little direct evidence exists for a large-amplitude, multi-decadal variation of S (or of UV flux). A

  2. Solar Irradiance Data Products at the LASP Interactive Solar IRradiance Datacenter (LISIRD)

    NASA Astrophysics Data System (ADS)

    Ware Dewolfe, A.; Wilson, A.; Lindholm, D. M.; Pankratz, C. K.; Snow, M. A.; Woods, T. N.

    2010-12-01

    The Laboratory for Atmospheric and Space Physics (LASP) has developed the LASP Interactive Solar IRradiance Datacenter (LISIRD) to provide access to a comprehensive set of solar irradiance measurements. LISIRD has recently been updated to serve many new datasets and models, including data from SORCE, UARS-SOLSTICE, SME, and TIMED-SEE, and model data from the Flare Irradiance Spectral Model (FISM). The user interface emphasizes web-based interactive visualizations, allowing users to explore and compare this data before downloading it for analysis. The data provided covers a wavelength range from soft X-ray (XUV) at 0.1 nm up to the near infrared (NIR) at 2400 nm, as well as wavelength-independent Total Solar Irradiance (TSI). Combined data from the SORCE, TIMED-SEE, UARS-SOLSTICE, and SME instruments provide continuous coverage from 1981 to the present, while Lyman-alpha measurements, FISM daily data, and TSI models date from the 1940s to the present. LISIRD will also host Glory TSI data as part of the SORCE data system. This poster provides an overview of the LISIRD system, summarizes the data sets currently available, describes future plans and capabilities, and provides details on how to access solar irradiance data through LISIRD’s interfaces.

  3. Multivariate Analysis of Solar Spectral Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Rabbette, M.

    2001-01-01

    Principal component analysis is used to characterize approximately 7000 downwelling solar irradiance spectra retrieved at the Southern Great Plains site during an Atmospheric Radiation Measurement (ARM) shortwave intensive operating period. This analysis technique has proven to be very effective in reducing a large set of variables into a much smaller set of independent variables while retaining the information content. It is used to determine the minimum number of parameters necessary to characterize atmospheric spectral irradiance or the dimensionality of atmospheric variability. It was found that well over 99% of the spectral information was contained in the first six mutually orthogonal linear combinations of the observed variables (flux at various wavelengths). Rotation of the principal components was effective in separating various components by their independent physical influences. The majority of the variability in the downwelling solar irradiance (380-1000 nm) was explained by the following fundamental atmospheric parameters (in order of their importance): cloud scattering, water vapor absorption, molecular scattering, and ozone absorption. In contrast to what has been proposed as a resolution to a clear-sky absorption anomaly, no unexpected gaseous absorption signature was found in any of the significant components.

  4. Improved entrance optic for global irradiance measurements with a Brewer spectrophotometer.

    PubMed

    Gröbner, Julian

    2003-06-20

    A new entrance optic for a Brewer spectrophotometer has been designed and tested both in the laboratory and during solar measurements. The integrated cosine response deviates by 2.4% from the ideal, with an uncertainty of +/- 1%. The systematic uncertainties of global solar irradiance measurements with this new entrance optic are considerably reduced compared with measurements with the traditional design. Simultaneous solar irradiance measurements between the Brewer spectrophotometer and a spectroradiometer equipped with a state-of-the-art shaped diffuser agreed to within +/- 2% during a five-day measurement period. PMID:12833953

  5. Solar Spectral Irradiance Changes During Cycle 24

    NASA Technical Reports Server (NTRS)

    Marchenko, Sergey; Deland, Matthew

    2014-01-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  6. Solar Spectral Irradiance Changes during Cycle 24

    NASA Astrophysics Data System (ADS)

    Marchenko, S. V.; DeLand, M. T.

    2014-07-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by ~0.6% ± 0.2% around 265 nm. These changes gradually diminish to 0.15% ± 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at λ >~ 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  7. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  8. Global water cycle and solar activity variations

    NASA Astrophysics Data System (ADS)

    Al-Tameemi, Muthanna A.; Chukin, Vladimir V.

    2016-05-01

    The water cycle is the most active and most important component in the circulation of global mass and energy in the Earth system. Furthermore, water cycle parameters such as evaporation, precipitation, and precipitable water vapour play a major role in global climate change. In this work, we attempt to determine the impact of solar activity on the global water cycle by analyzing the global monthly values of precipitable water vapour, precipitation, and the Solar Modulation Potential in 1983-2008. The first object of this study was to calculate global evaporation for the period 1983-2008. For this purpose, we determined the water cycle rate from satellite data, and precipitation/evaporation relationship from 10 years of Planet Simulator model data. The second object of our study was to investigate the relationship between the Solar Modulation Potential (solar activity index) and the evaporation for the period 1983-2008. The results showed that there is a relationship between the solar modulation potential and the evaporation values for the period of study. Therefore, we can assume that the solar activity has an impact on the global water cycle.

  9. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers: Preprint

    SciTech Connect

    Myers, D. R.; Wilcox, S. M.

    2009-03-01

    This report evaluates the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer.

  10. The total and spectral solar irradiance and its possible variations

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1975-01-01

    The present status of knowledge of the total and spectral irradiance of the sun is briefly reviewed. Currently accepted values of the solar constant and the extraterrestrial solar spectral irradiance are presented along with a discussion of how they were derived. Data on the variability of the solar constant are shown to be conflicting and inconclusive. Some of the alleged sun-weather relationships are cited in support of the need of knowing more precisely the variations in total and spectral solar irradiance. An overview of a solar monitoring program is discussed, with special emphasis on the Solar Energy Monitor in Space experiment which was proposed for several spacecraft missions. It is a combination of a solar constant detector and a prism monochromator. The determination of absolute values and the possible variations of the total and spectral solar irradiance, from measurements outside of the atmosphere is discussed.

  11. A new observational solar irradiance composite

    NASA Astrophysics Data System (ADS)

    Schoell, Micha; Dudok de Wit, Thierry; Haberreiter, Margit; Kretzschmar, Matthieu; Misios, Stergios; Tourpali, Klairie; Schmutz, Werner

    2016-04-01

    Variations of the spectral solar irradiance (SSI) are an important driver for the chemistry, temperature and dynamics of the Earth's atmosphere and ultimately the Earth's climate. Due to the sparce and scattered SSI data sets it is important to establish tools to derive a consistent SSI dataset, including realistic uncertainties. We present the a new SSI composite based on the face values of SSI observations and applying a probabilistic method that takes into account the uncertainty of the data set scale-wise. We will present the data set and discuss its effects on the Earth's atmosphere in relation to SSI reconstruction models.

  12. Usability of a Fourier transform spectroradiometer for absolute surface spectral solar UV irradiance measurements.

    PubMed

    Meindl, Peter; Wähmer, Martin; Monte, Christian

    2014-10-20

    The suitability of a commercially available Fourier transform spectrometer equipped with a fiber-coupled global entrance optic as a reference spectroradiometer for the measurement of spectral solar ultraviolet irradiance at ground level has been investigated. The instrument has been characterized with respect to the wavelength uncertainty, and a calibration of the spectral irradiance responsivity has been performed by using the calculable irradiance of a high temperature black-body radiator and by using a secondary irradiance standard lamp. The relative standard uncertainty of solar irradiance measurements in the wavelength range from 310 nm to 400 nm with this spectroradiometer, based on the described methodology, is 1.6% for solar zenith angles of less than 60°. PMID:25401540

  13. Solar spectral irradiance and summary outputs using excel.

    PubMed

    Diffey, Brian

    2015-01-01

    The development of an Excel spreadsheet is described that calculates solar spectral irradiance between 290-3000 nm on an unshaded, horizontal surface under a cloudless sky at sea level, together with summary outputs such as global UV index, illuminance and percentage of energy in different wavebands. A deliberate goal of the project was to adopt the principle of Ockham's razor and to develop a model that is as simple as it can be commensurate with delivering results of adequate accuracy. Consequently, just four inputs are required-geographical latitude, month, day of month and time of day-resulting in a spreadsheet that is easily usable by anyone with an interest in sunlight and solar power irrespective of their background. The accuracy of the calculated data is sufficient for many applications where knowledge of the ultraviolet, visible and infrared levels in sunlight is of interest. PMID:25644778

  14. Solar irradiance change and special longitudes due to r-modes

    NASA Technical Reports Server (NTRS)

    Wolff, Charles L.; Hickey, John R.

    1987-01-01

    Sluggish global oscillations, having a periodicity of months and trapped in the sun's convection zone, modulate the amount of energy reaching earth and seem to impose some large-scale order on the distribution of solar surface features. These recently recognized oscillations (r-modes) increase the predictability of solar changes and may improve understanding of rotation and variability in other stars. Most of the 13 periodicities ranging from 13 to 85 days that are caused by r-modes can be detected in Nimbus 7 observations of solar irradiance during 3 years at solar maximum. These modes may also bear on the classical question of persistent longitudes of high solar activity.

  15. Impact of solar panels on global climate

    NASA Astrophysics Data System (ADS)

    Hu, Aixue; Levis, Samuel; Meehl, Gerald A.; Han, Weiqing; Washington, Warren M.; Oleson, Keith W.; van Ruijven, Bas J.; He, Mingqiong; Strand, Warren G.

    2016-03-01

    Regardless of the harmful effects of burning fossil fuels on global climate, other energy sources will become more important in the future because fossil fuels could run out by the early twenty-second century given the present rate of consumption. This implies that sooner or later humanity will rely heavily on renewable energy sources. Here we model the effects of an idealized large-scale application of renewable energy on global and regional climate relative to a background climate of the representative concentration pathway 2.6 scenario (RCP2.6; ref. ). We find that solar panels alone induce regional cooling by converting incoming solar energy to electricity in comparison to the climate without solar panels. The conversion of this electricity to heat, primarily in urban areas, increases regional and global temperatures which compensate the cooling effect. However, there are consequences involved with these processes that modulate the global atmospheric circulation, resulting in changes in regional precipitation.

  16. Global horizontal irradiance clear sky models : implementation and analysis.

    SciTech Connect

    Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

    2012-03-01

    Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

  17. Weak ionization of the global ionosphere in solar cycle 24

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Shi, H.; Xiao, Z.; Zhang, D. H.

    2014-07-01

    Following prolonged and extremely quiet solar activity from 2008 to 2009, the 24th solar cycle started slowly. It has been almost 5 years since then. The measurement of ionospheric critical frequency (foF2) shows the fact that solar activity has been significantly lower in the first half of cycle 24, compared to the average levels of cycles 19 to 23; the data of global average total electron content (TEC) confirm that the global ionosphere around the cycle 24 peak is much more weakly ionized, in contrast to cycle 23. The weak ionization has been more notable since the year 2012, when both the ionosphere and solar activity were expected to be approaching their maximum level. The undersupply of solar extreme ultraviolet (EUV) irradiance somewhat continues after the 2008-2009 minimum, and is considered to be the main cause of the weak ionization. It further implies that the thermosphere and ionosphere in the first solar cycle of this millennium would probably differ from what we have learned from the previous cycles of the space age.

  18. Study of the division of global irradiance into direct beam and diffuse irradiance at seven Canadian sites

    SciTech Connect

    Garrison, J.; Sahami, K.

    1995-12-31

    Canadian hourly global and diffuse irradiation data and associated daily surface meterological data of humidity, temperature and snow depth for the years 1977-1984 are analyzed. These data have been measured at Edmonton, Goose Bay, Montreal, Port Hardy, Resolute, Toronto and Winnipeg. Hourly values of the clearness index k{sub t} and diffuse index k{sub d} are sorted into bivariate histograms according to their numerical values. Different histograms are established for different ranges of the three variables: solar elevation, atmospheric precipitable water, and snow depth for each station. Properties of the different histograms are compared using standard statistical procedures. It is found that the division of global irradiation into direct beam and diffuse irradiation is correlated with the four variables k{sub t}, precipitable water, solar elevation, and snow depth. It is also found that many, but not all, of the differences between data from the same station at different times and between different stations can be attributed to conditions associated with differences in these four variables. The data show evidence that the division of global irradiation into direct and diffuse irradiation can depend upon the properties of the clouds beyond how these clouds are characterized by the four variables. 37 refs., 5 figs., 7 tabs.

  19. Application of Singular Spectrum Analysis to Solar Irradiance Variability

    NASA Technical Reports Server (NTRS)

    Pap, Judit M.; Varadi, Ferenc

    1995-01-01

    Studies of solar variability improve our knowledge of the internal structure and dynamical processes taking place within the Sun that lead to solar irradiance changes. Becuase of the astrophysical and climatic significance of irradiance variability, considerable effort has been devoted to model and understand its physical origin.

  20. Long-term Solar Irradiance Variability: 1984-1989 Observations

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III

    1990-01-01

    Long-term variability in the total solar irradiance has been observed in the Earth Radiation Budget Experiment (ERBE) solar monitor measurements. The monitors have been used to measure the irradiance from the Earth Radiation Budget Satellite (ERBS) and the National Oceanic and Atmospheric Administration NOAA-9 and NOAA-10 spacecraft platforms since October 25, 1984, January 23, 1985, and October 22, 1986, respectively. Before September 1986, the ERBS irradiance values were found to be decreasing -0.03 percent per year. This period was marked by decreasing solar magnetic activity. Between September 1986 and mid-1989, the irradiance values increased approximately 0.1 percent. The latter period was marked by increasing solar activity which was associated with the initiations of the sunspot cycle number 22 and of a new 22-year Hale solar magnetic cycle. Therefore, long-term solar-irradiance variability appears to be correlated directly with solar activity. The maximum smoothed sunspot number occurred during September 1989, according to the Sunspot Index Data Center. Therefore, the recent irradiance increasing trend should disappear during early 1990 and change into a decreasing trend if the observed irradiance variability is correlated more so with the 11-year sunspot cycle than the 22-year Hale cycle. The ERBE irradiance values are presented and compared with sunspot activity for the 1984 to 1989 period. The ERBE values are compared with those available from the Nimbus-7 and Solar Maximum Mission spacecraft experiments.

  1. Solar irradiance variations due to active regions

    SciTech Connect

    Oster, L.; Schatten, K.H.; Sofia, S.

    1982-05-15

    We have been able to reproduce the variations of the solar irradiance observed by ACRIM to an accuracy of better than +- 0.4 W m/sup -2/, assuming that during the 6 month observation period in 1980 the solar luminosity was constant. The improvement over previous attempts is primarily due to the inclusion of faculae. The reproduction scheme uses simple geometrical data on spot and facula areas, and conventional parameters for the respective fluxes and angular dependencies. The quality of reproduction is not very sensitive to most of the details of these parameters; nevertheless, there conventional parameters cannot be very different from their actual values in the solar atmosphere. It is interesting that the time average of the integrated excess emission (over directions) of the faculae cancels out the integrated deficit produced by the spots, within an accuracy of about 10%. If this behavior were maintained over longer periods of time, say, on the order of an activity cycle, active regions could be viewed as a kind of lighthouse where the energy deficit near the normal direction, associated with the spots, is primarily reemitted close to the tangential directions by the faculae. The currently available data suggest that energy ''storage'' associated with the redirection of flux near active regions on the Sun is comparable to the lifetime of the faculae.

  2. Recent advances in satellite observations of solar variability and global atmospheric ozone

    NASA Technical Reports Server (NTRS)

    Heath, D. F.

    1974-01-01

    The launch of Nimbus 4 in April 1974 has made possible simultaneous measurements of the ultraviolet solar irradiance and the global distribution of atmospheric ozone by the monitor of ultraviolet solar energy (MUSE) and backscatter ultraviolet (BUV) experiments respectively. Two long lived ultraviolet active solar regions which are about 180 deg apart in solar longitude were observed to be associated with central meridian passages of solar magnetic sector boundaries. The boundaries may be significant in the evaluation of correlations between solar magnetic sector structure and atmospheric circulation.

  3. Modelling rotational and cyclical spectral solar irradiance variations

    NASA Astrophysics Data System (ADS)

    Unruh, Yvonne

    Solar irradiance changes are highly wavelength dependent: solar-cycle variations in the UV can be on the order of tens of percent, while changes in the visible are typically only of the order of one or two permille. With the launch of a number of instruments to measure spectral solar irradiance, we are now for a first time in a good position to explore the changing solar irradiance over a large range of wavelengths and to test our irradiance models as well as some of their underlying assumptions. I will introduce some of the current modelling approaches and present model-data comparisons, using the SATIRE irradiance model and SORCE/SIM measurements as an example. I will conclude by highlighting a number of outstanding questions regarding the modelling of spectral irradiance and current approaches to address these.

  4. UV and global irradiance measurements and analysis during the Marsaxlokk (Malta) campaign

    NASA Astrophysics Data System (ADS)

    Bilbao, J.; Román, R.; Yousif, C.; Mateos, D.; de Miguel, A.

    2015-07-01

    A solar radiation measurement campaign was performed in the south-eastern village of Marsaxlokk (35°50' N; 14°33' E; 10 m a.s.l), Malta, between 15 May and 15 October 2012. Erythemal solar radiation data (from a UVB-1 pyranometer), and total horizontal solar radiation (global and diffuse components) from two CM21 pyranometer were recorded. A comparison of atmospheric compounds from ground measurements and satellites shows that TOC (total ozone column) data from the Ozone Monitoring Instrument OMI, TOMS and DOAS algorithms correlate well with ground-based recorded data. The water vapour column and the aerosol optical depth at 550 nm show a significant correlation at the confidence level of 99 %. Parametric models for evaluating the solar UV erythemal (UVER), global (G) and diffuse (D) horizontal irradiances are calibrated, from which aerosol effects on solar irradiance are evaluated using the Aerosol Modification Factor (AMF). The AMFUVER values are lower than AMFG, indicating a greater aerosol effect on UVER than on global solar irradiance. In this campaign, several dust event trajectories are identified by means of the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and by synoptic conditions for characterizing desert dust events. Hence, changes in the UV index due to atmospheric aerosols are described.

  5. Solar total irradiance in cycle 23

    NASA Astrophysics Data System (ADS)

    Krivova, N. A.; Solanki, S. K.; Schmutz, W.

    2011-05-01

    Context. The most recent minimum of solar activity was deeper and longer than the previous two minima as indicated by different proxies of solar activity. This is also true for the total solar irradiance (TSI) according to the PMOD composite. Aims: The apparently unusual behaviour of the TSI has been interpreted as evidence against solar surface magnetism as the main driver of the secular change in the TSI. We test claims that the evolution of the solar surface magnetic field does not reproduce the observed TSI in cycle 23. Methods: We use sensitive, 60-min averaged MDI magnetograms and quasi-simultaneous continuum images as an input to our SATIRE-S model and calculate the TSI variation over cycle 23, sampled roughly every two weeks. The computed TSI is then compared with the PMOD composite of TSI measurements and with the data from two individual instruments, SORCE/TIM and UARS/ACRIM II, that monitored the TSI during the declining phase of cycle 23 and over the previous minimum in 1996, respectively. Results: Excellent agreement is found between the trends shown by the model and almost all sets of measurements. The only exception is the early, i.e. 1996 to 1998, PMOD data. Whereas the agreement between the model and the PMOD composite over the period 1999-2009 is almost perfect, the modelled TSI shows a steeper increase between 1996 and 1999 than implied by the PMOD composite. On the other hand, the steeper trend in the model agrees remarkably well with the ACRIM II data. A closer look at the VIRGO data, which are the basis of the PMOD composite after 1996, reveals that only one of the two VIRGO instruments, the PMO6V, shows the shallower trend present in the composite, whereas the DIARAD measurements indicate a steeper trend. Conclusions: Based on these results, we conclude that (1) the sensitivity changes of the PMO6V radiometers within VIRGO during the first two years have very likely not been correctly evaluated; and that (2) the TSI variations over cycle 23

  6. A method for estimating direct normal solar irradiation from satellite data for a tropical environment

    SciTech Connect

    Janjai, Serm

    2010-09-15

    In order to investigate a potential use of concentrating solar power technologies and select an optimum site for these technologies, it is necessary to obtain information on the geographical distribution of direct normal solar irradiation over an area of interest. In this work, we have developed a method for estimating direct normal irradiation from satellite data for a tropical environment. The method starts with the estimation of global irradiation on a horizontal surface from MTSAT-1R satellite data and other ground-based ancillary data. Then a satellite-based diffuse fraction model was developed and used to estimate the diffuse component of the satellite-derived global irradiation. Based on this estimated global and diffuse irradiation and the solar radiation incident angle, the direct normal irradiation was finally calculated. To evaluate its performance, the method was used to estimate the monthly average hourly direct normal irradiation at seven pyrheliometer stations in Thailand. It was found that values of monthly average hourly direct normal irradiation from the measurements and those estimated from the proposed method are in reasonable agreement, with a root mean square difference of 16% and a mean bias of -1.6%, with respect to mean measured values. After the validation, this method was used to estimate the monthly average hourly direct normal irradiation over Thailand by using MTSAT-1R satellite data for the period from June 2005 to December 2008. Results from the calculation were displayed as hourly and yearly irradiation maps. These maps reveal that the direct normal irradiation in Thailand was strongly affected by the tropical monsoons and local topography of the country. (author)

  7. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1997-01-01

    Under this contract, we have continued our investigations of the large scale structure of the solar corona and inner heliosphere using global magnetohydrodynamic (MHD) simulations. These computations have also formed the basis for studies of coronal mass ejections (CMES) using realistic coronal configurations. We have developed a technique for computing realistic magnetohydrodynamic (MHD) computations of the solar corona and inner heliosphere. To perform computations that can be compared with specific observations, it is necessary to incorporate solar observations into the boundary conditions. We have used the Wilcox Solar Observatory synoptic maps (collected during a solar rotation by daily measurements of the line-of-sight magnetic field at central meridian) to specify the radial magnetic field (B,) at the photosphere. For the initial condition, we use a potential magnetic field consistent with the specified distribution of B, at the lower boundary, and a wind solution consistent with the specified plasma density and temperature at the solar surface. Together this initial condition forms a (non-equilibrium) approximation of the state of the solar corona for the time-dependent MHD computation. The MHD equations are then integrated in time to steady state. Here we describe solutions relevant to a recent solar eclipse, as well as Ulysses observations. We have also developed a model configuration of solar minimum, useful for studying CME initiation and propagation.

  8. Modelling 1-minute directional observations of the global irradiance.

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Pagh Nielsen, Kristian; Andersen, Elsa; Furbo, Simon

    2016-04-01

    Direct and diffuse irradiances from the sky has been collected at 1-minute intervals for about a year from the experimental station at the Technical University of Denmark for the IEA project "Solar Resource Assessment and Forecasting". These data were gathered by pyrheliometers tracking the Sun, as well as with apertured pyranometers gathering 1/8th and 1/16th of the light from the sky in 45 degree azimuthal ranges pointed around the compass. The data are gathered in order to develop detailed models of the potentially available solar energy and its variations at high temporal resolution in order to gain a more detailed understanding of the solar resource. This is important for a better understanding of the sub-grid scale cloud variation that cannot be resolved with climate and weather models. It is also important for optimizing the operation of active solar energy systems such as photovoltaic plants and thermal solar collector arrays, and for passive solar energy and lighting to buildings. We present regression-based modelling of the observed data, and focus, here, on the statistical properties of the model fits. Using models based on the one hand on what is found in the literature and on physical expectations, and on the other hand on purely statistical models, we find solutions that can explain up to 90% of the variance in global radiation. The models leaning on physical insights include terms for the direct solar radiation, a term for the circum-solar radiation, a diffuse term and a term for the horizon brightening/darkening. The purely statistical model is found using data- and formula-validation approaches picking model expressions from a general catalogue of possible formulae. The method allows nesting of expressions, and the results found are dependent on and heavily constrained by the cross-validation carried out on statistically independent testing and training data-sets. Slightly better fits -- in terms of variance explained -- is found using the purely

  9. Long-term variations in total solar irradiance

    NASA Technical Reports Server (NTRS)

    Pap, Judit M.; Willson, Richard C.; Froelich, Claus; Donnelly, Richard F.; Puga, Larry

    1994-01-01

    For more than a decade total solar irradiance has been monitored simultaneously from space by different satellites. The detection of total solar irradiance variations by satellite-based experiments during the past decade and a half has stimulated modeling efforts to help identify their causes and to provide estimates of irradiance data, using `proxy' indicators of solar activity, for time intervals when no satellite observations exist. In this paper total solar irradiance observed by the Nimbus-7/Earth Radiation Budget (ERB), Solar Maximum Mission (SMM)/Active Cavity Radiometer Irradiance Monitor (ACRIM) 1, and Upper Atmosphere Research Satellite (UARS)/ACRIM 2 radiometers is modeled with the Photometric Sunspot Index and the Mg II core-to-wing ratio. Since the formation of the Mg II line is very similar to that of the Ca II K line, the Mg core-to-wing ratio, derived from the irradiance observations of the Nimbus-7 and NOAA9 satellites, is used as a proxy for the bright magnetic elements. It is shown that the observed changes in solar irradiance are underestimated by the proxy models at the time of maximum and during the beginning of the declining portion of solar cycle 22 similar to behavior just before the maximum of solar cycle 21. This disagreement between total irradiance observations and their model estimates is indicative of the fact that the underlying physical mechanism of the changes observed in the solar radiative output is not well-understood. Furthermore, the uncertainties in the proxy data used for irradiance modeling and the resulting limitation of the models should be taken into account, especially when the irradiance models are used for climatic studies.

  10. Space-based Observations of the Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.

    2015-08-01

    Solar photon radiation is the dominant energy input to the Earth system, and this energy determines the temperature, structure, and dynamics of the atmosphere, warms the Earth surface, and sustains life. Observations of true solar variability became possible only after attaining access to space, so the observational record of the solar irradiance for sun-climate studies extends back only about 40 years. The total solar irradiance (TSI) and solar spectral irradiance (SSI) observations will be presented along with the discussion of the solar variability during the past four decades. The solar radiation varies on all time scales ranging from minutes to hours for solar eruptive events (flares), days to months for active region evolution and solar rotation (~27 days), and years to decades over the solar activity cycle (~11 years). The amount of solar variability is highly dependent on wavelength and ranges from orders of magnitude for the X-ray to 10-60% for part of the ultraviolet to only 0.1% for the visible and infrared. The accuracy and precision of the solar irradiance measurements have steadily improved with each new generation of instrumentation and with new laboratory (pre-flight) calibration facilities.

  11. Analysis of clear hour solar irradiation for seven Canadian stations

    SciTech Connect

    Garrison, J.; Sahami, K.

    1995-12-31

    Hourly global and diffuse irradiation and corresponding surface meteorological data have been analyzed for the seven Canadian stations at Edmonton, Goose Bay, Montreal, Port Hardy, Resolute, Toronto, and Winnipeg. The variation of the most probable clear hour values of clearness index k{sub t}, diffuse index k{sub d}, direct beam index k{sub b}, and Angstrom turbidity coefficient {beta} with solar elevation, atmospheric precipitable water, and snow depth are obtained. Values of these quantities are presented which are consistent with the attenuation and scattering of solar radiation by the atmosphere which is expected. The most probable values of {beta} tend to be lower than the average values of {beta} recently reported by Gueymard. The data indicate a drift in the calibration of the instruments used for measurements of the irradiation data for the stations at Goose Bay and Resolute. The data for the other five stations indicate that the instrument calibration is maintained over the years of the data. 4 refs., 8 figs., 5 tabs.

  12. A measurement of the quiet network contribution to solar irradiance variation

    NASA Astrophysics Data System (ADS)

    Foukal, Peter; Milano, Leo

    A large increase in quiet network area since the 17th century Maunder Minimum has been suggested as a mechanism for increasing solar irradiance sufficiently to drive global warming. We show that this mechanism requires essentially complete disappearance of network proceeding back in time to the beginning of the 20th century. This disappearance is ruled out by the many Ca K spectroheliograms taken since the discovery of the network in the early 1890's. Furthermore, network area measurements we have carried out on Ca K spectroheliograms digitized from the Mt. Wilson and NSO/Sacramento Peak archives, for the nine solar activity minima between 1914 and 1996, show no evidence of network area variations large enough to produce a significant long-term component of total irradiance variation. A network brightness variation of sufficient magnitude is also unlikely, given the linear dependence of solar microwave flux on area of bright structures.More generally, recent analyses of cycle 21,22 pyrheliometry, and of broadband stellar photometry, provide little support for any long-term irradiance component These results do not rule out a secular irradiance increase. But they suggest that high climate sensitivity to the relatively small changes in solar total and UV irradiance that have been observed, provides a more likely explanation of the global temperature-solar activity correlation.

  13. Earth Climate Changes Connected To Solar Diameter and Irradiance Variabilities

    NASA Astrophysics Data System (ADS)

    Lefebvre, S.; Rozelot, J. P.

    Recent studies indicate that small but persistent variations in the total solar irradiance may play an important role in climate changes. If it is known that such changes are mainly due to changes in sunspots darkness and faculae brightness, it begins to be understood that changes in the radius of the Sun may also play a role. In a first part of this paper, we will show how the irradiance is affected by small distortions of the solar shape. Indeed such departures to a pure spherical Sun can be modelized as they reflect the gravitational distortions inside the Sun (variability of the rotation rate both in latitude and in depth as deduced by helioseismic measurements). These departures have been also observed from space (MDI on board SOHO) and from ground (solar astrolabes, scanning heliometer or other means). Such a variability on the Sun's di- ameter, certainly of no more than 40 mas (maybe less), will imply a change in the luminosity of about 6 parts per 10000. For the time being such variations have not been yet taken into account in the Earth climate changes. In the second part of this paper, we will focus on a longer period of time. We will briefly review the variabil- ity of the solar diameter over the last past four centuries, as it is suspected now with a rather good confidence that such a temporal variability may have a sense. We will compare this variability with the global Earth temperatures used as a climatic proxy. It can be seen that diameter changes over such a long period of time are indicative of an external variability on the Earth climate. The physical mechanism involved is obviously through the irradiance changes for which we will emphasize the need to get accurate and simultaneous measurements of the Sun's radius. The determination of the commonly used ratio W, which measures the relative variations of the radius over the relative variations of the irradiance, and as deduced in the first part of this paper, is helpful to pinpoint the source of

  14. Solar irradiance dictates settlement timing and intensity of marine mussels.

    PubMed

    Fuentes-Santos, Isabel; Labarta, Uxío; Álvarez-Salgado, X Antón; Fernández-Reiriz, M José

    2016-01-01

    Identifying the environmental factors driving larval settlement processes is crucial to understand the population dynamics of marine invertebrates. This work aims to go a step ahead and predict larval presence and intensity. For this purpose we consider the influence of solar irradiance, wind regime and continental runoff on the settlement processes. For the first time, we conducted a 5-years weekly monitoring of Mytilus galloprovincialis settlement on artificial suspended substrates, which allowed us to search for interannual variability in the settlement patterns. Comparison between the seasonal pattern of larval settlement and solar irradiance, as well as the well-known effect of solar irradiance on water temperature and food availability, suggest that solar irradiance indirectly influences the settlement process, and support the use of this meteorological variable to predict settlement occurrence. Our results show that solar irradiance allows predicting the beginning and end of the settlement cycle a month in advance: Particularly we have observed that solar irradiance during late winter indirectly drives the timing and intensity of the settlement onset, Finally, a functional generalise additive model, which considers the influence of solar irradiance and continental runoff on the settlement process, provides an accurate prediction of settlement intensity a fortnight in advance. PMID:27384527

  15. Solar irradiance dictates settlement timing and intensity of marine mussels

    PubMed Central

    Fuentes-Santos, Isabel; Labarta, Uxío; Álvarez-Salgado, X. Antón; Fernández-Reiriz, Mª José

    2016-01-01

    Identifying the environmental factors driving larval settlement processes is crucial to understand the population dynamics of marine invertebrates. This work aims to go a step ahead and predict larval presence and intensity. For this purpose we consider the influence of solar irradiance, wind regime and continental runoff on the settlement processes. For the first time, we conducted a 5-years weekly monitoring of Mytilus galloprovincialis settlement on artificial suspended substrates, which allowed us to search for interannual variability in the settlement patterns. Comparison between the seasonal pattern of larval settlement and solar irradiance, as well as the well-known effect of solar irradiance on water temperature and food availability, suggest that solar irradiance indirectly influences the settlement process, and support the use of this meteorological variable to predict settlement occurrence. Our results show that solar irradiance allows predicting the beginning and end of the settlement cycle a month in advance: Particularly we have observed that solar irradiance during late winter indirectly drives the timing and intensity of the settlement onset, Finally, a functional generalise additive model, which considers the influence of solar irradiance and continental runoff on the settlement process, provides an accurate prediction of settlement intensity a fortnight in advance. PMID:27384527

  16. Solar resource assessment with a solar spectral irradiance meter

    NASA Astrophysics Data System (ADS)

    Tatsiankou, Viktar; Hinzer, Karin; Muron, Aaron; Haysom, Joan; Schriemer, Henry; Myrskog, Stefan

    2014-09-01

    The SSIM prototype was designed at the University of Ottawa as a cost-effective alternative to a field spectrora-diometer. The instrument was installed at the University of Ottawa's CPV testing facility in September, 2013, collecting the environmental and spectral data from October, 2013 to March, 2014. The SSIM's performance was compared against an ASD field spectroradiometer and an Eppley pyrheliometer during a six month study. It was observed that the SSIM can accurately reproduce the solar spectrum and the direct normal irradiance. The mean difference between the SSIM and the Eppley pyrheliometer was within ±1.5% for cloudless periods in October, 2013. However, bandpass filter degradation and moisture ingress limited the long term performance of the device.

  17. Magnitudes and timescales of total solar irradiance variability

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2016-07-01

    The Sun's net radiative output varies on timescales of minutes to gigayears. Direct measurements of the total solar irradiance (TSI) show changes in the spatially- and spectrally-integrated radiant energy on timescales as short as minutes to as long as a solar cycle. Variations of ~0.01% over a few minutes are caused by the ever-present superposition of convection and oscillations with very large solar flares on rare occasion causing slightly-larger measurable signals. On timescales of days to weeks, changing photospheric magnetic activity affects solar brightness at the ~0.1% level. The 11-year solar cycle shows variations of comparable magnitude with irradiances peaking near solar maximum. Secular variations are more difficult to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Historical reconstructions of the Sun's irradiance based on indicators of solar-surface magnetic activity, such as sunspots, faculae, and cosmogenic isotope records, suggest solar brightness changes over decades to millennia, although the magnitudes of these variations have high uncertainties due to the indirect historical records on which they rely. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities. In this manuscript I summarize the Sun's variability magnitudes over different temporal regimes and discuss the irradiance record's relevance for solar and climate studies as well as for detections of exo-solar planets transiting Sun-like stars.

  18. Wavelength dependence of solar flare irradiance enhancement and its influence on the thermosphere-ionosphere system

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Richmond, A. D.; Deng, Y.; Qian, L.; Solomon, S. C.; Chamberlin, P. C.

    2012-12-01

    The wavelength dependence of irradiance enhancement during solar flare is one of the important factors in determining how the Thermosphere-Ionosphere (T-I) system responds to flares. To investigate the wavelength dependence of irradiance, the Flare Irradiance Spectral Model (FISM) was run for 34 X-class flares. The results show that the percentage increases of solar irradiance at flare peak have a clear wavelength dependence. In the wavelength range between 0 - 195 nm, it can vary from 1% to 10000%. The solar irradiance enhancement is largest (~1000%) in the XUV range (0 - 25 nm), and is about 100% in the EUV range (25 - 120 nm). The influence of different wavebands on the T-I system during the October 28th, 2003 flare (X17.2-class) has also been examined using the latest version of the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). While the enhancement of the globally integrated solar energy deposition is largest in the 0 - 14 nm waveband, the impact of solar irradiance enhancement on the thermosphere at 400km is largest for the 25 - 105 nm waveband. The effect of the enhancement of the 122 - 195 nm waveband is small in magnitude, but it decays slowly.

  19. The Impact of Different Absolute Solar Irradiance Values on Current Climate Model Simulations

    NASA Technical Reports Server (NTRS)

    Rind, David H.; Lean, Judith L.; Jonas, Jeffrey

    2014-01-01

    Simulations of the preindustrial and doubled CO2 climates are made with the GISS Global Climate Middle Atmosphere Model 3 using two different estimates of the absolute solar irradiance value: a higher value measured by solar radiometers in the 1990s and a lower value measured recently by the Solar Radiation and Climate Experiment. Each of the model simulations is adjusted to achieve global energy balance; without this adjustment the difference in irradiance produces a global temperature change of 0.48C, comparable to the cooling estimated for the Maunder Minimum. The results indicate that by altering cloud cover the model properly compensates for the different absolute solar irradiance values on a global level when simulating both preindustrial and doubled CO2 climates. On a regional level, the preindustrial climate simulations and the patterns of change with doubled CO2 concentrations are again remarkably similar, but there are some differences. Using a higher absolute solar irradiance value and the requisite cloud cover affects the model's depictions of high-latitude surface air temperature, sea level pressure, and stratospheric ozone, as well as tropical precipitation. In the climate change experiments it leads to an underestimation of North Atlantic warming, reduced precipitation in the tropical western Pacific, and smaller total ozone growth at high northern latitudes. Although significant, these differences are typically modest compared with the magnitude of the regional changes expected for doubled greenhouse gas concentrations. Nevertheless, the model simulations demonstrate that achieving the highest possible fidelity when simulating regional climate change requires that climate models use as input the most accurate (lower) solar irradiance value.

  20. Global network of slow solar wind

    NASA Astrophysics Data System (ADS)

    Crooker, N. U.; Antiochos, S. K.; Zhao, X.; Neugebauer, M.

    2012-04-01

    The streamer belt region surrounding the heliospheric current sheet (HCS) is generally treated as the primary or sole source of the slow solar wind. Synoptic maps of solar wind speed predicted by the Wang-Sheeley-Arge model during selected periods of solar cycle 23, however, show many areas of slow wind displaced from the streamer belt. These areas commonly have the form of an arc that is connected to the streamer belt at both ends. The arcs mark the boundaries between fields emanating from different coronal holes of the same polarity and thus trace the paths of belts of pseudostreamers, i.e., unipolar streamers that form over double arcades and lack current sheets. The arc pattern is consistent with the predicted topological mapping of the narrow open corridor or singular separator line that must connect the holes and, thus, consistent with the separatrix-web model of the slow solar wind. Near solar maximum, pseudostreamer belts stray far from the HCS-associated streamer belt and, together with it, form a global-wide web of slow wind. Recognition of pseudostreamer belts as prominent sources of slow wind provides a new template for understanding solar wind stream structure, especially near solar maximum.

  1. Global Network of Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Antiochos, S. K.; Zhao, X.; Neugebauer, M.

    2012-01-01

    The streamer belt region surrounding the heliospheric current sheet (HCS) is generally treated as the primary or sole source of the slow solar wind. Synoptic maps of solar wind speed predicted by the Wang-Sheeley-Arge model during selected periods of solar cycle 23, however, show many areas of slow wind displaced from the streamer belt. These areas commonly have the form of an arc that is connected to the streamer belt at both ends. The arcs mark the boundaries between fields emanating from different coronal holes of the same polarity and thus trace the paths of belts of pseudostreamers, i.e., unipolar streamers that form over double arcades and lack current sheets. The arc pattern is consistent with the predicted topological mapping of the narrow open corridor or singular separator line that must connect the holes and, thus, consistent with the separatrix-web model of the slow solar wind. Near solar maximum, pseudostreamer belts stray far from the HCS-associated streamer belt and, together with it, form a global-wide web of slow wind. Recognition of pseudostreamer belts as prominent sources of slow wind provides a new template for understanding solar wind stream structure, especially near solar maximum.

  2. The Measurement of the Solar Spectral Irradiance Variability at 782 nm during the Solar Cycle 24 using the SES on-board PICARD

    NASA Astrophysics Data System (ADS)

    Meftah, Mustapha; Hauchecorne, Alain; Irbah, Abdanour; Bekki, Slimane

    2016-04-01

    A Sun Ecartometry Sensor (SES) was developed to provide the stringent pointing requirements of the PICARD satellite. The SES sensor produced an image of the Sun at 782+/-5 nm. From the SES data, we obtained a new time series of the solar spectral irradiance at 782nm from 2010 to 2014. SES observations provided a qualitatively consistent evolution of the solar spectral irradiance variability at 782 nm during the solar cycle 24. Comparisons will be made with Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) semi-empirical model and with the Spectral Irradiance Monitor instrument (SIM) on-board the Solar Radiation and Climate Experiment satellite (SORCE). These data will help to improve the representation of the solar forcing in the IPSL Global Circulation Model.

  3. Predictions of solar radiation distribution: Global, direct and diffuse light on horizontal surface

    NASA Astrophysics Data System (ADS)

    Chabane, Foued; Moummi, Noureddine; Brima, Abdelhafid

    2016-04-01

    Solar radiation models for predicting the average daily and hourly global radiation, direct and diffuse radiation are discussed in this paper. The average daily global radiation in Ghardaia (32.38 N latitude, 3.82 E longitude) is predicted. Estimations of monthly average hourly global radiation are considered. We have developed this correlation using the sunlight and global radiation data from one year location around the weather station in Ghardaia. Two predictions of solar radiation distribution: direct and diffuse light on a horizontal area models, are reviewed to predict the hourly irradiation of Ghardaia utilizing the approach such as regression models. Comparisons between model predictions with measured data are made.

  4. Long-term downward trend in total solar irradiance

    SciTech Connect

    Willson, R.C.; Hudson, H.S.; Frohlich, C.; Brusa, R.W.

    1986-11-28

    The first 5 years (from 1980 to 1985) of total solar irradiance observations by the first Active Cavity Radiometer Irradiance Monitor (ACRIM I) experiment on board the Solar Maximum Mission spacecraft show a clearly defined downward trends of -0.019% per year. The existence of this trend has been confirmed by the internal self-calibrations of ACRIM I, by independent measurements from sounding rockets and balloons, and by observations from the Nimbus-7 spacecraft. The trend appears to be due to unpredicted variations of solar luminosity on time scales of years, and it may be related to solar cycle magnetic activity.

  5. Long-term downward trend in total solar irradiance.

    PubMed

    Willson, R C; Hudson, H S; Frohlich, C; Brusa, R W

    1986-11-28

    The first 5 years (from 1980 to 1985) of total solar irradiance observations by the first Active Cavity Radiometer Irradiance Monitor (ACRIM I) experiment on board the Solar Maximum Mission spacecraft show a clearly defined downward trend of -0.019% per year. The existence of this trend has been confirmed by the internal self-calibrations of ACRIM I, by independent measurements from sounding rockets and balloons, and by observations from the Nimbus-7 spacecraft. The trend appears to be due to unpredicted variations of solar luminosity on time scales of years, and it may be related to solar cycle magnetic activity. PMID:17778952

  6. Researches of the Electrotechnical Laboratory, no. 830: Measurement of the solar spectral irradiance at Tanashi, Tokyo (III)

    NASA Astrophysics Data System (ADS)

    Habu, M.; Suzuki, M.; Nagasaka, T.

    1983-01-01

    Spectral irradiance on the horizontal plane produced by global solar radiation, that is, the combination of direct solar radiation and sky brightness was measured. Measured data of 318 sets were obtained and are classified according to seasons, grades of atmospheric turbidity, and total cloud amount. The relationships between the correlated color temperature of solar radiation and solar altitude, between the chromaticity coordinates of solar radiation and the Planckian locus, and between the illuminance produced by global solar radiation and solar altitude were examined. Tables show untreated measured values for each set, and data obtained by linear interpolation from the measured values. The spectral irradiance curve is given for easier intutitional understanding of the measured values.

  7. Atmosphere, Ocean, Land, and Solar Irradiance Data Sets

    NASA Technical Reports Server (NTRS)

    Johnson, James; Ahmad, Suraiya

    2003-01-01

    The report present the atmosphere, ocean color, land and solar irradiation data sets. The data presented: total ozone, aerosol, cloud optical and physical parameters, temperature and humidity profiles, radiances, rain fall, drop size distribution.

  8. Long-term reconstructions of total solar irradiance

    NASA Astrophysics Data System (ADS)

    Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria

    2012-07-01

    Solar irradiance is the main external driver of the Earth's climate, although its relative contribution compared to other internal and anthropogenic factors is not yet well determined. Variations of total solar irradiance have being measured for over three decades and are relatively well understood. Reconstructions of the irradiance into the past remain, however, rather uncertain. In particular, the magnitude of the secular change is highly debated. The reason is the lack of direct and well-sampled proxies of solar magnetic activity on time scales longer than a few decades. Reconstructions on time scales of centuries rely on sunspot observations available since 1610. Reconstructions on millennial time scales use concentrations of the cosmogenic isotopes in terrestrial archives. We will review long-term reconstructions of the solar irradiance using the SATIRE set of models, compare them with other recent models and discuss the remaining uncertainties.

  9. A reconstruction of solar irradiance using a flux transport model

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Jiang, Jie; Krivova, Natalie; Solanki, Sami

    2013-04-01

    Reconstructions of solar irradiance into the past are of considerable interest for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field have been the most successful in reproducing the measured irradiance variations. Our SATIRE-S model is one of these. It uses solar full-disc magnetograms as an input, and these are available for less than four decades. Thus, to reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. To describe the secular change in the irradiance, we used the concept of overlapping ephemeral region cycles. With this technique TSI can be reconstructed back to 1610.

  10. Modelling total solar irradiance using a flux transport model

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Jiang, Jie; Krivova, Natalie; Solanki, Sami

    2014-05-01

    Reconstructions of solar irradiance into the past are of considerable interest for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field have been the most successful in reproducing the measured irradiance variations. Our SATIRE-S model is one of these. It uses solar full-disc magnetograms as an input, and these are available for less than four decades. Thus, to reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. To describe the secular change in the irradiance, we used the concept of overlapping ephemeral region cycles. With this technique TSI can be reconstructed back to 1700.

  11. Solar irradiances measured using SPN1 radiometers: uncertainties and clues for development

    NASA Astrophysics Data System (ADS)

    Badosa, J.; Wood, J.; Blanc, P.; Long, C. N.; Vuilleumier, L.; Demengel, D.; Haeffelin, M.

    2014-08-01

    The fast development of solar radiation and energy applications, such as photovoltaic and solar thermodynamic systems, has increased the need for solar radiation measurement and monitoring, not only for the global component but also for the diffuse and direct. End users look for the best compromise between getting close to state-of-the-art measurements and keeping low capital, maintenance and operating costs. Among the existing commercial options, SPN1 is a relatively low cost solar radiometer that estimates global and diffuse solar irradiances from seven thermopile sensors under a shading mask and without moving parts. This work presents a comprehensive study of SPN1 accuracy and sources of uncertainty, which results from laboratory experiments, numerical modeling and comparison studies between measurements from this sensor and state-of-the art instruments for six diverse sites. Several clues are provided for improving the SPN1 accuracy and agreement with state-of-the art measurements.

  12. Solar irradiances measured using SPN1 radiometers: uncertainties and clues for development

    NASA Astrophysics Data System (ADS)

    Badosa, J.; Wood, J.; Blanc, P.; Long, C. N.; Vuilleumier, L.; Demengel, D.; Haeffelin, M.

    2014-12-01

    The fast development of solar radiation and energy applications, such as photovoltaic and solar thermodynamic systems, has increased the need for solar radiation measurement and monitoring, for not only the global but also the diffuse and direct components. End users look for the best compromise between getting close to state-of-the-art measurements and keeping low capital, maintenance and operating costs. Among the existing commercial options, SPN1 is a relatively low cost solar radiometer that estimates global and diffuse solar irradiances from seven thermopile sensors under a shading mask and without moving parts. This work presents a comprehensive study of SPN1 accuracy and sources of uncertainty, drawing on laboratory experiments, numerical modelling and comparison studies between measurements from this sensor and state-of-the art instruments for six diverse sites. Several clues are provided for improving the SPN1 accuracy and agreement with state-of-the art measurements.

  13. Solar Irradiances Measured using SPN1 Radiometers: Uncertainties and Clues for Development

    SciTech Connect

    Badosa, Jordi; Wood, John; Blanc, Philippe; Long, Charles N.; Vuilleumier, Laurent; Demengel, Dominique; Haeffelin, Martial

    2014-12-08

    The fast development of solar radiation and energy applications, such as photovoltaic and solar thermodynamic systems, has increased the need for solar radiation measurement and monitoring, not only for the global component but also the diffuse and direct. End users look for the best compromise between getting close to state-of-the-art measurements and keeping capital, maintenance and operating costs to a minimum. Among the existing commercial options, SPN1 is a relatively low cost solar radiometer that estimates global and diffuse solar irradiances from seven thermopile sensors under a shading mask and without moving parts. This work presents a comprehensive study of SPN1 accuracy and sources of uncertainty, which results from laboratory experiments, numerical modeling and comparison studies between measurements from this sensor and state-of-the art instruments for six diverse sites. Several clues are provided for improving the SPN1 accuracy and agreement with state-of-the-art measurements.

  14. The satellite total solar irradiance database

    NASA Astrophysics Data System (ADS)

    Willson, R. C.

    2009-12-01

    A precise knowledge of the total solar irradiance (TSI) over time is essential to understanding the physics of solar luminosity variation and its impact on the Earth in the form of climate change. A National Research Council study found that sustained trends as small as 0.25% per century were the most likely forcing for ‘little ice age’ climate minima during the 12th - 19th centuries. Recent phenomenological analyses of TSI observations and proxies indicate that TSI variation is an important climate change forcing on many timescales including the industrial era. The profound sociological and economic implications of understanding the relative climate change contributions of natural and anthropogenic forcings makes it essential that the satellite TSI database be precisely sustained into the foreseeable future. There are currently three satellite TSI monitoring experiments in operation: SOHO/VIRGO, ACRIMSAT/ACRIM3 and SORCE/TIM, in order of deployment (1996, 2000 and 2003, resp.). Results reported on their ‘native scales show the same basic variations in TSI over time, yet some smaller variations detected by ACRIM3 are less well defined or absent in the results of VIRGO and TIM. There is also a scale difference issue: TIM results are 0.35% lower than those of ACRIM3 and VIRGO, outside the ± 0.1% uncertainty bounds predicted for ACRIM3 and VIRGO, and well outside TIM’s ± 0.01% uncertainty design goal. TIM’s failure to achieve 0.01% uncertainty in flight demonstrates that the TSI monitoring paradigm shift of relying on measurement accuracy rather than a redundant/overlap strategy to provide long term traceability cannot be realized with current ‘ambient temperature’ technology. The only viable monitoring approach for the foreseeable future continues to be the redundant/overlap strategy that has provided the 31 year satellite TSI database to date with useful traceability. Intercomparisons of flight experiments at their levels of mutual precision can

  15. Solar UV Irradiances and Associated Issues for the Atmosphere and Ionosphere

    NASA Astrophysics Data System (ADS)

    Tobiska, W.

    Several new solar proxies have been developed in the past year as the beginning of a second generation solar UV modeling and forecasting capability. These proxies help characterize the energy input into operational space physics models that provide information content on the neutral thermosphere and ionosphere. Between 1999-2000, a full solar spectrum was developed (SOLAR2000) for use in numerical atmospheric and ionospheric models relevant to climatological studies and the E10.7 index was produced for empirical thermospheric and ionospheric model applications. In 20012002, new proxies have been derived including a sunspot number, Rsn, for use by operational HF radio ray-trace algorithms and the Qeuv thermospheric heating rate for use by the aeronomy community to compare airglow-derived versus solar-derived upper atmosphere heating. The Peuv heat production term has also been developed as an index for comparing solar heating to joule heating on a global scale. The S(t) index is the integrated solar spectrum used for solar radiation pressure calculations related to spacecraft attitude control. Finally, the Tinf is the exospheric temperature that is provided for long-term climate change studies. Second generation modeling and forecasting is in development and includes higher cadence solar input information beyond daily flux values where solar flare characterization will soon become reality. The second generation forecasting is also incorporating improved algorithms ranging from wavelet transforms to solar dynamo theory in order to specify solar variability on seven time scales from nowcast and 72-hour forecast to 5 solar cycle estimation. These new proxies are derivatives of the SOLAR2000 model whose solar irradiance specification is compliant with the developing ISO draft standard WD 21348 for Determining Solar Irradiances.

  16. On the variation of the Nimbus 7 total solar irradiance

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1992-01-01

    For the interval December 1978 to April 1991, the value of the mean total solar irradiance, as measured by the Nimbus-7 Earth Radiation Budget Experiment channel 10C, was 1,372.02 Wm(exp -2), having a standard deviation of 0.65 Wm(exp -2), a coefficient of variation (mean divided by the standard deviation) of 0.047 percent, and a normal deviate z (a measure of the randomness of the data) of -8.019 (inferring a highly significant non-random variation in the solar irradiance measurements, presumably related to the action of the solar cycle). Comparison of the 12-month moving average (also called the 13-month running mean) of solar irradiance to those of the usual descriptors of the solar cycle (i.e., sunspot number, 10.7-cm solar radio flux, and total corrected sunspot area) suggests possibly significant temporal differences. For example, solar irradiance is found to have been greatest on or before mid 1979 (leading solar maximum for cycle 21), lowest in early 1987 (lagging solar minimum for cycle 22), and was rising again through late 1990 (thus, lagging solar maximum for cycle 22), having last reported values below those that were seen in 1979 (even though cycles 21 and 22 were of comparable strength). Presuming a genuine correlation between solar irradiance and the solar cycle (in particular, sunspot number) one infers that the correlation is weak (having a coefficient of correlation r less than 0.84) and that major excursions (both as 'excesses' and 'deficits') have occurred (about every 2 to 3 years, perhaps suggesting a pulsating Sun).

  17. Solar Global Radiation and Sunshine Duration in Extremadura (Spain)

    NASA Astrophysics Data System (ADS)

    Cancillo, M. L.; Serrano, A.; Ruiz, A.; García, J. A.; Antón, M.; Vaquero, J. M.

    2005-01-01

    This paper aims at analysing the relationship of solar global irradiation and sunshine duration at three stations in Extremadura (Spain) at a daily and monthly basis. Studying this dependence is of great interest since it allows to estimate solar irradiation in many stations where sunshine duration is measured and then, extend the number of locations with data, in order to plot reliable solar radiation spatial distributed maps. The mentioned relationship is investigated at both daily and monthly basis, by fitting the Ångström-Prescott model by regression techniques. The correlation coefficients show notably high values for the three locations, suggesting the suitability of the model for the measured data. Moreover, the regression coefficients are in agreement with those obtained in other works for different locations in the Iberian Peninsula. In the daily analysis, it is also found that residuals show a smooth annual behaviour and, therefore, Ångström-Prescott model was fitted for each calendar month separately. The annual evolution of the regression coefficients and the atmospheric transparency index is analysed and compared for the three stations of measurements.

  18. ACRIM3 and the Total Solar Irradiance database

    NASA Astrophysics Data System (ADS)

    Willson, Richard C.

    2014-08-01

    The effects of scattering and diffraction on the observations of the ACRIMSAT/ACRIM3 satellite TSI monitoring mission have been characterized by the preflight calibration approach for satellite total solar irradiance (TSI) sensors implemented at the LASP/TRF (Laboratory for Atmospheric and Space Physics/Total Solar Irradiance Radiometer Facility). The TRF also calibrates the SI (International System of units) traceability to the NIST (National Institute of Standards and Technology) cryo-radiometric scale. ACRIM3's self-calibration agrees with NIST to within the uncertainty of the test procedure (˜500 ppm). A correction of ˜5000 ppm was found for scattering and diffraction that has significantly reduced the scale difference between the results of the ACRIMSAT/ACRIM3 and SORCE/TIM satellite experiments. Algorithm updates reflecting more than 10 years of mission experience have been made that further improve the ACRIM3 results by eliminating some thermally driven signal and increasing the signal to noise ratio. The result of these changes is a more precise and detailed picture of TSI variability. Comparison of the results from the ACRIM3, SORCE/TIM and SOHO/VIRGO satellite experiments demonstrate the near identical detection of TSI variability on all sub-annual temporal and amplitude scales during the TIM mission. The largest occurs at the rotational period of the primary solar activity longitudes. On the decadal timescale, while ACRIM3 and VIRGO results exhibit close agreement throughout, TIM exhibits a consistent 500 ppm upward trend relative to ACRIM3 and VIRGO. A solar magnetic activity area proxy for TSI has been used to demonstrate that the ACRIM TSI composite and its +0.037 %/decade TSI trend during solar cycles 21-23 is the most likely correct representation of the extant satellite TSI database. The occurrence of this trend during the last decades of the 20th century supports a more robust contribution of TSI variation to detected global temperature increase

  19. Variations in solar Lyman alpha irradiance on short time scales

    NASA Technical Reports Server (NTRS)

    Pap, J. M.

    1992-01-01

    Variations in solar UV irradiance at Lyman alpha are studied on short time scales (from days to months) after removing the long-term changes over the solar cycle. The SME/Lyman alpha irradiance is estimated from various solar indices using linear regression analysis. In order to study the nonlinear effects, Lyman alpha irradiance is modeled with a 5th-degree polynomial as well. It is shown that the full-disk equivalent width of the He line at 1083 nm, which is used as a proxy for the plages and active network, can best reproduce the changes observed in Lyman alpha. Approximately 72 percent of the solar-activity-related changes in Lyman alpha irradiance arise from plages and the network. The network contribution is estimated by the correlation analysis to be about 19 percent. It is shown that significant variability remains in Lyman alpha irradiance, with periods around 300, 27, and 13.5d, which is not explained by the solar activity indices. It is shown that the nonlinear effects cannot account for a significant part of the unexplained variation in Lyman alpha irradiance. Therefore, additional events (e.g., large-scale motions and/or a systematic difference in the area and intensity of the plages and network observed in the lines of Ca-K, He 1083, and Lyman alpha) may explain the discrepancies found between the observed and estimated irradiance values.

  20. New results concerning the global solar cycle

    NASA Astrophysics Data System (ADS)

    Makarov, V. I.; Sivaraman, K. R.

    1989-09-01

    The poleward migration-trajectory diagram of filament bands is derived for the years 1915-1982 from the H-alpha synoptic charts. The global solar activity commences soon after the polar-field reversal in the form of two components in each hemisphere. The first component is identified with the polar faculae that appear at latitudes 40-70 deg and migrate polewards. The second and the more powerful component representing the sunspots shows up at 40 deg latitudes 5-6 years later and drifts equatorward, giving rise to a butterfly diagram. Thus the global solar activity is described by the faculae and the sunspots that occur at different latitude belts and displaced in time by 5-6 years.

  1. Wavelength Dependence of Solar Flare Irradiation and its Influence on the Thermosphere

    NASA Technical Reports Server (NTRS)

    Huang, Yanshi; Richmond, Arthur D.; Deng, Yue; Qian, L.; Solomon, S.; Chamberlin, P.

    2012-01-01

    The wavelength dependence of solar flare enhancement is one of the important factors determining how the Thermosphere-Ionosphere (T-I) system response to flares. To investigate the wavelength dependence of solar flare, the Flare Irradiance Spectral Model (FISM) has been run for 34 X-class flares. The results show that the percentage increases of solar irradiance at flare peak comparing to pre-flare condition have a clear wavelength dependence. In the wavelength range between 0 - 195 nm, it can vary from 1% to 10000%. The solar irradiance enhancement is largest ( 1000%) in the XUV range (0 - 25 nm), and is about 100% in EUV range (25 - 120 nm). The influence of different wavebands on the T-I system during the October 28th, 2003 flare (X17.2-class) has also been examined using the latest version of National Center for Atmospheric Research (NCAR) Thermosphere- Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). While the globally integrated solar energy deposition is largest in the 0 - 14 nm waveband, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for 25 - 105 nm waveband. The effect of 122 - 195 nm is small in magnitude, but it decays slowly.

  2. Reconstructions of solar irradiance on centennial time scales

    NASA Astrophysics Data System (ADS)

    Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria; Kok Leng, Yeo

    Solar irradiance is the main external source of energy to Earth's climate system. The record of direct measurements covering less than 40 years is too short to study solar influence on Earth's climate, which calls for reconstructions of solar irradiance into the past with the help of appropriate models. An obvious requirement to a competitive model is its ability to reproduce observed irradiance changes, and a successful example of such a model is presented by the SATIRE family of models. As most state-of-the-art models, SATIRE assumes that irradiance changes on time scales longer than approximately a day are caused by the evolving distribution of dark and bright magnetic features on the solar surface. The surface coverage by such features as a function of time is derived from solar observations. The choice of these depends on the time scale in question. Most accurate is the version of the model that employs full-disc spatially-resolved solar magnetograms and reproduces over 90% of the measured irradiance variation, including the overall decreasing trend in the total solar irradiance over the last four cycles. Since such magnetograms are only available for about four decades, reconstructions on time scales of centuries have to rely on disc-integrated proxies of solar magnetic activity, such as sunspot areas and numbers. Employing a surface flux transport model and sunspot observations as input, we have being able to produce synthetic magnetograms since 1700. This improves the temporal resolution of the irradiance reconstructions on centennial time scales. The most critical aspect of such reconstructions remains the uncertainty in the magnitude of the secular change.

  3. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1998-01-01

    The coronal magnetic field defines the structure of the solar corona, the position of the heliospheric current sheet, the regions of fast and slow solar wind, and the most likely sites of coronal mass ejections. There are few measurements of the magnetic fields in the corona, but the line-of-sight component of the global magnetic fields in the photosphere have been routinely measured for many years (for example, at Stanford's Wilcox Solar Observatory, and at the National Solar Observatory at Kitt Peak). The SOI/MDI instrument is now providing high-resolution full-disk magnetograms several times a day. Understanding the large-scale structure of the solar corona and inner heliosphere requires accurately mapping the measured photospheric magnetic field into the corona and outward. Ideally, a model should not only extrapolate the magnetic field, but should self-consistently reconstruct both the plasma and magnetic fields in the corona and solar wind. Support from our NASA SR&T contract has allowed us to develop three-dimensional magnetohydrodynamic (MHD) computations of the solar corona that incorporate observed photospheric magnetic fields into the boundary conditions. These calculations not only describe the magnetic field in the corona and interplanetary spice, but also predict the plasma properties as well. Our computations thus far have been successful in reproducing many aspects of both coronal and interplanetary data, including the structure of the streamer belt, the location of coronal hole boundaries, and the position and shape of the heliospheric current sheet. The most widely used technique for extrapolating the photospheric magnetic field into the corona and heliosphere are potential field models, such as the potential field source-surface model (PFSS),and the potential field current-sheet (PFCS) model

  4. The design, construction, and calibration of a spectral diffuse/global irradiance meter

    NASA Astrophysics Data System (ADS)

    Crowther, Blake Glenn

    1997-10-01

    Vicarious calibration methods have been developed to calibrate radiometric sensors in-flight. One such method, the irradiance-based method, requires the measurement of the diffuse-to-global (diffuse-to-total) irradiance ratio. Diffuse/global irradiance measurements may also be used to deduce atmospheric descriptors and provide a comparison with atmospheric modeling predictions. I describe the design, construction, calibration, and application of a spectral diffuse/global irradiance meter that can accomplish these objectives in this dissertation. I develop general integrating sphere theory, modeling methods, and describe the resultant computer model. The model results agreed with theory to better than 1% for a simple unbaffled integrating sphere. I applied the model to design an interior baffled integrating sphere-based cosine collector. I developed a method of tolerating the thermal expansion of Spectralonoler and the collector was constructed. Measurements of the collector angular response agreed with the model predictions to better than 4% for input zenith angles from 0o to 70o. The resulting instrument is automated and collects diffuse and global irradiance from 300 nm to 1100 nm. It has a nominal 12 nm full-width at half-maximum bandpass and has a minimum sampling interval of 1 nm. I estimate the uncertainty of the measurements to be 3.2%. The largest contributor to the total uncertainty is the measurement uncertainty of the diffuse irradiance at 2.5%. The instrument was used in a field experiment. Optical depths derived from the diffuse/global irradiance measurements agreed with those derived from a solar radiometer to within 0.008. Diffuse-to-global irradiance measurements made by the instrument were compared with an independent method and found to generally agree within 6%. The measurements were consistently lower than radiative transfer modeling estimates. Top of the atmosphere relative radiances computed from the two independent diffuse-to-global

  5. Solar UV Spectral Irradiance Measured by SUSIM During Solar Cycle 22 and 23

    NASA Astrophysics Data System (ADS)

    Morrill, J. S.; Floyd, L. E.; McMullin, D. R.

    2011-12-01

    Understanding the impact of solar variability on terrestrial climate requires detailed knowledge of both solar spectral irradiance (SSI) and total solar irradiance (TSI). Observations of SSI in the ultraviolet (UV) have been made by various space-based missions since 1978. Of these missions, the Upper Atmosphere Research Satellite (UARS) included the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) experiment which measured the UV SSI from 1991 into 2005. In this talk, we present the UV spectral irradiance observations from SUSIM on UARS during solar cycles 22 and 23 along with results of a recent review of the calibration, stability, and in-flight performance. Another more recent mission is the Solar Radiation and Climate Experiment (SORCE) satellite which carries the Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) and Solar Irradiance Monitor (SIM). Together, the SORCE instruments have measured the UV, Visible, and IR SSI over the period of 2003 to the present. This talk will include a comparison between SUSIM and SORCE during the period of overlapping observations as well as comparisons of UV spectra observed at various times, particularly during the last two solar minima. These comparisons show that the UV observations by SORCE are inconsistent with those measured by SUSIM.

  6. Computation of glint, glare, and solar irradiance distribution

    SciTech Connect

    Ho, Clifford Kuofei; Khalsa, Siri Sahib Singh

    2015-08-11

    Described herein are technologies pertaining to computing the solar irradiance distribution on a surface of a receiver in a concentrating solar power system or glint/glare emitted from a reflective entity. At least one camera captures images of the Sun and the entity of interest, wherein the images have pluralities of pixels having respective pluralities of intensity values. Based upon the intensity values of the pixels in the respective images, the solar irradiance distribution on the surface of the entity or glint/glare corresponding to the entity is computed.

  7. Long-term solar irradiance variability: knowns and unknowns

    NASA Astrophysics Data System (ADS)

    Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria; Leng Yeo, Kok; Wu, Chi-Ju

    2016-07-01

    Long-term reconstructions of solar irradiance variability are crucial to our understanding of solar influence on climate. They are only possible with the help of suitable models, which in turn require a thorough understanding of the mechanisms of this variability. With the advance of such models, also the past reconstructions are becoming more reliable. Nevertheless, the remaining uncertainties spread out when extrapolating back over long periods of time, amplified by the increasingly poorer quality and reliability of the available data that bear information on past solar activity. We will discuss the progress and the reliability of irradiance reconstructions on time scales of decades to millennia.

  8. Comparison of Solar UV Spectral Irradiance from SUSIM and SORCE

    NASA Astrophysics Data System (ADS)

    Morrill, J. S.; Floyd, L.; McMullin, D.

    2014-10-01

    Knowledge of solar spectral irradiance (SSI) is important in determining the impact of solar variability on climate. Observations of UV SSI have been made by the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on the Upper Atmosphere Research Satellite (UARS), the Solar-Stellar Irradiance Comparison Experiment (SOLSTICE), and the Solar Irradiance Monitor (SIM), both on the Solar Radiation and Climate Experiment (SORCE) satellite. Measurements by SUSIM and SORCE overlapped from 2003 to 2005. SUSIM and SORCE observations represent ˜ 20 years of absolute UV SSI. Unfortunately, significant differences exist between these two data sets. In particular, changes in SORCE UV SSI measurements, gathered at moderate and minimum solar activity, are a factor of two greater than the changes in SUSIM observations over the entire solar cycle. In addition, SORCE UV SSI have a substantially different relationship with the Mg ii index than did earlier UV SSI observations. Acceptance of these new SORCE results impose significant changes on our understanding of UV SSI variation. Alternatively, these differences in UV SSI observations indicate that some or all of these instruments have changes in instrument responsivity that are not fully accounted for by the current calibration. In this study, we compare UV SSI changes from SUSIM with those from SIM and SOLSTICE. The primary results are that (1) long-term observations by SUSIM and SORCE generally do not agree during the overlap period (2003 - 2005), (2) SUSIM observations during this overlap period are consistent with an SSI model based on Mg ii and early SUSIM SSI, and (3) when comparing the spectral irradiance for times of similar solar activity on either side of solar minimum, SUSIM observations show slight differences while the SORCE observations show variations that increase with time between spectra. Based on this work, we conclude that the instrument responsivity for SOLSTICE and SIM need to be reevaluated before these

  9. Solar Spectral Irradiance Observations from the PICARD/PREMOS Radiometer

    NASA Astrophysics Data System (ADS)

    Cessateur, G.; Schöll, M.; Schmutz, W. K.; Wehrli, C.; Groebner, J.; Haberreiter, M.; Kretzschmar, M.; Shapiro, A.; Thuillier, G. O.; Finsterle, W.; Fox, N.; Hochedez, J. F.; Koller, S.; Meftah, M.; Nyeki, S.; Pfiffner, D.; Roth, H.; Rouze, M.; Spescha, M.; Tagirov, R.; Werner, L.; Wyss, J.

    2015-12-01

    Space weather and space climate studies require accurate Solar Spectral Irradiance (SSI) observations. The PREcision Monitoring Sensor (PREMOS) instrument aboard the PICARD satellite acquired solar irradiance measurements in specific spectral windows in the UV, visible and near infrared from October 2010 to March 2014. This contribution aims at presenting the Level 3 data, corrected for non solar features as well as for degradation. These level 3 data has been tested over different scientific cases, such as observations during the Venus transit and the presence of the p-mode signature within high-cadence data. The PREMOS Level 3 data have also been compared to others data sets, namely the SOLSTICE and SIM instruments aboard SORCE, for nearly 3 and half years. An excellent correlation has been found for the UV spectral ranges. We have also found a rather good correlation for visible and near-infrared observations for short-term variations, for which an error of about 200 ppm has been estimated within PREMOS visible and near-infrared observations. The PREMOS data could also be used to address several scientific topics, i.e. for validating semi-empirical models of the solar irradiance. We will emphasize about our new irradiance model, COSIR for Code of Solar Irradiance Reconstruction, which is successful at reproducing the solar modulation as seen in the PREMOS, SoHO/Virgo and SORCE data.

  10. Progress Towards Deriving an Improved Long-Term Global Solar Resource

    NASA Technical Reports Server (NTRS)

    Cox, Stephen J.; Mikovitz, J. Colleen; Zhang, Taiping; Sorlie, Susan; Stackhouse, Paul W., Jr.; Perez, Richard; Hemker, Karl, Jr.; Schlemmer, James; Kivalov, Sergey; Renne, David; Sengupta, Manajit; Bates, John; Knapp, Kenneth

    2013-01-01

    This paper describes an ongoing project to provide the National Renewable Energy Laboratory (NREL) with a global long-term advanced global solar mapping production system for improved depiction of historical solar resources and to provide a mechanism for continual updates. This new production system is made possible by the efforts of NASA and NOAA to completely reprocess the International Satellite Cloud Climatology Project (ISCCP) data set that provides satellite visible and infrared radiances together with retrieved cloud and surface properties on a 10 km, 3-hourly basis beginning July 1983. We provide a general overview of this project, samples of the new solar irradiance mapped data products, and comparisons to surface measurements. Samples of the use of the SUNY-Albany solar irradiance algorithm applied to the ISCCP data show very good agreement with high quality surface measurements. We identify the next steps in the production of the data set.

  11. Direct and indirect solar signature on global ozone content

    NASA Astrophysics Data System (ADS)

    Talukdar, Shamitaksha; Maitra, Animesh; Saha, Upal

    Solar activities affecting the Earth’s climate, traditionally measured by the number of sunspots (SSN), shows a periodic variation of 8-11 years. The solar radiation is a major component which drives the atmospheric circulation and thus induces global ozone variability in different parts of the earth. Total ozone varies strongly with latitude over the globe and with solar activity, with the largest values occurring at middle and high latitudes during all seasons. A critical analysis is done to study the direct and indirect effects of solar activity on the total ozone content (TOC) and tropospheric ozone residual (TOR) over urban metropolitan location, Kolkata (22°32'N, 88°20'E), along with 30⁰N and 30⁰S and 0⁰(equator) during the period 1979-2012. It has been focused through our study that the solar parameters have positive correlations with TOC whereas TOR is not much linked with solar activity. The positive correlations with SSN and TOC are valid for all the cases of 30⁰N and 30⁰S, equator (0⁰) and Kolkata region. But it has been observed that no association is found to occur with TOR and SSN. The wavelet spectrum of the signal variation due to Sunspot Number (SSN), Total Solar Irradiance (TSI) and Mg II Index (proxy for solar UV radiation) show peaks corresponding to 11-year cycle of the solar parameters. The TOC, taken from TOMS satellite, also shows a clear 11-year solar signal in all the region. But the spectral analysis show a random signal variation, including a 11-year signal at 30⁰S. At Kolkata, a significant positive correlation is obtained between TOC and SSN as also shown by wavelet spectral analysis. The TOR, taken from calibrated GOME and OMI/AURA satellite data analysis, show no positive 11-year signal feedback at all regions, except 30⁰S. A clear positive 11-year solar signal is found to be observed over this tropical southern hemisphere. The sea-surface temperature (SST), taken from NOAA Optimum Interpolation 1⁰x 1⁰ NCEP

  12. Analysis of a long-term dataset of global and diffuse horizontal irradiance at northeastern Spain for energy applications

    NASA Astrophysics Data System (ADS)

    Rincón, A.; Jorba, O.; Baldasano, J. M.

    2009-04-01

    An accurate knowledge of the global, diffuse and direct beam irradiance at specific geographical locations in high temporal and spatial resolutions is a must requirement for the development of solar energy applications. Most available datasets comprise global irradiance, but it is not the case for diffuse or direct beam components. These two latter are of great importance when converting the data into declined impinging irradiance or specific components like for example daylight or available energy, utilized to assess the feasibility of solar energy systems. The surface irradiance presents a high temporal variability, and analysis of high frequency sampling datasets provides very valuable information for energy applications. In this contribution, we present an analysis of a long-term dataset of ground measurements of global and diffuse irradiance over a period of 22 years (1986-2007) at northeastern Spain. Ten Irradiance stations of the Catalan Energy Institute (ICAEN) solar network are analyzed to assess the temporal and spatial fluctuations and trends of the ground solar irradiance. The stations provide 5-minutes global and diffuse irradiance over a period of 22 years. In a first step, a quality control testing is applied over our datasets based on QCRad methodology (Long and Shi, 2006; Long and Dutton, 2002). The total amount of valid data from sunrise to sunset is over 6 Million data for global irradiance (87%) and over 4.5 Million data for diffuse irradiance (62%). Then, a comparison and validation of global-to-beam irradiance conversion models is performed to estimate beam irradiance and daily sunshine duration through the clearness index (Kt) and diffuse fraction (Kd). The results allow us to provide a representative solar radiation year which sums up all the climatic information characterizing an annual radiation cycle. REFERENCES Long CN. and Shi Y., 2006. "The QCRad Value Added Product: Surface Radiation Measurement Quality Control Testing, Including

  13. Two-parameter model of total solar irradiance variation over the solar cycle

    NASA Technical Reports Server (NTRS)

    Pap, Judit M.; Willson, Richard C.; Donnelly, Richard F.

    1991-01-01

    Total solar irradiance measured by the SMM/ACRIM radiometer is modelled from the Photometric Sunspot Index and the Mg II core-to-wing ratio with multiple regression analysis. Considering that the formation of the Mg II line is very similar to that of the Ca II K line, the Mg II core-to-wing ratio, measured by the Nimbus-7 and NOAA9 satellites, is used as a proxy for the bright magnetic elements, including faculae and the magnetic network. It is shown that the relationship between the variations in total solar irradiance and the above solar activity indices depends upon the phase of the solar cycle. Thus, a better fit between total irradiance and its model estimates can be achieved if the irradiance models are calculated for the declining portion and minimum of solar cycle 21, and the rising portion of solar cycle 22, respectively. There is an indication that during the rising portion of solar cycle 22, similar to the maximum time of solar cycle 21, the modelled total irradiance values underestimate the measured values. This suggests that there is an asymmetry in the long-term total irradiance variability.

  14. LISIRD: Where to go for Solar Irradiance Data

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Pankratz, C. K.; Lindholm, D. M.; Snow, M.; Knapp, B.; Woodraska, D.; Templeman, B.; Woods, T.; Eparvier, F.; Fontenla, J.; Harder, J.; Bill, M.

    2008-12-01

    LASP, the Laboratory for Atmospheric and Space Physics, has been providing web access to solar irradiance measurements, reference spectra, composites and model data covering the solar spectrum from .1 to 2400 nm through LISIRD, the LASP Interactive Solar IRradiance Datacenter. No single instrument can measure the solar spectral irradiance from X-rays to the IR, but the ensemble of LASP instruments can. LISIRD uses a single interface to provide easy, logical access to a variety of mission data, merged in time and wavelength. Daily space weather measurements are available, including total solar irradiance (TSI), Lyman Alpha (121 nm), Magnesium II Index (280 nm), He II (30.4 nm), FE XVI (33.5 nm), and the FUV continuum (145 to 165 nm). More recently, LISIRD has recently added the Whole Heliosphere Interval (WHI) Solar Irradiance time series, which provides a quiet sun reference spectra for the period of April 10-16 of 2008. LISIRD also recently added a composite solar spectral irradiance product over the range of 120 to 400 nm for the time period from November 8, 1978 to August 1, 2005. This product, created by Mathew Deland at SSAI, merges data from six different satellites into a single SSI product. And, we are currently adding a time series for daily solar spectral irradiance from 1950 to 2006, created by Judith Lean of the Naval Research Lab. This product adjusts observed irradiance for a given wavelength with parameters that represent known sources of variability at that wavelength. LISIRD remains committed to improving data access in a variety of ways. We are planning and developing a means for the broader community of scientists to easily determine data availability for a particular date range without having to know mission or instrument details. Improved data subsetting will allow users to request only the time range or spectra that users need, making data management generally easier. We expect to continue to enhance our data offerings. Future vision for

  15. A Preliminary Analysis of Solar Irradiance Measurements at TNB Solar Research Centre for Optimal Orientation of Fixed Solar Panels installed in Selangor Malaysia

    NASA Astrophysics Data System (ADS)

    Hashim, A. M.; Ali, M. A. M.; Ahmad, B.; Shafie, R. M.; Rusli, R.; Aziz, M. A.; Hassan, J.; Wanik, M. Z. C.

    2013-06-01

    The well established rule for orienting fixed solar devices is to face south for places in the northern hemisphere and northwards for the southern hemisphere. However for regions near the equator such as in Selangor Malaysia, the position of the sun at solar noon is always near zenith both to the north and south depending on location and month of year. This paper reports an analysis of global solar radiation data taken at TNB Solar Research Centre, Malaysia. The solar radiation is measured using both shaded and exposed pyranometers together with a pyrheliometer which is mounted on a sun-tracker. The analysis on the solar measurements show that a near regular solar irradiation pattern had occurred often enough during the year to recommend an optimum azimuth orientation of installing the fixed solar panels tilted facing towards east. Even though all the solar measurements were done at a single location in TNBR Solar Research Centre at Bangi, for locations near the equator with similar weather pattern, the recommended azimuth direction of installing fixed solar panels and collectors tilted eastward will also be generally valid.

  16. Principal Component Analysis of Arctic Solar Irradiance Spectra

    NASA Technical Reports Server (NTRS)

    Rabbette, Maura; Pilewskie, Peter; Gore, Warren J. (Technical Monitor)

    2000-01-01

    During the FIRE (First ISCPP Regional Experiment) Arctic Cloud Experiment and coincident SHEBA (Surface Heat Budget of the Arctic Ocean) campaign, detailed moderate resolution solar spectral measurements were made to study the radiative energy budget of the coupled Arctic Ocean - Atmosphere system. The NASA Ames Solar Spectral Flux Radiometers (SSFRs) were deployed on the NASA ER-2 and at the SHEBA ice camp. Using the SSFRs we acquired continuous solar spectral irradiance (380-2200 nm) throughout the atmospheric column. Principal Component Analysis (PCA) was used to characterize the several tens of thousands of retrieved SSFR spectra and to determine the number of independent pieces of information that exist in the visible to near-infrared solar irradiance spectra. It was found in both the upwelling and downwelling cases that almost 100% of the spectral information (irradiance retrieved from 1820 wavelength channels) was contained in the first six extracted principal components. The majority of the variability in the Arctic downwelling solar irradiance spectra was explained by a few fundamental components including infrared absorption, scattering, water vapor and ozone. PCA analysis of the SSFR upwelling Arctic irradiance spectra successfully separated surface ice and snow reflection from overlying cloud into distinct components.

  17. Characteristics of the global ionospheric electron density during the extreme solar minimum condition

    NASA Astrophysics Data System (ADS)

    Jee, G.

    2010-12-01

    The last solar minimum period between the cycles 23 and 24 was anomalously low and lasted long compared with previous solar minimums. The resulting solar irradiance received in the Earth’s upper atmosphere was extremely low and therefore it can readily be expected that the upper atmosphere should be greatly affected by this low solar activity. There were several studies on this effect but many of them was on the thermosphere (Solomon et al., 2010; Emmert et al., 2010). According to these studies, the thermospheric temperature was cooler and the density was lower than the previous solar minimum periods. The low solar irradiance during the last solar minimum should also affect the ionosphere, not only via the lower ion-electron production due to the lower EUV radiation but also through the interactions with the thermosphere that was already influenced by the low solar irradiance. In this study, we utilized the measurements of total electron content (TEC) from the TOPEX and JASON satellites during the periods of 1992 to 2010, which includes the last two solar minimums, in order to investigate the differences between the ionospheric behaviors during the two minimum conditions. Initially the levels of the global ionization will be examined during these minimum periods and then further discussions will be continued on the details of the ionospheric behavior such as the seasonal and storm-time variations.

  18. High-resolution global irradiance monitoring from photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency

  19. 1/f noise in the UV solar spectral irradiance

    NASA Astrophysics Data System (ADS)

    Varotsos, Costas A.; Melnikova, Irina; Efstathiou, Maria N.; Tzanis, Chris

    2013-02-01

    The investigation of the intrinsic properties of the solar spectral irradiance as a function of the ultraviolet (UV) wavelength is attempted by exploiting rare observations performed at the Villard St. Pancrace station of the Lille University of Sciences and Technology ranging from 278 to 400 nm with a step of 0.05 nm every half an hour from nearly sunrise to sunset. To achieve this goal, the modern method of the detrended fluctuation analysis was applied on the solar spectral irradiance values versus wavelength. This analysis revealed that the solar incident flux at the top of the atmosphere and the solar spectral irradiance at the ground during two overcast sky days fluctuate with the UV wavelength exhibiting persistent long-range power-law behavior. More interestingly, the exponent of the power-law relationship between the fluctuations of the solar spectral irradiance versus UV wavelength at both the top of the atmosphere and the ground is consistently close to unity (of 1/f-type) throughout the day. This 1/f behavior has been detected in many complex dynamical systems, but despite much effort to derive a theory for its widespread occurrence in nature, it remains unexplained so far. According to the above-mentioned findings we speculate that the 1/f property of the incident solar UV flux at the top of the atmosphere could probably drive both the 1/f behavior depicted in the atmospheric components and the solar UV irradiance at the Earth's surface. The latter could influence the UV-sensitive biological ecosystems, giving rise to a 1/f-type variability in the biosphere, which has already been proven by recent observational data. We finally propose that Wien approximation could be multiplied by a 1/f function of wavelength (e.g., of the type of the fractional Brownian motion) in order to reproduce the aforementioned 1/f feature of the solar UV flux.

  20. Vacuum-ultraviolet instrumentation for solar irradiance and thermospheric airglow

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Rottman, Gary J.; Bailey, Scott M.; Solomon, Stanley C.

    1994-02-01

    A NASA sounding rocket experiment was developed to study the solar extreme-ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far-ultraviolet (FUV) region were measured remotely from a sounding rocket on October 27, 1992. The rocket experiment also includes EUV instruments from Boston University, but only the National Center for Atmospheric Research's (NCAR)/University of Colorado's (CU) four solar instruments and one airglow instrument are discussed. The primary solar EUV instrument is a 0.25-m Rowland circle EUV spectrograph that has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2-nm resolution. Another solar irradiance instrument is an array of six silicon soft x-ray (XUV) photodiodes, each having different metallic filters coated directly on the photodiodes. This photodiode system provides a spectral coverage from 0.1 to 80 nm with approximately 15-nm resolution. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. This avalanche photodiode package measures the XUV photon energy, providing a solar spectrum from 50 to 12,400 eV (25 to 0.1 nm) with an energy resolution of about 50 eV. The fourth solar instrument is an XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc sec. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2-nm spectral resolution. The photon-counting CODACON detectors are used for three of these instruments and consist of coded arrays of anodes behind microchannel plates.

  1. In Search of Sun-Climate Connection Using Solar Irradiance Measurements and Climate Records

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.; Kyle, H. Lee

    2000-01-01

    The Earth's temperature has risen approximately 0.5 degree-C in the last 150 years. Because the atmospheric concentration of carbon dioxide has increased nearly 30% since the industrial revolution, a common conjecture, supported by various climate models, is that anthropogenic greenhouse gases have contributed to global warming. Another probable factor for the warming is the natural variation of solar irradiance. Although the variation is as small as 0.1 % it is hypothesized that it contributes to part of the temperature rise. Warmer or cooler ocean temperature at one part of the Globe may manifest as abnormally wet or dry weather patterns some months or years later at another part of the globe. Furthermore, the lower atmosphere can be affected through its coupling with the stratosphere, after the stratospheric ozone absorbs the ultraviolet portion of the solar irradiance. In this paper, we use wavelet transforms based on Morlet wavelet to analyze the time-frequency properties in several datasets, including the Radiation Budget measurements, the long-term total solar irradiance time series, the long-term temperature at two locations for the North and the South Hemisphere. The main solar cycle, approximately 11 years, are identified in the long-term total solar irradiance time series. The wavelet transform of the temperature datasets show annual cycle but not the solar cycle. Some correlation is seen between the length of the solar cycle extracted from the wavelet transform and the North Hemisphere temperature time series. The absence of the 11-year cycle in a time series does not necessarily imply that the geophysical parameter is not affected by the solar cycle; rather it simply reflects the complex nature of the Earth's response to climate forcings.

  2. Spectrum line intensity as a surrogate for solar irradiance variations.

    PubMed

    Livingston, W C; Wallace, L; White, O R

    1988-06-24

    Active Cavity Radiometer Irradiance Monitor (ACRIM) solar constant measurements from 1980 to 1986 are compared with ground-based, irradiance spectrophotometry of selected Fraunhofer lines. Both data sets were identically sampled and smoothed with an 85-day running mean, and the ACRIM total solar irradiance (S) values were corrected for sunspot blocking (S(c)). The strength of the mid-photospheric manganese 539.4-nanometer line tracks almost perfectly with ACRIM S(e), Other spectral features formed high in the photosphere and chromosphere also track well. These comparisons independently confirm the variability in the ACRIM S(e), signal, indicate that the source of irradiance is faculae, and indicate that ACRIM S(e), follows the 11-year activity cycle. PMID:17842428

  3. Measuring Broadband IR Irradiance in the Direct Solar Beam (Presentation)

    SciTech Connect

    Reda, I.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 um and 50 um, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and are calibrated with traceability to consensus reference, yet are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degrees to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  4. Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster)

    SciTech Connect

    Reda, I.; Konings, J.; Xie, Y.; Dooraghi, M.; Sengupta, M.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 micrometers to 3 micrcometers, while the present photovoltaic cells are limited to approximately 0.3 micrometers to 1 micrometers. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus reference, yet calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degres to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  5. Modeling the spectral solar irradiance in the SOTERIA Project Framework

    NASA Astrophysics Data System (ADS)

    Vieira, Luis Eduardo; Dudok de Wit, Thierry; Kretzschmar, Matthieu; Cessateur, Gaël

    The evolution of the radiative energy input is a key element to understand the variability of the Earth's neutral and ionized atmospheric components. However, reliable observations are limited to the last decades, when observations realized above the Earth's atmosphere became possible. These observations have provide insights about the variability of the spectral solar irradiance on time scales from days to years, but there is still large uncertainties on the evolu-tion on time scales from decades to centuries. Here we discuss the physics-based modeling of the ultraviolet solar irradiance under development in the Solar-Terrestrial Investigations and Archives (SOTERIA) project framework. In addition, we compare the modeled solar emission with variability observed by LYRA instrument onboard of Proba2 spacecraft.

  6. Solar-Stellar Irradiance Comparison Experiment 1. II - Instrument calibrations

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Rottman, Gary J.; Ucker, Gregory J.

    1993-01-01

    The science objective for the Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) is to accurately measure the full disk solar spectral irradiance in the ultraviolet (UV) spectral region over a long time period. The SOLSTICE design was driven by the requirement for long-term, precise solar photometry conducted from space. The SOLSTICE 1 is on the Upper Atmosphere Research Satellite (UARS), launched in September 1991 with the possibility for a 10-year operational mission. The in-flight calibration for SOLSTICE to meet its primary objective is the routine measurements of the UV radiation from a set of early-type stars, using the identical optical elements employed for the solar observations. The extensive preflight calibrations of the instrument have yielded a precise characterization of the three SOLSTICE channels. Details of the preflight and in-flight SOLSTICE calibrations are discussed in this paper.

  7. The solar spectral irradiance 1200-3184 a near solar maximum, 15 July 1980

    NASA Technical Reports Server (NTRS)

    Mount, G. H.; Rottman, G. J.

    1980-01-01

    Full disk solar spectral irradiances near solar maximum were obtained in the spectral range 1200 to 3184 A at a spectral resolution of approximately 1 A from rocket observations above White Sands Missile Range. Comparison with measurements made during solar minimum confirm a large increase at solar maximum in the solar irradiance near 1200 A with no change within the measurement errors near 2000 A. Irradiances in the range 1900 to 2100 A are in excellent agreement with previous measurements, and those in the 2100 to 2500 A range are lower than separate previous results in this range. Agreement is found with previous values 2500 to 2900 A A, and then fall below those values 2900 to 3184 A.

  8. Lyman alpha solar spectral irradiance line profile observations and models

    NASA Astrophysics Data System (ADS)

    Snow, Martin; Machol, Janet; Quemerais, Eric; Curdt, Werner; Kretschmar, Matthieu; Haberreiter, Margit

    2016-04-01

    Solar lyman alpha solar spectral irradiance measurements are available on a daily basis, but only the 1-nm integrated flux is typically published. The International Space Science Institute (ISSI) in Bern, Switzerland has sponsored a team to make higher spectral resolution data available to the community. Using a combination of SORCE/SOLSTICE and SOHO/SUMER observations plus empirical and semi-empirical modeling, we will produce a dataset of the line profile. Our poster will describe progress towards this goal.

  9. A Change in the Solar He II EUV Global Network Structure as an Indicator of the Geo-Effectiveness of Solar Minima

    NASA Technical Reports Server (NTRS)

    Didkovsky, L.; Gurman, J. B.

    2013-01-01

    Solar activity during 2007 - 2009 was very low, causing anomalously low thermospheric density. A comparison of solar extreme ultraviolet (EUV) irradiance in the He II spectral band (26 to 34 nm) from the Solar Extreme ultraviolet Monitor (SEM), one of instruments on the Charge Element and Isotope Analysis System (CELIAS) on board the Solar and Heliospheric Observatory (SOHO) for the two latest solar minima showed a decrease of the absolute irradiance of about 15 +/- 6 % during the solar minimum between Cycles 23 and 24 compared with the Cycle 22/23 minimum when a yearly running-mean filter was used. We found that some local, shorter-term minima including those with the same absolute EUV flux in the SEM spectral band show a higher concentration of spatial power in the global network structure from the 30.4 nm SOHO/Extreme ultraviolet Imaging Telescope (EIT) images for the local minimum of 1996 compared with the minima of 2008 - 2011.We interpret this higher concentration of spatial power in the transition region's global network structure as a larger number of larger-area features on the solar disk. These changes in the global network structure during solar minima may characterize, in part, the geo-effectiveness of the solar He II EUV irradiance in addition to the estimations based on its absolute levels.

  10. Measurement and modeling of solar irradiance components on horizontal and tilted planes

    SciTech Connect

    Padovan, Andrea; Col, Davide del

    2010-12-15

    In this work new measurements of global and diffuse solar irradiance on the horizontal plane and global irradiance on planes tilted at 20 and 30 oriented due South and at 45 and 65 oriented due East are used to discuss the modeling of solar radiation. Irradiance data are collected in Padova (45.4 N, 11.9 E, 12 m above sea level), Italy. Some diffuse fraction correlations have been selected to model the hourly diffuse radiation on the horizontal plane. The comparison with the present experimental data shows that their prediction accuracy strongly depends on the sky characteristics. The hourly irradiance measurements taken on the tilted planes are compared with the estimations given by one isotropic and three anisotropic transposition models. The use of an anisotropic model, based on a physical description of the diffuse radiation, provides a much better accuracy, especially when measurements of the diffuse irradiance on the horizontal plane are not available and thus transposition models have to be applied in combination with a diffuse fraction correlation. This is particularly significant for the planes oriented away from South. (author)

  11. Stratospheric ozone response to a solar irradiance reduction in a quadrupled CO2 environment

    NASA Astrophysics Data System (ADS)

    Jackman, Charles H.; Fleming, Eric L.

    2014-07-01

    We used the Goddard Space Flight Center (GSFC) global two-dimensional (2D) atmospheric model to investigate the stratospheric ozone response to a proposed geoengineering activity wherein a reduced top-of-atmosphere (TOA) solar irradiance is imposed to help counteract a quadrupled CO2 atmosphere. This study is similar to the Geoengineering Model Intercomparison Project (GeoMIP) Experiment G1. Three primary simulations were completed with the GSFC 2D model to examine this possibility: (A) a pre-industrial atmosphere with a boundary condition of 285 ppmv CO2 (piControl); (B) a base future atmosphere with 1140 ppmv CO2 (abrupt4xCO2); and (C) a perturbed future atmosphere with 1140 ppmv CO2 and a 4% reduction in the TOA total solar irradiance (G1). We found huge ozone enhancements throughout most of the stratosphere (up to 40%) as a result of a large computed temperature decrease (up to 18 K) when CO2 was quadrupled (compare simulation abrupt4xCO2 to piControl). Further, we found that ozone will additionally increase (up to 5%) throughout most of the stratosphere with total ozone increases of 1-2.5% as a result of a reduction in TOA total solar irradiance (compare simulation G1 to abrupt4xCO2). Decreases of atomic oxygen and temperature are the main drivers of this computed ozone enhancement from a reduction in TOA total solar irradiance.

  12. Evaluation of the Delta-T SPN1 radiometer for the measurement of solar irradiance components

    NASA Astrophysics Data System (ADS)

    Estelles, Victor; Serrano, David; Segura, Sara; Wood, John; Webb, Nick; Utrillas, Maria Pilar

    2016-04-01

    In this study we analyse the performance of an SPN1 radiometer built by Delta-T Devices Ltd. to retrieve global solar irradiance at ground and its components (diffuse, direct) in comparison with measurements from two Kipp&Zonen CMP21 radiometers and a Kipp&Zonen CHP1 pirheliometer, mounted on an active Solys-2 suntracker at the Burjassot site (Valencia, Spain) using data acquired every minute during years 2013 - 2015. The measurement site is close to sea level (60 m a.s.l.), near the Mediterranean coast (10 km) and within the metropolitan area of Valencia City (over 1.500.000 inhabitants). The SPN1 is an inexpensive and versatile instrument for the measurement of the three components of the solar radiation without any mobile part and without any need to azimuthally align the instrument to track the sun (http://www.delta-t.co.uk). The three components of the solar radiation are estimated from a combination of measurements performed by 7 different miniature thermopiles. The SPN1 pyranometer measures the irradiance between 400 and 2700 nm, and the nominal uncertainty for the individual readings is about 8% ± 10 W/m2 (5% for the daily averages). The pyranometer Kipp&Zonen CMP21 model is a secondary standard for the measurement of broadband solar global irradiance in horizontal planes. Two ventilated CMP21 are used for the measurement of the global and diffuse irradiances. The expected total daily uncertainty of the radiometer is estimated to be 2%. The pirheliometer Kipp&Zonen CHP1 is designed for the measurement of the direct irradiance. The principles are similar to the CMP21 pyranometer. The results of the comparison show that the global irradiance from the SPN1 compares very well with the CMP21, with absolute RMSD and MBD differences below the combined uncertainties (15 W/m2 and -5.4 W/m2, respectively; relative RMSD of 3.1%). Both datasets are very well correlated, with a correlation coefficient higher than 0.997 and a slope and intercept very close to 1 and 0

  13. Pollen chemistry as a tool for reconstructing past solar and ultraviolet irradiance

    NASA Astrophysics Data System (ADS)

    Jardine, Phillip; Fraser, Wesley; Lomax, Barry; Gosling, William

    2016-04-01

    Despite the importance of solar irradiance as a dominant control on Earth's energy budget, no proxy has been developed that can provide records on timescales of over 10 000 years. No independent empirical record of solar irradiance therefore exists prior to the Holocene, limiting our understanding of the relationships between solar energy inputs, global climate and biotic change over longer timescales. Here, we present a novel proxy based on the chemical composition of sporopollenin, the primary component of the outer walls of pollen and spores (sporomorphs). Sporopollenin chemistry is responsive to levels of ultraviolet-B (UV-B) radiation exposure, via a concomitant change in the concentration of phenolic compounds. This relationship offers the possibility of using fossil sporomorph chemistry as a proxy for past UV-B flux, and by extension total solar irradiance (TSI). Fourier Transform infrared (FTIR) spectroscopy provides an efficient, economical and non-destructive method for measuring phenolic compound concentration on small sample sizes (≤30 sporomorphs/sample). The high preservation potential of sporomorphs in the geologic record, and the conserved nature of sporopollenin chemistry and UV-B response across the Embryophyta, means that this new proxy has the potential to reconstruct UV-B and TSI flux over much longer timescales than has previously been possible. We demonstrate the utility of this proxy with two chemopalynological datasets. Orbital cyclicity is reconstructed using grass pollen from a 150 000 year long sediment record from Lake Bosumtwi in Ghana, and changes in solar output over the last 600 years are reconstructed using pine pollen from Nar Lake in Turkey. This proxy provides a new approach for quantifying and understanding the relationship between UV-B flux, solar insolation and past climate. The unpicking of this information offers the tantalising potential to determine how changes in solar irradiance have driven long-term changes in

  14. Total and Spectral Solar Irradiance Sensor (TSIS) Project Overview

    NASA Technical Reports Server (NTRS)

    Carlisle, Candace; Wedge, Ronnice; Wu, Dong; Stello, Harry; Robinson, Renee

    2015-01-01

    The main objective of the Total and Spectral solar Irradiance Sensor (TSIS) is to acquire measurements to determine the direct and indirect effects of solar radiation on climate. TSIS total solar irradiance measurements will extend a 37-year long uninterrupted measurement record of incoming solar radiation, the dominant energy source driving the Earths climate and the most precise indicator of changes in the Suns energy output. TSIS solar spectral irradiance measurements will determine the regions of the Earths multi-layered atmosphere that are affected by solar variability, from which the solar forcing mechanisms causing changes in climate can be quantified. TSIS includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload. The TSIS TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. TSIS was originally planned for the nadir-pointing National Polar-orbiting Operational Environmental Satellite System (NPOESS) spacecraft. The TSIS instrument passed a Critical Design Review (CDR) for NPOESS in December 2009. In 2010, TSIS was re-planned for the Joint Polar Satellite System (JPSS) Polar Free Flyer (PFF). The TSIS TIM, SIM, and associated electronics were built, tested, and successfully completed pre-ship review as of December 2013.In early 2014, NOAA and NASA agreed to fly TSIS on the International Space Station (ISS). In the FY16 Presidents Budget, NASA assumes responsibility for the TSIS mission on ISS. The TSIS project includes requirements, interface, design, build and test of the TSIS payload, including an updated pointing system, for accommodation on the ISS. It takes advantage of the prior development of the TSIS sensors and electronics. The International Space Station (ISS) program contributions include launch services and robotic installation of the TSIS payload

  15. Evolution of the solar irradiance during the Holocene

    NASA Astrophysics Data System (ADS)

    Vieira, L. E. A.; Solanki, S. K.; Krivova, N. A.; Usoskin, I.

    2011-07-01

    Context. Long-term records of solar radiative output are vital for understanding solar variability and past climate change. Measurements of solar irradiance are available for only the last three decades, which calls for reconstructions of this quantity over longer time scales using suitable models. Aims: We present a physically consistent reconstruction of the total solar irradiance for the Holocene. Methods: We extend the SATIRE (Spectral And Total Irradiance REconstruction) models to estimate the evolution of the total (and partly spectral) solar irradiance over the Holocene. The basic assumption is that the variations of the solar irradiance are due to the evolution of the dark and bright magnetic features on the solar surface. The evolution of the decadally averaged magnetic flux is computed from decadal values of cosmogenic isotope concentrations recorded in natural archives employing a series of physics-based models connecting the processes from the modulation of the cosmic ray flux in the heliosphere to their record in natural archives. We then compute the total solar irradiance (TSI) as a linear combination of the jth and jth + 1 decadal values of the open magnetic flux. In order to evaluate the uncertainties due to the evolution of the Earth's magnetic dipole moment, we employ four reconstructions of the open flux which are based on conceptually different paleomagnetic models. Results: Reconstructions of the TSI over the Holocene, each valid for a different paleomagnetic time series, are presented. Our analysis suggests that major sources of uncertainty in the TSI in this model are the heritage of the uncertainty of the TSI since 1610 reconstructed from sunspot data and the uncertainty of the evolution of the Earth's magnetic dipole moment. The analysis of the distribution functions of the reconstructed irradiance for the last 3000 years, which is the period that the reconstructions overlap, indicates that the estimates based on the virtual axial dipole

  16. Solar Spectral Proxy Irradiance from GOES (SSPRING): a model for solar EUV irradiance

    NASA Astrophysics Data System (ADS)

    Suess, Katherine; Snow, Martin; Viereck, Rodney; Machol, Janet

    2016-02-01

    Several currently operating instruments are able to measure the full EUV spectrum at sufficient wavelength resolution for use in upper-atmosphere modeling, the effects of space weather, and modeling satellite drag. However, no missions are planned at present to succeed the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) and Solar Dynamics Observatory (SDO) missions, which currently provide these data sources. To develop a suitable replacement for these measurements, we use two broadband EUV channels on the NOAA GOES satellites, the magnesium core-to-wing ratio (Mg II index) from the SOlar Radiation and Climate Experiment (SORCE) as well as EUV and Mg II time averages to model the EUV spectrum from 0.1 to 105 nm at 5-nm spectral resolution and daily time resolution. A Levenberg-Marquardt least squares fitting algorithm is used to determine a coefficient matrix that best reproduces a reference data set when multiplied by input data. The coefficient matrix is then applied to model data outside of the fitting interval. Three different fitting intervals are tested, with a variable fitting interval utilizing all days of data before the prediction date producing the best results. The correlation between the model results and the observed spectrum is found to be above 95% for the 0.1-50 nm range, and between 74% and 95% for the 50-105 nm range. We also find a favorable comparison between our results and the Flare Irradiance Spectral Model (FISM). These results provide a promising potential source for an empirical EUV spectral model after direct EUV measurements are no longer available, and utilize a similar EUV modeling technique as the upcoming GOES-R satellites.

  17. Preliminary Low Temperature Electron Irradiation of Triple Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2007-01-01

    For many years extending solar power missions far from the sun has been a challenge not only due to the rapid falloff in solar intensity (intensity varies as inverse square of solar distance) but also because some of the solar cells in an array may exhibit a LILT (low intensity low temperature) degradation that reduces array performance. Recent LILT tests performed on commercial triple junction solar cells have shown that high performance can be obtained at solar distances as great as approx. 5 AU1. As a result, their use for missions going far from the sun has become very attractive. One additional question that remains is whether the radiation damage experienced by solar cells under low temperature conditions will be more severe than when measured during room temperature radiation tests where thermal annealing may take place. This is especially pertinent to missions such as the New Frontiers mission Juno, which will experience cell irradiation from the trapped electron environment at Jupiter. Recent testing2 has shown that low temperature proton irradiation (10 MeV) produces cell degradation results similar to room temperature irradiations and that thermal annealing does not play a factor. Although it is suggestive to propose the same would be observed for low temperature electron irradiations, this has not been verified. JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature. A fluence of 1E15 1MeV electrons was

  18. SORCE and Future Satellite Observations of Solar Irradiance

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Rottman, G.; Woods, T.; Lawrence, G.; Kopp, G.; Harder, J.; McClintock, W.

    2003-01-01

    With solar activity just passing the maximum of cycle 23, SORCE is beginning a 5 year mission to measure total solar irradiance (TSI) with unprecedented accuracy using phase-sensitive detection, and to measure spectral solar irradiance (SSI) with unprecedented spectral coverage, from 1 to 2000 nm. The new Total Irradiance Monitor (TIM) has 4 active cavity radiometers, any one of which can be used as a fixed-temperature reference against any other that is exposed to the Sun via a shutter that cycles at a rate designed to minimize noise at the shutter frequency. The new Spectral Irradiance Monitor (SIM) is a dual Fery prism spectrometer that can employ either prism as a monochromatic source on the other prism, thus monitoring its transmission during the mission lifetime. Either prism can measure SSI from 200 to 2000 nm, employing the same phase-sensitive electrical substitution strategy as TIM. SORCE also carries dual SOLSTICE instruments to cover the spectral range 100-320 nm, similar to the instruments onboard UARS, and also an XUV Photometer System (XPS) similar to that on TIMED. SSI has now been added to TSI as a requirement of EOS and NPOESS, because different spectral components drive different components of the climate system - UV into upper atmosphere and stratospheric ozone, IR into tropospheric water vapor and clouds, and Visible into the oceans and biosphere. Succeeding satellite missions being planned for 2006 and 2011 will continue to monitor these critical solar variables.

  19. 1978-1988 Total Solar Irradiance (TSI) Variability Trends

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Priestley, Kory J.; Wilson, Robert S.; Al-Hajjah, Aiman; Paden, Jack; Pandey, Dhirendra K.; Thomas, Susan

    1999-01-01

    Total solar irradiance (TSI), normalized to the mean earth-sun distance, is analyzed to assess long-term solar variability which may affect climate. TSI data sets are reviewed primarily from the 1984-1999 Earth Radiation Budgets Satellite (ERBS), 1978-1993 Nimbus7, 1980-1989 Solar Maximum Mission (SMM), 19911998 Upper Atmospheric Research Satellite (UARS), and 1996-1998 Solar and Heliospheric Observatory (SOHO)/ Variability of solar IRradiance and Gravity Oscillations (VIRGO) Spacecraft missions. The data sets indicate that 1365 W/sq m [Watts per meter square] is the most likely TSI amplitude at minimum solar magnetic activity as indicated by minimum sunspot numbers. The TSI long-term variability component was found to vary with a period of approximately 10 years and with an amplitude of 2 W/sq m. An empirical TSI fit model, based upon 10.7-cm solar radio fluxes and prompt photometric sunspot indices, was used to characterize TSI variability. Comparisons among TSI measurements and empirical fit trends are reviewed as well as inconsistencies among current spacecraft TSI data set trends. The 1996-1998, SOHO/VIRGO measurement indicate stronger TSI increasing trends than those suggested by the corresponding ERBS and UARS measurement and by the empirical model fit. 1978-1999 TSI data sets are analyzed to identify the probable existence of another long-term TSI variability component.

  20. Globally propagating waves in the solar corona

    NASA Astrophysics Data System (ADS)

    Warmuth, Alexander

    2011-12-01

    High-cadence space-based observations, available for over a decade now, have revealed globally propagating wave-like disturbances in the solar corona. These coronal waves have now been imaged in a wide range of spectral channels, yielding a wealth of information. Still, no consensus on their physical nature has been reached yet. While many findings are consistent with fast-mode MHD waves and/or shocks, other characteristics have given rise to alternative models which involve magnetic reconfiguration in the framework of an erupting coronal mass ejection. In this paper, the observational signatures of coronal waves will be reviewed, and the different physical interpretations of coronal waves and how they are motivated by observations will be discussed. Finally, the potential of using coronal waves as a diagnostic tool for the corona will be shown.

  1. Rocket measurements of the solar spectral irradiance during solar minimum, 1972-1977

    NASA Technical Reports Server (NTRS)

    Rottman, G. J.

    1981-01-01

    Five sounding rocket experiments conducted between December 1972 and March 1977, a period spanning solar minimum between cycles 20 and 21, provide full disc solar irradiance data in the spectral range 120-190 nm. The five measurements have been combined to give a solar minimum reference table. This spectrum is compared with other measurements obtained during the same time period. A table of intensities for the strong emission lines at wavelengths between 120 and 190 nm is presented.

  2. Radiation scales on which standard values of the solar constant and solar spectral irradiance are based

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1972-01-01

    The question of radiation scales is critically examined. There are two radiation scales which are of fundamental validity and there are several calibration standards and radiation scales which have been set up for practical convenience. The interrelation between these scales is investigated. It is shown that within the limits of accuracy of irradiance measurements in general and solar irradiance measurements in particular, the proposed standard values of the solar constant and solar spectrum should be considered to be on radiation scales of fundamental validity; those based on absolute electrical units and on the thermodynamic Kelvin temperature scale.

  3. The Measurement of the Solar Spectral Irradiance Variability during the Solar Cycle 24 using SOLAR/SOLSPEC on ISS

    NASA Astrophysics Data System (ADS)

    Bolsée, David; Pereira, Nuno; Pandey, Praveen; Cessateur, Gaël; Gillotay, Didier; Foujols, Thomas; Hauchecorne, Alain; Bekki, Slimane; Marchand, Marion; Damé, Luc; Meftah, Mustapha; Bureau, Jerôme

    2016-04-01

    Since April 2008, SOLAR/SOLSPEC measures the Solar Spectral Irradiance (SSI) from 166 nm to 3088 nm. The instrument is a part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station. As the SSI is a key input for the validation of solar physics models, together with playing a role in the climate system and photochemistry of the Earth atmosphere, SOLAR/SOLSPEC spectral measurements becomes important. In this study, the in-flight operations and performances of the instrument -including the engineering corrections- will be presented for seven years of the SOLAR mission. Following an accurate absolute calibration, the SSI variability in the UV as measured by SOLAR/SOLSPEC in the course of the solar cycle 24 will be presented and compared to other instruments. The accuracy of these measurements will be also discussed here.

  4. Influence of synoptic weather patterns on solar irradiance variability in Europe

    NASA Astrophysics Data System (ADS)

    Parding, Kajsa; Hinkelman, Laura; Liepert, Beate; Ackerman, Thomas; Dagestad, Knut-Frode; Asle Olseth, Jan

    2014-05-01

    Solar radiation is important for many aspects of existence on Earth, including the biosphere, the hydrological cycle, and creatures living on the planet. Previous studies have reported decadal trends in observational records of surface shortwave (SW) irradiance around the world, too strong to be caused by varying solar output. These observed decadal trends have been dubbed "solar dimming and brightening" and are believed to be related to changes in atmospheric aerosols and cloud cover. Because the observed solar variability coincides with qualitative air pollution histories, the dimming and brightening have become almost synonymous with shortwave attenuation by anthropogenic aerosols. However, there are indications that atmospheric circulation patterns have influenced the dimming and brightening in some regions, e.g., Alaska and Scandinavia. In this work, we focus on the role of atmospheric circulation patterns in modifying shortwave irradiance. An examination of European SW irradiance data from the Global Energy Balance Archive (GEBA) shows that while there are periods of predominantly decreasing (~1970-1985) and increasing (~1985-2007) SW irradiance, the changes are not spatially uniform within Europe and in a majority of locations not statistically significant. To establish a connection between weather patterns and sunshine, regression models of SW irradiance are fitted using a daily classification of European weather called Grosswetterlagen (GWL). The GWL reconstructions of shortwave irradiance represent the part of the solar variability that is related to large scale weather patterns, which should be effectively separated from the influence of varying anthropogenic aerosol emissions. The correlation (R) between observed and reconstruced SW irradiance is between 0.31 and 0.75, depending on station and season, all statistically significant (p<0.05, estimated with a bootstrap test). In central and eastern parts of Europe, the observed decadal SW variability is

  5. Annealing characteristics of irradiated hydrogenated amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Payson, J. S.; Abdulaziz, S.; Li, Y.; Woodyard, J. R.

    1991-01-01

    It was shown that 1 MeV proton irradiation with fluences of 1.25E14 and 1.25E15/sq cm reduces the normalized I(sub SC) of a-Si:H solar cell. Solar cells recently fabricated showed superior radiation tolerance compared with cells fabricated four years ago; the improvement is probably due to the fact that the new cells are thinner and fabricated from improved materials. Room temperature annealing was observed for the first time in both new and old cells. New cells anneal at a faster rate than old cells for the same fluence. From the annealing work it is apparent that there are at least two types of defects and/or annealing mechanisms. One cell had improved I-V characteristics following irradiation as compared to the virgin cell. The work shows that the photothermal deflection spectroscopy (PDS) and annealing measurements may be used to predict the qualitative behavior of a-Si:H solar cells. It was anticipated that the modeling work will quantitatively link thin film measurements with solar cell properties. Quantitative predictions of the operation of a-Si:H solar cells in a space environment will require a knowledge of the defect creation mechanisms, defect structures, role of defects on degradation, and defect passivation and annealing mechanisms. The engineering data and knowledge base for justifying space flight testing of a-Si:H alloy based solar cells is being developed.

  6. Solar Cycle Spectral Irradiance Variation and Stratospheric Ozone

    NASA Astrophysics Data System (ADS)

    Stolarski, R. S.; Swartz, W. H.; Jackman, C. H.; Fleming, E. L.

    2011-12-01

    Recent measurements from the SIM instrument on the SORCE satellite have been interpreted by Harder et al (Geophys. Res. Lett., 36, L07801, doi:10.1029/2008GL036797, 2009) as implying a different spectral irradiance variation over the solar cycle than that put forward by Lean (Geophys. Res. Lett., 27, 2425-2428, 2000). When we inserted this new wavelength dependent solar cycle variation into our 3D CCM we found a different solar cycle dependence of the ozone concentration as a function of altitude from that we derived using the traditional Lean wavelength dependence. Examination of these results led us to realize that the main issue is the solar cycle variation of radiation at wavelengths less than 240 nm versus the solar cycle variation of radiation at wavelengths between 240 nm and 300 nm. The impact of wavelengths less than 240 nm occurs through photodissociation of O2 leading to the production of ozone. The impact of wavelengths between 240 nm and 300 nm occurs through photodissociation of O3 leading to an increase in O atoms and enhanced ozone destruction. Thus one wavelength region gives an in-phase relationship of ozone with the solar cycle while the other wavelength region gives an out-of-phase relationship of ozone with the solar cycle. We have used the Goddard two-dimensional (2D) photochemistry transport model to examine this relationship in more detail. We calculate the altitude and latitude sensitivity of ozone to changes in the solar UV irradiance as a function of wavelength. These results can be used to construct the ozone response to arbitrary wavelength dependencies of solar UV variation.

  7. Granulation, Irradiance and Diameter Solar Variations

    NASA Astrophysics Data System (ADS)

    Humberto Andrei, Alexandre; Calderari Boscardin, Sergio; Lousada Penna, Jucira; Reis Neto, Eugenio

    2015-08-01

    Though granulation forms the very face of sun’s photosphere, there are no long term registers of it. Observational and computational hardships to define and follow such highly variable “face” have so far prevented the realization of those registers. However, in recent years a large, coherent body of white light images became available. We retrieved white light, full solar disk images from the BBSO, to a total of 1104 treated ones and 1245 treated and compensated for limb darkening ones. The time coverage extends from the year 2000 to 2005, thus covering the rise and fall of the solar cycle 23. For the analysis, only the central 0.35R portion of the Sun was considered. The central portion was then divided into 100 subsectors, to average and discard the deviant results. The analysis goal is to derive the long term behavior of the photosphere granulation, in broad statistical sense. Three statistics were this way calculated: the standard deviation of the counts (that answers to the grains size); the counts difference between the maximum and minimum tenths (that answers to the grains brightness); the degree of the best fit polynomial along lines and columns (that answers to the grains numbers). According to the statistics, there is no significant variation in the number of grains. The grains sizes are the largest by the solar maximum, in excellent agreement with the maximum of the measured diameter. The grains brightness, on the contrary, is minimum at the solar maximum, and again an excellent agreement is verified with the maximum of the measured diameter.

  8. How does ionospheric TEC vary if solar EUV irradiance continuously decreases?

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing

    2014-12-01

    It is an interesting topic how the ionosphere varies when solar extreme ultraviolet (EUV) irradiance decreases far below normal levels. When extrapolating the total electron content (TEC)-EUV relation, significantly negative TECs at the zero solar EUV point are obtained, which indicates that TEC-EUV variation under extremely low solar EUV (ELSE) conditions does not follow the TEC-EUV trend during normal solar cycles. We suggest that there are four types of nonlinear TEC-EUV variations over the whole EUV range from zero to the solar maximum level. The features of the ionosphere under ELSE conditions were investigated using the TEC extrapolated with cubic TEC-EUV fitting. With the constraint of zero TEC at zero EUV, the cubic fitting takes not only observations but also the trend of the ionosphere (only an extremely weak ionosphere can exist when EUV vanishes) into account. The climatology features of TEC under ELSE conditions may differ from those during normal solar cycles at nighttime. Ionospheric dynamic processes are supposed to still significantly affect the ionosphere under ELSE conditions and induce this difference. With solar EUV decreasing, global electron content (GEC) should vary largely in accordance with the GEC-EUV trend during normal solar cycles, and the seasonal fluctuation of GEC declines, owing to the contraction of the ionosphere.

  9. Total solar irradiance reconstruction using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Tebabal Yirdaw, Ambelu; Damtie, Baylie; Nigussie, Melessew; Bires, Abiyot; Yizengaw, Endawoke

    2015-08-01

    A feed-forward neural network which can account for nonlinear relationships was used to reconstruct total solar irradiance (TSI). A single layer feed forward neural network with back-propagation algorithm have been implemented for reconstructing daily total solar irradiance from daily photometric sunspot index, and core to wing ratio of Mg II index data. The data year from 1978 to 2013 was used for the training, validation and testing purpose. In order to obtain the optimum neural network for TSI reconstruction, the root mean square error (RMSE), mean absolute error (MAE) and regression coefficient have been taken into account. We have carried out the analysis is made by comparing the reconstructed TSI from neural networks (NNs ) and TSI measurement from satellite. We have found out that the reconstructed TSI and the PMOD composite have the correlation coefficient of about R=0.9307 over the span of the recorded, 1978 to 2013. The NNs model output indicates that reconstructed TSI from solar proxies (photometric index and MgII ) can explain 86.6% of the variance of TSI. Neural network is able to recreate TSI observations on a time scale of a day. This reconstructed TSI using NNs further strengthens the view that surface magnetism indeed plays a dominant role in modulating solar irradiance.

  10. Vacuum ultraviolet instrumentation for solar irradiance and thermospheric airglow

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Rottman, Gary J.; Bailey, Scott M.; Solomon, Stanley C.

    1993-08-01

    A NASA sounding rocket experiment was developed to study the solar extreme ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far ultraviolet (FUV) were measured remotely from a sounding rocket on October 27, 1992. The rocket experiment also includes EUV instruments from Boston University (Supriya Chakrabarti), but only the National Center for Atmospheric Research (NCAR)/University of Colorado (CU) four solar instruments and one airglow instrument are discussed here. The primary solar EUV instrument is a 1/4 meter Rowland circle EUV spectrograph which has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2 nm resolution. Another solar irradiance instrument is an array of six silicon XUV photodiodes, each having different metallic filters coated directly on the photodiodes. This photodiode system provides a spectral coverage from 0.1 to 80 nm with about 15 nm resolution. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. This avalanche photodiode package measures the XUV photon energy providing a solar spectrum from 50 to 12,400 eV (25 to 0.1 nm) with an energy resolution of about 50 eV. The fourth solar instrument is an XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc-seconds. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2 nm spectral resolution. The photon-counting CODACON detectors are used for three of these instruments and consist of coded arrays of anodes behind microchannel plates. The one-dimensional and two-dimensional CODACON detectors were developed at CU by Dr. George Lawrence. The pre-flight and post-flight photometric calibrations were performed at our calibration laboratory and at the Synchrotron Ultraviolet

  11. Vacuum ultraviolet instrumentation for solar irradiance and thermospheric airglow

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Rottman, Gary J.; Bailey, Scott M.; Solomon, Stanley C.

    1993-01-01

    A NASA sounding rocket experiment was developed to study the solar extreme ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far ultraviolet (FUV) were measured remotely from a sounding rocket on October 27, 1992. The rocket experiment also includes EUV instruments from Boston University (Supriya Chakrabarti), but only the National Center for Atmospheric Research (NCAR)/University of Colorado (CU) four solar instruments and one airglow instrument are discussed here. The primary solar EUV instrument is a 1/4 meter Rowland circle EUV spectrograph which has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2 nm resolution. Another solar irradiance instrument is an array of six silicon XUV photodiodes, each having different metallic filters coated directly on the photodiodes. This photodiode system provides a spectral coverage from 0.1 to 80 nm with about 15 nm resolution. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. This avalanche photodiode package measures the XUV photon energy providing a solar spectrum from 50 to 12,400 eV (25 to 0.1 nm) with an energy resolution of about 50 eV. The fourth solar instrument is an XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc-seconds. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2 nm spectral resolution. The photon-counting CODACON detectors are used for three of these instruments and consist of coded arrays of anodes behind microchannel plates. The one-dimensional and two-dimensional CODACON detectors were developed at CU by Dr. George Lawrence. The pre-flight and post-flight photometric calibrations were performed at our calibration laboratory and at the Synchrotron Ultraviolet

  12. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.

    PubMed

    Hindersin, Stefan; Leupold, Marco; Kerner, Martin; Hanelt, Dieter

    2013-03-01

    Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m(-2) d(-1) on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m(-2) d(-1) (by rotation out of direct irradiance) to 79 mol photons m(-2) d(-1) (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L(-1), photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m(-2) s(-1) photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L(-1)), the culture was irradiated up to 2,000 μmol photons m(-2) s(-1) to overcome light limitation with biomass yields of 0.7 g CDW mol photons(-1) and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima. PMID:22847362

  13. The Missing Solar Irradiance Spectrum: 1 to 7 nm

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; Lewis, M.; David, M.; Schunk, R. W.; Woods, T. N.; Eparvier, F. G.; Warren, H. P.

    2015-12-01

    During large X-class flares the Earth's upper atmospheric E-region responds immediately to solar photons in the 1 to 7 nm range. The response can change the E-region density by factors approaching 10, create large changes in conductivity, and plague HF communications. GOES-XRS provide 0.1 to 0.8 nm and a 0.05 to 0.4 nm integral channels; SOHO-SEM provided a 0 to 50 nm irradiance; TIMED and SORCE-XPS diode measurements also integrated down to 0.1 nm; and most recently SDO-EVE provided a 0.1 to 7 nm irradiance. For atmospheric response to solar flares the cadence is also crucial. Both GOES and SDO provided integral measurements at 10 seconds or better. Unfortunately these measurements have failed to capture the 1 to 7 nm spectral changes that occur during flares. It is these spectral changes that create the major impact since the ionization cross-section of the dominant atmospheric species, N2 and O2, both contain step function changes in the cross-sections. Models of the solar irradiance over this critical wavelength regime have suffered from the need to model the spectral variability based on incomplete measurements. The most sophisticated empirical model FISM [Chamberlin et al., 2008] used 1 nm spectral binning and various implementations of the above integral measurements to describe the 1 to 7 nm irradiance. Since excellent solar observations exist at other wavelengths it is possible to construct an empirical model of the solar atmosphere and then use this model to infer the spectral distribution at wavelengths below 5 nm. This differential emission measure approach has been used successfully in other contexts [e.g., Warren, 2005, Chamberlin et al., 2009]. This paper contrasts the broadband versus spectrally resolved descriptions of the incoming irradiance that affects the upper atmospheric E-layer. The results provide a prescription of what wavelength resolution would be needed to adequately measure the incoming solar irradiance in the 1 to 7 nm range.

  14. Electron irradiation effects in epitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Pearsall, N. M.; Robson, N.; Sambell, A. J.; Anspaugh, B.; Cross, T. A.

    1991-01-01

    Performance data for InP-based solar cells after irradiation with 1-MeV electrons up to a fluence of 1 x 1016 e/cm2 are presented. Three InP cell structures are considered. Two of these have epitaxially grown active regions, these being a homojunction design and in ITO/InP structure. These are compared with ITO/InP cells without the epitaxial base region. The cell parameter variations, the influence of illumination during irradiation, and the effect on cell spectral response and capacitance measurements are discussed. Substantial performance recovery after thermal annealing at 90 C is reported.

  15. Photometric measurements of solar irradiance variations due to sunspots

    NASA Technical Reports Server (NTRS)

    Chapman, G. A.; Herzog, A. D.; Laico, D. E.; Lawrence, J. K.; Templer, M. S.

    1989-01-01

    A photometric telescope constructed to obtain photometric sunspot areas and deficits on a daily basis is described. Data from this Cartesian full disk telescope (CFDT) are analyzed with attention given to the period between June 4 and June 17, 1985 because of the availability of overlapping sunspot area and irradiance deficit data from high-resolution digital spectroheliograms made with the San Fernando Observatory 28 cm vacuum solar telescope and spectroheliograph. The CFDT sunspot deficits suggest a substantial irradiance contribution from faculae and active region plage.

  16. Photometric measurements of solar irradiance variations due to sunspots

    SciTech Connect

    Chapman, G.A.; Herzog, A.D.; Laico, D.E.; Lawrence, J.K.; Templer, M.S. )

    1989-08-01

    A photometric telescope constructed to obtain photometric sunspot areas and deficits on a daily basis is described. Data from this Cartesian full disk telescope (CFDT) are analyzed with attention given to the period between June 4 and June 17, 1985 because of the availability of overlapping sunspot area and irradiance deficit data from high-resolution digital spectroheliograms made with the San Fernando Observatory 28 cm vacuum solar telescope and spectroheliograph. The CFDT sunspot deficits suggest a substantial irradiance contribution from faculae and active region plage. 23 refs.

  17. Effect of solar irradiation on extracellular enzymes of Aeromonas proteolytica

    NASA Technical Reports Server (NTRS)

    Foster, B. G.

    1973-01-01

    The bacterium Aeromonas proteolytica was selected for studying the effects of solar irradiation on extracellular enzymes because it produces an endopeptidase that is capable of degrading proteins and a hemolysin that is active in lysing human erythrocytes. Possible alterations in the rate of enzyme production in response to the test conditions are currently underway and are not available for this preliminary report. Completed viability studies are indicative that little difference exists among the survival curves derived for cells exposed to various components of ultraviolet irradiation in space.

  18. Properties of solar gravity mode signals in total irradiance observations

    SciTech Connect

    Kroll, R.J.; Chen, J.; Hill, H.A.

    1988-01-01

    Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs.

  19. Accuracies of Incoming Radiation: Calibrations of Total Solar Irradiance Instruments

    NASA Astrophysics Data System (ADS)

    Kopp, G.; Harber, D.; Heuerman, K.

    2009-04-01

    All of the energy tracked by the GEWEX Radiative Flux Assessment and the driving energy for Earth climate is incident at the top of the Earth's atmosphere as solar radiation. The total solar irradiance (TSI) has been monitored continually for over 30 years from space. Continuity of these measurements has enabled the creation of composite time series from which the radiative forcing inputs to climate models are derived and solar forcing sensitivities are determined. None of the ten spaceborne TSI instruments contributing to the solar climate data record have been calibrated or validated end-to-end for irradiance accuracy under flight-like conditions, and calibration inaccuracies contribute to seemingly large offsets between the TSI values reported by each instrument. The newest of the flight TSI instruments, the SOlar Radiation and Climate Experiment (SORCE) Total Irradiance Monitor (TIM), measures lower solar irradiance than prior instruments. I will review the accuracies of flight TSI instruments, discuss possible causes for the offsets between them, and describe a recently built calibration facility to improve the accuracies of future TSI instruments. The TSI Radiometer Facility (TRF) enables end-to-end comparisons of TSI instruments to a NIST-calibrated cryogenic radiometer. For the first time, TSI instruments can be validated directly against a cryogenic radiometer under flight-like conditions for measuring irradiance (rather than merely optical power) at solar power levels while under vacuum. The TRF not only validates TSI instrument accuracy, but also can help diagnose the causes of offsets between different instruments. This facility recently validated the accuracy of the TIM to be launched this year on NASA's Glory mission, establishing a baseline that can link the Glory/TIM to future TSI instruments via this ground-based comparison. Similar tests on the TRF with a ground-based SORCE/TIM support the lower TSI values measured by the SORCE flight unit. These

  20. What Causes the Inter-solar-cycle Variation of Total Solar Irradiance?

    NASA Astrophysics Data System (ADS)

    Xiang, N. B.; Kong, D. F.

    2015-12-01

    The Physikalisch Meteorologisches Observatorium Davos total solar irradiance (TSI), Active Cavity Radiometer Irradiance Monitoring TSI, and Royal Meteorological Institute of Belgium TSI are three typical TSI composites. Magnetic Plage Strength Index (MPSI) and Mount Wilson Sunspot Index (MWSI) should indicate the weak and strong magnetic field activity on the solar full disk, respectively. Cross-correlation (CC) analysis of MWSI with three TSI composites shows that TSI should be weakly correlated with MWSI, and not be in phase with MWSI at timescales of solar cycles. The wavelet coherence (WTC) and partial wavelet coherence (PWC) of TSI with MWSI indicate that the inter-solar-cycle variation of TSI is also not related to solar strong magnetic field activity, which is represented by MWSI. However, CC analysis of MPSI with three TSI composites indicates that TSI should be moderately correlated and accurately in phase with MPSI at timescales of solar cycles, and that the statistical significance test indicates that the correlation coefficient of three TSI composites with MPSI is statistically significantly higher than that of three TSI composites with MWSI. Furthermore, the cross wavelet transform (XWT) and WTC of TSI with MPSI show that the TSI is highly related and actually in phase with MPSI at a timescale of a solar cycle as well. Consequently, the CC analysis, XWT, and WTC indicate that the solar weak magnetic activity on the full disk, which is represented by MPSI, dominates the inter-solar-cycle variation of TSI.

  1. An Improved Total Solar Irradiance Climate Data Record

    NASA Astrophysics Data System (ADS)

    Kopp, G.

    2011-12-01

    The dominant driver of the Earth's climate system is the Sun, which exceeds all other energy sources combined by a factor of 2500. Small as they are, variations in the enormous amount of energy received from the Sun can have climatic effects on the Earth over annual to millennial time scales. Climate studies rely on recent spaceborne measurements of total solar irradiance (TSI) and estimates of its historical variability to discern natural from anthropogenic climatic influences. Because the Sun is relatively stable, the TSI measurements providing this solar record must be of high accuracy, extremely good stability, and long duration. New instrument calibrations and diagnostics have improved the accuracy of the existing record and future instruments promise further improvements. I will discuss the status of the current solar climate data record based on recent findings, explain the climate-driven solar irradiance measurement requirements, show estimates of solar influences on climate, and give an overview of planned missions to provide this needed record for climate studies.

  2. Some Impacts of Solar Irradiance Variation on Terrestrial Climate

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    As chairman of the Special Session addressing the above topic, a brief overview of the problem will be offered, after which 20-minute talks will be given on the determination of solar irradiance variations from space observations (Dr. Judit Pap) and from groundbased measurements of solar magnetic fields (Dr. Harrison Jones). The chairman will then introduce four panel members representing different areas of expertise bearing on the topic. Each panel member will offer a brief 5-minute summary of his views. Panel members are: Chick Keller, Los Alamos National Laboratory; Drew Shindell, Goddard Institute for Space Science, Columbia University; Michael Schlesinger, University of Illinois; Sabatino Sofia, Yale University. General Circulation Models of the terrestrial atmosphere, the possible impact on this atmosphere of large percentage changes in the solar EUV over a solar cycle, and the role of strong magnetic field in the solar convection zone on irradiance variation will all be considered in brief summaries. The chairman will conclude the session by facilitating a discussion between the audience, the main speakers, and the panel members.

  3. Method to Calculate Uncertainty Estimate of Measuring Shortwave Solar Irradiance using Thermopile and Semiconductor Solar Radiometers

    SciTech Connect

    Reda, I.

    2011-07-01

    The uncertainty of measuring solar irradiance is fundamentally important for solar energy and atmospheric science applications. Without an uncertainty statement, the quality of a result, model, or testing method cannot be quantified, the chain of traceability is broken, and confidence cannot be maintained in the measurement. Measurement results are incomplete and meaningless without a statement of the estimated uncertainty with traceability to the International System of Units (SI) or to another internationally recognized standard. This report explains how to use International Guidelines of Uncertainty in Measurement (GUM) to calculate such uncertainty. The report also shows that without appropriate corrections to solar measuring instruments (solar radiometers), the uncertainty of measuring shortwave solar irradiance can exceed 4% using present state-of-the-art pyranometers and 2.7% using present state-of-the-art pyrheliometers. Finally, the report demonstrates that by applying the appropriate corrections, uncertainties may be reduced by at least 50%. The uncertainties, with or without the appropriate corrections might not be compatible with the needs of solar energy and atmospheric science applications; yet, this report may shed some light on the sources of uncertainties and the means to reduce overall uncertainty in measuring solar irradiance.

  4. What Irradiance Studies Tell Us about Solar/Stellar Convection and Magnetism

    NASA Astrophysics Data System (ADS)

    Foukal, Peter V.

    2010-05-01

    Despite their enormous thermal inertia, many late - type stars exhibit luminosity fluctuations caused by changing photospheric magnetic structures. These fluctuations exist only because of the high heat diffusivity of stellar convection. Were it lower, the dark spots would be surrounded by intense bright rings, as Gene Parker pointed out in 1974. These rings would cancel the spot - induced luminosity dips. Conversely, dark rings around the bright faculae would cancel their positive luminosity contribution. Photometric measurements of this heat diffusivity place independent constraints on solar magnetic diffusivities - a key parameter in dynamo models. Irradiance studies also suggest that the structure of emerging magnetic fields shifts toward lower spatial frequencies with increasing activity. This finding could provide new information on the field source function in dynamo models. Differential and near - IR imaging photometry reveal the decreased temperature gradient of facular magnetic flux tubes and the sunspot- like darkness of their deepest observable layers. Both of these features support current mhd flux tube models. Bolometric imaging measures the wide- band contribution to total irradiance variation, of spot and facular magnetic flux tubes. The remarkably constant solar limb - darkening measured over the past 33 years constrains fluctuations in quiet photospheric temperature gradient and thus, in global convective efficiency over the past three solar cycles. Reconstruction of irradiance variation over past millennia relies on radio- isotope studies. These provide many interesting insights, but they assume that C14 and Be10 are formed only by solar modulation of the galactic cosmic ray flux. This assumption would break down if solar activity and particle fluxes much exceeded levels experienced in cycle 19. Such a "hyperactive” Sun would vary more in its radiative outputs, be dimmer in total irradiance, although brighter in the EUV and X rays. Work is

  5. Accessing Solar Irradiance Data via LISIRD, the Laboratory for Atmospheric and Space Physics Interactive Solar Irradiance Datacenter

    NASA Astrophysics Data System (ADS)

    Pankratz, C. K.; Wilson, A.; Snow, M. A.; Lindholm, D. M.; Woods, T. N.; Traver, T.; Woodraska, D.

    2015-12-01

    The LASP Interactive Solar Irradiance Datacenter, LISIRD, http://lasp.colorado.edu/lisird, allows the science community and the public to explore and access solar irradiance and related data sets using convenient, interactive or scriptable, standards-based interfaces. LISIRD's interactive plotting allows users to investigate and download irradiance data sets from a variety of sources, including space missions, ground observatories, and modeling efforts. LISIRD's programmatic interfaces allow software-level data retrievals and facilitate automation. This presentation will describe the current state of LISIRD, provide details of the data sets it serves, outline data access methods, identify key technologies in-use, and address other related aspects of serving spectral and other time series data. We continue to improve LISIRD by integrating new data sets, and also by advancing its data management and presentation capabilities to meet evolving best practices and community needs. LISIRD is hosted and operated by the Laboratory for Atmospheric and Space Physics, LASP, which has been a leader in Atmospheric and Heliophysics science for over 60 years. LASP makes a variety of space-based measurements of solar irradiance, which provide crucial input for research and modeling in solar-terrestrial interactions, space physics, planetary, atmospheric, and climate sciences. These data sets consist of fundamental measurements, composite data sets, solar indices, space weather products, and models. Current data sets available through LISIRD originate from the SORCE, SDO (EVE), UARS (SOLSTICE), TIMED (SEE), and SME space missions, as well as several other space and ground-based projects. LISIRD leverages several technologies to provide flexible and standards-based access to the data holdings available through LISIRD. This includes internet-accessible interfaces that permit data access in a variety of formats, data subsetting, as well as program-level access from data analysis

  6. Influence of solar UVA on erythemal irradiances.

    PubMed

    Parisi, A V; Turnbull, D J; Kimlin, M G

    2006-06-21

    Many materials in everyday use such as window glass in homes and offices, glass in sunrooms and greenhouses, vehicle glass and some brands of sunscreens act as a barrier to the shorter UVB wavelengths while transmitting some of the longer UVA wavelengths. This paper reports on the erythemal exposures due to the UVA waveband encountered over a 12-month period for a solar zenith angle (SZA) range of 4 degrees to 80 degrees and the resulting times required for an erythemal exposure of one standard erythemal dose (SED) due to the erythemal exposures to the UVA wavelengths. The minimum time for an exposure of one SED due to the UVA wavelengths in winter is approximately double that what it is in summer. The time period of 40 to 60 min was the most frequent length of time for an exposure of one SED with 60 to 80 min the next frequent length of time required for a one SED exposure. PMID:16757874

  7. Temperature dependence of damage coefficient in electron irradiated solar cells

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1973-01-01

    Measurements of light-generated current vs cell temperature on electron-irradiated n/p silicon solar cells show the temperature coefficient of this current to increase with increasing fluence for both 10-ohm and 20-ohm cells. A relationship between minority-carrier diffusion length and light-generated current was derived by combining measurements of these two parameters: vs fluence at room temperature, and vs cell temperature in cells irradiated to a fluence of 1 x 10 to the 15th power e/sq cm. This relationship was used, together with the light-generated current data, to calculate the temperature dependence of the diffusion-length damage coefficient. The results show a strong decrease in the damage coefficient with increasing temperature in the range experienced by solar panels in synchronous earth orbit.

  8. Total solar irradiance measurements with PREMOS/PICARD

    NASA Astrophysics Data System (ADS)

    Schmutz, Werner; Fehlmann, André; Finsterle, Wolfgang; Kopp, Greg; Thuillier, Gerard

    2013-05-01

    PREMOS on the French satellite PICARD is the first spaceborne absolute radiometer measuring Total Solar Irradiance that has been irradiance-calibrated in vacuum with SI-traceability. The measurements of PREMOS at first light on July 27, 2010, yield a TSI value of 1360.9±0.4 W/m2 (k=1). This value agrees with the absolute TSI value measured by TIM/SORCE for this date within their combined uncertainties, and it differs by more than ten sigma from the absolute value of other space experiments, e.g. VIRGO/SOHO. The PREMOS measurements thus establish SI-traceability to a solar constant value of 1361 W/m2.

  9. The incident solar irradiance at the sea surface

    NASA Technical Reports Server (NTRS)

    Van Tran, AN; Collins, Donald J.

    1990-01-01

    Computations have been performed of the incident spectral irradiance at the sea surface using LOWTRAN-7 as the basis to describe the incident scalar and vector irradiance in terms of the true solar zenith angle and the nominal visibility in the atmosphere. These computations have been used to describe the contributions to the incident irradiance from the direct and the sky components of the total irradiance and the average cosine of the sky component as a measure of the radiance distribution of the sky for varying atmospheric conditions. Comparisons of the computations from LOWTRAN-7 have been made with the results from other models, and with data obtained from field measurements, and excellent agreement has been obtained for the daily profiles of the vector and scalar irradiance at the surface. These computations have been used to provide a description of the irradiance at the sea surface for use in the analysis of remotely sensed data based on information on the radiative transfer through the atmosphere above the sea surface.

  10. Solar Irradiance Variability: Validation of Satellite-Based Assessment and Prospective Enhancements

    NASA Astrophysics Data System (ADS)

    Nonnenmacher, L.; Coimbra, C.

    2013-12-01

    Based on the technological advances and recent growth rates in deployment, solar energy will contribute significantly in the prospective global energy system. However, the intermittent output characteristics of solar energy systems pose a major challenge for the integration of this renewable power resource into the existing power grid. The intra-day solar variability causing output ramps is primarily caused by clouds and aerosols interacting with solar radiation passing through the atmosphere. Recent advances proposed different methods to assess and quantify irradiance fluctuations at the earth's surface. While remote sensing models based on satellite imagery can provide variability data for a vast domain, the temporal resolution is low and show a dearth of validation. In contrast to that, the spatial resolution of ground based instrumentation is limited whereas temporal resolution, precision and accuracy is high. Our validation of satellite based assessment of solar variability with ground truth measurements shows that the satellite based methods provide an accurate picture of variability with half hourly temporal resolution. However, half hourly variability values disregard a large portion of amplitude and frequency of solar variability on shorter timescales. This contribution seeks to investigate the characteristics of different measures of solar irradiance variability, evaluates the accuracy of common variability assessment techniques and finally proposes methods to estimate solar variability in different microclimates under different atmospheric conditions with improved accuracy. Our work shows a novel hybrid approach based on a combination of satellite and sky imager observations to scale down variability values from a 30 minute resolution to a significantly shorter timescale. Current research investigates the applicability and universality of a scaling-law with multiple inputs to derive temporal variability characteristics.

  11. Measurements and modeling of total solar irradiance in X-class solar flares

    SciTech Connect

    Moore, Christopher Samuel; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-05-20

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  12. Measurements and Modeling of Total Solar Irradiance in X-class Solar Flares

    NASA Technical Reports Server (NTRS)

    Moore, Christopher S.; Chamberlin, Phillip Clyde; Hock, Rachel

    2014-01-01

    The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.

  13. Variability in solar irradiance observed at two contrasting Antarctic sites

    NASA Astrophysics Data System (ADS)

    Petkov, Boyan H.; Láska, Kamil; Vitale, Vito; Lanconelli, Christian; Lupi, Angelo; Mazzola, Mauro; Budíková, Marie

    2016-05-01

    The features of erythemally weighted (EW) and short-wave downwelling (SWD) solar irradiances, observed during the spring-summer months of 2007-2011 at Johann Gregor Mendel (63°48‧S, 57°53‧W, 7 m a.s.l.) and Dome Concordia (75°06‧S, 123°21‧E, 3233 m a.s.l.) stations, placed at the Antarctic coastal region and on the interior plateau respectively, have been analysed and compared to each other. The EW and SWD spectral components have been presented by the corresponding daily integrated values and were examined taking into account the different geographic positions and different environmental conditions at both sites. The results indicate that at Mendel station the surface solar irradiance is strongly affected by the changes in the cloud cover, aerosols and albedo that cause a decrease in EW between 20% and 35%, and from 0% to 50% in SWD component, which contributions are slightly lower than the seasonal SWD variations evaluated to be about 71%. On the contrary, the changes in the cloud cover features at Concordia station produce only a 5% reduction of the solar irradiance, whilst the seasonal oscillations of 94% turn out to be the predominant mode. The present analysis leads to the conclusion that the variations in the ozone column cause an average decrease of about 46% in EW irradiance with respect to the value found in the case of minimum ozone content at each of the stations. In addition, the ratio between EW and SWD spectral components can be used to achieve a realistic assessment of the radiation amplification factor that quantifies the relationship between the atmospheric ozone and the surface UV irradiance.

  14. Solar Spectral Irradiance Variations in 240 - 1600 nm During the Recent Solar Cycles 21 - 23

    NASA Astrophysics Data System (ADS)

    Pagaran, J.; Weber, M.; Deland, M. T.; Floyd, L. E.; Burrows, J. P.

    2011-08-01

    Regular solar spectral irradiance (SSI) observations from space that simultaneously cover the UV, visible (vis), and the near-IR (NIR) spectral region began with SCIAMACHY aboard ENVISAT in August 2002. Up to now, these direct observations cover less than a decade. In order for these SSI measurements to be useful in assessing the role of the Sun in climate change, records covering more than an eleven-year solar cycle are required. By using our recently developed empirical SCIA proxy model, we reconstruct daily SSI values over several decades by using solar proxies scaled to short-term SCIAMACHY solar irradiance observations to describe decadal irradiance changes. These calculations are compared to existing solar data: the UV data from SUSIM/UARS, from the DeLand & Cebula satellite composite, and the SIP model (S2K+VUV2002); and UV-vis-IR data from the NRLSSI and SATIRE models, and SIM/SORCE measurements. The mean SSI of the latter models show good agreement (less than 5%) in the vis regions over three decades while larger disagreements (10 - 20%) are found in the UV and IR regions. Between minima and maxima of Solar Cycles 21, 22, and 23, the inferred SSI variability from the SCIA proxy is intermediate between SATIRE and NRLSSI in the UV. While the DeLand & Cebula composite provide the highest variability between solar minimum and maximum, the SIP/Solar2000 and NRLSSI models show minimum variability, which may be due to the use of a single proxy in the modeling of the irradiances. In the vis-IR spectral region, the SCIA proxy model reports lower values in the changes from solar maximum to minimum, which may be attributed to overestimations of the sunspot proxy used in modeling the SCIAMACHY irradiances. The fairly short timeseries of SIM/SORCE shows a steeper decreasing (increasing) trend in the UV (vis) than the other data during the descending phase of Solar Cycle 23. Though considered to be only provisional, the opposite trend seen in the visible SIM data

  15. Real Solar Irradiance Data for Planetary Surface Studies

    NASA Astrophysics Data System (ADS)

    Kramer, G.; Harder, J.; McCord, T.

    2008-12-01

    The precise determination of the solar irradiance (or extraterrestrial spectrum - ETS) is of primary importance for converting space-borne remote sensing radiance data to accurate reflectance values necessary for geological interpretations of planetary surfaces. Historically, the ETS has been determined from either calculating an emitted spectrum based on the Sun's composition, or modeling and removing atmospheric interferences on a solar spectrum obtained by telescopic observations, aircraft, and/or ground measurements. However, modeling an atmosphere is incredibly complex. A solar spectrum thus measured is replete with absorptions caused by molecular vibrations of atmospheric gases and scattering by particulates at wavelengths that would otherwise be diagnostic of petrological or atmospherical properties. An ETS calculated from these measurements must make some general assumptions about atmospheric conditions at the time of acquisition in order to compensate for their effects. However, variations in local pressures, humidity, and particulate compositions present a many-bodied problem that preclude a truly accurate model. Nevertheless, these model spectra are the basis for the ETS used for atmospheric and planetary surface studies. The Spectral Irradiance Monitor (SIM) onboard the Solar Radiation and Climate Experiment (SORCE) provides a better alternative to theoretically-derived ETS by directly measuring the solar irradiance, outside the Earth's atmosphere. For almost six years, SIM has been taking daily measurements of the ETS at wavelengths between 200 and 2400 nm. This spectral range covers most absorption bands diagnostic of mafic mineralogy, thus making SIM's data ideal for terrestrial planetary mapping. Furthermore, SIM's daily measurements allow for enhanced meteorologic studies of other planetary atmospheres. SIM's spectral resolution and signal to noise ratio meet or exceed the sensitivity of current spectrometer detectors.

  16. Absolute Radiometer for Reproducing the Solar Irradiance Unit

    NASA Astrophysics Data System (ADS)

    Sapritskii, V. I.; Pavlovich, M. N.

    1989-01-01

    A high-precision absolute radiometer with a thermally stabilized cavity as receiving element has been designed for use in solar irradiance measurements. The State Special Standard of the Solar Irradiance Unit has been built on the basis of the developed absolute radiometer. The Standard also includes the sun tracking system and the system for automatic thermal stabilization and information processing, comprising a built-in microcalculator which calculates the irradiance according to the input program. During metrological certification of the Standard, main error sources have been analysed and the non-excluded systematic and accidental errors of the irradiance-unit realization have been determined. The total error of the Standard does not exceed 0.3%. Beginning in 1984 the Standard has been taking part in a comparison with the Å 212 pyrheliometer and other Soviet and foreign standards. In 1986 it took part in the international comparison of absolute radiometers and standard pyrheliometers of socialist countries. The results of the comparisons proved the high metrological quality of this Standard based on an absolute radiometer.

  17. Solar Irradiance Models and Measurements: A Comparison in the 220-240 nm wavelength band

    NASA Astrophysics Data System (ADS)

    Unruh, Yvonne C.; Ball, Will T.; Krivova, Natalie A.

    2012-07-01

    Solar irradiance models that assume solar irradiance variations to be due to changes in the solar surface magnetic flux have been successfully used to reconstruct total solar irradiance on rotational as well as cyclical and secular time scales. Modelling spectral solar irradiance is not yet as advanced, and also suffers from a lack of comparison data, in particular on solar cycle time scales. Here, we compare solar irradiance in the 220-240 nm band as modelled with SATIRE-S and measured by different instruments on the UARS and SORCE satellites. We find good agreement between the model and measurements on rotational time scales. The long-term trends, however, show significant differences. Both SORCE instruments, in particular, show a much steeper gradient over the decaying part of cycle 23 than the modelled irradiance or that measured by UARS/SUSIM.

  18. Satellite Observations of Solar Irradiance and Sun-Climate Impacts

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Solar activity is now near its maximum, with events such as the 2001 "Bastille Day Event", a Coronal Mass Ejection which merited a full session at AGUs annual meeting - and two major sunspot groupings earlier this year, with associated variations in TSI (Total Solar Irradiance). We discuss recent satellite measurements of TSI by ACRIM 2 and 3 and Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) expected from the SORCE mission, planned to launch in fall 2002. SSI has been added to TSI as a required EOS and NPOESS measurement because different spectral components provide energy inputs to different components of the climate system - UV into upper atmosphere and ozone, IR into lower atmosphere and clouds, and Visible into the biosphere. Succeeding satellite missions being planned for 2006 and 2010 will continue to monitor both TSI and SSI. We summarize current ideas about the potential impact of solar variability on Earth's climate on time scales from days to decades to centuries.

  19. Satellite Observations of Solar Irradiance and Sun-Climate Impacts

    NASA Technical Reports Server (NTRS)

    Cahalan, R.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Solar activity is now near its maximum, with events such as the 2001 "Bastille Day Event", a Coronal Mass Ejection which merited a full session at AGO'S annual meeting - and two major sunspot groupings earlier this year, with associated variations in TSI (Total Solar Irradiance). We discuss recent satellite measurements of TSI by ACRIM 2 and 3 And Virgo, and new precision observations of TSI and SSI (Solar Spectral Irradiance) expected from the SORCE mission, planned to launch in fall 2002. SSG has been added to TSI as a required EOS and NPOESS measurement because different spectral components provide energy inputs to different components of the climate system - UV into upper atmosphere and ozone, IR into lower atmosphere and clouds, and Visible into the biosphere. Succeeding satellite missions being planned for 2006 and 2010 will continue to monitor both TSI and SSI. We summarize current ideas about the potential impact of solar variability on Earth's climate on time scales from days to decades to centuries.

  20. Recent Advances on Solar Global Magnetism and Variability

    NASA Astrophysics Data System (ADS)

    Brun, A. S.; Browning, M. K.; Dikpati, M.; Hotta, H.; Strugarek, A.

    2015-12-01

    We discuss recent observational, theoretical and numerical progress made in understanding the solar global magnetism and its short and long term variability. We discuss the physical process thought to be at the origin of the solar magnetic field and its 22-yr cycle, namely dynamo action, and the nonlinear interplay between convection, rotation, radiation and magnetic field, yielding modulations of the solar constant or of the large scale flows such as the torsional oscillations. We also discuss the role of the field parity and dynamo families in explaining the complex multipolar structure of the solar global magnetic field. We then present some key MHD processes acting in the deep radiative interior and discuss the probable topology of a primordial field there. Finally we summarize how helioseismology has contributed to these recent advances and how it could contribute to resolving current unsolved problems in solar global dynamics and magnetism.

  1. Deriving historical total solar irradiance from lunar borehole temperatures

    NASA Astrophysics Data System (ADS)

    Miyahara, Hiroko; Wen, Guoyong; Cahalan, Robert F.; Ohmura, Atsumu

    2008-01-01

    We study the feasibility of deriving historical TSI (Total Solar Irradiance) from lunar borehole temperatures. As the Moon lacks Earth's dynamic features, lunar borehole temperatures are primarily driven by solar forcing. Using Apollo observed lunar regolith properties, we computed present-day lunar regolith temperature profiles for lunar tropical, mid-latitude, and polar regions for two scenarios of solar forcing reconstructed by Lean (2000) and Wang et al. (2005). Results show that these scenarios can be distinguished by small but potentially detectable differences in temperature, on the order of 0.01 K and larger depending on latitude, within ~10 m depth of the Moon's surface. Our results provide a physical basis and guidelines for reconstructing historical TSI from data obtainable in future lunar exploration.

  2. Quantum dot solar cell tolerance to alpha-particle irradiation

    SciTech Connect

    Cress, Cory D.; Hubbard, Seth M.; Landi, Brian J.; Raffaelle, Ryne P.; Wilt, David M.

    2007-10-29

    The effects of alpha-particle irradiation on an InAs quantum dot (QD) array and GaAs-based InAs QD solar cells were investigated. Using photoluminescence (PL) mapping, the PL intensity at 872 and 1120 nm, corresponding to bulk GaAs and InAs QD emissions, respectively, were measured for a five-layer InAs QD array which had a spatially varying total alpha-particle dose. The spectral response and normalized current-voltage parameters of the solar cells, measured as a function of alpha-particle fluence, were used to investigate the change in device performance between GaAs solar cells with and without InAs QDs.

  3. Spectral irradiance curve calculations for any type of solar eclipse

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Merrill, J. E.

    1974-01-01

    A simple procedure is described for calculating the eclipse function (EF), alpha, and hence the spectral irradiance curve (SIC), (1-alpha), for any type of solar eclipse: namely, the occultation (partial/total) eclipse and the transit (partial/annular) eclipse. The SIC (or the EF) gives the variation of the amount (or the loss) of solar radiation of a given wavelength reaching a distant observer for various positions of the moon across the sun. The scheme is based on the theory of light curves of eclipsing binaries, the results of which are tabulated in Merrill's Tables, and is valid for all wavelengths for which the solar limb-darkening obeys the cosine law: J = sub c (1 - X + X cost gamma). As an example of computing the SIC for an occultation eclipse which may be total, the calculations for the March 7, 1970, eclipse are described in detail.

  4. Measuring solar spectral and angle-of-incidence effects on photovoltaic modules and solar irradiance sensors

    SciTech Connect

    King, D.L.; Kratochvil, J.A.; Boyson, W.E.

    1997-11-01

    Historically, two time-of-day dependent factors have complicated the characterization of photovoltaic module and array performance; namely, changes in the solar spectrum over the day and optical effects in the module that vary with the solar angle-of-incidence. This paper describes straightforward methods for directly measuring the effects of these two factors. Measured results for commercial modules, as well as for typical solar irradiance sensors (pyranometers) are provided. The empirical relationships obtained from the measurements can be used to improve the methods used for system design, verification of performance after installation, and diagnostic monitoring of performance during operation.

  5. Simultaneous measurement of the total solar irradiance and solar diameter by the PICARD mission

    NASA Astrophysics Data System (ADS)

    Thuillier, Gérard; Dewitte, Steven; Schmutz, Werner; Picard Team

    2006-01-01

    A mission dedicated to simultaneous measurements of the solar diameter, spectral, and total solar irradiance is presently in development for launch end of the year 2008 on board of a microsatellite under the responsibility of Centre National d'Etudes Spatiales. The payload will consist of an imaging telescope, three filter radiometers with in total twelve channels, and two independent absolute radiometers. The scientific aims are presented as well as the concepts and properties of the instrumentation. This mission is named PICARD after the pioneering work of Jean Picard (1620-1682) who precisely determined the solar diameter during the Maunder minimum.

  6. Total solar irradiance record accuracy and recent improvements

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    The total solar irradiance (TSI) data record includes uninterrupted measurements from over 10 spaceborne instruments spanning the last 31 years. Continuity of on-orbit measurements allows adjustments for instrument offsets to create a TSI composite needed for estimating solar influences on Earth's climate. Because climate sensitivities to solar forcings are determined not only from direct TSI measurements over recent 11-year solar cycles but also from reconstructions of historical solar variability based on the recent measurements, the accuracy of the TSI record is critical. This climate data record currently relies on both instrument stability and measurement continuity, although improvements in absolute accuracy via better instrument calibrations and new test facilities promise to reduce this current reliance on continuity. The Total Irradiance Monitor (TIM) is striving for improved levels of absolute accuracy, and a new TSI calibration facility is now able to validate the accuracy of modern instruments and diagnose causes of offsets between different TSI instruments. The instrument offsets are due to calibration errors. As of early 2010, none of the on-orbit instruments have been calibrated end-to-end to the needed accuracy levels. The new TSI Radiometer Facility (TRF) built for NASA's Glory mission provides these new calibration capabilities. Via direct optical power comparisons to a NIST-calibrated cryogenic radiometer, this ground-based facility provides calibrations of a TSI instrument much as the instrument is operated in space: under vacuum, at full solar irradiance power levels, and with uniform incoming light for irradiance measurements. Both the PICARD/PREMOS and the upcoming Glory/TIM instruments have been tested in this new facility, helping improve the absolute accuracy of the TSI data record and diagnose the causes of existing instrument offsets. In addition to being benchmarked to this new ground-based reference, the Glory/TIM and the future TSIS

  7. Nimbus 7 Solar Backscatter Ultraviolet (SBUV) spectral scan solar irradiance and Earth radiance product user's guide

    NASA Technical Reports Server (NTRS)

    Schlesinger, Barry M.; Cebula, Richard P.; Heath, Donald F.; Fleig, Albert J.

    1988-01-01

    The archived tape products from the spectral scan mode measurements of solar irradiance (SUNC tapes) and Earth radiance (EARTH tapes) by the Solar Backscatter UV (SBUV) instrument aboard Nimbus 7 are described. Incoming radiation from 160 to 400 nm is measured at intervals of 0.2 nm. The scan-to-scan repeatability of the solar irradiance measurements ranges from approximately 0.5 to 1 percent longward of 280 nm, to 2 percent around 210 nm and 4 percent near 175 nm. The repeatability of the Earth radiance values ranges from 2 to 3 percent at longer wavelengths and low zenith angles to 10 percent at shorter wavelengths and high zenith angles. The tape formats are described in detail, including file structure and contents of each type of record. Catalogs of the tapes and the time period covered are provided, along with lists of the days lacking solar irradiance measurements and the days dedicated to Earth radiance measurements. The method for production of the tapes is outlined and quality control measures are described. How radiances and irradiances are derived from the raw counts, the corrections for changes in instrument sensitivity, and related uncertainties are discussed.

  8. Toward Improved Solar Irradiance Forecasts: Introduction of Post-Processing to Correct the Direct Normal Irradiance from the Weather Research and Forecasting Model

    NASA Astrophysics Data System (ADS)

    Kim, Chang Ki; Clarkson, Matthew

    2016-05-01

    Solar electricity production is highly dependent on atmospheric conditions. This study focuses on comparing model forecasts with observations for the period of May-December, 2011. The Weather Research and Forecasting model was run for two nested domains centered on Arizona in order to better capture the complex terrain driven dynamics of the region. The modeling performance from the simulation with the Global Forecast System model output as initial and boundary condition was better, with respect to both direct normal irradiance and global horizontal irradiance, than that with the North American Mesoscale model output. The observed aerosol optical depth is correlated with the water vapor, soil moisture and wind-blown dust and therefore, the aerosol optical depth is parameterized by the modeling outputs for these variables. The aerosol correction factor reduces the relative root mean square error from 12 to 6 %. In cases where dust was transported at high altitude, our algorithm did not correct the bias of direct normal irradiance.

  9. Analysis of cumulus solar irradiance reflectance (CSIR) events

    NASA Astrophysics Data System (ADS)

    Laird, John L.; Harshvardhan

    Clouds are extremely important with regard to the transfer of solar radiation at Earth's surface. This study investigates Cumulus Solar Irradiance Reflection (CSIR) using ground-based pyranometers. CSIR events are short-term increases in solar radiation observed at the surface as a result of reflection off the sides of convective clouds. When Sun-cloud observer geometry is favorable, these occurrences produce characteristic spikes in the pyranometer traces and solar irradiance values may exceed expected clear-sky values. Ultraviolet CSIR events were investigated during the summer of 1995 using UVA and UVB pyranometers. Observed data were compared to clear-sky curves which were generated using a third degree polynomial best-fit line technique. Periods during which the observed data exceeded this clear-sky curve were identified as CSIR events. The magnitude of a CSIR event was determined by two different quantitative calculations. The MAC (magnitude above clear-sky) is an absolute measure of the difference between the observed and clear-sky irradiances. Maximum MAC values of 3.4 Win -2 and 0.0169 Wm -2 were observed at the UV-A and UV-B wavelengths, respectively. The second calculation determined the percentage above clear-sky (PAC) which indicated the relative magnitude of a CSIR event. Maximum UV-A and UV-B PAC magnitudes of 10.1% and 7.8%, respectively, were observed during the study. Also of interest was the duration of the CSIR events which is a function of Sun-cloud-sensor geometry and the speed of cloud propagation over the measuring site. In both the UV-A and UV-B wavelengths, significant CSIR durations of up to 30 minutes were observed. C 1997 Elsevier Science B.V.

  10. Analysis of Cumulus Solar Irradiance Reflectance (CSIR) Events

    NASA Technical Reports Server (NTRS)

    Laird, John L.; Harshvardham

    1996-01-01

    Clouds are extremely important with regard to the transfer of solar radiation at the earth's surface. This study investigates Cumulus Solar Irradiance Reflection (CSIR) using ground-based pyranometers. CSIR events are short-term increases in solar radiation observed at the surface as a result of reflection off the sides of convective clouds. When sun-cloud observer geometry is favorable, these occurrences produce characteristic spikes in the pyranometer traces and solar irradiance values may exceed expected clear-sky values. Ultraviolet CSIR events were investigated during the summer of 1995 using Yankee Environmental Systems UVA-1 and UVB-1 pyranometers. Observed data were compared to clear-sky curves which were generated using a third degree polynomial best-fit line technique. Periods during which the observed data exceeded this clear-sky curve were identified as CSIR events. The magnitude of a CSIR event was determined by two different quantitative calculations. The MAC (magnitude above clear-sky) is an absolute measure of the difference between the observed and clear-sky irradiances. Maximum MAC values of 3.4 Wm(exp -2) and 0.069 Wm(exp -2) were observed at the UV-A and UV-B wavelengths, respectively. The second calculation determined the percentage above clear-sky (PAC) which indicated the relative magnitude of a CSIR event. Maximum UV-A and UV-B PAC magnitudes of 10.1% and 7.8%, respectively, were observed during the study. Also of interest was the duration of the CSIR events which is a function of sun-cloud-sensor geometry and the speed of cloud propagation over the measuring site. In both the UV-A and UV-B wavelengths, significant CSIR durations of up to 30 minutes were observed.